WO2013133228A1 - Polycarbonate resin composition - Google Patents

Polycarbonate resin composition Download PDF

Info

Publication number
WO2013133228A1
WO2013133228A1 PCT/JP2013/055883 JP2013055883W WO2013133228A1 WO 2013133228 A1 WO2013133228 A1 WO 2013133228A1 JP 2013055883 W JP2013055883 W JP 2013055883W WO 2013133228 A1 WO2013133228 A1 WO 2013133228A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
polycarbonate resin
resin composition
parts
group
Prior art date
Application number
PCT/JP2013/055883
Other languages
French (fr)
Japanese (ja)
Inventor
野寺 明夫
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2013133228A1 publication Critical patent/WO2013133228A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the present invention is excellent in environmental characteristics by using a biomass material, has little reduction in impact strength, has a low specific gravity, high rigidity, excellent molding appearance, has good thermal stability, little coloration, and imparts flame retardancy. It is related with the made polycarbonate resin composition.
  • Patent Document 1 discloses a technique of blending cellulose or a cellulose derivative in order to improve the fluidity and chemical resistance of a polycarbonate resin.
  • Patent Document 1 is a polymer alloy technique such as cellulose acetate, and is not intended to improve mechanical strength such as rigidity by blending cellulose fibers.
  • Patent Document 2 a natural organic filler is used to blend an aliphatic polyester and a natural organic filler into an aromatic polycarbonate resin to obtain a resin composition having excellent mechanical properties and flame retardancy.
  • a technique in which a jute fiber or rayon fiber is used as a composite with a resin composition is disclosed.
  • the resin composition obtained in Patent Document 2 has a large decrease in impact strength, an insufficient molding appearance, a large coloration, and an insufficient thermal stability during molding.
  • the present invention has been made under the above circumstances, and is excellent in environmental characteristics due to the use of biomass material, has little reduction in impact strength, has low specific gravity, high rigidity, excellent molding appearance, and good thermal stability.
  • An object of the present invention is to provide a resin composition with little coloration and imparted with flame retardancy.
  • the present inventors solved the above problem by blending cellulose fibers having a specific average fiber diameter and average fiber length as a biomass material into a polycarbonate resin together with a terpene compound. Found to get. That is, the present invention relates to the following polycarbonate resin composition.
  • (A) Polycarbonate resin In the polycarbonate resin composition of the present invention (hereinafter sometimes abbreviated as PC resin composition), (A) the polycarbonate resin may be an aromatic PC resin or an aliphatic PC resin, An aromatic PC resin is preferable from the viewpoint of impact resistance and heat resistance.
  • an aromatic PC resin having a terminal group represented by the following general formula (1) can be used.
  • R 1 is an alkyl group having 1 to 35 carbon atoms, and may be linear or branched. Further, the bond position may be any of p-position, m-position and o-position, but p-position is preferred.
  • a represents an integer of 0 to 5.
  • the viscosity average molecular weight of this aromatic PC resin is usually 10,000 to 40,000, and is preferably 13,000 to 30,000, more preferably 15 from the viewpoint of imparting heat resistance, flame retardancy and impact resistance. , 4,000 to 24,000.
  • the aromatic PC resin having a terminal group represented by the general formula (1) can be easily produced by reacting a dihydric phenol with phosgene or a carbonate compound. That is, for example, in a solvent such as methylene chloride, by the reaction of a dihydric phenol and a carbonate precursor such as phosgene in the presence of a catalyst such as triethylamine and a specific end terminator, or between the dihydric phenol and diphenyl carbonate. It is produced by transesterification with such a carbonate precursor.
  • the dihydric phenol include compounds represented by the following general formula (2).
  • R 2 and R 3 represent an alkyl group having 1 to 6 carbon atoms or a phenyl group, and may be the same or different.
  • Z is a single bond, an alkylene group having 1 to 20 carbon atoms or an alkylidene group having 2 to 20 carbon atoms, a cycloalkylene group having 5 to 20 carbon atoms, a cycloalkylidene group having 5 to 20 carbon atoms, or —SO 2 —, — SO—, —S—, —O—, —CO— bond is shown.
  • An isopropylidene group is preferred.
  • b and c are integers of 0 to 4, preferably 0.
  • Examples of the dihydric phenol represented by the general formula (2) include 4,4′-dihydroxydiphenyl; 1,1-bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, Bis (4-hydroxyphenyl) alkanes such as 2,2-bis (4-hydroxyphenyl) propane; bis (4-hydroxyphenyl) cycloalkane; bis (4-hydroxyphenyl) oxide; bis (4-hydroxyphenyl) sulfide Bis (4-hydroxyphenyl) sulfone; bis (4-hydroxyphenyl) sulfoxide; bis (4-hydroxyphenyl) ketone, and the like.
  • 2,2-bis (4-hydroxyphenyl) propane [commonly known as bisphenol A] is preferable.
  • dihydric phenols may be used alone or in combination of two or more.
  • the dihydric phenol may be a homopolymer using one of the above dihydric phenols or a copolymer using two or more.
  • the thermoplastic random branched polycarbonate obtained by using a polyfunctional aromatic compound together with the said bihydric phenol may be sufficient.
  • Examples of the carbonate compound include diaryl carbonates such as diphenyl carbonate, and dialkyl carbonates such as dimethyl carbonate and diethyl carbonate.
  • a phenol compound in which the terminal group represented by the general formula (1) is formed that is, a phenol compound represented by the following general formula (3) may be used.
  • R 1 and a are as defined above.
  • Examples of the phenol compound represented by the general formula (3) include phenol, p-cresol, p-tert-butylphenol, p-tert-octylphenol, p-cumylphenol, p-nonylphenol, docosylphenol, tetracosyl. Examples include phenol, hexacosylphenol, octacosylphenol, triacontylphenol, dotriacontylphenol, tetratriacontylphenol, p-tert-pentylphenol, and the like. You may use these individually by 1 type or in mixture of 2 or more types. Further, these phenol compounds may be used in combination with other phenol compounds as necessary.
  • the aromatic PC resin produced by the above method has a terminal group represented by the general formula (1) substantially at one or both ends of the molecule.
  • the PC resin as the component (A) is abbreviated as a polycarbonate-polyorganosiloxane copolymer (hereinafter referred to as a PC-POS copolymer) from the viewpoint of improving heat resistance, flame retardancy and impact resistance. Or a PC resin containing the same.
  • the PC-POS copolymer is more preferably a polycarbonate-polydimethylsiloxane copolymer in which POS is polydimethylsiloxane.
  • the polyorganosiloxane part (segment) is preferably 0.1 to 10% by mass, more preferably 0.5 to 7% by mass, and further preferably 2 to 5% by mass in the component (A). Further, it is preferably 0.05 to 3% by mass in the PC resin composition of the present invention.
  • the PC-POS copolymer for example, one having a terminal group represented by the following general formula (4) can be used.
  • R 4 represents an alkyl group having 1 to 35 carbon atoms
  • d represents an integer of 0 to 5.
  • the PC-POS copolymer include JP-A-50-29695, JP-A-3-292359, JP-A-4-202465, JP-A-8-81620, and JP-A-8-302178. And a copolymer disclosed in JP-A-10-7897.
  • the alkyl group having 1 to 35 carbon atoms represented by R 4 may be linear or branched, The bonding position may be any of p-position, m-position and o-position, but p-position is preferred.
  • a polycarbonate part composed of a structural unit represented by the following general formula (5) and a polyorganosiloxane part composed of a structural unit represented by the following general formula (6) are preferably included in the molecule.
  • R 5 and R 6 represent an alkyl group having 1 to 6 carbon atoms or a phenyl group, and may be the same or different.
  • R 7 to R 10 each represent an alkyl group having 1 to 6 carbon atoms or a phenyl group, and is preferably a methyl group.
  • R 7 to R 10 may be the same or different.
  • R 11 represents a divalent organic residue containing an aliphatic or aromatic group, and preferably an o-allylphenol residue, a p-hydroxystyrene residue or an eugenol residue.
  • Z ′ is a single bond, an alkylene group having 1 to 20 carbon atoms or an alkylidene group having 2 to 20 carbon atoms, a cycloalkylene group having 5 to 20 carbon atoms, a cycloalkylidene group having 5 to 20 carbon atoms, or —SO 2 —, —SO—, —S—, —O—, —CO— bond is shown.
  • An isopropylidene group is preferred.
  • e and f are integers of 0 to 4, preferably 0.
  • n is an integer of 1 to 500, preferably 5 to 200, more preferably 15 to 300, and still more preferably 30 to 150.
  • the PC-POS copolymer includes, for example, a polycarbonate oligomer (hereinafter abbreviated as a PC oligomer) constituting a polycarbonate part produced in advance, an o-allylphenol group and p-hydroxy at the terminal constituting the polyorganosiloxane part.
  • a polycarbonate oligomer hereinafter abbreviated as a PC oligomer
  • a polyorganosiloxane (reactive POS) having a reactive group such as a styrene group or an eugenol residue is dissolved in a solvent such as methylene chloride, chlorobenzene, chloroform, and a caustic aqueous solution of a dihydric phenol is added.
  • a general end-stopper consisting of a phenol compound represented by the following general formula (7)
  • R 4 and d are as defined above.
  • Examples of the phenol compound represented by the general formula (7) include the same compounds as the exemplary compound of the general formula (3).
  • the PC oligomer used for the production of the PC-POS copolymer is obtained by reacting a dihydric phenol with a carbonate precursor such as phosgene in a solvent such as methylene chloride, or of a dihydric phenol and diphenyl carbonate. It can manufacture by transesterification etc. with such a carbonate precursor.
  • a dihydric phenol the thing similar to the exemplary compound of the said General formula (2) can be used, and bisphenol A is especially preferable.
  • the carbonate compound examples include diaryl carbonates such as diphenyl carbonate, and dialkyl carbonates such as dimethyl carbonate and diethyl carbonate.
  • the PC oligomer used for the production of the PC-POS copolymer may be a homopolymer using one of the above dihydric phenols, or may be a copolymer using two or more.
  • the thermoplastic random branched polycarbonate obtained by using a polyfunctional aromatic compound together with the said bihydric phenol may be sufficient. In that case, 1,1,1-tris (4-hydroxyphenyl) ethane, ⁇ , ⁇ ′, ⁇ ′′ -tris (4-hydroxyphenyl) -1,3 is used as a branching agent (polyfunctional aromatic compound).
  • the PC-POS copolymer can be produced as described above. Generally, an aromatic PC resin is produced as a by-product, and the PC-POS copolymer is produced as an aromatic PC resin containing the PC-POS copolymer.
  • the aromatic PC-POS copolymer produced by the above method substantially has an aromatic end group represented by the general formula (4) on one or both of the molecules.
  • (B) Cellulose fiber In the present invention, by using cellulose fibers having a specific average fiber diameter and average fiber length as the biomass material, coloring can be suppressed and a decrease in impact strength can be suppressed. Furthermore, since (B) cellulose fiber can improve rigidity, although it is low specific gravity compared with inorganic fibers, such as glass fiber, it can be set as the low specific gravity resin composition with high rigidity. Examples of cellulose fibers include cellulose fibers derived from natural plants such as wood fibers, bamboo fibers, sugarcane fibers, seed hair fibers, and leaf fibers. These cellulose fibers may be used alone or in combination of two or more. It may be used.
  • the cellulose fibers in the present invention have an average fiber diameter of 5 to 50 ⁇ m and an average fiber length of 0.03 to 1.5 mm as measured using an electron micrograph.
  • the average fiber diameter is less than 5 ⁇ m, the impact resistance strength and rigidity improvement effects are not exhibited, and when the average fiber diameter exceeds 50 ⁇ m, the molded appearance and impact strength are greatly reduced. Further, if the average fiber length is less than 0.03 mm, the impact strength and rigidity improving effects are not exhibited, and if the average fiber length exceeds 1.5 mm, the molded appearance is remarkably deteriorated.
  • a more preferable average fiber diameter is 10 to 40 ⁇ m, and a more preferable average fiber length is 0.05 to 1.0 mm.
  • the cellulose fibers having the above size may be blended as they are, or may be blended after defibration with a mixer or the like.
  • the content of ⁇ -cellulose is preferably 80% by mass or more, and more preferably 85% by mass or more. If the purity is higher than 80% by mass of ⁇ -cellulose, the fiber diameter and fiber length can be easily adjusted, and entanglement between fibers can be suppressed. For example, 80% by mass of ⁇ -cellulose such as well-known kenaf fiber or jute fiber Compared to the case of using less than 1%, the thermal stability at the time of melting is high, the impact strength is not lowered, the coloration suppressing effect is good, and the effect of the present invention is further improved. be able to.
  • the content of each component is (A) component 99 to 60% by mass and (B) component 1 to 40% by mass.
  • component (B) is less than 1% by mass, the effect of improving the mechanical properties such as the elastic modulus is not exhibited, and when it exceeds 40% by mass, the mechanical properties such as the impact strength are greatly deteriorated.
  • the content of the component (B) in the resin mixture is preferably 5 to 30% by mass, and more preferably 5 to 25% by mass.
  • the cellulose fiber is uniformly dispersed in the resin composition, thereby improving the mechanical strength and fluidity of the resin composition and suppressing the coloring (C) a terpene compound.
  • the (C) terpene compound means a hydrocarbon having a composition of (C 5 H 8 ) n and an oxygen-containing compound derived therefrom and those having different degrees of unsaturation. More specifically, a terpene monomer (C 10 H 16 ) alone, a terpene monomer and an aromatic vinyl monomer, or a copolymer obtained by copolymerizing a terpene monomer and a phenol are listed. It is done.
  • the hydrogenated terpene type compound obtained by hydrogenating the obtained terpene type compound may be sufficient.
  • These terpene compounds may be used alone or in combination of two or more.
  • the terpene monomer include ⁇ -pinene, ⁇ -pinene, dipentene, d-limonene, and the aromatic vinyl monomer includes styrene, ⁇ -methylstyrene, vinyltoluene, and the like.
  • the phenols include phenol, cresol, bisphenol A, and the like.
  • terpene compounds can be obtained by reacting in the presence of a Friedel-Craft type catalyst in an organic solvent together with a terpene monomer alone or an aromatic vinyl monomer and phenols. That is, examples of terpene compounds include terpene resins, hydrogenated terpene resins, terpene-phenol resins, terpene-bisphenol A resins, and the like. In the present invention, those containing phenols, such as terpene-phenol resin and terpene-bisphenol A resin, are preferable because of excellent fluidity and (B) dispersibility of cellulose fibers.
  • the content of the (C) terpene compound is 0.2 to 30 parts by weight, preferably 2 to 20 parts by weight, based on 100 parts by weight of the resin mixture composed of the components (A) and (B).
  • the amount is preferably 5 to 15 parts by mass.
  • the content is less than 0.2 parts by mass, the effect of improving the dispersibility of the (B) cellulose fiber cannot be exhibited, and the fluidity improvement and coloring suppression effect of the resin composition cannot be obtained.
  • this content exceeds 30 mass parts, the impact resistance and heat resistance fall remarkably.
  • [(D) phosphorus compound] In the PC resin composition of the present invention, it is preferable to contain (D) a phosphorus compound from the viewpoint of further improving flame retardancy, fluidity, and coloring suppression.
  • a phosphorus compound As a phosphorus compound, phosphoric acid ester, phosphorous acid ester, phosphonic acid ester, a phosphine, etc. are mentioned, These phosphorus compounds can be used individually by 1 type or in mixture of 2 or more types. Among the above phosphorus compounds, particularly from the viewpoint of suppressing coloring of the resin composition molded article, a phosphoric acid ester or a combined use of phosphoric acid ester and phosphite is preferable.
  • Examples of the phosphate ester include compounds represented by the following general formula (8).
  • R 12 , R 13 , R 14 and R 15 each independently represent a hydrogen atom or an organic group
  • X represents a divalent or higher valent organic group
  • p is 0 or 1.
  • q is an integer of 1 or more
  • r represents an integer of 0 or more.
  • an organic group means a substituted or unsubstituted alkyl group, a cycloalkyl group, an aryl group, etc. Examples of the substituent when substituted include an alkyl group, an alkoxy group, an aryl group, an aryloxy group, and an arylthio group.
  • an arylalkoxyalkyl group that is a combination of these substituents, or an arylsulfonylaryl group that is a combination of these substituents bonded by an oxygen atom, nitrogen atom, sulfur atom, or the like is used as a substituent.
  • the divalent or higher organic group X means a divalent or higher valent group formed by removing one or more hydrogen atoms bonded to a carbon atom from the organic group.
  • it is derived from an alkylene group, a (substituted) phenylene group, or a bisphenol that is a polynuclear phenol.
  • Preferable examples include bisphenol A, hydroquinone, resorcinol, dihydroxydiphenyl, dihydroxynaphthalene and the like.
  • the phosphate ester may be a monomer, oligomer, polymer, or a mixture thereof. Specifically, trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, tri (2-ethylhexyl) phosphate, di- Isopropylphenyl phosphate, trixylenyl phosphate, tris (isopropylphenyl) phosphate, tributyl phosphate, bisphenol A bisphosphate, hydroquinone bisphosphate, resorcin bisphosphate, resorcinol-diphenyl phosphate, trioxybenzene triphosphate, cresyl diphenyl phosphate, etc. Can be mentioned. As
  • halogen-free phosphoric acid ester compounds examples include, for example, AX-71 [mono-dialkoxy type phosphoric acid ester] manufactured by ADEKA Corporation, and Daihachi Chemical Industry Co., Ltd.
  • TPP [triphenyl phosphate], TXP [trixylenyl phosphate], PFR [resorcinol (diphenyl phosphate)], PX200 [1,3-phenylene-teslakis (2,6-dimethylphenyl) phosphate], PX201 [1,4- Phenylene-tetrakis (2,6-dimethylphenyl) phosphate], PX202 [4,4′-biphenylene-teslakis (2,6-dimethylphenyl) phosphate] and the like.
  • the phosphite is represented by the following general formula (9).
  • R 16 and R 17 each represent hydrogen, an alkyl group, a cycloalkyl group, or an aryl group.
  • the cycloalkyl group and the aryl group may be substituted with an alkyl group.
  • Specific examples include compounds represented by the following formula (10) [ADEKA STAB (registered trademark) PEP-36: manufactured by ADEKA Corporation] and compounds of (11) to (14).
  • tris (2,4-di-t-butylphenyl) phosphite tris (nonylphenyl) phosphite, triphenyl phosphite, tridecyl phosphite, trioctadecyl phosphite Etc.
  • the phosphite one containing a pentaerythritol structure or one containing an alkyl ester structure is preferable.
  • the content of the (D) phosphorus compound is preferably 0.2 to 30 parts by mass, more preferably 2 to 20 parts by mass with respect to 100 parts by mass of the resin mixture comprising the components (A) and (B). More preferably, it is 5 to 15 parts by mass. If this content is 0.2 parts by mass or more, the flame retardancy and fluidity are further improved, and a more excellent coloring suppression effect is obtained. Moreover, if this content is 30 parts by mass or less, impact resistance and heat resistance will not be lowered.
  • the polycarbonate resin composition of the present invention can contain (E) polytetrafluoroethylene from the viewpoint of suppressing melt dripping and imparting high flame retardancy.
  • the polytetrafluoroethylene is preferably polytetrafluoroethylene (hereinafter abbreviated as PTFE) having a fibril-forming ability, and usually has an average molecular weight of about 500,000 or more. The average molecular weight is preferably 500,000 to 10,000,000, more preferably 1,000,000 to 10,000,000.
  • PTFE having fibril-forming ability is not particularly limited, and specifically, Teflon (registered trademark) 6-J manufactured by Mitsui DuPont Fluorochemical Co., Ltd., Polyflon (registered trademark) manufactured by Daikin Industries, Ltd. D-1, F-103, F201, MPA FA-100, CD076 manufactured by Asahi Glass Fluoropolymers Co., Ltd., and Algoflon (registered trademark) F5 manufactured by Montefluos.
  • the PTFE having the fibril-forming ability as described above for example, tetrafluoroethylene in an aqueous solvent in the presence of sodium, potassium or ammonium peroxydisulfide, usually at a pressure of about 7 to 700 kPa, at a temperature of 0 to 200 ° C. It can be obtained by polymerization at a degree, preferably 20 to 100 ° C.
  • (E) polytetrafluoroethylene can exhibit extremely high melt dripping suppression and flame retardancy when used in combination with a polycarbonate-polyorganosiloxane copolymer that can be included in (A) polycarbonate resin. it can.
  • the content of (E) polytetrafluoroethylene is preferably 0.05 to 1 part by mass, more preferably 0.1 to 100 parts by mass of the resin mixture composed of the component (A) and the component (B). Is 0.5 parts by mass. If this content is 0.05 parts by mass or more, the melt dripping suppression in the desired flame retardance will be sufficient. If this content is 1 part by mass or less, the appearance of the molded product does not become poor without lowering the impact resistance. Therefore, the amount of flame retardancy required for each molded product and the thickness can be appropriately determined in consideration of the amount used.
  • the polycarbonate resin composition of the present invention has other resins and additives at the time of mixing and molding, for example, pigments, dyes, reinforcing agents, fillers, heat-resistant agents, oxidation inhibitors, weathering agents, as long as the physical properties are not impaired. Further, a lubricant, a release agent, a crystal nucleating agent, a plasticizer, a fluidity improver, an antistatic agent and the like can be added.
  • Polycarbonate resin composition As a manufacturing method of the polycarbonate resin composition of this invention, the method of melt-kneading each component by a conventionally well-known method is mentioned. For example, a method in which each component is dispersed and mixed with a high speed mixer represented by a tumble mixer, a Henschel mixer, a ribbon blender, or a super mixer, and then melt-kneaded with an extruder, a Banbury mixer, a roll, or the like is appropriately selected.
  • a high speed mixer represented by a tumble mixer, a Henschel mixer, a ribbon blender, or a super mixer
  • the molding method using the polycarbonate resin composition of the present invention there are no particular limitations on the molding method using the polycarbonate resin composition of the present invention, and molding methods such as injection molding, injection compression molding, extrusion molding, and hollow molding can be applied. Since the molded article using the polycarbonate resin composition of the present invention has the above-mentioned properties, it can be suitably used, for example, in the field of office automation equipment, information / communication equipment, automobile parts or building materials.
  • the impact strength is small and the rigidity is low and the specific gravity (MPa) is obtained by dividing the bending modulus (MPa) by the specific gravity.
  • MPa specific gravity
  • the surface roughness and the like are reduced, the molded appearance is excellent, the thermal stability is good, the coloring is small, and the dispersibility of the cellulose fiber is improved by adding a terpene compound.
  • It is a resin composition.
  • it is a resin composition that can be further flame retardant by blending a phosphorus compound and polytetrafluoroethylene.
  • the polycarbonate resin composition of the present invention generally has the Izod (IZOD) impact strength, specific rigidity, oxygen index (LOI), flame retardancy, and thermal stability of the molded product obtained in the performance evaluation described in the following examples. It has the characteristics that it satisfies the following performance and has an excellent molded appearance.
  • Izod (IZOD) impact strength preferably 30 ⁇ 3kJ / m 2, more preferably 30 ⁇ 5kJ / m 2, particularly preferably 30 ⁇ 10kJ / m 2. If the IZOD impact strength is 10 kJ / m 2 or more, the housing strength of ordinary electronic / electrical equipment is satisfied, and if it is 3 kJ / m 2 or less, the product may be damaged due to dropping or impact.
  • the specific rigidity is preferably 2000 MPa or more, more preferably 2300 MPa or more, and particularly preferably 2400 MPa or more, from the viewpoint of a balance between lightness and rigidity.
  • the oxygen index (LOI) is preferably 24% or more, more preferably 25% or more, particularly preferably 30% or more, and the flame retardancy is preferably V-1 or more.
  • the heat stability is preferably 45 or less in terms of yellow index (YI) from the viewpoint that coloring is suppressed.
  • (A) Component: Polycarbonate resin / aromatic polycarbonate resin: Trade name FN1900A [manufactured by Idemitsu Kosan Co., Ltd., manufactured using bisphenol A as a raw material, viscosity average molecular weight 19,500]
  • MI Melt index Measured according to ASTM D-1238 at 260 ° C. under a load of 2.16 kg. Unit: g / 10 min (2) Specific gravity Based on ASTM D792, test pieces of Examples and Comparative Examples obtained by injection molding were measured. (3) IZOD (Izod impact strength): In accordance with ASTM D256, a specimen having a thickness of 1/8 inch (1 / 20.3 cm) was used and measured at 23 ° C. Unit: kJ / m 2 (4) Flexural modulus Based on ASTM D-790, a test piece having a thickness of 3 mm was used and measured at 23 ° C.
  • Examples 1 to 10 and Comparative Examples 1 to 12 Each component was mix
  • Irganox (registered trademark) 1076 manufactured by BASF
  • 0.1 parts by mass of ADK STAB (registered trademark) C manufactured by ADEKA
  • the present invention is excellent in environmental characteristics by using biomass material, has little decrease in impact strength, has low specific gravity and high rigidity, that is, high specific rigidity and excellent appearance, heat stability, flame retardancy Can be suitably used, for example, in the field of OA equipment, information / communication equipment, automobile parts or building materials.

