WO2013135919A1 - Procedimiento para el tratamiento de materiales proteicos, producto obtenido mediante tal procedimiento y su utilización como fertilizante - Google Patents

Procedimiento para el tratamiento de materiales proteicos, producto obtenido mediante tal procedimiento y su utilización como fertilizante Download PDF

Info

Publication number
WO2013135919A1
WO2013135919A1 PCT/ES2012/070172 ES2012070172W WO2013135919A1 WO 2013135919 A1 WO2013135919 A1 WO 2013135919A1 ES 2012070172 W ES2012070172 W ES 2012070172W WO 2013135919 A1 WO2013135919 A1 WO 2013135919A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
urea
water
product
sulfuric acid
Prior art date
Application number
PCT/ES2012/070172
Other languages
English (en)
French (fr)
Inventor
Sergio Atares Real
Julia Martin Perez
Joaquin Romero Lopez
Original Assignee
Fertinagro Nutrientes, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fertinagro Nutrientes, S.L. filed Critical Fertinagro Nutrientes, S.L.
Priority to PCT/ES2012/070172 priority Critical patent/WO2013135919A1/es
Publication of WO2013135919A1 publication Critical patent/WO2013135919A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C9/00Fertilisers containing urea or urea compounds
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • C05F11/10Fertilisers containing plant vitamins or hormones

