WO2013133423A1 - Method for producing polyarylene sulfide - Google Patents

Method for producing polyarylene sulfide Download PDF

Info

Publication number
WO2013133423A1
WO2013133423A1 PCT/JP2013/056506 JP2013056506W WO2013133423A1 WO 2013133423 A1 WO2013133423 A1 WO 2013133423A1 JP 2013056506 W JP2013056506 W JP 2013056506W WO 2013133423 A1 WO2013133423 A1 WO 2013133423A1
Authority
WO
WIPO (PCT)
Prior art keywords
borate
substituted
unsubstituted
disulfide
polyarylene sulfide
Prior art date
Application number
PCT/JP2013/056506
Other languages
French (fr)
Japanese (ja)
Inventor
西出 宏之
研一 小柳津
冬樹 相田
松本 隆也
Original Assignee
学校法人早稲田大学
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人早稲田大学, Jx日鉱日石エネルギー株式会社 filed Critical 学校法人早稲田大学
Priority to JP2014503566A priority Critical patent/JP6052630B2/en
Publication of WO2013133423A1 publication Critical patent/WO2013133423A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers

Definitions

  • the present invention relates to a method for producing polyarylene sulfide.
  • Polyarylene sulfide such as polyphenylene sulfide (PPS) is produced by polycondensation of paradichlorobenzene and sodium sulfide in a lactam solvent such as N-methylpyrrolidone.
  • PPS polyphenylene sulfide
  • NaCl is by-produced when forming the carbon-sulfur bond, which is not necessarily a preferable method from the viewpoint of the atom economy.
  • chlorine remaining in the polymer is partly regarded as a problem.
  • PAS synthesis method that does not produce NaCl as a by-product
  • a method of synthesizing PAS by polymerization of disulfides can be mentioned.
  • this polymerization method uses a solvent such as dichloromethane at room temperature to form a sulfonium cation from disulfides, and repeats the Friedel-Crafts type addition reaction to form a PAS skeleton (for example, patents). References 1 to 8 and non-patent references 1 to 3).
  • Japanese Unexamined Patent Publication No. 63-213526 Japanese Unexamined Patent Publication No. 63-213527 JP 63-244102 A JP-A-2-169626 JP-A-4-55434 JP-A-4-57830 Japanese Patent Laid-Open No. 11-12359 JP 2008-163223 A
  • an object of the present invention is to provide a novel method for producing polyarylene sulfide, which can produce polyarylene sulfide without using a strong acid.
  • the present invention provides (A) a vanadium compound, (B) a boron compound having an aromatic group containing fluorine as a constituent element, and (C) a substituted or non-substituted compound in the presence of an oxidizing agent.
  • a method for producing a polyarylene sulfide which comprises a step of polymerizing a monomer containing a substituted diphenyl disulfide and / or a substituted or unsubstituted thiophenol.
  • a boron compound (B) having an aromatic group containing fluorine as a constituent element is used.
  • the boron compound (B) having such a specific structure has a function of stabilizing vanadium without inhibiting the catalytic action by coordination with vanadium because it has low coordination or binding ability to metal.
  • the protons generated in the main polymerization since the boron compound (B) is an art complex, it does not form a strong bond with the protons and functions in the same manner as a strong acid used conventionally. Therefore, in the production method of the present invention, polyarylene sulfide can be produced without using a strong acid by using the boron compound (B) having the specific structure.
  • the (B) boron compound has an aromatic group containing fluorine as a constituent element, so that the following effects are exhibited. That is, the anion of the art complex is dispersed by the fluorine atom, and further, it becomes a huge anion in synergy with the bulkiness of the aromatic, further reducing the coordination ability to the metal. Furthermore, according to the production method of the present invention, by using such a boron compound (B), it is possible to produce a polyarylene sulfide having a high molecular weight equal to or higher than that when a strong acid is used. .
  • the production method of the present invention uses substituted or unsubstituted diphenyl disulfide and / or substituted or unsubstituted thiophenol as a raw material monomer, NaCl is not generated as a by-product, from the viewpoint of atom economy and environmental problems. Is also preferable.
  • the (A) vanadium compound is preferably an oxo vanadium compound.
  • the boron compound having an aromatic group containing fluorine as the constituent element (B) includes a compound represented by the following general formula (I) or (II). Is preferred.
  • the polymerization reaction can proceed more efficiently, the molecular weight of the obtained PAS can be further improved, and the hue of the obtained PAS can be made favorable.
  • R represents Li, Na, K, Cs, a hydrocarbon group having 1 to 30 carbon atoms, or a silyl group in which three hydrocarbon groups having 1 to 30 carbon atoms are substituted, and n represents An integer of 1 to 5 is shown.
  • R represents Li, Na, K, Cs, a hydrocarbon group having 1 to 30 carbon atoms, or a silyl group in which three hydrocarbon groups having 1 to 30 carbon atoms are substituted.
  • the (C) oxidizing agent is preferably a gas containing oxygen molecules.
  • the monomer contains at least one of unsubstituted diphenyl disulfide and unsubstituted thiophenol, and at least one of substituted diphenyl disulfide and substituted thiophenol. Also good. In this case, the molecular weight of the obtained PAS can be further improved.
  • a novel method for producing polyarylene sulfide that can produce polyarylene sulfide without using a strong acid can be provided.
  • the method for producing polyarylene sulfide of the present invention comprises (A) a vanadium compound, (B) a boron compound having an aromatic group containing fluorine as a constituent element, and (C) a substituted or unsubstituted compound in the presence of an oxidizing agent.
  • a monomer containing diphenyl disulfide and / or a substituted or unsubstituted thiophenol hereinafter sometimes referred to as “polymerization step”).
  • substituted or unsubstituted diphenyl disulfide and / or substituted or unsubstituted thiophenol is used as a monomer as a raw material for polyarylene sulfide.
  • Diphenyl disulfide and thiophenol may be used in combination with a substituted one and an unsubstituted one, respectively. That is, the monomer that is a raw material for polyarylene sulfide includes one or more monomers selected from the group consisting of substituted diphenyl disulfide, unsubstituted diphenyl disulfide, substituted thiophenol, and unsubstituted thiophenol.
  • Examples of the substituted or unsubstituted diphenyl disulfide include compounds represented by the following general formula (III).
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an aralkyl group or Represents an aryl group.
  • Specific examples of the compound represented by the general formula (III) include diphenyl disulfide, 2,2′-dimethyldiphenyl disulfide, 3,3′-dimethyldiphenyl disulfide, 2,2 ′, 6,6′-tetramethyl.
  • diphenyl disulfide, 2,2′-dimethyldiphenyl disulfide, 3,3′-dimethyldiphenyl disulfide, 2,2 ′, 6,6′-tetramethyldiphenyl disulfide, 2,2 ', 3,3'-tetramethyldiphenyl disulfide, 2,2', 5,5'-tetramethyldiphenyl disulfide, 3,3 ', 5,5'-tetramethyldiphenyl disulfide, 2,2', 3,3 ', 5,5'-hexamethyldiphenyl disulfide, 2,2', 3,3 ', 6,6'-hexamethyldiphenyl disulfide, 2,2', 3,3 ', 5,5', 6,6 '-Octamethyldiphenyl disulfide can be preferably used.
  • substituted or unsubstituted diphenyl disulfides can also be easily prepared by oxidation of a substituted or unsubstituted thiophenol. Therefore, in the polymerization step, substituted or unsubstituted thiophenol can also be used as a precursor of the above-mentioned substituted or unsubstituted diphenyl disulfide.
  • substituted or unsubstituted thiophenol include compounds represented by the following general formula (IV). [In formula (IV), R 9 , R 10 , R 11 and R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an aralkyl group or an aryl group. ]
  • Specific examples of the compound represented by the general formula (IV) include compounds that are precursors of specific examples of the compound represented by the general formula (III).
  • availability of raw materials From the viewpoint of thiophenol (benzenethiol), 2-methylbenzenethiol, 3-methylbenzenethiol, 2,3-dimethylbenzenethiol, 2,5-dimethylbenzenethiol, 2,6-dimethylbenzenethiol are preferably used it can.
  • These substituted or unsubstituted thiophenols can be used in the same manner as the above-mentioned substituted or unsubstituted diphenyl disulfide.
  • the aralkyl group preferably has 7 to 14 carbon atoms, and the aryl group preferably has 6 to 14 carbon atoms. It is preferable for the carbon number to be within the above range because the synthesized polymer is more easily dissolved by the monomer and has a higher molecular weight.
  • diphenyl disulfide having no substituent and / or thiophenol having no substituent is used, the availability of raw materials is extremely high compared to those having a substituent, which is industrially advantageous.
  • the same polymer as conventional polyphenylene sulfide can be synthesized.
  • the production method of the present invention is a method suitable for producing any of polyphenylene sulfide having no substituent and polyphenylene sulfide having a substituent.
  • the above-mentioned substituted or unsubstituted diphenyl disulfide and substituted or unsubstituted thiophenol can be used singly or in combination of two or more.
  • the monomer may be at least one of unsubstituted diphenyl disulfide and unsubstituted thiophenol (hereinafter referred to as “unsubstituted monomer”) and at least one of substituted diphenyl disulfide and substituted thiophenol (hereinafter referred to as “substituted monomer”). It is also preferable that it is included.
  • unsubstituted monomer unsubstituted diphenyl disulfide and unsubstituted thiophenol
  • substituted monomer substituted diphenyl disulfide and substituted thiophenol
  • the ratio between the unsubstituted monomer and the substituted monomer is not particularly limited. In order to obtain a polymer having desired physical properties, the ratio of the unsubstituted monomer and the substituted monomer may be determined as appropriate.
  • a vanadium compound functions as an oxidation polymerization catalyst for the above monomer.
  • an oxo vanadium compound having a V ⁇ O bond in the molecule is preferably used.
  • Specific examples of the oxovanadium compound include N, N′-bissalicylideneethylenediamine oxovanadium, phthalocyanine oxovanadium, and tetraphenylporphyrin oxovanadium.
  • a vanadium compound represented by the following general formula (V) is also used.
  • R 13 , R 14 , R 15 and R 16 each independently represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 8 carbon atoms
  • R 17 and R 18 Each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 8 carbon atoms.
  • vanadium compound represented by the general formula (V) any compound having a structure in which two molecules of an anion of ⁇ -diketone are added to tetravalent oxo vanadium can be used.
  • the above-mentioned (A) vanadium compound can be used singly or in combination of two or more.
  • the addition amount of the vanadium compound is preferably 0.001 to 100 mol with respect to 100 mol of the total amount of substituted or unsubstituted diphenyl disulfide and substituted or unsubstituted thiophenol, More preferably, it is ⁇ 50 mol.
  • the addition amount is small, the polymerization reaction hardly proceeds, and when the addition amount is large, the (A) vanadium compound tends to remain in the obtained polymer.
  • a boron compound having an aromatic group containing fluorine as a constituent element is used.
  • the aromatic group containing fluorine as a constituent element is one in which at least a part of hydrogen atoms of the aromatic ring is substituted with fluorine atoms, or at least part of the hydrogen atoms of the substituents possessed by the aromatic ring are fluorine atoms. It means the one substituted with.
  • the boron compound (B) is a compound containing boron and is not particularly limited as long as it has an aromatic group containing fluorine as a constituent element, but a monovalent aromatic group containing fluorine as a constituent element is boron.
  • the compound is a boron anion type (art complex) compound having four bonds to each other.
  • aromatic groups bonded to boron may form a ring structure.
  • More preferable examples of the boron compound (B) include boron compounds represented by the following general formula (I).
  • R represents Li, Na, K, Cs, a hydrocarbon group having 1 to 30 carbon atoms, or a silyl group in which three hydrocarbon groups having 1 to 30 carbon atoms are substituted, and n represents An integer of 1 to 5 is shown.
  • R represents Li, Na, K, Cs, a hydrocarbon group having 1 to 30 carbon atoms, or a silyl group in which three hydrocarbon groups having 1 to 30 carbon atoms are substituted
  • n represents An integer of 1 to 5 is shown.
  • Specific examples of the compound represented by the general formula (I) include a compound in which n in the general formula (I) is 5, lithium tetrakis (pentafluorophenyl) borate, sodium tetrakis (pentafluorophenyl) borate.
  • Potassium tetrakis (pentafluorophenyl) borate Potassium tetrakis (pentafluorophenyl) borate, cesium tetrakis (pentafluorophenyl) borate, methyltetrakis (pentafluorophenyl) borate, ethyltetrakis (pentafluorophenyl) borate, propyltetrakis (pentafluorophenyl) borate, isopropyltetrakis (penta) Fluorophenyl) borate, butyltetrakis (pentafluorophenyl) borate, isobutyltetrakis (pentafluorophenyl) borate, tertiary butyltetrakis (Pentafluorophenyl) borate, pentyltetrakis (pentafluorophenyl) borate
  • n in the above general formula (I) is 1, lithium tetrakis (fluorophenyl) borate, sodium tetrakis (fluorophenyl) borate, potassium tetrakis (fluorophenyl) borate, cesium tetrakis (fluorophenyl) borate, Methyltetrakis (fluorophenyl) borate, ethyltetrakis (fluorophenyl) borate, propyltetrakis (fluorophenyl) borate, isopropyltetrakis (fluorophenyl) borate, butyltetrakis (fluorophenyl) borate, isobutyltetrakis (fluorophenyl) borate, tertiary Butyltetrakis (fluorophenyl) borate, pentyltetrakis (fluorophenyl)
  • lithium tetrakis (difluorophenyl) borate sodium tetrakis (difluorophenyl) borate, potassium tetrakis (difluorophenyl) borate, cesiumtetrakis (difluorophenyl) borate, Methyltetrakis (difluorophenyl) borate, ethyltetrakis (difluorophenyl) borate, propyltetrakis (difluorophenyl) borate, isopropyltetrakis (difluorophenyl) borate, butyltetrakis (difluorophenyl) borate, isobutyltetrakis (difluorophenyl) borate, tertiary Butyltetrakis (difluorophenyl)
  • the position of fluorine substitution in the difluorophenyl group is arbitrary, and is a 2,3-substituted product, 2,4-substituted product, 2,5-substituted product, 2,6-substituted product, 3,4-substituted product, 3, 5-Substituted products and 3,6-substituted products can be used. Moreover, these mixtures can also be used.
  • lithium tetrakis (trifluorophenyl) borate sodium tetrakis (trifluorophenyl) borate, potassium tetrakis (trifluorophenyl) borate, cesium tetrakis (trifluoro) Phenyl) borate, methyltetrakis (trifluorophenyl) borate, ethyltetrakis (trifluorophenyl) borate, propyltetrakis (trifluorophenyl) borate, isopropyltetrakis (trifluorophenyl) borate, butyltetrakis (trifluorophenyl) borate, isobutyl Tetrakis (trifluorophenyl) borate, Tertiary butyltetrakis (trifluorophenyl) borate, Pentyltetra
  • the fluorine substitution position in the trifluorophenyl group is arbitrary, and is 2,3,4-substituted, 2,3,5-substituted, 2,3,6-substituted, 2,4,5-substituted, 2,4,6-substituted and 3,4,5-substituted can be used. Moreover, these mixtures can also be used.
  • lithium tetrakis (tetrafluorophenyl) borate sodium tetrakis (tetrafluorophenyl) borate, potassium tetrakis (tetrafluorophenyl) borate, cesium tetrakis (tetrafluoro) Phenyl) borate, methyltetrakis (tetrafluorophenyl) borate, ethyltetrakis (tetrafluorophenyl) borate, propyltetrakis (tetrafluorophenyl) borate, isopropyltetrakis (tetrafluorophenyl) borate, butyltetrakis (tetrafluorophenyl) borate, isobutyl Tetrakis (tetrafluorophenyl) borate, tertiary butyl te
  • tetrafluorophenyl borate The position of fluorine substitution in the tetrafluorophenyl group is arbitrary, and 2,3,4,5-substituted, 2,3,4,6-substituted, and 2,3,5,6-substituted can be used. Moreover, these mixtures can also be used.
  • n is an integer of 1 to 5
  • a compound in which n is 5 is particularly preferable from the viewpoint that it is difficult to form a bond with vanadium or proton.
  • preferred (B) boron compounds include boron compounds represented by the following general formula (II).
  • R represents Li, Na, K, Cs, a hydrocarbon group having 1 to 30 carbon atoms, or a silyl group in which three hydrocarbon groups having 1 to 30 carbon atoms are substituted.
  • Specific examples of the compound represented by the general formula (II) include lithium tetrakis (bis-3,5-trifluoromethylphenyl) borate, sodium tetrakis (bis-3,5-trifluoromethylphenyl) borate, potassium Tetrakis (bis-3,5-trifluoromethylphenyl) borate, cesiumtetrakis (bis-3,5-trifluoromethylphenyl) borate, methyltetrakis (bis-3,5-trifluoromethylphenyl) borate, ethyltetrakis ( Bis-3,5-trifluoromethylphenyl) borate, propyltetrakis (bis-3,5-trifluoromethylphenyl) borate, isopropyltetrakis (bis-3,5-trifluoromethylphenyl) borate, butyltetrakis (bis- 3,5-G Fluoromethylphenyl) borate, isobutyltetraki
  • R is a phenylalkyl group, a diphenylalkyl group, a triphenylalkyl group, or a tertiary alkyl group from the viewpoint of cation stability.
  • a compound is preferable, a compound in which R is a triphenylalkyl group or a tertiary alkyl group is more preferable, and a compound in which R is a triphenylmethyl group or a tertiary butyl group is particularly preferable.
  • the amount of boron compound having an aromatic group containing fluorine as a constituent element is 0.001 to the total amount of substituted or unsubstituted diphenyl disulfide and substituted or unsubstituted thiophenol of 100 mol.
  • the amount is preferably 100 mol, more preferably 0.01 to 50 mol.
  • a conventionally used acid in combination with the above-described (B) boron compound, a conventionally used acid can be used in combination from the viewpoint of promoting the reaction.
  • the acid in addition to acids such as sulfuric acid, acetic acid, methanesulfonic acid, benzenesulfonic acid, and toluenesulfonic acid, organic acids represented by the following general formula (VI) can also be used.
  • Rf represents a perfluoroalkyl group having 1 to 8 carbon atoms.
  • organic acid represented by the general formula (VI) examples include trifluoromethanesulfonic acid, 1,1,2,2-tetrafluoroethanesulfonic acid, pentafluoroethanesulfonic acid, heptafluoropropanesulfonic acid, hepta.
  • examples thereof include fluoroisopropane sulfonic acid, nonafluorobutane sulfonic acid, and Nafion (registered trademark).
  • the anhydride of these compounds can also be used.
  • trifluoromethanesulfonic acid and 1,1,2,2-tetrafluoroethanesulfonic acid are preferably used from the viewpoint of availability.
  • organic acid represented with the following general formula (VII) can also be used similarly to the organic acid represented with the said general formula (VI).
  • Rf represents a perfluoroalkyl group having 1 to 8 carbon atoms.
  • organic acid represented by the general formula (VII) examples include trifluoroacetic acid and pentafluoropropionic acid.
  • anhydride of these compounds can also be used.
  • the addition amount is preferably 0.001 to 100 mol with respect to 100 mol of the total amount of substituted or unsubstituted diphenyl disulfide and substituted or unsubstituted thiophenol. More preferably, the amount is 01 to 50 mol. If the addition amount is small, the effect of promoting the reaction is low, and if the addition amount is large, the acid tends to remain in the polymer. In addition, it is preferable not to add an acid in a superposition
  • the oxidizing agent is used for effectively functioning the (A) vanadium compound as an oxidation polymerization catalyst.
  • the oxidizing agent include dicyanodichlorobenzoquinone, chloranil, bromanyl, 1,4-diphenoquinone, tetramethyldiphenoquinone, tetracyanoquinodimethane, tetracyanoethylene, perbenzoic acid, metachloroperbenzoic acid, Examples thereof include lead tetraacetate, thallium acid acetate, cerium (IV) acetylacetonate, manganese (III) acetylacetonate, and gas containing oxygen molecules such as oxygen gas and air.
  • a gas containing oxygen molecules is preferable.
  • the gas containing oxygen molecules include air, oxygen gas, and a mixture of oxygen and an inert gas such as nitrogen or argon.
  • an inert gas such as nitrogen or argon.
  • a mixture of oxygen and nitrogen is preferably used.
  • the oxygen concentration is arbitrary.
  • the above-mentioned (C) oxidizing agent can be used alone or in combination of two or more.
  • the reaction temperature is room temperature (23 ° C.) to 300 ° C.
  • the reaction temperature below the melting point of the monomer containing a substituted or unsubstituted diphenyl disulfide and / or a substituted or unsubstituted thiophenol, it is preferable to use a solvent described later. Further, if a reaction temperature equal to or higher than the melting point of the monomer containing a substituted or unsubstituted diphenyl disulfide and / or a substituted or unsubstituted thiophenol is selected, it is not always necessary to use a solvent.
  • the melting point is 61 ° C., and therefore, if the reaction is performed at 61 ° C. or higher, it is not necessary to use a solvent.
  • the reaction temperature is preferably the melting point of the monomer + 5 ° C. or more, preferably 66 ° C. or more, more preferably 70 ° C. or more in the case of diphenyl disulfide, 75 It is particularly preferable that the temperature is at least ° C.
  • the upper limit of the reaction temperature is not particularly limited, but is preferably 300 ° C. or lower, more preferably 270 ° C. or lower, and particularly preferably 250 ° C. or lower from the viewpoint of suppressing deterioration of the obtained polymer.
  • the pressure is not particularly limited, and is preferably selected from normal pressure to 10 MPa. Excessive pressure is not preferable because it requires a thicker device and increases costs.
  • the pressure is high and the temperature is high, oxygen is oxidized at the sulfide site of the resulting polyarylene sulfide to give sulfoxide or sulfone, so care must be taken.
  • the pressure is preferably about normal pressure to about 1 MPa.
  • the gas supply method may be a continuous type or a batch type.
  • the reaction time in the polymerization step is not particularly limited, but is usually 0.1 to 240 hours.
  • the reaction time is shorter than 0.1 hour, the desired polymerization tends not to proceed.
  • reaction time exceeds 240 hours, possibility that a sulfoxide and a sulfone will be formed will become high.
  • a suitable reaction time is 1 to 50 hours, more preferably 2 to 48 hours.
  • a solvent can be used for the reaction as necessary.
  • solvents include dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, tetrachloroethylene, 1,1,2,2-tetrachloroethane, nitromethane, nitrobenzene, N-methylpyrrolidone and the like.
  • the polymerization step it is also possible to sequentially add a monomer containing a substituted or unsubstituted diphenyl disulfide and / or a substituted or unsubstituted thiophenol during the polymerization reaction.
  • concentration of the monomer to be reacted decreases despite the fact that the catalyst (A) vanadium compound maintains its activity, so that there is a problem that the polymerization reaction hardly proceeds.
  • (A) vanadium compound or (B) boron compound may remain, so it is preferable to wash the obtained polymer.
  • the cleaning method There is no particular limitation on the cleaning method.
  • the obtained polymer can be pulverized and unreacted monomers and oligomer components can be extracted with an organic solvent. The remaining polymer can be washed with water, acid, base or the like. It is also possible to completely or partially dissolve the obtained polymer in a solvent and wash it with water, acid, base or the like.
  • Solvents that can be used in this case include dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, tetrachloroethylene, 1,1,2,2-tetrachloroethane, nitromethane, nitrobenzene, and N-methylpyrrolidone. Can do. Since unreacted monomers and oligomers are eluted in such a solvent, the recovered oligomers and monomers can be reused as raw materials by purification as necessary. In general, since polyarylene sulfide has low solubility in a solvent, it is necessary to add a solvent at least 4 times the mass of the polymer and to heat to 150 ° C. or higher.
  • the solution is preferably washed with water, acid, base or the like.
  • water-based cleaning agents it is important to wash in a pressure vessel in order to contact with a solution having a temperature equal to or higher than the boiling point of water.
  • the polymer obtained is ground in a mortar, dispersed in dichloromethane, and washed with a mixture of methanol and hydrochloric acid. You may wash
  • multi-stage polymerization using a plurality of the various conditions described above may be performed.
  • the contents of the first and second stages of polymerization can be changed by changing the conditions in the same container without changing the contents.
  • a method of continuing the polymerization under conditions may also be used.
  • polyarylene sulfide can be polymerized with high yield by using a specific boron compound that is less corrosive than a strong acid.
  • the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
  • fusing point and molecular weight of the polymer obtained by the Example and the comparative example is as follows.
  • the yield, melting point and molecular weight of the polymers (purified PPS) obtained in Examples and Comparative Examples are shown in Table 1.
  • the melting point was measured using a differential scanning calorimeter (Seiko Electronics Co., Ltd.) and ⁇ -alumina as a reference. The measurement conditions were such that the peak of the endothermic peak when the temperature was raised from room temperature to 310 ° C. at 20 ° C./min was the melting point.
  • Example 3 Diphenyl disulfide (5 g) is added to a 50 ml three-necked flask, and N, N′-bissalicylideneethylenediamineoxovanadium (VO (salen)) and triphenylmethyltetrakis (bis3,5-trifluoromethyl) phenyl are added.
  • Borate (Ph 3 CB (C 6 H 3 (CF 3 ) 2 ) 4 in a molar ratio of diphenyl disulfide: VO (salen): Ph 3 CB (C 6 H 3 (CF 3 ) 2 ) 4 The mixture was heated to 100 ° C.
  • Example 2 A purified polymer was obtained in the same manner as in Example 1 except that sodium tetraphenylborate (NaB (C 6 H 5 ) 4 ) was used instead of Ph 3 CB (C 6 F 5 ) 4 . The yield of the purified polymer was 3%, and no melting point was observed. From this result, it was confirmed that there was almost no effect of sodium tetraphenylborate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The purpose of the present invention is to provide a novel method for producing a polyarylene sulfide, by which a polyarylene sulfide can be produced without using a strong acid. In order to achieve the above-mentioned purpose, the present invention provides a method for producing a polyarylene sulfide, which comprises a step of polymerizing a monomer that contains a substituted or unsubstituted diphenyl disulfide and/or a substituted or unsubstituted thiophenol in the presence of (A) a vanadium compound, (B) a boron compound having an aromatic group that contains fluorine as a constituent element and (C) an oxidant.