Abstract

The present invention provides a polycarbonate resin composition which comprises 100 parts by mass of a resin mixture comprising 99 to 60 mass% of a polycarbonate resin (A) and 1 to 40 mass% of cellulose fibers (B) having an average fiber diameter of 5 to 50 μm and an average fiber length of 0.03 to 1.5 mm and 0.2 to 30 parts by mass of a terpene compound (C), said resin composition having excellent environmental properties because a biomass material is used, having a low specific gravity, high stiffness, excellent molding appearance and good thermal stability, and being imparted with flame retardancy.

Description

ポリカーボネート樹脂組成物Polycarbonate resin composition
 本発明は、バイオマス材料の利用により環境特性に優れ、かつ衝撃強度の低下が少なく、低比重にして高剛性で成形外観に優れ、さらに熱安定性が良好で着色が少なく、難燃性が付与されたポリカーボネート樹脂組成物に関する。 The present invention is excellent in environmental characteristics by using a biomass material, has little reduction in impact strength, has a low specific gravity, high rigidity, excellent molding appearance, has good thermal stability, little coloration, and imparts flame retardancy. It is related with the made polycarbonate resin composition.
 近年、環境保護の観点からバイオマス材料が注目されており、天然由来の有機充填材やバイオポリマーとの複合材料が、自動車、OA・電気電子材料として使用され始めている。また、樹脂に剛性等の機械的強度や耐熱性を向上させる目的から、樹脂組成にガラス繊維等の無機充填剤を配合する方法が検討されているが、大量に加える必要があるため、成形品の比重が増大し、さらに焼却又は廃棄時にゴミとなる残留物が増加して環境に負荷がかかる等の問題がある。 In recent years, biomass materials have attracted attention from the viewpoint of environmental protection, and natural organic fillers and composite materials with biopolymers have begun to be used as automobiles, OA / electrical and electronic materials. In addition, for the purpose of improving mechanical strength such as rigidity and heat resistance to the resin, a method of adding an inorganic filler such as glass fiber to the resin composition has been studied. There is a problem that the specific gravity of the wastewater increases, and the residue which becomes garbage at the time of incineration or disposal increases, which places a burden on the environment.
 天然由来の有機充填材を配合した複合材料として、例えば特許文献1には、ポリカーボネート樹脂の流動性や耐薬品性を改善するために、セルロースもしくはセルロース誘導体を配合させる技術が開示されている。しかし、特許文献1は酢酸セルロース等のポリマーアロイ技術であり、セルロース繊維を配合し、剛性等の機械的強度を向上させることが目的ではない。
 さらに、特許文献2には、芳香族ポリカーボネート樹脂に脂肪族ポリエステルと天然由来の有機充填材を配合して機械特性及び難燃性に優れた樹脂組成物とするために、天然由来の有機充填材としてジュート繊維やレーヨン繊維を用いて樹脂組成物と複合化した技術が開示されている。しかし、特許文献2で得られる樹脂組成物は、衝撃強度の低下が大きかったり、成形外観が不十分であったりし、また着色が大きく、成形時の熱安定性も十分ではない。
As a composite material in which a natural organic filler is blended, for example, Patent Document 1 discloses a technique of blending cellulose or a cellulose derivative in order to improve the fluidity and chemical resistance of a polycarbonate resin. However, Patent Document 1 is a polymer alloy technique such as cellulose acetate, and is not intended to improve mechanical strength such as rigidity by blending cellulose fibers.
Furthermore, in Patent Document 2, a natural organic filler is used to blend an aliphatic polyester and a natural organic filler into an aromatic polycarbonate resin to obtain a resin composition having excellent mechanical properties and flame retardancy. A technique in which a jute fiber or rayon fiber is used as a composite with a resin composition is disclosed. However, the resin composition obtained in Patent Document 2 has a large decrease in impact strength, an insufficient molding appearance, a large coloration, and an insufficient thermal stability during molding.
特開昭60-158252号公報JP 60-158252 A 特開2010-215791号公報JP 2010-215791 A
 本発明は、上記状況下になされたものであり、バイオマス材料の利用により環境特性に優れ、かつ衝撃強度の低下が少なく、低比重にして高剛性で成形外観に優れ、さらに熱安定性が良好で着色が少なく、難燃性が付与された樹脂組成物を提供することを目的とする。 The present invention has been made under the above circumstances, and is excellent in environmental characteristics due to the use of biomass material, has little reduction in impact strength, has low specific gravity, high rigidity, excellent molding appearance, and good thermal stability. An object of the present invention is to provide a resin composition with little coloration and imparted with flame retardancy.
 本発明者らは、鋭意研究を重ねた結果、バイオマス材料として特定の平均繊維径及び平均繊維長を有するセルロース繊維を、テルペン系化合物とともにポリカーボネート樹脂へ特定量配合することにより、上記課題を解決し得ることを見出した。
 すなわち、本発明は、下記のポリカーボネート樹脂組成物に関する。
As a result of intensive studies, the present inventors solved the above problem by blending cellulose fibers having a specific average fiber diameter and average fiber length as a biomass material into a polycarbonate resin together with a terpene compound. Found to get.
That is, the present invention relates to the following polycarbonate resin composition.
1.(A)ポリカーボネート樹脂99~60質量%及び(B)平均繊維径が5~50μmであり、平均繊維長が0.03~1.5mmであるセルロース繊維1~40質量%からなる樹脂混合物100質量部に対し、(C)テルペン系化合物を0.2~30質量部含むポリカーボネート樹脂組成物。
2.(B)セルロース繊維中のα-セルロース含有率が80質量%以上である、前記1に記載のポリカーボネート樹脂組成物。
3.(A)ポリカーボネート樹脂が、ポリカーボネート-ポリオルガノシロキサン共重合体であるか又はポリカーボネート-ポリオルガノシロキサン共重合体を含む、前記1又は2に記載のポリカーボネート樹脂組成物。
4.(A)ポリカーボネート樹脂及び(B)セルロース繊維からなる樹脂混合物100質量部に対し、さらに(D)リン化合物を0.2~30質量部含む、前記1~3のいずれかに記載のポリカーボネート樹脂組成物。
5.(A)ポリカーボネート樹脂及び(B)セルロース繊維からなる樹脂混合物100質量部に対し、さらに(E)ポリテトラフルオロエチレンを0.05~1質量部含む、前記1~4のいずれかに記載のポリカーボネート樹脂組成物。
1. (A) 99 to 60% by mass of polycarbonate resin and (B) 100% by mass of a resin mixture comprising 1 to 40% by mass of cellulose fibers having an average fiber diameter of 5 to 50 μm and an average fiber length of 0.03 to 1.5 mm. A polycarbonate resin composition containing 0.2 to 30 parts by mass of (C) a terpene compound relative to parts.
2. (B) The polycarbonate resin composition as described in 1 above, wherein the α-cellulose content in the cellulose fiber is 80% by mass or more.
3. (A) The polycarbonate resin composition according to the above 1 or 2, wherein the polycarbonate resin is a polycarbonate-polyorganosiloxane copolymer or contains a polycarbonate-polyorganosiloxane copolymer.
4). 4. The polycarbonate resin composition according to any one of 1 to 3, further comprising (D) 0.2 to 30 parts by mass of a phosphorus compound with respect to 100 parts by mass of a resin mixture comprising (A) a polycarbonate resin and (B) cellulose fibers. object.
5. 5. The polycarbonate according to any one of 1 to 4 above, further comprising 0.05 to 1 part by mass of (E) polytetrafluoroethylene with respect to 100 parts by mass of the resin mixture comprising (A) a polycarbonate resin and (B) cellulose fibers. Resin composition.
[(A)ポリカーボネート樹脂]
 本発明のポリカーボネート樹脂組成物(以下、PC樹脂組成物と略記する場合がある。)において、(A)ポリカーボネート樹脂は、芳香族PC樹脂であっても脂肪族PC樹脂であってもよいが、耐衝撃性と耐熱性の観点から芳香族PC樹脂であることが好ましい。
 本発明において例えば、下記一般式(1)で表わされる末端基を有する芳香族PC樹脂を用いることができる。
[(A) Polycarbonate resin]
In the polycarbonate resin composition of the present invention (hereinafter sometimes abbreviated as PC resin composition), (A) the polycarbonate resin may be an aromatic PC resin or an aliphatic PC resin, An aromatic PC resin is preferable from the viewpoint of impact resistance and heat resistance.
In the present invention, for example, an aromatic PC resin having a terminal group represented by the following general formula (1) can be used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(1)において、R1は炭素数1~35のアルキル基であり、直鎖状のものでも分岐状のものでもよい。また、結合の位置は、p位、m位、o位のいずれもよいがp位が好ましい。aは0~5の整数を示す。
 この芳香族PC樹脂の粘度平均分子量は通常10,000~40,000であり、耐熱性、難燃性及び耐衝撃性付与の面から、13,000~30,000が好ましく、より好ましくは15,000~24,000である。
 なお、粘度平均分子量(Mv)は、ウベローデ型粘度計を用いて、20℃における塩化メチレン溶液の粘度を測定し、これより極限粘度[η]を求め、次の式により算出した値である。[η]=1.23×10-5Mv0.83
In the general formula (1), R 1 is an alkyl group having 1 to 35 carbon atoms, and may be linear or branched. Further, the bond position may be any of p-position, m-position and o-position, but p-position is preferred. a represents an integer of 0 to 5.
The viscosity average molecular weight of this aromatic PC resin is usually 10,000 to 40,000, and is preferably 13,000 to 30,000, more preferably 15 from the viewpoint of imparting heat resistance, flame retardancy and impact resistance. , 4,000 to 24,000.
The viscosity average molecular weight (Mv) is a value obtained by measuring the viscosity of a methylene chloride solution at 20 ° C. using an Ubbelohde viscometer, obtaining the intrinsic viscosity [η] from this, and calculating by the following formula. [Η] = 1.23 × 10 −5 Mv 0.83
 上記一般式(1)で表される末端基を有する芳香族PC樹脂は、二価フェノールとホスゲン又は炭酸エステル化合物とを反応させることにより容易に製造することができる。すなわち、例えば、塩化メチレン等の溶媒中において、トリエチルアミン等の触媒と特定の末端停止剤の存在下、二価フェノールとホスゲンのようなカーボネート前駆体との反応により、又は二価フェノールとジフェニルカーボネートのようなカーボネート前駆体とのエステル交換反応等によって製造される。
 二価フェノールとしては、下記一般式(2)で表される化合物が挙げられる。
The aromatic PC resin having a terminal group represented by the general formula (1) can be easily produced by reacting a dihydric phenol with phosgene or a carbonate compound. That is, for example, in a solvent such as methylene chloride, by the reaction of a dihydric phenol and a carbonate precursor such as phosgene in the presence of a catalyst such as triethylamine and a specific end terminator, or between the dihydric phenol and diphenyl carbonate. It is produced by transesterification with such a carbonate precursor.
Examples of the dihydric phenol include compounds represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(2)において、R2及びR3は炭素数1~6のアルキル基又はフェニル基を示し、同一でも異なっていてもよい。Zは単結合、炭素数1~20のアルキレン基又は炭素数2~20のアルキリデン基、炭素数5~20のシクロアルキレン基又は炭素数5~20のシクロアルキリデン基、あるいは-SO2-、-SO-、-S-、-O-、-CO-結合を示す。好ましくはイソプロピリデン基である。b及びcは0~4の整数で好ましくは0である。 In the general formula (2), R 2 and R 3 represent an alkyl group having 1 to 6 carbon atoms or a phenyl group, and may be the same or different. Z is a single bond, an alkylene group having 1 to 20 carbon atoms or an alkylidene group having 2 to 20 carbon atoms, a cycloalkylene group having 5 to 20 carbon atoms, a cycloalkylidene group having 5 to 20 carbon atoms, or —SO 2 —, — SO—, —S—, —O—, —CO— bond is shown. An isopropylidene group is preferred. b and c are integers of 0 to 4, preferably 0.
 上記一般式(2)で表される二価フェノールとしては、4,4'-ジヒドロキシジフェニル;1,1-ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン等のビス(4-ヒドロキシフェニル)アルカン;ビス(4-ヒドロキシフェニル)シクロアルカン;ビス(4-ヒドロキシフェニル)オキシド;ビス(4-ヒドロキシフェニル)スルフィド;ビス(4-ヒドロキシフェニル)スルホン;ビス(4-ヒドロキシフェニル)スルホキシド;ビス(4-ヒドロキシフェニル)ケトン等を挙げることができる。中でも、2,2-ビス(4-ヒドロキシフェニル)プロパン〔通称ビスフェノールA〕が好ましい。これらの二価フェノールは一種を単独で又は二種以上を混合して用いてもよい。