Definitions

  • the present invention relates to a process for the treatment of protein materials, to the product obtained by said process and to the use of this product as a fertilizer.
  • the invention relates to a protein hydrolysis process for the treatment of protein materials by the action of urea and sulfuric acid in a single step to obtain a product rich in amino acids, organic matter and nitrogen in its different forms without variation of the same thanks to the balance exerted by monocarbamide dihydrogenosulfate (MCDHS), a procedure that results in a high quality end product in which the load of amino acids remains constant without any degradation of them.
  • MCDHS monocarbamide dihydrogenosulfate
  • ROS reactive oxygen species
  • the amino acid proline participates in the regulation of the osmotic potential to compensate for water stress (Ashraf and Fooland, 2007, Hsu et al., 2003, Kavi Kishor et al., 2005, Rhodes et al., 1999), stabilizes the structure of the membranes and regulates the cytoplasmic pH to protect the plant under salinity conditions (Bohnert and Shen, 1999, Guo et al., 2010; Kaul et al., 2008; Rodr ⁇ guez and Redman, 2005; Vanrensburg et al. , 1993, Vicente O.
  • amino acids Normally, the use of amino acids is complemented with treatments based on mineral elements, since they contribute to a better assimilation and translocation of nutrients to the roots of plants, which, not needing to elongate themselves in search of nutrients, tend to produce secondary roots (Alarcón AL, 2000).
  • amino acids can act as regulators of the transport of microelements, since they are capable of forming complexes with metals (Michitte, 2008).
  • various investigations show its function as complexing agents for various elements such as iron (Bienfait, 1998), favoring its transport and penetration into plant tissues.
  • microorganisms synthesize L-amno acids from simple raw materials such as sugars, ethanol or methanol, which act as a carbon source under optimal aeration conditions.
  • the amino acids thus produced are fed into a fermentation stage, being subsequently isolated and purified.
  • L-glutamic acid is produced by bacteria such as Brevibacterium flavum or Corynebacterium glutamicum from a sugar solution of residual molasses from the manufacture of sucrose (Primo E., 2007). These processes represent a reduction of the cost of production compared to those of synthesis and are characterized by a high selectivity for the amino acids thanks to the control of the fermentation conditions.
  • these processes are conditioned by the starting raw materials, being the main sources of protein those of animal and vegetable origin.
  • the animal sources come from slaughterhouse slaughter, milk, meat, fish, egg, silk, leather.
  • sources of vegetable origin consist of products derived from the processing of oil seeds, wheat proteins, rice, potatoes, etc.
  • the selection of the raw materials is important, since not all the raw materials once treated obtain the same amino acid profile, which means that if the process is not properly controlled the expected amino acids are not obtained (Klostermeyer H. col .., Proteins, Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim 10.1002 / 14356007.a22_289).
  • the obtaining of protein hydrolysates can be carried out in various ways, the most common being chemical or enzymatic hydrolysis, where the fundamental process step is the same: the breakdown of the peptide bond by the action of water. This reaction is catalyzed by acids or bases in chemical hydrolysis and, in the case of enzymatic, by the action of proteases, which act as catalysts breaking the peptide bonds inside the polymer chains. In the case of enzymatic hydrolysis, the process is carried out under moderate conditions, reduced temperature of 65 ° C; Wide range of pH 2-1 1, fewer side reactions.
  • Hydrolysis in basic medium Ca (OH) 2 , MgO, K (OH) are used and, in general, any strong base that increases the pH above 10.
  • Hydrolysis in basic medium has certain advantages such as easy formation of synergies between amino acids, but also present great disadvantages such as the generation of products of degradation of origin mainly putrescine and cadaverine. This causes the loss of amino acids and odors, as well as some variability in the amino acids obtained even with processes at constant temperatures.
  • the hydrolysis in acid medium is carried out mainly with strong acids of HCI type and to a lesser extent H 2 SO 4 .
  • the advantages of acid hydrolysis are, as in the previous case, the ease of forming synergies and also the conservation of nitrogen throughout the entire process.
  • the disadvantages of the hydrolysis carried out with hydrochloric acid are the formation of salts containing chlorides, so that the products thus obtained are not therefore suitable for use in certain agricultural uses.
  • TFA HCl 1: 2 166 ° C, 25-50 min Ac. thioglycolic 5% Trp, Met HCL 7M, TFA 10% Ac. Thioglycolic 10%, Trp
  • Trp tryptophan
  • Met methionine
  • Cys cysteine
  • Lys lysine
  • h hours
  • min minutes
  • TFA ác. trifluoroacetic
  • the object of the present invention is to provide a process and obtain a final product by means of such a process that does not mitigate the aforementioned disadvantages of the known processes of the state of the art, being therefore more economical, safer and providing a final product more suited to its use as a protein hydrolyzate, either as such or as a base for formulations in its application as fertilizers.
  • Another object of the invention is the product obtained by said process, rich in amino acids, organic matter and nitrogen, the latter in its different forms without variation thereof thanks to the balance exerted by monocarbamide dihydrogen sulfate or MCDHS, the final product having a high quality u in which amino acids remain constant without risk of degradation.
  • another object of the invention is the use of said product as fertilizer as such or as a base for fertilizer formulations.
  • the amino acids of the proteins are linearly linked by peptide bonds. These junctions are formed by the synthesis reaction (via dehydration) between the carboxyl group of the first amino acid with the amino group of the second amino acid.
  • the hydrolysis reaction pursues the breakdown of the peptide bonds to thereby release the amino acids. This reaction is favored by the denaturation of the protein, so that the isoelectric point of the amino acids is modified. Such modification of the isoelectric point depends on variables such as: ⁇ the polarity of the solvent
  • the hydrolysis reaction of the invention is favored by two of these variables: the ionic potential and the pH.
  • the invention proposes to take advantage of the union of these two effects using for the process of protein hydrolysis in the treatment of protein materials in a single step a compound that maintains the acidity of sulfuric acid (two undissociated protons) and the expected effects of urea .
  • the hydration properties of the water are modified, generating a stability in the protein-water interaction during the process of the invention.
  • the pH influences the stability of the protein due to the pKa values of ionizable groups in their various fold denatured state causing changes in different areas electrostatic intramolecular interactions and solvation energy.
  • the co-solvent-protein interaction mechanism can be produced by direct contact, by indirect effects due to the disturbance of the laws of hydration or, in some cases, by a combination of both mechanisms, being urea a co-solvent that denatures the protein favoring chemical hydrolysis of the same (Scharnagl C, et al., Biochimica et Biophysica Acta 1749 (2005) 187-213).
  • the protein has not undergone any change in its interaction with the solvent, it is said to have a native structure. Protein denaturation is called the loss of the structure of higher order (secondary, tertiary and quaternary), the polypeptide chain being reduced to a statistical polymer without any fixed three-dimensional structure.
  • Urea can exert its effect directly in two ways, by means of an ion to the protein, or indirectly, by altering the solvent, modifying the cosolvent. Most of the versions propose direct interaction, that is to say, the area relies on protein and stabilizes as previously mentioned. Urea gives rise to a decrease in water-water interactions, that is, acts on hydrogen bonding, as well as a local arrangement of water around the polar atoms of urea, causing the exposure of the groups to decrease non-polar relative to the solvent of pure water.
  • Urea allows better solubilization of hydrophobic solutes in water and, therefore, modifies the solvent load to accept non-polar groups, thanks to the disruption of the water structure and the reorientation of water molecules around its polar atoms.
  • urea concentrations greater than 8M
  • a more direct interaction between urea and solute appears Zou Q. et al., (2002) J. Am. Chem. Soc. 124, 1 192-1202.
  • urea causes a splitting of the native structure of the protein, making it more susceptible to the subsequent breakdown of peptide bonds by sulfuric acid, which alters the surface charge of proteins. eliminating the electrostatic interactions that stabilize the tertiary structure.
  • urea concentration of at least 4M 76% of the water is in contact with at least one molecule of water (Bennion BJ et al., 2003, "The molecular basis for the chemical denaturation of proteins by urea”), affecting to the protein-water interaction (Scharnagl C. et al., 2004, “Stability of proteins: Temperature, pressure and the role of the solvent”), which favors the unfolding of the protein (Rezus and Bakker, 2006, "Effect of urea on the structural dynamics of water ").
  • the urea of structural formula, NH 2 -CO-NH 2 , is the diamide of carbonic acid.
  • the acid hydrolysis of the primary amides yields a free organic acid and an ammonium salt.
  • the secondary and tertiary amides produce the corresponding acid and a quaternary ammonium salt.
  • an example of acid hydrolysis of an amide with HCl is shown:
  • MCDHS Monocarbamide dihydrogen sulfate
  • urea sulfate is urea bound to sulfuric acid.
  • the MCDHS has been approved by the State (BOE of March 25, 201 1, order "PRE / 630/201 1, of March 23, by which Annexes I, II, III, IV, V and VI are modified of the Royal Decree 824/2005, of July 8) as a fertilizer product, so the MCDHS is characterized by its urease inhibiting behavior, being useful as a fertilizer for its ability to lower the pH of the soil, to destroy the deposits of matter organic in drip irrigation systems, and also for its ease of handling compared to other products.
  • the exclusive technology of the MCDHS (patents ES 2 204 307 and WO 2007/132032 A1) consists of:
  • MCDHS monocarbamide dihydrogensulfate
  • MCDHS presents the typical acidity corresponding to the two protons of sulfuric acid, which is the reason for the hydrolysis to develop, but it is less hot corrosive than the strong acid alone (Richard Sargent, R., US5234466), both in reference to metallic materials that are used for storage and processing, as well as for the user of the product.
  • the process of the invention of acid hydride for the treatment of protein materials in a single step comprises the following steps, the percentages indicated refer to percentages by weight unless otherwise indicated:
  • this mixture is subjected to a temperature not higher than 1 10 ° C, preferably 80-1 10 ° C, under agitation, for 12-24 hours, so that the complete hydrolysis reaction takes place; without the need to add an additional basic component, such as ammonia, to neutralize the reaction.
  • This process of hydrolysis of proteins in a single step to obtain a product with fertilizing characteristics has great advantages compared to hydrolysis processes in several steps.
  • the method of the invention allows to reduce the cost, since it is carried out in a single step.
  • the action of urea makes it possible to use a proportion of sulfuric acid considerably lower than that required in the acid hydrolysis process in several steps of the prior art.
  • the storage costs are also reduced, since it is not necessary to have a special tank for sulfuric acid, since the reaction compound formed by sulfuric acid, urea and water has a pH of 2.2 and does not it is necessary to store it in a special tank for corrosive products, as is the case for concentrated sulfuric acid (as described by Donald C. Young's patent US4402852) and, finally, it is not necessary to have an installation for the storage of ammonia. , since it is produced and controlled in the new hydrolysis process described in the present invention.
  • Phenylalanine 165.19 g / mol 165.19 Da Isoleucine 131, 17 g / mol 131, 17 Da
  • Figure 1 shows a polyacrylamide gel in which the electrophoresis of the animal protein (A: PAT) and a series of products obtained according to the present invention have been carried out from said animal protein, all this compared to a standard (ST) (Biotinylated SDS-PAGE Standards, Broad Range, Bio-Rad Laboratories, 2000 Alfred Nobel Dr., Hercules, CA 94547) with 9 different molecular weights.
  • A animal protein
  • ST Biotinylated SDS-PAGE Standards, Broad Range, Bio-Rad Laboratories, 2000 Alfred Nobel Dr., Hercules, CA 94547
  • Figure 1 shows that the animal protein, as indicated in the literature, has a mass above 60 kD, but none of the products obtained with the process of the invention have any band in the gel. This shows the fractionation of the prion of origin. As previously mentioned, this process does not require demanding conditions to be carried out. In addition, storage of the reaction compound (sulfuric acid + urea) is not conditioned to special tanks (resistant to acids and bases), not being necessary a basic component for the neutralization of the product. All this makes possible the application of the process of the invention to the treatment of protein by-products in the same plant. obtaining the waste product, reducing the cost of treatment thereof and also with the advantage of generating a fertilizer. These by-products can be of animal or vegetable origin. For example, in the case of blood treatment, said waste product can be treated in the slaughterhouse itself, thus avoiding the danger of transfer and its subsequent transfer to a special plant for the treatment of biohazard substances.
  • the product obtained in the hydrolysis process according to the invention differs from the products with similar characteristics of the state of the art in that it has a high stability of its components over time. This is achieved thanks to the fact that the MCDHS exercises a constant balance between the forms of nitrogen, also affecting this balance to the amino acids, preventing their degradation. This is clearly explained by the following reaction:
  • the high quality product obtained according to the process of the invention can be applied directly as a fertilizer, since it contains very valuable components such as plant nutrients, such as amino acids, organic nitrogen, nitrogen ureic, ammoniacal nitrogen and organic matter. Furthermore, by applying the process of the invention, different final fertilizer products with different concentrations can be generated by modifying variables such as the time or the amount of liquid or solid protein initially introduced in the hydrolysis process.
  • the obtained product includes from 2 to 30% amino acids, from n 2 to 30% nitrogen and from 5 to 50% organic matter.
  • the product obtained with the process of the invention can also form other forms of fertilizers that carry micronutrients, phosphorus, potassium, calcium, magnesium and other biostimulants such as seaweed extract, humic extracts and fulvic, and can be mixed with other compounds that provide more units of nitrogen, organic matter or even amino acids of other origins or synthetic.
  • the product obtained according to the process of the invention optionally includes 2-15% calcium, 0.5-10% boron and 0.5-10% zinc.
  • the method of hydrolysis of proteins for the treatment of protein materials in a single step of the invention comprises the treatment of zootechnical blood according to the following steps:
  • this mixture is subjected to a temperature not higher than 1 10 ° C under agitation for 1 2-24 hours, preferably for approximately 24 hours, to achieve hydrolysis of the protein.
  • the product thus obtained can be incorporated in very different formulations, from fertilizers containing micro-nutrients, phosphorus, potassium, calcium, magnesium and other biostimulants such as seaweed extract, humic extracts and fulvic, to compounds that provide more units of nitrogen, organic matter or even amino acids of other origins or synthetic.
  • the product obtained according to the process of the invention includes 6.08 g of free amino acids from the hydrolysis according to the process of the invention, 10.25 g of organic material, 7.61 g of calcium in the form of soluble CaO in water from calcium chloride, 0.98 g of boron soluble in water from boric acid, 1.01 g of zinc soluble in water from anhydrous zinc chloride, all for every 100 g of product final, and has a pH of 5.35.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Botany (AREA)
  • Peptides Or Proteins (AREA)

Abstract

La invención se refiere a un procedimiento de hidrólisis de proteínas para el tratamiento de materiales proteicos mediante la acción de urea y ácido sulfúrico en un solo paso para obtener un producto rico en aminoácidos, materia orgánica y nitrógeno en sus diferentes formas sin variación de las mismas gracias al equilibrio que ejerce la monocarbamida dihidrogenosulfato o MCDHS, procedimiento que da como resultado un producto final de alta calidad en el que la carga de aminoácidos se mantiene constante sin que se produzca degradación alguna de los mismos.

Description

PROCEDIMIENTO PARA EL TRATAMIENTO DE MATERIALES PROTEICOS, PRODUCTO OBTENIDO MEDIANTE TAL PROCEDIMIENTO Y SU UTILIZACIÓN COMO FERTILIZANTE
La presente invención se refiere a un procedimiento para el tratamiento de materiales proteicos, al producto obtenido mediante dicho procedimiento y a la utilización de este producto como fertilizante.
Más concretamente, la invención se refiere a un procedimiento de hidrólisis de proteínas para el tratamiento de materiales proteicos mediante la acción de urea y ácido sulfúrico en un solo paso para obtener un producto rico en aminoácidos, materia orgánica y nitrógeno en sus diferentes formas sin variación de las mismas gracias al equilibrio que ejerce la monocarbamida dihidrogenosulfato (MCDHS), procedimiento que da como resultado un producto final de alta calidad en el que la carga de aminoácidos se mantiene constante sin que se produzca degradación alguna de los mismos.
En las plantas, los fenómenos medioambientales adversos originan una respuesta conocida como estrés abiótico, el cual resulta en una pérdida muy importante en cuanto al rendimiento de las cosechas. Fenómenos tales como sequías, heladas, salinidad, etc . son los causantes de u nas pérd idas de hasta el 80% en determinados cultivos (Buchanan y col., 2000, Biochemistry and molecular biology of plants, ASPP). Con frecuencia, para mitigar estos aspectos adversos se llevan a cabo aportaciones exógenas de productos bioestimulantes, incorporando a la planta osmolitos exógenos que actúan manteniendo el equilibrio osmótico y como "osmoprotectores" durante la respuesta al estrés. Estas funciones se desarrollan tanto directamente estabilizando las proteínas y la estructura de las membranas celulares sometidas a condiciones de deshidratación como protegiendo a la célula contra el estrés oxidativo, un efecto secundario del estrés salino, anulando el efecto tóxico de las especies reactivas al oxígeno (ROS, por "reactive oxygen species") (Zhu, 2001 ). Uno de los bioestimulantes habitualmente util izados son los hidrol izados proteicos, que son fuente de aminoácidos. Éstos son utilizados por las plantas en su metabolismo y tienen un doble efecto: por un lado, ahorran energía metabólica en la síntesis de los mismos y, por otro lado, consiguen aportar osmolitos de efectos fisiológicos concretos. Por ejemplo, el aminoácido prolina participa en la regulación del potencial osmótico para compensar el estrés h ídrico (Ashraf y Fooland, 2007; Hsu y col., 2003; Kavi Kishor y col., 2005; Rhodes y col., 1999), estabiliza la estructura de las membranas y regula el pH citoplasmático para proteger a la planta en condiciones de salinidad (Bohnert y Shen, 1999; Guo y col., 2010; Kaul y col., 2008; Rodríguez y Redman, 2005; Vanrensburg y col ., 1993; Vicente O. y col., 2003), influye en la fecundidad del polen incrementando así el porcentaje de germinación (Zhang y Croes, 1983) y, en aplicación foliar, favorece la acumulación de nutrientes esenciales como K+, Ca2+, N y P (Ali y col. 2008). Por su parte, la metionina regula procesos fisiológicos fundamentales, desde la germinación y la senescencia floral hasta la maduración del fruto (Smith, 1985). La glicina es un metabolito fundamental utilizado para la formación de las hojas y corresponde al primer eslabón de la ruta fotosintética de la clorofila (Franco, 1989). Igualmente, la metionina, la glicina y la arginina son precursores de la síntesis de poliaminas (Yang y Hoffman, 1984).
Normalmente el uso de aminoácidos se complementa además con tratamientos a base de elementos minerales, ya que contribuyen a una mejor asimilabilidad y translocación de los nutrientes hacia las raíces de las plantas, las cuales, al no necesitar elongarse en busca de nutrientes, tienden a producir raíces secundarias (Alarcón A.L., 2000).
Por último, además de la función nutricional, los aminoácidos pueden actuar como reguladores del transporte de microelementos, ya que son capaces de formar complejos con metales (Michitte, 2008). En este sentido, diversas investigaciones dan cuenta de su función como agentes complejantes para diversos elementos como el hierro (Bienfait, 1998), favoreciendo su transporte y penetración en el interior de los tejidos vegetales.
El aporte exógeno de aminoácidos supone un importante ahorro de energía en la planta, sobre todo para aquellos órganos que generan u n alto consumo energético (brotes, flores y frutos), para lo q ue es necesario que estén fisiológicamente activos. Por tanto, el proceso de obtención de los hidrolizados proteicos debe ser u n proceso controlado en el q ue no se prod uzca l a degradación de los aminoácidos y éstos permanezcan activos con el tiempo en el producto final.
Además, para que la planta pueda incorporarlos en su metabolismo, es necesario que sean aminoácidos libres o péptidos de muy bajo peso molecular. De esta forma, entrarán fácilmente a la planta a través de las raíces o en aplicación foliar, penetrando en las hojas por difusión, para ser posteriormente transportados a los órganos del vegetal donde se requiere una mayor demanda de ellos (Kato u col., 1985). Las vías de obtención de los aminoácidos se clasifican según dos tipos de procesos: procesos de síntesis de aminoácidos o procesos de hidrólisis de proteínas. Aquellos de origen sintético se derivan de un proceso de fermentación o bien de una síntesis de tales aminoácidos.
En el caso de los procesos de fermentación, los microorganismos sintetizan L- am inoácidos a partir de materias primas simples como azúcares, etanol o metanol , que actúan como fuente de carbono en cond iciones óptimas de aireación. Los am inoácidos así producidos se acu m u l an en u n ca ldo de fermentación, siendo posteriormente aislados y purificados. Por ejemplo, el ácido L-glutámico es producido por bacterias tales como Brevibacterium flavum o Corynebacterium glutamicum a partir de una solución azucarada de melazas residuales de la fabricación de sacarosa (Primo E. , 2007). Estos procesos representan una reducción del coste de producción frente a aquellos de síntesis y se caracterizan por una alta selectividad por los aminoácidos gracias al control de las condiciones de fermentación. Una gran desventaja de tales procesos es que se trata de una selectividad excesiva, lo que lleva a obtener productos con pocos aminoácidos libres y, por tanto, no se consigue un efecto sinérgico entre los aminoácidos (Plachy J., Research Institute of Antibiotics and Biotransformations, Roztoky u Prahy, Czech Republic: Fermentation of amino acids. - Biologické listy 63 (1 ): 61 -76, 1998). En referencia a hora a los procesos de síntesis, en general se denomina proceso de síntesis al conjunto de reacciones qu ímicas por las cuales se producen distintos aminoácidos a partir de otros compuestos. En este caso, se trata del proceso más adecuado para cuando se quiere obtener un aminoácido concreto. Sin embargo, al ig ual que en el proceso descrito anteriormente, una gran desventaja de este tipo de procesos se deriva de que en la agricultura no es conveniente la acción de un único aminoácido, sino que, para obtener buenos resultados en la planta, se necesita la sinergia entre varios aminoácidos. Otras dificultades q ue plantea este tipo de procesos sintéticos es el control estereoquímico, que supone una difícil selección de los isómeros estructurales o estereoisómeros, así como la ausencia de nitrógeno en el producto final (Berg J., y col., Biochemistry, New York: W.H. Freeman and Co. 2002).
En referencia ahora a los procesos de hidrólisis de proteínas, estos procesos están condicionados por las materias primas de partida, siendo las principales fuentes de proteína aquellas de origen animal y vegetal. Las fuentes animales proceden de despojos de mataderos, leche, carne, pescado, huevo, seda, cuero. Por su parte, las fuentes de origen vegetal consisten en productos derivados del procesamiento de semillas oleaginosas, proteínas de trigo, arroz, patatas, etc. La selección de las materias primas es importante, ya que no de todas las materias primas una vez tratadas se obtiene el mismo perfil de aminoácidos, lo que significa que si no se controla adecuadamente el proceso no se obtienen los aminoácidos esperados (Klostermeyer H . y col.., Proteins, Wiley-VCH Verlag GmbH&Co, KGaA, Weinheim 10.1002/14356007.a22_289).
