WO2013135120A1 - 获取生理信号周期的方法及系统 - Google Patents

获取生理信号周期的方法及系统 Download PDF

Info

Publication number
WO2013135120A1
WO2013135120A1 PCT/CN2013/071291 CN2013071291W WO2013135120A1 WO 2013135120 A1 WO2013135120 A1 WO 2013135120A1 CN 2013071291 W CN2013071291 W CN 2013071291W WO 2013135120 A1 WO2013135120 A1 WO 2013135120A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
physiological signal
period
extreme
counter
Prior art date
Application number
PCT/CN2013/071291
Other languages
English (en)
French (fr)
Inventor
柳絮芳
杨松
Original Assignee
深圳市世瓴科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市世瓴科技有限公司 filed Critical 深圳市世瓴科技有限公司
Priority to KR1020147020090A priority Critical patent/KR101635825B1/ko
Priority to EP13760831.1A priority patent/EP2752154B1/en
Priority to JP2014553602A priority patent/JP5873574B2/ja
Priority to ES13760831.1T priority patent/ES2687227T3/es
Priority to US14/362,414 priority patent/US20140336946A1/en
Publication of WO2013135120A1 publication Critical patent/WO2013135120A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1102Ballistocardiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • A61B5/1135Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing by monitoring thoracic expansion