 また二価フェノールとしては、上記二価フェノール一種を用いたホモポリマーでも、二種以上を用いたコポリマーであってもよい。さらに、多官能性芳香族化合物を上記二価フェノールと併用して得られる熱可塑性ランダム分岐ポリカーボネートであってもよい。
Examples of the dihydric phenol represented by the general formula (2) include 4,4′-dihydroxydiphenyl; 1,1-bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, Bis (4-hydroxyphenyl) alkanes such as 2,2-bis (4-hydroxyphenyl) propane; bis (4-hydroxyphenyl) cycloalkane; bis (4-hydroxyphenyl) oxide; bis (4-hydroxyphenyl) sulfide Bis (4-hydroxyphenyl) sulfone; bis (4-hydroxyphenyl) sulfoxide; bis (4-hydroxyphenyl) ketone, and the like. Of these, 2,2-bis (4-hydroxyphenyl) propane [commonly known as bisphenol A] is preferable. These dihydric phenols may be used alone or in combination of two or more.
The dihydric phenol may be a homopolymer using one of the above dihydric phenols or a copolymer using two or more. Furthermore, the thermoplastic random branched polycarbonate obtained by using a polyfunctional aromatic compound together with the said bihydric phenol may be sufficient.
 炭酸エステル化合物としては、ジフェニルカーボネート等のジアリールカーボネートやジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネートが挙げられる。
 末端停止剤としては、前記一般式(1)で表される末端基が形成されるフェノール化合物、すなわち下記一般式(3)で表されるフェノール化合物を使用すればよい。下記一般式(3)中、R1及びaは前記と同義である。
Examples of the carbonate compound include diaryl carbonates such as diphenyl carbonate, and dialkyl carbonates such as dimethyl carbonate and diethyl carbonate.
As the terminal terminator, a phenol compound in which the terminal group represented by the general formula (1) is formed, that is, a phenol compound represented by the following general formula (3) may be used. In the following general formula (3), R 1 and a are as defined above.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記一般式(3)で表されるフェノール化合物としては、フェノール、p-クレゾール、p-tert-ブチルフェノール、p-tert-オクチルフェノール、p-クミルフェノール、p-ノニルフェノール、ドコシルフェノール、テトラコシルフェノール、ヘキサコシルフェノール、オクタコシルフェノール、トリアコンチルフェノール、ドトリアコンチルフェノール、テトラトリアコンチルフェノール、p-tert-ペンチルフェノール等を挙げることができる。これらは一種を単独で又は二種以上を混合して用いてもよい。また、これらのフェノール化合物には、必要に応じて他のフェノール化合物等を併用しても差し支えない。
 なお、上記の方法によって製造される芳香族PC樹脂は、実質的に分子の片末端又は両末端に上記一般式(1)で表される末端基を有するものである。
Examples of the phenol compound represented by the general formula (3) include phenol, p-cresol, p-tert-butylphenol, p-tert-octylphenol, p-cumylphenol, p-nonylphenol, docosylphenol, tetracosyl. Examples include phenol, hexacosylphenol, octacosylphenol, triacontylphenol, dotriacontylphenol, tetratriacontylphenol, p-tert-pentylphenol, and the like. You may use these individually by 1 type or in mixture of 2 or more types. Further, these phenol compounds may be used in combination with other phenol compounds as necessary.
The aromatic PC resin produced by the above method has a terminal group represented by the general formula (1) substantially at one or both ends of the molecule.
 本発明において、上記(A)成分のPC樹脂は、耐熱性、難燃性及び耐衝撃性の向上の観点から、ポリカーボネート-ポリオルガノシロキサン共重合体(以下、PC-POS共重合体と略記する場合がある。)であるか、又はこれを含むPC樹脂であってもよい。また同観点から、PC-POS共重合体としては、POSがポリジメチルシロキサンであるポリカーボネート-ポリジメチルシロキサン共重合体であることがより好ましい。
 ポリオルガノシロキサン部(セグメント)は、(A)成分中、好ましくは0.1~10質量%であり、より好ましくは0.5~7質量%であり、さらに好ましくは2~5質量%であり、また本発明のPC樹脂組成物中、0.05~3質量%であることが好ましい。
 PC-POS共重合体は例えば、下記一般式(4)で表わされる末端基を有するものを使用することができる。
In the present invention, the PC resin as the component (A) is abbreviated as a polycarbonate-polyorganosiloxane copolymer (hereinafter referred to as a PC-POS copolymer) from the viewpoint of improving heat resistance, flame retardancy and impact resistance. Or a PC resin containing the same. From the same viewpoint, the PC-POS copolymer is more preferably a polycarbonate-polydimethylsiloxane copolymer in which POS is polydimethylsiloxane.
The polyorganosiloxane part (segment) is preferably 0.1 to 10% by mass, more preferably 0.5 to 7% by mass, and further preferably 2 to 5% by mass in the component (A). Further, it is preferably 0.05 to 3% by mass in the PC resin composition of the present invention.
As the PC-POS copolymer, for example, one having a terminal group represented by the following general formula (4) can be used.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(4)において、R4は炭素数1~35のアルキル基を示し、dは0~5の整数を示す。
 上記PC-POS共重合体は例えば、特開昭50-29695号公報、特開平3-292359号公報、特開平4-202465号公報、特開平8-81620号公報、特開平8-302178号公報及び特開平10-7897号公報に開示されている共重合体を挙げることができ、R4で示される炭素数1~35のアルキル基は、直鎖状のものでも分岐状のものでもよく、結合の位置は、p位、m位、o位のいずれもよいがp位が好ましい。
In the general formula (4), R 4 represents an alkyl group having 1 to 35 carbon atoms, and d represents an integer of 0 to 5.
Examples of the PC-POS copolymer include JP-A-50-29695, JP-A-3-292359, JP-A-4-202465, JP-A-8-81620, and JP-A-8-302178. And a copolymer disclosed in JP-A-10-7897. The alkyl group having 1 to 35 carbon atoms represented by R 4 may be linear or branched, The bonding position may be any of p-position, m-position and o-position, but p-position is preferred.
 PC-POS共重合体として、好ましくは下記一般式(5)で表される構造単位からなるポリカーボネート部と、下記一般式(6)で表される構造単位からなるポリオルガノシロキサン部を分子内に有する共重合体を挙げることができる。 As the PC-POS copolymer, a polycarbonate part composed of a structural unit represented by the following general formula (5) and a polyorganosiloxane part composed of a structural unit represented by the following general formula (6) are preferably included in the molecule. The copolymer which has can be mentioned.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 ここで、R5及びR6は炭素数1~6のアルキル基又はフェニル基を示し、同一でも異なっていてもよい。R7~R10は炭素数1~6のアルキル基又はフェニル基を示し、好ましくはメチル基である。R7~R10はそれぞれ同一でも異なっていてもよい。R11は脂肪族又は芳香族を含む二価の有機残基を示し、好ましくはo-アリルフェノール残基、p-ヒドロキシスチレン残基又はオイゲノール残基である。
 Z’は単結合、炭素数1~20のアルキレン基又は炭素数2~20のアルキリデン基、炭素数5~20のシクロアルキレン基又は炭素数5~20のシクロアルキリデン基、あるいは-SO2-、-SO-、-S-、-O-、-CO-結合を示す。好ましくはイソプロピリデン基である。e及びfは0~4の整数で好ましくは0である。nは1~500の整数で、好ましくは5~200、より好ましくは15~300、さらに好ましくは30~150である。
Here, R 5 and R 6 represent an alkyl group having 1 to 6 carbon atoms or a phenyl group, and may be the same or different. R 7 to R 10 each represent an alkyl group having 1 to 6 carbon atoms or a phenyl group, and is preferably a methyl group. R 7 to R 10 may be the same or different. R 11 represents a divalent organic residue containing an aliphatic or aromatic group, and preferably an o-allylphenol residue, a p-hydroxystyrene residue or an eugenol residue.
Z ′ is a single bond, an alkylene group having 1 to 20 carbon atoms or an alkylidene group having 2 to 20 carbon atoms, a cycloalkylene group having 5 to 20 carbon atoms, a cycloalkylidene group having 5 to 20 carbon atoms, or —SO 2 —, —SO—, —S—, —O—, —CO— bond is shown. An isopropylidene group is preferred. e and f are integers of 0 to 4, preferably 0. n is an integer of 1 to 500, preferably 5 to 200, more preferably 15 to 300, and still more preferably 30 to 150.
 PC-POS共重合体は例えば、予め製造されたポリカーボネート部を構成するポリカーボネートオリゴマー(以下、PCオリゴマーと略称する。)と、ポリオルガノシロキサン部を構成する末端にo-アリルフェノール基、p-ヒドロキシスチレン基、オイゲノール残基等の反応性基を有するポリオルガノシロキサン(反応性POS)とを、塩化メチレン、クロロベンゼン、クロロホルム等の溶媒に溶解させ、二価フェノールの苛性アルカリ水溶液を加え、触媒として、第三級アミン(トリエチルアミン等)や第四級アンモニウム塩(トリメチルベンジルアンモニウムクロライド等)を用い、下記一般式(7)で表されるフェノール化合物からなる一般の末端停止剤の存在下、界面重縮合反応することにより製造することができる。下記一般式(7)中、R4及びdは前記と同義である。 The PC-POS copolymer includes, for example, a polycarbonate oligomer (hereinafter abbreviated as a PC oligomer) constituting a polycarbonate part produced in advance, an o-allylphenol group and p-hydroxy at the terminal constituting the polyorganosiloxane part. A polyorganosiloxane (reactive POS) having a reactive group such as a styrene group or an eugenol residue is dissolved in a solvent such as methylene chloride, chlorobenzene, chloroform, and a caustic aqueous solution of a dihydric phenol is added. Interfacial polycondensation using tertiary amines (such as triethylamine) and quaternary ammonium salts (such as trimethylbenzylammonium chloride) in the presence of a general end-stopper consisting of a phenol compound represented by the following general formula (7) It can manufacture by reacting. In the following general formula (7), R 4 and d are as defined above.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記一般式(7)で表されるフェノール化合物としては、前記一般式(3)の例示化合物と同様のものが挙げられる。
 PC-POS共重合体の製造に使用されるPCオリゴマーは、例えば、塩化メチレン等の溶媒中において、二価フェノールとホスゲンのようなカーボネート前駆体との反応により、又は二価フェノールとジフェニルカーボネートのようなカーボネート前駆体とのエステル交換反応等によって製造することができる。ここで、二価フェノールとしては、前記一般式(2)の例示化合物と同様のものを用いることができ、中でもビスフェノールAが好ましい。
Examples of the phenol compound represented by the general formula (7) include the same compounds as the exemplary compound of the general formula (3).
The PC oligomer used for the production of the PC-POS copolymer is obtained by reacting a dihydric phenol with a carbonate precursor such as phosgene in a solvent such as methylene chloride, or of a dihydric phenol and diphenyl carbonate. It can manufacture by transesterification etc. with such a carbonate precursor. Here, as a dihydric phenol, the thing similar to the exemplary compound of the said General formula (2) can be used, and bisphenol A is especially preferable.
 また、炭酸エステル化合物としては、ジフェニルカーボネート等のジアリールカーボネートやジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネートを挙げることができる。
 PC-POS共重合体の製造に供されるPCオリゴマーは、上記の二価フェノール一種を用いたホモポリマーであってもよく、又二種以上を用いたコポリマーであってもよい。さらに、多官能性芳香族化合物を上記二価フェノールと併用して得られる熱可塑性ランダム分岐ポリカーボネートであってもよい。
 その場合、分岐剤(多官能性芳香族化合物)として、1,1,1-トリス(4-ヒドロキシフェニル)エタン、α,α',α''-トリス(4-ヒドロキシフェニル)-1,3,5-トリイソプロピルベンゼン、1-[α-メチル-α-(4'-ヒドロキシフェニル)エチル]-4-[α',α'-ビス(4''-ヒドロキシルフェニル)エチル]ベンゼン、フロログルシン、トリメリット酸、イサチンビス(o-クレゾール)等を使用することができる。
Examples of the carbonate compound include diaryl carbonates such as diphenyl carbonate, and dialkyl carbonates such as dimethyl carbonate and diethyl carbonate.
The PC oligomer used for the production of the PC-POS copolymer may be a homopolymer using one of the above dihydric phenols, or may be a copolymer using two or more. Furthermore, the thermoplastic random branched polycarbonate obtained by using a polyfunctional aromatic compound together with the said bihydric phenol may be sufficient.
In that case, 1,1,1-tris (4-hydroxyphenyl) ethane, α, α ′, α ″ -tris (4-hydroxyphenyl) -1,3 is used as a branching agent (polyfunctional aromatic compound). , 5-triisopropylbenzene, 1- [α-methyl-α- (4′-hydroxyphenyl) ethyl] -4- [α ′, α′-bis (4 ″ -hydroxylphenyl) ethyl] benzene, phloroglucin, Trimellitic acid, isatin bis (o-cresol) and the like can be used.
 PC-POS共重合体は、上記のようにして製造することができるが、一般に芳香族PC樹脂が副生し、PC-POS共重合体を含む芳香族PC樹脂として製造される。
 なお、上記の方法によって製造される芳香族PC-POS共重合体は、実質的に分子の片方又は両方に上記一般式(4)で表される芳香族末端基を有するものである。
The PC-POS copolymer can be produced as described above. Generally, an aromatic PC resin is produced as a by-product, and the PC-POS copolymer is produced as an aromatic PC resin containing the PC-POS copolymer.
The aromatic PC-POS copolymer produced by the above method substantially has an aromatic end group represented by the general formula (4) on one or both of the molecules.
[(B)セルロース繊維]
 本発明において、バイオマス材料として特定の平均繊維径及び平均繊維長を有するセルロース繊維を用いることにより、着色が抑制され、衝撃強度の低下を抑えることができる。さらに(B)セルロース繊維は、ガラス繊維等の無機繊維に比べ低い比重でありながら剛性を向上させることができるので、剛性の高い低比重の樹脂組成物とすることができる。セルロース繊維としては例えば、木材繊維、竹繊維、サトウキビ繊維、種子毛繊維、葉繊維等の天然の植物由来のセルロース繊維が挙げられ、これらセルロース繊維は一種を単独で又は二種以上を混合して用いてもよい。
[(B) Cellulose fiber]
In the present invention, by using cellulose fibers having a specific average fiber diameter and average fiber length as the biomass material, coloring can be suppressed and a decrease in impact strength can be suppressed. Furthermore, since (B) cellulose fiber can improve rigidity, although it is low specific gravity compared with inorganic fibers, such as glass fiber, it can be set as the low specific gravity resin composition with high rigidity. Examples of cellulose fibers include cellulose fibers derived from natural plants such as wood fibers, bamboo fibers, sugarcane fibers, seed hair fibers, and leaf fibers. These cellulose fibers may be used alone or in combination of two or more. It may be used.
 本発明におけるセルロース繊維は、電子顕微鏡写真を用いて測定した平均繊維径が5~50μmであり、平均繊維長が0.03~1.5mmである。平均繊維径が5μm未満であると耐衝撃強度及び剛性向上効果が発現されず、平均繊維径が50μmを超えると成形外観や衝撃強度が大きく低下する。また、平均繊維長が0.03mm未満であると耐衝撃強度及び剛性向上効果が発現されず、平均繊維長が1.5mmを超えると成形外観が著しく悪くなる。より好ましい平均繊維径は10~40μmであり、より好ましい平均繊維長は0.05~1.0mmである。
 上記大きさのセルロース繊維は、そのまま配合してもよく、またミキサー等で解繊してから配合してもよい。
The cellulose fibers in the present invention have an average fiber diameter of 5 to 50 μm and an average fiber length of 0.03 to 1.5 mm as measured using an electron micrograph. When the average fiber diameter is less than 5 μm, the impact resistance strength and rigidity improvement effects are not exhibited, and when the average fiber diameter exceeds 50 μm, the molded appearance and impact strength are greatly reduced. Further, if the average fiber length is less than 0.03 mm, the impact strength and rigidity improving effects are not exhibited, and if the average fiber length exceeds 1.5 mm, the molded appearance is remarkably deteriorated. A more preferable average fiber diameter is 10 to 40 μm, and a more preferable average fiber length is 0.05 to 1.0 mm.
The cellulose fibers having the above size may be blended as they are, or may be blended after defibration with a mixer or the like.
 またセルロース繊維としては、α-セルロースの含有率が好ましくは80質量%以上であり、より好ましくは85質量%以上である。α-セルロース80質量%以上の高純度であれば繊維径及び繊維長さが調整しやすくなって繊維同士の絡み合いを抑えることができ、例えば周知のケナフ繊維やジュート繊維等のα-セルロース80質量%未満のものを用いた場合に比べ、溶融時の熱安定性が高く、衝撃強度の低下を引き起こすことがないほか、着色抑制効果が良好であり、本発明の効果をより優れたものとすることができる。 Further, as the cellulose fiber, the content of α-cellulose is preferably 80% by mass or more, and more preferably 85% by mass or more. If the purity is higher than 80% by mass of α-cellulose, the fiber diameter and fiber length can be easily adjusted, and entanglement between fibers can be suppressed. For example, 80% by mass of α-cellulose such as well-known kenaf fiber or jute fiber Compared to the case of using less than 1%, the thermal stability at the time of melting is high, the impact strength is not lowered, the coloration suppressing effect is good, and the effect of the present invention is further improved. be able to.
 (A)ポリカーボネート樹脂と(B)セルロース繊維からなる樹脂混合物において、各成分の含有量は(A)成分99~60質量%及び(B)成分1~40質量%である。(B)成分が1質量%未満であると弾性率等の機械特性の向上効果が発揮されず、40質量%を超えると衝撃強度等の機械特性が大きく低下する。樹脂混合物中の(B)成分の含有量は、好ましくは5~30質量%であり、さらに好ましくは5~25質量%である。 In the resin mixture comprising (A) polycarbonate resin and (B) cellulose fiber, the content of each component is (A) component 99 to 60% by mass and (B) component 1 to 40% by mass. When the component (B) is less than 1% by mass, the effect of improving the mechanical properties such as the elastic modulus is not exhibited, and when it exceeds 40% by mass, the mechanical properties such as the impact strength are greatly deteriorated. The content of the component (B) in the resin mixture is preferably 5 to 30% by mass, and more preferably 5 to 25% by mass.
[(C)テルペン系化合物]
 本発明のPC樹脂組成物において、セルロース繊維を樹脂組成物中に均一に分散させることによって、樹脂組成物の機械強度及び流動性を向上させ、着色を抑制するために(C)テルペン系化合物を含有させる。
 本発明において(C)テルペン系化合物とは、(C58nの組成を有する炭化水素及びそれから導かれる含酸素化合物並びに不飽和度を異にするものを意味する。
 より具体的には、テルペン単量体(C1016)単独、又はテルペン単量体と芳香族ビニル単量体、テルペン単量体とフェノール類を共重合して得られたもの等が挙げられる。また、得られたテルペン系化合物を水素添加して得られる水添テルペン系化合物であってもよい。これらテルペン系化合物は一種を単独で又は二種以上を混合して用いてもよい。
 上記テルペン単量体としては、α-ピネン、β-ピネン、ジペンテン、d-リモネン等が挙げられ、上記芳香族ビニル単量体としては、スチレン、α-メチルスチレン、ビニルトルエン等が挙げられ、上記フェノール類としては、フェノール、クレゾール、ビスフェノールA等を挙げることができる。
[(C) Terpene compound]
In the PC resin composition of the present invention, the cellulose fiber is uniformly dispersed in the resin composition, thereby improving the mechanical strength and fluidity of the resin composition and suppressing the coloring (C) a terpene compound. Contain.
In the present invention, the (C) terpene compound means a hydrocarbon having a composition of (C 5 H 8 ) n and an oxygen-containing compound derived therefrom and those having different degrees of unsaturation.
More specifically, a terpene monomer (C 10 H 16 ) alone, a terpene monomer and an aromatic vinyl monomer, or a copolymer obtained by copolymerizing a terpene monomer and a phenol are listed. It is done. Moreover, the hydrogenated terpene type compound obtained by hydrogenating the obtained terpene type compound may be sufficient. These terpene compounds may be used alone or in combination of two or more.
Examples of the terpene monomer include α-pinene, β-pinene, dipentene, d-limonene, and the aromatic vinyl monomer includes styrene, α-methylstyrene, vinyltoluene, and the like. Examples of the phenols include phenol, cresol, bisphenol A, and the like.
 これらのテルペン系化合物は、テルペン単量体単独あるいは芳香族ビニル単量体、フェノール類とともに有機溶媒中、フリーデルクラフト型触媒の存在下に反応することによって得ることができる。
 すなわち、テルペン系化合物としては、テルペン樹脂、水添テルペン樹脂、テルペン-フェノール樹脂、テルペン-ビスフェノールA樹脂等が含まれる。
 本発明において、テルペン-フェノール樹脂、テルペン-ビスフェノールA樹脂等のように、フェノール類が含まれるものが、流動性及び(B)セルロース繊維の分散性に優れ好ましい。
These terpene compounds can be obtained by reacting in the presence of a Friedel-Craft type catalyst in an organic solvent together with a terpene monomer alone or an aromatic vinyl monomer and phenols.
That is, examples of terpene compounds include terpene resins, hydrogenated terpene resins, terpene-phenol resins, terpene-bisphenol A resins, and the like.
In the present invention, those containing phenols, such as terpene-phenol resin and terpene-bisphenol A resin, are preferable because of excellent fluidity and (B) dispersibility of cellulose fibers.
 (C)テルペン系化合物の含有量は、(A)成分及び(B)成分からなる樹脂混合物100質量部に対して、0.2~30質量部であり、好ましくは2~20質量部、より好ましくは5~15質量部である。この含有量が0.2質量部未満であると、(B)セルロース繊維の分散性を向上させる効果を発揮させることができず、樹脂組成物の流動性向上、着色抑制効果が得られない。また、この含有量が30質量部を超えると、耐衝撃性及び耐熱性の低下が著しい。 The content of the (C) terpene compound is 0.2 to 30 parts by weight, preferably 2 to 20 parts by weight, based on 100 parts by weight of the resin mixture composed of the components (A) and (B). The amount is preferably 5 to 15 parts by mass. When the content is less than 0.2 parts by mass, the effect of improving the dispersibility of the (B) cellulose fiber cannot be exhibited, and the fluidity improvement and coloring suppression effect of the resin composition cannot be obtained. Moreover, when this content exceeds 30 mass parts, the impact resistance and heat resistance fall remarkably.
[(D)リン化合物]
 本発明のPC樹脂組成物において、難燃性、流動性及び着色抑制をさらに向上させる観点から、(D)リン化合物を含有させることが好ましい。
 (D)リン化合物としては、リン酸エステル、亜リン酸エステル、ホスホン酸エステル、ホスフィン等が挙げられ、これらリン化合物は一種を単独で又は二種以上を混合して用いることができる。上記リン化合物の中でも、特に樹脂組成物成形体の着色抑制の観点から、好ましくはリン酸エステル、あるいはリン酸エステルと亜リン酸エステルとの併用である。
[(D) phosphorus compound]
In the PC resin composition of the present invention, it is preferable to contain (D) a phosphorus compound from the viewpoint of further improving flame retardancy, fluidity, and coloring suppression.
(D) As a phosphorus compound, phosphoric acid ester, phosphorous acid ester, phosphonic acid ester, a phosphine, etc. are mentioned, These phosphorus compounds can be used individually by 1 type or in mixture of 2 or more types. Among the above phosphorus compounds, particularly from the viewpoint of suppressing coloring of the resin composition molded article, a phosphoric acid ester or a combined use of phosphoric acid ester and phosphite is preferable.
 リン酸エステルとしては例えば、下記一般式(8)で表わされる化合物が挙げられる。 Examples of the phosphate ester include compounds represented by the following general formula (8).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(8)中、R12、R13、R14及びR15は、それぞれ独立して、水素原子又は有機基を表し、Xは2価以上の有機基を表し、pは0又は1であり、qは1以上の整数であり、rは0以上の整数を表す。
 上記一般式(8)において、有機基とは、置換又は無置換のアルキル基、シクロアルキル基、アリール基等をいう。置換されている場合の置換基としては、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールチオ基等が挙げられる。さらに、これらの置換基を組み合わせた基であるアリールアルコキシアルキル基等、又はこれらの置換基を酸素原子、窒素原子、イオウ原子等により結合して組み合わせたアリールスルホニルアリール基等を置換基としたもの等が挙げられる。
In the general formula (8), R 12 , R 13 , R 14 and R 15 each independently represent a hydrogen atom or an organic group, X represents a divalent or higher valent organic group, and p is 0 or 1. Yes, q is an integer of 1 or more, and r represents an integer of 0 or more.
In the said General formula (8), an organic group means a substituted or unsubstituted alkyl group, a cycloalkyl group, an aryl group, etc. Examples of the substituent when substituted include an alkyl group, an alkoxy group, an aryl group, an aryloxy group, and an arylthio group. Further, an arylalkoxyalkyl group that is a combination of these substituents, or an arylsulfonylaryl group that is a combination of these substituents bonded by an oxygen atom, nitrogen atom, sulfur atom, or the like is used as a substituent. Etc.
 また、上記一般式(8)において、2価以上の有機基Xとしては、上記有機基から、炭素原子に結合している水素原子の1個以上を除いてできる2価以上の基を意味する。例えば、アルキレン基、(置換)フェニレン基、多核フェノール類であるビスフェノール類から誘導されるものである。好ましいものとしては、ビスフェノールA、ヒドロキノン、レゾルシノール、ジヒドロキシジフェニル、ジヒドロキシナフタレン等が挙げられる。 In the general formula (8), the divalent or higher organic group X means a divalent or higher valent group formed by removing one or more hydrogen atoms bonded to a carbon atom from the organic group. . For example, it is derived from an alkylene group, a (substituted) phenylene group, or a bisphenol that is a polynuclear phenol. Preferable examples include bisphenol A, hydroquinone, resorcinol, dihydroxydiphenyl, dihydroxynaphthalene and the like.
 リン酸エステルは、モノマー、オリゴマー、ポリマー又はこれらの混合物であってもよい。具体的には、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、トリ(2-エチルヘキシル)ホスフェート、ジイソプピルフェニルホスフェート、トリキシレニルホスフェート、トリス(イソプロピルフェニル)ホスフェート、トリブチルホスフェート、ビスフェノールAビスホスフェート、ヒドロキノンビスホスフェート、レゾルシンビスホスフェート、レゾルシノール-ジフェニルホスフェート、トリオキシベンゼントリホスフェート、クレジルジフェニルホスフェート等を挙げることができる。リン酸エステルとしては、リン酸モノアルキル・ジアルキルエステルが好ましい。 The phosphate ester may be a monomer, oligomer, polymer, or a mixture thereof. Specifically, trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, tri (2-ethylhexyl) phosphate, di- Isopropylphenyl phosphate, trixylenyl phosphate, tris (isopropylphenyl) phosphate, tributyl phosphate, bisphenol A bisphosphate, hydroquinone bisphosphate, resorcin bisphosphate, resorcinol-diphenyl phosphate, trioxybenzene triphosphate, cresyl diphenyl phosphate, etc. Can be mentioned. As the phosphate ester, a monoalkyl / dialkyl phosphate is preferable.
 好適に用いることができる市販のハロゲン非含有リン酸エステル化合物としては、例えば、ADEKA(株)製のAX-71[モノ・ジアルコキシ型リン酸エステル]、大八化学工業(株)製の、TPP[トリフェニルホスフェート]、TXP[トリキシレニルホスフェート]、PFR[レゾルシノール(ジフェニルホスフェート)]、PX200[1,3-フェニレン-テスラキス(2,6-ジメチルフェニル)ホスフェート]、PX201[1,4-フェニレン-テトラキス(2,6-ジメチルフェニル)ホスフェート]、PX202[4,4'-ビフェニレン-テスラキス(2,6-ジメチルフェニル)ホスフェート]等を挙げることができる。 Examples of commercially available halogen-free phosphoric acid ester compounds that can be suitably used include, for example, AX-71 [mono-dialkoxy type phosphoric acid ester] manufactured by ADEKA Corporation, and Daihachi Chemical Industry Co., Ltd. TPP [triphenyl phosphate], TXP [trixylenyl phosphate], PFR [resorcinol (diphenyl phosphate)], PX200 [1,3-phenylene-teslakis (2,6-dimethylphenyl) phosphate], PX201 [1,4- Phenylene-tetrakis (2,6-dimethylphenyl) phosphate], PX202 [4,4′-biphenylene-teslakis (2,6-dimethylphenyl) phosphate] and the like.
 亜リン酸エステルは、下記一般式(9)で表わされるものである。 The phosphite is represented by the following general formula (9).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(9)中、R16及びR17は、それぞれ水素、アルキル基、シクロアルキル基又はアリール基を示す。なお、シクロアルキル基及びアリール基は、アルキル基で置換されていてもよい。
 具体的には下記式(10)[アデカスタブ(登録商標)PEP-36:ADEKA(株)製]の他、(11)~(14)の化合物を例示することができる。
In general formula (9), R 16 and R 17 each represent hydrogen, an alkyl group, a cycloalkyl group, or an aryl group. In addition, the cycloalkyl group and the aryl group may be substituted with an alkyl group.
Specific examples include compounds represented by the following formula (10) [ADEKA STAB (registered trademark) PEP-36: manufactured by ADEKA Corporation] and compounds of (11) to (14).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 さらに、上記以外の亜リン酸エステルとしては、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、トリス(ノニルフェニル)ホスファイト、トリフェニルホスファイト、トリデシルホスファイト、トリオクタデシルホスファイト等を例示することができる。亜リン酸エステルとしては、ペンタエリスリトール構造を含むものやアルキルエステル構造を含むものが好ましい。 Further, as phosphites other than the above, tris (2,4-di-t-butylphenyl) phosphite, tris (nonylphenyl) phosphite, triphenyl phosphite, tridecyl phosphite, trioctadecyl phosphite Etc. can be illustrated. As the phosphite, one containing a pentaerythritol structure or one containing an alkyl ester structure is preferable.
 (D)リン化合物の含有量は、(A)成分及び(B)成分からなる樹脂混合物100質量部に対して、好ましくは0.2~30質量部であり、より好ましくは2~20質量部、さらに好ましくは5~15質量部である。この含有量が0.2質量部以上であれば、難燃性及び流動性がさらに向上し、より優れた着色抑制効果が得られる。また、この含有量が30質量部以下であれば、耐衝撃性及び耐熱性が低下することがない。 The content of the (D) phosphorus compound is preferably 0.2 to 30 parts by mass, more preferably 2 to 20 parts by mass with respect to 100 parts by mass of the resin mixture comprising the components (A) and (B). More preferably, it is 5 to 15 parts by mass. If this content is 0.2 parts by mass or more, the flame retardancy and fluidity are further improved, and a more excellent coloring suppression effect is obtained. Moreover, if this content is 30 parts by mass or less, impact resistance and heat resistance will not be lowered.
[(E)ポリテトラフルオロエチレン]
 本発明のポリカーボネート樹脂組成物には、溶融滴下を抑制し、高い難燃性を付与する観点から、(E)ポリテトラフルオロエチレンを含有させることができる。
 (E)ポリテトラフルオロエチレンは、好ましくはフィブリル形成能を有するポリテトラフルオロエチレン(以下、PTFEと略称する。)であり、平均分子量500,000程度以上のものが通常好適である。好ましくは平均分子量500,000~10,000,000であり、より好ましくは1,000,000~10,000,000である。
[(E) Polytetrafluoroethylene]
The polycarbonate resin composition of the present invention can contain (E) polytetrafluoroethylene from the viewpoint of suppressing melt dripping and imparting high flame retardancy.
(E) The polytetrafluoroethylene is preferably polytetrafluoroethylene (hereinafter abbreviated as PTFE) having a fibril-forming ability, and usually has an average molecular weight of about 500,000 or more. The average molecular weight is preferably 500,000 to 10,000,000, more preferably 1,000,000 to 10,000,000.
 フィブリル形成能を有するPTFEとしては特に制限はないが、具体的には、三井・デュポンフロロケミカル(株)製のテフロン(登録商標)6-J、ダイキン工業(株)製のポリフロン(登録商標)D-1、同F-103、同F201、同MPA FA-100、旭硝子フロロポリマーズ(株)製のCD076、及びモンテフルオス社製のアルゴフロン(登録商標)F5等を挙げることができる。 PTFE having fibril-forming ability is not particularly limited, and specifically, Teflon (registered trademark) 6-J manufactured by Mitsui DuPont Fluorochemical Co., Ltd., Polyflon (registered trademark) manufactured by Daikin Industries, Ltd. D-1, F-103, F201, MPA FA-100, CD076 manufactured by Asahi Glass Fluoropolymers Co., Ltd., and Algoflon (registered trademark) F5 manufactured by Montefluos.
 上記のようなフィブリル形成能を有するPTFEは、例えば、テトラフルオロエチレンを水性溶媒中で、ナトリウム、カリウムあるいはアンモニウムパーオキシジスルフィドの存在下で、通常7~700kPa程度の圧力下、温度0~200℃程度、好ましくは20~100℃で重合させることによって得ることができる。
 また(E)ポリテトラフルオロエチレンは、(A)ポリカーボネート樹脂に含むことができる、ポリカーボネート-ポリオルガノシロキサン共重合体と併用することにより、極めて高い溶融滴下抑制性及び難燃性を発現することができる。
The PTFE having the fibril-forming ability as described above, for example, tetrafluoroethylene in an aqueous solvent in the presence of sodium, potassium or ammonium peroxydisulfide, usually at a pressure of about 7 to 700 kPa, at a temperature of 0 to 200 ° C. It can be obtained by polymerization at a degree, preferably 20 to 100 ° C.
In addition, (E) polytetrafluoroethylene can exhibit extremely high melt dripping suppression and flame retardancy when used in combination with a polycarbonate-polyorganosiloxane copolymer that can be included in (A) polycarbonate resin. it can.
 (E)ポリテトラフルオロエチレンの含有量は、(A)成分及び(B)成分からなる樹脂混合物100質量部に対して、好ましくは0.05~1質量部であり、より好ましくは0.1~0.5質量部である。この含有量が0.05質量部以上であれば、所望する難燃性における溶融滴下抑制性が十分となる。この含有量が1質量部以下であれば、耐衝撃性が低下することなく成形品外観が不良になることがない。従って、それぞれの成形品に要求される難燃性の程度及び肉厚により、使用量等を考慮して適宜決定することができる。 The content of (E) polytetrafluoroethylene is preferably 0.05 to 1 part by mass, more preferably 0.1 to 100 parts by mass of the resin mixture composed of the component (A) and the component (B). Is 0.5 parts by mass. If this content is 0.05 parts by mass or more, the melt dripping suppression in the desired flame retardance will be sufficient. If this content is 1 part by mass or less, the appearance of the molded product does not become poor without lowering the impact resistance. Therefore, the amount of flame retardancy required for each molded product and the thickness can be appropriately determined in consideration of the amount used.
[添加剤]
 本発明のポリカーボネート樹脂組成物は、その物性を損なわない限りにおいてその混合時、成形時に他の樹脂、添加剤、例えば、顔料、染料、強化剤、充填剤、耐熱剤、酸化抑制剤、耐候剤、滑剤、離型剤、結晶核剤、可塑剤、流動性改良剤、帯電抑制剤等を添加することができる。
[Additive]
The polycarbonate resin composition of the present invention has other resins and additives at the time of mixing and molding, for example, pigments, dyes, reinforcing agents, fillers, heat-resistant agents, oxidation inhibitors, weathering agents, as long as the physical properties are not impaired. Further, a lubricant, a release agent, a crystal nucleating agent, a plasticizer, a fluidity improver, an antistatic agent and the like can be added.
[ポリカーボネート樹脂組成物]
 本発明のポリカーボネート樹脂組成物の製造方法としては、従来から公知の方法で各成分を溶融混練する方法が挙げられる。
 例えば、各成分をタンブルミキサーやヘンシェルミキサー、リボンブレンダー、スーパーミキサーで代表される高速ミキサーで分散混合した後、押出機、バンバリーミキサー、ロール等で溶融混練する方法が適宜選択される。
[Polycarbonate resin composition]
As a manufacturing method of the polycarbonate resin composition of this invention, the method of melt-kneading each component by a conventionally well-known method is mentioned.
For example, a method in which each component is dispersed and mixed with a high speed mixer represented by a tumble mixer, a Henschel mixer, a ribbon blender, or a super mixer, and then melt-kneaded with an extruder, a Banbury mixer, a roll, or the like is appropriately selected.
 本発明のポリカーボネート樹脂組成物を用いた成形方法には特に制限はなく、射出成形、射出圧縮成形、押出し成形、中空成形体等の成形法を適用することができる。
 本発明のポリカーボネート樹脂組成物を用いた成形品は、前記の性状を有することから、例えば、OA機器、情報・通信機器、自動車部品又は建材分野等で好適に用いることができる。
There are no particular limitations on the molding method using the polycarbonate resin composition of the present invention, and molding methods such as injection molding, injection compression molding, extrusion molding, and hollow molding can be applied.
Since the molded article using the polycarbonate resin composition of the present invention has the above-mentioned properties, it can be suitably used, for example, in the field of office automation equipment, information / communication equipment, automobile parts or building materials.
 本発明は、ポリカーボネート樹脂にバイオマス材料としてセルロース繊維を配合することによって、衝撃強度の低下が少なく、かつ高剛性にして低比重、すなわち、曲げ弾性率(MPa)を比重で除した比剛性(MPa)を大きくすることができ、さらに、表面荒れ等が低減されて成形外観に優れ、熱安定性が良好で着色が少なく、さらにテルペン系化合物を配合することによって、セルロース繊維の分散性が向上した樹脂組成物である。
 また、リン化合物を配合することにより着色がさらに抑制されるほか、リン化合物やポリテトラフルオロエチレンを配合するにより、さらなる難燃化が可能な樹脂組成物である。
In the present invention, by blending cellulose fiber as a biomass material in a polycarbonate resin, the impact strength is small and the rigidity is low and the specific gravity (MPa) is obtained by dividing the bending modulus (MPa) by the specific gravity. In addition, the surface roughness and the like are reduced, the molded appearance is excellent, the thermal stability is good, the coloring is small, and the dispersibility of the cellulose fiber is improved by adding a terpene compound. It is a resin composition.
Moreover, in addition to further suppressing coloring by blending a phosphorus compound, it is a resin composition that can be further flame retardant by blending a phosphorus compound and polytetrafluoroethylene.
 本発明のポリカーボネート樹脂組成物は、以下の実施例に記載する性能評価において、得られる成形品のアイゾット(IZOD)衝撃強度、比剛性、酸素指数(LOI)、難燃性、熱安定性が概ね以下の性能を満足し、かつ成形外観に優れているという特徴を有している。
 アイゾット(IZOD)衝撃強度は、好ましくは30~3kJ/m2、より好ましくは30~5kJ/m2、特に好ましくは、30~10kJ/m2である。IZOD衝撃強度が10kJ/m2以上であれば、通常の電子・電気機器等のハウジング強度を満足し、3kJ/m2以下であれば製品の落下や衝撃などで破損する恐れがある。
 比剛性は、軽量性と剛性のバランスの観点から、2000MPa以上が好ましく、2300MPa以上がより好ましく、2400MPa以上が特に好ましい。
 酸素指数(LOI)は、24%以上が好ましく、25%以上がさらに好ましく、30%以上が特に好ましく、難燃性はV-1以上であることが好ましい。
 熱安定は、イエローインデックス(YI)で45以下であることが、着色が抑制される点から好ましい。
The polycarbonate resin composition of the present invention generally has the Izod (IZOD) impact strength, specific rigidity, oxygen index (LOI), flame retardancy, and thermal stability of the molded product obtained in the performance evaluation described in the following examples. It has the characteristics that it satisfies the following performance and has an excellent molded appearance.
Izod (IZOD) impact strength, preferably 30 ~ 3kJ / m 2, more preferably 30 ~ 5kJ / m 2, particularly preferably 30 ~ 10kJ / m 2. If the IZOD impact strength is 10 kJ / m 2 or more, the housing strength of ordinary electronic / electrical equipment is satisfied, and if it is 3 kJ / m 2 or less, the product may be damaged due to dropping or impact.
The specific rigidity is preferably 2000 MPa or more, more preferably 2300 MPa or more, and particularly preferably 2400 MPa or more, from the viewpoint of a balance between lightness and rigidity.
The oxygen index (LOI) is preferably 24% or more, more preferably 25% or more, particularly preferably 30% or more, and the flame retardancy is preferably V-1 or more.
The heat stability is preferably 45 or less in terms of yellow index (YI) from the viewpoint that coloring is suppressed.
 以下の実施例により、本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 The following examples further illustrate the present invention, but the present invention is not limited to these examples.
 実施例及び比較例において用いた各成分及び性能評価方法を次に示す。
(A)成分:ポリカーボネート樹脂
・芳香族ポリカーボネート樹脂:商品名FN1900A[出光興産(株)製、ビスフェノールAを原料として製造、粘度平均分子量=19,500]
・PC-PDMS:粘度平均分子量=17,000、PDMS含有率=4.0質量%、PDMS鎖長(n)=30[特開2002-12755号公報の製造例3及び4参照]
(B)成分:セルロース繊維
・セルロース繊維1:商品名SW-10[セライト(株)製、平均繊維径=25μm、平均繊維長=0.12mm、α-セルロース含有量90質量%]
・セルロース繊維2:商品名BH20[セライト(株)製、平均繊維径=25μm、平均繊維長=0.065mm、α-セルロース含有量90質量%]
(C)成分:テルペン系化合物
テルペン系化合物:商品名YSポリスターT160[テルペン-フェノール樹脂、ヤスハラケミカル(株)製]
(D)成分:リン化合物
リン化合物:商品名PX202[4,4'-ビフェニレン-テスラキス(2,6-ジメチルフェニル)ホスフェート、大八化学工業(株)製]
(E)成分:ポリテトラフルオロエチレン(PTFE)
PTFE:商品名CD076[旭硝子フロロポリマーズ(株)製]
(その他):
・セルロース繊維3:溶解パルプNDT-T(商品名、日本製紙(株)製)のシートを、シュレッダーを用いて5mm角のチップにし、これを用いミルにより粉砕したものを用いた。[平均繊維径=80μm、平均繊維長=2mm、α-セルロース含有量90質量%]
・ジュート繊維:[平均繊維径=50μm、平均繊維長=0.1mm、α-セルロース含有量70質量%]
The components and performance evaluation methods used in Examples and Comparative Examples are shown below.
(A) Component: Polycarbonate resin / aromatic polycarbonate resin: Trade name FN1900A [manufactured by Idemitsu Kosan Co., Ltd., manufactured using bisphenol A as a raw material, viscosity average molecular weight = 19,500]
PC-PDMS: Viscosity average molecular weight = 17,000, PDMS content = 4.0% by mass, PDMS chain length (n) = 30 [see Production Examples 3 and 4 of JP-A-2002-12755]
Component (B): Cellulose fiber / Cellulose fiber 1: Trade name SW-10 [manufactured by Celite, average fiber diameter = 25 μm, average fiber length = 0.12 mm, α-cellulose content 90% by mass]
Cellulose fiber 2: trade name BH20 [manufactured by Celite, average fiber diameter = 25 μm, average fiber length = 0.065 mm, α-cellulose content 90% by mass]
Component (C): Terpene compound Terpene compound: Trade name YS Polystar T160 [terpene-phenol resin, manufactured by Yasuhara Chemical Co., Ltd.]
Component (D): Phosphorus compound Phosphorus compound: Trade name PX202 [4,4′-biphenylene-teslakis (2,6-dimethylphenyl) phosphate, manufactured by Daihachi Chemical Industry Co., Ltd.]
(E) component: polytetrafluoroethylene (PTFE)
PTFE: Product name CD076 [Asahi Glass Fluoropolymers Co., Ltd.]
(Other):
Cellulose fiber 3: Dissolved pulp NDT-T (trade name, manufactured by Nippon Paper Industries Co., Ltd.) was used to make a 5 mm square chip using a shredder and pulverized with a mill using this. [Average fiber diameter = 80 μm, average fiber length = 2 mm, α-cellulose content 90 mass%]
Jute fiber: [average fiber diameter = 50 μm, average fiber length = 0.1 mm, α-cellulose content 70% by mass]
[性能評価方法]
(1)MI:メルトインデックス
 ASTM D-1238に準拠し、260℃、2.16kg荷重で測定した。単位:g/10分
(2)比重
 ASTM D792に準拠し、射出成形して得られた実施例、比較例の試験片を測定した。
(3)IZOD(アイゾット衝撃強度):
 ASTM D256に準拠し、試験片として肉厚1/8インチ(1/20.3cm)のものを用い、23℃において測定した。単位:kJ/m2
(4)曲げ弾性率
 ASTM D-790に準拠し、試験片として肉厚3mmのものを用い、23℃において測定した。単位:MPa
(5)比剛性
 前記の曲げ弾性率を比重で除して求めた。単位:MPa
(6)LOI(酸素指数)
 ASTM D2863に準拠し測定した。単位:%
(7)難燃性
 UL94規格(米国Under Writers Laboratories Inc.)に従って、試験片厚さ1.5mmで、垂直燃焼試験を行った。難燃性をUL94基準に従い分類し、いずれの分類にも該当せず燃焼が継続したものを「NG」とした。
(8)成形外観:80×40×3mm試験片を成形し、目視により表面荒れを評価した。
 表面荒れがないものを○、表面荒れが認められるものを×とした。
(9)YI(イエローインデックス)
 熱安定性について、成形時の着色度合いを、JIS K 7103に準拠して試験片のYI値を日本電色工業社製の試験機により測定して評価した。
[Performance evaluation method]
(1) MI: Melt index Measured according to ASTM D-1238 at 260 ° C. under a load of 2.16 kg. Unit: g / 10 min (2) Specific gravity Based on ASTM D792, test pieces of Examples and Comparative Examples obtained by injection molding were measured.
(3) IZOD (Izod impact strength):
In accordance with ASTM D256, a specimen having a thickness of 1/8 inch (1 / 20.3 cm) was used and measured at 23 ° C. Unit: kJ / m 2
(4) Flexural modulus Based on ASTM D-790, a test piece having a thickness of 3 mm was used and measured at 23 ° C. Unit: MPa
(5) Specific rigidity The specific rigidity was obtained by dividing the bending elastic modulus by the specific gravity. Unit: MPa
(6) LOI (oxygen index)
Measured according to ASTM D2863. unit:%
(7) Flame retardancy According to UL94 standard (Under Writer's Laboratories Inc., USA), a vertical combustion test was performed with a specimen thickness of 1.5 mm. Flame retardancy was classified according to UL94 standards, and those that did not fall under any classification and continued to burn were designated as “NG”.
(8) Molding appearance: 80 × 40 × 3 mm test pieces were molded and the surface roughness was evaluated visually.
A sample with no surface roughness was marked with ◯, and a sample with rough surface was marked with ×.
(9) YI (Yellow Index)
About thermal stability, the coloring degree at the time of shaping | molding evaluated the YI value of the test piece with the testing machine by Nippon Denshoku Industries Co., Ltd. based on JISK7103.
実施例1~10、比較例1~12
 表1又は2に示す割合で各成分を配合し、押出機(機種名:VS40、田辺プラスチック機械社製)に供給し、280℃で溶融混練し、ペレット化した。なお、全ての実施例及び比較例において、(A)成分及び(B)成分からなる樹脂混合物100質量部に対し、酸化抑制剤としてイルガノックス(登録商標)1076(BASF社製)0.2質量部及びアデカスタブ(登録商標)C(ADEKA(株)製)0.1質量部をそれぞれ配合した。
 得られたペレットを、120℃で12時間乾燥させ後、射出成形機(東芝機械(株)製、型式:IS100N)シリンダー温度260℃、金型温度80℃の条件で射出成形して試験片を得た。得られた試験片を用いて性能を各種試験によって評価し、その結果を表1又は2に示した。
Examples 1 to 10 and Comparative Examples 1 to 12
Each component was mix | blended in the ratio shown in Table 1 or 2, and it supplied to the extruder (model name: VS40, Tanabe Plastic Machinery Co., Ltd.), melt-kneaded at 280 degreeC, and pelletized. In all Examples and Comparative Examples, Irganox (registered trademark) 1076 (manufactured by BASF) 0.2 mass as an oxidation inhibitor with respect to 100 mass parts of the resin mixture comprising the components (A) and (B). And 0.1 parts by mass of ADK STAB (registered trademark) C (manufactured by ADEKA) were blended.
The obtained pellets were dried at 120 ° C. for 12 hours, and then injection molded under the conditions of an injection molding machine (manufactured by Toshiba Machine Co., Ltd., model: IS100N) cylinder temperature 260 ° C. and mold temperature 80 ° C. Obtained. The performance was evaluated by various tests using the obtained test pieces, and the results are shown in Table 1 or 2.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表1及び2により、全ての実施例において衝撃強度、剛性(曲げ弾性率)、比剛性、難燃性、成形外観及び熱安定性のバランスが良好であり、また実施例2,9,10ではリン化合物やポリテトラフルオロエチレンを配合することにより良好なバランスを維持しながら難燃性がさらに向上することがわかる。
 また、実施例1と比較例4あるいは実施例8と比較例12から(C)テルペン系化合物を配合することにより特に成形外観及び熱安定性が良好となり、実施例1と比較例6~9、あるいは実施例8と比較例10及び11から(B)セルロース繊維でなければ衝撃強度、難燃性、成形外観及び熱安定性が低下することがわかる。また、比較例3及び5から本発明で規定した含有割合でなければ、上記の良好なバランスを発現できないことがわかる。
According to Tables 1 and 2, the balance of impact strength, rigidity (flexural modulus), specific rigidity, flame retardancy, molded appearance and thermal stability is good in all examples. In Examples 2, 9, and 10, It can be seen that the flame retardance is further improved while maintaining a good balance by blending a phosphorus compound or polytetrafluoroethylene.
Further, by blending the terpene-based compound (C) from Example 1 and Comparative Example 4 or Example 8 and Comparative Example 12, the molding appearance and thermal stability were particularly improved. Example 1 and Comparative Examples 6 to 9, Alternatively, from Example 8 and Comparative Examples 10 and 11, it can be seen that impact strength, flame retardancy, molded appearance and thermal stability are reduced unless (B) cellulose fiber. Further, it can be seen from Comparative Examples 3 and 5 that the above-described good balance cannot be expressed unless the content ratio is defined in the present invention.
 本発明は、バイオマス材料の利用により環境特性に優れ、かつ衝撃強度の低下が少なく、低比重にして高剛性、すなわち比剛性が大きくて成形外観に優れ、さらに熱安定性が良く、難燃性が付与されたポリカーボネート樹脂組成物であることから、例えばOA機器、情報・通信機器、自動車部品又は建材分野等で好適に用いることができる。 The present invention is excellent in environmental characteristics by using biomass material, has little decrease in impact strength, has low specific gravity and high rigidity, that is, high specific rigidity and excellent appearance, heat stability, flame retardancy Can be suitably used, for example, in the field of OA equipment, information / communication equipment, automobile parts or building materials.

Claims (5)

  1.  (A)ポリカーボネート樹脂99~60質量%及び(B)平均繊維径が5~50μmであり、平均繊維長が0.03~1.5mmであるセルロース繊維1~40質量%からなる樹脂混合物100質量部に対し、(C)テルペン系化合物を0.2~30質量部含むポリカーボネート樹脂組成物。 (A) 99 to 60% by mass of polycarbonate resin and (B) 100% by mass of a resin mixture comprising 1 to 40% by mass of cellulose fibers having an average fiber diameter of 5 to 50 μm and an average fiber length of 0.03 to 1.5 mm. A polycarbonate resin composition containing 0.2 to 30 parts by mass of (C) a terpene compound relative to parts.
  2.  (B)セルロース繊維中のα-セルロース含有率が80質量%以上である、請求項1に記載のポリカーボネート樹脂組成物。 (B) The polycarbonate resin composition according to claim 1, wherein the content of α-cellulose in the cellulose fiber is 80% by mass or more.
  3.  (A)ポリカーボネート樹脂が、ポリカーボネート-ポリオルガノシロキサン共重合体であるか又はポリカーボネート-ポリオルガノシロキサン共重合体を含む、請求項1又は2に記載のポリカーボネート樹脂組成物。 (A) The polycarbonate resin composition according to claim 1 or 2, wherein the polycarbonate resin is a polycarbonate-polyorganosiloxane copolymer or contains a polycarbonate-polyorganosiloxane copolymer.
  4.  (A)ポリカーボネート樹脂及び(B)セルロース繊維からなる樹脂混合物100質量部に対し、さらに(D)リン化合物を0.2~30質量部含む、請求項1~3のいずれかに記載のポリカーボネート樹脂組成物。 The polycarbonate resin according to any one of claims 1 to 3, further comprising 0.2 to 30 parts by mass of (D) a phosphorus compound with respect to 100 parts by mass of a resin mixture comprising (A) a polycarbonate resin and (B) cellulose fibers. Composition.
  5.  (A)ポリカーボネート樹脂及び(B)セルロース繊維からなる樹脂混合物100質量部に対し、さらに(E)ポリテトラフルオロエチレンを0.05~1質量部含む、請求項1~4のいずれかに記載のポリカーボネート樹脂組成物。 The composition according to any one of claims 1 to 4, further comprising 0.05 to 1 part by mass of (E) polytetrafluoroethylene with respect to 100 parts by mass of the resin mixture comprising (A) a polycarbonate resin and (B) cellulose fibers. Polycarbonate resin composition.
PCT/JP2013/055883 2012-03-07 2013-03-04 Polycarbonate resin composition WO2013133228A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012050319 2012-03-07
JP2012-050319 2012-03-07

Publications (1)

Publication Number Publication Date
WO2013133228A1 true WO2013133228A1 (en) 2013-09-12

Family

ID=49116703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055883 WO2013133228A1 (en) 2012-03-07 2013-03-04 Polycarbonate resin composition

Country Status (1)

Country Link
WO (1) WO2013133228A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109265961A (en) * 2018-09-26 2019-01-25 长春云创空间科技有限公司 Uvioresistant polycarbonate and preparation method thereof
CN113881210A (en) * 2021-10-27 2022-01-04 万华化学集团股份有限公司 High-fluidity transparent polycarbonate material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176569A (en) * 2004-12-21 2006-07-06 Idemitsu Kosan Co Ltd Aromatic polycarbonate resin composition and molding thereof
JP2008127540A (en) * 2006-11-24 2008-06-05 Hitachi Chem Co Ltd Fiber-reinforced composite material and optical member
JP2010215791A (en) * 2009-03-17 2010-09-30 Idemitsu Kosan Co Ltd Aromatic polycarbonate resin composition and its molding
JP2011068709A (en) * 2009-09-24 2011-04-07 Konica Minolta Opto Inc Optical film, transparent gas barrier film obtained by using the same, and manufacturing method for optical film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176569A (en) * 2004-12-21 2006-07-06 Idemitsu Kosan Co Ltd Aromatic polycarbonate resin composition and molding thereof
JP2008127540A (en) * 2006-11-24 2008-06-05 Hitachi Chem Co Ltd Fiber-reinforced composite material and optical member
JP2010215791A (en) * 2009-03-17 2010-09-30 Idemitsu Kosan Co Ltd Aromatic polycarbonate resin composition and its molding
JP2011068709A (en) * 2009-09-24 2011-04-07 Konica Minolta Opto Inc Optical film, transparent gas barrier film obtained by using the same, and manufacturing method for optical film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109265961A (en) * 2018-09-26 2019-01-25 长春云创空间科技有限公司 Uvioresistant polycarbonate and preparation method thereof
CN113881210A (en) * 2021-10-27 2022-01-04 万华化学集团股份有限公司 High-fluidity transparent polycarbonate material and preparation method thereof
CN113881210B (en) * 2021-10-27 2023-08-11 万华化学集团股份有限公司 High-flow transparent polycarbonate material and preparation method thereof

Similar Documents

Publication Publication Date Title
US7504452B2 (en) Polycarbonate resin composition and molded article
JP5021192B2 (en) Polycarbonate resin composition and molded body
US8044127B2 (en) Thermoplastic resin composition, polycarbonate resin composition, and molded article thereof
DE19953297B4 (en) Flame retardant polycarbonate resin composition and use thereof
JP5374023B2 (en) Polycarbonate resin composition and molded body obtained therefrom
JP5988971B2 (en) Polycarbonate resin composition and molded body using the same
JP5877098B2 (en) Polycarbonate resin composition and molded body using the same
JP5276765B2 (en) Aromatic polycarbonate resin composition and molded article using the same
US20030027928A1 (en) Polycarbonate resin composition
WO2013133228A1 (en) Polycarbonate resin composition
CN114450348A (en) Flame retardant polycarbonate compositions and thin walled articles made therefrom
JP7182348B2 (en) Resin compositions, moldings, electronic parts, electronic equipment, and electronic office equipment
JP2014129489A (en) Polycarbonate resin composition and molded product thereof
KR101526009B1 (en) Flame-retardant resin composition with conductivity
JP4105004B2 (en) A lens barrel made of a flame retardant polycarbonate resin composition
EP4069771A1 (en) Transparent, flame-retardant high-heat polycarbonate compositions for thin wall applications
JP3649611B2 (en) Flame retardant polycarbonate resin composition and molded article
JP5614926B2 (en) Polycarbonate resin composition and molded article comprising the same
JP5217996B2 (en) Polycarbonate resin composition
WO2013147057A1 (en) Polycarbonate resin composition and molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13757132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP