WO2013133542A1 - 생분해성 폴리에스터의 분해조절 방법 및 분해제어된 생분해성 폴리에스터 - Google Patents

생분해성 폴리에스터의 분해조절 방법 및 분해제어된 생분해성 폴리에스터 Download PDF

Info

Publication number
WO2013133542A1
WO2013133542A1 PCT/KR2013/001217 KR2013001217W WO2013133542A1 WO 2013133542 A1 WO2013133542 A1 WO 2013133542A1 KR 2013001217 W KR2013001217 W KR 2013001217W WO 2013133542 A1 WO2013133542 A1 WO 2013133542A1
Authority
WO
WIPO (PCT)
Prior art keywords
biodegradable
carboxyl
poly
degradation
biodegradable polyester
Prior art date
Application number
PCT/KR2013/001217
Other languages
English (en)
French (fr)
Inventor
윤성철
최문환
Original Assignee
경상대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교 산학협력단 filed Critical 경상대학교 산학협력단
Publication of WO2013133542A1 publication Critical patent/WO2013133542A1/ko
Priority to US14/477,809 priority Critical patent/US20150093807A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes

Definitions

  • the present invention relates to a method for controlling the biodegradation of biodegradable polyesters such as polyhydroxyalkanoate and the like and to degradation controlled biodegradable polyesters.
  • Microorganisms make proteins, nucleic acids, and polysaccharides, but they store energy and store organic matter and release it into cells.
  • the biodegradable polymer mainly composed of carbohydrate is easily decomposed by microorganisms in the soil. In the presence of air, the biodegradable polymer is decomposed into carbon dioxide gas and water, and under the condition that the air is blocked, it is decomposed into methane and water.
  • 'PHA' Polyhydroxyalkanoate
  • 'PHA' a homopolymer or copolymer of hydroxyalkanoate
  • Such biodegradable plastics have a problem that it is difficult to control the decomposition because the decomposition is made by microorganisms.
  • Korean Patent Application Publication No. 2011-0002951 discloses a method of preparing hydroxyalkanoate alkyl ester by autolyzing PHA in a microorganism to prepare hydroxyalkanoate, and then adding and reacting alcohol. This is a technique related to the production of biodiesel through chemical degradation rather than biodegradation using a degrading enzyme.
  • Japanese Patent Application Publication No. 2009-207424 discloses in the range of 55 ⁇ 80 °C in the presence of an enzyme or its variant, or a transformant which is a specific amino acid sequence of the isolated microorganism or genus Thermobifida, from which poly-hydroxyalkanoic (poly hydroxy alkane) provides a method for decomposing acid.
  • the document describes the development of microorganisms for facilitating the degradation of PHA and does not disclose a method for controlling degradation.
  • the present invention simply provides a control method for blocking or inhibiting the degradation of biodegradable polyesters.
  • the present invention is to study the degradation mechanism of the biodegradable polyester to provide a degradation inhibition mechanism that inhibits degradation.
  • the present invention provides a method for controlling degradation of biodegradable polyester comprising the step of blocking biodegradation by capping the carboxyl ends of the biodegradable polyester.
  • the biodegradable polyester is not particularly limited as long as it has a biodegradable one having a carboxyl group at one end thereof.
  • polylactic acid PLA
  • polyglycolic acid PGA
  • poly (D, L-lactic acid-co- Polyglycolic acid) PLGA
  • polycaprolactone PCL
  • polyhydroxyalkanoate PHA
  • aliphatic dicarboxylic acids e.g., succinic acid, etc.
  • aliphatic diols e.g., ethylene glycol, butanediol, etc.
  • the present invention includes the step of inhibiting biodegradation by a degrading enzyme by capping the carboxyl terminus at a biodegradable polyhydroxyalkanoate (PHA) or copolymer thereof having a carboxyl group at one terminus. It provides a method for controlling degradation of the biodegradable polyester.
  • PHA biodegradable polyhydroxyalkanoate
  • the biodegradable PHA is not particularly limited and includes homopolymers and copolymers, and includes medium chain PHA (about 6 to 14 carbons) and short chain PHA (about 3 to 5 carbons).
  • the degradation control method of the biodegradable polyester according to the present invention caps the carboxyl end, and the capping method may include, for example, esterification, amidation, or PEGylation. .
  • the esterification is an esterification reaction, ester exchange reaction, polyesterification reaction or polyester with a capping compound selected from monohydric aliphatic alcohol, polyalcohol, thiol, aromatic alcohol and mixtures thereof. This can be done through an exchange reaction.
  • biodegradation is performed by a degrading enzyme
  • the degrading enzyme may be an extracellular degrading enzyme of exo type. More preferably, the degrading enzyme may have a carboxyl group searching capability and include a carboxyl group binding domain.
  • decomposition may be controlled according to the capping ratio of the carboxyl terminal. For example, in the case where all the carboxyl ends are capped, the decomposition is completely blocked, and in the case of only a part of the capping, the higher the capping ratio, the greater the inhibition of decomposition.
  • Another aspect of the present invention relates to a biodegradable biodegradable PHA capped with a carboxyl terminus in a biodegradable polyhydroxyalkanoate (PHA) or a copolymer thereof, each having a hydroxyl group and a carboxyl group at each end.
  • PHA biodegradable polyhydroxyalkanoate
  • the capping method of the carboxyl terminal may be esterification, amidation, or PEGylation as described above.
  • Another aspect of the present invention provides a decomposition mechanism of biodegradable polyester and a decomposition control mechanism of biodegradable polyester.
  • step (d) degrading the enzyme while moving towards the hydroxyl end of the biodegradable polyester in the reverse direction to step (b); It includes.
  • the degradation control mechanism of biodegradable polyester which controls the movement to the carboxyl terminus in step (b), or controls the recognition or anchoring of the carboxyl terminus in step (c).
  • the method of controlling the movement to the carboxyl terminus may be performed by using, for example, a mutalytic enzyme that has lost the searchability of the carboxyl group.
  • the degrading enzyme is an exo type extracellular degrading enzyme as described above, and has a carboxyl group searching capability and preferably includes a carboxyl group binding domain.
  • step (c) may be achieved, for example, by capping the carboxyl terminus.
  • the capping method of the carboxyl terminal is as described above.
  • the decomposition control method of the biodegradable polyester according to the present invention is made by a simple method of capping the terminal carboxyl group, and is easy to control. Therefore, the present invention can be applied to various applications that want to delay or block the degradation of biodegradable polyesters such as drug release control.
  • FIG. 5 is an XRD analysis result in Experimental Example 1.
  • FIG. (a: natural PHB fines, b: natural PHB fines washed with acetone, c: artificially assembled PHB particles, d: PHB-1-octatecanol nanoparticles suspended in water, e: dried PHB-1- Octatecanol powder)
  • FIG. 6 is a graph showing a time-dependent decomposition profile in Experimental Example 2, filled symbols are the degradation profile of PHB-1-octatecanol capped with the carboxy terminus, and the open symbols are degradation profiles of PHB fine particles not capped with the terminal carboxyl. It is shown.
  • biodegradable polymer refers to a degradable polymer that is naturally degraded by the action of natural microorganisms such as bacteria, fungi and algae.
  • 'Biodegradation' is generally divided into intracellular and extracellular degradation.
  • intracellular degradation is when bacteria that synthesize PHA are hydrolyzed by intracellular PHA degrading enzymes to use PHA in intracellular metabolism.
  • Extracellular degradation is achieved by extracellular depolymerase, an enzyme that microorganisms secrete out of cells to use PHA in the environment as a carbon source.
  • biodegradation may be biodegradation, which is preferably performed using an extracellular degrading enzyme outside the cell.
  • the PHA includes a chemical synthetic polymer, a microbial synthetic polymer, or a natural polymer.
  • 'capping' or 'chemical modification' are used interchangeably to refer to the introduction of blocking groups at the polymer end via covalent modification. Suitable blocking groups help to cap ends without reducing the biological activity of the biodegradable polyester.
  • esterification refers to the reaction in which one ester bond is cleaved and at the same time the acyl group or alcohol is transferred to another molecule or to another site on the same molecule and recombined.
  • Esterization in the present invention includes esterification reaction, ester exchange reaction, polyesterification reaction or polyester exchange reaction.
  • the term "about” means 30, 25, 20, 25, 10, 9, 8, 7, 6, 5, by reference quantity, level, value, number, frequency, percentage, dimension, size, amount, weight, or length. By amount, level, value, number, frequency, percentage, dimension, size, amount, weight or length, varying by 4, 3, 2 or 1%.
  • the present invention includes the step of blocking biodegradation by capping the carboxyl terminus of the biodegradable polyester.
  • the degradation enzyme proceeds after the enzymatic enzyme recognizes the carboxyl end group and is anchored to the carboxyl end group.
  • the decomposition mechanism is as follows.
  • step 4 degrading the enzyme while moving toward the hydroxyl end of the biodegradable polyester in the reverse direction to step (b) (Step 4);
  • the recognition of the free carboxyl group at the end of the enzyme is a key factor for degradation, and then the degradation process is carried out while moving toward the hydroxyl end.
  • two methods can be considered to degrade the biodegradable polyester.
  • First is a method of controlling the movement to the carboxyl terminus in step (b).
  • mutalytic enzymes that have lost the ability to search for carboxyl groups can be used.
  • this method is difficult to quantitatively control degradation and is useful for blocking the degradation itself.
  • step (c) the recognition or anchoring of the carboxyl terminus is controlled. Therefore, in the present invention, the carboxyl end is capped so that the enzyme does not recognize the carboxyl end. Therefore, the capping of all the carboxyl ends completely block the decomposition, and if only the carboxyl ends are partially capped, the decomposition blocking rate is changed according to the capping ratio, so that the decomposition can be easily controlled by adjusting the capping ratio. .
  • the method of capping the carboxyl terminus in the present invention is not particularly limited and may include, for example, esterification, amidation, or PEGylation.
  • the esterification may be performed with a capping compound selected from monohydric aliphatic alcohols, polyalcohols, thiols, aromatic alcohols, and mixtures thereof. Esterification can be carried out without the addition of a catalyst, but is preferably carried out under the action of a catalyst.
  • Useful low molecular weight alcohols are generally alkanols having 1 to 18 carbon atoms. Specifically, n-butanol, n-hexanol, n-octanol, n-decanol, n-dodecanol, octadecanol, and mixtures thereof are mentioned.
  • amidation is carried out at the carboxyl terminus using a method described in the art for example capping compounds selected from the group consisting of ethyl amine, propylamine, butyl amine, octyl amine, stearyl amine and mixtures thereof. Can be added.
  • the carboxyl terminus may be chemically modified and PEGylated by reaction with a suitably functionalized PEG.
  • biodegradation is performed using a degrading enzyme, and preferably, the degrading enzyme is an extracellular degrading enzyme of exo type.
  • degrading enzymes such as PHB, PHV, and PHO (polyhydroxyoctanoate) are known, and they each exhibit substrate specificity.
  • PHB degrading enzymes are distinguished according to their structural features and consist of signal peptides that are cut off through the plasma membrane, catalytic domains of the N-terminal portion and substrate binding domains of the C-terminal portion, and linking domains linking these domains. It consists of three residues, serine, aspartate, and histidine, which are thoroughly conserved at the center of activity of the catalytic domain. The double serine constitutes Gly-Xaa-Ser-Xaa-Gly, a lipase box pentapeptide.
  • the extracellular degrading enzyme of the present invention preferably has a carboxyl group recognition ability from the substrate and includes a carboxyl group binding domain so as to recognize and anchor the carboxyl terminus.
  • a carboxyl group recognition ability from the substrate and includes a carboxyl group binding domain so as to recognize and anchor the carboxyl terminus.
  • Pseudomonas Stuttgart Jerry (Pseudomonas stutzeri), Central Stony ah pick Ketty (Ralstonia pickettii), coma Monastir Testo Stephen Ronnie (Comamonas testosterone), Pseudomonas Les Rana geuneyi (Pseudomonas lemoignei), Pseudomonas fluorescein sense (Pseudomonas fluorescens) Alcaligenes faecalis , Streptomyces exfoliates , etc. are mentioned.
  • the present invention also provides a biodegradable controlled biodegradable PHA having a carboxyl end capped at a biodegradable polyhydroxyalkanoate (PHA) or a copolymer thereof having hydroxyl and carboxyl groups at both ends.
  • PHA biodegradable polyhydroxyalkanoate
  • the carboxyl terminus may be capped through esterification, amidation, or PEGylation as described above, and is not particularly limited.
  • Biodegradation here is extracellular degradation by exo-type extracellular enzymes having the carboxyl group's ability to recognize and binding domains.
  • the process for producing the degradation-controlled biodegradable PHAs according to the invention can be made by capping the natural or synthetic PHAs obtained according to methods known in the art.
  • one terminal hydroxyl group of the biodegradable PHA can be prepared by the step of pyrolysis to convert the alkenic group to low molecular weight, followed by capping by reacting the opposite terminal carboxyl group of the biodegradable PHA with the capping compound.
  • the natural biodegradable PHA has a hydroxyl end portion disposed on the outer circumference portion and a carboxyl terminal portion disposed on the core side, as shown in FIG. Has At this time, it is preferable that the degradation-controlled biodegradable PHA of the present invention does not cause significant warping or deformation which hinders folding for crystallization despite end capping.
  • the transesterification of PHB was performed at 190 ° C. for 20-30 minutes.
  • the high molecular weight PHB was decomposed to obtain a low molecular weight PHB.
  • One terminal hydroxyl group of PHB was removed by pyrolysis to convert to an alkenic group with the other terminal carboxyl group intact.
  • the low molecular weight particles thus obtained were transesterified in the presence of a tin catalyst to obtain terminal esterified PHB.
  • NMR peak analysis indicates that in the purified PHB-1-octadecanol sample about 20% hydroxyl groups are replaced by alkenic groups and about 80% free hydroxyl groups are retained. It also indicates that at least 98% of the carboxyl ends are esterified with 1-octadecanol.
  • the T m value of PHB-1-octadecanol was about 130 ° C. (see FIG. 4), and the number average molecular weight (Mn) calculated from the 1 H-NMR analysis was about ⁇ 3000.
  • PHB-1-octadecanol nanoparticles ( ⁇ 200 nm) suspended in water was confirmed to have amorphous properties by XRD analysis, dried PHB-1-octadecanol powder PHB The same pattern as the crystal peak of the homopolymer was shown. Thus, it was found that the end capping did not cause significant distortion or deformation that prevents folding for crystallization.
  • Enzyme concentration of 2 g / mL and PHB-1-octa of initial OD 3.0 (660 nm) using the PHB degrading enzymes P. stutzeri BM190 and R. pickettii T1 for terminally capped PHB-1-octadecanol
  • the degradation was carried out in Tris buffer with the addition of decanol substrate. For comparison, the degradation was performed at the same enzyme concentration for artificial PHB particles and natural PHB particles.
  • the time dependent degradation profile of the end capped PHB-1-octadecanol was obtained and compared to the degradation profile of the terminal uncapped synthetic PHB.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

본 발명은 생분해성 폴리에스터의 분해조절 방법에 관한 것으로, 구체적으로 한쪽 말단에 카르복실기를 갖는 생분해성 폴리하이드록시알카노에이트(PHA) 또는 그 공중합체에서 상기 카르복실 말단을 캐핑(capping)함으로써 분해효소에 의한 생분해를 억제하므로 분해의 억제 또는 제어가 카르복실기의 캐핑 비율에 따라 용이하게 이루어질 수 있다는 장점이 있다.

Description

생분해성 폴리에스터의 분해조절 방법 및 분해제어된 생분해성 폴리에스터
본 발명은 폴리하이드록시알카노에이트 등과 같은 생분해성 폴리에스터의 생분해를 제어하는 방법 및 분해제어된 생분해성 폴리에스터에 관한 것이다.
미생물은 단백질, 핵산, 다당류 등을 만들지만 에너지를 저장하는 물질로서 유기물을 섭취하여 이를 세포내에 저장하거나 체외로 배출한다. 이 때 생성되는 탄수화물을 주체로 하는 생분해성 고분자는 토양 중의 미생물에 의하여 아주 쉽게 분해되는데 공기 존재하에서는 탄산가스와 물로 분해되고 공기가 차단된 조건하에서는 메탄과 물로 분해가 된다.
현재까지 수많은 미생물에서 에너지 저장 물질로서 폴리에스터를 균체 내에 축적하는 것이 알려져 있다. 하이드록시알카노에이트의 호모폴리머 또는 코폴리머인 폴리하이드록시알카노에이트 (Polyhydroxyalkanoate, 이하 ‘PHA’ 로 약칭함)는 열가소성 고분자이고, 퇴비화나 자연환경 중에서 미생물에 의해 분해되는 것으로서, 친환경 플라스틱으로 주목받고 있다. 이와 같은 생분해성 플라스틱은 환경 중에서 이용되는 농업용 자재, 사용 후의 회수·재이용이 곤란한 식품 용기, 포장 재료, 위생 용품, 쓰레기 봉투 등에의 폭넓은 응용을 목표로 하고 개발이 진행되고 있다.
이러한 생분해성 플라스틱은 분해가 미생물에 의해 이루어지므로 분해를 제어하기 어렵다는 문제가 있다.
한국특허출원공개 제2011-0002951호는 미생물에서 PHA를 자가분해시켜, 하이드록시알카노에이트를 제조한 후 알코올을 첨가하고, 반응시켜 하이드록시알카노에이트 알킬에스터를 제조하는 방법을 개시한다. 이는 분해효소를 이용한 생분해가 아닌 화학적 분해를 통한 바이오디젤의 생산에 관한 기술이다.
일본특허출원공개 제2009-207424호는 Thermobifida 속의 미생물이나, 이로부터 단리한 특정의 아미노산 배열로 되는 효소나 그 변이체, 또는 형질전환체의 존재하에서 55∼80℃의 범위에서 폴리하이드록시 알칸(poly hydroxy alkane) 산을 분해하는 방법을 제공한다. 동 문헌에서는 PHA의 분해를 용이하게 하기 위한 미생물을 개발한 것으로서 분해를 제어하는 방법은 개시되어 있지 않다.
본 발명은 간단하게 생분해성 폴리에스터의 분해를 차단하거나 억제하는 제어 방법을 제공하고자 한다.
또한 본 발명은 생분해가 억제된 생분해성 폴리에스터를 제공하고자 한다.
또한 본 발명은 생분해성 폴리에스터의 분해 메커니즘을 연구하여 분해를 억제하는 분해억제 메커니즘을 제공하고자 한다.
상기의 목적을 달성하기 위하여, 본 발명은 생분해성 폴리에스터의 카르복실 말단을 캐핑(capping)함으로써 생분해를 차단하는 단계를 포함하는 생분해성 폴리에스터의 분해조절 방법을 제공한다.
여기서, 상기 생분해성 폴리에스터는 한쪽 말단에 카르복실기를 갖는 것으로서 생분해성을 갖는 것이라면 특별히 제한되지 않으며 예를 들어 폴리락트산(PLA), 폴리글리콜산(PGA), 폴리(D,L-락트산-co-글리콜산) (PLGA), 폴리카프로락톤 (PCL), 폴리하이드록시알카노에이트(PHA), 지방족 디카르복실산 (예, 숙신산 등) 및 지방족 디올 (예, 에틸렌글리콜, 부탄디올 등)로 구성된 폴리에스터 및 이들의 혼합물을 포함한다.
또 다른 측면에서 본 발명은 한쪽 말단에 카르복실기를 갖는 생분해성 폴리하이드록시알카노에이트(PHA) 또는 그 공중합체에서 상기 카르복실 말단을 캐핑(capping)함으로써 분해효소에 의한 생분해를 억제하는 단계를 포함하는 생분해성 폴리에스터의 분해조절 방법을 제공한다.
상기 생분해성 PHA는 특별히 제한되지 않으며 호모폴리머와 코폴리머를 포함하며, 중쇄 PHA(약 6 ~ 14의 탄소)와 단쇄 PHA(약 3 ~ 5의 탄소)를 포함한다. 구체적인 예에서, 폴리[3-하이드록시부틸레이트](P(3HB)); 폴리[(4-하이드록시부틸레이트](P(4HB)); 폴리[3-하이드록시발레레이트](PHV); 폴리[3-하이드록시부틸레이트]-코-폴리[3-하이드록시발레레이트](PHBV); 폴리[3-하이드록시헥사노에이트](PHC); 폴리[3-히드록시헵타노에이트](PHH); 폴리[3-하이드록시옥타노에이트](PHO); 폴리[3-하이드록시노나노에이트](PHN); 폴리[3-하이드록시데카노에이트](PHD); 폴리[3-하이드록시도데카노에이트] (PHDD); 폴리[3-하이드록시테트라데카노에이트](PHTD) 및 이들의 혼합물을 포함한다.
본 발명에 따른 생분해성 폴리에스터의 분해조절 방법은 카르복실 말단을 캐핑하는바 캐핑 방법은 예를 들어, 에스터화(esterification), 아미드화(amidation), 또는 페길화(PEGylation) 등을 들 수 있다.
이들 캐핑 방법은 공지의 방법에 따라 본 발명에 적합하게 변형하여 수행될 수 있다. 예를 들어, 상기 에스터화는 1가 지방족 알코올(alcohol), 폴리알코올(polyalcohol), 티올, 방향족 알코올 및 이들의 혼합물 중 선택된 캐핑 화합물로 에스터화 반응, 에스터 교환 반응, 폴리에스터화 반응 또는 폴리에스터 교환 반응을 통해 이루어질 수 있다.
본 발명에서 생분해는 분해효소에 의해 수행되며 바람직한 예에서 분해효소는 엑소(exo) 타입의 세포외(extracellular) 분해효소일 수 있다. 더욱 바람직하게는, 상기 분해효소가 카르복실기 검색능(searching capability)을 갖고 카르복실기 결합 도메인을 포함하는 것일 수 있다.
본 발명의 분해제어 방법은 카르복실 말단의 캐핑 비율에 따라 분해가 제어될 수 있다. 예를 들어 카르복실 말단을 전부 캐핑한 경우에는 분해가 완전히 차단(blocking)되며, 일부만 캐핑한 경우에는 캐핑한 비율에 따라 캐핑 비율이 높을수록 분해 억제가 크게 이루어진다.
본 발명의 다른 측면은, 양 말단에 각각 하이드록실기와 카르복실기를 갖는 생분해성 폴리하이드록시알카노에이트(PHA) 또는 그 공중합체에서 카르복실 말단이 캐핑된 분해제어된 생분해성 PHA에 관한 것이다.
여기서, 카르복실 말단의 캐핑 방법은 상술한 바와 같이 에스터화(esterification), 아미드화(amidation), 또는 페길화(PEGylation) 등을 들 수 있다.
본 발명의 또 다른 측면은, 생분해성 폴리에스터의 분해 메커니즘과 생분해성 폴리에스터의 분해제어 메커니즘을 제공한다.
본 발명의 생분해성 폴리에스터의 분해 메커니즘은
(a) 분해효소가 생분해성 폴리에스터의 결합 도메인에 결합하는 단계;
(b) 분해효소가 카르복실 말단을 향하여 이동하는 단계;
(c) 분해효소가 생분해성 폴리에스터의 말단 카르복실기를 인식하고 엥커링(anchoring)하는 단계;
(d) 분해효소가 단계(b)와 역방향으로 생분해성 폴리에스터의 하이드록시기 말단을 향하여 이동하면서 분해하는 단계; 를 포함한다.
여기서, 상기 단계(b)에서 카르복실 말단으로의 이동을 제어하거나, 상기 단계(c)에서 카르복실 말단의 인식 또는 엥커링을 제어하는, 생분해성 폴리에스터의 분해제어 메커니즘을 제공한다.
상기 단계(b)에서 카르복실 말단으로의 이동을 제어하는 방법은 예를 들어, 카르복실기의 검색능을 상실한 돌연변이 분해효소를 이용함으로써 이루어질 수 있다. 여기서, 분해효소는 상술한 바와 같이 엑소(exo) 타입의 세포외(extracellular) 분해효소로서 카르복실기 검색능(searching capability)을 갖고 카르복실기 결합 도메인을 포함하는 것이 바람직하다.
또한, 단계(c)에서 카르복실 말단의 인식 또는 엥커링을 제어하는 방법은 예를 들어, 상기 카르복실 말단을 캐핑함으로써 이루어질 수 있다. 여기서 카르복실 말단의 캐핑 방법은 상술한 바와 같다.
본 발명에 따른 생분해성 폴리에스터의 분해제어 방법은 말단 카르복실기를 캐핑하는 간단한 방법으로 이루어지며, 제어가 용이하다. 따라서, 본 발명은 약물방출제어와 같이 생분해성 폴리에스터의 분해를 지연시키거나 차단하고자 하는 다양한 용도에 응용될 수 있다.
도 1은 생분해성 폴리에스터의 분해 메커니즘을 예시적으로 나타내는 도면이다;
도 2는 코어가 Ca2+양이온에 의해 킬레이션된 천연의 PHB의 모식도이다;
도 3은 실험예 1에서 1H NMR 분석 결과이다;
도 4는 실험예 1에서 열 전이 분석(Thermal transition) 결과이다;
도 5는 실험예 1에서 XRD 분석 결과이다. (a: 천연PHB미립자, b: 아세톤으로 워싱한 천연PHB미립자, c: 인공적으로 조립된 PHB 입자, d: 물에 현탁된 PHB-1-옥타테칸올 나노입자, e: 건조된 PHB-1-옥타테칸올 분말)
도 6은 실험예 2에서 시간 의존적 분해 프로파일을 나타낸 그래프로서, filled symbols은 카르복시말단이 캐핑된 PHB-1-옥타테칸올의 분해프로파일이고, open symbols은 말단 카복실이 캐핑안된 PHB 미립자의 분해프로파일을 나타낸 것이다.
본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 하기의 정의를 가지며 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미에 부합된다. 또한 본 명세서에는 바람직한 방법이나 시료가 기재되나, 이와 유사하거나 동등한 것들도 본 발명의 범주에 포함된다. 본 명세서에 참고문헌으로 기재되는 모든 간행물의 내용은 본 발명에 도입된다.
본 명세서에서 용어 ‘생분해성 고분자’는 박테리아(bacteria), 균류(fungi)와 조류(algae)와 같은 천연 미생물의 작용에 의해 자연적으로 분해가 일어나는 분해성 고분자를 말한다. 통상 ‘생분해’는 세포 내에서의 분해와 세포외에서의 분해로 구분된다. 예를 들어 세포 내 분해는 PHA를 합성하는 세균들이 세포 내 대사과정에서 PHA를 이용하기 위하여 세포 내 PHA 분해효소에 의해 가수 분해되는 것이다. 세포외 분해는 자연환경에 존재하는 PHA를 탄소원으로 사용하기 위해 미생물들이 세포 밖으로 분비하는 효소인 세포외 분해효소(extracellular depolymerase)에 의하여 이루어진다. 본 발명에서 생분해는 바람직하게는 세포 밖에서 세포외 분해효소를 이용하여 이루어지는 생분해일 수 있다.
용어 ‘폴리하이드록시알카노에이트’ 또는 ‘PHA’는 하기 일반식 1의 반복 단위 갖는 고분자 물질로서, 현재까지 구성 모노머가 100여종 이상이고 반복단위체의 측쇄 R의 길이에 따라 단쇄 PHA(n=0~1), 중쇄 PHA(n=2~11), 장쇄 PHA(n=12 이상)로 구분되며 본 발명은 이들 모두를 포괄한다. 또한 본 발명에서 PHA는 화학적 합성 고분자, 미생물 합성 고분자, 또는 천연 고분자를 포함한다.
[일반식 1]
[규칙 제91조에 의한 정정 04.04.2013] 
Figure WO-DOC-FIGURE-40
용어 ‘캐핑’ 또는 ‘화학적 변형’은 공유적 변형을 통해 고분자 말단에 차단 그룹을 도입하는 것을 언급하기 위해 상호교환적으로 사용된다. 적합한 차단 그룹은 생분해성 폴리에스터의 생물학적 활성을 감소시키지 않으면서 말단을 캐핑하는 것을 돕는다.
용어 ‘에스터화(esterification)’는 하나의 에스터 결합이 절단됨과 동시에 아실기 혹은 알코올이 다른 분자나 또는 같은 분자의 다른 부위로 옮겨져 다시 결합하는 반응이다. 본 발명에서 에스터화는 에스터화 반응, 에스터 교환 반응, 폴리에스터화 반응 또는 폴리에스터 교환 반응을 포함한다.
용어 "약"이라는 것은 참조 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이에 대해 30, 25, 20, 25, 10, 9, 8, 7, 6, 5, 4, 3, 2 또는 1% 정도로 변하는 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이를 의미한다.
본 명세서를 통해, 문맥에서 달리 필요하지 않으면, "포함하다" 및 "포함하는"이란 말은 제시된 단계 또는 원소, 또는 단계 또는 원소들의 군을 포함하나, 임의의 다른 단계 또는 원소, 또는 단계 또는 원소들의 군이 배제되지는 않음을 내포하는 것으로 이해하여야 한다.
이하, 본 발명을 상세히 설명한다.
생분해성 폴리에스터의 분해조절 방법
본 발명은 생분해성 폴리에스터의 카르복실 말단을 캐핑(capping)함으로써 생분해를 차단하는 단계를 포함한다.
본 발명자들의 생분해성 폴리에스터의 분해 메커니즘 연구에 의하면 분해효소가 카르복실 말단기를 인식하여 카르복실 말단기에 엥커링된 후 분해가 진행되는 것을 확인하였다. 도 1을 참조하면, 분해 메커니즘은 하기와 같다.
<생분해성 폴리에스터의 분해 메커니즘>
(a) 분해효소가 생분해성 폴리에스터의 결합 도메인에 결합하는 단계(Step 1);
(b) 분해효소가 카르복실 말단을 향하여 이동하는 단계(Step 2);
(c) 분해효소가 생분해성 폴리에스터의 말단 카르복실기를 인식하고 엥커링(anchoring)하는 단계(Step 3);
(d) 분해효소가 단계(b)와 역방향으로 생분해성 폴리에스터의 하이드록시기 말단을 향하여 이동하면서 분해하는 단계(Step 4);
상기 본 발명자들이 밝혀낸 바에 따르면, 분해효소가 말단의 유리 카르복실기를 인식하는 것이 분해에 핵심적인 요소이고 다음으로 하이드록실 말단을 향해 이동하면서 분해하는 과정이 진행된다. 따라서, 생분해성 폴리에스터를 분해하기 위해서는 두 가지 방법이 고려될 수 있다.
첫째로 상기 단계(b)에서 카르복실 말단으로의 이동을 제어하는 방법이다. 이를 위해서는 카르복실기의 검색능을 상실한 돌연변이 분해효소를 이용할 수 있다. 그러나 이 방법의 경우 분해를 정량적으로 제어하기는 어렵고 분해 자체를 차단하는 데 유용하다.
둘째로, 상기 단계(c)에서 카르복실 말단의 인식 또는 엥커링을 제어하는 것이다. 이에 본 발명에서는 카르복실 말단을 캐핑함으로써 분해효소가 카르복실 말단을 인식하지 못하도록 한다. 따라서, 카르복실 말단을 전부 캐핑하면 분해가 완전히 차단되고, 카르복실 말단을 일부만 캐핑하면 캐핑한 비율에 따라 분해차단 비율이 달라지게 되므로 캐핑 비율의 조절로 용이하게 분해를 제어할 수 있다는 장점이 있다.
본 발명에서 카르복실 말단의 캐핑 방법은 특별히 제한되지 않으며 예시적으로 에스터화(esterification), 아미드화(amidation), 또는 페길화(PEGylation)를 들 수 있다.
일 예시에서 상기 에스터화는 1가 지방족 알코올(alcohol), 폴리알코올(polyalcohol), 티올, 방향족 알코올 및 이들의 혼합물 중 선택된 캐핑 화합물로 수행될 수 있다. 에스터화는 촉매의 첨가 없이 수행할 수 있으나, 바람직하게는 촉매의 작용하에 수행한다. 유용한 저분자량 알콜은 일반적으로 1 내지 18개의 탄소 원자를 갖는 알칸올이다. 구체적으로 n-부탄올, n-헥산올, n-옥탄올, n-데칸올, n-도데칸올, 옥타데카놀 및 이의 혼합물 등을 들 수 있다.
일 예시에서 상기 아미드화는 당업계에 기술된 방법을 이용하여 예를 들어 에틸 아민, 프로필아민, 부틸 아민, 옥틸 아민, 스테아릴 아민 및 이의 혼합물로 이루어진 군 중에서 선택되는 캐핑 화합물을 카르복실 말단에서 첨가할 수 있다.
일 예시에서 상기 카르복실 말단은 적합하게 작용화된 PEG와의 반응에 의해 화학적으로 변형되어 페길화될 수 있다.
본 발명에서 생분해는 분해효소를 이용하여 수행되며 바람직하게는 상기 분해효소는 엑소(exo) 타입의 세포외(extracellular) 분해효소이다.
상기 세포외 분해효소로는 PHB, PHV, PHO(polyhydroxyoctanoate) 등의 분해효소가 알려져 있고, 이들은 각각 기질 특이성을 나타낸다. PHB 분해효소는 구조적 특징에 따라 구별되며, 원형질 막을 통과하는 동안 잘려져 나가는 시그널 펩티드, N 말단 부분의 촉매적 도메인과 C 말단 부분의 기질 결합 도메인, 및 이들 도메인을 연결하는 연결 도메인으로 구성된다. 촉매 도메인의 활성중심에 철저하게 보전된 세 잔기인 세린, 아스파테이트, 히스티딘으로 구성된다. 이중 세린은 리파아제 박스 pentapeptide인 Gly-Xaa-Ser-Xaa-Gly를 구성한다.
하나의 바람직한 예에서, 본 발명의 세포외 분해효소는, 카르복실 말단을 인식하고 앵커링할 수 있도록 기질로부터 카르복실기 인식능을 갖고 카르복실기 결합 도메인을 포함하는 것이 바람직하다. 예를 들어, 슈도모나스 스튜트제리 (Pseudomonas stutzeri), 랄스토니아 픽케티(Ralstonia pickettii), 코마모나스 테스토스테로니(Comamonas testosterone),슈도모나스 레모이그네이(Pseudomonas lemoignei),슈도모나스 플루오레센스(Pseudomonas fluorescens),알칼리게네스 피칼리스(Alcaligenes faecalis), 스트렙토마이세스 엑스폴리아트스(Streptomyces exfoliates) 등을 들 수 있다.
분해억제된 생분해성 PHA
본 발명은 또한 양 말단에 각각 하이드록실기와 카르복실기를 갖는 생분해성 폴리하이드록시알카노에이트(PHA) 또는 그 공중합체에서 카르복실 말단이 캐핑되어 있는, 분해제어된 생분해성 PHA를 제공한다. 상기 카르복실 말단은 상술한 바와 같이 에스터화(esterification), 아미드화(amidation), 또는 페길화(PEGylation)를 통해 캐핑될 수 있으며 특별히 제한되지 않는다.
여기서 생분해는 앞서와 같이 카르복실기의 인식능과 결합 도메인을 갖는 엑소 타입의 세포외 분해효소에 의해 세포외 분해이다.
본 발명에 따른 분해제어된 생분해성 PHA를 제조하는 방법은 당업계에 공지된 방법에 따라 얻은 천연 또는 합성의 PHA를 캐핑하여 제조될 수 있다. 일 예에서, 생분해성 PHA의 한쪽 말단 하이드록실기를 열분해에 의해 알케닉기로 전환하여 저분자화한 후, 생분해성 PHA의 반대쪽 말단 카르복실기를 캐핑 화합물과 반응시켜 캐핑하는 단계를 통해 제조될 수 있다.
본 발명자들이 밝혀낸 바에 따르면, 상기 천연의 생분해성 PHA는 도 2와 같이 외주부에 하이드록실 말단이 배치되고 코어 측에 카르복실 말단이 배치되며, 코어 측에서 2가 양이온에 의해 킬레이션된 코어쉘 구조를 갖는다. 이때, 본 발명의 분해제어된 생분해성 PHA는 말단 캐핑에도 불구하고 결정화를 위한 폴딩(folding)에 방해가 되는 현저한 뒤틀림이나 변형이 유발되지 않는 것이 바람직하다.
이하, 실시예를 통하여 본 발명을 추가적으로 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
특히, 하기 실시예에서는 생분해성 폴리에스터로서 PHB와 캐핑 화합물로서 1-옥타데칸올만을 예시하였으나, 다른 종류의 생분해성 폴리에스터, 캐핑 화합물, 에스터화 촉매 등을 사용하는 것 역시 당업자에게 자명한 사항이라 할 것이다.
[실시예 1]
PHB의 에스터교환반응을 190°C에서 20-30분간 수행하였다. 여기서, 고분자량의 PHB를 분해하여 저분자량의 PHB를 얻었다. PHB의 한쪽 말단 하이드록실기를 열분해로 제거하여 알케닉기로 전환하고 이 때 반대쪽 말단 카르복실기는 손상되지 않았다. 이렇게 얻은 저분자량의 입자를 주석 촉매의 존재 하에서 에스테르 교환반응을 시켜 말단이 에스터화된 PHB를 얻었다.
구체적으로, 25 mL 원형 플라스크에 PHB와 1-옥타데칸올 또는 1-도데칸올을 1:0.5 의 중량비로 넣고 마그네틱 교반을 하였다. 반응은 190°C 로 예열된 오일 배스(oil bath)에서 진공으로 수행되었고, 대략 70 mg의 주석 촉매를 플라스크 내로 첨가하였다. 반응은 2030분 동안 교반을 계속하며 수행하였고, 반응완료 후 플라스크를 제거하여 얼음이나 실온에서 냉각한다. 개질된 고분자를 클로로폼에 용해한 후 빠르게 교반된 메탄올에서 정제하였다 (수율 4050%). 수득된 PHB-1-옥타데칸올의 화학 구조는 하기 식(1)과 같이 한쪽 말단 하이드록실기가 남아 있는 것과 하이드록실기가 알케닉기로 전환된 것의 2종이 혼재되어 있다.
[화학식 1]
[규칙 제91조에 의한 정정 04.04.2013] 
Figure WO-DOC-FIGURE-81
[실험예 1]
실시예 1에서 얻은 말단 캐핑된 PHB의 화학적 구조를 조사하기 위해 1H NMR spectroscopy와 XRD 분석을 하였다.
도 3은 PHB-1-옥타데칸올의 1H NMR 스펙트럼을 나타낸다. 3.99 ppm에서 흡수 피크는 PHB과 1-옥타데칸올 사이의 연결 부분에서 에스터 연결을 형성하는 말단 알코올기에서 triplet 메틸렌 양성자를 나타낸다.6.88과 5.73 ppm (각각 c와 d)에서의 작은 흡수 피크는 말단 하이드록실기의 탈수로 생긴 올레핀 말단기와 관련된 것이다.
NMR 피크 분석은 정제된 PHB-1-옥타데칸올 샘플에서 약 20% 하이드록실기가 알케닉기로 대체되고, 약 80%의 유리 하이드록실기가 보유되어있다는 것을 알려준다. 또한, 98% 이상의 카르복실 말단이 1-옥타데칸올과 에스터화되었음을 알려준다. 열 전이 분석을 통해 PHB-1-옥타데칸올의 Tm 값은 약 130 °C였고(도 4참조), 1H-NMR 분석 결과로부터 계산된 수평균 분자량(Mn)은 약 ~3000 였다.
또한, 도 5를 참조하면 물에 현탁된 PHB-1-옥타데칸올 나노입자(~200 nm)는 XRD 분석 결과 무정형의 성질을 가지는 것으로 확인되었고, 건조된 PHB-1-옥타데칸올 분말은 PHB 호모폴리머의 결정 피크와 동일한 패턴을 나타내었다. 따라서, 말단 캐핑은 결정화를 위한 폴딩(folding)을 방해하는 현저한 뒤틀림이나 변형을 유발하지 않음을 알 수 있었다.
[실험예 2]
말단 캐핑된 PHB-1-옥타데칸올에 대해 PHB 분해효소인 P. stutzeri BM190 와 R. pickettii T1 를 사용하여 2 g/mL의 효소농도와 초기 O.D. = 3.0 (660 nm)의 PHB-1-옥타데칸올 기질이 첨가된 트리스 버퍼에서 분해를 실시하였다. 비교를 위해 인공 PHB 미립자와 천연 PHB 미립자에 대해서도 동일한 효소 농도로 분해를 실시하였다. 말단 캐핑된 PHB-1-옥타데칸올의 시간 의존적 분해 프로파일을 얻고 말단 캐핑되지 않은 합성 PHB 의 분해 프로파일과 비교하였다.
도 6에 나타난 바와 같이, 말단 카르복실기가 캐핑된 경우 각각의 효소에 의한 분해가 완전히 차단되었다. 이는, 말단의 유리 카르복실기가 분해에 핵심적인 요소이고, 하이드록실 말단을 향해 고분자를 자르는 과정은 그 다음이라는 것을 의미한다. PHB-1-도데칸올의 경우에도 분해되지 않았다(데이터는 나타나지 않음).
반면에, 말단이 캐핑되지 않은 대조군의 경우에는 빠르게 분해되었다. 1시간 내의 빠른 분해속도는 효소에 의한 유리 카르복실 말단의 인식 때문으로 여겨진다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (15)

  1. 생분해성 폴리에스터의 카르복실 말단을 캐핑(capping)함으로써 생분해를 차단하는 단계를 포함하는 생분해성 폴리에스터의 분해조절 방법.
  2. 제1항에 있어서,
    상기 생분해성 폴리에스터는 폴리락트산(PLA), 폴리글리콜산(PGA), 폴리(D,L-락트산-co-글리콜산)(PLGA), 폴리카프로락톤(PCL), 폴리하이드록시알카노에이트(PHA), 지방족 디카르복실산 및 지방족 디올로 구성된 폴리에스터 및 이들의 혼합물로 이루어진 그룹에서 선택되는 것을 특징으로 하는 생분해성 폴리에스터의 분해조절 방법.
  3. 한쪽 말단에 카르복실기를 갖는 생분해성 폴리하이드록시알카노에이트(PHA) 또는 그 공중합체에서 상기 카르복실 말단을 캐핑(capping)함으로써 분해효소에 의한 생분해를 억제하는 단계를 포함하는 생분해성 폴리에스터의 분해조절 방법.
  4. 제3항에 있어서,
    상기 폴리히드록시알카노에이트(PHA)는 폴리[3-히드록시부틸레이트](PHB) 또는 폴리(β-히드록시 산); 폴리[(4-히드록시부틸레이트](PHB); 폴리[3-히드록시발레레이트](PHV); 폴리[3-히드록시부틸레이트]-코-폴리[3-히드록시발레레이트](PHBV); 폴리[3- 폴리[3-하이드록시헥사노에이트](PHC); 폴리[3-히드록시헵타노에이트](PHH); 폴리[3-하이드록시옥타노에이트](PHO); 폴리[3-하이드록시노나노에이트](PHN); 폴리[3-하이드록시데카노에이트](PHD); 폴리[3-하이드록시도데카노에이트] (PHDD); 폴리[3-하이드록시테트라데카노에이트](PHTD) 및 이들의 혼합물로 이루어진 그룹에서 선택되는 것을 특징으로 하는 생분해성 폴리에스터의 분해조절 방법.
  5. 제1항 또는 제3항에 있어서,
    상기 카르복실 말단은 에스터화(esterification), 아미드화(amidation), 또는 페길화(PEGylation)를 통해 캐핑되는 것을 특징으로 하는 생분해성 폴리에스터의 분해조절 방법.
  6. 제5항에 있어서,
    상기 에스터화는 1가 지방족 알코올(alcohol), 폴리알코올(polyalcohol), 티올, 방향족 알코올 및 이들의 혼합물 중 선택된 캐핑 화합물로 수행되는 것을 특징으로 하는 생분해성 폴리에스터의 분해조절 방법.
  7. 제1항 또는 제3항에 있어서,
    상기 분해효소는 엑소(exo) 타입의 세포외(extracellular) 분해효소인 것을 특징으로 하는 생분해성 폴리에스터의 분해조절 방법.
  8. 제7항에 있어서,
    상기 분해효소는 카르복실기 검색능(searching capability)을 갖고 카르복실기 결합 도메인을 포함하는 것을 특징으로 하는 생분해성 폴리에스터의 분해조절 방법.
  9. 제1항 또는 제3항에 있어서,
    상기 카르복실 말단의 전부 또는 일부를 캐핑하고, 캐핑한 비율에 따라 분해가 제어되는 것을 특징으로 하는 생분해성 폴리에스터의 분해조절 방법.
  10. 양 말단에 각각 하이드록실기와 카르복실기를 갖는 생분해성 폴리하이드록시알카노에이트(PHA) 또는 그 공중합체에서 카르복실 말단이 캐핑된 것을 특징으로 하는 분해제어된 생분해성 PHA.
  11. 제10항에 있어서,
    상기 카르복실 말단은 에스터화(esterification), 아미드화(amidation), 또는 페길화(PEGylation)를 통해 캐핑되는 것을 특징으로 하는 분해제어된 생분해성 PHA.
  12. 제10항에 있어서,
    상기 생분해성 PHA는 카르복실기 검색능(searching capability)을 갖고 카르복실기 결합 도메인을 포함하는 엑소(exo) 타입의 세포외(extracellular) 분해효소에 의해 생분해되는 것을 특징으로 하는 분해제어된 생분해성 PHA.
  13. (a) 분해효소가 생분해성 폴리에스터의 결합 도메인에 결합하는 단계;
    (b) 분해효소가 카르복실 말단을 향하여 이동하는 단계;
    (c) 분해효소가 생분해성 폴리에스터의 말단 카르복실기를 인식하고 엥커링(anchoring)하는 단계;
    (d) 분해효소가 단계(b)와 역방향으로 생분해성 폴리에스터의 하이드록시기 말단을 향하여 이동하면서 분해하는 단계를 포함하는 생분해성 폴리에스터의 분해 메커니즘에서,
    상기 단계(b)에서 카르복실 말단으로의 이동을 제어하거나,
    상기 단계(c)에서 카르복실 말단의 인식 또는 엥커링을 제어하는 생분해성 폴리에스터의 분해제어 메커니즘.
  14. 제13항에 있어서,
    카르복실기의 검색능을 상실한 돌연변이 분해효소를 이용함으로써 카르복실 말단으로의 이동을 제어하는 것을 특징으로 하는 생분해성 폴리에스터의 분해제어 메커니즘.
  15. 제13항에 있어서,
    상기 카르복실 말단을 캐핑함으로써 카르복실 말단의 인식을 제어하는 것을 특징으로 하는 생분해성 폴리에스터의 분해제어 메커니즘.
PCT/KR2013/001217 2012-03-09 2013-02-15 생분해성 폴리에스터의 분해조절 방법 및 분해제어된 생분해성 폴리에스터 WO2013133542A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/477,809 US20150093807A1 (en) 2012-03-09 2014-09-04 Method for controlling degradation of biodegradable polyester and degradation-controlled biodegradable polyester

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120024628A KR101397853B1 (ko) 2012-03-09 2012-03-09 생분해성 폴리에스터의 분해조절 방법 및 분해제어된 생분해성 폴리에스터
KR10-2012-0024628 2012-03-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/477,809 Continuation-In-Part US20150093807A1 (en) 2012-03-09 2014-09-04 Method for controlling degradation of biodegradable polyester and degradation-controlled biodegradable polyester

Publications (1)

Publication Number Publication Date
WO2013133542A1 true WO2013133542A1 (ko) 2013-09-12

Family

ID=49116973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/001217 WO2013133542A1 (ko) 2012-03-09 2013-02-15 생분해성 폴리에스터의 분해조절 방법 및 분해제어된 생분해성 폴리에스터

Country Status (3)

Country Link
US (1) US20150093807A1 (ko)
KR (1) KR101397853B1 (ko)
WO (1) WO2013133542A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101948573B1 (ko) * 2018-04-23 2019-02-15 오재군 식재용 포트 및 이를 이용한 수목 식재 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316273A (ja) * 1994-05-24 1995-12-05 Toyobo Co Ltd 酸末端封鎖ポリ乳酸
KR19980070317A (ko) * 1997-01-08 1998-10-26 히라시마오사무 폴리하이드록시알카노에이트 분해효소 및 그 제조방법
JP2001261797A (ja) * 2000-03-14 2001-09-26 Toray Ind Inc 脂肪族ポリエステル樹脂および成形品
JP2004166542A (ja) * 2002-11-18 2004-06-17 Japan Science & Technology Agency 新規プラスチック分解菌

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3406495A (en) * 1995-08-14 1997-03-12 University Of Massachusetts Medical Center Methods of controlling microbial polyester structure
US5994478A (en) * 1997-04-21 1999-11-30 Monsanto Company Hydroxy-terminated polyhydroxyalkanoates
US8283435B2 (en) * 2003-02-21 2012-10-09 Metabolix, Inc. PHA adhesive compositions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316273A (ja) * 1994-05-24 1995-12-05 Toyobo Co Ltd 酸末端封鎖ポリ乳酸
KR19980070317A (ko) * 1997-01-08 1998-10-26 히라시마오사무 폴리하이드록시알카노에이트 분해효소 및 그 제조방법
JP2001261797A (ja) * 2000-03-14 2001-09-26 Toray Ind Inc 脂肪族ポリエステル樹脂および成形品
JP2004166542A (ja) * 2002-11-18 2004-06-17 Japan Science & Technology Agency 新規プラスチック分解菌

Also Published As

Publication number Publication date
KR101397853B1 (ko) 2014-05-20
US20150093807A1 (en) 2015-04-02
KR20130103186A (ko) 2013-09-23

Similar Documents

Publication Publication Date Title
Iwata et al. Visualization of enzymatic degradation of poly [(R)-3-hydroxybutyrate] single crystals by an extracellular PHB depolymerase
US6521429B2 (en) Polyhydroxyalkanoates and method of producing them by utilizing microorganisms
Teeka et al. Characterization of polyhydroxyalkanoates (PHAs) biosynthesis by isolated Novosphingobium sp. THA_AIK7 using crude glycerol
CN106947067B (zh) 一种聚酯的制备方法
JP3768799B2 (ja) 置換脂肪酸エステル化物を原料とするポリヒドロキシアルカノエートの製造方法
JP2002080571A (ja) ポリヒドロキシアルカノエート、その製造方法及びそれに用いる微生物
KR100543993B1 (ko) 분자의 곁사슬에 페닐구조, 티에닐구조 혹은 시클로헥실구조의 잔기를 함유하는 유닛으로 이루어진 폴리하이드록시알카노에이트의 분자량의 제어방법
Valentin et al. Identification of 4-hydroxyhexanoic acid as a new constituent of biosynthetic polyhydroxyalkanoic acids from bacteria
WO1997007153A1 (en) Methods of controlling microbial polyester structure
EP4052877A1 (en) Resin composition and manufacturing method of resin molded product
Rodrigues et al. Biosynthesis of poly (3-hydroxybutyric acid co-3-hydroxy-4-pentenoic acid) from unrelated substrates by Burkholderia sp.
EP3307901B1 (en) Process for the preparation of 2,4- or 2,5-pyridinedicarboxylic acid
WO2013133542A1 (ko) 생분해성 폴리에스터의 분해조절 방법 및 분해제어된 생분해성 폴리에스터
Kurcok et al. Macromolecular engineering of lactones and lactides. 24. Controlled synthesis of (R, S)-β-butyrolactone-b-ε-caprolactone block copolymers by anionic and coordination polymerization
Li et al. Synthesis of tadpole-shaped copolyesters based on living macrocyclic poly (ɛ-caprolactone)
US20110046308A1 (en) Triblock copolymer having biodegradable polymer blocks and method of producing the same
Dahham et al. Insight on the structural aspect of ENR-50/TiO2 hybrid in KOH/C3H8O medium revealed by NMR spectroscopy
Yeol Lee et al. Structural identification of polyhydroxyalkanoic acid (PHA) containing 4-hydroxyalkanoic acids by gas chromatography-mass spectrometry (GC-MS) and its application to bacteria screening
WO2021049910A1 (ko) 블록 공중합체 제조 방법
Yanagishita et al. Chemoenzymatic synthesis and chemical recycling of sustainable polyurethanes
Tsutsuba et al. Evaluation of the effect of the number of methylene units in poly (ω-hydroxyalkanoate) s on their biodegradability
JP2001316462A (ja) 3−ヒドロキシチエニルアルカン酸をモノマーユニットとして含むポリヒドロキシアルカノエート及びその製造方法
US6143801A (en) Catalyst for ester metathesis
JP2004162045A (ja) 側鎖に(フェニルメチル)オキシ構造を有するユニットを含む新規なポリヒドロキシアルカノエート及びその製造方法
WO2020101131A1 (en) Functional resin composition comprising biomass-derived component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13758025

Country of ref document: EP

Kind code of ref document: A1