Description

ポリアリーレンスルフィドの製造方法Process for producing polyarylene sulfide
 本発明は、ポリアリーレンスルフィドの製造方法に関する。 The present invention relates to a method for producing polyarylene sulfide.
 ポリフェニレンスルフィド(PPS)等のポリアリーレンスルフィド(PAS)は、N-メチルピロリドンなどのラクタム系溶媒中で、パラジクロロベンゼンとナトリウムスルフィドとを重縮合させることで製造されている。この反応では、炭素-硫黄結合を作る際にNaClを副生しており、アトムエコノミーの観点からすると、必ずしも好ましい方法ではない。また、近年の環境問題から、ポリマー中に残存する塩素も、一部では問題視されている。 Polyarylene sulfide (PAS) such as polyphenylene sulfide (PPS) is produced by polycondensation of paradichlorobenzene and sodium sulfide in a lactam solvent such as N-methylpyrrolidone. In this reaction, NaCl is by-produced when forming the carbon-sulfur bond, which is not necessarily a preferable method from the viewpoint of the atom economy. In addition, due to environmental problems in recent years, chlorine remaining in the polymer is partly regarded as a problem.
 また、NaClを副生しないPAS合成方法として、ジスルフィド類の重合によりPASを合成する方法が挙げられる。この重合方法では多くの場合、室温においてジクロロメタンなどの溶媒を使用し、ジスルフィド類からスルフォニウムカチオンを形成させ、フリーデルクラフツ型の付加反応を繰り返すことで、PAS骨格を形成する(例えば、特許文献1~8及び非特許文献1~3参照)。 Further, as a PAS synthesis method that does not produce NaCl as a by-product, a method of synthesizing PAS by polymerization of disulfides can be mentioned. In many cases, this polymerization method uses a solvent such as dichloromethane at room temperature to form a sulfonium cation from disulfides, and repeats the Friedel-Crafts type addition reaction to form a PAS skeleton (for example, patents). References 1 to 8 and non-patent references 1 to 3).
特開昭63-213526号公報Japanese Unexamined Patent Publication No. 63-213526 特開昭63-213527号公報Japanese Unexamined Patent Publication No. 63-213527 特開昭63-241032号公報JP 63-244102 A 特開平2-169626号公報JP-A-2-169626 特開平4-55434号公報JP-A-4-55434 特開平4-57830号公報JP-A-4-57830 特開平11-12359号公報Japanese Patent Laid-Open No. 11-12359 特開2008-163223号公報JP 2008-163223 A
 しかしながら、上述したジスルフィド類を用いたPAS合成方法では、トリフルオロメタンスルフォン酸やその無水物といった強酸を使用することが肝要であった。そのような強酸の使用により、金属容器の腐食の懸念がある等の欠点がある。 However, in the above-described PAS synthesis method using disulfides, it is important to use a strong acid such as trifluoromethanesulfonic acid and its anhydride. The use of such a strong acid has drawbacks such as the concern of corrosion of the metal container.
 そこで、本発明は、強酸を用いることなくポリアリーレンスルフィドを製造することができる、ポリアリーレンスルフィドの新規な製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a novel method for producing polyarylene sulfide, which can produce polyarylene sulfide without using a strong acid.
 上記目的を達成するために、本発明は、(A)バナジウム化合物、(B)構成元素としてフッ素を含む芳香族基を有するホウ素化合物、及び、(C)酸化剤の存在下で、置換もしくは未置換のジフェニルジスルフィド、及び/又は、置換もしくは未置換のチオフェノールを含むモノマーを重合する工程を有する、ポリアリーレンスルフィドの製造方法を提供する。 In order to achieve the above object, the present invention provides (A) a vanadium compound, (B) a boron compound having an aromatic group containing fluorine as a constituent element, and (C) a substituted or non-substituted compound in the presence of an oxidizing agent. Provided is a method for producing a polyarylene sulfide, which comprises a step of polymerizing a monomer containing a substituted diphenyl disulfide and / or a substituted or unsubstituted thiophenol.
 上記本発明の製造方法では、(B)構成元素としてフッ素を含む芳香族基を有するホウ素化合物を使用している。かかる特定の構造を有する(B)ホウ素化合物は、金属への配位、あるいは結合能力が低いため、バナジウムへの配位により触媒作用を阻害することなく、バナジウムを安定化させる機能を有する。また、本重合で発生するプロトンに対しては、(B)ホウ素化合物はアート錯体であるためにプロトンとの強固な結合を作ることなく、従来使用していた強酸と同様の働きをする。そのため、本発明の製造方法においては、上記特定の構造を有する(B)ホウ素化合物を用いることで、強酸を用いることなくポリアリーレンスルフィドを製造することが可能となる。ここで、(B)ホウ素化合物が、構成元素としてフッ素を含む芳香族基を有することにより、以下の効果が奏される。すなわちフッ素原子によりアート錯体のアニオンが分散され、さらに芳香族の嵩高さと相乗して巨大なアニオンとなり、金属への配位能力がさらに低減する。さらに、本発明の製造方法によれば、このような(B)ホウ素化合物を用いることで、強酸を用いた場合と同等又はそれ以上の高い分子量を有するポリアリーレンスルフィドを製造することが可能である。また、本発明の製造方法は、置換もしくは未置換のジフェニルジスルフィド、及び/又は、置換もしくは未置換のチオフェノールを原料モノマーとしているため、NaClを副生せず、アトムエコノミー及び環境問題の観点からも好ましい。 In the production method of the present invention, a boron compound (B) having an aromatic group containing fluorine as a constituent element is used. The boron compound (B) having such a specific structure has a function of stabilizing vanadium without inhibiting the catalytic action by coordination with vanadium because it has low coordination or binding ability to metal. In addition, for the protons generated in the main polymerization, since the boron compound (B) is an art complex, it does not form a strong bond with the protons and functions in the same manner as a strong acid used conventionally. Therefore, in the production method of the present invention, polyarylene sulfide can be produced without using a strong acid by using the boron compound (B) having the specific structure. Here, the (B) boron compound has an aromatic group containing fluorine as a constituent element, so that the following effects are exhibited. That is, the anion of the art complex is dispersed by the fluorine atom, and further, it becomes a huge anion in synergy with the bulkiness of the aromatic, further reducing the coordination ability to the metal. Furthermore, according to the production method of the present invention, by using such a boron compound (B), it is possible to produce a polyarylene sulfide having a high molecular weight equal to or higher than that when a strong acid is used. . In addition, since the production method of the present invention uses substituted or unsubstituted diphenyl disulfide and / or substituted or unsubstituted thiophenol as a raw material monomer, NaCl is not generated as a by-product, from the viewpoint of atom economy and environmental problems. Is also preferable.
 また、本発明のポリアリーレンスルフィドの製造方法において、上記(A)バナジウム化合物は、オキソバナジウム化合物であることが好ましい。これにより、重合反応をより効率的に進行させることができ、得られるPASの分子量をより向上させることができる。 In the method for producing polyarylene sulfide of the present invention, the (A) vanadium compound is preferably an oxo vanadium compound. Thereby, a polymerization reaction can be advanced more efficiently and the molecular weight of PAS obtained can be improved more.
 また、本発明のポリアリーレンスルフィドの製造方法において、上記(B)構成元素としてフッ素を含む芳香族基を有するホウ素化合物は、下記一般式(I)又は(II)で表される化合物を含むことが好ましい。これにより、重合反応をより効率的に進行させることができ、得られるPASの分子量をより向上させることができるとともに、得られるPASの色相を良好なものにすることができる。
Figure JPOXMLDOC01-appb-C000003
[式(I)中、RはLi、Na、K、Cs、炭素数1~30の炭化水素基、又は、炭素数1~30の炭化水素基が3つ置換したシリル基を示し、nは1~5の整数を示す。]
Figure JPOXMLDOC01-appb-C000004
[式(II)中、RはLi、Na、K、Cs、炭素数1~30の炭化水素基、又は、炭素数1~30の炭化水素基が3つ置換したシリル基を示す。]
In the method for producing polyarylene sulfide of the present invention, the boron compound having an aromatic group containing fluorine as the constituent element (B) includes a compound represented by the following general formula (I) or (II). Is preferred. As a result, the polymerization reaction can proceed more efficiently, the molecular weight of the obtained PAS can be further improved, and the hue of the obtained PAS can be made favorable.
Figure JPOXMLDOC01-appb-C000003
[In the formula (I), R represents Li, Na, K, Cs, a hydrocarbon group having 1 to 30 carbon atoms, or a silyl group in which three hydrocarbon groups having 1 to 30 carbon atoms are substituted, and n represents An integer of 1 to 5 is shown. ]
Figure JPOXMLDOC01-appb-C000004
[In the formula (II), R represents Li, Na, K, Cs, a hydrocarbon group having 1 to 30 carbon atoms, or a silyl group in which three hydrocarbon groups having 1 to 30 carbon atoms are substituted. ]
 さらに、本発明のポリアリーレンスルフィドの製造方法において、上記(C)酸化剤は、酸素分子を含むガスであることが好ましい。これにより、重合反応をより効率的に進行させることができ、得られるPASの分子量をより向上させることができる。 Furthermore, in the method for producing polyarylene sulfide of the present invention, the (C) oxidizing agent is preferably a gas containing oxygen molecules. Thereby, a polymerization reaction can be advanced more efficiently and the molecular weight of PAS obtained can be improved more.
 また、本発明のポリアリーレンスルフィドの製造方法において、上記モノマーは、未置換ジフェニルジスルフィド及び未置換チオフェノールのうちの少なくとも一方と、置換ジフェニルジスルフィド及び置換チオフェノールのうちの少なくとも一方とを含んでいてもよい。この場合、得られるPASの分子量をより向上させることができる。 In the method for producing polyarylene sulfide of the present invention, the monomer contains at least one of unsubstituted diphenyl disulfide and unsubstituted thiophenol, and at least one of substituted diphenyl disulfide and substituted thiophenol. Also good. In this case, the molecular weight of the obtained PAS can be further improved.
 本発明によれば、強酸を用いることなくポリアリーレンスルフィドを製造することができる、ポリアリーレンスルフィドの新規な製造方法を提供することができる。 According to the present invention, a novel method for producing polyarylene sulfide that can produce polyarylene sulfide without using a strong acid can be provided.
 以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be described in detail on the basis of preferred embodiments thereof.
 本発明のポリアリーレンスルフィドの製造方法は、(A)バナジウム化合物、(B)構成元素としてフッ素を含む芳香族基を有するホウ素化合物、及び、(C)酸化剤の存在下で、置換もしくは未置換のジフェニルジスルフィド、及び/又は、置換もしくは未置換のチオフェノールを含むモノマーを重合する工程(以下、場合により「重合工程」と言う)を有する。 The method for producing polyarylene sulfide of the present invention comprises (A) a vanadium compound, (B) a boron compound having an aromatic group containing fluorine as a constituent element, and (C) a substituted or unsubstituted compound in the presence of an oxidizing agent. A monomer containing diphenyl disulfide and / or a substituted or unsubstituted thiophenol (hereinafter sometimes referred to as “polymerization step”).
 重合工程においては、ポリアリーレンスルフィドの原料となるモノマーとして、置換もしくは未置換のジフェニルジスルフィド、及び/又は、置換もしくは未置換のチオフェノールを用いる。なお、ジフェニルジスルフィド及びチオフェノールはそれぞれ、置換のものと未置換のものとを併用してもよい。すなわち、ポリアリーレンスルフィドの原料となるモノマーは、置換ジフェニルジスルフィド、未置換ジフェニルジスルフィド、置換チオフェノール、及び、未置換チオフェノールからなる群より選択される一種又は二種以上のモノマーを含む。 In the polymerization step, substituted or unsubstituted diphenyl disulfide and / or substituted or unsubstituted thiophenol is used as a monomer as a raw material for polyarylene sulfide. Diphenyl disulfide and thiophenol may be used in combination with a substituted one and an unsubstituted one, respectively. That is, the monomer that is a raw material for polyarylene sulfide includes one or more monomers selected from the group consisting of substituted diphenyl disulfide, unsubstituted diphenyl disulfide, substituted thiophenol, and unsubstituted thiophenol.
 置換もしくは未置換のジフェニルジスルフィドとしては、例えば、下記一般式(III)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000005
[式(III)中、R、R、R、R、R、R、R及びRは、それぞれ独立に水素原子、炭素数1~8のアルキル基、アラルキル基又はアリール基を表す。]
Examples of the substituted or unsubstituted diphenyl disulfide include compounds represented by the following general formula (III).
Figure JPOXMLDOC01-appb-C000005
[In formula (III), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an aralkyl group or Represents an aryl group. ]
 上記一般式(III)で表される化合物の具体例としては、ジフェニルジスルフィド、2,2’-ジメチルジフェニルジスルフィド、3,3’-ジメチルジフェニルジスルフィド、2,2’,6,6’-テトラメチルジフェニルジスルフィド、2,2’,3,3’-テトラメチルジフェニルジスルフィド、2,2’,5,5’-テトラメチルジフェニルジスルフィド、3,3’,5,5’-テトラメチルジフェニルジスルフィド、2,2’,3,3’,5,5’-ヘキサメチルジフェニルジスルフィド、2,2’,3,3’,6,6’-ヘキサメチルジフェニルジスルフィド、2,2’,3,3’,5,5’,6,6’-オクタメチルジフェニルジスルフィド、2,2’-ジエチルジフェニルジスルフィド、3,3’-ジエチルジフェニルジスルフィド、2,2’,6,6’-テトラエチルジフェニルジスルフィド、2,2’,3,3’-テトラエチルジフェニルジスルフィド、2,2’,5,5’-テトラエチルジフェニルジスルフィド、3,3’,5,5’-テトラエチルジフェニルジスルフィド、2,2’,3,3’,5,5’-ヘキサエチルジフェニルジスルフィド、2,2’,3,3’,6,6’-ヘキサエチルジフェニルジスルフィド、2,2’,3,3’,5,5’,6,6’-オクタエチルジフェニルジスルフィド、2,2’-ジプロピルジフェニルジスルフィド、3,3’-ジプロピルジフェニルジスルフィド、2,2’,6,6’-テトラプロピルジフェニルジスルフィド、2,2’,3,3’-テトラプロピルジフェニルジスルフィド、2,2’,5,5’-テトラプロピルジフェニルジスルフィド、3,3’,5,5’-テトラプロピルジフェニルジスルフィド、2,2’,3,3’,5,5’-ヘキサプロピルジフェニルジスルフィド、2,2’,3,3’,6,6’-ヘキサプロピルジフェニルジスルフィド、2,2’,3,3’,5,5’,6,6’-オクタプロピルジフェニルジスルフィド、2,2’-ジイソプロピルジフェニルジスルフィド、3,3’-ジイソプロピルジフェニルジスルフィド、2,2’,6,6’-テトライソプロピルジフェニルジスルフィド、2,2’,3,3’-テトライソプロピルジフェニルジスルフィド、2,2’,5,5’-テトライソプロピルジフェニルジスルフィド、3,3’,5,5’-テトライソプロピルジフェニルジスルフィド、2,2’,3,3’,5,5’-ヘキサイソプロピルジフェニルジスルフィド、2,2’,3,3’,6,6’-ヘキサイソプロピルジフェニルジスルフィド、2,2’,3,3’,5,5’,6,6’-オクタイソプロピルジフェニルジスルフィドなどが挙げられる。これらの中でも、原料入手性の観点から、ジフェニルジスルフィド、2,2’-ジメチルジフェニルジスルフィド、3,3’-ジメチルジフェニルジスルフィド、2,2’,6,6’-テトラメチルジフェニルジスルフィド、2,2’,3,3’-テトラメチルジフェニルジスルフィド、2,2’,5,5’-テトラメチルジフェニルジスルフィド、3,3’,5,5’-テトラメチルジフェニルジスルフィド、2,2’,3,3’,5,5’-ヘキサメチルジフェニルジスルフィド、2,2’,3,3’,6,6’-ヘキサメチルジフェニルジスルフィド、2,2’,3,3’,5,5’,6,6’-オクタメチルジフェニルジスルフィドが好適に使用できる。 Specific examples of the compound represented by the general formula (III) include diphenyl disulfide, 2,2′-dimethyldiphenyl disulfide, 3,3′-dimethyldiphenyl disulfide, 2,2 ′, 6,6′-tetramethyl. Diphenyl disulfide, 2,2 ′, 3,3′-tetramethyldiphenyl disulfide, 2,2 ′, 5,5′-tetramethyldiphenyl disulfide, 3,3 ′, 5,5′-tetramethyldiphenyl disulfide, 2, 2 ′, 3,3 ′, 5,5′-hexamethyldiphenyl disulfide, 2,2 ′, 3,3 ′, 6,6′-hexamethyldiphenyl disulfide, 2,2 ′, 3,3 ′, 5 5 ', 6,6'-octamethyldiphenyl disulfide, 2,2'-diethyldiphenyl disulfide, 3,3'-diethyldiphenyl Sulfide, 2,2 ′, 6,6′-tetraethyldiphenyl disulfide, 2,2 ′, 3,3′-tetraethyldiphenyl disulfide, 2,2 ′, 5,5′-tetraethyldiphenyl disulfide, 3,3 ′, 5 , 5′-tetraethyldiphenyl disulfide, 2,2 ′, 3,3 ′, 5,5′-hexaethyldiphenyl disulfide, 2,2 ′, 3,3 ′, 6,6′-hexaethyldiphenyl disulfide, 2, 2 ', 3,3', 5,5 ', 6,6'-octaethyl diphenyl disulfide, 2,2'-dipropyl diphenyl disulfide, 3,3'-dipropyl diphenyl disulfide, 2,2', 6 6'-tetrapropyldiphenyl disulfide, 2,2 ', 3,3'-tetrapropyldiphenyl disulfide, 2,2', 5,5 -Tetrapropyl diphenyl disulfide, 3,3 ', 5,5'-tetrapropyl diphenyl disulfide, 2,2', 3,3 ', 5,5'-hexapropyl diphenyl disulfide, 2,2', 3,3 ' , 6,6'-hexapropyldiphenyl disulfide, 2,2 ', 3,3', 5,5 ', 6,6'-octapropyldiphenyl disulfide, 2,2'-diisopropyldiphenyl disulfide, 3,3'- Diisopropyl diphenyl disulfide, 2,2 ′, 6,6′-tetraisopropyl diphenyl disulfide, 2,2 ′, 3,3′-tetraisopropyl diphenyl disulfide, 2,2 ′, 5,5′-tetraisopropyl diphenyl disulfide, 3 , 3 ′, 5,5′-tetraisopropyldiphenyl disulfide, 2,2 ′, 3,3 ′, 5,5′-hexaisopropyldiphenyl disulfide, 2,2 ′, 3,3 ′, 6,6′-hexaisopropyldiphenyl disulfide, 2,2 ′, 3,3 ′, 5,5 ′, Examples include 6,6′-octaisopropyldiphenyl disulfide. Among these, from the viewpoint of raw material availability, diphenyl disulfide, 2,2′-dimethyldiphenyl disulfide, 3,3′-dimethyldiphenyl disulfide, 2,2 ′, 6,6′-tetramethyldiphenyl disulfide, 2,2 ', 3,3'-tetramethyldiphenyl disulfide, 2,2', 5,5'-tetramethyldiphenyl disulfide, 3,3 ', 5,5'-tetramethyldiphenyl disulfide, 2,2', 3,3 ', 5,5'-hexamethyldiphenyl disulfide, 2,2', 3,3 ', 6,6'-hexamethyldiphenyl disulfide, 2,2', 3,3 ', 5,5', 6,6 '-Octamethyldiphenyl disulfide can be preferably used.
 また、これらの置換もしくは未置換のジフェニルジスルフィドは、置換もしくは未置換のチオフェノールの酸化によっても容易に調製できる。そのため、重合工程においては、上述した置換もしくは未置換のジフェニルジスルフィドの前駆体として、置換もしくは未置換のチオフェノールも使用することができる。置換もしくは未置換のチオフェノールとしては、例えば、下記一般式(IV)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000006
[式(IV)中、R、R10、R11及びR12は、それぞれ独立に水素原子、炭素数1~8のアルキル基、アラルキル基又はアリール基を表す。]
These substituted or unsubstituted diphenyl disulfides can also be easily prepared by oxidation of a substituted or unsubstituted thiophenol. Therefore, in the polymerization step, substituted or unsubstituted thiophenol can also be used as a precursor of the above-mentioned substituted or unsubstituted diphenyl disulfide. Examples of the substituted or unsubstituted thiophenol include compounds represented by the following general formula (IV).
Figure JPOXMLDOC01-appb-C000006
[In formula (IV), R 9 , R 10 , R 11 and R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an aralkyl group or an aryl group. ]
 上記一般式(IV)で表される化合物の具体例としては、上記一般式(III)で表される化合物の具体例の前駆体となる化合物が挙げられるが、それらの中でも、原料の入手性の観点から、チオフェノール(ベンゼンチオール)、2-メチルベンゼンチオール、3-メチルベンゼンチオール、2,3-ジメチルベンゼンチオール、2,5-ジメチルベンゼンチオール、2,6-ジメチルベンゼンチオールが好適に使用できる。これらの置換もしくは未置換のチオフェノールは、上述した置換もしくは未置換のジフェニルジスルフィドと同様に使用することができる。なお、置換もしくは未置換のジフェニルジスルフィドを用いた場合でも、その前駆体である置換もしくは未置換のチオフェノールを用いた場合でも、置換基の有無や種類が同じであれば、PASとしては同等のものが得られる。 Specific examples of the compound represented by the general formula (IV) include compounds that are precursors of specific examples of the compound represented by the general formula (III). Among them, availability of raw materials From the viewpoint of thiophenol (benzenethiol), 2-methylbenzenethiol, 3-methylbenzenethiol, 2,3-dimethylbenzenethiol, 2,5-dimethylbenzenethiol, 2,6-dimethylbenzenethiol are preferably used it can. These substituted or unsubstituted thiophenols can be used in the same manner as the above-mentioned substituted or unsubstituted diphenyl disulfide. Even if a substituted or unsubstituted diphenyl disulfide is used or a substituted or unsubstituted thiophenol as a precursor thereof is used, the presence or type of the substituent is the same as the PAS. Things are obtained.
 また、重合工程において、モノマーとして置換基を有するジフェニルジスルフィド及び/又は置換基を有するチオフェノールを用いた場合、合成されたポリマーの、モノマー及び/又は溶媒に対する溶解度が向上し、より高分子量体が得られる傾向がある。特に、置換基が炭素数1~8のアルキル基、アラルキル基又はアリール基であると、合成されたポリマーがモノマー及び/又は溶媒により一層溶解しやすくなり、より高分子量化するため好ましい。アラルキル基は炭素数7~14であることが好ましく、アリール基は炭素数6~14であることが好ましい。炭素数が上記範囲内であると、合成されたポリマーがモノマーにより一層溶解しやすくなり、より高分子量化するため好ましい。また、置換基を有さないジフェニルジスルフィド及び/又は置換基を有さないチオフェノールを用いた場合、置換基を有するものに比べて原料の入手性が極めて高く、工業的に有利であるとともに、従来のポリフェニレンスルフィドと同じポリマーを合成することができる。本発明の製造方法は、置換基を有さないポリフェニレンスルフィド、及び、置換基を有するポリフェニレンスルフィドのいずれの製造にも適した方法である。上述した置換もしくは未置換のジフェニルジスルフィド及び置換もしくは未置換のチオフェノールは、1種を単独で又は2種以上を組み合わせて用いることができる。 In addition, when diphenyl disulfide having a substituent and / or thiophenol having a substituent is used as a monomer in the polymerization step, the solubility of the synthesized polymer in the monomer and / or solvent is improved, and a higher molecular weight body is obtained. There is a tendency to be obtained. In particular, when the substituent is an alkyl group having 1 to 8 carbon atoms, an aralkyl group or an aryl group, the synthesized polymer is more easily dissolved by a monomer and / or a solvent, and is preferably increased in molecular weight. The aralkyl group preferably has 7 to 14 carbon atoms, and the aryl group preferably has 6 to 14 carbon atoms. It is preferable for the carbon number to be within the above range because the synthesized polymer is more easily dissolved by the monomer and has a higher molecular weight. In addition, when diphenyl disulfide having no substituent and / or thiophenol having no substituent is used, the availability of raw materials is extremely high compared to those having a substituent, which is industrially advantageous. The same polymer as conventional polyphenylene sulfide can be synthesized. The production method of the present invention is a method suitable for producing any of polyphenylene sulfide having no substituent and polyphenylene sulfide having a substituent. The above-mentioned substituted or unsubstituted diphenyl disulfide and substituted or unsubstituted thiophenol can be used singly or in combination of two or more.
 また、モノマーは、未置換ジフェニルジスルフィド及び未置換チオフェノールのうちの少なくとも一方(以下、「未置換モノマー」と言う)と、置換ジフェニルジスルフィド及び置換チオフェノールのうちの少なくとも一方(以下、「置換モノマー」と言う)とを含んでいることも好ましい。このように、入手容易な未置換モノマーに置換モノマーを共重合させることにより、工業的に有利でありながら、未置換モノマーを単独で用いた場合と比較して、生成するポリマーの、モノマー及び/又は溶媒に対する溶解度を向上させることができ、より高分子量のポリマーを得ることができる。未置換モノマーと置換モノマーとを併用する場合の両者の比率は特に限定されない。所望の物性を有するポリマーを得るために、未置換モノマーと置換モノマーの割合を適宜決めればよい。 The monomer may be at least one of unsubstituted diphenyl disulfide and unsubstituted thiophenol (hereinafter referred to as “unsubstituted monomer”) and at least one of substituted diphenyl disulfide and substituted thiophenol (hereinafter referred to as “substituted monomer”). It is also preferable that it is included. Thus, by copolymerizing a substituted monomer with an easily available unsubstituted monomer, it is industrially advantageous, but compared with the case where the unsubstituted monomer is used alone, the monomer and / or Or the solubility with respect to a solvent can be improved, and a higher molecular weight polymer can be obtained. The ratio between the unsubstituted monomer and the substituted monomer is not particularly limited. In order to obtain a polymer having desired physical properties, the ratio of the unsubstituted monomer and the substituted monomer may be determined as appropriate.
 (A)バナジウム化合物は、上記モノマーの酸化重合触媒として機能するものである。(A)バナジウム化合物としては、好ましくは、分子内にV=O結合を有するオキソバナジウム化合物が使用される。オキソバナジウム化合物として具体的には、N,N’-ビスサリチリデンエチレンジアミンオキソバナジウム、フタロシアニンオキソバナジウム、テトラフェニルポルフィリンオキソバナジウムなどが挙げられる。その他に下記一般式(V)で表されるバナジウム化合物も使用される。
Figure JPOXMLDOC01-appb-C000007
[式(V)中、R13、R14、R15及びR16はそれぞれ独立に、炭素数1~6のアルキル基、又は、炭素数6~8のアリール基を表し、R17及びR18はそれぞれ独立に、水素原子、炭素数1~6のアルキル基、又は、炭素数6~8のアリール基を表す。]
(A) A vanadium compound functions as an oxidation polymerization catalyst for the above monomer. As the (A) vanadium compound, an oxo vanadium compound having a V═O bond in the molecule is preferably used. Specific examples of the oxovanadium compound include N, N′-bissalicylideneethylenediamine oxovanadium, phthalocyanine oxovanadium, and tetraphenylporphyrin oxovanadium. In addition, a vanadium compound represented by the following general formula (V) is also used.
Figure JPOXMLDOC01-appb-C000007
[In the formula (V), R 13 , R 14 , R 15 and R 16 each independently represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 8 carbon atoms, and R 17 and R 18 Each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 8 carbon atoms. ]
 上記一般式(V)で表されるバナジウム化合物としては、4価のオキソバナジウムに、β-ジケトンのアニオンが2分子付加した構造を持つものであれば使用することができる。具体例を示すと、バナジル(IV)アセチルアセトネート、バナジル(IV)ベンゾイルアセトネート(R13=R16=メチル基、R14=R15=フェニル基、R17=R18=水素原子)が挙げられる。 As the vanadium compound represented by the general formula (V), any compound having a structure in which two molecules of an anion of β-diketone are added to tetravalent oxo vanadium can be used. Specific examples include vanadyl (IV) acetylacetonate, vanadyl (IV) benzoylacetonate (R 13 = R 16 = methyl group, R 14 = R 15 = phenyl group, R 17 = R 18 = hydrogen atom). Can be mentioned.
 上述した(A)バナジウム化合物は、1種を単独で又は2種以上を組み合わせて用いることができる。 The above-mentioned (A) vanadium compound can be used singly or in combination of two or more.
 (A)バナジウム化合物の添加量は、置換もしくは未置換のジフェニルジスルフィド、及び、置換もしくは未置換のチオフェノールの総量100モルに対して、0.001~100モルであることが好ましく、0.01~50モルであることがより好ましい。この添加量が少ないと重合反応が進行しにくく、添加量が多いと得られるポリマー中に(A)バナジウム化合物が残存しやすくなる。 (A) The addition amount of the vanadium compound is preferably 0.001 to 100 mol with respect to 100 mol of the total amount of substituted or unsubstituted diphenyl disulfide and substituted or unsubstituted thiophenol, More preferably, it is ˜50 mol. When the addition amount is small, the polymerization reaction hardly proceeds, and when the addition amount is large, the (A) vanadium compound tends to remain in the obtained polymer.
 重合工程においては、(B)構成元素としてフッ素を含む芳香族基を有するホウ素化合物が使用される。ここで、構成元素としてフッ素を含む芳香族基とは、芳香環の水素原子の少なくとも一部がフッ素原子に置換されたものや、芳香環が有する置換基の水素原子の少なくとも一部がフッ素原子に置換されたもの等を意味する。上記(B)ホウ素化合物は、ホウ素を含む化合物であって、構成元素としてフッ素を含む芳香族基を有するものであれば特に限定されないが、構成元素としてフッ素を含む1価の芳香族基がホウ素に4つ結合した、ホウ素アニオンタイプ(アート錯体)の化合物であることが好ましい。なお、ホウ素に結合した芳香族基同士が環構造を形成していてもよい。より好ましい(B)ホウ素化合物としては、下記一般式(I)で表されるホウ素化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
[式(I)中、RはLi、Na、K、Cs、炭素数1~30の炭化水素基、又は、炭素数1~30の炭化水素基が3つ置換したシリル基を示し、nは1~5の整数を示す。]
In the polymerization step, (B) a boron compound having an aromatic group containing fluorine as a constituent element is used. Here, the aromatic group containing fluorine as a constituent element is one in which at least a part of hydrogen atoms of the aromatic ring is substituted with fluorine atoms, or at least part of the hydrogen atoms of the substituents possessed by the aromatic ring are fluorine atoms. It means the one substituted with. The boron compound (B) is a compound containing boron and is not particularly limited as long as it has an aromatic group containing fluorine as a constituent element, but a monovalent aromatic group containing fluorine as a constituent element is boron. It is preferable that the compound is a boron anion type (art complex) compound having four bonds to each other. Note that aromatic groups bonded to boron may form a ring structure. More preferable examples of the boron compound (B) include boron compounds represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000008
[In the formula (I), R represents Li, Na, K, Cs, a hydrocarbon group having 1 to 30 carbon atoms, or a silyl group in which three hydrocarbon groups having 1 to 30 carbon atoms are substituted, and n represents An integer of 1 to 5 is shown. ]
 上記一般式(I)で表される化合物の具体例としては、上記一般式(I)中のnが5である化合物として、リチウムテトラキス(ペンタフルオロフェニル)ボレート、ナトリウムテトラキス(ペンタフルオロフェニル)ボレート、カリウムテトラキス(ペンタフルオロフェニル)ボレート、セシウムテトラキス(ペンタフルオロフェニル)ボレート、メチルテトラキス(ペンタフルオロフェニル)ボレート、エチルテトラキス(ペンタフルオロフェニル)ボレート、プロピルテトラキス(ペンタフルオロフェニル)ボレート、イソプロピルテトラキス(ペンタフルオロフェニル)ボレート、ブチルテトラキス(ペンタフルオロフェニル)ボレート、イソブチルテトラキス(ペンタフルオロフェニル)ボレート、ターシャリーブチルテトラキス(ペンタフルオロフェニル)ボレート、ペンチルテトラキス(ペンタフルオロフェニル)ボレート、イソペンチルテトラキス(ペンタフルオロフェニル)ボレート、ネオペンチルテトラキス(ペンタフルオロフェニル)ボレート、ヘキシルテトラキス(ペンタフルオロフェニル)ボレート、イソヘキシルテトラキス(ペンタフルオロフェニル)ボレート、シクロヘキシルテトラキス(ペンタフルオロフェニル)ボレート、ベンジルテトラキス(ペンタフルオロフェニル)ボレート、ジフェニルメチルテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルメチルテトラキス(ペンタフルオロフェニル)ボレート、トリメチルシリルテトラキス(ペンタフルオロフェニル)ボレート、トリエチルシリルテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルシリルテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。 Specific examples of the compound represented by the general formula (I) include a compound in which n in the general formula (I) is 5, lithium tetrakis (pentafluorophenyl) borate, sodium tetrakis (pentafluorophenyl) borate. , Potassium tetrakis (pentafluorophenyl) borate, cesium tetrakis (pentafluorophenyl) borate, methyltetrakis (pentafluorophenyl) borate, ethyltetrakis (pentafluorophenyl) borate, propyltetrakis (pentafluorophenyl) borate, isopropyltetrakis (penta) Fluorophenyl) borate, butyltetrakis (pentafluorophenyl) borate, isobutyltetrakis (pentafluorophenyl) borate, tertiary butyltetrakis (Pentafluorophenyl) borate, pentyltetrakis (pentafluorophenyl) borate, isopentyltetrakis (pentafluorophenyl) borate, neopentyltetrakis (pentafluorophenyl) borate, hexyltetrakis (pentafluorophenyl) borate, isohexyltetrakis (penta) Fluorophenyl) borate, cyclohexyltetrakis (pentafluorophenyl) borate, benzyltetrakis (pentafluorophenyl) borate, diphenylmethyltetrakis (pentafluorophenyl) borate, triphenylmethyltetrakis (pentafluorophenyl) borate, trimethylsilyltetrakis (pentafluorophenyl) ) Borate, triethylsilyltetrakis (pentafluoroph Yl) borate, triphenyl silyl tetrakis (pentafluorophenyl) borate, and the like.
 また、上記一般式(I)中のnが1である化合物として、リチウムテトラキス(フルオロフェニル)ボレート、ナトリウムテトラキス(フルオロフェニル)ボレート、カリウムテトラキス(フルオロフェニル)ボレート、セシウムテトラキス(フルオロフェニル)ボレート、メチルテトラキス(フルオロフェニル)ボレート、エチルテトラキス(フルオロフェニル)ボレート、プロピルテトラキス(フルオロフェニル)ボレート、イソプロピルテトラキス(フルオロフェニル)ボレート、ブチルテトラキス(フルオロフェニル)ボレート、イソブチルテトラキス(フルオロフェニル)ボレート、ターシャリーブチルテトラキス(フルオロフェニル)ボレート、ペンチルテトラキス(フルオロフェニル)ボレート、イソペンチルテトラキス(フルオロフェニル)ボレート、ネオペンチルテトラキス(フルオロフェニル)ボレート、ヘキシルテトラキス(フルオロフェニル)ボレート、イソヘキシルテトラキス(フルオロフェニル)ボレート、シクロヘキシルテトラキス(フルオロフェニル)ボレート、ベンジルテトラキス(フルオロフェニル)ボレート、ジフェニルメチルテトラキス(フルオロフェニル)ボレート、トリフェニルメチルテトラキス(フルオロフェニル)ボレート、トリメチルシリルテトラキス(フルオロフェニル)ボレート、トリエチルシリルテトラキス(フルオロフェニル)ボレート、トリフェニルシリルテトラキス(フルオロフェニル)ボレートなどが挙げられる。フルオロフェニル基におけるフッ素の置換位置は任意であり、オルト位、メタ位、パラ位、およびこれらの混合物でも使用することができる。 Further, as a compound in which n in the above general formula (I) is 1, lithium tetrakis (fluorophenyl) borate, sodium tetrakis (fluorophenyl) borate, potassium tetrakis (fluorophenyl) borate, cesium tetrakis (fluorophenyl) borate, Methyltetrakis (fluorophenyl) borate, ethyltetrakis (fluorophenyl) borate, propyltetrakis (fluorophenyl) borate, isopropyltetrakis (fluorophenyl) borate, butyltetrakis (fluorophenyl) borate, isobutyltetrakis (fluorophenyl) borate, tertiary Butyltetrakis (fluorophenyl) borate, pentyltetrakis (fluorophenyl) borate, isopentyltetrakis ( Fluorophenyl) borate, neopentyltetrakis (fluorophenyl) borate, hexyltetrakis (fluorophenyl) borate, isohexyltetrakis (fluorophenyl) borate, cyclohexyltetrakis (fluorophenyl) borate, benzyltetrakis (fluorophenyl) borate, diphenylmethyltetrakis ( Fluorophenyl) borate, triphenylmethyltetrakis (fluorophenyl) borate, trimethylsilyltetrakis (fluorophenyl) borate, triethylsilyltetrakis (fluorophenyl) borate, triphenylsilyltetrakis (fluorophenyl) borate and the like. The fluorine substitution position in the fluorophenyl group is arbitrary, and it can be used in ortho-position, meta-position, para-position, and a mixture thereof.
 また、上記一般式(I)中のnが2である化合物として、リチウムテトラキス(ジフルオロフェニル)ボレート、ナトリウムテトラキス(ジフルオロフェニル)ボレート、カリウムテトラキス(ジフルオロフェニル)ボレート、セシウムテトラキス(ジフルオロフェニル)ボレート、メチルテトラキス(ジフルオロフェニル)ボレート、エチルテトラキス(ジフルオロフェニル)ボレート、プロピルテトラキス(ジフルオロフェニル)ボレート、イソプロピルテトラキス(ジフルオロフェニル)ボレート、ブチルテトラキス(ジフルオロフェニル)ボレート、イソブチルテトラキス(ジフルオロフェニル)ボレート、ターシャリーブチルテトラキス(ジフルオロフェニル)ボレート、ペンチルテトラキス(ジフルオロフェニル)ボレート、イソペンチルテトラキス(ジフルオロフェニル)ボレート、ネオペンチルテトラキス(ジフルオロフェニル)ボレート、ヘキシルテトラキス(ジフルオロフェニル)ボレート、イソヘキシルテトラキス(ジフルオロフェニル)ボレート、シクロヘキシルテトラキス(ジフルオロフェニル)ボレート、ベンジルテトラキス(ジフルオロフェニル)ボレート、ジフェニルメチルテトラキス(ジフルオロフェニル)ボレート、トリフェニルメチルテトラキス(ジフルオロフェニル)ボレート、トリメチルシリルテトラキス(ジフルオロフェニル)ボレート、トリエチルシリルテトラキス(ジフルオロフェニル)ボレート、トリフェニルシリルテトラキス(ジフルオロフェニル)ボレートなどが挙げられる。ジフルオロフェニル基におけるフッ素の置換位置は任意であり、2,3-置換体、2,4-置換体、2,5-置換体、2,6-置換体、3,4-置換体、3,5-置換体、3,6-置換体が使用できる。また、これらの混合物でも使用することができる。 Further, as a compound in which n in the above general formula (I) is 2, lithium tetrakis (difluorophenyl) borate, sodium tetrakis (difluorophenyl) borate, potassium tetrakis (difluorophenyl) borate, cesiumtetrakis (difluorophenyl) borate, Methyltetrakis (difluorophenyl) borate, ethyltetrakis (difluorophenyl) borate, propyltetrakis (difluorophenyl) borate, isopropyltetrakis (difluorophenyl) borate, butyltetrakis (difluorophenyl) borate, isobutyltetrakis (difluorophenyl) borate, tertiary Butyltetrakis (difluorophenyl) borate, pentyltetrakis (difluorophenyl) borate, Sopentyltetrakis (difluorophenyl) borate, neopentyltetrakis (difluorophenyl) borate, hexyltetrakis (difluorophenyl) borate, isohexyltetrakis (difluorophenyl) borate, cyclohexyltetrakis (difluorophenyl) borate, benzyltetrakis (difluorophenyl) borate , Diphenylmethyltetrakis (difluorophenyl) borate, triphenylmethyltetrakis (difluorophenyl) borate, trimethylsilyltetrakis (difluorophenyl) borate, triethylsilyltetrakis (difluorophenyl) borate, triphenylsilyltetrakis (difluorophenyl) borate . The position of fluorine substitution in the difluorophenyl group is arbitrary, and is a 2,3-substituted product, 2,4-substituted product, 2,5-substituted product, 2,6-substituted product, 3,4-substituted product, 3, 5-Substituted products and 3,6-substituted products can be used. Moreover, these mixtures can also be used.
 また、上記一般式(I)中のnが3である化合物として、リチウムテトラキス(トリフルオロフェニル)ボレート、ナトリウムテトラキス(トリフルオロフェニル)ボレート、カリウムテトラキス(トリフルオロフェニル)ボレート、セシウムテトラキス(トリフルオロフェニル)ボレート、メチルテトラキス(トリフルオロフェニル)ボレート、エチルテトラキス(トリフルオロフェニル)ボレート、プロピルテトラキス(トリフルオロフェニル)ボレート、イソプロピルテトラキス(トリフルオロフェニル)ボレート、ブチルテトラキス(トリフルオロフェニル)ボレート、イソブチルテトラキス(トリフルオロフェニル)ボレート、ターシャリーブチルテトラキス(トリフルオロフェニル)ボレート、ペンチルテトラキス(トリフルオロフェニル)ボレート、イソペンチルテトラキス(トリフルオロフェニル)ボレート、ネオペンチルテトラキス(トリフルオロフェニル)ボレート、ヘキシルテトラキス(トリフルオロフェニル)ボレート、イソヘキシルテトラキス(トリフルオロフェニル)ボレート、シクロヘキシルテトラキス(トリフルオロフェニル)ボレート、ベンジルテトラキス(トリフルオロフェニル)ボレート、ジフェニルメチルテトラキス(トリフルオロフェニル)ボレート、トリフェニルメチルテトラキス(トリフルオロフェニル)ボレート、トリメチルシリルテトラキス(トリフルオロフェニル)ボレート、トリエチルシリルテトラキス(トリフルオロフェニル)ボレート、トリフェニルシリルテトラキス(トリフルオロフェニル)ボレートなどが挙げられる。トリフルオロフェニル基におけるフッ素の置換位置は任意であり、2,3,4-置換体、2,3,5-置換体、2,3,6-置換体、2,4,5-置換体、2,4,6-置換体、3,4,5-置換体が使用できる。また、これらの混合物でも使用することができる。 Moreover, as a compound whose n in the said general formula (I) is 3, lithium tetrakis (trifluorophenyl) borate, sodium tetrakis (trifluorophenyl) borate, potassium tetrakis (trifluorophenyl) borate, cesium tetrakis (trifluoro) Phenyl) borate, methyltetrakis (trifluorophenyl) borate, ethyltetrakis (trifluorophenyl) borate, propyltetrakis (trifluorophenyl) borate, isopropyltetrakis (trifluorophenyl) borate, butyltetrakis (trifluorophenyl) borate, isobutyl Tetrakis (trifluorophenyl) borate, Tertiary butyltetrakis (trifluorophenyl) borate, Pentyltetrakis (Triflu Rophenyl) borate, isopentyltetrakis (trifluorophenyl) borate, neopentyltetrakis (trifluorophenyl) borate, hexyltetrakis (trifluorophenyl) borate, isohexyltetrakis (trifluorophenyl) borate, cyclohexyltetrakis (trifluorophenyl) Borate, benzyltetrakis (trifluorophenyl) borate, diphenylmethyltetrakis (trifluorophenyl) borate, triphenylmethyltetrakis (trifluorophenyl) borate, trimethylsilyltetrakis (trifluorophenyl) borate, triethylsilyltetrakis (trifluorophenyl) borate , Triphenylsilyltetrakis (trifluorophenyl) borate, etc. It is. The fluorine substitution position in the trifluorophenyl group is arbitrary, and is 2,3,4-substituted, 2,3,5-substituted, 2,3,6-substituted, 2,4,5-substituted, 2,4,6-substituted and 3,4,5-substituted can be used. Moreover, these mixtures can also be used.
 また、上記一般式(I)中のnが4である化合物として、リチウムテトラキス(テトラフルオロフェニル)ボレート、ナトリウムテトラキス(テトラフルオロフェニル)ボレート、カリウムテトラキス(テトラフルオロフェニル)ボレート、セシウムテトラキス(テトラフルオロフェニル)ボレート、メチルテトラキス(テトラフルオロフェニル)ボレート、エチルテトラキス(テトラフルオロフェニル)ボレート、プロピルテトラキス(テトラフルオロフェニル)ボレート、イソプロピルテトラキス(テトラフルオロフェニル)ボレート、ブチルテトラキス(テトラフルオロフェニル)ボレート、イソブチルテトラキス(テトラフルオロフェニル)ボレート、ターシャリーブチルテトラキス(テトラフルオロフェニル)ボレート、ペンチルテトラキス(テトラフルオロフェニル)ボレート、イソペンチルテトラキス(テトラフルオロフェニル)ボレート、ネオペンチルテトラキス(テトラフルオロフェニル)ボレート、ヘキシルテトラキス(テトラフルオロフェニル)ボレート、イソヘキシルテトラキス(テトラフルオロフェニル)ボレート、シクロヘキシルテトラキス(テトラフルオロフェニル)ボレート、ベンジルテトラキス(テトラフルオロフェニル)ボレート、ジフェニルメチルテトラキス(テトラフルオロフェニル)ボレート、トリフェニルメチルテトラキス(テトラフルオロフェニル)ボレート、トリメチルシリルテトラキス(テトラフルオロフェニル)ボレート、トリエチルシリルテトラキス(テトラフルオロフェニル)ボレート、トリフェニルシリルテトラキス(テトラフルオロフェニル)ボレートなどが挙げられる。テトラフルオロフェニル基におけるフッ素の置換位置は任意であり、2,3,4,5-置換体、2,3,4,6-置換体、2,3,5,6-置換体が使用できる。また、これらの混合物でも使用することができる。 Moreover, as a compound whose n in the said general formula (I) is 4, lithium tetrakis (tetrafluorophenyl) borate, sodium tetrakis (tetrafluorophenyl) borate, potassium tetrakis (tetrafluorophenyl) borate, cesium tetrakis (tetrafluoro) Phenyl) borate, methyltetrakis (tetrafluorophenyl) borate, ethyltetrakis (tetrafluorophenyl) borate, propyltetrakis (tetrafluorophenyl) borate, isopropyltetrakis (tetrafluorophenyl) borate, butyltetrakis (tetrafluorophenyl) borate, isobutyl Tetrakis (tetrafluorophenyl) borate, tertiary butyl tetrakis (tetrafluorophenyl) borate, pliers Tetrakis (tetrafluorophenyl) borate, isopentyltetrakis (tetrafluorophenyl) borate, neopentyltetrakis (tetrafluorophenyl) borate, hexyltetrakis (tetrafluorophenyl) borate, isohexyltetrakis (tetrafluorophenyl) borate, cyclohexyltetrakis ( Tetrafluorophenyl) borate, benzyltetrakis (tetrafluorophenyl) borate, diphenylmethyltetrakis (tetrafluorophenyl) borate, triphenylmethyltetrakis (tetrafluorophenyl) borate, trimethylsilyltetrakis (tetrafluorophenyl) borate, triethylsilyltetrakis (tetra Fluorophenyl) borate, triphenylsilyltetrakis Etc. (tetrafluorophenyl) borate. The position of fluorine substitution in the tetrafluorophenyl group is arbitrary, and 2,3,4,5-substituted, 2,3,4,6-substituted, and 2,3,5,6-substituted can be used. Moreover, these mixtures can also be used.
 上記一般式(I)で表される化合物としては、バナジウムやプロトンとの結合を形成しにくいという観点から、nが1~5の整数である化合物が好ましく、nが5である化合物が特に好ましい。 As the compound represented by the general formula (I), a compound in which n is an integer of 1 to 5 is preferable and a compound in which n is 5 is particularly preferable from the viewpoint that it is difficult to form a bond with vanadium or proton. .
 上記一般式(I)で表される化合物以外に、好ましい(B)ホウ素化合物としては、下記一般式(II)で表されるホウ素化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000009
[式(II)中、RはLi、Na、K、Cs、炭素数1~30の炭化水素基、又は、炭素数1~30の炭化水素基が3つ置換したシリル基を示す。]
In addition to the compound represented by the above general formula (I), preferred (B) boron compounds include boron compounds represented by the following general formula (II).
Figure JPOXMLDOC01-appb-C000009
[In the formula (II), R represents Li, Na, K, Cs, a hydrocarbon group having 1 to 30 carbon atoms, or a silyl group in which three hydrocarbon groups having 1 to 30 carbon atoms are substituted. ]
 上記一般式(II)で表される化合物の具体例としては、リチウムテトラキス(ビス-3,5-トリフルオロメチルフェニル)ボレート、ナトリウムテトラキス(ビス-3,5-トリフルオロメチルフェニル)ボレート、カリウムテトラキス(ビス-3,5-トリフルオロメチルフェニル)ボレート、セシウムテトラキス(ビス-3,5-トリフルオロメチルフェニル)ボレート、メチルテトラキス(ビス-3,5-トリフルオロメチルフェニル)ボレート、エチルテトラキス(ビス-3,5-トリフルオロメチルフェニル)ボレート、プロピルテトラキス(ビス-3,5-トリフルオロメチルフェニル)ボレート、イソプロピルテトラキス(ビス-3,5-トリフルオロメチルフェニル)ボレート、ブチルテトラキス(ビス-3,5-トリフルオロメチルフェニル)ボレート、イソブチルテトラキス(ビス-3,5-トリフルオロメチルフェニル)ボレート、ターシャリーブチルテトラキス(ビス-3,5-トリフルオロメチルフェニル)ボレート、ペンチルテトラキス(ビス-3,5-トリフルオロメチルフェニル)ボレート、イソペンチルテトラキス(ビス-3,5-トリフルオロメチルフェニル)ボレート、ネオペンチルテトラキス(ビス-3,5-トリフルオロメチルフェニル)ボレート、ヘキシルテトラキス(ビス-3,5-トリフルオロメチルフェニル)ボレート、イソヘキシルテトラキス(ビス-3,5-トリフルオロメチルフェニル)ボレート、シクロヘキシルテトラキス(ビス-3,5-トリフルオロメチルフェニル)ボレート、ベンジルテトラキス(ビス-3,5-トリフルオロメチルフェニル)ボレート、ジフェニルメチルテトラキス(ビス-3,5-トリフルオロメチルフェニル)ボレート、トリフェニルメチルテトラキス(ビス-3,5-トリフルオロメチルフェニル)ボレート、トリメチルシリルテトラキス(ビス-3,5-トリフルオロメチルフェニル)ボレート、トリエチルシリルテトラキス(ビス-3,5-トリフルオロメチルフェニル)ボレート、トリフェニルシリルテトラキス(ビス-3,5-トリフルオロメチルフェニル)ボレートなどが挙げられる。 Specific examples of the compound represented by the general formula (II) include lithium tetrakis (bis-3,5-trifluoromethylphenyl) borate, sodium tetrakis (bis-3,5-trifluoromethylphenyl) borate, potassium Tetrakis (bis-3,5-trifluoromethylphenyl) borate, cesiumtetrakis (bis-3,5-trifluoromethylphenyl) borate, methyltetrakis (bis-3,5-trifluoromethylphenyl) borate, ethyltetrakis ( Bis-3,5-trifluoromethylphenyl) borate, propyltetrakis (bis-3,5-trifluoromethylphenyl) borate, isopropyltetrakis (bis-3,5-trifluoromethylphenyl) borate, butyltetrakis (bis- 3,5-G Fluoromethylphenyl) borate, isobutyltetrakis (bis-3,5-trifluoromethylphenyl) borate, tertiary butyltetrakis (bis-3,5-trifluoromethylphenyl) borate, pentyltetrakis (bis-3,5-tri Fluoromethylphenyl) borate, isopentyltetrakis (bis-3,5-trifluoromethylphenyl) borate, neopentyltetrakis (bis-3,5-trifluoromethylphenyl) borate, hexyltetrakis (bis-3,5-tri Fluoromethylphenyl) borate, isohexyltetrakis (bis-3,5-trifluoromethylphenyl) borate, cyclohexyltetrakis (bis-3,5-trifluoromethylphenyl) borate, benzyltetrakis (bis 3,5-trifluoromethylphenyl) borate, diphenylmethyltetrakis (bis-3,5-trifluoromethylphenyl) borate, triphenylmethyltetrakis (bis-3,5-trifluoromethylphenyl) borate, trimethylsilyltetrakis (bis -3,5-trifluoromethylphenyl) borate, triethylsilyltetrakis (bis-3,5-trifluoromethylphenyl) borate, triphenylsilyltetrakis (bis-3,5-trifluoromethylphenyl) borate .
 上記一般式(I)及び(II)で表される化合物としては、カチオンの安定度の観点から、Rがフェニルアルキル基、ジフェニルアルキル基、トリフェニルアルキル基、又は、第三級アルキル基である化合物が好ましく、Rがトリフェニルアルキル基、又は、第三級アルキル基である化合物がより好ましく、Rがトリフェニルメチル基、又は、ターシャリーブチル基である化合物が特に好ましい。 In the compounds represented by the general formulas (I) and (II), R is a phenylalkyl group, a diphenylalkyl group, a triphenylalkyl group, or a tertiary alkyl group from the viewpoint of cation stability. A compound is preferable, a compound in which R is a triphenylalkyl group or a tertiary alkyl group is more preferable, and a compound in which R is a triphenylmethyl group or a tertiary butyl group is particularly preferable.
 (B)構成元素としてフッ素を含む芳香族基を有するホウ素化合物として、上記一般式(I)又は(II)で表されるホウ素化合物を使用すると、色相の良好な(例えば、乳白色の)ポリアリーレンスルフィドが得られるようになる。上述した(B)構成元素としてフッ素を含む芳香族基を有するホウ素化合物は、1種を単独で又は2種以上を組み合わせて用いることができる。 (B) When a boron compound represented by the above general formula (I) or (II) is used as a boron compound having an aromatic group containing fluorine as a constituent element, polyarylene having a good hue (for example, milky white) Sulfide will be obtained. The above-mentioned boron compound having an aromatic group containing fluorine as a constituent element can be used alone or in combination of two or more.
 (B)構成元素としてフッ素を含む芳香族基を有するホウ素化合物の添加量は、置換もしくは未置換のジフェニルジスルフィド、及び、置換もしくは未置換のチオフェノールの総量100モルに対して、0.001~100モルであることが好ましく、0.01~50モルであることがより好ましい。この添加量が少ないと反応が進行しにくく、添加量が多いとポリマー中に(B)ホウ素化合物が残存しやすくなる。 (B) The amount of boron compound having an aromatic group containing fluorine as a constituent element is 0.001 to the total amount of substituted or unsubstituted diphenyl disulfide and substituted or unsubstituted thiophenol of 100 mol. The amount is preferably 100 mol, more preferably 0.01 to 50 mol. When this addition amount is small, the reaction hardly proceeds, and when the addition amount is large, the (B) boron compound tends to remain in the polymer.
 重合工程においては、上述した(B)ホウ素化合物とともに、反応促進の観点から、従来使用されている酸を併用することもできる。酸としては、硫酸、酢酸、メタンスルフォン酸、ベンゼンスルフォン酸、トルエンスルフォン酸などの酸のほか、下記一般式(VI)で表される有機酸を使用することもできる。
Figure JPOXMLDOC01-appb-C000010
[式(VI)中、Rfは炭素数1~8のパーフルオロアルキル基を示す。]
In the polymerization step, together with the above-described (B) boron compound, a conventionally used acid can be used in combination from the viewpoint of promoting the reaction. As the acid, in addition to acids such as sulfuric acid, acetic acid, methanesulfonic acid, benzenesulfonic acid, and toluenesulfonic acid, organic acids represented by the following general formula (VI) can also be used.
Figure JPOXMLDOC01-appb-C000010
[In the formula (VI), Rf represents a perfluoroalkyl group having 1 to 8 carbon atoms. ]
 上記一般式(VI)で表される有機酸の具体例としては、トリフルオロメタンスルフォン酸、1,1,2,2-テトラフルオロエタンスルフォン酸、ペンタフルオロエタンスルフォン酸、ヘプタフルオロプロパンスルフォン酸、ヘプタフルオロイソプロパンスルフォン酸、ノナフルオロブタンスルフォン酸、ナフィオン(登録商標)などが挙げられる。また、これらの化合物の無水物も使用することができる。これらの中でも、入手性の観点から、トリフルオロメタンスルフォン酸、1,1,2,2-テトラフルオロエタンスルフォン酸を用いることが好ましい。 Specific examples of the organic acid represented by the general formula (VI) include trifluoromethanesulfonic acid, 1,1,2,2-tetrafluoroethanesulfonic acid, pentafluoroethanesulfonic acid, heptafluoropropanesulfonic acid, hepta. Examples thereof include fluoroisopropane sulfonic acid, nonafluorobutane sulfonic acid, and Nafion (registered trademark). Moreover, the anhydride of these compounds can also be used. Of these, trifluoromethanesulfonic acid and 1,1,2,2-tetrafluoroethanesulfonic acid are preferably used from the viewpoint of availability.
 また、下記一般式(VII)で表される有機酸も上記一般式(VI)で表される有機酸と同様に使用することができる。
Figure JPOXMLDOC01-appb-C000011
[式(VII)中、Rfは炭素数1~8のパーフルオロアルキル基を示す。]
Moreover, the organic acid represented with the following general formula (VII) can also be used similarly to the organic acid represented with the said general formula (VI).
Figure JPOXMLDOC01-appb-C000011
[In the formula (VII), Rf represents a perfluoroalkyl group having 1 to 8 carbon atoms. ]
 上記一般式(VII)で表される有機酸の具体例としては、トリフルオロ酢酸、ペンタフルオロプロピオン酸などが挙げられる。また、これらの化合物の無水物も使用することができる。 Specific examples of the organic acid represented by the general formula (VII) include trifluoroacetic acid and pentafluoropropionic acid. Moreover, the anhydride of these compounds can also be used.
 酸を添加する場合、その添加量は、置換もしくは未置換のジフェニルジスルフィド、及び、置換もしくは未置換のチオフェノールの総量100モルに対して、0.001~100モルであることが好ましく、0.01~50モルであることがより好ましい。この添加量が少ないと反応を促進する効果が低く、添加量が多いとポリマー中に酸が残存しやすくなる。なお、酸による金属容器の腐食等の問題を改善する観点では、重合工程において酸は添加しないことが好ましい。本発明においては(B)構成元素としてフッ素を含む芳香族基を有するホウ素化合物を用いているため、酸を添加しなくても重合反応を十分に進行させることが可能である。また、酸を添加する場合でも、その添加量を少なくすることができる。 When the acid is added, the addition amount is preferably 0.001 to 100 mol with respect to 100 mol of the total amount of substituted or unsubstituted diphenyl disulfide and substituted or unsubstituted thiophenol. More preferably, the amount is 01 to 50 mol. If the addition amount is small, the effect of promoting the reaction is low, and if the addition amount is large, the acid tends to remain in the polymer. In addition, it is preferable not to add an acid in a superposition | polymerization process from a viewpoint of improving problems, such as corrosion of the metal container by an acid. In the present invention, since the boron compound having an aromatic group containing fluorine is used as the constituent element (B), the polymerization reaction can sufficiently proceed without adding an acid. Further, even when an acid is added, the amount added can be reduced.
 (C)酸化剤は、(A)バナジウム化合物を酸化重合触媒として有効に機能させるために用いられる。(C)酸化剤として具体的には、ジシアノジクロロベンゾキノン、クロラニル、ブロマニル、1,4-ジフェノキノン、テトラメチルジフェノキノン、テトラシアノキノジメタン、テトラシアノエチレン、過安息香酸、メタクロロ過安息香酸、四酢酸鉛、酸酢酸タリウム、セリウム(IV)アセチルアセトネート、マンガン(III)アセチルアセトネート、及び、酸素ガスや空気などの酸素分子を含むガスなどが挙げられる。これらの中でも酸素分子を含むガスが好ましい。酸素分子を含むガスとして具体的には、空気、酸素ガスの他、酸素と、窒素、アルゴンなどの不活性ガスとの混合物などが挙げられる。これらの中でも酸素ガス、空気のほか、酸素と窒素との混合物が好ましく使用される。酸素と窒素との混合物を使用する場合、酸素濃度は任意である。 (C) The oxidizing agent is used for effectively functioning the (A) vanadium compound as an oxidation polymerization catalyst. (C) Specific examples of the oxidizing agent include dicyanodichlorobenzoquinone, chloranil, bromanyl, 1,4-diphenoquinone, tetramethyldiphenoquinone, tetracyanoquinodimethane, tetracyanoethylene, perbenzoic acid, metachloroperbenzoic acid, Examples thereof include lead tetraacetate, thallium acid acetate, cerium (IV) acetylacetonate, manganese (III) acetylacetonate, and gas containing oxygen molecules such as oxygen gas and air. Among these, a gas containing oxygen molecules is preferable. Specific examples of the gas containing oxygen molecules include air, oxygen gas, and a mixture of oxygen and an inert gas such as nitrogen or argon. Among these, in addition to oxygen gas and air, a mixture of oxygen and nitrogen is preferably used. When a mixture of oxygen and nitrogen is used, the oxygen concentration is arbitrary.
 上述した(C)酸化剤は、1種を単独で又は2種以上を組み合わせて用いることができる。 The above-mentioned (C) oxidizing agent can be used alone or in combination of two or more.
 重合工程において、反応温度は、室温(23℃)~300℃である。置換もしくは未置換のジフェニルジスルフィド、及び/又は、置換もしくは未置換のチオフェノールを含むモノマーの融点未満の反応温度を選択する場合は、後述する溶媒を使用することが好ましい。また、置換もしくは未置換のジフェニルジスルフィド、及び/又は、置換もしくは未置換のチオフェノールを含むモノマーの融点以上の反応温度を選択すれば、必ずしも溶媒を使用する必要はない。例えば、ジフェニルジスルフィドを原料モノマーとする場合、その融点は61℃であるから、61℃以上で反応を行えば、溶媒を使用する必要はない。溶媒を使用しない場合においては、反応温度はモノマーの融点+5℃以上であることが好ましく、ジフェニルジスルフィドの場合であれば66℃以上であることが好ましく、70℃以上であることがより好ましく、75℃以上であることが特に好ましい。反応温度の上限は特にないが、得られるポリマーの劣化を抑制する観点から、300℃以下であることが好ましく、270℃以下であることがより好ましく、250℃以下であることが特に好ましい。 In the polymerization step, the reaction temperature is room temperature (23 ° C.) to 300 ° C. When selecting the reaction temperature below the melting point of the monomer containing a substituted or unsubstituted diphenyl disulfide and / or a substituted or unsubstituted thiophenol, it is preferable to use a solvent described later. Further, if a reaction temperature equal to or higher than the melting point of the monomer containing a substituted or unsubstituted diphenyl disulfide and / or a substituted or unsubstituted thiophenol is selected, it is not always necessary to use a solvent. For example, when diphenyl disulfide is used as a raw material monomer, the melting point is 61 ° C., and therefore, if the reaction is performed at 61 ° C. or higher, it is not necessary to use a solvent. When no solvent is used, the reaction temperature is preferably the melting point of the monomer + 5 ° C. or more, preferably 66 ° C. or more, more preferably 70 ° C. or more in the case of diphenyl disulfide, 75 It is particularly preferable that the temperature is at least ° C. The upper limit of the reaction temperature is not particularly limited, but is preferably 300 ° C. or lower, more preferably 270 ° C. or lower, and particularly preferably 250 ° C. or lower from the viewpoint of suppressing deterioration of the obtained polymer.
 本発明において、(C)酸化剤として酸素分子を含むガスなどの気体を使用する場合、圧力は特に限定はなく、常圧~10MPaまでが好ましく選定される。過度の圧力は肉厚の装置が必要となり、コストを上昇させるため、好ましくない。また、特に圧力を高く、かつ温度を高くした場合、得られるポリアリーレンスルフィドのスルフィド部位を酸素が酸化して、スルフォキシドやスルフォンを与えるので、注意を要する。その点を考慮すると、圧力は常圧~1MPa程度が好適である。なお、ガスの供給方法は、連続式でもバッチ式でもよい。 In the present invention, when (C) a gas such as a gas containing oxygen molecules is used as the oxidizing agent, the pressure is not particularly limited, and is preferably selected from normal pressure to 10 MPa. Excessive pressure is not preferable because it requires a thicker device and increases costs. In particular, when the pressure is high and the temperature is high, oxygen is oxidized at the sulfide site of the resulting polyarylene sulfide to give sulfoxide or sulfone, so care must be taken. Considering this point, the pressure is preferably about normal pressure to about 1 MPa. The gas supply method may be a continuous type or a batch type.
 本発明において、重合工程での反応時間は特に限定されないが、通常、0.1~240時間である。反応時間が0.1時間よりも短い場合には、所望の重合が進行しない傾向がある。一方、反応時間が240時間を越えると、スルフォキシドやスルフォンが形成される可能性が高くなる。適切な反応時間は1~50時間であり、より好ましくは2~48時間である。 In the present invention, the reaction time in the polymerization step is not particularly limited, but is usually 0.1 to 240 hours. When the reaction time is shorter than 0.1 hour, the desired polymerization tends not to proceed. On the other hand, when reaction time exceeds 240 hours, possibility that a sulfoxide and a sulfone will be formed will become high. A suitable reaction time is 1 to 50 hours, more preferably 2 to 48 hours.
 本発明においては、必要に応じて反応に溶媒を使用することができる。好ましい溶媒としては、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、テトラクロロエチレン、1,1,2,2-テトラクロロエタン、ニトロメタン、ニトロベンゼン、N-メチルピロリドンなどが挙げられる。 In the present invention, a solvent can be used for the reaction as necessary. Preferable solvents include dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, tetrachloroethylene, 1,1,2,2-tetrachloroethane, nitromethane, nitrobenzene, N-methylpyrrolidone and the like.
 重合工程では、重合反応中に、置換もしくは未置換のジフェニルジスルフィド、及び/又は、置換もしくは未置換のチオフェノールを含むモノマーを逐次的に添加することも可能である。反応後期には触媒である(A)バナジウム化合物が活性を維持しているにもかかわらず、反応するモノマー濃度が減少するため、重合反応が進行しにくくなるという問題がある。モノマーを適宜追加することで、重合停止を阻止することができる。 In the polymerization step, it is also possible to sequentially add a monomer containing a substituted or unsubstituted diphenyl disulfide and / or a substituted or unsubstituted thiophenol during the polymerization reaction. In the latter stage of the reaction, the concentration of the monomer to be reacted decreases despite the fact that the catalyst (A) vanadium compound maintains its activity, so that there is a problem that the polymerization reaction hardly proceeds. By appropriately adding a monomer, the termination of polymerization can be prevented.
 重合工程で得られたポリマーには、(A)バナジウム化合物や(B)ホウ素化合物が残存している可能性があるため、得られたポリマーの洗浄を行うことが好ましい。洗浄方法に特に限定はない。例えば、得られたポリマーを粉砕して、有機溶媒で未反応モノマーやオリゴマー成分を抽出することができる。残ったポリマーは、水、酸、塩基などで洗浄することができる。また、得られたポリマーを溶媒に完全に、あるいは一部溶解し、水、酸、塩基などで洗浄することも可能である。その際使用できる溶媒としては、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、テトラクロロエチレン、1,1,2,2-テトラクロロエタン、ニトロメタン、ニトロベンゼンなどに加え、N-メチルピロリドンなども挙げることができる。そのような溶媒には未反応モノマーやオリゴマーが溶出してくるので、必要に応じて精製をすることで、回収したオリゴマーやモノマーを原料として再利用することが可能である。一般にポリアリーレンスルフィドは溶媒に対する溶解度が低いため、少なくともポリマーの4質量倍の溶媒を加え、150℃以上に加熱することが必要である。その溶液状態で、水、酸、塩基などで洗浄することが好ましい。これらの洗浄剤として水系のものを使用する場合は、水の沸点以上の温度の溶液と接触させるため、圧力容器中で洗浄することが肝要である。実験室的には得られたポリマーを乳鉢などですりつぶし、ジクロロメタンに分散させて、メタノールと塩酸の混合液で洗浄する。このような方法で洗浄を行ってもよい。 In the polymer obtained in the polymerization step, (A) vanadium compound or (B) boron compound may remain, so it is preferable to wash the obtained polymer. There is no particular limitation on the cleaning method. For example, the obtained polymer can be pulverized and unreacted monomers and oligomer components can be extracted with an organic solvent. The remaining polymer can be washed with water, acid, base or the like. It is also possible to completely or partially dissolve the obtained polymer in a solvent and wash it with water, acid, base or the like. Solvents that can be used in this case include dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, tetrachloroethylene, 1,1,2,2-tetrachloroethane, nitromethane, nitrobenzene, and N-methylpyrrolidone. Can do. Since unreacted monomers and oligomers are eluted in such a solvent, the recovered oligomers and monomers can be reused as raw materials by purification as necessary. In general, since polyarylene sulfide has low solubility in a solvent, it is necessary to add a solvent at least 4 times the mass of the polymer and to heat to 150 ° C. or higher. The solution is preferably washed with water, acid, base or the like. When these water-based cleaning agents are used, it is important to wash in a pressure vessel in order to contact with a solution having a temperature equal to or higher than the boiling point of water. In the laboratory, the polymer obtained is ground in a mortar, dispersed in dichloromethane, and washed with a mixture of methanol and hydrochloric acid. You may wash | clean by such a method.
 本発明においては、先に示した種々条件を複数採用する多段重合を行ってもよい。多段重合を行う場合、一段目での重合と二段目での重合は、内容物を入れ替えることなく、同一の容器内で条件だけ変える方法でも、内容物を別の容器に移し替えて別の条件で重合を継続する方法でもよい。 In the present invention, multi-stage polymerization using a plurality of the various conditions described above may be performed. When performing multi-stage polymerization, the contents of the first and second stages of polymerization can be changed by changing the conditions in the same container without changing the contents. A method of continuing the polymerization under conditions may also be used.
 以上説明した本発明の製造方法によれば、強酸に比較して腐食性の低い特定のホウ素化合物を使用することで、高い収率を持ってポリアリーレンスルフィドを重合することができる。 According to the production method of the present invention described above, polyarylene sulfide can be polymerized with high yield by using a specific boron compound that is less corrosive than a strong acid.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例及び比較例で得られたポリマーの融点及び分子量の測定方法は以下の通りである。また、実施例及び比較例で得られたポリマー(精製PPS)の収率、融点及び分子量は表1に示した。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples. In addition, the measuring method of melting | fusing point and molecular weight of the polymer obtained by the Example and the comparative example is as follows. The yield, melting point and molecular weight of the polymers (purified PPS) obtained in Examples and Comparative Examples are shown in Table 1.
(融点の測定)
 融点は、示差走査熱量計(セイコー電子工業(株)製)を用い、リファレンスとしてα-アルミナを使用して測定した。測定条件は、室温から20℃/分で310℃まで昇温した時の吸熱ピークの頂点を融点とした。
(Measurement of melting point)
The melting point was measured using a differential scanning calorimeter (Seiko Electronics Co., Ltd.) and α-alumina as a reference. The measurement conditions were such that the peak of the endothermic peak when the temperature was raised from room temperature to 310 ° C. at 20 ° C./min was the melting point.
(分子量の測定)
 高温GPC装置(ポリマーラボラトリーズ社製、商品名:PL-220)にカラム(PL gel 10μm MIXED-B LS)2本を連結し、示差屈折率検出器とした。試料10mgに1-クロロナフタレン溶媒5mlを加え、220℃で約30分加熱撹拌した。このように溶解した試料を、流速0.7ml/分で分析することで、分子量(数平均分子量Mn及び重量平均分子量Mw)を測定した。
(Measurement of molecular weight)
Two columns (PL gel 10 μm MIXED-B LS) were connected to a high temperature GPC device (manufactured by Polymer Laboratories, trade name: PL-220) to form a differential refractive index detector. To 10 mg of the sample, 5 ml of 1-chloronaphthalene solvent was added, and the mixture was heated and stirred at 220 ° C. for about 30 minutes. The sample dissolved in this manner was analyzed at a flow rate of 0.7 ml / min to measure the molecular weight (number average molecular weight Mn and weight average molecular weight Mw).
[実施例1]
 50mlの三口フラスコに、ジフェニルジスルフィド(5g)を加え、さらに、バナジル(IV)アセチルアセトネート(VO(acac))及びトリフェニルメチルテトラキス(ペンタフルオロフェニル)ボレート(PhC-B(C)を、モル比でジフェニルジスルフィド:VO(acac):PhC-B(C=100:5:5となるように加えた。フラスコ内をスターラーチップで撹拌しながら、オイルバスにて100℃に加熱し、常圧の酸素ガスを10ml/分の流量で三口フラスコに導入した。20時間後に酸素供給を止め、オイルバスをはずして室温まで冷却した。得られたポリマーを粉砕し、200mlのジクロロメタンに分散し、塩酸酸性メタノールで沈殿精製した。沈殿物をろ過、減圧乾燥することで、精製ポリフェニレンスルフィド(PPS)を得た。
[Example 1]
Diphenyl disulfide (5 g) was added to a 50 ml three-necked flask, and vanadyl (IV) acetylacetonate (VO (acac) 2 ) and triphenylmethyltetrakis (pentafluorophenyl) borate (Ph 3 CB (C 6 F 5 ) 4 ) was added so that the molar ratio was diphenyl disulfide: VO (acac) 2 : Ph 3 CB (C 6 F 5 ) 4 = 100: 5: 5. While stirring the inside of the flask with a stirrer chip, it was heated to 100 ° C. in an oil bath, and atmospheric pressure oxygen gas was introduced into the three-necked flask at a flow rate of 10 ml / min. After 20 hours, the oxygen supply was stopped, the oil bath was removed, and the system was cooled to room temperature. The obtained polymer was pulverized, dispersed in 200 ml of dichloromethane, and purified by precipitation with hydrochloric acid acidic methanol. The precipitate was filtered and dried under reduced pressure to obtain purified polyphenylene sulfide (PPS).
[実施例2]
 50mlの三口フラスコに、ジフェニルジスルフィド(5g)さらに、N,N’-ビスサリチリデンエチレンジアミンオキソバナジウム(VO(salen))及びトリフェニルメチルテトラキス(ペンタフルオロフェニル)ボレート(PhC-B(C)を、モル比で(ジフェニルジスルフィド+テトラメチルジフェニルジスルフィド):VO(salen):PhC-B(C=100:5:10となるように加えた。フラスコ内をスターラーチップで撹拌しながら、オイルバスにて160℃に加熱し、常圧の酸素ガスを10ml/分の流量で三口フラスコに導入した。20時間後に酸素供給を止め、オイルバスをはずして室温まで冷却した。得られたポリマーを粉砕し、200mlのジクロロメタンに分散し、塩酸酸性メタノールで沈殿精製した。沈殿物をろ過、減圧乾燥することで、精製ポリフェニレンスルフィド(PPS)を得た。
[Example 2]
To a 50 ml three-necked flask, diphenyl disulfide (5 g), N, N′-bissalicylideneethylenediamineoxovanadium (VO (salen)) and triphenylmethyltetrakis (pentafluorophenyl) borate (Ph 3 CB (C 6 F 5 ) 4 ) was added at a molar ratio of (diphenyl disulfide + tetramethyldiphenyl disulfide): VO (salen): Ph 3 CB (C 6 F 5 ) 4 = 100: 5: 10 . While stirring the inside of the flask with a stirrer chip, it was heated to 160 ° C. in an oil bath, and atmospheric pressure oxygen gas was introduced into the three-necked flask at a flow rate of 10 ml / min. After 20 hours, the oxygen supply was stopped, the oil bath was removed, and the system was cooled to room temperature. The obtained polymer was pulverized, dispersed in 200 ml of dichloromethane, and purified by precipitation with hydrochloric acid acidic methanol. The precipitate was filtered and dried under reduced pressure to obtain purified polyphenylene sulfide (PPS).
[実施例3]
 50mlの三口フラスコに、ジフェニルジスルフィド(5g)を加え、さらに、N,N’-ビスサリチリデンエチレンジアミンオキソバナジウム(VO(salen))及びトリフェニルメチルテトラキス(ビス3,5-トリフルオロメチル)フェニルボレート(PhC-B(C(CFを、モル比でジフェニルジスルフィド:VO(salen):PhC-B(C(CF=100:5:5となるように加えた。フラスコ内をスターラーチップで撹拌しながら、オイルバスにて100℃に加熱し、常圧の酸素ガスを10ml/分の流量で三口フラスコに導入した。20時間後に酸素供給を止め、オイルバスをはずして室温まで冷却した。得られたポリマーを粉砕し、200mlのジクロロメタンに分散し、塩酸酸性メタノールで沈殿精製した。沈殿物をろ過、減圧乾燥することで、精製ポリフェニレンスルフィド(PPS)を得た。
[Example 3]
Diphenyl disulfide (5 g) is added to a 50 ml three-necked flask, and N, N′-bissalicylideneethylenediamineoxovanadium (VO (salen)) and triphenylmethyltetrakis (bis3,5-trifluoromethyl) phenyl are added. Borate (Ph 3 CB (C 6 H 3 (CF 3 ) 2 ) 4 in a molar ratio of diphenyl disulfide: VO (salen): Ph 3 CB (C 6 H 3 (CF 3 ) 2 ) 4 = The mixture was heated to 100 ° C. in an oil bath while stirring the inside of the flask with a stirrer chip, and atmospheric pressure oxygen gas was introduced into the three-necked flask at a flow rate of 10 ml / min. After 20 hours, the supply of oxygen was stopped, the oil bath was removed, and the mixture was cooled to room temperature. Dispersed in Tan, filtered and precipitated purified with hydrochloric acid methanol. The precipitate, and dried under reduced pressure to obtain a purified polyphenylene sulfide (PPS).
[実施例4]
 50mlの三口フラスコに、ジフェニルジスルフィド(4.5g)及び2,2’,5,5’-テトラメチルジフェニルジスルフィド(0.63g)を加え、さらに、バナジル(IV)アセチルアセトネート(VO(acac))及びトリフェニルメチルテトラキス(ペンタフルオロフェニル)ボレート(PhC-B(C)を、モル比で(ジフェニルジスルフィド+テトラメチルジフェニルジスルフィド):VO(acac):PhC-B(C=100:5:10となるように加えた。フラスコ内をスターラーチップで撹拌しながら、オイルバスにて160℃に加熱し、常圧の酸素ガスを10ml/分の流量で三口フラスコに導入した。20時間後に酸素供給を止め、オイルバスをはずして室温まで冷却した。得られたポリマーを粉砕し、200mlのジクロロメタンに分散し、塩酸酸性メタノールで沈殿精製した。沈殿物をろ過、減圧乾燥することで、精製ポリフェニレンスルフィド(PPS)を得た。
[Example 4]
Diphenyl disulfide (4.5 g) and 2,2 ′, 5,5′-tetramethyldiphenyl disulfide (0.63 g) were added to a 50 ml three-necked flask, and vanadyl (IV) acetylacetonate (VO (acac)) 2 ) and triphenylmethyltetrakis (pentafluorophenyl) borate (Ph 3 CB (C 6 F 5 ) 4 ) in a molar ratio of (diphenyl disulfide + tetramethyldiphenyl disulfide): VO (acac) 2 : Ph 3 C—B (C 6 F 5 ) 4 = 100: 5: 10 was added. While stirring the inside of the flask with a stirrer chip, it was heated to 160 ° C. in an oil bath, and atmospheric oxygen gas was introduced into the three-necked flask at a flow rate of 10 ml / min. After 20 hours, the oxygen supply was stopped, the oil bath was removed, and the system was cooled to room temperature. The obtained polymer was pulverized, dispersed in 200 ml of dichloromethane, and purified by precipitation with hydrochloric acid acidic methanol. The precipitate was filtered and dried under reduced pressure to obtain purified polyphenylene sulfide (PPS).
[比較例1]
 PhC-B(Cの代わりにトリフェニルメチルテトラフルオロボレート(PhC-BF)を使用したこと以外は実施例1と同様にして、精製ポリマーを得た。精製ポリマーの収率は17%であり、融点は見られなかった。この結果から、トリフェニルメチルテトラフルオロボレートの効果がほとんどないことが確認された。
[Comparative Example 1]
A purified polymer was obtained in the same manner as in Example 1 except that triphenylmethyltetrafluoroborate (Ph 3 C-BF 4 ) was used instead of Ph 3 CB (C 6 F 5 ) 4 . The yield of the purified polymer was 17%, and no melting point was observed. From this result, it was confirmed that there was almost no effect of triphenylmethyltetrafluoroborate.
[比較例2]
 PhC-B(Cの代わりに、ナトリウムテトラフェニルボレート(NaB(C)を使用したこと以外は実施例1と同様にして、精製ポリマーを得た。精製ポリマーの収率は3%であり、融点は見られなかった。この結果から、ナトリウムテトラフェニルボレートの効果がほとんどないことが確認された。
[Comparative Example 2]
A purified polymer was obtained in the same manner as in Example 1 except that sodium tetraphenylborate (NaB (C 6 H 5 ) 4 ) was used instead of Ph 3 CB (C 6 F 5 ) 4 . The yield of the purified polymer was 3%, and no melting point was observed. From this result, it was confirmed that there was almost no effect of sodium tetraphenylborate.
[比較例3]
 PhC-B(Cの代わりに、トリフルオロメタンスルフォン酸(TfOH)を使用したこと以外は実施例1と同様にして、精製PPSを得た。
[Comparative Example 3]
Purified PPS was obtained in the same manner as in Example 1, except that trifluoromethanesulfonic acid (TfOH) was used instead of Ph 3 CB (C 6 F 5 ) 4 .
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 以上説明したとおり、本発明によれば、強酸を用いることなくポリアリーレンスルフィドを製造することができる、ポリアリーレンスルフィドの新規な製造方法を提供することができる。 As described above, according to the present invention, it is possible to provide a novel method for producing polyarylene sulfide, which can produce polyarylene sulfide without using a strong acid.

Claims (5)

  1.  (A)バナジウム化合物、(B)構成元素としてフッ素を含む芳香族基を有するホウ素化合物、及び、(C)酸化剤の存在下で、置換もしくは未置換のジフェニルジスルフィド、及び/又は、置換もしくは未置換のチオフェノールを含むモノマーを重合する工程を有する、ポリアリーレンスルフィドの製造方法。 (A) a vanadium compound, (B) a boron compound having an aromatic group containing fluorine as a constituent element, and (C) a substituted or unsubstituted diphenyl disulfide and / or a substituted or unsubstituted in the presence of an oxidizing agent. A method for producing polyarylene sulfide, comprising a step of polymerizing a monomer containing a substituted thiophenol.
  2.  前記(A)バナジウム化合物が、オキソバナジウム化合物である、請求項1に記載のポリアリーレンスルフィドの製造方法。 The method for producing polyarylene sulfide according to claim 1, wherein the (A) vanadium compound is an oxo vanadium compound.
  3.  前記(B)構成元素としてフッ素を含む芳香族基を有するホウ素化合物が、下記一般式(I)又は(II)で表される化合物を含む、請求項1又は2に記載のポリアリーレンスルフィドの製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [式(I)中、RはLi、Na、K、Cs、炭素数1~30の炭化水素基、又は、炭素数1~30の炭化水素基が3つ置換したシリル基を示し、nは1~5の整数を示す。]
    Figure JPOXMLDOC01-appb-C000002
    [式(II)中、RはLi、Na、K、Cs、炭素数1~30の炭化水素基、又は、炭素数1~30の炭化水素基が3つ置換したシリル基を示す。]
    The production of polyarylene sulfide according to claim 1 or 2, wherein the boron compound having an aromatic group containing fluorine as the constituent element (B) includes a compound represented by the following general formula (I) or (II). Method.
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (I), R represents Li, Na, K, Cs, a hydrocarbon group having 1 to 30 carbon atoms, or a silyl group in which three hydrocarbon groups having 1 to 30 carbon atoms are substituted, and n represents An integer of 1 to 5 is shown. ]
    Figure JPOXMLDOC01-appb-C000002
    [In the formula (II), R represents Li, Na, K, Cs, a hydrocarbon group having 1 to 30 carbon atoms, or a silyl group in which three hydrocarbon groups having 1 to 30 carbon atoms are substituted. ]
  4.  前記(C)酸化剤が、酸素分子を含むガスである、請求項1~3のいずれか一項に記載のポリアリーレンスルフィドの製造方法。 The method for producing polyarylene sulfide according to any one of claims 1 to 3, wherein the (C) oxidizing agent is a gas containing oxygen molecules.
  5.  前記モノマーが、未置換ジフェニルジスルフィド及び未置換チオフェノールのうちの少なくとも一方と、置換ジフェニルジスルフィド及び置換チオフェノールのうちの少なくとも一方とを含む、請求項1~4のいずれか一項に記載のポリアリーレンスルフィドの製造方法。 The poly monomer according to any one of claims 1 to 4, wherein the monomer comprises at least one of unsubstituted diphenyl disulfide and unsubstituted thiophenol and at least one of substituted diphenyl disulfide and substituted thiophenol. A process for producing arylene sulfide.
PCT/JP2013/056506 2012-03-08 2013-03-08 Method for producing polyarylene sulfide WO2013133423A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014503566A JP6052630B2 (en) 2012-03-08 2013-03-08 Process for producing polyarylene sulfide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-051541 2012-03-08
JP2012051541 2012-03-08

Publications (1)

Publication Number Publication Date
WO2013133423A1 true WO2013133423A1 (en) 2013-09-12

Family

ID=49116890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056506 WO2013133423A1 (en) 2012-03-08 2013-03-08 Method for producing polyarylene sulfide

Country Status (2)

Country Link
JP (1) JP6052630B2 (en)
WO (1) WO2013133423A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110698858A (en) * 2019-10-23 2020-01-17 四川大学 High boronizing activity polyarylene sulfide composite material with nuclear radiation protection function and preparation thereof
CN110724263A (en) * 2019-10-23 2020-01-24 四川大学 Boron-containing two-dimensional polyarylene sulfide material with neutron absorption function and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169626A (en) * 1988-12-22 1990-06-29 Res Inst For Prod Dev Production of polyarylene thioether
JPH03221528A (en) * 1990-01-29 1991-09-30 Res Inst For Prod Dev Preparation of polyarylene thioether
JPH0455434A (en) * 1990-06-26 1992-02-24 Idemitsu Petrochem Co Ltd Production of polyarylene sulfide
JPH0457830A (en) * 1990-06-28 1992-02-25 Idemitsu Petrochem Co Ltd Preparation of polyarylene sulfide
JPH0491132A (en) * 1990-08-03 1992-03-24 Res Inst For Prod Dev Production of polyarylene thioether derivative

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169626A (en) * 1988-12-22 1990-06-29 Res Inst For Prod Dev Production of polyarylene thioether
JPH03221528A (en) * 1990-01-29 1991-09-30 Res Inst For Prod Dev Preparation of polyarylene thioether
JPH0455434A (en) * 1990-06-26 1992-02-24 Idemitsu Petrochem Co Ltd Production of polyarylene sulfide
JPH0457830A (en) * 1990-06-28 1992-02-25 Idemitsu Petrochem Co Ltd Preparation of polyarylene sulfide
JPH0491132A (en) * 1990-08-03 1992-03-24 Res Inst For Prod Dev Production of polyarylene thioether derivative

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIDETOSHI TSUCHIDA: "Oxygenics (Kobunshi Sakutai)", SENRYAKUTEKI KISO KENKYU SUISHIN JIGYO TEAM-GATA KENKYU CREST HEISEI 7 NENDO SAITAKU KENKYU KADAI KENKYU SHURYO HOKOKUSHO GAIYOBAN, January 2002 (2002-01-01), Retrieved from the Internet <URL:http://www.jst.go.jp/kisoken/crest/report/sh_heisei7/pdf/pdf-04_tannitsu/tannitsu-04.PDF> [retrieved on 20130521] *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110698858A (en) * 2019-10-23 2020-01-17 四川大学 High boronizing activity polyarylene sulfide composite material with nuclear radiation protection function and preparation thereof
CN110724263A (en) * 2019-10-23 2020-01-24 四川大学 Boron-containing two-dimensional polyarylene sulfide material with neutron absorption function and preparation method thereof
CN110724263B (en) * 2019-10-23 2020-08-14 四川大学 Boron-containing two-dimensional polyarylene sulfide material with neutron absorption function and preparation method thereof
CN110698858B (en) * 2019-10-23 2020-09-15 四川大学 High boronizing activity polyarylene sulfide composite material with nuclear radiation protection function and preparation thereof

Also Published As

Publication number Publication date
JP6052630B2 (en) 2016-12-27
JPWO2013133423A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
Teasley et al. Synthesis and characterization of poly (oxy-1, 3-phenylenecarbonyl-1, 4-phenylene) and related polymers
Pinaud et al. Step-growth polymerization of terephthaldehyde catalyzed by N-heterocyclic carbenes
JP6052630B2 (en) Process for producing polyarylene sulfide
JP6531985B2 (en) Molding material and method for manufacturing the same, and optical member and method for manufacturing the same
CN112851942B (en) Preparation method of polyether sulfone
JP6179945B2 (en) Process for producing polyarylene sulfide
JP6241881B2 (en) Molding material, optical member using the same, and method for producing molding material
JP6179946B2 (en) Process for producing polyarylene sulfide
JP6286773B2 (en) Process for producing polyarylene sulfide
JPH01207320A (en) Production of aromatic polyether
JPH0428732B2 (en)
JP6052631B2 (en) Process for producing polyarylene sulfide
JP6324787B2 (en) Novel diol compounds and polyesters
JP7113480B2 (en) Copolymer production method
JPH07116288B2 (en) Novel aromatic polyether sulfone copolymer and method for producing the same
JPS5974123A (en) Production of polyarylene ether
CN116120539A (en) Polyarylether polymer containing ketimine structure and preparation method thereof
JP3990470B2 (en) Process for producing poly-1,4-phenylene ether
JPS62195020A (en) Production of aromatic polyether
JP3729558B2 (en) Process for producing poly-1,4-phenylene ether
JPH04335030A (en) Aromatic polysulfone copolymer
JPH06184300A (en) Aromatic polyether, its production and triazine compound
JPH01153722A (en) Novel polyether ketone copolymer
JPH0277426A (en) Novel crystalline aromatic polysulfone and production thereof
JPS61231026A (en) Production of polycyanoaryl ether

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014503566

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13758703

Country of ref document: EP

Kind code of ref document: A1