La obtención de hidrolizados proteicos se puede llevar a cabo de diversas formas, siendo las más habituales la hidrólisis química o enzimática, donde el paso de proceso fundamental es el mismo: la ruptura del enlace peptídico por acción del agua. Esta reacción es catalizada por ácidos o bases en la hidrólisis química y, en el caso de la enzimática, por la acción de proteasas, que actúan como catalizadores rompiendo los enlaces peptídicos en el interior de las cadenas poliméricas. En el caso de la hidrólisis enzimática, el proceso se lleva a cabo en condiciones moderadas, temperatura reducida de 65°C; amplio rango de pH 2-1 1 , menos reacciones secundarias. La principal desventaja de estos procesos es que la acción de la enzima es muy selectiva (Guadix y col., 2000) y produce la ruptura peptídica siempre entre determinados aminoácidos, por ejemplo la enzima papaína actúa en el enlace peptídico siempre entre dos Usinas (Beer RJ. y col., 201 1 . CHEMBIOCHEM). Como resultado, los hidrolizados proteicos obtenidos por este proceso suelen presentar una menor cantidad de aminoácidos libres y una cantidad mayor de péptidos, entendiendo con ello la suma de aminoácidos que no llegan a ser proteínas pero tampoco están libres (dímeros, trímeros, etc.). Debido a esta hidrólisis incompleta, estos productos no son adecuados para su utilización foliar, ya que su gran tamaño molecular imposibilita su absorción foliar, teniendo una escasa eficacia. Además, una vez final izado el proceso enzimático, es necesario separar o desnaturalizar la enzima, paso que encarece sustancialmente el proceso.
En la hidrólisis en medio básico se utiliza Ca(OH)2, MgO, K(OH) y, en general, cualquier base fuerte que aumente el pH por encima de 10. La hidrólisis en medio básico tiene ciertas ventajas como son la fácil formación de sinergias entre los aminoácidos, pero también presente grandes desventajas como son la generación de productos de degradación de origen principalmente putrescina y cadaverina. Esto provoca la pérd ida de aminoácidos y olores, así como también cierta variabilidad en los aminoácidos obtenidos incluso con procesos a temperaturas constantes.
La hidrólisis en medio ácido se lleva a cabo principalmente con ácidos fuertes de tipo HCI y en menor medida H2SO4. Las ventajas de la hidrólisis ácida son, al igual que en el caso anterior, la facilidad de formación de sinergias y además la conservación del nitrógeno a lo largo de todo el proceso. Las desventajas de la hidrólisis llevada a cabo con ácido clorhídrico estriban en la formación de sales que contienen cloruros, por lo que los productos así obtenidos no son, por tanto, adecuados para su utilización en determinados usos agrícolas. Igualmente, cuando se lleva a cabo con ácido sulfúrico existe la posibilidad de que se produzca una oxidación de los aminoácidos, aunque se reduce neutralizando el ácido sulfúrico con hidróxido de calcio para formar sulfato de calcio, que es eliminado mediante filtración (Stadtman E.R., Oxidation of Free Amino Acids and Amino Acid Residues in Proteins by Radiolysis and by Metal -Catalyzed Reactions, Annual Review of Biochemistry. Vol. 62: 797-821 (1993)). La tabla 1 a continuación muestra un resumen de los métodos actuales para llevar a cabo la hidrólisis en medio ácido:
Tabla 1 Agentes empleados en la hidrólisis ácida de proteínas
Agente Condiciones Aditivos Aminoácidos
HCI 6M 1 10°C, 24h 0,002% fenol Todos excepto
Cys y Trp
HCI 6M o MSA 4M 1 10°C, 24h 0,2% azida sódica Cys
HCI 6M 1 10°C, 18h 5% ác. tioglicólico, 0,1 % Cys
fenol, ác. 3,3'- ditiodipropiónico
HCI 6M 145°C, 4h 3-bromopropilamina Cys
HCI 6M 145°C, 4h muestras previamente Cys, Met, Lys oxidadas con ác.
perfórmico
MSA 4M 1 15°C, 22h 3-(2-aminoetil)indol Trp, Met-sulfóxido
MSA 4M 1 15°C, 22h muestras previamente Todos
alquiladas, triptamina
MSA 4M 160°C, 45 min Todos
MSA 4M o HCI 150°C, 90 min oxidación con ác. Todos
5,7M perfórmico 50°C, 10 min
Ac. p- Met-sulfóxido toluensulfónico 3M
HCI 12M: ác 150°C, 90 min péptidos en propiónico (1 :1 ) resinas
HCI 12M: ác 840 W, 1 -7 min, péptidos en propiónico (1 :1 ) microondas resinas
Ac. p- 15 min, Met-sulfóxido toluensulfónico microondas
DCI potencia media, Residuos
30 min, sensibles microondas
Ac. mercapto- 176°C, 125 min Muestras 5-piridiletiladas Cys, Trp etanosulfónico,
2,5M
HCI 6M:TFA 6:3 120°C, 16h Ac. ditiodiglicólico, 1 % Cys
fenol
HCI Ac. tioglicólico Trp
HCI 1 10°C, 24h β-mercaptoetanol, 0,4% Trp
HCI 166°C, 25 min o fenol 3% Trp
145°C, 4h
HCI 145°C, 4h Triptamina Trp
HCI 6M 145°C, 4h, fase Triptamina-3-(2- Trp
gas aminoetil)indol
TFA:HCI 1 :2 166°C, 25-50 min Ac. tioglicólico 5% Trp, Met HCL 7M, TFA 10% Ac. tioglicólico 10%, Trp
indol
Ac. mercapto- 176°C, 25 min, Trp etanosulfónico 3M fase gas
Trp= triptófano, Met = metionina, Cys = cisteína, Lys = lisina; h= horas, min = minutos, TFA = ác. trifluoroacético
Datos obtenidos de Fountoulakis M. y col., Hydrolysis and amino acid composition analysis ofproteins, Journal of Chromatography A, 826 (1998) 109-134
En las hidrólisis químicas, la utilización de ácidos y bases a altas temperaturas provoca ciertos efectos adversos en cuanto a la calidad final de los hidrolizados debido a fenómenos tales como la racemización o por desnaturalización de grupos funcionales. Además, debido a la util ización de reactivos qu ím icos corrosivos a estas altas temperaturas es necesario utilizar equipos costosos tanto de almacenamiento como de procesado. Por otra parte, la modificación drástica del pH hace que sean necesarias al menos dos etapas de adición para los reactivos, por un lado la etapa de hidrólisis y después la etapa de neutralización, donde el producto final se convierte en apto para su uso. La aplicación de este tipo de hidról isis hace que el proceso sea costoso debido a la necesidad de reactivos y de procesos a altas temperaturas con líquidos corrosivos.
Por tanto, el objeto de la presente invención es proporcionar un proceso y obtener un producto final med iante tal proceso que no conl leve las desventajas mencionadas anteriormente de los procesos conocidos del estado de la técnica, siendo por ello más económico, más seguro y proporcionando un producto final más adecuado a su uso como hidrolizado proteico bien tal cual o como base para formulaciones en su aplicación como fertilizantes. Así, es un objeto de la presente invención proporcionar un nuevo proceso de hidrólisis de proteínas para el tratamiento de materiales proteicos en un solo paso, por la acción de urea y ácido sulfúrico.
Es igualmente objeto de la invención el producto obtenido mediante dicho procedimiento, rico en aminoácidos, materia orgánica y nitrógeno, este último en sus diferentes formas sin variación de las mismas gracias al equilibrio que ejerce la monocarbamida dihidrogenosulfato o MCDHS, teniendo el producto final una alta calidad u en el cual se mantienen constantes los aminoácidos sin riesgo de degradación. Por último, es otro objeto de la invención la utilización de dicho producto como fertilizante como tal o bien como base para formulaciones fertilizantes. Los aminoácidos de las proteínas se encuentran unidos linealmente por uniones peptídicas. Estas uniones se forman por la reacción de síntesis (vía deshidratación) entre el grupo carboxilo del primer aminoácido con el grupo amino del segundo aminoácido.
Figure imgf000009_0001
Figure imgf000009_0002
La reacción de hidrólisis persigue la ruptura de los enlaces peptídicos para con ello liberar los aminoácidos. Esta reacción se ve favorecida por la desnaturalización de la proteína, de forma que se modifica el punto isoeléctrico de los aminoácidos. Tal modificación del punto isoeléctrico depende de variables tales como: · la polaridad del disolvente
• el potencial iónico . el pH
• la temperatura La reacción de hidrólisis de la invención se ve favorecida por dos de estas variables: el potencial iónico y el pH. La invención propone aprovechar la unión de estos dos efectos utilizando para el proceso de hidrólisis de proteínas en el tratamiento de materiales proteicos en un solo paso un compuesto que mantiene la acidez del ácido sulfúrico (dos protones sin disociar) y los efectos esperados de la urea.
Modificando la concentración de codisolventes y/o desnaturalizantes se modifican las propiedades de hidratación del agua, generando una estabil idad en la interacción proteína-agua durante el proceso de la invención. Por ejemplo, el pH influye en la estabilidad de la proteína debido a los valores de pKa de varios grupos ionizables en su estado de pliegue y desnaturalizado causando cambios en las diferentes zonas electrostáticas a las interacciones intramoleculares y energía de solvatación.
El mecanismo de interacción codisolvente-proteína puede producirse mediante contacto directo, por efectos indirectos gracias a la perturbación de las leyes de hidratación o, en algunos casos, por combinación de ambos mecanismos, siendo la urea un codisolvente que desnaturaliza la proteína favoreciendo la hidrólisis química de la misma (Scharnagl C, y col., Biochimica et Biophysica Acta 1749 (2005) 187-213). Cuando la proteína no ha sufrido n ingún cambio en su interacción con el disolvente se dice que presenta una estructura nativa. Se denomina desnaturalización de las proteínas a la pérdida de la estructura de orden superior (secundaria, terciaria y cuaternaria), quedando la cadena polipeptídica reducida a un polímero estadístico sin ninguna estructura tridimensional fija. Cualquier factor que modifique la interacción de la proteína con el disolvente disminuirá su estabilidad en d isolución y provocará la precipitación . Así, la desaparición total o parcial de la envoltura acuosa, la neutralización de las cargas eléctricas de tipo repulsivo o la ruptura de los puentes de hidrógeno facilitarán la agregación intermolecular y se provocará la precipitación. La precipitación suele ser consecuencia del fenómeno de desnaturalización, se dice entonces que la proteína se encuentra desnaturalizada. En una proteína cualquiera, la estructura nativa y la desnaturalizada tan sólo tienen en común la estructura primaria, es decir, la secuencia de aminoácidos que la componen. Los demás niveles de organización estructural desaparecen en la estructura desnaturalizada. La desnaturalización provoca diversos efectos en la proteína:
1 . cambios en las propiedades hidrodinámicas de la proteína: aumenta la viscosidad y disminuye el coeficiente de difusión,
2. una drástica disminución de su solubilidad, ya que los residuos hidrofóbicos del interior aparecen en la superficie, 3. pérdida de las propiedades biológicas.
Pequeñas moléculas orgánicas en una solución acuosa, pueden tener diferentes efectos por ejemplo en la estabilidad de las proteínas, en su estructura, así como en su función. Con frecuencia se emplean estas soluciones para estabilizar o desestabilizar las proteínas, dependiendo del codisolvente. La urea puede ejercer su efecto d irectamente de dos formas, med iante la un ión a la proteína, o ind irectamente, med iante la alteración del disolvente, modificación d el codisolvente. La mayoría de las versiones plantean la interacción directa, es decir, la u rea se u ne a la prote ína y se estabil iza como ya se ha comentado anteriormente. La urea da lugar a un descenso en las interacciones agua-agua, esto es actúa sobre los enlaces por puente de hidrógeno, así como a un ordenamiento local del agua alrededor de los átomos polares de la urea, haciendo que disminuya la exposición de los grupos no polares relativos al disolvente del agua pura.
La urea permite solubilizar mejor los solutos hidrófobos en el agua y, por tanto, modificar la carga del disolvente para aceptar grupos no polares, gracias a la disrupcion de la estructura del agua y la reorientación de las moléculas de agua alrededor de sus átomos polares. A concentraciones altas de urea (superiores a 8M), aparece una interacción más directa entre la urea y el soluto (Zou Q. y col., (2002) J. Am. Chem. Soc. 124, 1 192-1202). Al prod ucir u na desnatu ral ización de la prote ína , la urea provoca un desdoblamiento de la estructura nativa de la misma, haciéndola más susceptible a la posterior ruptura de los enlaces peptídicos por el ácido sulfúrico, que altera la carga superficial de las proteínas eliminando las interacciones electrostáticas que estabilizan la estructura terciaria. A una concentración de urea de al menos 4M, el 76% del agua está en contacto con al menos una molécula de agua (Bennion B. J. y col., 2003, "The molecular basis for the chemical denaturation of proteins by urea"), afectando a la interacción proteína-agua (Scharnagl C. y col . , 2004, "Stability of proteins: Temperature, pressure and the role of the solvent"), lo que favorece el desdoblamiento de la proteína (Rezus y Bakker, 2006, "Effect of urea on the structural dynamics of water").
La urea, de fórmula estructural, NH2-CO-NH2, es la diamida del ácido carbónico. La hidrólisis ácida de las amidas primarias produce un ácido orgánico libre y una sal de amonio. Las amidas secundarias y terciarias producen el correspondiente ácido y una sal de amonio cuaternaria. A continuación, se muestra un ejemplo de hidrólisis ácida de una amida con HCI:
O
HCS 11 \ τ
R - C— N + , Ο » R - C— OH + . NhLCI
Figure imgf000012_0001
En el proceso de hidrólisis de la presente invención, se controla el equilibrio que existe en torno al nitrógeno tal como se muestra en la siguiente reacción:
N, ureico<— N i *, amoniacal T + ' A »/ urreico
Parte del nitrógeno ureico proveniente de la urea adicionada se transforma por la temperatura a nitrógeno amoniacal con desprendimiento de CO2, por lo que va aumentando el pH de la hidrólisis. Introduciendo en la reacción ácido sulfúrico mezclado con la urea se puede controlar dicha conversión por la formación de monocarbamida dihidrogenosulfato (MCDHS) (ES 2204 307 y WO 2007/132032). Esto permite desarrollar todo el proceso en un solo paso, es decir, en el mismo tanque se hidroliza y neutraliza a la vez.
La monocarbamida dihidrogenosulfato (MCDHS) o urea sulfato es urea ligada a ácido sulfúrico. La MCDHS ha sido aprobada por el Estado (BOE del 25 de marzo del 201 1 , orden "PRE/630/201 1 , de 23 de marzo, por la que se modifican los Anexos I, II, III, IV, V y VI del Real Decreto 824/2005, de 8 de julio) como producto fertilizante. Así, la MCDHS se caracteriza por su comportamiento inhibidor de la ureasa, siendo útil como fertilizante por su capacidad para disminuir el pH del suelo, de destruir los depósitos de materia orgánica en sistemas de riego por goteo, y además por su facilidad de manejo en comparación a otros productos.
La tecnología exclusiva de la MCDHS (patentes ES 2 204 307 y WO 2007/132032 A1 ) consiste en:
• Ralentización de la hidrólisis de la urea, impidiendo el lavado de unidades nitrogenadas.
• Por carbamidación, al someter la urea a un ataque químico, se forma un compuesto intermedio denominado monocarbamida dihidrogenosulfato o MCDHS capaz de inh ibir la acción de la ureasa , responsable de la transformación del nitrógeno ureico en amoniacal.
• Retención del n itrógeno amon iacal , d ism inuyendo las pérd idas por volatilización. Por sulfatación, a medida que el compuesto MCDHS se va degradando libera protones H+. En este m ismo proceso se forma un complejo con carga negativa que capta el nitrógeno amoniacal disponible, transformándose en sulfato amónico. Esta reacción química disminuye la posible volatilización del nitrógeno amoniacal.
• Mayor asimilación de los m icroelementos: debido a las reacciones químicas descritas, se consigue desbloquear y solubilizar microelementos presentes en el suelo. La MCDHS, presenta la acidez típica correspondiente a los dos protones del ácido sulfúrico, que es la razón de que se desarrolle la hidrólisis, pero es menos corrosiva en caliente que el ácido fuerte solo (Richard Sargent, R., US5234466), tanto en referen cia a los materiales metálicos q ue se util izan para el almacenamiento y procesado, como para el usuario del producto.
Con este proceso se puede optimizar la cantidad de nitrógeno en cada una de las formas, ya que el equilibrio puede controlarse por la relación agua:(urea + ácido sulfúrico). A concentraciones altas de ácido sulfúrico se verá favorecida la formación de óxidos de nitrógeno y, con ello, la formación de nitrógeno amoniacal y, para d ism in u ir la formación de óxidos de n itrógeno, se disminuirá la concentración de ácido sulfúrico. Así, las relaciones preferentes agua:(urea + ácido sulfúrico) a mantener serán de entre aproximadamente 1 e inferiores a 2.
El procedimiento de la invención de h idról isis ácida para el tratamiento de materiales proteicos en un solo paso comprende las siguientes etapas, los porcentajes indicados se refieren a porcentajes en peso a no ser que se indique de otro modo:
- Adición en el tanque de reacción del material proteico a tratar en una proporción de un 10-50%, con el fin de conseguir un 10-50% de proteína;
- Adición del producto de reacción de un 15-40% de ácido sulfúrico, un 30- 55% de urea y u n 8-30% de agua; utilizándose dicho producto en una proporción de un 50-70% en la reacción de hidrólisis;
- Incorporación de una cantidad variable de agua en función de la riqueza en proteína del material proteico;
- Posteriormente esta mezcla se somete a una temperatura no superior a 1 10°C, preferentemente de 80-1 10°C, bajo agitación, durante 12-24 horas, para que se produzca la reacción completa de hidrólisis; sin necesidad de adicionar un componente básico adicional, tal como amoniaco, para neutralizar la reacción. Este procedimiento de hidrólisis de proteínas en un solo paso para la obtención de un producto con características fertilizantes, supone grandes ventajas frente a los procesos de hidrólisis en varios pasos.
En primer lugar, el procedimiento de la invención permite reducir el coste, dado que se lleva a cabo en un solo paso. La acción de la urea permite utilizar una proporción de ácido sulfúrico considerablemente inferior a la necesaria en los proceso de hidrólisis ácida en varios pasos de la técnica anterior. En segundo lugar, los costes de almacenamiento también se reducen, ya que no es necesario disponer de un tanque especial para el ácido sulfúrico, puesto que el compuesto de reacción formado por ácido sulfúrico, urea y agua presenta un pH de 2,2 y no es necesario almacenarlo en un tanque especial para productos corrosivos, como es el caso para el ácido sulfúrico concentrado (tal como describe la patente de Donald C. Young US4402852) y, por último, tampoco es necesario disponer de una instalación para el almacenamiento de amoniaco, ya que es producido y controlado en el nuevo proceso de hidrólisis descrito en la presente invención.
Además, se puede asegurar que se lleva a cabo un fraccionamiento del prion original del que se parte, ya que el riesgo de obtener un componente de mayor peso molecular que la proteína de partida desaparece para los productos formados por la posible unión de aminoácidos en la hidrólisis de peso molecular inferior a 1 .000 Da (Otani y col. 1990). Por ejemplo, cuando partimos de proteína animal, que tiene una masa del prion alrededor de 64-65 KDa (64.500 g/mol) (John C. Kotz y col., "Química y reactividad química", 2006, pág. 469), la masa de los am inoácidos obten idos al final del proceso no es superior a 21 0 Da el aminoácido de mayor tamaño, como se muestra en la tabla siguiente.
Valina 1 17,15 g/mol 1 17,15 Da
Leucina 131 ,17 g/mol 131 ,17 Da
Treonina 1 19,12 g/mol 1 19,12 Da
Lisina 146,19 g/mol 146,19 Da
Triptófano 204,23 g/mol 204,23 Da
Histidina 155,16 g/mol 155,16 Da
Fenilalanina 165,19 g/mol 165,19 Da Isoleucina 131 ,17 g/mol 131 ,17 Da
Arginina 174,2 g/mol 174,2 Da
Metionina 149,21 g/mol 149,21 Da
Alanina 89,09 g/mol 89,09 Da
Prolina 1 15,13 g/mol 1 15,13 Da
Glicina 75,07 g/mol 75,07 Da
Serina 105,09 g/mol 105,09 Da
Cisteína 121 ,16 g/mol 121 ,16Da
Ac. aspártico 133,1 g/mol 133,1 Da
Ac. glutámico 147,13 g/mol 147,13 Da
Tirosina 181 ,19 g/mol 181 ,19 Da
Este fraccionamiento también se garantiza mediante la separación de los componentes peptídicos obtenidos en la hidrólisis según sus pesos moleculares mediante electroforesis en geles de pol iacrilamida. En la figura 1 se puede observar un gel de poliacrilamida en el que se ha llevado a cabo la electroforesis de la proteína animal de partida (A: PAT) y una serie de productos obtenidos según la presente invención a partir de dicha proteína animal , todo ello en comparación con un estándar (ST) (Biotinylated SDS-PAGE Standards, Broad Range. Bio-Rad Laboratories, 2000 Alfred Nobel Dr., Hercules, CA 94547) con 9 pesos moleculares distintos.
En la figura 1 se observa que la proteína animal, tal como se indica en la bibliografía, tiene una masa por encima de 60 kD, pero ninguno de los productos obtenidos con el proceso de la invención presentan banda alguna en el gel. Esto demuestra el fraccionamiento del prion de origen. Como se ha comentado anteriormente, este proceso no requiere de condiciones exigentes para llevarse a cabo. Además, el almacenamiento del compuesto de reacción (ácido sulfúrico + urea) no está condicionado a tanques especiales (resistentes a ácidos y bases), no siendo necesario un componente básico para la neutralización del producto. Todo ello hace posible la aplicación del proceso de la invención al tratam iento de subproductos proteicos en la m isma planta de obtención del producto de desecho, reduciendo el coste del tratamiento de los mismos y además con la ventaja de generar un fertilizante. Estos subproductos pueden ser de origen animal o también vegetal. Por ejemplo en el caso del tratamiento de sangre, en el propio matadero puede tratarse dicho producto de desecho, evitando de esta forma el peligro del trasiego y su posterior traslado a una planta especial para el tratamiento de sustancias de riesgo biológico.
El producto obtenido en el proceso de hidrólisis según la invención se diferencia de los productos de similares características del estado de la técnica en que presenta una alta estabilidad de sus componentes en el tiempo. Esto se consigue gracias a que la MCDHS ejerce un equilibrio constante entre las formas de nitrógeno, afectando también este equilibrio a los aminoácidos, evitando su degradación. Esto se explica claramente mediante la siguiente reacción:
Figure imgf000017_0001
En esta reacción se observa que el catión amonio influye en el desplazamiento de las reacciones. Si este catión no está controlado, la reacción puede sufrir un desplazamiento hacia la derecha, produciendo una degradación de los productos obtenidos. Así, el efecto de la monocarbamida dihidrogenosulfato es facilitar la retención de dicho catión amonio en forma de sulfato amónico, permitiendo el control de ambas reacciones e imposibilitando en un futuro los efectos de degradación de los aminoácidos.
El producto de alta calidad obtenido según el proceso de la invención se puede aplicar directamente como fertilizante, ya que contiene componentes muy valiosos como nutrientes vegetales, como son aminoácidos, nitrógeno orgánico, nitrógeno ureico, nitrógeno amoniacal y materia orgánica. Además, mediante la aplicación del proceso de la invención se pueden generar diferentes productos finales fertilizantes con diferentes concentraciones modificando variables tales como el tiempo o la cantidad de proteína líquida o sólida introducida inicialmente en el proceso de hidrólisis.
En una realización preferente del procedimiento de la invención, el producto obten ido incluye de un 2 a un 30% de aminoácidos, de u n 2 a u n 30% de nitrógeno y de un 5 a un 50% de materia orgánica.
Alternativamente, el producto obtenido con el proceso de la invención también pu ede forma r pa rte d e otras form u l acion es ferti l izantes q u e a porten micronutrientes, fósforo, potasio, calcio, magnesio y otros bioestimulantes tales como extracto de algas, extractos húmicos y fúlvicos, y se puede mezclar con otros compuestos que aporten más unidades de nitrógeno, materia orgánica o incluso aminoácidos de otras orígenes o sintéticos. Así, en una forma de real ización , el producto obtenido de acuerdo con el procedimiento de la invención opcionalmente incluye un 2-15% de calcio, 0,5-10% de boro y 0,5-10% de zinc.
En una realización preferente, el procedimiento de hidrólisis de proteínas para el tratamiento de materiales proteicos en un solo paso de la invención comprende el tratamiento de sangre zootécnica según las siguientes etapas:
- Adición en el tanque de reacción de 560 g de sangre, 410 g del producto de reacción obtenido por reacción de 160 g de ácido sulfúrico, 170 g de urea y 80 g de agua; y 50 g de agua.
- Posteriormente esta mezcla se somete a una temperatura no superior a 1 10°C bajo agitación durante 1 2-24 horas, preferentemente durante aproximadamente 24 horas, para conseguir la hidrólisis de la proteína.
El producto así obtenido puede incorporarse en muy diversas formulaciones, desde fertil izantes que contienen m icronutrientes, fósforo, potasio, calcio, magnesio y otros bioestimulantes como extracto de algas, extractos húmicos y fúlvicos, hasta compuestos que aportan más unidades de nitrógeno, materia orgánica o incluso aminoácidos de otros orígenes o sintéticos.
En un ejemplo de realización del producto obtenido de acuerdo con el proceso de la invención, incluye 6,08 g de aminoácidos libres procedentes de la hidrólisis según el procedimiento de la invención, 10,25 g de materia orgánica, 7,61 g de calcio en forma de CaO soluble en agua procedente de cloruro cálcico, 0,98 g de boro soluble en agua procedente de ácido bórico, 1 ,01 g de zinc soluble en agua procedente de cloruro de zinc anhidro, todo ello por cada 100 g de producto final, y tiene un pH de 5,35.

Claims

REIVINDICACIONES
Procedimiento para el tratamiento de materiales proteicos, caracterizado porque comprende una hidrólisis ácida del material proteico en un solo paso por la adición del producto de reacción de ácido sulfúrico, urea y agua, controlándose la degradación del nitrógeno ureico mediante la formación de monocarbamida dihidrogenosulfato o MCDHS.
Procedimiento para el tratamiento de materiales proteicos según la reivindicación 1 , caracterizado porque el producto de reacción de ácido sulfúrico, urea y agua comprende un 15-40% de ácido sulfúrico, un 30-55% de urea y un 8-30% de agua.
Procedimiento para el tratamiento de materiales proteicos según la reivindicación 1 o 2, caracterizado porque el material proteico se emplea en una proporción del 10 al 50% para obtener un 1 0-50% de proteína, una cantidad variable de agua en función de la riqueza en proteína del material proteico y el producto de reacción de ácido sulfúrico, urea y agua se emplea en una proporción de un 50-70% en la reacción de hidrólisis.
Procedimiento para el tratamiento de materiales proteicos según cualquiera de las reivindicaciones anteriores, caracterizado porque la mezcla del material proteico, de la cantidad variable de agua y del producto de reacción de ácido sulfúrico, urea y agua se calienta a una temperatura no superior a 1 10°C bajo agitación durante 12-24 horas.
Procedimiento para el tratamiento de materiales proteicos según la reivindicación 4, caracterizado porque la mezcla del material proteico, de la cantidad variable de agua y del producto de reacción de ácido sulfúrico, urea y agua se calienta a una temperatura de entre 80 y 1 10°C.
Procedimiento para el tratamiento de materiales proteicos según cualquiera de las reivindicaciones 1 a 5, caracterizado porque se lleva a cabo en ausencia de componentes básicos adicionales.
7. Procedimiento según cualqu iera de las reivind icaciones anteriores, caracterizado porque el material proteico puede ser un subproducto de origen animal o vegetal.
8. Producto obtenido a partir de un material proteico por la aplicación del proceso según las reivindicaciones 1 a 7 para su utilización directa como fertil izante o para añad irse a una formulación fertil izante preparada previamente.
9. Producto según la reivindicación 8, caracterizado porque incluye de un 2 a un 30% de aminoácidos, de un 2 a un 30% de nitrógeno y de un 5 a un 50% de materia orgánica.
10. Producto según las reivindicaciones 8-9, caracterizado porque incluye micronutrientes, fósforo, potasio, calcio, magnesio y otros bioestimulantes como extracto de algas, extractos húmicos y fúlvicos o aminoácidos de otra procedencia.
11. Producto según la reivindicación 10, caracterizado porque contiene un 2- 30% de aminoácidos, 2-30% de nitrógeno, 5-50% de materia orgánica, 2- 15% de calcio, 0,5-10% de boro y 0,5-10% de zinc.
PCT/ES2012/070172 2012-03-15 2012-03-15 Procedimiento para el tratamiento de materiales proteicos, producto obtenido mediante tal procedimiento y su utilización como fertilizante WO2013135919A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2012/070172 WO2013135919A1 (es) 2012-03-15 2012-03-15 Procedimiento para el tratamiento de materiales proteicos, producto obtenido mediante tal procedimiento y su utilización como fertilizante

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2012/070172 WO2013135919A1 (es) 2012-03-15 2012-03-15 Procedimiento para el tratamiento de materiales proteicos, producto obtenido mediante tal procedimiento y su utilización como fertilizante

Publications (1)

Publication Number Publication Date
WO2013135919A1 true WO2013135919A1 (es) 2013-09-19

Family

ID=46052795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070172 WO2013135919A1 (es) 2012-03-15 2012-03-15 Procedimiento para el tratamiento de materiales proteicos, producto obtenido mediante tal procedimiento y su utilización como fertilizante

Country Status (1)

Country Link
WO (1) WO2013135919A1 (es)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104987220A (zh) * 2015-07-19 2015-10-21 成都市朝森有机肥有限公司 一种氨基酸微生物有机无机复合肥
CN105175156A (zh) * 2015-10-13 2015-12-23 史丹利化肥宁陵有限公司 一种氨酸工艺生产的腐殖酸复合肥及其生产方法
WO2017009502A1 (es) 2015-07-10 2017-01-19 Ampudia Soria José Francisco Nuevo uso de la urea sulfato
CN107032846A (zh) * 2015-07-27 2017-08-11 郑州市沃田配肥站 一种有机无机魔芋专用掺混肥配方
ES2719485A1 (es) * 2018-01-09 2019-07-10 Desarrollo Agricola Y Minero S A Uso de una composicion agricola como bioestimulante

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402852A (en) 1981-12-15 1983-09-06 Union Oil Company Of California Noncorrosive urea-sulfuric acid compositions
US4589925A (en) * 1981-11-05 1986-05-20 Union Oil Company Of California Methods for cleaning materials
US4673522A (en) * 1981-11-05 1987-06-16 Union Oil Company Of California Methods for removing obstructions from conduits with urea-sulfuric acid compositions
US4931079A (en) * 1982-11-17 1990-06-05 Union Oil Company Of California Scarifying plant seeds
US5234466A (en) 1992-07-24 1993-08-10 Peach State Labs, Inc. Lowering of the pH of textile processing solutions by adding urea sulfate as a pH adjusting agent
WO2004020367A1 (en) * 2002-08-27 2004-03-11 Csr Distilleries Operations Pty Limited Fertiliser and feed supplement composition
ES2204307A1 (es) 2002-08-21 2004-04-16 Iniciativas Agroindustriales De Teruel, S.L. Agente reductor de la volatilizacion del nitrogeno para fertilizantes complejos granulados y metodo de produccion de estos.
WO2007132032A1 (es) 2006-05-11 2007-11-22 Iniciativas Agroindustriales De Teruel, S.L. Procedimientos para la obtención de fertilizantes nitrogenados y complejos y fertilizantes así obtenidos
CN102342370A (zh) * 2011-09-26 2012-02-08 东北农业大学 富含限制性氨基酸的发酵豆粕的生产工艺

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4589925A (en) * 1981-11-05 1986-05-20 Union Oil Company Of California Methods for cleaning materials
US4673522A (en) * 1981-11-05 1987-06-16 Union Oil Company Of California Methods for removing obstructions from conduits with urea-sulfuric acid compositions
US4402852A (en) 1981-12-15 1983-09-06 Union Oil Company Of California Noncorrosive urea-sulfuric acid compositions
US4931079A (en) * 1982-11-17 1990-06-05 Union Oil Company Of California Scarifying plant seeds
US5234466A (en) 1992-07-24 1993-08-10 Peach State Labs, Inc. Lowering of the pH of textile processing solutions by adding urea sulfate as a pH adjusting agent
ES2204307A1 (es) 2002-08-21 2004-04-16 Iniciativas Agroindustriales De Teruel, S.L. Agente reductor de la volatilizacion del nitrogeno para fertilizantes complejos granulados y metodo de produccion de estos.
WO2004020367A1 (en) * 2002-08-27 2004-03-11 Csr Distilleries Operations Pty Limited Fertiliser and feed supplement composition
WO2007132032A1 (es) 2006-05-11 2007-11-22 Iniciativas Agroindustriales De Teruel, S.L. Procedimientos para la obtención de fertilizantes nitrogenados y complejos y fertilizantes así obtenidos
CN102342370A (zh) * 2011-09-26 2012-02-08 东北农业大学 富含限制性氨基酸的发酵豆粕的生产工艺

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
BENNION B. J. ET AL., THE MOLECULAR BASIS FOR THE CHEMICAL DENATURATION OF PROTEINS BY UREA, 2003
BERG J. ET AL.: "Biochemistry", 2002, W.H. FREEMAN
BUCHANAN ET AL., BIOCHEMISTRY AND MOLECULAR BIOLOGY OF PLANTS, 2000
DATABASE WPI Week 201225, Derwent World Patents Index; AN 2012-C35799, XP002685310 *
JOHN C. KOTZ ET AL., QUIMICA Y REACTIVIDAD QUIMICA, 2006, pages 469
KLOSTERMEYER H. ET AL.: "Proteins", WILEY-VCH VERLAG GMBH&CO, KGAA
PLACHY J.: "Research Institute of Antibiotics and Biotransformations, Roztoky u Prahy, Czech Republic: Fermentation of amino acids", BIOLOGICKE LISTY, vol. 63, no. 1, 1998, pages 61 - 76
REZUS; BAKKER, EFFECT OF UREA ON THE STRUCTURAL DYNAMICS OF WATER, 2006
SCHARNAGL C. ET AL., BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1749, 2005, pages 187 - 213
SCHARNAGL C. ET AL., STABILITY OF PROTEINS: TEMPERATURE, PRESSURE AND THE ROLE OF THE SOLVENT, 2004
STADTMAN E.R.: "Oxidation of Free Amino Acids and Amino Acid Residues in Proteins by Radiolysis and by Metal-Catalyzed Reactions", ANNUAL REVIEW OF BIOCHEMISTRY, vol. 62, 1993, pages 797 - 821
ZOU Q. ET AL., J. AM. CHEM. SOC., vol. 124, 2002, pages 1192 - 1202

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017009502A1 (es) 2015-07-10 2017-01-19 Ampudia Soria José Francisco Nuevo uso de la urea sulfato
CN104987220A (zh) * 2015-07-19 2015-10-21 成都市朝森有机肥有限公司 一种氨基酸微生物有机无机复合肥
CN107032846A (zh) * 2015-07-27 2017-08-11 郑州市沃田配肥站 一种有机无机魔芋专用掺混肥配方
CN105175156A (zh) * 2015-10-13 2015-12-23 史丹利化肥宁陵有限公司 一种氨酸工艺生产的腐殖酸复合肥及其生产方法
ES2719485A1 (es) * 2018-01-09 2019-07-10 Desarrollo Agricola Y Minero S A Uso de una composicion agricola como bioestimulante
WO2019138145A1 (es) * 2018-01-09 2019-07-18 Desarrollo Agrícola Y Minero, S.A. Uso de una composición agrícola como bioestimulante

Similar Documents

Publication Publication Date Title
Ugolini et al. Production of an enzymatic protein hydrolyzate from defatted sunflower seed meal for potential application as a plant biostimulant
WO2013135919A1 (es) Procedimiento para el tratamiento de materiales proteicos, producto obtenido mediante tal procedimiento y su utilización como fertilizante
Colla et al. Protein hydrolysate-based biostimulants: Origin, biological activity and application methods
CN102531790B (zh) 一种防治樟树根腐病的营养液及其制备方法
CN105777312A (zh) 一种谷子复合叶面肥
CN109438033A (zh) 一种果树涂杆肥料及其制作工艺
Ordonez et al. Obtaining a protein concentrate from integral defatted sunflower flour
JP2006290716A (ja) ゼラチン廃棄物由来の天然アミノ酸肥料の製造方法
JP2003012389A (ja) ペプチド類及びアミノ酸を含有する液体肥料及びその製造方法
Sîrbu et al. Fertilizers with protein chelated structures with biostimulator role
ES2719485A1 (es) Uso de una composicion agricola como bioestimulante
CN115010532A (zh) 一种含有机成分的营养液及其制备方法
Ordonez et al. Amino acid production from a sunflower wholemeal protein concentrate
BR102012012053A2 (pt) Composições fertilizantes contendo molibdênio,processos de preparação e método para o tratamento de plantas.
KR20180103217A (ko) L-메티오닌을 포함하는 비료 조성물
GR20150100377A (el) Οργανικο λιπασμα-βιοενεργοποιητης φυτικης προελευσης και μεθοδος παραγωγης
Łuczkowska et al. Liquid nitrogen-sulphur fertilizers–answer on sulphur deficiency in soil
WO2003079790A1 (en) Compositions with a biostimulating activity
BR112019027679A2 (pt) método para a obtenção de um produto de levedura com alta concentração de nucleotídeos
ES2529187B1 (es) Procedimiento para producir fertilizantes ricos en aminoácidos
KR102337529B1 (ko) 바닷물을 이용한 토양활성제 및 그 제조방법
JPS63190792A (ja) 液状有機肥料の製造法
Sirbu et al. New fertilizers with protein structure with fitostimulator role
Gökçe et al. The Effect of Different Amino Acids on the Development of Cucumber (Cucumis sativus L.) Plant Species growing in Düzce Region
RU2709375C2 (ru) Безреагентный способ получения жидкого гуминового органического биопрепарата для растениеводства, животноводства и птицеводства

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12720220

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12720220

Country of ref document: EP

Kind code of ref document: A1