Definitions

  • the invention relates to a physiological signal acquisition technology, in particular to a method and a system for acquiring a physiological signal period.
  • the important physiological signals of the human body such as heartbeat, breathing and other signals, were mainly obtained by collecting and processing the muscle electrical signals.
  • the signal acquisition device needs to be in close contact with the human skin to obtain a clear electrical signal, and then amplified and processed.
  • the period of the physiological signal obtained by the above method can be firstly shaped by a simple threshold setting, and the flag associated with the period is obtained, and is calculated according to the period flag.
  • the main object of the present invention is to provide a method for acquiring a physiological signal period, which improves the efficiency of physiological signal period acquisition and reduces the acquisition cost.
  • the invention provides a method for acquiring a physiological signal period, comprising the steps of:
  • the physiological signal period is obtained by calculating the time value between one extreme value and the next extreme value.
  • the method further comprises:
  • the average of the two periods is set to the physiological signal period.
  • the received physiological signal value is compared with the temporary storage value, and one of them is retained; the physiological signal value whose maintenance time reaches the set time is determined as an extreme value; the cycle is restarted, and the step of determining the next extreme value is specifically include:
  • the step of obtaining a physiological signal period by calculating a time value between an extreme value and a next extreme value comprises:
  • the time required to accumulate the accumulated value in the accumulator b is added to the set time to obtain the physiological signal period.
  • the set time is greater than a half period of the upper limit of the physiological signal period identification range.
  • the invention also provides a system for acquiring a physiological signal period, comprising:
  • the extreme value determining unit is configured to receive the physiological signal value and the temporary storage value to compare the size, and retain one of the physiological signal values that have reached the set time; the cycle is restarted to determine the next extreme value;
  • a period calculation unit is configured to obtain a physiological signal period by calculating a time value between an extreme value and a next extreme value.
  • the system further comprises:
  • the similar period judging unit is configured to judge whether the periods acquired by the maximum value and the minimum value are close to each other within a period of time;
  • the period setting unit is configured to set the average value of the two periods to the physiological signal period when they are close.
  • the extreme value determining unit is specifically configured to:
  • the period calculation unit specifically includes:
  • the time required to accumulate the accumulated value in the accumulator b is added to the set time to obtain the physiological signal period.
  • the set time is greater than a half period of the upper limit of the physiological signal period identification range.
  • the invention can obtain the cycle of the physiological signal through the extreme value recognition algorithm, and has the advantages of simplicity, rapidity, high efficiency and high reliability; and the requirements for the amplification, filtering and analog-to-digital conversion of the physiological signal are relatively low, and the data processing is relatively easy. Can greatly reduce hardware (requirement) overhead.
  • FIG. 1 is a schematic diagram of signal waveforms acquired by a piezoelectric sensor in the prior art
  • FIG. 2 is a schematic diagram of a waveform of a bioelectric signal in the prior art
  • FIG. 3 is a schematic flow chart of steps in an embodiment of a method for acquiring a physiological signal period according to the present invention
  • FIG. 4 is a schematic flow chart of steps in another embodiment of a method for acquiring a physiological signal period according to the present invention.
  • FIG. 5 is a schematic structural diagram of an embodiment of a system for acquiring a physiological signal period according to the present invention
  • FIG. 6 is a schematic structural view of another embodiment of a system for acquiring a physiological signal period according to the present invention.
  • the method can include:
  • Step S10 comparing the received physiological signal value with the temporary storage value, retaining one of them; determining the physiological signal value whose maintenance time reaches the set time as an extreme value; restarting the cycle to determine the next extreme value;
  • Step S11 Obtain a physiological signal period by calculating a time value between an extreme value and a next extreme value.
  • the physiological signal may include a signal such as a breath and a heartbeat, and the physiological signal value may be a specific value such as a voltage value; and the physiological signal may be acquired by a device such as a piezoelectric sensor.
  • a micro-motion sensor device such as a piezoelectric sensor can be used to acquire a fretting signal when the human body is quiet, and a physiological signal period of breathing and/or heartbeat can be directly interpreted in the carrier signal.
  • the step S10 may specifically include: receiving a physiological signal value, starting the counter a and adding a unit value, and comparing the physiological signal value with the temporary storage value, when the physiological signal value is greater than/less than the temporary storage value, Substituting the physiological signal value for the temporary storage value, and accumulating the value in the counter a to the accumulator b, clearing the counter a; when the physiological signal value is less than/greater than the temporary storage value, continuing to receive the next heartbeat signal voltage Value; when the counter a reaches the value corresponding to the set time, it can be determined that the physiological signal value is an extreme value; then the accumulated value in the accumulator b is output, and then the counter a, the temporary register and the accumulation are cleared. Br, and continue to determine the next extreme value.
  • the temporary value can be zero or a retained physiological signal value.
  • the above step S11 may specifically include: adding the time required for the accumulated value in the accumulator b to the set time to obtain the physiological signal period.
  • the obtaining of the physiological signal period may be performed by an extreme value recognition algorithm, and the extreme value may include a maximum value and a minimum value, that is, the one extreme value and the next extreme value may be maximum values or minimum values, respectively.
  • the maximal value recognition algorithm can be used to keep a certain received physiological signal value from being overtaken. When the timer reaches the set time, the physiological signal value is considered to be a maximum value in one cycle. Also, a time (length) value between when a certain maximum value (one extreme value) is identified and the next maximum value (the next extreme value) is recognized can be calculated.
  • the minimum value identification algorithm can be used to keep the value of a received physiological signal from being over-timed.
  • the physiological signal value is considered to be a minimum value in one cycle. Also, a time (length) value between when a certain minimum value (one extreme value) is identified and the next minimum value (the next extreme value) is recognized can be calculated. Then, according to the set time and the time value between the two maximum values or the time value between the two extreme values, the physiological signal period acquired by the maximum value recognition algorithm and the physiological state acquired by the minimum value recognition algorithm are respectively obtained. Signal period.
  • the set time can be set according to the specific condition of the physiological signal. For example, in the embodiment, the set time can be set to be greater than half of the physiological signal period.
  • the following is an example of obtaining a heartbeat signal cycle in a maximum value manner, and further describes the method for obtaining a physiological signal cycle as described above.
  • the piezoelectric sensor can receive a voltage value of the heartbeat signal output by the piezoelectric sensor, start the counter a plus 1, and compare it with the temporary value in the register through the comparator; when it is greater than the temporary value, replace it with the temporary storage The value is added to the accumulator b in the counter a, and the counter a is cleared; when it is less than the temporary value, the next heartbeat signal voltage is continuously received.
  • the heartbeat signal voltage values received by the cycle start Compare with the scratch value zero in the scratchpad.
  • the above formula for calculating the heartbeat signal period can be:
  • Cycle (s) (value in accumulator b / reception speed) + set time.
  • the upper limit of the recognition period can be the reciprocal of the set time.
  • the set time of the maximum value can be set to 0.55 seconds (the set time constant of the minimum value can be 0.60 seconds), when a certain received heartbeat signal voltage The value is maintained in the scratchpad for 0.55 seconds and is not exceeded, then the counter a starts counting.
  • the counter a When there is a newly received heartbeat signal voltage value entering the comparator, the counter a is incremented by one; if the newly received heartbeat signal voltage value is greater than the previous temporary storage value, the newly received heartbeat signal voltage value is updated to the temporary register, instead of before The heartbeat signal voltage value in the register, the count of the counter a is accumulated in the accumulator b, and the counter a is cleared; if the newly received heartbeat signal voltage value is less than or equal to the temporary value in the previous register, then the counter a Adding 1 other than the other, continue the comparison cycle of the heartbeat signal voltage value; until the count value of the counter a reaches 0.55 seconds of the received heartbeat signal voltage value (such as 300), the value B of the accumulator b is output, and then The time taken to accumulate to B plus 0.55 seconds is the period of the heartbeat signal.
  • 0.55 seconds of the received heartbeat signal voltage value such as 300
  • the physiological signal period of the maximum value mode and the physiological signal period of the minimum value mode are respectively obtained, and then the physiological signal period and the minimum value physiological signal according to the maximum value mode are obtained.
  • the cycle further captures a more accurate physiological signal cycle.
  • the method for acquiring a period of a physiological signal may further include:
  • Step S12 determining whether the periods acquired by the maximum value and the minimum value are close to each other within a period of time;
  • step S13 when they are close, the average value of the two periods is determined as the physiological signal period.
  • At least one physiological signal period can be obtained by each of the maximum value method and the minimum value method. Then, the physiological signal cycles obtained by the two methods are compared to determine whether the two cycles are similar; when the two are similar, the average of the two cycles is calculated, and the average value is determined as a more accurate physiological signal cycle; otherwise, it ends.
  • the similar determination may be determined according to the specific situation of the physiological signal. For example, the similar range of the respiratory signal period is: the difference is about 0.004 seconds, and the similar range of the heartbeat signal period is: the difference is about 0.017 seconds.
  • the method for obtaining the physiological signal period can obtain the cycle of the physiological signal through the extreme value recognition algorithm, and has the advantages of simplicity, rapidity, high efficiency and high reliability; and the requirements for amplification, filtering and analog-to-digital conversion of the physiological signal are relatively low. Data processing is also relatively easy, which can greatly reduce hardware overhead.
  • the system 20 may include: an extreme value determining unit 21 and a period calculating unit 22; the extreme value determining unit 21 is configured to receive a physiological signal value and a temporary storage value to compare the size, and retain one of them; and maintain the maintaining time to a set time.
  • the physiological signal value is determined as an extreme value; the cycle is restarted, and the next extreme value is determined; the cycle calculating unit 22 is configured to acquire the physiological signal period by calculating a time value between one extreme value and the next extreme value.
  • the physiological signal may include a signal such as a breath and a heartbeat, and the physiological signal value may be a specific value such as a voltage value; and the physiological signal may be acquired by a device such as a piezoelectric sensor.
  • the micro-motion sensor device such as a piezoelectric sensor can be used to acquire the fretting signal when the human body is quiet, and the physiological signal period of the breathing and/or the heartbeat can be directly interpreted in the carrier signal.
  • the extreme value determining unit 21 is specifically configured to: receive a physiological signal value, start the counter a plus a unit value, and compare the physiological signal value with the temporary storage value, when the physiological signal value is greater than/less than the temporary storage value.
  • the physiological signal value is substituted for the temporary storage value, and the value in the counter a is accumulated in the accumulator b, and the counter a is cleared; when the physiological signal value is less than/larger than the temporary storage value, the next heartbeat is continuously received.
  • Signal voltage value when the counter a reaches the value corresponding to the set time, it can be determined that the physiological signal value is an extreme value; then the accumulated value in the accumulator b is output, and the counter a and the register are cleared. And accumulator b, and continue to determine the next extreme value.
  • the temporary value can be zero or a retained physiological signal value.
  • the period calculation unit 22 specifically includes: adding the time required for the accumulated value in the accumulator b to the set time to acquire the physiological signal period.
  • the obtaining of the physiological signal period may be performed by an extreme value recognition algorithm, and the extreme value may include a maximum value and a minimum value, that is, the one extreme value and the next extreme value may be maximum values or minimum values, respectively.
  • the maximal value recognition algorithm can be used to keep a certain received physiological signal value from being overtaken. When the timer reaches the set time, the physiological signal value is considered to be a maximum value in one cycle. Also, a time (length) value between when a certain maximum value (one extreme value) is identified and the next maximum value (the next extreme value) is recognized can be calculated.
  • the minimum value identification algorithm can be used to keep the value of a received physiological signal from being over-timed.
  • the physiological signal value is considered to be a minimum value in one cycle. Also, a time (length) value between when a certain minimum value (one extreme value) is identified and the next minimum value (the next extreme value) is recognized can be calculated. Then, according to the set time and the time value between the two maximum values or the time value between the two extreme values, the physiological signal period acquired by the maximum value recognition algorithm and the physiological state acquired by the minimum value recognition algorithm are respectively obtained. Signal period.
  • the set time can be set according to the specific condition of the physiological signal. For example, in the embodiment, the set time can be set to be greater than half of the physiological signal period.
  • the following takes the period of the heartbeat signal as a maximum value as an example, and further details the system 20 for obtaining the physiological signal period.
  • the piezoelectric sensor can receive a voltage value of the heartbeat signal output by the piezoelectric sensor, start the counter a plus 1, and compare it with the temporary value in the register through the comparator; when it is greater than the temporary value, replace it with the temporary storage The value is added to the accumulator b in the counter a, and the counter a is cleared; when it is less than the temporary value, the next heartbeat signal voltage is continuously received.
  • the heartbeat signal voltage values received by the cycle start Compare with the scratch value zero in the scratchpad.
  • the above formula for calculating the heartbeat signal period can be:
  • Cycle (s) (value in accumulator b / reception speed) + set time.
  • the upper limit of the recognition period can be the reciprocal of the set time.
  • the set time of the maximum value can be set to 0.55 seconds (the set time constant of the minimum value can be 0.60 seconds), when a certain received heartbeat signal voltage The value is maintained in the scratchpad for 0.55 seconds and is not exceeded, then the counter a starts counting.
  • the counter a When there is a newly received heartbeat signal voltage value entering the comparator, the counter a is incremented by one; if the newly received heartbeat signal voltage value is greater than the previous temporary storage value, the newly received heartbeat signal voltage value is updated to the temporary register, instead of before The heartbeat signal voltage value in the register, the count of the counter a is accumulated in the accumulator b, and the counter a is cleared; if the newly received heartbeat signal voltage value is less than or equal to the temporary value in the previous register, then the counter a Adding 1 other than the other, continue the comparison cycle of the heartbeat signal voltage value; until the count value of the counter a reaches 0.55 seconds of the received heartbeat signal voltage value (such as 300), the value B of the accumulator b is output, and then The time taken to accumulate to B plus 0.55 seconds is the period of the heartbeat signal.
  • 0.55 seconds of the received heartbeat signal voltage value such as 300
  • the heartbeat signal period (B/500) + 0.55.
  • the physiological signal period of the maximum value mode and the physiological signal period of the minimum value mode are respectively obtained, and then the physiological signal period and the minimum value physiological signal according to the maximum value mode are obtained.
  • the cycle further captures a more accurate physiological signal cycle.
  • the system 20 may further include: a close period judging unit 23 and a period setting unit 24; and the close period judging unit 23 is configured to judge the maximum value through a period of time. Whether the period acquired separately from the minimum value is similar; the period setting unit 24 is configured to set the average value of the two periods to the physiological signal period when they are close.
  • At least one physiological signal period can be obtained by each of the maximum value method and the minimum value method. Then, the physiological signal cycles obtained by the two methods are compared to determine whether the two cycles are similar; when the two are similar, the average of the two cycles is calculated, and the average value is determined as a more accurate physiological signal cycle; otherwise, it ends.
  • the similar determination may be determined according to the specific situation of the physiological signal. For example, the similar range of the respiratory signal period is: the difference is about 0.004 seconds, and the similar range of the heartbeat signal period is: the difference is about 0.017 seconds.
  • the system 20 for obtaining the physiological signal period can obtain the cycle of the physiological signal through the extreme value recognition algorithm, and has the advantages of simplicity, rapidity, high efficiency and high reliability; and the requirements for the amplification, filtering and analog-to-digital conversion of the physiological signal are correspondingly compared. Low, data processing is also relatively easy, reducing hardware requirements.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biophysics (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

一种获取生理信号周期的方法及系统(20)。该方法包括步骤:接收生理信号值与暂存数值比较大小,保留其中之一;将维持时间达到设定时间的生理信号值判定为一个极值,重新开始循环,判定下一个极值(S10);通过计算一个极值至下一个极值之间的时间值,从而获取生理信号周期(S11)。该方法可通过极值识别算法获取生理信号的周期,具有简单、快速、高效以及高可靠性等优势;并且对生理信号的放大、滤波以及模数转换的要求比较低,数据处理相对容易,可大幅度降低硬件开销。

Description

获取生理信号周期的方法及系统
技术领域
本发明涉及到生理信号获取技术,特别涉及到一种获取生理信号周期的方法及系统。
背景技术
人体重要的生理信号,比如心跳、呼吸等信号,以往主要通过对肌肉电信号进行采集与处理而获得,信号采集装置需要与人体皮肤紧密接触以取得清晰的电信号,然后放大并处理。通过上述方式获取的生理信号的周期,可首先利用简单的门限设定整形,获得与周期相关的标志位,并根据周期标志位计算取得。
由于压电传感器等类似微动传感器设备感知人的心跳、呼吸等微动信号,产生的信号波形(参照图1)完全不同于生物电信号(参照图2),其波形为在一个跳跃周期里有不同数目的波束,幅度按周期呈现线性的变化,其周期的计量无法使用门限整形或简单的傅立叶变换,当前最常采用的实时心率识别。但实时心率识别使用的是自相关函数处理,其计算量大,很难在廉价的ARM上运行,从而提高了周期的获取成本。
发明内容
本发明的主要目的为提供一种获取生理信号周期的方法,提升了生理信号周期获取的效率,降低了获取成本。
本发明提出一种获取生理信号周期的方法,包括步骤:
接收生理信号值与暂存数值比较大小,保留其中之一;将维持时间达到设定时间的生理信号值判定为一个极值;重新开始循环,判定下一个极值;
通过计算一个极值至下一个极值之间的时间值,获取生理信号周期。
优选地,所述方法之后还包括:
判断在一段时间内通过极大值与极小值分别获取的周期是否相近;
当相近时,则将两者周期的平均值设定为生理信号周期。
优选地,所述接收生理信号值与暂存数值比较大小,保留其中之一;将维持时间达到设定时间的生理信号值判定为一个极值;重新开始循环,判定下一个极值的步骤具体包括:
接收一个生理信号值,启动计数器a并加一个单位数值,并将所述生理信号值与暂存数值进行比较,当所述生理信号值大于/小于暂存数值时,将所述生理信号值取代暂存数值,并将计数器a中数值累加至累加器b中,清零计数器a;当所述生理信号值小于/大于暂存数值时,继续接收下一个心跳信号电压值;当计数器a中计数达到设定时间所对应的数值,即可判定所述生理信号值为一个极值;则输出累加器b中累加的数值,然后清零计数器a、暂存器以及累加器b,并继续判定下一个极值;所述一个极值以及下一个极值分别为极大值或极小值。
优选地,所述通过计算一个极值至下一个极值之间的时间值,获取生理信号周期的步骤具体包括:
将累加器b中累加的数值所需要的时间与设定时间相加,获取所述生理信号周期。
优选地,所述设定时间大于生理信号周期识别范围上限的半个周期。
本发明还提出一种获取生理信号周期的系统,包括:
极值判定单元,用于接收生理信号值与暂存数值比较大小,保留其中之一;将维持时间达到设定时间的生理信号值判定为一个极值;重新开始循环,判定下一个极值;
周期计算单元,用于通过计算一个极值至下一个极值之间的时间值,获取生理信号周期。
优选地,所述系统还包括:
相近周期判断单元,用于判断在一段时间内通过极大值与极小值分别获取的周期是否相近;
周期设定单元,用于当相近时,则将两者周期的平均值设定为生理信号周期。
优选地,所述极值判定单元具体用于:
接收一个生理信号值,启动计数器a并加一个单位数值,并将所述生理信号值与暂存数值进行比较,当所述生理信号值大于/小于暂存数值时,将所述生理信号值取代暂存数值,并将计数器a中数值累加至累加器b中,清零计数器a;当所述生理信号值小于/大于暂存数值时,继续接收下一个心跳信号电压值;当计数器a中计数达到设定时间所对应的数值,即可判定所述生理信号值为一个极值;则输出累加器b中累加的数值,然后清零计数器a、暂存器以及累加器b,并继续判定下一个极值;所述一个极值以及下一个极值分别为极大值或极小值。
优选地,所述周期计算单元具体包括:
将累加器b中累加的数值所需要的时间与设定时间相加,获取所述生理信号周期。
优选地,所述设定时间大于生理信号周期识别范围上限的半个周期。
本发明可通过极值识别算法获取生理信号的周期,具有简单、快速、高效以及高可靠性等优势;并且对生理信号的放大、滤波以及模数转换的要求相应比较低,数据处理也相对容易,可大大降低硬件(要求)开销。
附图说明
图1 是现有技术中压电传感器获取的信号波形示意图;
图2 是现有技术中生物电信号波形示意图;
图3 是本发明获取生理信号周期的方法一实施例中的步骤流程示意图;
图4 是本发明获取生理信号周期的方法另一实施例中的步骤流程示意图;
图5 是本发明获取生理信号周期的系统一实施例中的结构示意图;
图6 是本发明获取生理信号周期的系统另一实施例中的结构示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
参照图3,提出本发明一种获取生理信号周期的方法一实施例。该方法可包括:
步骤S10、接收生理信号值与暂存数值比较大小,保留其中之一;将维持时间达到设定时间的生理信号值判定为一个极值;重新开始循环,判定下一个极值;
步骤S11、通过计算一个极值至下一个极值之间的时间值,获取生理信号周期。
本实施例中,上述生理信号可包括呼吸以及心跳等信号,该生理信号值可为电压值等具体数值;该生理信号的获取可以是通过压电传感器等设备获取。上述获取生理信号周期的方法中,可利用压电传感器等微动传感器设备获取人体安静时的微动信号,在载波信号中直接判读呼吸和/或心跳的生理信号周期。
上述步骤S10可具体包括:接收一个生理信号值,启动计数器a并加一个单位数值,并将所述生理信号值与暂存数值进行比较,当所述生理信号值大于/小于暂存数值时,将所述生理信号值取代暂存数值,并将计数器a中数值累加至累加器b中,清零计数器a;当所述生理信号值小于/大于暂存数值时,继续接收下一个心跳信号电压值;当计数器a中计数达到设定时间所对应的数值,即可判定所述生理信号值为一个极值;则输出累加器b中累加的数值,然后清零计数器a、暂存器以及累加器b,并继续判定下一个极值。该暂存数值可为零或保留的生理信号值。
上述步骤S11可具体包括:将累加器b中累加的数值所需要的时间与设定时间相加,获取上述生理信号周期。
上述生理信号周期的获取可通过极值识别算法进行,该极值可包括极大值和极小值,即上述一个极值以及下一个极值可分别为极大值或极小值。该极大值的识别算法,可为对某个接收的生理信号值维持不被超越进行计时,计时器达到设定时间即认为那个生理信号值是一个周期内的极大值。并且,可计算在某一极大值(一个极值)被识别认定之后到下一个极大值(下一个极值)被识别认定之间的时间(长度)值。极小值的识别算法,可为对某个接收的生理信号值维持不被小过进行计时,计时器达到设定时间即认为那个生理信号值是一个周期内的极小值。并且,可计算在某一极小值(一个极值)被识别认定之后到下一个极小值(下一个极值)被识别认定之间的时间(长度)值。然后根据上述设定时间以及两极大值之间的时间值或两极小值之间的时间值,分别取得通过极大值的识别算法获取的生理信号周期以及通过极小值的识别算法获取的生理信号周期。该设定时间可根据生理信号的具体情况而设定,比如本实施例中可将该设定时间设置为大于半个生理信号周期。
以下以极大值方式获取心跳信号周期为例,对上述获取生理信号周期的方法作进一步的具体说明。
首先可接收一个由压电传感器输出心跳信号电压值,启动计数器a加1,并将其与暂存器中暂存数值通过比较器进行比较;当其大于暂存数值时,将其取代暂存数值,并将计数器a中计数累加至累加器b中,清零计数器a;当其小于暂存数值时,继续接收下一个心跳信号电压值。
当计数器a中计数达到一定数值,则输出累加器b中累加的数值,并清零计数器a、暂存器以及累加器b,并开始新的循环;循环开始所接收的一个个心跳信号电压值与暂存器中的暂存数值零相比较。上述心跳信号周期计算公式可为:
周期(s)=(累加器b中数值/接收速度)+设定时间。
由于心跳信号电压值维持不被超越的时间常数(即设定时间)需要提前设定,因此识别周期的上限即可为设定时间的倒数。
比如心跳信号频率区间约为0.7Hz到1.6Hz,则可设定极大值的设定时间为0.55秒(极小值的设定时间常数可为0.60秒),当某个接收的心跳信号电压值在暂存器中维持0.55秒未被超越,则计数器a开始记数。当有新接收的心跳信号电压值进入比较器,则计数器a加1;如果新接收的心跳信号电压值大于之前的暂存数值,则新接收的心跳信号电压值更新至暂存器,替代之前暂存器中的心跳信号电压值,计数器a的计数累加进累加器b中,计数器a清零;如果新接收的心跳信号电压值小于等于之前暂存器中的暂存数值,则除了计数器a加1之外其它不变,继续心跳信号电压值的比较循环;直到计数器a的计数数值达到0.55秒所接收的心跳信号电压值个数(比如300),则输出累加器b的数值B,再将累加至B所花费的时间加0.55秒即可为心跳信号的周期。
假设某一心跳信号电压值维持0.55秒时计数器a所接收的心跳信号(电压)个数值为275,心跳信号电压值所接收的速度为500个/秒,则心跳信号周期=(B/500)+0.55。
在通过上述方式某一段时间之内,分别获得极大值方式的生理信号周期以及极小值方式的生理信号周期,然后可根据该极大值方式的生理信号周期以及极小值方式的生理信号周期进一步获取更准确的生理信号周期。
参照图4,提出本发明另一实施例,上述获取生理信号周期的方法还可包括:
步骤S12、判断在一段时间内通过极大值与极小值分别获取的周期是否相近;
步骤S13、当相近时,则将两者周期的平均值判定为生理信号周期。
在设定的一段时间之内,比如该一段时间内至少可通过极大值方式和极小值方式各取得一个生理信号周期。然后将两种方式取得的生理信号周期进行比较,判断两周期是否相近;当两者相近,则计算两周期的平均值,并将该平均值判定为更准确的生理信号周期;否则,结束。该相近的判定可根据生理信号的具体情况而定,比如呼吸信号周期的相近范围为:相差0.004秒左右,心跳信号周期的相近范围为:相差0.017秒左右。
上述获取生理信号周期的方法,可通过极值识别算法获取生理信号的周期,具有简单、快速、高效以及高可靠性等优势;并且对生理信号的放大、滤波以及模数转换的要求相应比较低,数据处理也相对容易,可大大降低硬件开销。
参照图5,提出本发明一种获取生理信号周期的系统20一实施例。该系统20可包括:极值判定单元21以及周期计算单元22;该极值判定单元21,用于接收生理信号值与暂存数值比较大小,保留其中之一;将维持时间达到设定时间的生理信号值判定为一个极值;重新开始循环,判定下一个极值;该周期计算单元22,用于通过计算一个极值至下一个极值之间的时间值,获取生理信号周期。
本实施例中,上述生理信号可包括呼吸以及心跳等信号,该生理信号值可为电压值等具体数值;该生理信号的获取可以是通过压电传感器等设备获取。上述获取生理信号周期的系统中,可利用压电传感器等微动传感器设备获取人体安静时的微动信号,在载波信号中直接判读呼吸和/或心跳的生理信号周期。
上述极值判定单元21具体用于:接收一个生理信号值,启动计数器a加一个单位数值,并将所述生理信号值与暂存数值进行比较,当所述生理信号值大于/小于暂存数值时,将所述生理信号值取代暂存数值,并将计数器a中数值累加至累加器b中,清零计数器a;当所述生理信号值小于/大于暂存数值时,继续接收下一个心跳信号电压值;当计数器a中计数达到设定时间所对应的数值,即可判定所述生理信号值为一个极值;则输出累加器b中累加的数值,并清零计数器a、暂存器以及累加器b,并继续判定下一个极值。该暂存数值可为零或保留的生理信号值。
上述周期计算单元22具体包括:将累加器b中累加的数值所需要的时间与设定时间相加,获取所述生理信号周期。
上述生理信号周期的获取可通过极值识别算法进行,该极值可包括极大值和极小值,即上述一个极值以及下一个极值可分别为极大值或极小值。该极大值的识别算法,可为对某个接收的生理信号值维持不被超越进行计时,计时器达到设定时间即认为那个生理信号值是一个周期内的极大值。并且,可计算在某一极大值(一个极值)被识别认定之后到下一个极大值(下一个极值)被识别认定之间的时间(长度)值。极小值的识别算法,可为对某个接收的生理信号值维持不被小过进行计时,计时器达到设定时间即认为那个生理信号值是一个周期内的极小值。并且,可计算在某一极小值(一个极值)被识别认定之后到下一个极小值(下一个极值)被识别认定之间的时间(长度)值。然后根据上述设定时间以及两极大值之间的时间值或两极小值之间的时间值,分别取得通过极大值的识别算法获取的生理信号周期以及通过极小值的识别算法获取的生理信号周期。该设定时间可根据生理信号的具体情况而设定,比如本实施例中可将该设定时间设置为大于半个生理信号周期。
以下以极大值方式获取心跳信号周期为例,对上述获取生理信号周期的系统20作进一步的具体说明。
首先可接收一个由压电传感器输出心跳信号电压值,启动计数器a加1,并将其与暂存器中暂存数值通过比较器进行比较;当其大于暂存数值时,将其取代暂存数值,并将计数器a中计数累加至累加器b中,清零计数器a;当其小于暂存数值时,继续接收下一个心跳信号电压值。
当计数器a中计数达到一定数值,则输出累加器b中累加的数值,并清零计数器a、暂存器以及累加器b,并开始新的循环;循环开始所接收的一个个心跳信号电压值与暂存器中的暂存数值零相比较。上述心跳信号周期计算公式可为:
周期(s)=(累加器b中数值/接收速度)+设定时间。
由于心跳信号电压值维持不被超越的时间常数(即设定时间)需要提前设定,因此识别周期的上限即可为设定时间的倒数。
比如心跳信号频率区间约为0.7Hz到1.6Hz,则可设定极大值的设定时间为0.55秒(极小值的设定时间常数可为0.60秒),当某个接收的心跳信号电压值在暂存器中维持0.55秒未被超越,则计数器a开始记数。当有新接收的心跳信号电压值进入比较器,则计数器a加1;如果新接收的心跳信号电压值大于之前的暂存数值,则新接收的心跳信号电压值更新至暂存器,替代之前暂存器中的心跳信号电压值,计数器a的计数累加进累加器b中,计数器a清零;如果新接收的心跳信号电压值小于等于之前暂存器中的暂存数值,则除了计数器a加1之外其它不变,继续心跳信号电压值的比较循环;直到计数器a的计数数值达到0.55秒所接收的心跳信号电压值个数(比如300),则输出累加器b的数值B,再将累加至B所花费的时间加0.55秒即可为心跳信号的周期。
假设某一心跳信号电压值维持0.55秒时计数器a所接收的心跳信号电压值为275,心跳信号电压值所接收的速度为500个/秒,则心跳信号周期=(B/500)+0.55。
在通过上述方式某一段时间之内,分别获得极大值方式的生理信号周期以及极小值方式的生理信号周期,然后可根据该极大值方式的生理信号周期以及极小值方式的生理信号周期进一步获取更准确的生理信号周期。
参照图6,在本发明另一实施例中,上述系统20还可包括:相近周期判断单元23以及周期设定单元24;该相近周期判断单元23,用于判断在一段时间内通过极大值与极小值分别获取的周期是否相近;该周期设定单元24,用于当相近时,则将两者周期的平均值设定为生理信号周期。
在设定的一段时间之内,比如该一段时间内至少可通过极大值方式和极小值方式各取得一个生理信号周期。然后将两种方式取得的生理信号周期进行比较,判断两周期是否相近;当两者相近,则计算两周期的平均值,并将该平均值判定为更准确的生理信号周期;否则,结束。该相近的判定可根据生理信号的具体情况而定,比如呼吸信号周期的相近范围为:相差0.004秒左右,心跳信号周期的相近范围为:相差0.017秒左右。
上述获取生理信号周期的系统20,可通过极值识别算法获取生理信号的周期,具有简单、快速、高效以及高可靠性等优势;并且对生理信号的放大、滤波以及模数转换的要求相应比较低,数据处理也相对容易,可降低硬件要求。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种获取生理信号周期的方法,其特征在于,包括步骤:
    接收生理信号值与暂存数值比较大小,保留其中之一;将维持时间达到设定时间的生理信号值判定为一个极值;重新开始循环,判定下一个极值;
    通过计算一个极值至下一个极值之间的时间值,获取生理信号周期。
  2. 根据权利要求1所述的获取生理信号周期的方法,其特征在于,所述方法之后还包括:
    判断在一段时间内通过极大值与极小值分别获取的周期是否相近;
    当相近时,则将两者周期的平均值设定为生理信号周期。
  3. 根据权利要求1所述的获取生理信号周期的方法,其特征在于,所述接收生理信号值与暂存数值比较大小,保留其中之一;将维持时间达到设定时间的生理信号值判定为一个极值;重新开始循环,判定下一个极值的步骤具体包括:
    接收一个生理信号值,启动计数器a并加一个单位数值,并将所述生理信号值与暂存数值进行比较,当所述生理信号值大于/小于暂存数值时,将所述生理信号值取代暂存数值,并将计数器a中数值累加至累加器b中,清零计数器a;当所述生理信号值小于/大于暂存数值时,继续接收下一个心跳信号电压值;当计数器a中计数达到设定时间所对应的数值,即可判定所述生理信号值为一个极值;则输出累加器b中累加的数值,然后清零计数器a、暂存器以及累加器b,并继续判定下一个极值;所述一个极值以及下一个极值分别为极大值或极小值。
  4. 根据权利要求3中所述的获取生理信号周期的方法,其特征在于,所述通过计算一个极值至下一个极值之间的时间值,获取生理信号周期的步骤具体包括:
    将累加器b中累加的数值所需要的时间与设定时间相加,获取所述生理信号周期。
  5. 根据权利要求1至3中任一项所述的获取生理信号周期的方法,其特征在于,所述设定时间大于生理信号周期识别范围上限的半个周期。
  6. 一种获取生理信号周期的系统,其特征在于,包括:
    极值判定单元,用于接收生理信号值与暂存数值比较大小,保留其中之一;将维持时间达到设定时间的生理信号值判定为一个极值;重新开始循环,判定下一个极值;
    周期计算单元,用于通过计算一个极值至下一个极值之间的时间值,获取生理信号周期。
  7. 根据权利要求6所述的获取生理信号周期的系统,其特征在于,所述系统还包括:
    相近周期判断单元,用于判断在一段时间内通过极大值与极小值分别获取的周期是否相近;
    周期设定单元,用于当相近时,则将两者周期的平均值设定为生理信号周期。
  8. 根据权利要求6所述的获取生理信号周期的系统,其特征在于,所述极值判定单元具体用于:
    接收一个生理信号值,启动计数器a并加一个单位数值,并将所述生理信号值与暂存数值进行比较,当所述生理信号值大于/小于暂存数值时,将所述生理信号值取代暂存数值,并将计数器a中数值累加至累加器b中,清零计数器a;当所述生理信号值小于/大于暂存数值时,继续接收下一个心跳信号电压值;当计数器a中计数达到设定时间所对应的数值,即可判定所述生理信号值为一个极值;则输出累加器b中累加的数值,然后清零计数器a、暂存器以及累加器b,并继续判定下一个极值;所述一个极值以及下一个极值分别为极大值或极小值。
  9. 根据权利要求6中所述的获取生理信号周期的系统,其特征在于,所述周期计算单元具体包括:
    将累加器b中累加的数值所需要的时间与设定时间相加,获取所述生理信号周期。
  10. 根据权利要求6至8中任一项所述的获取生理信号周期的系统,其特征在于,所述设定时间大于生理信号周期识别范围上限的半个周期。
PCT/CN2013/071291 2012-03-12 2013-02-01 获取生理信号周期的方法及系统 WO2013135120A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147020090A KR101635825B1 (ko) 2012-03-12 2013-02-01 생체신호주기의 획득 방법 및 시스템
EP13760831.1A EP2752154B1 (en) 2012-03-12 2013-02-01 Method and system for obtaining physiological signal period
JP2014553602A JP5873574B2 (ja) 2012-03-12 2013-02-01 生理信号周期を取得する方法及びシステム
ES13760831.1T ES2687227T3 (es) 2012-03-12 2013-02-01 Método y sistema para obtener el período de señal fisiológica
US14/362,414 US20140336946A1 (en) 2012-03-12 2013-02-01 Method and system for obtaining cycle of physiological signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210063536.9 2012-03-12
CN2012100635369A CN102613964B (zh) 2012-03-12 2012-03-12 获取生理信号周期的方法及系统

Publications (1)

Publication Number Publication Date
WO2013135120A1 true WO2013135120A1 (zh) 2013-09-19

Family

ID=46554432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071291 WO2013135120A1 (zh) 2012-03-12 2013-02-01 获取生理信号周期的方法及系统

Country Status (7)

Country Link
US (1) US20140336946A1 (zh)
EP (1) EP2752154B1 (zh)
JP (1) JP5873574B2 (zh)
KR (1) KR101635825B1 (zh)
CN (1) CN102613964B (zh)
ES (1) ES2687227T3 (zh)
WO (1) WO2013135120A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102613964B (zh) * 2012-03-12 2013-12-25 深圳市视聆科技开发有限公司 获取生理信号周期的方法及系统
KR102031340B1 (ko) * 2018-03-14 2019-10-11 주식회사 필로시스 혈당 측정 장치, 방법, 및 시스템
CN109741829B (zh) * 2019-01-09 2022-10-28 哈尔滨理工大学 结合三周期判断的胸腹表面区域呼吸信号周期预测方法
CN109741830B (zh) * 2019-01-09 2022-12-06 哈尔滨理工大学 单双周期混合判断的胸腹表面区域呼吸信号周期预测方法
CN109741827B (zh) * 2019-01-09 2022-11-01 哈尔滨理工大学 结合双周期判断的胸腹表面区域呼吸信号周期预测方法
KR102371443B1 (ko) 2020-08-24 2022-03-08 (주)허니냅스 인공지능을 이용한 수면단계 분석 자동화 시스템 및 그 동작 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2064874A5 (zh) * 1969-10-02 1971-07-23 Siemens Ag
US5076281A (en) * 1988-05-31 1991-12-31 Benjamin Gavish Device and method for effecting rhythmic body activity
US5321350A (en) * 1989-03-07 1994-06-14 Peter Haas Fundamental frequency and period detector
CN1525395A (zh) * 2003-02-24 2004-09-01 深圳迈瑞生物医疗电子股份有限公司 信号时域波形极值点和周期的检测方法
CN101564300A (zh) * 2009-06-03 2009-10-28 哈尔滨工程大学 基于区域特征分析的步态周期检测方法
CN101732050A (zh) * 2009-12-04 2010-06-16 西安交通大学 一种基于光电容积波的呼吸率监测方法
CN102613964A (zh) * 2012-03-12 2012-08-01 深圳市视聆科技开发有限公司 获取生理信号周期的方法及系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5164780A (zh) * 1974-12-03 1976-06-04 Hewlett Packard Yokogawa
JPS5722736A (en) * 1980-07-17 1982-02-05 Terumo Corp Cycle measuring system
US4418700A (en) * 1981-03-11 1983-12-06 Sylvia Warner Method and apparatus for measurement of heart-related parameters
JP3610148B2 (ja) * 1995-02-20 2005-01-12 セイコーエプソン株式会社 周期・周波数計測装置
JPH08336502A (ja) * 1995-06-09 1996-12-24 Isuzu Motors Ltd 心拍間隔検出方法及び装置
JP3840811B2 (ja) * 1998-07-28 2006-11-01 オムロンヘルスケア株式会社 心拍出量監視装置
US7139605B2 (en) * 2003-03-18 2006-11-21 Massachusetts Institute Of Technology Heart rate monitor
JP2007181628A (ja) * 2006-01-10 2007-07-19 Nippon Telegr & Teleph Corp <Ntt> 脈拍間隔算出装置及び脈拍間隔算出方法
JP2009011540A (ja) * 2007-07-04 2009-01-22 Konica Minolta Medical & Graphic Inc 生体検査装置及び生体検査装置のプログラム
JP5139106B2 (ja) * 2008-02-12 2013-02-06 株式会社東芝 脈波間隔計測装置及び計測方法
DE102009050769A1 (de) * 2009-10-27 2011-05-05 Siemens Aktiengesellschaft Verfahren zur Vorhersage bestimmter Zyklusphasen eines schlagenden Herzens eines Patienten im Rahmen einer CT-Untersuchung und CT-System
DE102009055960B4 (de) * 2009-11-27 2021-01-14 Siemens Healthcare Gmbh Verfahren zur Akquisition von Messdaten eines atmenden Untersuchungsobjekts mittels Magnetresonanztechnik und zugehöriges Computerprogramm

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2064874A5 (zh) * 1969-10-02 1971-07-23 Siemens Ag
US5076281A (en) * 1988-05-31 1991-12-31 Benjamin Gavish Device and method for effecting rhythmic body activity
US5321350A (en) * 1989-03-07 1994-06-14 Peter Haas Fundamental frequency and period detector
CN1525395A (zh) * 2003-02-24 2004-09-01 深圳迈瑞生物医疗电子股份有限公司 信号时域波形极值点和周期的检测方法
CN101564300A (zh) * 2009-06-03 2009-10-28 哈尔滨工程大学 基于区域特征分析的步态周期检测方法
CN101732050A (zh) * 2009-12-04 2010-06-16 西安交通大学 一种基于光电容积波的呼吸率监测方法
CN102613964A (zh) * 2012-03-12 2012-08-01 深圳市视聆科技开发有限公司 获取生理信号周期的方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2752154A4 *

Also Published As

Publication number Publication date
US20140336946A1 (en) 2014-11-13
KR101635825B1 (ko) 2016-07-04
KR20140098858A (ko) 2014-08-08
EP2752154A1 (en) 2014-07-09
CN102613964B (zh) 2013-12-25
JP2015508671A (ja) 2015-03-23
EP2752154A4 (en) 2015-06-03
CN102613964A (zh) 2012-08-01
ES2687227T3 (es) 2018-10-24
EP2752154B1 (en) 2018-07-11
JP5873574B2 (ja) 2016-03-01

Similar Documents

Publication Publication Date Title
WO2013135120A1 (zh) 获取生理信号周期的方法及系统
WO2014082483A1 (zh) 超声弹性成像系统和方法、实时动态帧间处理方法
US8758258B2 (en) Beat detection device and beat detection method
Bhowmik et al. A novel method for accurate estimation of HRV from smartwatch PPG signals
BR9909623B1 (pt) processo e aparelho para reconhecer objetos em um quadro de imagem, bem como processo para reconhecer objetos em uma sequência de quadros de imagem.
EP3377963A1 (en) Electronic device and control method thereof
WO2018110983A1 (ko) 레이더를 이용하여 생체 신호를 측정하는 방법 및 장치
US10945623B2 (en) Heartbeat detection method and heartbeat detection device
WO2021251587A1 (en) Adaptive respiratory condition assessment
US20170281021A1 (en) Heartbeat detection method and heartbeat detection device
Waser et al. Removing cardiac interference from the electroencephalogram using a modified Pan-Tompkins algorithm and linear regression
Salih et al. A novel approach for detecting QRS complex of ECG signal
JPH06506856A (ja) ノイズ環境における血圧測定モニタ
JP6687645B2 (ja) 生体信号処理方法および生体信号処理装置
US20120253216A1 (en) Respiration analysis using acoustic signal trends
Muehlsteff et al. Detection of hemodynamic adaptations during impending syncope: Implementation of a robust algorithm based on pulse arrival time measurements only
Zhou et al. A method of ECG template extraction for biometrics applications
Šprager et al. Heart beat monitoring using optical interferometric signal and pseudo Wigner-Ville distribution
WO2017186017A1 (zh) 目标检测方法及装置
JP6304450B2 (ja) 心電位検出装置および心電位検出方法
US20160120479A1 (en) Respiration Monitoring Method and Device with Context-Aware Event Classification
KR101863840B1 (ko) 심전도 기반의 인증 장치
CA3176603A1 (en) Methods and systems for non-invasive forecasting, detection and monitoring of viral infections
US20230130318A1 (en) Method and apparatus for determining a measure of contact of emg sensors
WO2019139231A1 (ko) 코골이를 감지하는 방법, 시스템 및 프로그램

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760831

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013760831

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14362414

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147020090

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014553602

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE