WO2013133105A1 - Light guide, photovoltaic module, and photovoltaic power-generation device - Google Patents

Light guide, photovoltaic module, and photovoltaic power-generation device Download PDF

Info

Publication number
WO2013133105A1
WO2013133105A1 PCT/JP2013/055158 JP2013055158W WO2013133105A1 WO 2013133105 A1 WO2013133105 A1 WO 2013133105A1 JP 2013055158 W JP2013055158 W JP 2013055158W WO 2013133105 A1 WO2013133105 A1 WO 2013133105A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent layer
light guide
wavelength
phosphor
light
Prior art date
Application number
PCT/JP2013/055158
Other languages
French (fr)
Japanese (ja)
Inventor
英臣 由井
前田 強
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013133105A1 publication Critical patent/WO2013133105A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4298Coupling light guides with opto-electronic elements coupling with non-coherent light sources and/or radiation detectors, e.g. lamps, incandescent bulbs, scintillation chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a light guide, a solar cell module, and a solar power generation device.
  • the solar power generation device described in Patent Document 1 As a solar power generation device that installs a solar cell element on the end face of a light guide and makes light propagated through the light guide enter the solar cell element to generate power, the solar power generation device described in Patent Document 1 is Are known.
  • the solar power generation device of Patent Document 1 disperses phosphors inside a light guide, and absorbs external light incident from one main surface of the light guide with the phosphor. The fluorescence emitted from the phosphor propagates through the light guide, is emitted from the end face of the light guide, and enters the solar cell element.
  • the efficiency of confining the fluorescence inside the light guide is determined by the refractive index of the light guide, and the greater the refractive index of the light guide, the greater the fluorescence confinement efficiency. Therefore, in order to increase the fluorescence confinement efficiency, it is effective to use a light guide having a large refractive index. However, if the refractive index of the light guide is increased, the surface reflection of the light guide increases, and external light Is not sufficiently incident on the inside of the light guide.
  • An object of the present invention is to provide a light guide, a solar cell module, and a solar power generation device that can efficiently generate power using external light.
  • the light guide according to the first aspect of the present invention includes a first transparent layer and an optical functional material dispersed inside the first transparent layer, and the peak wavelength of the absorption spectrum of the optical functional material is ⁇ 1.
  • the peak wavelength of the emission spectrum of the optical functional material is ⁇ 2
  • the refractive index of the first transparent layer at the wavelength ⁇ 1 is n1 ( ⁇ 1)
  • the refractive index of the first transparent layer at the wavelength ⁇ 2 is n1 ( ⁇ 2)
  • n1 ( ⁇ 1) and n1 ( ⁇ 2) satisfy the relationship n1 ( ⁇ 1) ⁇ n1 ( ⁇ 2).
  • a light guide includes a first transparent layer and a plurality of types of optical functional materials dispersed inside the first transparent layer.
  • the peak wavelength of the absorption spectrum of any one type of optical functional material is ⁇ 1
  • the peak wavelength of the emission spectrum of the optical functional material having the largest emission spectrum peak wavelength among the plurality of types of optical functional materials is ⁇ 2
  • the wavelength When the refractive index of the first transparent layer at ⁇ 1 is n1 ( ⁇ 1) and the refractive index of the first transparent layer at the wavelength ⁇ 2 is n1 ( ⁇ 2), the n1 ( ⁇ 1) and the n1 ( ⁇ 2) Satisfies the relationship of n1 ( ⁇ 1) ⁇ n1 ( ⁇ 2).
  • n1 ( ⁇ 1) and n1 ( ⁇ 2) satisfy n1 ( ⁇ 1) ⁇ n1 ( ⁇ 2). You may satisfy the relationship.
  • the energy transfer may occur between the plurality of types of optical functional materials, and light may be emitted from the optical functional material having the largest peak wavelength of the emission spectrum.
  • a second transparent layer is provided on one side of the first transparent layer, the refractive index of the second transparent layer at the wavelength ⁇ 1 is n2 ( ⁇ 1), and the refractive index of the second transparent layer at the wavelength ⁇ 2 is n2.
  • n2 ( ⁇ 1) and n2 ( ⁇ 2) may satisfy the relationship n2 ( ⁇ 1) ⁇ n2 ( ⁇ 2).
  • the n2 ( ⁇ 2) and the n1 ( ⁇ 2) may satisfy a relationship of n2 ( ⁇ 2) ⁇ n1 ( ⁇ 2).
  • a second transparent layer is provided on one side of the first transparent layer, the refractive index of the second transparent layer at the wavelength ⁇ 1 is n2 ( ⁇ 1), and the refractive index of the second transparent layer at the wavelength ⁇ 2 is n2.
  • n2 ( ⁇ 1) and n2 ( ⁇ 2) satisfy the relationship n2 ( ⁇ 1)> n2 ( ⁇ 2), and n2 ( ⁇ 2) and n1 ( ⁇ 2) are n2 ( The relationship of ⁇ 2) ⁇ n1 ( ⁇ 2) may be satisfied.
  • a third transparent layer is provided on the other surface side of the first transparent layer, and when the refractive index of the third transparent layer at the wavelength ⁇ 2 is n3 ( ⁇ 2), the n3 ( ⁇ 2) and the n1 ( ⁇ 2 ) May satisfy the relationship of n3 ( ⁇ 2) ⁇ n1 ( ⁇ 2).
  • the light guide of the third aspect of the present invention includes a first transparent layer, an optical functional material dispersed inside the first transparent layer, and a second transparent provided on one surface side of the first transparent layer.
  • a peak wavelength of the absorption spectrum of the optical functional material is ⁇ 1
  • a peak wavelength of the emission spectrum of the optical functional material is ⁇ 2
  • a refractive index of the second transparent layer at the wavelength ⁇ 1 is n2 ( ⁇ 1 )
  • the refractive index of the second transparent layer at the wavelength ⁇ 2 is n2 ( ⁇ 2)
  • the relationship between n2 ( ⁇ 1) and n2 ( ⁇ 2) is n2 ( ⁇ 1) ⁇ n2 ( ⁇ 2). Fulfill.
  • the light guide of the 4th form of this invention was provided in the 1st transparent layer, the multiple types of optical functional material disperse
  • a peak wavelength of an absorption spectrum of any one of the plurality of types of optical functional materials is ⁇ 1, and the peak of the emission spectrum is the highest among the plurality of types of optical functional materials.
  • the peak wavelength of the emission spectrum of the optical functional material having a large wavelength is ⁇ 2, the refractive index of the second transparent layer at the wavelength ⁇ 1 is n2 ( ⁇ 1), and the refractive index of the second transparent layer at the wavelength ⁇ 2 is n2 ( ⁇ 2), n2 ( ⁇ 1) and n2 ( ⁇ 2) satisfy the relationship n2 ( ⁇ 1) ⁇ n2 ( ⁇ 2).
  • the n2 ( ⁇ 1) and the n2 ( ⁇ 2) satisfy n2 ( ⁇ 1) ⁇ n2 ( ⁇ 2). You may satisfy the relationship.
  • the energy transfer may occur between the plurality of types of optical functional materials, and light may be emitted from the optical functional material having the largest peak wavelength of the emission spectrum.
  • the n1 ( ⁇ 1) and the n1 ( ⁇ 2) may satisfy the relationship n1 ( ⁇ 1) ⁇ n1 ( ⁇ 2).
  • the n1 ( ⁇ 1) and the n1 ( ⁇ 2) may satisfy the relationship n1 ( ⁇ 1)> n1 ( ⁇ 2).
  • the n2 ( ⁇ 2) and the n1 ( ⁇ 2) may satisfy a relationship of n2 ( ⁇ 2) ⁇ n1 ( ⁇ 2).
  • a third transparent layer is provided on the other surface side of the first transparent layer, and when the refractive index of the third transparent layer at the wavelength ⁇ 2 is n3 ( ⁇ 2), the n3 ( ⁇ 2) and the n1 ( ⁇ 2 ) May satisfy the relationship of n3 ( ⁇ 2) ⁇ n1 ( ⁇ 2).
  • the n3 ( ⁇ 2) And n1 ( ⁇ 2) may satisfy the relationship n3 ( ⁇ 2) ⁇ n1 ( ⁇ 2).
  • the refractive index of the third transparent layer at the wavelength ⁇ 1 is n3 ( ⁇ 1)
  • the n3 ( ⁇ 1), the n2 ( ⁇ 1), and the n1 ( ⁇ 1) are n2 ( ⁇ 1) ⁇ n3 ( ⁇ 1) ⁇ n1 ( ⁇ 1) may be satisfied.
  • the solar cell module of the present invention includes the light guide of the present invention and a solar cell element that receives light emitted from the light guide.
  • the light incident surface of the light guide may be a flat surface.
  • the light guide may be configured as a flat plate-shaped member, and the solar cell element may receive the fluorescence emitted from an end surface of the light guide that is a light emission surface.
  • At least a part of the light incident surface of the light guide may be a bent or curved surface.
  • the light guide may be configured as a curved plate-shaped member, and the solar cell element may receive the fluorescence emitted from an end surface of the light guide that is a light emission surface.
  • the light guide may be configured as a cylindrical member, and the solar cell element may receive the fluorescence emitted from an end surface of the light guide that is a light emission surface.
  • the light guide may be configured as a columnar member, and the solar cell element may receive the light emitted from an end surface of the light guide that is a light emission surface.
  • a plurality of unit units each including the light guide body and the solar cell element may be installed adjacent to each other, and the plurality of unit units may be flexibly connected to each other by a string-like connecting member. .
  • a plurality of unit units each including the light guide body and the solar cell element as a set may be installed adjacent to each other, and the plurality of unit units may be connected with a space therebetween.
  • the solar power generation device of the present invention includes the solar cell module of the present invention.
  • the present invention it is possible to provide a light guide, a solar cell module, and a solar power generation device that can efficiently generate power using external light.
  • FIG. 1st Embodiment It is a schematic perspective view of the solar cell module of 1st Embodiment. It is sectional drawing of a solar cell module. It is a figure which shows the emission spectrum and absorption spectrum of fluorescent substance. It is a figure which shows the wavelength dispersion characteristic of the refractive index of the base material of a light guide. It is a figure for demonstrating an effect
  • FIG. 1 is a schematic perspective view of the solar cell module 1 of the first embodiment.
  • the solar cell module 1 includes a light guide 4 (fluorescent light guide), a solar cell element 6 that receives light emitted from the first end face 4 c of the light guide 4, and the light guide 4 and the solar cell element 6. And a frame 10 that holds the two integrally.
  • a light guide 4 fluorescent light guide
  • a solar cell element 6 that receives light emitted from the first end face 4 c of the light guide 4, and the light guide 4 and the solar cell element 6.
  • a frame 10 that holds the two integrally.
  • the light guide 4 includes a first main surface 4a that is a light incident surface, a second main surface 4b that faces the first main surface 4a, and a first end surface 4c that is a light emission surface.
  • the light guide 4 is a substantially rectangular plate-like member having a first main surface 4a and a second main surface 4b perpendicular to the Z axis (parallel to the XY plane).
  • the light guide 4 is obtained by dispersing an optical functional material in a base material (transparent substrate) made of a highly transparent organic material or inorganic material such as acrylic resin, polycarbonate resin, or glass.
  • the optical functional material include a phosphor that absorbs ultraviolet light or visible light and emits visible light or infrared light. The light emitted from the phosphor propagates through the light guide 4 and is emitted from the first end face 4 c and is used for power generation by the solar cell element 6.
  • visible light is light in a wavelength region of 380 nm to 750 nm
  • ultraviolet light is light in a wavelength region less than 380 nm
  • infrared light is light in a wavelength region larger than 750 nm.
  • the first main surface 4a and the second main surface 4b of the light guide 4 are flat surfaces substantially parallel to the XY plane. Light that travels from the inside of the light guide 4 toward the outside of the light guide 4 (light radiated from the phosphor) is transmitted to the inside of the light guide 4 on the end faces other than the first end face 4 c of the light guide 4.
  • a reflective layer 9 that reflects toward the surface is provided in direct contact with the end surface via an air layer or without an air layer.
  • Light traveling from the inside of the light guide 4 toward the outside of the light guide 4 (light emitted from the phosphor) or the first main surface 4a is incident on the second main surface 4b of the light guide 4 Is reflected by the second main surface 4b via the air layer or the second main surface 4b.
  • the reflection layer 7 reflects the light emitted from the second main surface 4b without being absorbed by the optical functional material toward the inside of the light guide 4.
  • the surface 4b is provided in direct contact with no air layer.
  • a reflective layer made of a metal film such as silver or aluminum, or a reflective layer made of a dielectric multilayer film such as an ESR (Enhanced Special Reflector) reflective film (manufactured by 3M) is used. Can do.
  • the reflective layer 7 and the reflective layer 9 may be a specular reflective layer that specularly reflects incident light, or a scattering reflective layer that scatters and reflects incident light.
  • a scattering reflection layer is used for the reflection layer 7
  • the amount of light that goes directly in the direction of the solar cell element 6 increases, so that the light collection efficiency to the solar cell element 6 increases and the amount of power generation increases.
  • the reflected light is scattered, changes in the amount of power generation with time and season are averaged.
  • micro-fired PET polyethylene terephthalate
  • the solar cell element 6 is disposed with the light receiving surface facing the first end surface 4 c of the light guide 4.
  • the solar cell element 6 is preferably optically bonded to the first end face 4c.
  • a known solar cell such as a silicon solar cell, a compound solar cell, or an organic solar cell can be used.
  • a compound solar cell using a compound semiconductor is suitable as the solar cell element 6 because it can generate power with high efficiency.
  • the solar cell element 6 may be installed on a plurality of end faces of the light guide 4.
  • the reflective layer 9 may be installed on the end surface where the solar cell element is not installed. preferable.
  • the frame 10 includes a transmission surface 10 a that transmits the light L on a surface facing the first main surface 4 a of the light guide 4.
  • the transmission surface 10a may be an opening of the frame 10, or may be a transparent member such as glass fitted in the opening of the frame 10.
  • the first main surface 4 a of the light guide 4 that overlaps the transmission surface 10 a of the frame 10 when viewed from the Z direction is the light incident surface of the light guide 4.
  • the first end surface 4 c of the light guide 4 is a light exit surface of the light guide 4.
  • the light guide 4 absorbs a part of the external light incident from the light incident surface by the optical functional material, and condenses the light emitted from the optical functional material on the light exit surface having a smaller area than the light incident surface. Inject outside.
  • FIG. 2 is a cross-sectional view of the solar cell module 1.
  • a phosphor 8 that absorbs orange light and emits red fluorescence L1 is dispersed in the light guide 4 as an optical functional material.
  • the light guide 4 includes a transparent base material 5 that does not contain a phosphor, and a phosphor 8 that is dispersed inside the base material 5.
  • the substrate 5 is a transparent layer that does not contain a phosphor, but if the phosphor is not intentionally dispersed for the purpose of wavelength conversion inside the light guide plate 4, it contains some phosphor and is completely Even those made of a material that is not transparent can be used as the substrate 5.
  • FIG. 3 is a diagram showing an emission spectrum and an absorption spectrum of the phosphor 8.
  • the horizontal axis in FIG. 3 is the light wavelength, and the vertical axis is the normalized light intensity.
  • the phosphor 8 is, for example, BASF Lumogen F RED (trade name).
  • the mixing ratio of the phosphor 8 is, for example, about 0.02% in volume ratio with respect to the base material 5.
  • the peak wavelength ⁇ 1 of the absorption spectrum of the phosphor 8 is approximately 580 nm, and the peak wavelength ⁇ 2 of the emission spectrum is approximately 610 nm.
  • the peak wavelength ⁇ 2 of the emission spectrum of the phosphor 8 is shifted to the longer wavelength side than the peak wavelength ⁇ 1 of the absorption spectrum due to the effect of Stokes shift.
  • the phosphor 8 is not limited to Lumogen F RED (trade name) manufactured by BASF, and various known phosphors can be used.
  • the phosphor 8 can absorb a part of the external light L (for example, sunlight) incident on the light incident surface of the light guide 4 and can convert the wavelength to propagate inside the light guide 4.
  • phosphors other than BASF's Lumogen F RED (trade name)
  • phosphors described in JP-A-2004-45248 and JP-A-2010-263115 may be mentioned.
  • FIG. 4 is a diagram showing the wavelength dispersion characteristics of the refractive index n1 of the base material 5.
  • the symbol n ⁇ b> 0 indicates the refractive index of a medium (for example, air) outside the light guide 4.
  • the peak wavelength of the absorption spectrum of the phosphor 8 is ⁇ 1
  • the peak wavelength of the emission spectrum of the phosphor 8 is ⁇ 2
  • the refractive index of the base material 5 at the wavelength ⁇ 1 is n1 ( ⁇ 1)
  • the wavelength ⁇ 2 When the refractive index of the substrate 5 is n1 ( ⁇ 2), n1 ( ⁇ 1) and n1 ( ⁇ 2) satisfy the relationship n1 ( ⁇ 1) ⁇ n1 ( ⁇ 2).
  • a material exhibiting wavelength dispersion characteristics such that the refractive index n1 increases as the wavelength ⁇ increases.
  • a member that exhibits anomalous dispersion in a wide wavelength region including the wavelength ⁇ 1 and the wavelength ⁇ 2 is preferably used as the substrate 5, but the wavelength dispersion characteristic of the refractive index of the substrate 5 is not limited to this.
  • the anomalous dispersion is a wavelength dispersion characteristic in which the refractive index n1 increases as the wavelength ⁇ increases.
  • a wavelength dispersion characteristic in which the refractive index n1 decreases as the wavelength ⁇ increases is referred to as normal dispersion.
  • Examples of members exhibiting anomalous dispersion are known as disclosed in, for example, JP-A No. 2003-344605, JP-A No. 2006-287243, JP-A No. 6-64942, JP-A No. 8-258208, and the like. Members are available.
  • FIGS. 5A and 5B are diagrams for explaining the difference in action between the case where the base material 5A showing abnormal dispersion is used as the base material 5 and the case where the base material 5B showing normal dispersion is used.
  • the refractive index n1 of the base material 5 is such that the surface reflectance R when the external light L is incident on the base material 5 and the confinement efficiency ⁇ trap when the fluorescent light L1 emitted from the phosphor 8 is confined inside the base material 5.
  • the surface reflectance R indicates the ratio of the light reflected on the surface of the base material 5 out of the light L incident on the surface of the base material 5, and the confinement efficiency ⁇ trap is the fluorescence L1 emitted in all directions. Of these, the ratio of the fluorescence confined inside the base material 5 by total reflection is shown.
  • the surface reflectance R and the confinement efficiency ⁇ trap are expressed by Expression (1) and Expression (2). In the formulas (1) and (2), n is the refractive index of the substrate, ⁇ 1 is the incident angle of light, and ⁇ 2 is the refractive angle of light.
  • the external light L is efficiently taken into the light guide 4 and the fluorescence L1 radiated from the phosphor 8 is led to the solar cell element 6 without waste to improve power generation efficiency. It becomes important in.
  • the refractive index n1 of the base material 5 is decreased.
  • the refractive index n1 of the substrate 5 needs to be increased.
  • the refractive index of a transparent member is not anomalous dispersion as shown in FIG. 4, but shows a chromatic dispersion characteristic of normal dispersion in which the refractive index decreases as the wavelength increases.
  • FIG. 5B when a member exhibiting normal dispersion is used as the substrate 5B, the refractive index n1 increases at the absorption wavelength ⁇ 1 of the phosphor 8, and the refractive index n1 decreases at the emission wavelength ⁇ 2 of the phosphor 8. For this reason, the surface reflectance R (reflected light Lr) increases, and the phosphor 8 cannot sufficiently absorb the external light L.
  • the confinement efficiency ⁇ trap becomes small, the fluorescence L1 leaking from the base material 5B increases, and it becomes impossible to make the fluorescent light L1 having a sufficient amount of light incident on the solar cell element 6. That is, when the refractive index n1 at the emission wavelength ⁇ 2 of the phosphor 8 becomes small, the critical angle when the fluorescence is totally reflected on the surface of the base material 5B becomes small, so that the fluorescence incident on the surface of the base material 5B with a small incident angle. L1 cannot be totally reflected. Since such fluorescence L1 permeate
  • the refractive index n1 becomes small at the absorption wavelength ⁇ 1 of the phosphor 8, and the phosphor 8 At the emission wavelength ⁇ 2, the refractive index n1 increases. Therefore, the surface reflectance R (reflected light Lr) becomes small, and the phosphor 8 can sufficiently absorb the external light L. Further, since the confinement efficiency ⁇ trap is increased, the fluorescence L1 leaking from the base material 5A is reduced, and a sufficient amount of fluorescence L1 can be incident on the solar cell element 6.
  • the critical angle when the fluorescence L1 is totally reflected on the surface of the base material 5A is reduced, so that the light is incident on the surface of the base material 5A with a small incident angle. It becomes possible to totally reflect the fluorescence L1. As a result, the light amount of the fluorescence L1 leaking from the base material 5A is reduced, and the light amount of the fluorescence L1 incident on the solar cell element 6 is increased.
  • the light guide base material 5 in which the phosphor 8 is dispersed exhibits a relatively small refractive index at the absorption wavelength ⁇ 1 of the phosphor 8.
  • a material having a relatively large refractive index at the emission wavelength ⁇ 2 is used. Therefore, the external light L incident on the light guide 4 can be efficiently absorbed by the phosphor 8, and the fluorescence L1 emitted from the phosphor 8 can be guided to the solar cell element 6 without waste. Therefore, it is possible to provide the solar cell module 1 capable of efficiently generating power using the external light L.
  • the light guide 4 is additionally provided with a protective film for protecting the light incident surface 4a of the light guide 4 in addition to the configuration shown in FIGS.
  • the body 4 may be provided with such a configuration.
  • a transparent member whose refractive index shows normal dispersion may be used.
  • the transparent layer constituting the outermost surface on the light incident side of the light guide 4 is configured as a layer exhibiting anomalous dispersion, but such a state is not necessarily required when distributed as a single light guide.
  • the configuration of the light guide in which the transparent layer on the outermost surface on the light incident side is a layer exhibiting normal dispersion is not excluded. Such a configuration is also included in the technical scope of the present invention.
  • FIG. 6 is a cross-sectional view of the solar cell module 11 of the second embodiment.
  • the configuration other than the light guide 12 is the same as that of the solar cell module 1 of the first embodiment. Therefore, here, the configuration of the light guide 12 will be mainly described.
  • symbol is attached
  • the light guide 12 includes a transparent light guide 14 and a fluorescent film 13 bonded to the first main surface 14 a of the transparent light guide 14.
  • the fluorescent film 13 and the transparent light guide 14 are disposed in order from the incident side of the external light L.
  • the first main surface 13 a opposite to the transparent light guide 14 of the fluorescent film 13 is a light incident surface of the light guide 12, and the first end surface 13 c of the fluorescent film 13 and the first end surface 14 c of the transparent light guide 14. Is the light exit surface of the light guide 12.
  • the light receiving surface of the solar cell element 6 is disposed so as to face the first end surface 13c of the fluorescent film 13 and the first end surface 14c of the transparent light guide 14 which are light emitting surfaces.
  • the fluorescent film 13 includes a transparent base material 15 that does not contain a fluorescent material, and a fluorescent material 8 that is dispersed inside the base material 15.
  • the fluorescent film 13 converts part of the external light L (for example, sunlight) incident on the first main surface 12 a into fluorescence and radiates it toward the transparent light guide 14. Part of the fluorescence emitted from the fluorescent film 13 propagates while totally reflecting the inside of the fluorescent film 13 and the transparent light guide 14.
  • the fluorescence emitted from the first end face 13c of the fluorescent film 13 and the first end face 14c of the transparent light guide 14 enters the solar cell element 6 and is used for power generation.
  • the base material 15 and the transparent light guide 14 are transparent layers that do not contain a phosphor. However, unless the phosphor is intentionally dispersed for the purpose of wavelength conversion inside the fluorescent film 13 and the transparent light guide 14, it is made of a material that contains some phosphor and is not completely transparent. Even if it is a thing, it can be used as the base material 15 and the transparent light guide 14.
  • the base material 15 of the fluorescent film 13 may be referred to as a first transparent layer
  • the transparent light guide 14 may be referred to as a second transparent layer.
  • the second transparent layer is a transparent layer provided on one side of the first transparent layer.
  • FIG. 7 is a diagram showing the wavelength dispersion characteristics of the refractive index n1 of the first transparent layer 15 and the refractive index n2 of the second transparent layer.
  • the first transparent layer 15 and the second transparent layer 14 are formed of the same material, and the refractive indexes n1 and n2 of the first transparent layer 15 and the second transparent layer 14 exhibit the same wavelength dispersion characteristics. .
  • the peak wavelength of the absorption spectrum of the phosphor 8 is ⁇ 1
  • the peak wavelength of the emission spectrum of the phosphor 8 is ⁇ 2
  • the refractive index of the first transparent layer 15 at the wavelength ⁇ 1 is n1 ( ⁇ 1)
  • the wavelength The refractive index of the second transparent layer 14 at ⁇ 1 is n2 ( ⁇ 1)
  • the refractive index of the first transparent layer 15 at wavelength ⁇ 2 is n1 ( ⁇ 2)
  • the refractive index of the second transparent layer 14 at wavelength ⁇ 2 is n2 ( ⁇ 2).
  • N1 ( ⁇ 1), n2 ( ⁇ 1), n1 ( ⁇ 2), and n2 ( ⁇ 2) satisfy the relationship of n1 ( ⁇ 1) ⁇ n1 ( ⁇ 2) and n2 ( ⁇ 1) ⁇ n2 ( ⁇ 2) It is supposed to satisfy.
  • wavelength dispersion characteristics are shown such that the refractive indexes n1 and n2 increase as the wavelength ⁇ increases.
  • a member that exhibits anomalous dispersion in a wide wavelength region including the wavelengths ⁇ 1 and ⁇ 2 is preferably used. As such a member, a member similar to that shown in the first embodiment can be used.
  • FIGS. 8A and 8B show the case where the first transparent layer 15 and the second transparent layer 14 exhibit anomalous dispersion (the first transparent layer 15A and the second transparent layer 14A) and the normal dispersion (the first transparent layer 15 and the second transparent layer 14A). It is a figure for demonstrating the difference in an effect
  • the refractive index n2 increases at the absorption wavelength ⁇ 1 of the phosphor 8, and the emission wavelength ⁇ 2 of the phosphor 8 Then, the refractive index n2 becomes small. For this reason, the surface reflectance R (reflected light Lr) increases, and the phosphor 8 cannot sufficiently absorb the external light L. Further, since the confinement efficiency ⁇ trap becomes small, the fluorescence L1 leaking out from the first transparent layer 15B and the second transparent layer 14B increases, and the fluorescent light L1 having a sufficient amount of light cannot enter the solar cell element 6.
  • the refractive index n2 becomes small at the absorption wavelength ⁇ 1 of the phosphor 8, and the phosphor 8 emits light.
  • the refractive index n2 increases. Therefore, the surface reflectance R (reflected light Lr) becomes small, and the phosphor 8 can sufficiently absorb the external light L.
  • the confinement efficiency ⁇ trap is increased, the fluorescence L1 leaking out from the first transparent layer 15A and the second transparent layer 14A is reduced, and a sufficient amount of fluorescence L1 can be incident on the solar cell element 6. .
  • the critical angle when the fluorescence L1 is totally reflected on the surfaces of the first transparent layer 15A and the second transparent layer 14A is reduced. It becomes possible to totally reflect the fluorescence L1 incident on the surfaces of 15A and the second transparent layer 14A at a small incident angle. As a result, the light amount of the fluorescence L1 leaking from the first transparent layer 15A and the second transparent layer 14A decreases, and the light amount of the fluorescence L1 incident on the solar cell element 6 increases.
  • the fluorescence L1 emitted from the phosphor 8 is the first transparent layer 15A and the second transparent layer 14A. It propagates inside the first transparent layer 15A and the second transparent layer 14A without being surface-reflected at the interface. Since the fluorescence L1 emitted from the phosphor 8 is not confined in the first transparent layer 15A (fluorescence film 13), the light loss due to the self-absorption of the phosphor 8 is reduced.
  • the solar cell module of the present embodiment in addition to the effect of the first embodiment, an effect that the loss due to the self-absorption of the phosphor 8 can be reduced is obtained. Therefore, the solar cell module 11 capable of generating power more efficiently is provided.
  • the 1st transparent layer 15 and the 2nd transparent layer 14 were formed with the same material, the 1st transparent layer 15 and the 2nd transparent layer 14 do not necessarily need to be formed with the same material. Even if the first transparent layer 15 and the second transparent layer 14 are formed of different materials, if n1 ( ⁇ 2) and n2 ( ⁇ 2) are sufficiently close, the fluorescence emitted from the phosphor 8 is emitted from the first transparent layer 15. And can be propagated across the second transparent layer 14.
  • n1 and n2 indicate anomalous dispersion, or n1 indicates anomalous dispersion and n2 indicates a normal dispersion
  • n1 ( ⁇ 2) and n2 ( ⁇ 2) are sufficiently close
  • the above-described effects can be obtained.
  • n1 ( ⁇ 2) and n2 ( ⁇ 2) satisfy the relationship n2 ( ⁇ 2) ⁇ n1 ( ⁇ 2), the surface reflection at the interface between the first transparent layer 15 and the second transparent layer 14 , And the fluorescence emitted from the phosphor 8 is easily taken into the second transparent layer 14 from the first transparent layer 15.
  • the light guide 12 is composed of two layers of the fluorescent film 13 and the transparent light guide 14, but the configuration of the light guide 12 is not limited to this.
  • One or more other transparent layers (third transparent layer: refractive index n3) are disposed between the first transparent layer 15 and the second transparent layer 14, and the surface of the first transparent layer 15 opposite to the second transparent layer 14
  • the second transparent layer 14 may be provided on the side opposite to the first transparent layer 15. Also in this case, if the refractive indexes of n1 ( ⁇ 2), n2 ( ⁇ 2), and n3 ( ⁇ 2) are sufficiently close, the fluorescence emitted from the phosphor 8 is emitted from the first transparent layer 15, the second transparent layer 14, and the third transparent layer.
  • the third transparent layer has a refractive index n3 exhibiting anomalous dispersion, n1 ( ⁇ 2), n2 ( ⁇ 2), and n3 ( ⁇ 2) are close to each other, so that the above-described effect can be easily obtained.
  • the third transparent layer may be provided on the side of the first transparent layer 15 opposite to the second transparent layer 14.
  • the third transparent layer preferably exhibits anomalous dispersion, but any transparent layer generally used as an antireflection layer may be used even if it exhibits normal dispersion.
  • FIG. 9 is a cross-sectional view of the solar cell module 16 of the third embodiment.
  • the configuration other than the light guide 17 is the same as that of the solar cell module 1 of the first embodiment. Therefore, here, the configuration of the light guide 17 will be mainly described.
  • symbol is attached
  • a plurality of types of phosphors having different absorption wavelength ranges (in FIG. 9, for example, the first phosphor 8a and the second fluorescence).
  • the body 8b and the third phosphor 8c) are dispersed.
  • the first phosphor 8a absorbs ultraviolet light and emits blue fluorescence
  • the second phosphor 8b absorbs blue light and emits green fluorescence
  • the third phosphor 8c emits green light. Absorbs and emits red fluorescence.
  • the 1st fluorescent substance 8a, the 2nd fluorescent substance 8b, and the 3rd fluorescent substance 8c are disperse
  • the mixing ratio of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is as follows.
  • the mixing ratio of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is shown as a volume ratio with respect to the substrate 5.
  • the first phosphor 8a is BASF Lumogen F Violet 570 (trade name) 0.02%.
  • the second phosphor 8b is BASF Lumogen F Yellow 083 (trade name) 0.02%.
  • the third phosphor 8c is BASF's Lumogen F Red 305 (trade name) 0.02%.
  • the light guide 17 includes a first main surface 17a that is a light incident surface, a second main surface 17b that faces the first main surface 17a, and a first end surface 17c that is a light emission surface.
  • the solar cell element 6 is disposed with the light receiving surface facing the first end surface 17 c of the light guide 17.
  • a reflective layer 9 that reflects toward the surface is provided in direct contact with the end surface via an air layer or without an air layer.
  • the reflective layer 7 that reflects the light emitted from the second main surface 17b toward the inside of the light guide body 17 without being absorbed by the optical functional material is formed on the second main surface 17b via the air layer or the second main surface.
  • the surface 17b is provided in direct contact with no air layer.
  • FIGS. 10 to 13 are diagrams showing the emission characteristics and absorption characteristics of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c.
  • first phosphor indicates the spectrum of sunlight after ultraviolet light is absorbed by the first phosphor 8a
  • second phosphor indicates that blue light is emitted by the second phosphor 8b.
  • third phosphor shows the spectrum of sunlight after green light is absorbed by the third phosphor 8c.
  • first phosphor + second phosphor + third phosphor absorbs ultraviolet light, blue light, and green light by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c.
  • first phosphor is the emission spectrum of the first phosphor 8a
  • second phosphor is the emission spectrum of the second phosphor 8b
  • third phosphor is It is an emission spectrum of the 3rd fluorescent substance 8c.
  • first phosphor + second phosphor + third phosphor is emitted from the first end face of the light guide including the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c. Is the spectrum of the emitted light.
  • the first phosphor 8a absorbs light having a wavelength of approximately 420 nm or less
  • the second phosphor 8b absorbs light having a wavelength of approximately 420 nm or more and 520 nm or less
  • the phosphor 8c absorbs light having a wavelength of approximately 520 nm or more and 620 nm or less.
  • the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c absorb almost all light having a wavelength of 620 nm or less in the sunlight incident on the light guide.
  • the proportion of light having a wavelength of 620 nm or less is about 37%. Therefore, 37% of the light incident on the light incident surface of the light guide is absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c included in the light guide.
  • the emission spectrum of the first phosphor 8a has a peak wavelength at 430 nm
  • the emission spectrum of the second phosphor 8b has a peak wavelength at 520 nm
  • the emission of the third phosphor 8c has a peak wavelength at 630 nm.
  • the spectrum of light emitted from the first end face of the light guide including the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is the same as that of the third phosphor 8c.
  • It has a peak wavelength only at a wavelength corresponding to the peak wavelength (630 nm) of the emission spectrum, and the peak wavelength (430 nm) of the emission spectrum of the first phosphor 8a and the peak wavelength (520 nm) of the emission spectrum of the second phosphor 8b.
  • the corresponding wavelength does not have a peak wavelength.
  • the cause of the disappearance of the emission spectrum peak corresponding to the first phosphor 8a and the emission spectrum peak corresponding to the second phosphor 8b is the energy transfer between the phosphors by photoluminescence (PL) and the Forster mechanism.
  • Examples thereof include energy transfer between phosphors by (fluorescence resonance energy transfer).
  • Energy transfer by photoluminescence occurs when fluorescence emitted from one phosphor is used as excitation energy for another phosphor.
  • excitation energy directly moves between two adjacent phosphors by electron resonance without going through such light emission and absorption processes. Since energy transfer between phosphors by the Förster mechanism is performed without going through light emission and absorption processes, energy loss is small under optimum conditions.
  • the density of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is increased, and the Forster mechanism is used between the phosphors. Energy transfer is performed.
  • FIG. 14A is a diagram illustrating energy transfer by photoluminescence
  • FIG. 14B is a diagram illustrating energy transfer by the Forster mechanism
  • FIG. 15A is a diagram for explaining a generation mechanism of energy transfer by the Förster mechanism
  • FIG. 15B is a diagram showing energy transfer by the Förster mechanism.
  • energy transfer may occur from the molecule A in the excited state to the molecule B in the ground state by the Forster mechanism.
  • the molecule A when the molecule A is excited and undergoes energy transfer to the molecule B, the molecule B emits light. This energy transfer depends on the distance between molecules, the emission spectrum of molecule A, and the absorption spectrum of molecule B.
  • the rate constant k H ⁇ G moving probability
  • Equation (3) ⁇ is the frequency
  • f ′ H ( ⁇ ) is the emission spectrum of the host molecule A
  • ⁇ ( ⁇ ) is the absorption spectrum of the guest molecule B
  • N is the Avogadro constant
  • n is the refractive index
  • ⁇ 0 is the fluorescence lifetime of the host molecule A
  • R is the intermolecular distance
  • K 2 is the transition dipole moment (2/3 at random).
  • [1] represents the ease of resonance between two adjacent phosphors.
  • FIG. 15A when the peak wavelength of the emission spectrum of the host molecule A is close to the peak wavelength of the absorption spectrum of the guest molecule B, energy transfer due to the Forster mechanism is likely to occur.
  • FIG. 15B when the guest molecule B in the ground state exists in the vicinity of the host molecule A in the excited state, the wave function of the guest molecule A changes due to the resonance properties, and the host molecule A in the ground state and the excited state in the excited state. Guest molecule B is formed. Thereby, energy transfer occurs between the host molecule A and the guest molecule B, and the guest molecule B emits light.
  • the intermolecular distance at which energy transfer by the Forster mechanism occurs is usually about 10 nm. If the conditions are met, energy transfer occurs even when the intermolecular distance is about 20 nm. If the mixing ratio of the first phosphor, the second phosphor, and the third phosphor described above is used, the distance between the phosphors is shorter than 20 nm. Therefore, energy transfer by the Forster mechanism can occur sufficiently. Moreover, the emission spectrum and absorption spectrum of the first phosphor, the second phosphor, and the third phosphor shown in FIGS. 10 and 12 sufficiently satisfy the condition [1].
  • the light guide although the phosphors having the three different emission spectra (the first phosphor, the second phosphor, and the third phosphor) are mixed, the light guide is substantially affected by the energy transfer by the Förster mechanism. In this case, only the emission of the third phosphor occurs.
  • the emission quantum efficiency of the third phosphor is, for example, 92%. Therefore, by mixing the first phosphor, the second phosphor, and the third phosphor in the light guide, light in the wavelength region up to 620 nm is absorbed, and red light emission with a peak wavelength of 630 nm is achieved with an efficiency of 92%. Can be generated.
  • This type of energy transfer phenomenon is unique to organic phosphors and is generally considered not to occur in inorganic phosphors, but in some inorganic nanoparticle phosphors such as quantum dots, Those that cause energy transfer between inorganic materials or between inorganic materials and organic materials by a star mechanism are known.
  • energy transfer occurs between two types of quantum dots having different sizes of ZnO / MgZnO core / shell structure. Since a quantum dot having a dimensional ratio of 1: ⁇ 2 has a resonating exciton level, for example, 2 having a radius of 3 nm (peak wavelength of emission spectrum: 350 nm) and a radius of 4.5 nm (peak wavelength of emission spectrum: 357 nm). Between types of quantum dots, energy transfer occurs from small to large quantum dots. Energy transfer also occurs between two different sized quantum dots of the CdSe / ZnS core-shell structure.
  • Mn2 + doped ZnSe quantum dots having a diameter of 8 nm to 9 nm have emission peaks at 450 nm and 580 nm, and are dye molecules such as 1 ′, 3′-dihydro-1 ′, 3 ′, 3′-trimethyl-6-nitrospiro [ 2H-1-benzopyran-2,2 '-(2H) -indole] is well consistent with the light absorption spectrum of a ring-opened Spiropyran molecule (SPO open; Merocynanine form) obtained by irradiating UV rays to Energy transfer to the dye molecule occurs.
  • SPO open Merocynanine form
  • energy transfer by the Forster mechanism occurs not only in a luminescent material such as a phosphor, but also in a non-luminescent material that is excited by external light but deactivates without generating light.
  • the final power generation amount depends on the fluorescence quantum yield of the guest molecule and does not depend on the fluorescence quantum yield of the host molecule. Therefore, even if only the guest molecule is composed of a phosphor having a high fluorescence quantum yield and the host molecule is composed of a phosphor having a low fluorescence quantum yield or a non-light emitting material that does not emit fluorescence, the same amount of power generation can be obtained. Therefore, as compared with the case where a high fluorescence quantum yield is required for all phosphors, such as when energy transfer is performed by photoluminescence, the range of material selection for the host molecule is widened.
  • FIG. 16 is a diagram showing a spectral sensitivity curve of an amorphous silicon solar cell as an example of the solar cell element 6 together with an emission spectrum of the first phosphor, an emission spectrum of the second phosphor, and an emission spectrum of the third phosphor.
  • the spectrum of the light L1 emitted from the first end face 17c of the light guide body 17 substantially coincides with the emission spectrum of the third phosphor 8c. Therefore, the solar cell element 6 should just have a high sensitivity in the peak wavelength (630 nm) of the emission spectrum of the 3rd fluorescent substance 8c. As shown in FIG. 16, the amorphous silicon solar cell has the highest spectral sensitivity with respect to light having a wavelength near 600 nm.
  • the peak wavelength of the emission spectrum of the third phosphor having the largest peak wavelength of the emission spectrum
  • the spectral sensitivity of the amorphous silicon solar cell at is higher than the spectral sensitivity of the amorphous silicon solar cell at the peak wavelength of the emission spectrum of any of the other phosphors (first phosphor and second phosphor) provided in the light guide. large. Therefore, if an amorphous silicon solar cell is used as the solar cell element 6, power generation can be performed with high efficiency.
  • a part of the external light L incident on the light incident surface 17a is converted into a plurality of optical functional materials (first phosphor 8a, second phosphor 8b, third fluorescence).
  • the light L1 emitted from the optical functional material (third phosphor 8c) having the largest peak wavelength of the emission spectrum, which is absorbed by the body 8c) causes energy transfer by the Forster mechanism between the plurality of optical functional materials.
  • the light is condensed on the first end surface 17 c of the light guide 17 having a smaller area than the light incident surface 17 a and is incident on the solar cell element 6. Therefore, as the solar cell element 6, a solar cell having very high spectral sensitivity in a limited narrow wavelength range can be used, and a solar cell module with high power generation efficiency is provided.
  • FIG. 17 is a cross-sectional view of the solar cell module 18 of the fourth embodiment.
  • the configuration other than the light guide 19 is the same as that of the solar cell module 16 of the third embodiment. Therefore, here, the configuration of the light guide 19 will be mainly described.
  • symbol is attached
  • the light guide 19 includes a transparent light guide 22, a fluorescent film 20 adhered to the first main surface 22a of the transparent light guide 22, a transparent protective film 21 covering the first main surface 20a of the fluorescent film 20, It has.
  • the transparent protective film 21, the fluorescent film 20, and the transparent light guide 22 are arranged in order from the incident side of the external light L.
  • the first main surface 21a of the transparent protective film 21 opposite to the fluorescent film 20 is a light incident surface of the light guide 19, and the first end surface 21c of the transparent protective film 21, the first end surface 20c of the fluorescent film 20, and the transparent film.
  • the first end face 22 c of the light guide 22 is a light exit surface of the light guide 19.
  • the light receiving surface of the solar cell element 6 is disposed so as to face the first end surface 21c of the transparent protective film 21, which is a light emitting surface, the first end surface 20c of the fluorescent film 20, and the first end surface 22c of the transparent light guide 22. Yes.
  • the fluorescent film 20 includes a transparent base material 23 that does not contain a phosphor and a plurality of optical functional materials dispersed in the base material 23 (in FIG. 17, the first phosphor 8a, the second phosphor 8b, and the third phosphor Phosphor 8c).
  • the fluorescent film 20 converts part of the external light L (for example, sunlight) incident on the first main surface 20 a into fluorescence and radiates it toward the transparent light guide 22 and the transparent protective film 21.
  • a part of the fluorescence emitted from the fluorescent film 20 propagates while totally reflecting the inside of the transparent protective film 21, the fluorescent film 20, and the transparent light guide 22, and has a light emitting surface (transparent) having a smaller area than the light incident surface.
  • 1st end surface 21c of the protective film 21, the 1st end surface 20c of the fluorescent film 20, and the 1st end surface 22c of the transparent light guide 22) are guide
  • the fluorescence emitted from the first end face 21c of the transparent protective film 21, the first end face 20c of the fluorescent film 20, and the first end face 22c of the transparent light guide 22 is incident on the solar cell element 6 and used for power generation.
  • the transparent protective film 21, the base material 23, and the transparent light guide 22 are transparent layers that do not contain a phosphor. However, if the phosphor is not intentionally dispersed for the purpose of wavelength conversion inside the transparent protective film 21, the fluorescent film 20, and the transparent light guide 22, it contains some phosphor and is not completely transparent. Even those made of materials can be used as the transparent protective film 21, the base material 23, and the transparent light guide 22.
  • the base material 23 of the fluorescent film 20 may be referred to as a first transparent layer
  • the transparent protective film 21 may be referred to as a second transparent layer
  • the transparent light guide 22 may be referred to as a third transparent layer.
  • FIG. 18 is a diagram showing the wavelength dispersion characteristics of the refractive index n1 of the first transparent layer 23, the refractive index n2 of the second transparent layer 21, and the refractive index n3 of the third transparent layer 22.
  • the first transparent layer 23, the second transparent layer 21, and the third transparent layer 22 are formed of the same material, and the first transparent layer 23, the second transparent layer 21, and the third transparent layer 22 are the same.
  • Refractive indexes n1, n2, and n3 exhibit the same wavelength dispersion characteristics.
  • the peak wavelength of the absorption spectrum of at least one of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c (hereinafter sometimes referred to as a specific phosphor) is ⁇ 1.
  • the peak wavelength of the emission spectrum of the third phosphor 8c is ⁇ 2
  • the refractive index of the first transparent layer 23 at the wavelength ⁇ 1 is n1 ( ⁇ 1)
  • the refractive index of the second transparent layer 21 at the wavelength ⁇ 1 is n2 ( ⁇ 1).
  • the refractive index of the third transparent layer 22 at the wavelength ⁇ 1 is n3 ( ⁇ 1)
  • the refractive index of the first transparent layer 23 at the wavelength ⁇ 2 is n1 ( ⁇ 2)
  • Is n2 ( ⁇ 2) and the refractive index of the third transparent layer 22 at the wavelength ⁇ 2 is n3 ( ⁇ 2), n1 ( ⁇ 1), n2 ( ⁇ 1), n3 ( ⁇ 1), n1 ( ⁇ 2), n2 ( ⁇ 2) and n3 ( ⁇ 2) are n1
  • the relations ( ⁇ 1) ⁇ n1 ( ⁇ 2), n2 ( ⁇ 1) ⁇ n2 ( ⁇ 2), and n3 ( ⁇ 1) ⁇ n3 ( ⁇ 2) are satisfied.
  • wavelength dispersion characteristics are shown such that the refractive index n1, n2, n3 increases as the wavelength ⁇ increases.
  • a member that exhibits anomalous dispersion in a wide wavelength region including the wavelength ⁇ 1 and the wavelength ⁇ 2 is preferably used.
  • a member similar to that shown in the first embodiment can be used.
  • the transparent protective film 21 is disposed on the external light incident side of the fluorescent film 20.
  • the transparent protective film 21 having a refractive index exhibiting anomalous dispersion is used, at least light having an absorption wavelength of the specific phosphor can be efficiently taken into the fluorescent film 20, and the third The fluorescence emitted from the phosphor 8c can be guided to the solar cell element 6 without waste. Therefore, it is possible to provide the solar cell module 18 that can efficiently generate power using the external light L.
  • n1 ( ⁇ 1), n2 ( ⁇ 1), n3 ( ⁇ 1), n1 ( ⁇ 2), n2 ( ⁇ 2), and n3 ( ⁇ 2) are n1 ( ⁇ 1) ⁇ n1 ( ⁇ 2), n2 ( ⁇ 1) ⁇ n2 ( ⁇ 2), and n3 ( ⁇ 1) ⁇ n3 ( ⁇ 2) )
  • the light having the absorption wavelength of all the phosphors can be efficiently taken into the fluorescent film 20, and more efficient power generation becomes possible.
  • the fluorescence emitted from the third phosphor 8c is the first transparent layer.
  • the second transparent layer 21, and the third transparent layer 22 without being surface-reflected at the interface between the first transparent layer 23 and the second transparent layer 21 and the interface between the first transparent layer 23 and the third transparent layer 22.
  • Propagate inside Since the fluorescence emitted from the third phosphor 8c is not confined in the first transparent layer 23 (fluorescent film 20), the light loss due to the self-absorption of the third phosphor 8c is reduced. Therefore, the solar cell module 18 capable of generating power more efficiently is provided.
  • the first transparent layer 23, the second transparent layer 21, and the third transparent layer 22 are formed of the same material, but the first transparent layer 23, the second transparent layer 21, and the third transparent layer 22 are It is not always necessary to form the same material. Even if the first transparent layer 23, the second transparent layer 21, and the third transparent layer 22 are formed of different materials, the third fluorescence can be obtained if n1 ( ⁇ 2), n2 ( ⁇ 2), and n3 ( ⁇ 2) are sufficiently close. The fluorescence emitted from the body 8 c can be propagated across the first transparent layer 23, the second transparent layer 21, and the third transparent layer 22.
  • n1, n2, and n3 all indicate anomalous dispersion, or n2 indicates anomalous dispersion and n1 and n3 indicate normal dispersion
  • n1 ( ⁇ 1), n2 ( ⁇ 1) When n3 ( ⁇ 1) is sufficiently close and n1 ( ⁇ 2), n2 ( ⁇ 2), and n3 ( ⁇ 2) are sufficiently close, the above-described effects can be obtained.
  • n2 ( ⁇ 2) and n1 ( ⁇ 2) satisfy the relationship of n2 ( ⁇ 2) ⁇ n1 ( ⁇ 2), and n3 ( ⁇ 2) and n1 ( ⁇ 2) have a relationship of n3 ( ⁇ 2) ⁇ n1 ( ⁇ 2).
  • FIG. 19 is a cross-sectional view of the solar cell module 24 of the fifth embodiment.
  • the configuration other than the light guide 25 is the same as that of the solar cell module 18 of the fourth embodiment. Therefore, here, the configuration of the light guide 25 will be mainly described.
  • symbol is attached
  • the light guide 25 includes a fluorescent film 20 and a transparent light guide 26 bonded to the first main surface 20 a of the fluorescent film 20.
  • the transparent light guide 26 and the fluorescent film 20 are disposed in order from the incident side of the external light L.
  • the first main surface 26 a of the transparent light guide 26 opposite to the fluorescent film 20 is a light incident surface of the light guide 25, and the first end surface 26 c of the transparent light guide 26 and the first end surface 20 c of the fluorescent film 20. Is a light exit surface of the light guide 25.
  • the light receiving surface of the solar cell element 6 is disposed so as to face the first end surface 26c of the transparent light guide 26 and the first end surface 20c of the fluorescent film 20 which are light emitting surfaces.
  • the base material 23 and the transparent light guide 26 of the fluorescent film 20 are transparent layers that do not contain a fluorescent material. However, unless the phosphor is intentionally dispersed for the purpose of wavelength conversion inside the fluorescent film 20 and the transparent light guide 26, it is made of a material that contains some phosphor and is not completely transparent. Even if it is a thing, it can be used as the base material 23 and the transparent light guide 26.
  • the base material 23 of the fluorescent film 20 may be referred to as a first transparent layer
  • the transparent light guide 26 may be referred to as a second transparent layer.
  • FIG. 20 is a diagram showing the wavelength dispersion characteristics of the refractive index n1 of the first transparent layer 23 and the refractive index n2 of the second transparent layer 26.
  • the first transparent layer 23 and the second transparent layer 26 are formed of the same material, and the refractive indexes n1 and n2 of the first transparent layer 23 and the second transparent layer 26 exhibit the same wavelength dispersion characteristics. .
  • the peak wavelength of the absorption spectrum of at least one of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c (hereinafter sometimes referred to as a specific phosphor) is set.
  • ⁇ 1 the peak wavelength of the emission spectrum of the third phosphor 8c is ⁇ 2
  • the refractive index of the first transparent layer 23 at the wavelength ⁇ 1 is n1 ( ⁇ 1)
  • the refractive index of the second transparent layer 26 at the wavelength ⁇ 1 is n2 ( ⁇ 1)
  • the refractive index of the first transparent layer 23 at the wavelength ⁇ 2 is n1 ( ⁇ 2)
  • the refractive index of the second transparent layer 26 at the wavelength ⁇ 2 is n2 ( ⁇ 2)
  • n1 ( ⁇ 1), n2 ( ⁇ 1), n1 ( ⁇ 2), and n2 ( ⁇ 2) satisfy the relationship of n1 ( ⁇ 1) ⁇ n1 ( ⁇ 2) and n2 ( ⁇ 1) ⁇ n2 ( ⁇ 2).
  • wavelength dispersion characteristics are shown such that the refractive indexes n1 and n2 increase as the wavelength ⁇ increases.
  • a member that exhibits anomalous dispersion in a wide wavelength region including the wavelength ⁇ 1 and the wavelength ⁇ 2 is preferably used.
  • a member similar to that shown in the first embodiment can be used.
  • the transparent light guide 26 is disposed on the external light incident side of the fluorescent film 20.
  • the transparent light guide 26 has a refractive index exhibiting anomalous dispersion, at least light having an absorption wavelength of the specific phosphor can be efficiently taken into the fluorescent film 20, and The fluorescence emitted from the three phosphors 8c can be guided to the solar cell element 6 without waste. Therefore, it is possible to provide the solar cell module 24 that can efficiently generate power using the external light L.
  • the peak wavelength of the absorption spectrum of any phosphor among the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is ⁇ 1, n1 ( ⁇ 1), n2 ( ⁇ 1), n1 If ( ⁇ 2) and n2 ( ⁇ 2) satisfy the relationship of n1 ( ⁇ 1) ⁇ n1 ( ⁇ 2) and n2 ( ⁇ 1) ⁇ n2 ( ⁇ 2), the light having the absorption wavelength of all the phosphors
  • the fluorescent film 20 can be efficiently taken in, and more efficient power generation is possible.
  • the fluorescence emitted from the third phosphor 8c is the first transparent layer 23 and the second transparent layer. It propagates inside the first transparent layer 23 and the second transparent layer 26 without being surface-reflected at the interface with H.26. Since the fluorescence emitted from the third phosphor 8c is not confined in the first transparent layer 23 (fluorescent film 20), the light loss due to the self-absorption of the third phosphor 8c is reduced. Therefore, the solar cell module 24 capable of generating power more efficiently is provided.
  • the 1st transparent layer 23 and the 2nd transparent layer 26 were formed with the same material, the 1st transparent layer 23 and the 2nd transparent layer 26 do not necessarily need to be formed with the same material. Even if the first transparent layer 23 and the second transparent layer 26 are made of different materials, if n1 ( ⁇ 2) and n2 ( ⁇ 2) are close enough, the fluorescence emitted from the third phosphor 8c is changed to the first transparent layer. It can be propagated across the layer 23 and the second transparent layer 26.
  • n1 and n2 indicate anomalous dispersion, or n2 indicates anomalous dispersion and n1 indicates a normal dispersion
  • n1 ( ⁇ 1) and n2 ( ⁇ 1) are sufficiently close
  • n1 ( ⁇ 2) and n2 ( ⁇ 2) are close enough, the above-described effect can be obtained.
  • n1 ( ⁇ 2) and n2 ( ⁇ 2) satisfy the relationship n2 ( ⁇ 2) ⁇ n1 ( ⁇ 2), the surface reflection at the interface between the first transparent layer 23 and the second transparent layer 26 is performed. , And the fluorescence emitted from the third phosphor 8c is easily taken into the second transparent layer 26 from the first transparent layer 23.
  • FIG. 21 is a cross-sectional view of the solar cell module 27 of the sixth embodiment.
  • the configuration other than the light guide 28 is the same as that of the solar cell module 18 of the fourth embodiment. Therefore, here, the configuration of the light guide 28 will be mainly described.
  • symbol is attached
  • the light guide 28 includes a transparent light guide 29 and a fluorescent film 20 bonded to the first main surface 29 a of the transparent light guide 29.
  • the fluorescent film 20 and the transparent light guide 29 are disposed in order from the incident side of the external light L.
  • the first main surface 20 a of the fluorescent film 20 opposite to the transparent light guide 29 is a light incident surface of the light guide 28, and the first end surface 20 c of the fluorescent film 20 and the first end surface 29 c of the transparent light guide 29. Is a light exit surface of the light guide 28.
  • the light receiving surface of the solar cell element 6 is disposed so as to face the first end surface 20c of the fluorescent film 20 and the first end surface 29c of the transparent light guide 29 which are light emitting surfaces.
  • the fluorescent film 20 converts part of the external light L (for example, sunlight) incident on the first main surface 20 a into fluorescence and radiates it toward the transparent light guide 29.
  • a part of the fluorescence radiated from the fluorescent film 20 propagates through the fluorescent film 20 and the transparent light guide 29 while being totally reflected, and is a light emitting surface (first surface of the fluorescent film 20 having a smaller area than the light incident surface). It is led to the end face 20c and the first end face 29c) of the transparent light guide 29.
  • the fluorescence emitted from the first end face 20c of the fluorescent film 20 and the first end face 29c of the transparent light guide 29 is incident on the solar cell element 6 and used for power generation.
  • the transparent light guide 29 is a transparent layer that does not contain a phosphor. However, unless the phosphor is intentionally dispersed for the purpose of wavelength conversion inside the transparent light guide 29, it is made of a material that contains some phosphor and is not completely transparent. Can also be used as the transparent light guide 29.
  • the base material 23 of the fluorescent film 20 may be referred to as a first transparent layer, and the transparent light guide 29 may be referred to as a second transparent layer.
  • FIG. 22 is a diagram showing the wavelength dispersion characteristics of the refractive index n1 of the first transparent layer 23 and the refractive index n2 of the second transparent layer 29.
  • FIG. 22 is a diagram showing the wavelength dispersion characteristics of the refractive index n1 of the first transparent layer 23 and the refractive index n2 of the second transparent layer 29.
  • the peak of the absorption spectrum of at least one of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c (hereinafter sometimes referred to as a specific phosphor).
  • the wavelength is ⁇ 1
  • the peak wavelength of the emission spectrum of the third phosphor 8c is ⁇ 2
  • the refractive index of the first transparent layer 23 at the wavelength ⁇ 1 is n1 ( ⁇ 1)
  • the refractive index of the first transparent layer 23 at the wavelength ⁇ 2 is
  • n1 ( ⁇ 2) is set, n1 ( ⁇ 1) and n1 ( ⁇ 2) satisfy the relationship n1 ( ⁇ 1) ⁇ n1 ( ⁇ 2).
  • the wavelength dispersion characteristic (abnormal dispersion) is shown such that the refractive index n1 increases as the wavelength ⁇ increases.
  • a member exhibiting anomalous dispersion in a wide wavelength region including the wavelengths ⁇ 1 and ⁇ 2 is preferably used. As such a member, a member similar to that shown in the first embodiment can be used.
  • n2 ( ⁇ 1) and n2 ( ⁇ 2) satisfy the relationship of n2 ( ⁇ 1) ⁇ n2 ( ⁇ 2) and n2 ( ⁇ 2) ⁇ n1 ( ⁇ 2).
  • a wavelength dispersion characteristic normal dispersion
  • a general known transparent member such as PMMA resin can be used as the second transparent layer 29.
  • the refractive index of the second transparent layer 29 shows normal dispersion.
  • n2 ( ⁇ 2) is equal to or larger than n1 ( ⁇ 2)
  • the fluorescence emitted from the third phosphor 8c is surface-reflected at the interface between the first transparent layer 23 and the second transparent layer 29. It propagates in the inside of the 1st transparent layer 23 and the 2nd transparent layer 29, without. Since the fluorescence emitted from the third phosphor 8c is not confined in the first transparent layer 23 (fluorescent film 20), the light loss due to the self-absorption of the third phosphor 8c is reduced.
  • n1 indicates anomalous dispersion
  • at least light having the absorption wavelength of a specific phosphor can be efficiently taken into the inside of the fluorescent film 20, and the fluorescence emitted from the third phosphor 8c can be used without waste. It can lead to the battery element 6. Therefore, also in this embodiment, the solar cell module 27 capable of efficiently generating power is provided.
  • n1 ( ⁇ 1) and n2 ( ⁇ 1) are If the relationship of n1 ( ⁇ 1) ⁇ n1 ( ⁇ 2) is satisfied, light having an absorption wavelength of all phosphors can be taken into the fluorescent film 20 efficiently, and more efficient power generation becomes possible. .
  • FIG. 23 is a cross-sectional view of the solar cell module 50 of the seventh embodiment.
  • the configuration other than the light guide 51 is the same as that of the solar cell module 18 of the fourth embodiment. Therefore, here, the configuration of the light guide 51 will be mainly described.
  • symbol is attached
  • the light guide 51 includes a transparent light guide 53, a fluorescent film 52 bonded to the first main surface 53a of the transparent light guide 53, a transparent protective film 21 covering the first main surface 52a of the fluorescent film 52, It has.
  • the transparent protective film 21, the fluorescent film 52, and the transparent light guide 53 are disposed in order from the incident side of the external light L.
  • the first main surface 21a of the transparent protective film 21 opposite to the fluorescent film 52 is a light incident surface of the light guide 51, the first end surface 21c of the transparent protective film 21, the first end surface 52c of the fluorescent film 52, and the transparent film.
  • the first end surface 53 c of the light guide 53 is a light exit surface of the light guide 51.
  • the light receiving surface of the solar cell element 6 is disposed so as to face the first end surface 21c of the transparent protective film 21, the first end surface 52c of the fluorescent film 52, and the first end surface 53c of the transparent light guide 53, which are light emission surfaces. Yes.
  • the fluorescent film 52 includes a transparent base material 54 that does not contain a fluorescent material, and a plurality of optical functional materials dispersed in the base material 54 (in FIG. 23, the first fluorescent material 8a, the second fluorescent material 8b, and the third fluorescent material). Phosphor 8c).
  • the fluorescent film 52 converts part of the external light L (for example, sunlight) incident on the first main surface 52 a into fluorescence and radiates it toward the transparent light guide 53 and the transparent protective film 21.
  • a part of the fluorescence emitted from the fluorescent film 52 propagates while totally reflecting inside the transparent protective film 21, the fluorescent film 52, and the transparent light guide 53, and is a light emitting surface (transparent) having a smaller area than the light incident surface.
  • the fluorescence emitted from the first end surface 21c of the transparent protective film 21, the first end surface 52c of the fluorescent film 52, and the first end surface 53c of the transparent light guide 53 is incident on the solar cell element 6 and used for power generation.
  • the transparent protective film 21, the base material 54, and the transparent light guide 53 are transparent layers that do not contain a phosphor. However, if the phosphor is not intentionally dispersed for the purpose of wavelength conversion inside the transparent protective film 21, the phosphor film 52, and the transparent light guide 53, it contains some phosphor and is not completely transparent. Even those made of materials can be used as the transparent protective film 21, the base material 54, and the transparent light guide 53.
  • the base 54 of the fluorescent film 52 may be referred to as a first transparent layer
  • the transparent protective film 21 may be referred to as a second transparent layer
  • the transparent light guide 53 may be referred to as a third transparent layer.
  • FIG. 24 is a diagram showing the wavelength dispersion characteristics of the refractive index n1 of the first transparent layer 54, the refractive index n2 of the second transparent layer 21, and the refractive index n3 of the third transparent layer 53.
  • the first transparent layer 54 and the third transparent layer 53 are formed of the same material, and the refractive indexes n1 and n3 of the first transparent layer 54 and the third transparent layer 53 exhibit the same wavelength dispersion characteristics. .
  • the peak wavelength of the absorption spectrum of at least one of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c (hereinafter sometimes referred to as a specific phosphor).
  • the peak wavelength of the emission spectrum of the third phosphor 8c is ⁇ 2
  • the refractive index of the second transparent layer 21 at the wavelength ⁇ 1 is n2 ( ⁇ 1)
  • the refractive index of the second transparent layer 21 at the wavelength ⁇ 2 is n2.
  • the wavelength dispersion characteristic (abnormal dispersion) is shown such that the refractive index n2 increases as the wavelength ⁇ increases.
  • a member exhibiting anomalous dispersion in a wide wavelength region including the wavelengths ⁇ 1 and ⁇ 2 is preferably used. As such a member, a member similar to that shown in the first embodiment can be used.
  • the refractive index of the first transparent layer 54 at the wavelength ⁇ 1 is n1 ( ⁇ 1)
  • the refractive index of the third transparent layer 53 at the wavelength ⁇ 1 is n3 ( ⁇ 1).
  • n1 ( ⁇ 2) and the refractive index of the third transparent layer 53 at the wavelength ⁇ 2 are n1 ( ⁇ 1) ⁇ n1 ( ⁇ 2), n3 ( ⁇ 1) ⁇ n3 ( ⁇ 2), n2 ( ⁇ 2) ⁇ n1 ( ⁇ 2), and n2 ( ⁇ 2) ⁇ n3 ( ⁇ 2) is satisfied.
  • wavelength dispersion characteristics are shown such that the refractive indexes n1 and n3 decrease as the wavelength ⁇ increases. Since general transparent members exhibit such normal dispersion, general known transparent members such as PMMA resin can be used as the first transparent layer 54 and the third transparent layer 53.
  • the refractive indexes of the first transparent layer 54 and the third transparent layer 53 indicate normal dispersion.
  • n2 ( ⁇ 2) is the same as or larger than n1 ( ⁇ 2)
  • n3 ( ⁇ 2) is the same as n1 ( ⁇ 2)
  • the fluorescence emitted from the third phosphor 8c is the first transparent
  • the first transparent layer 54, the second transparent layer 21, and the third transparent layer 53 are not surface-reflected at the interface between the layer 54 and the second transparent layer 21 and at the interface between the first transparent layer 54 and the third transparent layer 53.
  • Propagate inside Since the fluorescence emitted from the third phosphor 8c is not confined in the first transparent layer 54 (fluorescence film 52), the light loss due to the self-absorption of the third phosphor 8c is reduced.
  • n2 indicates anomalous dispersion
  • at least light having an absorption wavelength of the specific phosphor can be efficiently taken into the second transparent layer 21.
  • n2 ( ⁇ 1) takes a value between the refractive index outside the light guide (for example, the refractive index of air) n0 and n1 ( ⁇ 1)
  • the external light taken into the second transparent layer 21 is Compared with the case where external light is directly incident on the first transparent layer 54 from the outside of the light guide without passing through the second transparent layer 21, the light is taken into the first transparent layer 54 with less loss due to surface reflection. .
  • the light having the absorption wavelength of the specific phosphor can be efficiently taken into the fluorescent film 52, and the fluorescence emitted from the third phosphor 8c can be used without waste. It can be led to the element 6. Therefore, the solar cell module 50 capable of generating power efficiently is provided.
  • the peak wavelength of the absorption spectrum of any phosphor among the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is ⁇ 1, n1 ( ⁇ 1), n2 ( ⁇ 1), n3 If ( ⁇ 1), n1 ( ⁇ 2), n2 ( ⁇ 2), and n3 ( ⁇ 2) satisfy the relationship of n2 ( ⁇ 1) ⁇ n2 ( ⁇ 2), the light having the absorption wavelength of all phosphors is efficiently emitted. It can be taken into the fluorescent film 20 and more efficient power generation becomes possible.
  • FIGS. 25A to 27C are diagrams showing modifications of the wavelength dispersion characteristics of n1, n2, and n3.
  • the first transparent layer 54 and the third transparent layer 53 are formed of the same material, but the first transparent layer 54 and the third transparent layer 53 are not necessarily formed of the same material.
  • variations of the wavelength dispersion characteristics of n1, n2, and n3 will be described.
  • n2 indicates anomalous dispersion
  • n1 and n3 indicate normal dispersion
  • the first transparent layer 54 and the third transparent layer 53 are formed of different materials, and the wavelength dispersion characteristics of n1 and n3 do not necessarily match.
  • n1 ( ⁇ 2) and n3 ( ⁇ 2) do not necessarily satisfy the relationship of n2 ( ⁇ 2) ⁇ n1 ( ⁇ 2) or n2 ( ⁇ 2) ⁇ n3 ( ⁇ 2).
  • n2 ( ⁇ 2) ⁇ n1 ( ⁇ 2) or n3 ( ⁇ 2) ⁇ n1 ( ⁇ 2) is satisfied. It is preferable. However, even if the relationship of n2 ( ⁇ 2) ⁇ n1 ( ⁇ 2) or n3 ( ⁇ 2) ⁇ n1 ( ⁇ 2) is satisfied, n1 ( ⁇ 2) and n3 ( ⁇ 2) are sufficiently close to n2 ( ⁇ 2). For example, the surface reflection at the interface between the first transparent layer 54 and the second transparent layer 21 and the interface between the first transparent layer 54 and the third transparent layer 53 can be reduced.
  • n1 and n2 indicate anomalous dispersion and n3 indicates normal dispersion.
  • the first transparent layer 54 and the second transparent layer 21 may be formed of the same material, or may be formed of different materials.
  • n1 ( ⁇ 2) and n3 ( ⁇ 2) do not necessarily satisfy the relationship of n2 ( ⁇ 2) ⁇ n1 ( ⁇ 2) or n2 ( ⁇ 2) ⁇ n3 ( ⁇ 2).
  • n2 ( ⁇ 2) ⁇ n1 ( ⁇ 2) or n3 ( ⁇ 2) ⁇ n1 ( ⁇ 2) is satisfied. It is preferable. However, even if the relationship of n2 ( ⁇ 2) ⁇ n1 ( ⁇ 2) or n3 ( ⁇ 2) ⁇ n1 ( ⁇ 2) is satisfied, n1 ( ⁇ 2) and n3 ( ⁇ 2) are sufficiently close to n2 ( ⁇ 2). For example, the surface reflection at the interface between the first transparent layer 54 and the second transparent layer 21 and the interface between the first transparent layer 54 and the third transparent layer 53 can be reduced. In the examples of FIGS.
  • the refractive index difference between n1 ( ⁇ 1) and n2 ( ⁇ 1) and the refractive index difference between n1 ( ⁇ 2) and n2 ( ⁇ 2) are small. Easy to be. Therefore, the light having the absorption wavelength of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c can be efficiently taken into the fluorescent film 52, and the fluorescence emitted from the third phosphor 8c. Can be propagated across the first transparent layer 54 and the second transparent layer 21.
  • 27A to 27C are examples in which n1, n2, and n3 all exhibit anomalous dispersion.
  • the first transparent layer 54, the second transparent layer 21, and the third transparent layer 53 are formed of different materials, and the wavelength dispersion characteristics of these refractive indexes do not necessarily match.
  • n1 ( ⁇ 2) and n3 ( ⁇ 2) do not necessarily satisfy the relationship of n2 ( ⁇ 2) ⁇ n1 ( ⁇ 2) or n2 ( ⁇ 2) ⁇ n3 ( ⁇ 2).
  • n2 ( ⁇ 2) ⁇ n1 ( ⁇ 2) or n3 ( ⁇ 2) ⁇ n1 ( ⁇ 2) is satisfied. It is preferable. However, even if the relationship of n2 ( ⁇ 2) ⁇ n1 ( ⁇ 2) or n3 ( ⁇ 2) ⁇ n1 ( ⁇ 2) is satisfied, n1 ( ⁇ 2) and n3 ( ⁇ 2) are sufficiently close to n2 ( ⁇ 2). For example, the surface reflection at the interface between the first transparent layer 54 and the second transparent layer 21 and the interface between the first transparent layer 54 and the third transparent layer 53 can be reduced. In the examples of FIGS.
  • the refractive index difference between n1 ( ⁇ 1), n2 ( ⁇ 1), and n3 ( ⁇ 1), n1 ( ⁇ 2), n2 ( ⁇ 2 ) And n3 ( ⁇ 2) tend to be small in refractive index difference. Therefore, the light having the absorption wavelength of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c can be efficiently taken into the fluorescent film 52, and the fluorescence emitted from the third phosphor 8c. Can be propagated across the first transparent layer 54, the second transparent layer 21, and the third transparent layer 53.
  • a plurality of types of optical functional materials are included in the light guide.
  • this configuration is an example, and a plurality of types of optical functional materials are not necessarily dispersed.
  • a configuration in which only one type of optical functional material (for example, phosphor 8) is dispersed as in the first embodiment and the second embodiment can also be applied to the seventh embodiment and its modifications. In that case, the same effect as described above can be obtained.
  • FIG. 28 is a cross-sectional view of the solar cell module 55 of the eighth embodiment.
  • the configuration other than the light guide 56 is the same as that of the solar cell module 50 of the seventh embodiment. Therefore, here, the configuration of the light guide 56 will be mainly described.
  • symbol is attached
  • the light guide 56 includes a fluorescent film 52, a transparent light guide 57 bonded to the first main surface 52a of the fluorescent film 52, a transparent protective film 21 covering the first main surface 57a of the transparent light guide 57, It has.
  • the transparent protective film 21, the transparent light guide 57, and the fluorescent film 52 are disposed in order from the incident side of the external light L.
  • the first main surface 21 a opposite to the transparent light guide 57 of the transparent protective film 21 is a light incident surface of the light guide 56, the first end face 21 c of the transparent protective film 21, and the first surface of the transparent light guide 57.
  • the end surface 57 c and the first end surface 52 c of the fluorescent film 52 are light emission surfaces of the light guide 56.
  • the light receiving surface of the solar cell element 6 is disposed so as to oppose the first end surface 21c of the transparent protective film 21, the first end surface 57c of the transparent light guide 57, and the first end surface 52c of the fluorescent film 52, which are light emitting surfaces. Yes.
  • the light guide 56 of the present embodiment is that the transparent light guide 57 is configured as a film-shaped light guide, and is disposed between the fluorescent film 52 and the transparent protective film 21 in the seventh embodiment. Different from the light guide 51.
  • the transparent protective film 21, the transparent light guide 57, and the base material 54 are transparent layers that do not contain a phosphor. However, if the phosphor is not intentionally dispersed for the purpose of wavelength conversion inside the transparent protective film 21, the transparent light guide 57 and the phosphor film 52, it contains some phosphor and is not completely transparent. Even those made of materials can be used as the transparent protective film 21, the transparent light guide 57 and the substrate 54.
  • the base 54 of the fluorescent film 52 may be referred to as a first transparent layer
  • the transparent protective film 21 may be referred to as a second transparent layer
  • the transparent light guide 57 may be referred to as a third transparent layer.
  • FIG. 29 is a diagram showing the wavelength dispersion characteristics of the refractive index n1 of the first transparent layer 54, the refractive index n2 of the second transparent layer 21, and the refractive index n3 of the third transparent layer 57.
  • the first transparent layer 54 and the third transparent layer 57 are formed of the same material, and the refractive indexes n1 and n3 of the first transparent layer 54 and the third transparent layer 57 exhibit the same wavelength dispersion characteristics. .
  • the peak wavelength of the absorption spectrum of at least one of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c (hereinafter sometimes referred to as a specific phosphor).
  • the peak wavelength of the emission spectrum of the third phosphor 8c is ⁇ 2
  • the refractive index of the second transparent layer 21 at the wavelength ⁇ 1 is n2 ( ⁇ 1)
  • the refractive index of the second transparent layer 21 at the wavelength ⁇ 2 is n2.
  • the wavelength dispersion characteristic (abnormal dispersion) is shown such that the refractive index n2 increases as the wavelength ⁇ increases.
  • a member exhibiting anomalous dispersion in a wide wavelength region including the wavelengths ⁇ 1 and ⁇ 2 is preferably used. As such a member, a member similar to that shown in the first embodiment can be used.
  • the refractive index of the first transparent layer 54 at the wavelength ⁇ 1 is n1 ( ⁇ 1)
  • the refractive index of the third transparent layer 57 at the wavelength ⁇ 1 is n3 ( ⁇ 1).
  • n1 ( ⁇ 2) and the refractive index of the third transparent layer 57 at the wavelength ⁇ 2 are n1 ( ⁇ 1) ⁇ n1 ( ⁇ 2), n3 ( ⁇ 1) ⁇ n3 ( ⁇ 2), n2 ( ⁇ 2) ⁇ n1 ( ⁇ 2), and n2 ( ⁇ 2) ⁇ n3 ( ⁇ 2) is satisfied.
  • wavelength dispersion characteristics are shown such that the refractive indexes n1 and n3 decrease as the wavelength ⁇ increases. Since a general transparent member exhibits such normal dispersion, a general known transparent member such as PMMA resin can be used as the first transparent layer 54 and the third transparent layer 57.
  • the third phosphor 8c since n2 ( ⁇ 2) is the same as or larger than n1 ( ⁇ 2) and n3 ( ⁇ 2) is the same as n1 ( ⁇ 2), the third phosphor 8c The emitted fluorescence is not surface-reflected at the interface between the first transparent layer 54 and the third transparent layer 57 and at the interface between the third transparent layer 57 and the second transparent layer 21, and the first transparent layer 54 and the second transparent layer. It propagates inside the layer 21 and the third transparent layer 57. Since the fluorescence emitted from the third phosphor 8c is not confined in the first transparent layer 54 (fluorescence film 52), the light loss due to the self-absorption of the third phosphor 8c is reduced.
  • n2 indicates anomalous dispersion
  • at least light having an absorption wavelength of the specific phosphor can be efficiently taken into the second transparent layer 21.
  • n2 ( ⁇ 1) takes a value between the refractive index outside the light guide (for example, the refractive index of air) n0 and n3 ( ⁇ 1)
  • the external light taken into the second transparent layer 21 is Compared to the case where external light is directly incident on the third transparent layer 57 from the outside of the light guide without passing through the second transparent layer 21, the light is taken into the third transparent layer 57 with less loss due to surface reflection.
  • the external light taken into the third transparent layer 57 is reflected on the surface at the interface between the third transparent layer 57 and the first transparent layer 54 because n3 ( ⁇ 1) and n1 ( ⁇ 1) are the same. Without being taken into the first transparent layer 54.
  • the light having the absorption wavelength of the specific phosphor can be efficiently taken into the fluorescent film 52, and the fluorescence emitted from the third phosphor 8c can be used without waste. Can lead to. Therefore, the solar cell module 55 capable of generating power efficiently is provided.
  • the peak wavelength of the absorption spectrum of any phosphor among the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is ⁇ 1, n1 ( ⁇ 1), n2 ( ⁇ 1), n3 If ( ⁇ 1), n1 ( ⁇ 2), n2 ( ⁇ 2), and n3 ( ⁇ 2) satisfy the relationship of n2 ( ⁇ 1) ⁇ n2 ( ⁇ 2), the light having the absorption wavelength of all phosphors is efficiently emitted. It can be taken into the fluorescent film 20 and more efficient power generation becomes possible.
  • FIG. 30A to FIG. 32C are diagrams showing modifications of the wavelength dispersion characteristics of n1, n2, and n3.
  • the first transparent layer 54 and the third transparent layer 57 are formed of the same material, but the first transparent layer 54 and the third transparent layer 57 are not necessarily formed of the same material.
  • variations of the wavelength dispersion characteristics of n1, n2, and n3 will be described.
  • FIGS. 30A to 30C are examples in which the refractive index n2 indicates anomalous dispersion and n1 and n3 indicate normal dispersion, as in FIG.
  • the first transparent layer 54 and the third transparent layer 57 are formed of different materials, and the wavelength dispersion characteristics of n1 and n3 do not necessarily match.
  • n1 ( ⁇ 2) and n3 ( ⁇ 2) do not necessarily satisfy the relationship of n2 ( ⁇ 2) ⁇ n1 ( ⁇ 2) or n2 ( ⁇ 2) ⁇ n3 ( ⁇ 2).
  • n3 ( ⁇ 2) ⁇ n1 ( ⁇ 2) or n2 ( ⁇ 2) ⁇ n3 ( ⁇ 2) is satisfied. It is preferable. However, even if the relationship of n3 ( ⁇ 2) ⁇ n1 ( ⁇ 2) or n2 ( ⁇ 2) ⁇ n3 ( ⁇ 2) is satisfied, n1 ( ⁇ 2) and n3 ( ⁇ 2) are sufficiently close to n2 ( ⁇ 2). For example, surface reflection at the interface between the first transparent layer 54 and the third transparent layer 57 and at the interface between the third transparent layer 57 and the second transparent layer 21 can be reduced.
  • n2 and n3 indicate anomalous dispersion and n1 indicates normal dispersion.
  • the third transparent layer 57 and the second transparent layer 21 may be formed of the same material, or may be formed of different materials.
  • n1 ( ⁇ 2) and n3 ( ⁇ 2) do not necessarily satisfy the relationship of n2 ( ⁇ 2) ⁇ n1 ( ⁇ 2) or n2 ( ⁇ 2) ⁇ n3 ( ⁇ 2).
  • n3 ( ⁇ 2) ⁇ n1 ( ⁇ 2) or n2 ( ⁇ 2) ⁇ n3 ( ⁇ 2) is satisfied. It is preferable. However, even if the relationship of n3 ( ⁇ 2) ⁇ n1 ( ⁇ 2) or n2 ( ⁇ 2) ⁇ n3 ( ⁇ 2) is satisfied, n1 ( ⁇ 2) and n3 ( ⁇ 2) are sufficiently close to n2 ( ⁇ 2). For example, surface reflection at the interface between the first transparent layer 54 and the third transparent layer 57 and at the interface between the third transparent layer 57 and the second transparent layer 21 can be reduced. In the examples of FIGS.
  • the refractive index difference between n2 ( ⁇ 1) and n3 ( ⁇ 1) and the refractive index difference between n2 ( ⁇ 2) and n3 ( ⁇ 2) are small. Easy to be. Therefore, the light having the absorption wavelength of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c can be efficiently taken into the fluorescent film 52, and the fluorescence emitted from the third phosphor 8c. Can be propagated across the second transparent layer 21 and the third transparent layer 57.
  • n1, n2, and n3 all show anomalous dispersion.
  • the first transparent layer 54, the second transparent layer 21, and the third transparent layer 57 are formed of different materials, and the wavelength dispersion characteristics of these refractive indexes do not necessarily match.
  • n1 ( ⁇ 2) and n3 ( ⁇ 2) do not necessarily satisfy the relationship of n2 ( ⁇ 2) ⁇ n1 ( ⁇ 2) or n2 ( ⁇ 2) ⁇ n3 ( ⁇ 2).
  • n3 ( ⁇ 2) ⁇ n1 ( ⁇ 2) or n2 ( ⁇ 2) ⁇ n3 ( ⁇ 2) is satisfied. It is preferable. However, even if n3 ( ⁇ 2) ⁇ n1 ( ⁇ 2) or n2 ( ⁇ 2) ⁇ n3 ( ⁇ 2) is satisfied, n1 ( ⁇ 2) and n3 ( ⁇ 2) are sufficiently close to n2 ( ⁇ 2). For example, surface reflection at the interface between the first transparent layer 54 and the third transparent layer 57 and at the interface between the third transparent layer 57 and the second transparent layer 21 can be reduced. In the examples of FIGS.
  • the refractive index difference between n1 ( ⁇ 1), n2 ( ⁇ 1), and n3 ( ⁇ 1), n1 ( ⁇ 2), n2 ( ⁇ 2 ) And n3 ( ⁇ 2) tend to be small in refractive index difference. Therefore, the light having the absorption wavelength of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c can be efficiently taken into the fluorescent film 52, and the fluorescence emitted from the third phosphor 8c. Can be propagated across the first transparent layer 54, the second transparent layer 21, and the third transparent layer 57.
  • n3 ( ⁇ 1), n2 ( ⁇ 1), and n1 ( ⁇ 1) satisfy the relationship of n2 ( ⁇ 1) ⁇ n3 ( ⁇ 1) ⁇ n1 ( ⁇ 1).
  • a plurality of types of optical functional materials are included in the light guide.
  • this configuration is an example, and a plurality of types of optical functional materials are not necessarily dispersed.
  • a configuration in which only one type of optical functional material (for example, phosphor 8) is dispersed as in the first embodiment and the second embodiment can also be applied to the eighth embodiment and its modifications. In that case, the same effect as described above can be obtained.
  • FIG. 33 is a schematic diagram of the solar cell module 32 of the ninth embodiment.
  • the shape and arrangement of the light guide 30 and the solar cell element 31 are different from those of the solar cell module 16 of the third embodiment. Therefore, here, the shape and arrangement of the light guide 30 and the solar cell element 31 will be described, and detailed description of the other configurations will be omitted.
  • the light guide 30 is configured as a curved plate-like member, and the solar cell element 31 emits light emitted from the curved first end surface 30c of the light guide 30 that is a light emission surface. It is configured to receive light.
  • the light guide 30 has, for example, a shape in which a plate-like member having a constant thickness is curved around an axis parallel to the Y axis.
  • the first main surface 30a and the second main surface 30b of the light guide 30 the first main surface 30a that is curved outwardly is a light incident surface on which external light (for example, sunlight) L is incident.
  • the light L incident on the light incident surface 30 a is absorbed by a plurality of optical functional materials (not shown) dispersed inside the light guide 30. Then, energy transfer due to the Forster mechanism occurs between the plurality of optical functional materials, and light emitted from the optical functional material having the largest peak wavelength of the emission spectrum is a light emitting surface 30c having a smaller area than the light incident surface 30a. It is condensed and ejected.
  • the plurality of optical functional materials dispersed inside the light guide 30 for example, the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c shown in FIGS. 9 to 13 are used. .
  • the solar cell element 31 As the solar cell element 31, the same amorphous silicon solar cell as in the third embodiment is used.
  • the solar cell element 31 is disposed with the light receiving surface facing the first end surface 30 c of the light guide 30.
  • a plurality of optical functional materials first phosphor 8a, second fluorescence
  • the light incident surface 30a of the light guide 30 is a curved surface. Therefore, even when the incident angle of the light L changes along the bending direction of the light guide 30 depending on the time zone such as daytime and evening, the amount of power generation does not change greatly.
  • a tracking device is provided so that the light receiving surface of the solar cell faces the incident direction of light, and the angle of the solar cell is controlled in two axial directions.
  • the light incident surface 30a of the light guide 30 is curved so as to face various directions as in the embodiment, there is no need to provide such a tracking device.
  • the light guide 30 has a shape curved in one direction, but the shape of the light guide 30 is not limited to this.
  • a dome shape such as a hemispherical shape or a bell shape may be used. In that case, no tracking device is required.
  • the light guide 30 can be installed on the wall or roof of a building formed in a curved shape.
  • the light guide 30 has a shape curved in one direction, but the shape of the light guide 30 is not limited to such a simple shape.
  • it can be designed into a free shape such as a tile shape or a wavy shape.
  • it may have not only a curved shape but also a bent shape having a ridgeline.
  • the curved surface or the bent surface may be provided on at least a part of the light incident surface, whereby the above-described effects can be obtained.
  • FIG. 34 is a schematic diagram of the solar cell module 35 of the tenth embodiment.
  • the shape and arrangement of the light guide 33 and the solar cell element 34 are different from those of the solar cell module 16 of the third embodiment. Therefore, here, the shape and arrangement of the light guide 33 and the solar cell element 34 will be described, and detailed description of the other components will be omitted.
  • the light guide 33 is configured as a cylindrical member having an axis parallel to the Y axis as a central axis, and the solar cell element 34 is a first end surface of the light guide 33 that is a light emission surface. It is configured to receive light emitted from 33c.
  • the light guide 33 has, for example, a cylindrical shape with a constant thickness.
  • the outer peripheral surface of the light guide 33 is a first main surface 33a, and the inner peripheral surface of the light guide 33 is a second main surface 33b.
  • the first main surface 33a that is curved outwardly is a light incident surface on which external light (for example, sunlight) L is incident.
  • the light L incident on the light incident surface 33 a is absorbed by a plurality of optical functional materials (not shown) dispersed inside the light guide 33. Then, energy transfer occurs due to the Forster mechanism between the plurality of optical functional materials, and the light emitted from the optical functional material having the largest peak wavelength of the emission spectrum has a light exit surface 33c having a smaller area than the light incident surface 33a. It is condensed and ejected.
  • the plurality of optical functional materials dispersed in the light guide 33 for example, the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c shown in FIGS. 9 to 13 are used. .
  • the solar cell element 34 the same amorphous silicon solar cell as in the third embodiment is used.
  • the solar cell element 34 is disposed with the light receiving surface facing the first end surface 33 c of the light guide 33.
  • a plurality of optical functional materials first phosphor 8a, second fluorescence
  • the light incident surface 33a of the light guide 33 is a curved surface. Therefore, even when the incident angle of the light L changes along the bending direction of the light guide 33 depending on the time zone such as daytime and evening, the amount of power generation does not change greatly.
  • the light guide 33 is formed in a cylindrical shape, the light guide 33 can be installed on a pillar of a building, a utility pole, or the like.
  • the light guide 33 is formed in a cylindrical shape, but the shape of the light guide 33 is not limited to such a shape, and a cross section cut by a plane parallel to the XZ plane is an ellipse or a polygon. For example, it can be designed in a free shape according to the place where the light guide 33 is installed.
  • FIG. 35 is a schematic diagram of the solar cell module 38 of the eleventh embodiment.
  • the shape and arrangement of the light guide 36 and the solar cell element 37 are different from those of the solar cell module 16 of the third embodiment. Therefore, here, the shape and arrangement of the light guide 36 and the solar cell element 37 will be described, and detailed description of other configurations will be omitted.
  • the light guide 36 is configured as a columnar member extending in the Y direction, and the solar cell element 37 receives light emitted from the first end surface 36c of the light guide 36 that is a light emission surface. Is configured to do.
  • the light guide 36 has, for example, a cylindrical shape whose central axis is an axis parallel to the Y axis.
  • the outer peripheral surface of the light guide 36 is a first main surface 36a, and the first main surface 36a is a light incident surface on which external light (for example, sunlight) L is incident.
  • the solar cell element 37 the same amorphous silicon solar cell as in the third embodiment is used.
  • the solar cell element 37 is disposed with the light receiving surface facing the first end surface 36 c of the light guide 36.
  • a plurality of optical functional materials first phosphor 8a, second fluorescence
  • the spectral sensitivity of the solar cell element 37 at the peak wavelength of the emission spectrum of the optical functional material (third phosphor 8c) having the longest emission spectrum peak wavelength is the light guide 36. It is larger than the spectral sensitivity of the solar cell element 37 at the peak wavelength of the emission spectrum of any other optical functional material (the first phosphor 8a and the second phosphor 8b). Thereby, the solar cell module 38 with high power generation efficiency is provided.
  • each including the light guide 36 and the solar cell element 37 are disposed adjacent to each other in the X direction, but the number of unit units 39 is not limited to this.
  • the number of unit units 39 may be one set or a plurality of sets other than eight sets.
  • a plurality of unit units 39 When a plurality of unit units 39 are provided, they can be installed on a flat surface.
  • a plurality of sets of unit units 39 are flexibly connected by a string-like connecting member 40, they can be freely changed in shape on a curved surface that is not flat and can be deployed when necessary, such as a basket. It is possible to make adjustments such as winding and storing when not needed.
  • a plurality of sets of unit units 39 are connected with a hard rod-like connecting member 40 at an interval, the wind passes through the space between the light guides 36, so that the wind pressure can be reduced. Installation of the battery module stand is simplified.
  • the light guide 36 is formed in a cylindrical shape, but the shape of the light guide 36 is not limited to such a shape, and a cross section cut by a plane parallel to the XZ plane is an ellipse or It can be designed in a free shape such as a polygon according to the place where the light guide 36 is installed.
  • the light incident surface 36a of the light guide 36 is a curved surface. Therefore, even when the incident angle of the light L changes along the bending direction of the light guide 36 depending on the time zone such as daytime and evening, the power generation amount does not change greatly.
  • the light guide 36 is formed in a columnar shape, by arranging a plurality of light guides 36 and flexibly connecting them, it is possible to install on a curved surface as well as on a plane. A configuration capable of unfolding / winding can be realized.
  • FIG. 36 is a schematic configuration diagram of the solar power generation device 1000.
  • the solar power generation apparatus 1000 includes a solar cell module 1001 that converts sunlight energy into electric power, an inverter (DC / AC converter) 1004 that converts DC power output from the solar cell module 1001 into AC power, A storage battery 1005 that stores DC power output from the battery module 1001.
  • a solar cell module 1001 that converts sunlight energy into electric power
  • an inverter (DC / AC converter) 1004 that converts DC power output from the solar cell module 1001 into AC power
  • a storage battery 1005 that stores DC power output from the battery module 1001.
  • the solar cell module 1001 includes a light guide body 1002 that collects sunlight, and a solar cell element 1003 that generates power using sunlight collected by the light guide body 1002.
  • a solar cell module 1001 for example, the solar cell module described in the first to eleventh embodiments is used.
  • the solar power generation apparatus 1000 supplies power to the external electronic device 1006.
  • the electronic device 1006 is supplied with power from the auxiliary power source 1007 as necessary.
  • the photovoltaic power generation apparatus 1000 includes the above-described solar cell module according to the present invention, the photovoltaic power generation apparatus 1000 has a high power generation efficiency.
  • the present invention can be used for a light guide, a solar cell module, and a solar power generation device.

Abstract

A light guide is provided with a first transparent layer, and an optical functional material dispersed inside the first transparent layer. If the peak wavelength of the absorption spectrum of the optical functional material is λ1, the peak wavelength of the emission spectrum of the optical functional material is λ2, the refractive index of the first transparent layer at wavelength λ1 is n1(λ1), and the refractive index of the first transparent layer at wavelength λ2 is n1(λ2), then n1(λ1) and n1(λ2) satisfy the relationship n1(λ1) < n1(λ2).

Description

導光体、太陽電池モジュールおよび太陽光発電装置Light guide, solar cell module and solar power generation device
 本発明は、導光体、太陽電池モジュールおよび太陽光発電装置に関する。
 本願は、2012年3月7日に、日本に出願された特願2012-050524号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a light guide, a solar cell module, and a solar power generation device.
This application claims priority on March 7, 2012 based on Japanese Patent Application No. 2012-050524 filed in Japan, the contents of which are incorporated herein by reference.
 導光体の端面に太陽電池素子を設置し、導光体の内部を伝播した光を太陽電池素子に入射させて発電を行う太陽光発電装置として、特許文献1に記載の太陽光発電装置が知られている。特許文献1の太陽光発電装置は、導光体の内部に蛍光体を分散させ、導光体の一主面から入射した外光を蛍光体で吸収させる。蛍光体から放射された蛍光は導光体の内部を伝播し、導光体の端面から射出され、太陽電池素子に入射する。 As a solar power generation device that installs a solar cell element on the end face of a light guide and makes light propagated through the light guide enter the solar cell element to generate power, the solar power generation device described in Patent Document 1 is Are known. The solar power generation device of Patent Document 1 disperses phosphors inside a light guide, and absorbs external light incident from one main surface of the light guide with the phosphor. The fluorescence emitted from the phosphor propagates through the light guide, is emitted from the end face of the light guide, and enters the solar cell element.
特開昭58-49860号公報JP 58-49860 A
 蛍光体を用いて効率よく発電を行うためには、蛍光体から放射された蛍光をいかにロスなく導光体の端面まで伝播させるかが重要となる。蛍光を導光体の内部に閉じ込める効率は導光体の屈折率で決定され、導光体の屈折率が大きくなるほど蛍光の閉じ込め効率は大きくなる。よって、蛍光の閉じ込め効率を高くするためには、屈折率の大きい導光体を用いることが有効となるが、導光体の屈折率を大きくすると導光体の表面反射が大きくなり、外光が十分に導光体の内部に入射されなくなる。 In order to efficiently generate power using a phosphor, it is important how to propagate the fluorescence emitted from the phosphor to the end face of the light guide without loss. The efficiency of confining the fluorescence inside the light guide is determined by the refractive index of the light guide, and the greater the refractive index of the light guide, the greater the fluorescence confinement efficiency. Therefore, in order to increase the fluorescence confinement efficiency, it is effective to use a light guide having a large refractive index. However, if the refractive index of the light guide is increased, the surface reflection of the light guide increases, and external light Is not sufficiently incident on the inside of the light guide.
 本発明の目的は、外光を利用して効率よく発電を行うことが可能な導光体、太陽電池モジュールおよび太陽光発電装置を提供することにある。 An object of the present invention is to provide a light guide, a solar cell module, and a solar power generation device that can efficiently generate power using external light.
 本発明の第1の形態の導光体は、第1透明層と、前記第1透明層の内部に分散された光機能材料と、を備え、前記光機能材料の吸収スペクトルのピーク波長をλ1とし、前記光機能材料の発光スペクトルのピーク波長をλ2とし、前記波長λ1における前記第1透明層の屈折率をn1(λ1)とし、前記波長λ2における前記第1透明層の屈折率をn1(λ2)としたときに、前記n1(λ1)と前記n1(λ2)が、n1(λ1)<n1(λ2)の関係を満たす。 The light guide according to the first aspect of the present invention includes a first transparent layer and an optical functional material dispersed inside the first transparent layer, and the peak wavelength of the absorption spectrum of the optical functional material is λ1. And the peak wavelength of the emission spectrum of the optical functional material is λ2, the refractive index of the first transparent layer at the wavelength λ1 is n1 (λ1), and the refractive index of the first transparent layer at the wavelength λ2 is n1 ( λ2), n1 (λ1) and n1 (λ2) satisfy the relationship n1 (λ1) <n1 (λ2).
 本発明の第2の形態の導光体は、第1透明層と、前記第1透明層の内部に分散された複数種類の光機能材料と、を備え、前記複数種類の光機能材料のうちいずれか1種類の光機能材料の吸収スペクトルのピーク波長をλ1とし、前記複数種類の光機能材料のうち最も発光スペクトルのピーク波長が大きい光機能材料の発光スペクトルのピーク波長をλ2とし、前記波長λ1における前記第1透明層の屈折率をn1(λ1)とし、前記波長λ2における前記第1透明層の屈折率をn1(λ2)としたときに、前記n1(λ1)と前記n1(λ2)が、n1(λ1)<n1(λ2)の関係を満たす。 A light guide according to a second aspect of the present invention includes a first transparent layer and a plurality of types of optical functional materials dispersed inside the first transparent layer. The peak wavelength of the absorption spectrum of any one type of optical functional material is λ1, the peak wavelength of the emission spectrum of the optical functional material having the largest emission spectrum peak wavelength among the plurality of types of optical functional materials is λ2, and the wavelength When the refractive index of the first transparent layer at λ1 is n1 (λ1) and the refractive index of the first transparent layer at the wavelength λ2 is n1 (λ2), the n1 (λ1) and the n1 (λ2) Satisfies the relationship of n1 (λ1) <n1 (λ2).
 前記複数種類の光機能材料のうち任意の光機能材料の発光スペクトルのピーク波長をλ1としたときに、前記n1(λ1)と前記n1(λ2)が、n1(λ1)<n1(λ2)の関係を満たしてもよい。 When the peak wavelength of the emission spectrum of any optical functional material among the plurality of types of optical functional materials is λ1, n1 (λ1) and n1 (λ2) satisfy n1 (λ1) <n1 (λ2). You may satisfy the relationship.
 前記複数種類の光機能材料の間でエネルギー移動が生じ、最も発光スペクトルのピーク波長の大きい光機能材料から光が放射されてもよい。 The energy transfer may occur between the plurality of types of optical functional materials, and light may be emitted from the optical functional material having the largest peak wavelength of the emission spectrum.
 前記第1透明層の一面側に第2透明層が設けられ、前記波長λ1における前記第2透明層の屈折率をn2(λ1)とし、前記波長λ2における前記第2透明層の屈折率をn2(λ2)としたときに、前記n2(λ1)と前記n2(λ2)が、n2(λ1)<n2(λ2)の関係を満たしてもよい。 A second transparent layer is provided on one side of the first transparent layer, the refractive index of the second transparent layer at the wavelength λ1 is n2 (λ1), and the refractive index of the second transparent layer at the wavelength λ2 is n2. When (λ2), n2 (λ1) and n2 (λ2) may satisfy the relationship n2 (λ1) <n2 (λ2).
 前記n2(λ2)と前記n1(λ2)が、n2(λ2)≧n1(λ2)の関係を満たしてもよい。 The n2 (λ2) and the n1 (λ2) may satisfy a relationship of n2 (λ2) ≧ n1 (λ2).
 前記第1透明層の一面側に第2透明層が設けられ、前記波長λ1における前記第2透明層の屈折率をn2(λ1)とし、前記波長λ2における前記第2透明層の屈折率をn2(λ2)としたときに、前記n2(λ1)と前記n2(λ2)が、n2(λ1)>n2(λ2)の関係を満たし、前記n2(λ2)と前記n1(λ2)が、n2(λ2)≧n1(λ2)の関係を満たしてもよい。 A second transparent layer is provided on one side of the first transparent layer, the refractive index of the second transparent layer at the wavelength λ1 is n2 (λ1), and the refractive index of the second transparent layer at the wavelength λ2 is n2. When (λ2), n2 (λ1) and n2 (λ2) satisfy the relationship n2 (λ1)> n2 (λ2), and n2 (λ2) and n1 (λ2) are n2 ( The relationship of λ2) ≧ n1 (λ2) may be satisfied.
 前記第1透明層の他面側に第3透明層が設けられ、前記波長λ2における前記第3透明層の屈折率をn3(λ2)としたときに、前記n3(λ2)と前記n1(λ2)が、n3(λ2)≧n1(λ2)の関係を満たしてもよい。 A third transparent layer is provided on the other surface side of the first transparent layer, and when the refractive index of the third transparent layer at the wavelength λ2 is n3 (λ2), the n3 (λ2) and the n1 (λ2 ) May satisfy the relationship of n3 (λ2) ≧ n1 (λ2).
 本発明の第3の形態の導光体は、第1透明層と、前記第1透明層の内部に分散された光機能材料と、前記第1透明層の一面側に設けられた第2透明層と、を備え、前記光機能材料の吸収スペクトルのピーク波長をλ1とし、前記光機能材料の発光スペクトルのピーク波長をλ2とし、前記波長λ1における前記第2透明層の屈折率をn2(λ1)とし、前記波長λ2における前記第2透明層の屈折率をn2(λ2)としたときに、前記n2(λ1)と前記n2(λ2)が、n2(λ1)<n2(λ2)の関係を満たす。 The light guide of the third aspect of the present invention includes a first transparent layer, an optical functional material dispersed inside the first transparent layer, and a second transparent provided on one surface side of the first transparent layer. A peak wavelength of the absorption spectrum of the optical functional material is λ1, a peak wavelength of the emission spectrum of the optical functional material is λ2, and a refractive index of the second transparent layer at the wavelength λ1 is n2 (λ1 ), And the refractive index of the second transparent layer at the wavelength λ2 is n2 (λ2), the relationship between n2 (λ1) and n2 (λ2) is n2 (λ1) <n2 (λ2). Fulfill.
 本発明の第4の形態の導光体は、第1透明層と、前記第1透明層の内部に分散された複数種類の光機能材料と、前記第1透明層の一面側に設けられた第2透明層と、を備え、前記複数種類の光機能材料のうちいずれか1種類の光機能材料の吸収スペクトルのピーク波長をλ1とし、前記複数種類の光機能材料のうち最も発光スペクトルのピーク波長が大きい光機能材料の発光スペクトルのピーク波長をλ2とし、前記波長λ1における前記第2透明層の屈折率をn2(λ1)とし、前記波長λ2における前記第2透明層の屈折率をn2(λ2)としたときに、前記n2(λ1)と前記n2(λ2)が、n2(λ1)<n2(λ2)の関係を満たす。 The light guide of the 4th form of this invention was provided in the 1st transparent layer, the multiple types of optical functional material disperse | distributed inside the said 1st transparent layer, and the one surface side of the said 1st transparent layer. A peak wavelength of an absorption spectrum of any one of the plurality of types of optical functional materials is λ1, and the peak of the emission spectrum is the highest among the plurality of types of optical functional materials. The peak wavelength of the emission spectrum of the optical functional material having a large wavelength is λ2, the refractive index of the second transparent layer at the wavelength λ1 is n2 (λ1), and the refractive index of the second transparent layer at the wavelength λ2 is n2 ( λ2), n2 (λ1) and n2 (λ2) satisfy the relationship n2 (λ1) <n2 (λ2).
 前記複数種類の光機能材料のうち任意の光機能材料の発光スペクトルのピーク波長をλ1としたときに、前記n2(λ1)と前記n2(λ2)が、n2(λ1)<n2(λ2)の関係を満たしてもよい。 When the peak wavelength of the emission spectrum of an arbitrary optical functional material among the plural types of optical functional materials is λ1, the n2 (λ1) and the n2 (λ2) satisfy n2 (λ1) <n2 (λ2). You may satisfy the relationship.
 前記複数種類の光機能材料の間でエネルギー移動が生じ、最も発光スペクトルのピーク波長の大きい光機能材料から光が放射されてもよい。 The energy transfer may occur between the plurality of types of optical functional materials, and light may be emitted from the optical functional material having the largest peak wavelength of the emission spectrum.
 前記波長λ1における前記第1透明層の屈折率をn1(λ1)とし、前記波長λ2における前記第1透明層の屈折率をn1(λ2)としたときに、前記n1(λ1)と前記n1(λ2)が、n1(λ1)<n1(λ2)の関係を満たしてもよい。 When the refractive index of the first transparent layer at the wavelength λ1 is n1 (λ1) and the refractive index of the first transparent layer at the wavelength λ2 is n1 (λ2), the n1 (λ1) and the n1 ( λ2) may satisfy the relationship n1 (λ1) <n1 (λ2).
 前記波長λ1における前記第1透明層の屈折率をn1(λ1)とし、前記波長λ2における前記第1透明層の屈折率をn1(λ2)としたときに、前記n1(λ1)と前記n1(λ2)が、n1(λ1)>n1(λ2)の関係を満たしてもよい。 When the refractive index of the first transparent layer at the wavelength λ1 is n1 (λ1) and the refractive index of the first transparent layer at the wavelength λ2 is n1 (λ2), the n1 (λ1) and the n1 ( λ2) may satisfy the relationship n1 (λ1)> n1 (λ2).
 前記n2(λ2)と前記n1(λ2)が、n2(λ2)≧n1(λ2)の関係を満たしてもよい。 The n2 (λ2) and the n1 (λ2) may satisfy a relationship of n2 (λ2) ≧ n1 (λ2).
 前記第1透明層の他面側に第3透明層が設けられ、前記波長λ2における前記第3透明層の屈折率をn3(λ2)としたときに、前記n3(λ2)と前記n1(λ2)が、n3(λ2)≧n1(λ2)の関係を満たしてもよい。 A third transparent layer is provided on the other surface side of the first transparent layer, and when the refractive index of the third transparent layer at the wavelength λ2 is n3 (λ2), the n3 (λ2) and the n1 (λ2 ) May satisfy the relationship of n3 (λ2) ≧ n1 (λ2).
 前記第1透明層と前記第2透明層との間に第3透明層が設けられ、前記波長λ2における前記第3透明層の屈折率をn3(λ2)としたときに、前記n3(λ2)と前記n1(λ2)が、n3(λ2)≧n1(λ2)の関係を満たしてもよい。 When a third transparent layer is provided between the first transparent layer and the second transparent layer, and the refractive index of the third transparent layer at the wavelength λ2 is n3 (λ2), the n3 (λ2) And n1 (λ2) may satisfy the relationship n3 (λ2) ≧ n1 (λ2).
 前記波長λ1における前記第3透明層の屈折率をn3(λ1)としたときに、前記n3(λ1)と前記n2(λ1)と前記n1(λ1)が、n2(λ1)≦n3(λ1)≦n1(λ1)の関係を満たしてもよい。 When the refractive index of the third transparent layer at the wavelength λ1 is n3 (λ1), the n3 (λ1), the n2 (λ1), and the n1 (λ1) are n2 (λ1) ≦ n3 (λ1) ≦ n1 (λ1) may be satisfied.
 本発明の太陽電池モジュールは、本発明の導光体と、前記導光体から射出された光を受光する太陽電池素子と、を備えている。 The solar cell module of the present invention includes the light guide of the present invention and a solar cell element that receives light emitted from the light guide.
 前記導光体の光入射面は平坦な面であってもよい。 The light incident surface of the light guide may be a flat surface.
 前記導光体は、平坦な板状の部材として構成され、前記太陽電池素子は、光射出面である前記導光体の端面から射出された前記蛍光を受光してもよい。 The light guide may be configured as a flat plate-shaped member, and the solar cell element may receive the fluorescence emitted from an end surface of the light guide that is a light emission surface.
 前記導光体の光入射面の少なくとも一部は屈曲又は湾曲した面であってもよい。 At least a part of the light incident surface of the light guide may be a bent or curved surface.
 前記導光体は、湾曲した板状の部材として構成され、前記太陽電池素子は、光射出面である前記導光体の端面から射出された前記蛍光を受光してもよい。 The light guide may be configured as a curved plate-shaped member, and the solar cell element may receive the fluorescence emitted from an end surface of the light guide that is a light emission surface.
 前記導光体は、筒状の部材として構成され、前記太陽電池素子は、光射出面である前記導光体の端面から射出された前記蛍光を受光してもよい。 The light guide may be configured as a cylindrical member, and the solar cell element may receive the fluorescence emitted from an end surface of the light guide that is a light emission surface.
 前記導光体は、柱状の部材として構成され、前記太陽電池素子は、光射出面である前記導光体の端面から射出された前記光を受光してもよい。 The light guide may be configured as a columnar member, and the solar cell element may receive the light emitted from an end surface of the light guide that is a light emission surface.
 前記導光体と前記太陽電池素子とを1組とする単位ユニットが、互いに隣接して複数組設置され、前記複数組の単位ユニットが紐状の連結部材で互いに柔軟に連結されていてもよい。 A plurality of unit units each including the light guide body and the solar cell element may be installed adjacent to each other, and the plurality of unit units may be flexibly connected to each other by a string-like connecting member. .
 前記導光体と前記太陽電池素子とを1組とする単位ユニットが、互いに隣接して複数組設置され、前記複数組の単位ユニットが互いに間隔を空けて連結されていてもよい。 A plurality of unit units each including the light guide body and the solar cell element as a set may be installed adjacent to each other, and the plurality of unit units may be connected with a space therebetween.
 本発明の太陽光発電装置は、本発明の太陽電池モジュールを備えている。 The solar power generation device of the present invention includes the solar cell module of the present invention.
 本発明によれば、外光を利用して効率よく発電を行うことが可能な導光体、太陽電池モジュールおよび太陽光発電装置を提供することができる。 According to the present invention, it is possible to provide a light guide, a solar cell module, and a solar power generation device that can efficiently generate power using external light.
第1実施形態の太陽電池モジュールの概略斜視図である。It is a schematic perspective view of the solar cell module of 1st Embodiment. 太陽電池モジュールの断面図である。It is sectional drawing of a solar cell module. 蛍光体の発光スペクトル及び吸収スペクトルを示す図である。It is a figure which shows the emission spectrum and absorption spectrum of fluorescent substance. 導光体の基材の屈折率の波長分散特性を示す図である。It is a figure which shows the wavelength dispersion characteristic of the refractive index of the base material of a light guide. 基材として異常分散を示す基材を用いた場合の作用を説明するための図である。It is a figure for demonstrating an effect | action at the time of using the base material which shows abnormal dispersion as a base material. 基材として正常分散を示す基材を用いた場合の作用を説明するための図である。It is a figure for demonstrating an effect | action at the time of using the base material which shows normal dispersion as a base material. 第2実施形態の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module of 2nd Embodiment. 第1透明層および第2透明層の屈折率の波長分散特性を示す図である。It is a figure which shows the wavelength dispersion characteristic of the refractive index of a 1st transparent layer and a 2nd transparent layer. 第1透明層および第2透明層として異常分散を示すものを用いた場合の作用を説明するための図である。It is a figure for demonstrating an effect | action at the time of using what shows anomalous dispersion | distribution as a 1st transparent layer and a 2nd transparent layer. 第1透明層および第2透明層として正常分散を示すものを用いた場合の作用を説明するための図である。It is a figure for demonstrating an effect | action at the time of using what shows normal dispersion | distribution as a 1st transparent layer and a 2nd transparent layer. 第3実施形態の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module of 3rd Embodiment. 蛍光体の吸収特性を示す図である。It is a figure which shows the absorption characteristic of fluorescent substance. 蛍光体の吸収特性を示す図である。It is a figure which shows the absorption characteristic of fluorescent substance. 蛍光体の発光特性を示す図である。It is a figure which shows the light emission characteristic of fluorescent substance. 蛍光体の発光特性を示す図である。It is a figure which shows the light emission characteristic of fluorescent substance. フォトルミネッセンスによるエネルギー移動の説明図である。It is explanatory drawing of the energy transfer by photoluminescence. フェルスター機構によるエネルギー移動の説明図である。It is explanatory drawing of the energy transfer by a Forster mechanism. フェルスター機構によるエネルギー移動の発生機構の説明図である。It is explanatory drawing of the generation mechanism of the energy transfer by a Forster mechanism. フェルスター機構によるエネルギー移動を示す図である。It is a figure which shows the energy transfer by a Forster mechanism. アモルファスシリコン太陽電池の分光感度曲線を第1蛍光体の発光スペクトル、第2蛍光体の発光スペクトルおよび第3蛍光体の発光スペクトルとともに示す図である。It is a figure which shows the spectral sensitivity curve of an amorphous silicon solar cell with the emission spectrum of 1st fluorescent substance, the emission spectrum of 2nd fluorescent substance, and the emission spectrum of 3rd fluorescent substance. 第4実施形態の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module of 4th Embodiment. 第1透明層、第2透明層および第3透明層の屈折率の波長分散特性を示す図である。It is a figure which shows the wavelength dispersion characteristic of the refractive index of a 1st transparent layer, a 2nd transparent layer, and a 3rd transparent layer. 第5実施形態の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module of 5th Embodiment. 第1透明層および第2透明層の屈折率の波長分散特性を示す図である。It is a figure which shows the wavelength dispersion characteristic of the refractive index of a 1st transparent layer and a 2nd transparent layer. 第6実施形態の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module of 6th Embodiment. 第1透明層および第2透明層の屈折率の波長分散特性を示す図である。It is a figure which shows the wavelength dispersion characteristic of the refractive index of a 1st transparent layer and a 2nd transparent layer. 第7実施形態の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module of 7th Embodiment. 第1透明層、第2透明層および第3透明層の屈折率の波長分散特性を示す図である。It is a figure which shows the wavelength dispersion characteristic of the refractive index of a 1st transparent layer, a 2nd transparent layer, and a 3rd transparent layer. 第2透明層の屈折率の波長分散特性の変形例を示す図である。It is a figure which shows the modification of the wavelength dispersion characteristic of the refractive index of a 2nd transparent layer. 第1透明層の屈折率の波長分散特性の変形例を示す図である。It is a figure which shows the modification of the wavelength dispersion characteristic of the refractive index of a 1st transparent layer. 第3透明層の屈折率の波長分散特性の変形例を示す図である。It is a figure which shows the modification of the wavelength dispersion characteristic of the refractive index of a 3rd transparent layer. 第2透明層の屈折率の波長分散特性の変形例を示す図である。It is a figure which shows the modification of the wavelength dispersion characteristic of the refractive index of a 2nd transparent layer. 第1透明層の屈折率の波長分散特性の変形例を示す図である。It is a figure which shows the modification of the wavelength dispersion characteristic of the refractive index of a 1st transparent layer. 第3透明層の屈折率の波長分散特性の変形例を示す図である。It is a figure which shows the modification of the wavelength dispersion characteristic of the refractive index of a 3rd transparent layer. 第2透明層の屈折率の波長分散特性の変形例を示す図である。It is a figure which shows the modification of the wavelength dispersion characteristic of the refractive index of a 2nd transparent layer. 第1透明層の屈折率の波長分散特性の変形例を示す図である。It is a figure which shows the modification of the wavelength dispersion characteristic of the refractive index of a 1st transparent layer. 第3透明層の屈折率の波長分散特性の変形例を示す図である。It is a figure which shows the modification of the wavelength dispersion characteristic of the refractive index of a 3rd transparent layer. 第8実施形態の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module of 8th Embodiment. 第1透明層、第2透明層および第3透明層の屈折率の波長分散特性を示す図である。It is a figure which shows the wavelength dispersion characteristic of the refractive index of a 1st transparent layer, a 2nd transparent layer, and a 3rd transparent layer. 第1透明層の屈折率の波長分散特性の変形例を示す図である。It is a figure which shows the modification of the wavelength dispersion characteristic of the refractive index of a 1st transparent layer. 第1透明層の屈折率の波長分散特性の変形例を示す図である。It is a figure which shows the modification of the wavelength dispersion characteristic of the refractive index of a 1st transparent layer. 第3透明層の屈折率の波長分散特性の変形例を示す図である。It is a figure which shows the modification of the wavelength dispersion characteristic of the refractive index of a 3rd transparent layer. 第2透明層の屈折率の波長分散特性の変形例を示す図である。It is a figure which shows the modification of the wavelength dispersion characteristic of the refractive index of a 2nd transparent layer. 第1透明層の屈折率の波長分散特性の変形例を示す図である。It is a figure which shows the modification of the wavelength dispersion characteristic of the refractive index of a 1st transparent layer. 第3透明層の屈折率の波長分散特性の変形例を示す図である。It is a figure which shows the modification of the wavelength dispersion characteristic of the refractive index of a 3rd transparent layer. 第2透明層の屈折率の波長分散特性の変形例を示す図である。It is a figure which shows the modification of the wavelength dispersion characteristic of the refractive index of a 2nd transparent layer. 第1透明層の屈折率の波長分散特性の変形例を示す図である。It is a figure which shows the modification of the wavelength dispersion characteristic of the refractive index of a 1st transparent layer. 第3透明層の屈折率の波長分散特性の変形例を示す図である。It is a figure which shows the modification of the wavelength dispersion characteristic of the refractive index of a 3rd transparent layer. 第9実施形態の太陽電池モジュールの模式図である。It is a schematic diagram of the solar cell module of 9th Embodiment. 第10実施形態の太陽電池モジュールの模式図である。It is a schematic diagram of the solar cell module of 10th Embodiment. 第11実施形態の太陽電池モジュールの模式図である。It is a schematic diagram of the solar cell module of 11th Embodiment. 太陽光発電装置の概略構成図である。It is a schematic block diagram of a solar power generation device.
[第1実施形態]
 図1は、第1実施形態の太陽電池モジュール1の概略斜視図である。
[First Embodiment]
FIG. 1 is a schematic perspective view of the solar cell module 1 of the first embodiment.
 太陽電池モジュール1は、導光体4(蛍光導光体)と、導光体4の第1端面4cから射出された光を受光する太陽電池素子6と、導光体4と太陽電池素子6とを一体に保持する枠体10と、を備えている。 The solar cell module 1 includes a light guide 4 (fluorescent light guide), a solar cell element 6 that receives light emitted from the first end face 4 c of the light guide 4, and the light guide 4 and the solar cell element 6. And a frame 10 that holds the two integrally.
 導光体4は、光入射面である第1主面4aと、第1主面4aと対向する第2主面4bと、光射出面である第1端面4cと、を備えている。 The light guide 4 includes a first main surface 4a that is a light incident surface, a second main surface 4b that faces the first main surface 4a, and a first end surface 4c that is a light emission surface.
 導光体4は、Z軸に垂直な(XY平面と平行な)第1主面4a及び第2主面4bを有する略矩形の板状部材である。導光体4は、アクリル樹脂、ポリカーボネート樹脂、ガラスなどの透明性の高い有機材料もしくは無機材料からなる基材(透明基板)の内部に、光機能材料を分散させたものである。光機能材料としては、例えば、紫外光又は可視光を吸収して可視光又は赤外光を放射する蛍光体が含まれている。蛍光体から放射された光は、導光体4の内部を伝播して第1端面4cから射出され、太陽電池素子6で発電に利用される。 The light guide 4 is a substantially rectangular plate-like member having a first main surface 4a and a second main surface 4b perpendicular to the Z axis (parallel to the XY plane). The light guide 4 is obtained by dispersing an optical functional material in a base material (transparent substrate) made of a highly transparent organic material or inorganic material such as acrylic resin, polycarbonate resin, or glass. Examples of the optical functional material include a phosphor that absorbs ultraviolet light or visible light and emits visible light or infrared light. The light emitted from the phosphor propagates through the light guide 4 and is emitted from the first end face 4 c and is used for power generation by the solar cell element 6.
 なお、可視光は380nm以上750nm以下の波長領域の光であり、紫外光は380nm未満の波長領域の光であり、赤外光は750nmよりも大きい波長領域の光である。 Note that visible light is light in a wavelength region of 380 nm to 750 nm, ultraviolet light is light in a wavelength region less than 380 nm, and infrared light is light in a wavelength region larger than 750 nm.
 導光体4の第1主面4a及び第2主面4bは概ねXY平面と平行な平坦な面である。導光体4の第1端面4c以外の端面には、導光体4の内部から導光体4の外部に向けて進行する光(蛍光体から放射された光)を導光体4の内部に向けて反射する反射層9が、当該端面に空気層を介して又は当該端面に空気層を介さずに直接接触して設けられている。導光体4の第2主面4bには、導光体4の内部から導光体4の外部に向けて進行する光(蛍光体から放射された光)または第1主面4aから入射したが光機能材料に吸収されずに第2主面4bから射出した光を導光体4の内部に向けて反射する反射層7が、第2主面4bに空気層を介して又は第2主面4bに空気層を介さずに直接接触して設けられている。 The first main surface 4a and the second main surface 4b of the light guide 4 are flat surfaces substantially parallel to the XY plane. Light that travels from the inside of the light guide 4 toward the outside of the light guide 4 (light radiated from the phosphor) is transmitted to the inside of the light guide 4 on the end faces other than the first end face 4 c of the light guide 4. A reflective layer 9 that reflects toward the surface is provided in direct contact with the end surface via an air layer or without an air layer. Light traveling from the inside of the light guide 4 toward the outside of the light guide 4 (light emitted from the phosphor) or the first main surface 4a is incident on the second main surface 4b of the light guide 4 Is reflected by the second main surface 4b via the air layer or the second main surface 4b. The reflection layer 7 reflects the light emitted from the second main surface 4b without being absorbed by the optical functional material toward the inside of the light guide 4. The surface 4b is provided in direct contact with no air layer.
 反射層7および反射層9としては、銀やアルミニウムなどの金属膜からなる反射層や、ESR(Enhanced Specular Reflector)反射フィルム(3M社製)などの誘電体多層膜からなる反射層などを用いることができる。反射層7および反射層9は、入射した光を鏡面反射する鏡面反射層でもよいし、入射した光を散乱反射する散乱反射層でもよい。反射層7に散乱反射層を用いた場合には、太陽電池素子6の方向に直接向かう光の光量が増えるため、太陽電池素子6への集光効率が高まり、発電量が増加する。また、反射光が散乱されるため、時間や季節による発電量の変化が平均化される。なお、散乱反射層としては、マイクロ発砲PET(ポリエチレン-テレフタレート)(古河電工社製)などを用いることができる。 As the reflective layer 7 and the reflective layer 9, a reflective layer made of a metal film such as silver or aluminum, or a reflective layer made of a dielectric multilayer film such as an ESR (Enhanced Special Reflector) reflective film (manufactured by 3M) is used. Can do. The reflective layer 7 and the reflective layer 9 may be a specular reflective layer that specularly reflects incident light, or a scattering reflective layer that scatters and reflects incident light. When a scattering reflection layer is used for the reflection layer 7, the amount of light that goes directly in the direction of the solar cell element 6 increases, so that the light collection efficiency to the solar cell element 6 increases and the amount of power generation increases. In addition, since the reflected light is scattered, changes in the amount of power generation with time and season are averaged. As the scattering reflection layer, micro-fired PET (polyethylene terephthalate) (manufactured by Furukawa Electric) can be used.
 太陽電池素子6は、受光面を導光体4の第1端面4cと対向させて配置されている。太陽電池素子6は、第1端面4cと光学接着されていることが好ましい。太陽電池素子6としては、シリコン系太陽電池、化合物系太陽電池、有機系太陽電池などの公知の太陽電池を使用することができる。中でも、化合物半導体を用いた化合物系太陽電池は、高効率な発電が可能であることから、太陽電池素子6として好適である。 The solar cell element 6 is disposed with the light receiving surface facing the first end surface 4 c of the light guide 4. The solar cell element 6 is preferably optically bonded to the first end face 4c. As the solar cell element 6, a known solar cell such as a silicon solar cell, a compound solar cell, or an organic solar cell can be used. Among these, a compound solar cell using a compound semiconductor is suitable as the solar cell element 6 because it can generate power with high efficiency.
 図1では、太陽電池素子6を導光体4の1つの端面のみに設置した例を示したが、太陽電池素子6は導光体4の複数の端面に設置してもよい。太陽電池素子6を導光体4の一部の端面(1辺、2辺または3辺)に設置する場合には、太陽電池素子が設置されていない端面には反射層9を設置することが好ましい。 1 shows an example in which the solar cell element 6 is installed only on one end face of the light guide 4, the solar cell element 6 may be installed on a plurality of end faces of the light guide 4. When the solar cell element 6 is installed on a part of the end surface (one side, two sides, or three sides) of the light guide 4, the reflective layer 9 may be installed on the end surface where the solar cell element is not installed. preferable.
 枠体10は、導光体4の第1主面4aと対向する面に光Lを透過する透過面10aを備えている。透過面10aは枠体10の開口部であってもよく、枠体10の開口部に嵌め込まれたガラス等の透明部材であってもよい。枠体10の透過面10aとZ方向から見て重なる部分の導光体4の第1主面4aが、導光体4の光入射面である。また、導光体4の第1端面4cが導光体4の光射出面である。導光体4は、光入射面から入射した外光の一部を光機能材料によって吸収し、光機能材料から放射された光を光入射面よりも面積の小さい光射出面に集光して外部に射出する。 The frame 10 includes a transmission surface 10 a that transmits the light L on a surface facing the first main surface 4 a of the light guide 4. The transmission surface 10a may be an opening of the frame 10, or may be a transparent member such as glass fitted in the opening of the frame 10. The first main surface 4 a of the light guide 4 that overlaps the transmission surface 10 a of the frame 10 when viewed from the Z direction is the light incident surface of the light guide 4. Further, the first end surface 4 c of the light guide 4 is a light exit surface of the light guide 4. The light guide 4 absorbs a part of the external light incident from the light incident surface by the optical functional material, and condenses the light emitted from the optical functional material on the light exit surface having a smaller area than the light incident surface. Inject outside.
 図2は、太陽電池モジュール1の断面図である。 FIG. 2 is a cross-sectional view of the solar cell module 1.
 本実施形態の場合、導光体4の内部には、光機能材料として、橙色光を吸収して赤色の蛍光L1を放射する蛍光体8が分散されている。導光体4は、蛍光体を含まない透明な基材5と、基材5の内部に分散された蛍光体8と、を含んで構成されている。基材5は、蛍光体を含まない透明層であるが、導光板4の内部での波長変換を目的として意図的に蛍光体を分散したものでなければ、若干の蛍光体を含み、完全に透明ではない材料で製造されたものであっても基材5として使用可能である。 In the case of the present embodiment, a phosphor 8 that absorbs orange light and emits red fluorescence L1 is dispersed in the light guide 4 as an optical functional material. The light guide 4 includes a transparent base material 5 that does not contain a phosphor, and a phosphor 8 that is dispersed inside the base material 5. The substrate 5 is a transparent layer that does not contain a phosphor, but if the phosphor is not intentionally dispersed for the purpose of wavelength conversion inside the light guide plate 4, it contains some phosphor and is completely Even those made of a material that is not transparent can be used as the substrate 5.
 図3は、蛍光体8の発光スペクトル及び吸収スペクトルを示す図である。図3の横軸は光の波長であり、縦軸は規格化された光の強度である。 FIG. 3 is a diagram showing an emission spectrum and an absorption spectrum of the phosphor 8. The horizontal axis in FIG. 3 is the light wavelength, and the vertical axis is the normalized light intensity.
 蛍光体8は、例えば、BASF社製Lumogen F RED(商品名)である。蛍光体8の混合比率は、基材5に対する体積比率で例えば0.02%程度である。蛍光体8の吸収スペクトルのピーク波長λ1は概ね580nmであり、発光スペクトルのピーク波長λ2は概ね610nmである。蛍光体8の発光スペクトルのピーク波長λ2はストークスシフトの影響により吸収スペクトルのピーク波長λ1よりも長波長側にずれている。なお、蛍光体8としてはBASF社製Lumogen F RED(商品名)に限らず、公知の様々な蛍光体を使用することができる。蛍光体8は、導光体4の光入射面に入射した外光L(例えば、太陽光)の一部を吸収し、波長変換して導光体4の内部を伝播させることができるものであればよく、BASF社製Lumogen F RED(商品名)以外の蛍光体の一例としては、特開2004-45248号公報や特開2010-263115号公報に記載された蛍光体などが挙げられる。 The phosphor 8 is, for example, BASF Lumogen F RED (trade name). The mixing ratio of the phosphor 8 is, for example, about 0.02% in volume ratio with respect to the base material 5. The peak wavelength λ1 of the absorption spectrum of the phosphor 8 is approximately 580 nm, and the peak wavelength λ2 of the emission spectrum is approximately 610 nm. The peak wavelength λ2 of the emission spectrum of the phosphor 8 is shifted to the longer wavelength side than the peak wavelength λ1 of the absorption spectrum due to the effect of Stokes shift. Note that the phosphor 8 is not limited to Lumogen F RED (trade name) manufactured by BASF, and various known phosphors can be used. The phosphor 8 can absorb a part of the external light L (for example, sunlight) incident on the light incident surface of the light guide 4 and can convert the wavelength to propagate inside the light guide 4. As examples of phosphors other than BASF's Lumogen F RED (trade name), phosphors described in JP-A-2004-45248 and JP-A-2010-263115 may be mentioned.
 図4は、基材5の屈折率n1の波長分散特性を示す図である。図4中、符号n0は、導光体4の外部の媒質(例えば空気)の屈折率を示している。 FIG. 4 is a diagram showing the wavelength dispersion characteristics of the refractive index n1 of the base material 5. FIG. In FIG. 4, the symbol n <b> 0 indicates the refractive index of a medium (for example, air) outside the light guide 4.
 本実施形態では、蛍光体8の吸収スペクトルのピーク波長をλ1とし、蛍光体8の発光スペクトルのピーク波長をλ2とし、波長λ1における基材5の屈折率をn1(λ1)とし、波長λ2における基材5の屈折率をn1(λ2)としたときに、n1(λ1)とn1(λ2)が、n1(λ1)<n1(λ2)の関係を満たすものとされている。波長λ1と波長λ2との間の波長領域では、例えば、波長λが大きくなるほど屈折率n1が大きくなるような波長分散特性(異常分散)を示すものが好適である。本実施形態の場合、基材5しては波長λ1と波長λ2を含む広い波長領域で異常分散を示す部材が好適に用いられるが、基材5の屈折率の波長分散特性はこれに限らず、少なくとも上記の特性、すなわち、n1(λ1)<n1(λ2)の関係を満たすものであればよい。なお、異常分散とは、波長λが大きくなるほど屈折率n1が大きくなるような波長分散特性をいう。波長λが大きくなるほど屈折率n1が小さくなるような波長分散特性は正常分散という。異常分散を示す部材としては、例えば、特開2003-344605号公報、特開2006-287243号公報、特開平6-64942号公報、特開平8-258208号公報などに記載されるような公知の部材が利用できる。 In this embodiment, the peak wavelength of the absorption spectrum of the phosphor 8 is λ1, the peak wavelength of the emission spectrum of the phosphor 8 is λ2, the refractive index of the base material 5 at the wavelength λ1 is n1 (λ1), and the wavelength λ2 When the refractive index of the substrate 5 is n1 (λ2), n1 (λ1) and n1 (λ2) satisfy the relationship n1 (λ1) <n1 (λ2). In the wavelength region between the wavelength λ1 and the wavelength λ2, for example, a material exhibiting wavelength dispersion characteristics (anomalous dispersion) such that the refractive index n1 increases as the wavelength λ increases. In the case of the present embodiment, a member that exhibits anomalous dispersion in a wide wavelength region including the wavelength λ1 and the wavelength λ2 is preferably used as the substrate 5, but the wavelength dispersion characteristic of the refractive index of the substrate 5 is not limited to this. As long as it satisfies at least the above-described characteristics, that is, the relationship of n1 (λ1) <n1 (λ2). The anomalous dispersion is a wavelength dispersion characteristic in which the refractive index n1 increases as the wavelength λ increases. A wavelength dispersion characteristic in which the refractive index n1 decreases as the wavelength λ increases is referred to as normal dispersion. Examples of members exhibiting anomalous dispersion are known as disclosed in, for example, JP-A No. 2003-344605, JP-A No. 2006-287243, JP-A No. 6-64942, JP-A No. 8-258208, and the like. Members are available.
 図5A及び図5Bは、基材5として異常分散を示す基材5Aを用いた場合と正常分散を示す基材5Bを用いた場合の作用の違いを説明するための図である。 FIGS. 5A and 5B are diagrams for explaining the difference in action between the case where the base material 5A showing abnormal dispersion is used as the base material 5 and the case where the base material 5B showing normal dispersion is used.
 基材5の屈折率n1は、基材5に外光Lが入射する際の表面反射率Rや、蛍光体8から放射された蛍光L1を基材5の内部に閉じ込める際の閉じ込め効率ηtrapに影響を与える。表面反射率Rは、基材5の表面に入射した光Lのうち基材5の表面で反射される光の割合を示すものであり、閉じ込め効率ηtrapは、全方向に放射される蛍光L1のうち全反射によって基材5の内部に閉じ込められる蛍光の割合を示すものである。表面反射率Rと閉じ込め効率ηtrapは、式(1)および式(2)によって表される。式(1)および式(2)において、nは基材の屈折率、θ1は光の入射角、θ2は光の屈折角である。 The refractive index n1 of the base material 5 is such that the surface reflectance R when the external light L is incident on the base material 5 and the confinement efficiency η trap when the fluorescent light L1 emitted from the phosphor 8 is confined inside the base material 5. To affect. The surface reflectance R indicates the ratio of the light reflected on the surface of the base material 5 out of the light L incident on the surface of the base material 5, and the confinement efficiency η trap is the fluorescence L1 emitted in all directions. Of these, the ratio of the fluorescence confined inside the base material 5 by total reflection is shown. The surface reflectance R and the confinement efficiency η trap are expressed by Expression (1) and Expression (2). In the formulas (1) and (2), n is the refractive index of the substrate, θ1 is the incident angle of light, and θ2 is the refractive angle of light.
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000002
 
 太陽電池モジュール1では、外光Lを効率よく導光体4の内部に取り込み、且つ、蛍光体8から放射された蛍光L1を無駄なく太陽電池素子6に導くことが、発電効率を向上させる上で重要となる。しかし、式(1)および式(2)に示すように、表面反射率Rを小さくして外光Lを効率よく基材5の内部に取り込もうとすると、基材5の屈折率n1は小さくする必要があり、閉じ込め効率ηtrapを大きくして蛍光体8からの蛍光L1を無駄なく太陽電池素子6に導こうとすると、基材5の屈折率n1は大きくする必要がある。 In the solar cell module 1, the external light L is efficiently taken into the light guide 4 and the fluorescence L1 radiated from the phosphor 8 is led to the solar cell element 6 without waste to improve power generation efficiency. It becomes important in. However, as shown in the formulas (1) and (2), when the surface reflectance R is decreased and the external light L is efficiently taken into the base material 5, the refractive index n1 of the base material 5 is decreased. In order to increase the confinement efficiency η trap and guide the fluorescence L1 from the phosphor 8 to the solar cell element 6 without waste, the refractive index n1 of the substrate 5 needs to be increased.
 一般に透明な部材の屈折率は、図4に示すような異常分散ではなく、波長が大きくなるほど屈折率が小さくなるような正常分散の波長分散特性を示す。図5Bに示すように、正常分散を示す部材を基材5Bとして用いると、蛍光体8の吸収波長λ1では屈折率n1が大きくなり、蛍光体8の発光波長λ2では屈折率n1が小さくなる。そのため、表面反射率R(反射光Lr)が大きくなり、十分に蛍光体8に外光Lを吸収させることができなくなる。また、閉じ込め効率ηtrapが小さくなるので、基材5Bから漏れ出す蛍光L1が多くなり、太陽電池素子6に十分な光量の蛍光L1を入射させることができなくなる。すなわち、蛍光体8の発光波長λ2における屈折率n1が小さくなると、基材5Bの表面で蛍光が全反射する際の臨界角が小さくなるので、基材5Bの表面に小さい入射角で入射した蛍光L1を全反射させることができない。このような蛍光L1は基材5Bを透過して外部に漏れ出すので、結果として、太陽電池素子6に入射する蛍光L1の光量が低下する。 In general, the refractive index of a transparent member is not anomalous dispersion as shown in FIG. 4, but shows a chromatic dispersion characteristic of normal dispersion in which the refractive index decreases as the wavelength increases. As shown in FIG. 5B, when a member exhibiting normal dispersion is used as the substrate 5B, the refractive index n1 increases at the absorption wavelength λ1 of the phosphor 8, and the refractive index n1 decreases at the emission wavelength λ2 of the phosphor 8. For this reason, the surface reflectance R (reflected light Lr) increases, and the phosphor 8 cannot sufficiently absorb the external light L. Further, since the confinement efficiency η trap becomes small, the fluorescence L1 leaking from the base material 5B increases, and it becomes impossible to make the fluorescent light L1 having a sufficient amount of light incident on the solar cell element 6. That is, when the refractive index n1 at the emission wavelength λ2 of the phosphor 8 becomes small, the critical angle when the fluorescence is totally reflected on the surface of the base material 5B becomes small, so that the fluorescence incident on the surface of the base material 5B with a small incident angle. L1 cannot be totally reflected. Since such fluorescence L1 permeate | transmits the base material 5B and leaks outside, as a result, the light quantity of the fluorescence L1 which injects into the solar cell element 6 falls.
 一方、図5Aに示すように、基材5Aとして図4のような波長分散特性(異常分散)を示すものを用いると、蛍光体8の吸収波長λ1では屈折率n1が小さくなり、蛍光体8の発光波長λ2では屈折率n1が大きくなる。そのため、表面反射率R(反射光Lr)が小さくなり、十分に蛍光体8に外光Lを吸収させることができるようになる。また、閉じ込め効率ηtrapが大きくなるので、基材5Aから漏れ出す蛍光L1が少なくなり、太陽電池素子6に十分な光量の蛍光L1を入射させることが可能となる。すなわち、蛍光体8の発光波長λ2における屈折率n1が大きくなると、基材5Aの表面で蛍光L1が全反射する際の臨界角が小さくなるので、基材5Aの表面に小さい入射角で入射した蛍光L1を全反射させることが可能となる。その結果、基材5Aから漏れ出す蛍光L1の光量が低下し、太陽電池素子6に入射する蛍光L1の光量が増加する。 On the other hand, as shown in FIG. 5A, when the substrate 5A having a wavelength dispersion characteristic (abnormal dispersion) as shown in FIG. 4 is used, the refractive index n1 becomes small at the absorption wavelength λ1 of the phosphor 8, and the phosphor 8 At the emission wavelength λ2, the refractive index n1 increases. Therefore, the surface reflectance R (reflected light Lr) becomes small, and the phosphor 8 can sufficiently absorb the external light L. Further, since the confinement efficiency η trap is increased, the fluorescence L1 leaking from the base material 5A is reduced, and a sufficient amount of fluorescence L1 can be incident on the solar cell element 6. That is, when the refractive index n1 at the emission wavelength λ2 of the phosphor 8 is increased, the critical angle when the fluorescence L1 is totally reflected on the surface of the base material 5A is reduced, so that the light is incident on the surface of the base material 5A with a small incident angle. It becomes possible to totally reflect the fluorescence L1. As a result, the light amount of the fluorescence L1 leaking from the base material 5A is reduced, and the light amount of the fluorescence L1 incident on the solar cell element 6 is increased.
 以上のように本実施形態の太陽電池モジュール1では、蛍光体8を分散させる導光体の基材5として、蛍光体8の吸収波長λ1において相対的に小さい屈折率を示し、蛍光体8の発光波長λ2において相対的に大きい屈折率を示すものを用いている。そのため、導光体4に入射した外光Lを効率よく蛍光体8に吸収させることができ、且つ、蛍光体8から放射された蛍光L1を無駄なく太陽電池素子6に導くことができる。よって、外光Lを利用して効率よく発電を行うことが可能な太陽電池モジュール1を提供することができる。 As described above, in the solar cell module 1 of the present embodiment, the light guide base material 5 in which the phosphor 8 is dispersed exhibits a relatively small refractive index at the absorption wavelength λ 1 of the phosphor 8. A material having a relatively large refractive index at the emission wavelength λ2 is used. Therefore, the external light L incident on the light guide 4 can be efficiently absorbed by the phosphor 8, and the fluorescence L1 emitted from the phosphor 8 can be guided to the solar cell element 6 without waste. Therefore, it is possible to provide the solar cell module 1 capable of efficiently generating power using the external light L.
 なお、図1および図2では、導光体4を太陽電池モジュール1に組み込んだ状態を示しているため、導光体4として実際に使用する部分のみを示し、太陽電池モジュール1に組み込む前の付帯的な構成については図示を省略している。実際には、導光体4には、図1および図2に示した構成以外にも、導光体4の光入射面4aを保護する保護フィルムなどが付帯的に設けられており、導光体4はそのような構成を具備した状態で提供される場合がある。このような保護フィルムとしては、屈折率が正常分散を示す透明な部材が用いられる場合がある。本実施形態では、導光体4の光入射側の最表面を構成する透明層が異常分散を示す層として構成されているが、導光体単体として流通する場合には、必ずしもそのような状態で流通する必要はない。そのため、導光体単体として販売、流通(実施)させる段階では、光入射側の最表面の透明層が正常分散を示す層である導光体の構成が排除されるものではない。このような構成も本発明の技術的範囲に含まれる。 1 and 2 show a state in which the light guide 4 is incorporated in the solar cell module 1, only the portion actually used as the light guide 4 is shown, and before the incorporation into the solar cell module 1. The illustration of the incidental configuration is omitted. Actually, the light guide 4 is additionally provided with a protective film for protecting the light incident surface 4a of the light guide 4 in addition to the configuration shown in FIGS. The body 4 may be provided with such a configuration. As such a protective film, a transparent member whose refractive index shows normal dispersion may be used. In the present embodiment, the transparent layer constituting the outermost surface on the light incident side of the light guide 4 is configured as a layer exhibiting anomalous dispersion, but such a state is not necessarily required when distributed as a single light guide. There is no need to distribute it. Therefore, at the stage where the light guide is sold and distributed (implemented), the configuration of the light guide in which the transparent layer on the outermost surface on the light incident side is a layer exhibiting normal dispersion is not excluded. Such a configuration is also included in the technical scope of the present invention.
[第2実施形態]
 図6は、第2実施形態の太陽電池モジュール11の断面図である。導光体12以外の構成は、第1実施形態の太陽電池モジュール1と同じである。よって、ここでは導光体12の構成を中心に説明する。また、第1実施形態の太陽電池モジュール1と共通する構成については、同じ符号を付し、詳細な説明は省略する。
[Second Embodiment]
FIG. 6 is a cross-sectional view of the solar cell module 11 of the second embodiment. The configuration other than the light guide 12 is the same as that of the solar cell module 1 of the first embodiment. Therefore, here, the configuration of the light guide 12 will be mainly described. Moreover, about the structure which is common in the solar cell module 1 of 1st Embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
 導光体12は、透明導光体14と、透明導光体14の第1主面14aに接着された蛍光フィルム13と、を備えている。蛍光フィルム13と透明導光体14は、外光Lの入射側から順に配置されている。蛍光フィルム13の透明導光体14とは反対側の第1主面13aは導光体12の光入射面であり、蛍光フィルム13の第1端面13cおよび透明導光体14の第1端面14cは導光体12の光射出面である。太陽電池素子6の受光面は、光射出面である蛍光フィルム13の第1端面13cおよび透明導光体14の第1端面14cに対向させて配置されている。 The light guide 12 includes a transparent light guide 14 and a fluorescent film 13 bonded to the first main surface 14 a of the transparent light guide 14. The fluorescent film 13 and the transparent light guide 14 are disposed in order from the incident side of the external light L. The first main surface 13 a opposite to the transparent light guide 14 of the fluorescent film 13 is a light incident surface of the light guide 12, and the first end surface 13 c of the fluorescent film 13 and the first end surface 14 c of the transparent light guide 14. Is the light exit surface of the light guide 12. The light receiving surface of the solar cell element 6 is disposed so as to face the first end surface 13c of the fluorescent film 13 and the first end surface 14c of the transparent light guide 14 which are light emitting surfaces.
 蛍光フィルム13は、蛍光体を含まない透明な基材15と、基材15の内部に分散された蛍光体8と、を含んで構成されている。蛍光フィルム13は、第1主面12aに入射した外光L(例えば太陽光)の一部を蛍光に変換し、透明導光体14に向けて放射する。蛍光フィルム13から放射された蛍光の一部は、蛍光フィルム13および透明導光体14の内部を全反射しながら伝播する。蛍光フィルム13の第1端面13cおよび透明導光体14の第1端面14cから射出された蛍光は、太陽電池素子6に入射し、発電に利用される。 The fluorescent film 13 includes a transparent base material 15 that does not contain a fluorescent material, and a fluorescent material 8 that is dispersed inside the base material 15. The fluorescent film 13 converts part of the external light L (for example, sunlight) incident on the first main surface 12 a into fluorescence and radiates it toward the transparent light guide 14. Part of the fluorescence emitted from the fluorescent film 13 propagates while totally reflecting the inside of the fluorescent film 13 and the transparent light guide 14. The fluorescence emitted from the first end face 13c of the fluorescent film 13 and the first end face 14c of the transparent light guide 14 enters the solar cell element 6 and is used for power generation.
 基材15および透明導光体14は、蛍光体を含まない透明層である。しかし、蛍光フィルム13および透明導光体14の内部での波長変換を目的として意図的に蛍光体を分散したものでなければ、若干の蛍光体を含み、完全に透明ではない材料で製造されたものであっても基材15および透明導光体14として使用可能である。以下、蛍光フィルム13の基材15を第1透明層と呼び、透明導光体14を第2透明層と呼ぶことがある。第2透明層は、第1透明層の一面側に設けられた透明層である。 The base material 15 and the transparent light guide 14 are transparent layers that do not contain a phosphor. However, unless the phosphor is intentionally dispersed for the purpose of wavelength conversion inside the fluorescent film 13 and the transparent light guide 14, it is made of a material that contains some phosphor and is not completely transparent. Even if it is a thing, it can be used as the base material 15 and the transparent light guide 14. FIG. Hereinafter, the base material 15 of the fluorescent film 13 may be referred to as a first transparent layer, and the transparent light guide 14 may be referred to as a second transparent layer. The second transparent layer is a transparent layer provided on one side of the first transparent layer.
 図7は、第1透明層15の屈折率n1および第2透明層14の屈折率n2の波長分散特性を示す図である。本実施形態の場合、第1透明層15と第2透明層14は同じ材料で形成されており、第1透明層15と第2透明層14の屈折率n1,n2は同じ波長分散特性を示す。 FIG. 7 is a diagram showing the wavelength dispersion characteristics of the refractive index n1 of the first transparent layer 15 and the refractive index n2 of the second transparent layer. In the present embodiment, the first transparent layer 15 and the second transparent layer 14 are formed of the same material, and the refractive indexes n1 and n2 of the first transparent layer 15 and the second transparent layer 14 exhibit the same wavelength dispersion characteristics. .
 本実施形態では、蛍光体8の吸収スペクトルのピーク波長をλ1とし、蛍光体8の発光スペクトルのピーク波長をλ2とし、波長λ1における第1透明層15の屈折率をn1(λ1)とし、波長λ1における第2透明層14の屈折率をn2(λ1)とし、波長λ2における第1透明層15の屈折率をn1(λ2)とし、波長λ2における第2透明層14の屈折率をn2(λ2)としたときに、n1(λ1)、n2(λ1)、n1(λ2)およびn2(λ2)が、n1(λ1)<n1(λ2)、且つ、n2(λ1)<n2(λ2)の関係を満たすものとされている。波長λ1と波長λ2との間の波長領域では、例えば、波長λが大きくなるほど屈折率n1,n2が大きくなるような波長分散特性(異常分散)を示す。第1透明層15および第2透明層14としては波長λ1と波長λ2を含む広い波長領域で異常分散を示す部材が好適に用いられる。このような部材としては、第1実施形態に示したものと同様の部材が利用可能である。 In this embodiment, the peak wavelength of the absorption spectrum of the phosphor 8 is λ1, the peak wavelength of the emission spectrum of the phosphor 8 is λ2, the refractive index of the first transparent layer 15 at the wavelength λ1 is n1 (λ1), and the wavelength The refractive index of the second transparent layer 14 at λ1 is n2 (λ1), the refractive index of the first transparent layer 15 at wavelength λ2 is n1 (λ2), and the refractive index of the second transparent layer 14 at wavelength λ2 is n2 (λ2). ), N1 (λ1), n2 (λ1), n1 (λ2), and n2 (λ2) satisfy the relationship of n1 (λ1) <n1 (λ2) and n2 (λ1) <n2 (λ2) It is supposed to satisfy. In the wavelength region between the wavelength λ1 and the wavelength λ2, for example, wavelength dispersion characteristics (anomalous dispersion) are shown such that the refractive indexes n1 and n2 increase as the wavelength λ increases. As the first transparent layer 15 and the second transparent layer 14, a member that exhibits anomalous dispersion in a wide wavelength region including the wavelengths λ1 and λ2 is preferably used. As such a member, a member similar to that shown in the first embodiment can be used.
 図8A及び図8Bは、第1透明層15および第2透明層14として異常分散を示すもの(第1透明層15Aおよび第2透明層14A)を用いた場合と正常分散を示すもの(第1透明層15Bおよび第2透明層14B)を用いた場合の作用の違いを説明するための図である。 8A and 8B show the case where the first transparent layer 15 and the second transparent layer 14 exhibit anomalous dispersion (the first transparent layer 15A and the second transparent layer 14A) and the normal dispersion (the first transparent layer 15 and the second transparent layer 14A). It is a figure for demonstrating the difference in an effect | action at the time of using the transparent layer 15B and the 2nd transparent layer 14B).
 図8Bに示すように、正常分散を示す部材を第1透明層15Bおよび第2透明層14Bとして用いると、蛍光体8の吸収波長λ1では屈折率n2が大きくなり、蛍光体8の発光波長λ2では屈折率n2が小さくなる。そのため、表面反射率R(反射光Lr)が大きくなり、十分に蛍光体8に外光Lを吸収させることができなくなる。また、閉じ込め効率ηtrapが小さくなるので、第1透明層15Bおよび第2透明層14Bから漏れ出す蛍光L1が多くなり、太陽電池素子6に十分な光量の蛍光L1を入射させることができなくなる。すなわち、蛍光体8の発光波長λ2における屈折率n2が小さくなると、第1透明層15Bおよび第2透明層14Bの表面で蛍光L1が全反射する際の臨界角が小さくなるので、第1透明層15Bおよび第2透明層14Bの表面に小さい入射角で入射した蛍光L1を全反射させることができない。このような蛍光L1は第1透明層15Bおよび第2透明層14Bを透過して外部に漏れ出すので、結果として、太陽電池素子6に入射する蛍光L1の光量が低下する。 As shown in FIG. 8B, when members exhibiting normal dispersion are used as the first transparent layer 15B and the second transparent layer 14B, the refractive index n2 increases at the absorption wavelength λ1 of the phosphor 8, and the emission wavelength λ2 of the phosphor 8 Then, the refractive index n2 becomes small. For this reason, the surface reflectance R (reflected light Lr) increases, and the phosphor 8 cannot sufficiently absorb the external light L. Further, since the confinement efficiency η trap becomes small, the fluorescence L1 leaking out from the first transparent layer 15B and the second transparent layer 14B increases, and the fluorescent light L1 having a sufficient amount of light cannot enter the solar cell element 6. That is, when the refractive index n2 at the emission wavelength λ2 of the phosphor 8 becomes small, the critical angle when the fluorescence L1 is totally reflected on the surfaces of the first transparent layer 15B and the second transparent layer 14B becomes small. The fluorescence L1 incident at a small incident angle on the surfaces of 15B and the second transparent layer 14B cannot be totally reflected. Such fluorescence L1 passes through the first transparent layer 15B and the second transparent layer 14B and leaks to the outside. As a result, the amount of fluorescence L1 incident on the solar cell element 6 is reduced.
 一方、図8Aに示すように、第1透明層15および第2透明層14として異常分散を示すものを用いると、蛍光体8の吸収波長λ1では屈折率n2が小さくなり、蛍光体8の発光波長λ2では屈折率n2が大きくなる。そのため、表面反射率R(反射光Lr)が小さくなり、十分に蛍光体8に外光Lを吸収させることができるようになる。また、閉じ込め効率ηtrapが大きくなるので、第1透明層15Aおよび第2透明層14Aから漏れ出す蛍光L1が少なくなり、太陽電池素子6に十分な光量の蛍光L1を入射させることが可能となる。すなわち、蛍光体8の発光波長λ2における屈折率n2が大きくなると、第1透明層15Aおよび第2透明層14Aの表面で蛍光L1が全反射する際の臨界角が小さくなるので、第1透明層15Aおよび第2透明層14Aの表面に小さい入射角で入射した蛍光L1を全反射させることが可能となる。その結果、第1透明層15Aおよび第2透明層14Aから漏れ出す蛍光L1の光量が低下し、太陽電池素子6に入射する蛍光L1の光量が増加する。 On the other hand, as shown in FIG. 8A, when the first transparent layer 15 and the second transparent layer 14 exhibiting anomalous dispersion are used, the refractive index n2 becomes small at the absorption wavelength λ1 of the phosphor 8, and the phosphor 8 emits light. At the wavelength λ2, the refractive index n2 increases. Therefore, the surface reflectance R (reflected light Lr) becomes small, and the phosphor 8 can sufficiently absorb the external light L. Further, since the confinement efficiency η trap is increased, the fluorescence L1 leaking out from the first transparent layer 15A and the second transparent layer 14A is reduced, and a sufficient amount of fluorescence L1 can be incident on the solar cell element 6. . That is, when the refractive index n2 at the emission wavelength λ2 of the phosphor 8 is increased, the critical angle when the fluorescence L1 is totally reflected on the surfaces of the first transparent layer 15A and the second transparent layer 14A is reduced. It becomes possible to totally reflect the fluorescence L1 incident on the surfaces of 15A and the second transparent layer 14A at a small incident angle. As a result, the light amount of the fluorescence L1 leaking from the first transparent layer 15A and the second transparent layer 14A decreases, and the light amount of the fluorescence L1 incident on the solar cell element 6 increases.
 また、本実施形態の場合、第1透明層15Aと第2透明層14Aは同じ材料で形成されているので、蛍光体8から放射された蛍光L1は第1透明層15Aと第2透明層14Aとの界面で表面反射されることなく第1透明層15Aと第2透明層14Aの内部を伝播する。蛍光体8から放射された蛍光L1は第1透明層15A(蛍光フィルム13)に閉じ込められることがないため、蛍光体8の自己吸収による光のロスが低減される。 In the present embodiment, since the first transparent layer 15A and the second transparent layer 14A are formed of the same material, the fluorescence L1 emitted from the phosphor 8 is the first transparent layer 15A and the second transparent layer 14A. It propagates inside the first transparent layer 15A and the second transparent layer 14A without being surface-reflected at the interface. Since the fluorescence L1 emitted from the phosphor 8 is not confined in the first transparent layer 15A (fluorescence film 13), the light loss due to the self-absorption of the phosphor 8 is reduced.
 以上のように本実施形態の太陽電池モジュールによれば、第1実施形態の効果に加えて、蛍光体8の自己吸収によるロスを低減できるという効果が得られる。よって、さらに効率よく発電を行うことが可能な太陽電池モジュール11が提供される。 As described above, according to the solar cell module of the present embodiment, in addition to the effect of the first embodiment, an effect that the loss due to the self-absorption of the phosphor 8 can be reduced is obtained. Therefore, the solar cell module 11 capable of generating power more efficiently is provided.
 なお、本実施形態では、第1透明層15と第2透明層14を同じ材料で形成したが、第1透明層15と第2透明層14は必ずしも同じ材料で形成される必要はない。第1透明層15と第2透明層14が異なる材料で形成されていても、n1(λ2)とn2(λ2)が十分に近ければ、蛍光体8から放射された蛍光を第1透明層15と第2透明層14に跨って伝播させることができる。例えば、n1とn2がいずれも異常分散を示すものである場合、あるいは、n1が異常分散を示しn2が正常分散を示すものであっても、n1(λ2)とn2(λ2)が十分に近い場合には、上述した効果が得られる。この場合、n1(λ2)とn2(λ2)が、n2(λ2)≧n1(λ2)の関係を満たすものとすれば、第1透明層15と第2透明層14との界面での表面反射が低減し、蛍光体8から放射された蛍光が第1透明層15から第2透明層14に取り込まれ易くなる。 In addition, in this embodiment, although the 1st transparent layer 15 and the 2nd transparent layer 14 were formed with the same material, the 1st transparent layer 15 and the 2nd transparent layer 14 do not necessarily need to be formed with the same material. Even if the first transparent layer 15 and the second transparent layer 14 are formed of different materials, if n1 (λ2) and n2 (λ2) are sufficiently close, the fluorescence emitted from the phosphor 8 is emitted from the first transparent layer 15. And can be propagated across the second transparent layer 14. For example, when both n1 and n2 indicate anomalous dispersion, or n1 indicates anomalous dispersion and n2 indicates a normal dispersion, n1 (λ2) and n2 (λ2) are sufficiently close In the case, the above-described effects can be obtained. In this case, if n1 (λ2) and n2 (λ2) satisfy the relationship n2 (λ2) ≧ n1 (λ2), the surface reflection at the interface between the first transparent layer 15 and the second transparent layer 14 , And the fluorescence emitted from the phosphor 8 is easily taken into the second transparent layer 14 from the first transparent layer 15.
 また、本実施形態では、導光体12を蛍光フィルム13と透明導光体14の2層で構成したが、導光体12の構成はこれに限定されない。1層以上の他の透明層(第3透明層:屈折率n3)を第1透明層15と第2透明層14との間、第1透明層15の第2透明層14とは反対の面側、あるいは、第2透明層14の第1透明層15とは反対の面側に設けてもよい。この場合も、n1(λ2)、n2(λ2)およびn3(λ2)の屈折率が十分に近ければ、蛍光体8から放射された蛍光を第1透明層15、第2透明層14および第3透明層に跨って伝播させることができる。例えば、第3透明層として、屈折率n3が異常分散を示すものを用いれば、n1(λ2)、n2(λ2)およびn3(λ2)が互いに接近するので、上述の効果が得られ易くなる。 In the present embodiment, the light guide 12 is composed of two layers of the fluorescent film 13 and the transparent light guide 14, but the configuration of the light guide 12 is not limited to this. One or more other transparent layers (third transparent layer: refractive index n3) are disposed between the first transparent layer 15 and the second transparent layer 14, and the surface of the first transparent layer 15 opposite to the second transparent layer 14 Alternatively, the second transparent layer 14 may be provided on the side opposite to the first transparent layer 15. Also in this case, if the refractive indexes of n1 (λ2), n2 (λ2), and n3 (λ2) are sufficiently close, the fluorescence emitted from the phosphor 8 is emitted from the first transparent layer 15, the second transparent layer 14, and the third transparent layer. It can be propagated across the transparent layer. For example, if the third transparent layer has a refractive index n3 exhibiting anomalous dispersion, n1 (λ2), n2 (λ2), and n3 (λ2) are close to each other, so that the above-described effect can be easily obtained.
 第3透明層は、第1透明層15の第2透明層14とは反対の面側に設けてもよい。この場合、第3透明層は異常分散を示すものが好ましいが、反射防止層として一般に利用される透明層であれば、正常分散を示すものであっても利用可能である。 The third transparent layer may be provided on the side of the first transparent layer 15 opposite to the second transparent layer 14. In this case, the third transparent layer preferably exhibits anomalous dispersion, but any transparent layer generally used as an antireflection layer may be used even if it exhibits normal dispersion.
[第3実施形態]
 図9は、第3実施形態の太陽電池モジュール16の断面図である。導光体17以外の構成は、第1実施形態の太陽電池モジュール1と同じである。よって、ここでは導光体17の構成を中心に説明する。また、第1実施形態の太陽電池モジュール1と共通する構成については、同じ符号を付し、詳細な説明は省略する。
[Third Embodiment]
FIG. 9 is a cross-sectional view of the solar cell module 16 of the third embodiment. The configuration other than the light guide 17 is the same as that of the solar cell module 1 of the first embodiment. Therefore, here, the configuration of the light guide 17 will be mainly described. Moreover, about the structure which is common in the solar cell module 1 of 1st Embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
 本実施形態の場合、導光体17(基材5)の内部には、光機能材料として、互いに吸収波長域の異なる複数種類の蛍光体(図9では例えば第1蛍光体8a、第2蛍光体8b及び第3蛍光体8c)が分散されている。第1蛍光体8aは、紫外光を吸収して青色の蛍光を放射し、第2蛍光体8bは、青色光を吸収して緑色の蛍光を放射し、第3蛍光体8cは、緑色光を吸収して赤色の蛍光を放射する。第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cは、屈折率が異常分散を示す透明な基材5の内部に分散されている。第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cの混合比率は以下の通りである。なお、第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cの混合比率は基材5に対する体積比率で示している。 In the case of this embodiment, inside the light guide 17 (base material 5), as an optical functional material, a plurality of types of phosphors having different absorption wavelength ranges (in FIG. 9, for example, the first phosphor 8a and the second fluorescence). The body 8b and the third phosphor 8c) are dispersed. The first phosphor 8a absorbs ultraviolet light and emits blue fluorescence, the second phosphor 8b absorbs blue light and emits green fluorescence, and the third phosphor 8c emits green light. Absorbs and emits red fluorescence. The 1st fluorescent substance 8a, the 2nd fluorescent substance 8b, and the 3rd fluorescent substance 8c are disperse | distributed inside the transparent base material 5 in which a refractive index shows anomalous dispersion | distribution. The mixing ratio of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is as follows. The mixing ratio of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is shown as a volume ratio with respect to the substrate 5.
第1蛍光体8aは、BASF社製Lumogen F Violet 570(商品名) 0.02%である。第2蛍光体8bは、BASF社製Lumogen F Yellow 083(商品名) 0.02%である。第3蛍光体8cは、BASF社製Lumogen F Red 305(商品名) 0.02%である。 The first phosphor 8a is BASF Lumogen F Violet 570 (trade name) 0.02%. The second phosphor 8b is BASF Lumogen F Yellow 083 (trade name) 0.02%. The third phosphor 8c is BASF's Lumogen F Red 305 (trade name) 0.02%.
 導光体17は、光入射面である第1主面17aと、第1主面17aと対向する第2主面17bと、光射出面である第1端面17cと、を備えている。太陽電池素子6は、受光面を導光体17の第1端面17cと対向させて配置されている。導光体17の第1端面17c以外の端面には、導光体17の内部から導光体17の外部に向けて進行する光(蛍光体から放射された光)を導光体17の内部に向けて反射する反射層9が、当該端面に空気層を介して又は当該端面に空気層を介さずに直接接触して設けられている。導光体17の第2主面17bには、導光体17の内部から導光体17の外部に向けて進行する光(蛍光体から放射された光)または第1主面17aから入射したが光機能材料に吸収されずに第2主面17bから射出した光を導光体17の内部に向けて反射する反射層7が、第2主面17bに空気層を介して又は第2主面17bに空気層を介さずに直接接触して設けられている。 The light guide 17 includes a first main surface 17a that is a light incident surface, a second main surface 17b that faces the first main surface 17a, and a first end surface 17c that is a light emission surface. The solar cell element 6 is disposed with the light receiving surface facing the first end surface 17 c of the light guide 17. On the end face other than the first end face 17 c of the light guide body 17, light traveling from the inside of the light guide body 17 toward the outside of the light guide body 17 (light radiated from the phosphor) is transmitted to the inside of the light guide body 17. A reflective layer 9 that reflects toward the surface is provided in direct contact with the end surface via an air layer or without an air layer. Light traveling from the inside of the light guide 17 toward the outside of the light guide 17 (light emitted from the phosphor) or the first main surface 17a enters the second main surface 17b of the light guide 17. The reflective layer 7 that reflects the light emitted from the second main surface 17b toward the inside of the light guide body 17 without being absorbed by the optical functional material is formed on the second main surface 17b via the air layer or the second main surface. The surface 17b is provided in direct contact with no air layer.
 図10ないし図13は、第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cの発光特性及び吸収特性を示す図である。図10において、「第1蛍光体」は、第1蛍光体8aによって紫外光が吸収された後の太陽光のスペクトルを示し、「第2蛍光体」は、第2蛍光体8bによって青色光が吸収された後の太陽光のスペクトルを示し、「第3蛍光体」は、第3蛍光体8cによって緑色光が吸収された後の太陽光のスペクトルを示す。図11において、「第1蛍光体+第2蛍光体+第3蛍光体」は、第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cによって紫外光、青色光及び緑色光が吸収された後の太陽光のスペクトルを示す。図12において、「第1蛍光体」は、第1蛍光体8aの発光スペクトルであり、「第2蛍光体」は、第2蛍光体8bの発光スペクトルであり、「第3蛍光体」は、第3蛍光体8cの発光スペクトルである。図13において、「第1蛍光体+第2蛍光体+第3蛍光体」は、第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cを含む導光体の第1端面から射出される光のスペクトルである。 10 to 13 are diagrams showing the emission characteristics and absorption characteristics of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c. In FIG. 10, “first phosphor” indicates the spectrum of sunlight after ultraviolet light is absorbed by the first phosphor 8a, and “second phosphor” indicates that blue light is emitted by the second phosphor 8b. The spectrum of sunlight after being absorbed is shown, and “third phosphor” shows the spectrum of sunlight after green light is absorbed by the third phosphor 8c. In FIG. 11, “first phosphor + second phosphor + third phosphor” absorbs ultraviolet light, blue light, and green light by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c. The spectrum of sunlight after being applied. In FIG. 12, “first phosphor” is the emission spectrum of the first phosphor 8a, “second phosphor” is the emission spectrum of the second phosphor 8b, and “third phosphor” is It is an emission spectrum of the 3rd fluorescent substance 8c. In FIG. 13, “first phosphor + second phosphor + third phosphor” is emitted from the first end face of the light guide including the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c. Is the spectrum of the emitted light.
 図10及び図11に示すように、第1蛍光体8aは、概ね420nm以下の波長の光を吸収し、第2蛍光体8bは、概ね420nm以上520nm以下の波長の光を吸収し、第3蛍光体8cは、概ね520nm以上620nm以下の波長の光を吸収する。第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cによって、導光体に入射した太陽光のうち620nm以下の波長の光が概ね全て吸収される。太陽光のスペクトルにおいて波長が620nm以下の光の割合は37%程度である。よって、導光体の光入射面に入射した光のうち37%は導光体に含まれる第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cに吸収される。 As shown in FIGS. 10 and 11, the first phosphor 8a absorbs light having a wavelength of approximately 420 nm or less, and the second phosphor 8b absorbs light having a wavelength of approximately 420 nm or more and 520 nm or less. The phosphor 8c absorbs light having a wavelength of approximately 520 nm or more and 620 nm or less. The first phosphor 8a, the second phosphor 8b, and the third phosphor 8c absorb almost all light having a wavelength of 620 nm or less in the sunlight incident on the light guide. In the sunlight spectrum, the proportion of light having a wavelength of 620 nm or less is about 37%. Therefore, 37% of the light incident on the light incident surface of the light guide is absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c included in the light guide.
 図12に示すように、第1蛍光体8aの発光スペクトルは、430nmにピーク波長を有し、第2蛍光体8bの発光スペクトルは、520nmにピーク波長を有し、第3蛍光体8cの発光スペクトルは、630nmにピーク波長を有する。しかしながら、図13に示すように、第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cを含む導光体の第1端面から射出される光のスペクトルは、第3蛍光体8cの発光スペクトルのピーク波長(630nm)に対応する波長にのみピーク波長を有し、第1蛍光体8aの発光スペクトルのピーク波長(430nm)及び第2蛍光体8bの発光スペクトルのピーク波長(520nm)に対応する波長にはピーク波長を有しない。 As shown in FIG. 12, the emission spectrum of the first phosphor 8a has a peak wavelength at 430 nm, the emission spectrum of the second phosphor 8b has a peak wavelength at 520 nm, and the emission of the third phosphor 8c. The spectrum has a peak wavelength at 630 nm. However, as shown in FIG. 13, the spectrum of light emitted from the first end face of the light guide including the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is the same as that of the third phosphor 8c. It has a peak wavelength only at a wavelength corresponding to the peak wavelength (630 nm) of the emission spectrum, and the peak wavelength (430 nm) of the emission spectrum of the first phosphor 8a and the peak wavelength (520 nm) of the emission spectrum of the second phosphor 8b. The corresponding wavelength does not have a peak wavelength.
 第1蛍光体8aに対応する発光スペクトルのピーク及び第2蛍光体8bに対応する発光スペクトルのピークが消失した原因は、フォトルミネッセンス(Photoluminescence ;PL)による蛍光体間のエネルギー移動や、フェルスター機構(蛍光共鳴エネルギー移動)による蛍光体間のエネルギー移動などが挙げられる。フォトルミネッセンスによるエネルギー移動は、一の蛍光体から放射された蛍光が他の蛍光体の励起エネルギーとして利用されることにより生じるものである。フェルスター機構は、このような光の発光及び吸収のプロセスを経ずに、近接した2つの蛍光体の間で励起エネルギーが電子の共鳴により直接移動するものである。フェルスター機構による蛍光体間のエネルギー移動は、光の発光及び吸収のプロセスを介さずに行われるため、最適条件ではエネルギーのロスが小さい。よって、太陽電池モジュールの発電効率の向上に寄与する。本実施形態では、エネルギーロスを抑制して効率よく発電を行うために、第1蛍光体8a、第2蛍光体8bおよび第3蛍光体8cの密度を高くし、蛍光体間でフェルスター機構によるエネルギー移動が行われるようにしている。 The cause of the disappearance of the emission spectrum peak corresponding to the first phosphor 8a and the emission spectrum peak corresponding to the second phosphor 8b is the energy transfer between the phosphors by photoluminescence (PL) and the Forster mechanism. Examples thereof include energy transfer between phosphors by (fluorescence resonance energy transfer). Energy transfer by photoluminescence occurs when fluorescence emitted from one phosphor is used as excitation energy for another phosphor. In the Förster mechanism, excitation energy directly moves between two adjacent phosphors by electron resonance without going through such light emission and absorption processes. Since energy transfer between phosphors by the Förster mechanism is performed without going through light emission and absorption processes, energy loss is small under optimum conditions. Therefore, it contributes to the improvement of the power generation efficiency of the solar cell module. In the present embodiment, in order to efficiently generate power while suppressing energy loss, the density of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is increased, and the Forster mechanism is used between the phosphors. Energy transfer is performed.
 ここで、図14Aないし図15Bを用いてフェルスター機構について説明する。図14Aは、フォトルミネッセンスによるエネルギー移動を示す図であり、図14Bは、フェルスター機構によるエネルギー移動を示す図である。図15Aは、フェルスター機構によるエネルギー移動の発生機構を説明するための図であり、図15Bは、フェルスター機構によるエネルギー移動を示す図である。 Here, the Förster mechanism will be described with reference to FIGS. 14A to 15B. FIG. 14A is a diagram illustrating energy transfer by photoluminescence, and FIG. 14B is a diagram illustrating energy transfer by the Forster mechanism. FIG. 15A is a diagram for explaining a generation mechanism of energy transfer by the Förster mechanism, and FIG. 15B is a diagram showing energy transfer by the Förster mechanism.
 図14Bに示すように、有機分子や無機ナノ粒子の蛍光体では、励起状態にある分子Aから基底状態の分子Bに対してフェルスター機構によってエネルギー移動が生じることがある。蛍光体では、分子Aが励起されたときに、分子Bにエネルギー移動を起こすと、分子Bが発光する。このエネルギー移動は、分子間の距離と分子Aの発光スペクトルと分子Bの吸収スペクトルに依存する。分子Aをホスト分子、分子Bをゲスト分子とするとき、エネルギー移動するときの速度定数kH→G(移動確率)は式(3)のようになる。 As shown in FIG. 14B, in the phosphor of organic molecules or inorganic nanoparticles, energy transfer may occur from the molecule A in the excited state to the molecule B in the ground state by the Forster mechanism. In the phosphor, when the molecule A is excited and undergoes energy transfer to the molecule B, the molecule B emits light. This energy transfer depends on the distance between molecules, the emission spectrum of molecule A, and the absorption spectrum of molecule B. When the molecule A is the host molecule and the molecule B is the guest molecule, the rate constant k H → G (movement probability) when energy is transferred is as shown in the equation (3).
Figure JPOXMLDOC01-appb-M000003
 
Figure JPOXMLDOC01-appb-M000003
 
 なお、式(3)において、νは振動数、f′(ν)はホスト分子Aの発光スペクトル、ε(ν)はゲスト分子Bの吸収スペクトル、Nはアボガドロ定数、nは屈折率、τはホスト分子Aの蛍光寿命、Rは分子間距離、Kは遷移双極子モーメント(ランダム時2/3)である。 In Equation (3), ν is the frequency, f ′ H (ν) is the emission spectrum of the host molecule A, ε (ν) is the absorption spectrum of the guest molecule B, N is the Avogadro constant, n is the refractive index, τ 0 is the fluorescence lifetime of the host molecule A, R is the intermolecular distance, and K 2 is the transition dipole moment (2/3 at random).
 速度定数が大きいと、蛍光体間でエネルギー移動が生じやすくなる。大きな速度定数を得るためには、以下の条件が満たされることが望ましい。
[1]ホスト分子Aの発光スペクトルとゲスト分子の吸収スペクトルの重なりが大きい。
[2]ゲスト分子Bの吸光係数が大きい。
[3]ホスト分子Aとゲスト分子Bとの間の距離が小さい。
When the rate constant is large, energy transfer tends to occur between the phosphors. In order to obtain a large rate constant, it is desirable that the following conditions are satisfied.
[1] The overlap between the emission spectrum of the host molecule A and the absorption spectrum of the guest molecule is large.
[2] The extinction coefficient of guest molecule B is large.
[3] The distance between the host molecule A and the guest molecule B is small.
 上記[1]は、近接した2つの蛍光体間での共鳴のし易さを表すものである。例えば、図15Aに示すように、ホスト分子Aの発光スペクトルのピーク波長とゲスト分子Bの吸収スペクトルのピーク波長とが近いと、フェルスター機構によるエネルギー移動が生じやすくなる。図15Bに示すように、励起状態のホスト分子Aの近くに基底状態のゲスト分子Bが存在すると、共鳴的性質によりゲスト分子Aの波動関数が変化し、基底状態のホスト分子Aと励起状態のゲスト分子Bができる。これにより、ホスト分子Aとゲスト分子Bとの間でエネルギー移動が生じ、ゲスト分子Bが発光する。 [1] represents the ease of resonance between two adjacent phosphors. For example, as shown in FIG. 15A, when the peak wavelength of the emission spectrum of the host molecule A is close to the peak wavelength of the absorption spectrum of the guest molecule B, energy transfer due to the Forster mechanism is likely to occur. As shown in FIG. 15B, when the guest molecule B in the ground state exists in the vicinity of the host molecule A in the excited state, the wave function of the guest molecule A changes due to the resonance properties, and the host molecule A in the ground state and the excited state in the excited state. Guest molecule B is formed. Thereby, energy transfer occurs between the host molecule A and the guest molecule B, and the guest molecule B emits light.
 上記[3]において、フェルスター機構によるエネルギー移動が起こる分子間距離は、通常、10nm程度である。条件が合えば、分子間距離が20nm程度であってもエネルギー移動は起きる。上述した第1蛍光体、第2蛍光体及び第3蛍光体の混合比率であれば、蛍光体間の距離は20nmよりも短くなる。よって、フェルスター機構によるエネルギー移動は十分に生じうる。また、図10及び図12に示した第1蛍光体、第2蛍光体及び第3蛍光体の発光スペクトル及び吸収スペクトルは、上記[1]の条件を十分に満たしている。よって、第1蛍光体から第2蛍光体へのエネルギー移動、及び、第2蛍光体から第3蛍光体へのエネルギー移動が生じ、第1蛍光体、第2蛍光体、第3蛍光体の順にカスケード型のエネルギー移動が生じる。 In the above [3], the intermolecular distance at which energy transfer by the Forster mechanism occurs is usually about 10 nm. If the conditions are met, energy transfer occurs even when the intermolecular distance is about 20 nm. If the mixing ratio of the first phosphor, the second phosphor, and the third phosphor described above is used, the distance between the phosphors is shorter than 20 nm. Therefore, energy transfer by the Forster mechanism can occur sufficiently. Moreover, the emission spectrum and absorption spectrum of the first phosphor, the second phosphor, and the third phosphor shown in FIGS. 10 and 12 sufficiently satisfy the condition [1]. Therefore, energy transfer from the first phosphor to the second phosphor and energy transfer from the second phosphor to the third phosphor occur, and the first phosphor, the second phosphor, and the third phosphor in this order. Cascade type energy transfer occurs.
 導光体では、3つの異なる発光スペクトルを有する蛍光体(第1蛍光体、第2蛍光体、第3蛍光体)を混入しているにもかかわらず、フェルスター機構によるエネルギー移動により、実質的には第3蛍光体の発光のみが生じる。第3蛍光体の発光量子効率は例えば92%である。よって、導光体に第1蛍光体、第2蛍光体及び第3蛍光体を混入することで、620nmまでの波長領域の光を吸収し、92%の効率でピーク波長が630nmの赤色の発光を生じさせることができる。 In the light guide, although the phosphors having the three different emission spectra (the first phosphor, the second phosphor, and the third phosphor) are mixed, the light guide is substantially affected by the energy transfer by the Förster mechanism. In this case, only the emission of the third phosphor occurs. The emission quantum efficiency of the third phosphor is, for example, 92%. Therefore, by mixing the first phosphor, the second phosphor, and the third phosphor in the light guide, light in the wavelength region up to 620 nm is absorbed, and red light emission with a peak wavelength of 630 nm is achieved with an efficiency of 92%. Can be generated.
 このようなエネルギー移動現象は、有機の蛍光体に特有の現象で、一般的に無機の蛍光体では起こらないとされているが、量子ドットなどのいくつかの無機ナノ粒子の蛍光体においてはフェルスター機構により、無機材料間、或いは、無機材料と有機材料との間でエネルギー移動を生じるものが知られている。 This type of energy transfer phenomenon is unique to organic phosphors and is generally considered not to occur in inorganic phosphors, but in some inorganic nanoparticle phosphors such as quantum dots, Those that cause energy transfer between inorganic materials or between inorganic materials and organic materials by a star mechanism are known.
 例えば、ZnO/MgZnOコア・シェル構造の2種類の異なったサイズの量子ドットの間でエネルギー移動が起こる。1:√2の寸法比を持つ量子ドットは共鳴する励起子準位を持つため、例えば半径3nm(発光スペクトルのピーク波長:350nm)と半径4.5nm(発光スペクトルのピーク波長:357nm)の2種類の量子ドットの間では、小さい量子ドットから大きい量子ドットへエネルギー移動が起こる。またCdSe/ZnSコア・シェル構造の2種類の異なったサイズの量子ドットの間でもエネルギー移動が起こる。また、直径8nmないし9nmのMn2+ドープZnSe量子ドットは、450nmと580nmに発光ピークを持ち、色素分子である1’,3’-dihydro-1’,3’,3’-trimethyl-6-nitrospiro[2H-1-benzopyran-2,2’-(2H)-indole] に紫外線を照射して得られる開環型のSpiropyran分子(SPO open; Merocynanine form)の光吸収スペクトルとよく一致し、量子ドットから色素分子へのエネルギー移動が起こる。一般に、無機の蛍光体は、有機の蛍光体に比べて耐光性が優れるため、長期間使用する場合に有利である。 For example, energy transfer occurs between two types of quantum dots having different sizes of ZnO / MgZnO core / shell structure. Since a quantum dot having a dimensional ratio of 1: √2 has a resonating exciton level, for example, 2 having a radius of 3 nm (peak wavelength of emission spectrum: 350 nm) and a radius of 4.5 nm (peak wavelength of emission spectrum: 357 nm). Between types of quantum dots, energy transfer occurs from small to large quantum dots. Energy transfer also occurs between two different sized quantum dots of the CdSe / ZnS core-shell structure. In addition, Mn2 + doped ZnSe quantum dots having a diameter of 8 nm to 9 nm have emission peaks at 450 nm and 580 nm, and are dye molecules such as 1 ′, 3′-dihydro-1 ′, 3 ′, 3′-trimethyl-6-nitrospiro [ 2H-1-benzopyran-2,2 '-(2H) -indole] is well consistent with the light absorption spectrum of a ring-opened Spiropyran molecule (SPO open; Merocynanine form) obtained by irradiating UV rays to Energy transfer to the dye molecule occurs. In general, an inorganic phosphor is superior in light resistance as compared with an organic phosphor, and thus is advantageous when used for a long period of time.
 通常、2種類の蛍光体を混入した場合には、図14Aのように、まず蛍光体Aがある効率で発光し、蛍光体Bに入射し、蛍光体Bで光の吸収及び発光のプロセスを経ることによって、蛍光体Bから光が放射される。このようなフォトルミネッセンスによるエネルギー移動は、蛍光体Aにおける光の発光プロセス及び蛍光体Bにおける光の吸収プロセスでエネルギーのロスが生じ、エネルギー移動効率が小さい。 Normally, when two types of phosphors are mixed, as shown in FIG. 14A, first, phosphor A emits light with a certain efficiency, enters phosphor B, and processes of light absorption and light emission by phosphor B are performed. As a result, light is emitted from the phosphor B. In such energy transfer by photoluminescence, energy loss occurs in the light emission process in the phosphor A and the light absorption process in the phosphor B, and the energy transfer efficiency is small.
 一方、図14Bに示したフェルスター機構によるエネルギー移動は、蛍光体間でダイレクトにエネルギーのみが移動するので、エネルギー移動効率はほぼ100%にすることが可能であり、高効率にエネルギー移動を生じさせることができる。 On the other hand, in the energy transfer by the Forster mechanism shown in FIG. 14B, only the energy moves directly between the phosphors, so that the energy transfer efficiency can be almost 100%, resulting in the energy transfer with high efficiency. Can be made.
 また、フェルスター機構によるエネルギー移動は、蛍光体のような発光材料だけでなく、外光によって励起されるが、光を発生せずに失活する非発光体においても生じる。最終的な発電量は、ゲスト分子の蛍光量子収率によって決まり、ホスト分子の蛍光量子収率には依存しない。よって、ゲスト分子のみを蛍光量子収率の高い蛍光体で構成し、ホスト分子を蛍光量子収率の低い蛍光体又は蛍光を発しない非発光体で構成しても、同じ発電量が得られる。よって、フォトルミネッセンスによりエネルギー移動を行う場合のように、全ての蛍光体に対して高い蛍光量子収率が求められる場合に比べて、ホスト分子の材料選択の幅が広がる。 In addition, energy transfer by the Forster mechanism occurs not only in a luminescent material such as a phosphor, but also in a non-luminescent material that is excited by external light but deactivates without generating light. The final power generation amount depends on the fluorescence quantum yield of the guest molecule and does not depend on the fluorescence quantum yield of the host molecule. Therefore, even if only the guest molecule is composed of a phosphor having a high fluorescence quantum yield and the host molecule is composed of a phosphor having a low fluorescence quantum yield or a non-light emitting material that does not emit fluorescence, the same amount of power generation can be obtained. Therefore, as compared with the case where a high fluorescence quantum yield is required for all phosphors, such as when energy transfer is performed by photoluminescence, the range of material selection for the host molecule is widened.
 図16は、太陽電池素子6の一例であるアモルファスシリコン太陽電池の分光感度曲線を第1蛍光体の発光スペクトル、第2蛍光体の発光スペクトルおよび第3蛍光体の発光スペクトルとともに示す図である。 FIG. 16 is a diagram showing a spectral sensitivity curve of an amorphous silicon solar cell as an example of the solar cell element 6 together with an emission spectrum of the first phosphor, an emission spectrum of the second phosphor, and an emission spectrum of the third phosphor.
 導光体17の第1端面17cから射出される光L1のスペクトルは、第3蛍光体8cの発光スペクトルと概ね一致する。よって、太陽電池素子6は、第3蛍光体8cの発光スペクトルのピーク波長(630nm)において高い感度を有するものであればよい。図16に示すように、アモルファスシリコン太陽電池は600nm付近の波長の光に対して最も高い分光感度を有する。第1蛍光体、第2蛍光体および第3蛍光体の発光スペクトルのピーク波長におけるアモルファスシリコン太陽電池の分光感度を比較すると、最も発光スペクトルのピーク波長の大きい第3蛍光体の発光スペクトルのピーク波長におけるアモルファスシリコン太陽電池の分光感度は、導光体に備えられた他のいずれの蛍光体(第1蛍光体、第2蛍光体)の発光スペクトルのピーク波長におけるアモルファスシリコン太陽電池の分光感度よりも大きい。そのため、太陽電池素子6としてアモルファスシリコン太陽電池を用いれば、高い効率で発電を行うことができる。 The spectrum of the light L1 emitted from the first end face 17c of the light guide body 17 substantially coincides with the emission spectrum of the third phosphor 8c. Therefore, the solar cell element 6 should just have a high sensitivity in the peak wavelength (630 nm) of the emission spectrum of the 3rd fluorescent substance 8c. As shown in FIG. 16, the amorphous silicon solar cell has the highest spectral sensitivity with respect to light having a wavelength near 600 nm. Comparing the spectral sensitivities of the amorphous silicon solar cells at the peak wavelengths of the emission spectra of the first phosphor, the second phosphor and the third phosphor, the peak wavelength of the emission spectrum of the third phosphor having the largest peak wavelength of the emission spectrum The spectral sensitivity of the amorphous silicon solar cell at is higher than the spectral sensitivity of the amorphous silicon solar cell at the peak wavelength of the emission spectrum of any of the other phosphors (first phosphor and second phosphor) provided in the light guide. large. Therefore, if an amorphous silicon solar cell is used as the solar cell element 6, power generation can be performed with high efficiency.
 以上のように、本実施形態の太陽電池モジュール16では、光入射面17aに入射した外光Lの一部を複数の光機能材料(第1蛍光体8a、第2蛍光体8b、第3蛍光体8c)によって吸収し、複数の光機能材料の間でフェルスター機構によるエネルギー移動を生じさせ、最も発光スペクトルのピーク波長の大きい光機能材料(第3蛍光体8c)から放射された光L1を光入射面17aよりも面積の小さい導光体17の第1端面17cに集光させて太陽電池素子6に入射させている。そのため、太陽電池素子6としては、限定された狭い波長範囲において非常に高い分光感度を有する太陽電池を用いることができ、発電効率の高い太陽電池モジュールが提供される。 As described above, in the solar cell module 16 of the present embodiment, a part of the external light L incident on the light incident surface 17a is converted into a plurality of optical functional materials (first phosphor 8a, second phosphor 8b, third fluorescence). The light L1 emitted from the optical functional material (third phosphor 8c) having the largest peak wavelength of the emission spectrum, which is absorbed by the body 8c), causes energy transfer by the Forster mechanism between the plurality of optical functional materials. The light is condensed on the first end surface 17 c of the light guide 17 having a smaller area than the light incident surface 17 a and is incident on the solar cell element 6. Therefore, as the solar cell element 6, a solar cell having very high spectral sensitivity in a limited narrow wavelength range can be used, and a solar cell module with high power generation efficiency is provided.
[第4実施形態]
 図17は、第4実施形態の太陽電池モジュール18の断面図である。導光体19以外の構成は、第3実施形態の太陽電池モジュール16と同じである。よって、ここでは導光体19の構成を中心に説明する。また、第3実施形態の太陽電池モジュール16と共通する構成については、同じ符号を付し、詳細な説明は省略する。
[Fourth Embodiment]
FIG. 17 is a cross-sectional view of the solar cell module 18 of the fourth embodiment. The configuration other than the light guide 19 is the same as that of the solar cell module 16 of the third embodiment. Therefore, here, the configuration of the light guide 19 will be mainly described. Moreover, about the structure which is common in the solar cell module 16 of 3rd Embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
 導光体19は、透明導光体22と、透明導光体22の第1主面22aに接着された蛍光フィルム20と、蛍光フィルム20の第1主面20aを覆う透明保護膜21と、を備えている。透明保護膜21と蛍光フィルム20と透明導光体22は、外光Lの入射側から順に配置されている。透明保護膜21の蛍光フィルム20とは反対側の第1主面21aは導光体19の光入射面であり、透明保護膜21の第1端面21c、蛍光フィルム20の第1端面20cおよび透明導光体22の第1端面22cは導光体19の光射出面である。太陽電池素子6の受光面は、光射出面である透明保護膜21の第1端面21c、蛍光フィルム20の第1端面20cおよび透明導光体22の第1端面22cに対向させて配置されている。 The light guide 19 includes a transparent light guide 22, a fluorescent film 20 adhered to the first main surface 22a of the transparent light guide 22, a transparent protective film 21 covering the first main surface 20a of the fluorescent film 20, It has. The transparent protective film 21, the fluorescent film 20, and the transparent light guide 22 are arranged in order from the incident side of the external light L. The first main surface 21a of the transparent protective film 21 opposite to the fluorescent film 20 is a light incident surface of the light guide 19, and the first end surface 21c of the transparent protective film 21, the first end surface 20c of the fluorescent film 20, and the transparent film. The first end face 22 c of the light guide 22 is a light exit surface of the light guide 19. The light receiving surface of the solar cell element 6 is disposed so as to face the first end surface 21c of the transparent protective film 21, which is a light emitting surface, the first end surface 20c of the fluorescent film 20, and the first end surface 22c of the transparent light guide 22. Yes.
 蛍光フィルム20は、蛍光体を含まない透明な基材23と、基材23の内部に分散された複数の光機能材料(図17では、第1蛍光体8a、第2蛍光体8bおよび第3蛍光体8c)と、を含んで構成されている。蛍光フィルム20は、第1主面20aに入射した外光L(例えば太陽光)の一部を蛍光に変換し、透明導光体22および透明保護膜21に向けて放射する。蛍光フィルム20から放射された蛍光の一部は、透明保護膜21、蛍光フィルム20および透明導光体22の内部を全反射しながら伝播し、光入射面よりも面積の小さい光射出面(透明保護膜21の第1端面21c、蛍光フィルム20の第1端面20cおよび透明導光体22の第1端面22c)に導かれる。透明保護膜21の第1端面21c、蛍光フィルム20の第1端面20cおよび透明導光体22の第1端面22cから射出された蛍光は、太陽電池素子6に入射し、発電に利用される。 The fluorescent film 20 includes a transparent base material 23 that does not contain a phosphor and a plurality of optical functional materials dispersed in the base material 23 (in FIG. 17, the first phosphor 8a, the second phosphor 8b, and the third phosphor Phosphor 8c). The fluorescent film 20 converts part of the external light L (for example, sunlight) incident on the first main surface 20 a into fluorescence and radiates it toward the transparent light guide 22 and the transparent protective film 21. A part of the fluorescence emitted from the fluorescent film 20 propagates while totally reflecting the inside of the transparent protective film 21, the fluorescent film 20, and the transparent light guide 22, and has a light emitting surface (transparent) having a smaller area than the light incident surface. 1st end surface 21c of the protective film 21, the 1st end surface 20c of the fluorescent film 20, and the 1st end surface 22c of the transparent light guide 22) are guide | induced. The fluorescence emitted from the first end face 21c of the transparent protective film 21, the first end face 20c of the fluorescent film 20, and the first end face 22c of the transparent light guide 22 is incident on the solar cell element 6 and used for power generation.
 透明保護膜21、基材23および透明導光体22は、蛍光体を含まない透明層である。
しかし、透明保護膜21、蛍光フィルム20および透明導光体22の内部での波長変換を目的として意図的に蛍光体を分散したものでなければ、若干の蛍光体を含み、完全に透明ではない材料で製造されたものであっても透明保護膜21、基材23および透明導光体22として使用可能である。以下、蛍光フィルム20の基材23を第1透明層と呼び、透明保護膜21を第2透明層と呼び、透明導光体22を第3透明層と呼ぶことがある。
The transparent protective film 21, the base material 23, and the transparent light guide 22 are transparent layers that do not contain a phosphor.
However, if the phosphor is not intentionally dispersed for the purpose of wavelength conversion inside the transparent protective film 21, the fluorescent film 20, and the transparent light guide 22, it contains some phosphor and is not completely transparent. Even those made of materials can be used as the transparent protective film 21, the base material 23, and the transparent light guide 22. Hereinafter, the base material 23 of the fluorescent film 20 may be referred to as a first transparent layer, the transparent protective film 21 may be referred to as a second transparent layer, and the transparent light guide 22 may be referred to as a third transparent layer.
 図18は、第1透明層23の屈折率n1、第2透明層21の屈折率n2および第3透明層22の屈折率n3の波長分散特性を示す図である。本実施形態の場合、第1透明層23と第2透明層21と第3透明層22は同じ材料で形成されており、第1透明層23、第2透明層21および第3透明層22の屈折率n1,n2,n3は同じ波長分散特性を示す。 FIG. 18 is a diagram showing the wavelength dispersion characteristics of the refractive index n1 of the first transparent layer 23, the refractive index n2 of the second transparent layer 21, and the refractive index n3 of the third transparent layer 22. In the case of this embodiment, the first transparent layer 23, the second transparent layer 21, and the third transparent layer 22 are formed of the same material, and the first transparent layer 23, the second transparent layer 21, and the third transparent layer 22 are the same. Refractive indexes n1, n2, and n3 exhibit the same wavelength dispersion characteristics.
 本実施形態では、第1蛍光体8a、第2蛍光体8bおよび第3蛍光体8cのうち少なくとも1種類の蛍光体(以下、特定の蛍光体ということがある)の吸収スペクトルのピーク波長をλ1とし、第3蛍光体8cの発光スペクトルのピーク波長をλ2とし、波長λ1における第1透明層23の屈折率をn1(λ1)とし、波長λ1における第2透明層21の屈折率をn2(λ1)とし、波長λ1における第3透明層22の屈折率をn3(λ1)とし、波長λ2における第1透明層23の屈折率をn1(λ2)とし、波長λ2における第2透明層21の屈折率をn2(λ2)とし、波長λ2における第3透明層22の屈折率をn3(λ2)としたときに、n1(λ1)、n2(λ1)、n3(λ1)、n1(λ2)、n2(λ2)およびn3(λ2)が、n1(λ1)<n1(λ2)、n2(λ1)<n2(λ2)、且つ、n3(λ1)<n3(λ2)の関係を満たすものとされている。波長λ1と波長λ2との間の波長領域では、例えば、波長λが大きくなるほど屈折率n1,n2,n3が大きくなるような波長分散特性(異常分散)を示す。第1透明層23、第2透明層21および第3透明層22としては波長λ1と波長λ2を含む広い波長領域で異常分散を示す部材が好適に用いられる。このような部材としては、第1実施形態に示したものと同様の部材が利用可能である。 In the present embodiment, the peak wavelength of the absorption spectrum of at least one of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c (hereinafter sometimes referred to as a specific phosphor) is λ1. Where the peak wavelength of the emission spectrum of the third phosphor 8c is λ2, the refractive index of the first transparent layer 23 at the wavelength λ1 is n1 (λ1), and the refractive index of the second transparent layer 21 at the wavelength λ1 is n2 (λ1). ), The refractive index of the third transparent layer 22 at the wavelength λ1 is n3 (λ1), the refractive index of the first transparent layer 23 at the wavelength λ2 is n1 (λ2), and the refractive index of the second transparent layer 21 at the wavelength λ2. Is n2 (λ2) and the refractive index of the third transparent layer 22 at the wavelength λ2 is n3 (λ2), n1 (λ1), n2 (λ1), n3 (λ1), n1 (λ2), n2 ( λ2) and n3 (λ2) are n1 The relations (λ1) <n1 (λ2), n2 (λ1) <n2 (λ2), and n3 (λ1) <n3 (λ2) are satisfied. In the wavelength region between the wavelength λ1 and the wavelength λ2, for example, wavelength dispersion characteristics (anomalous dispersion) are shown such that the refractive index n1, n2, n3 increases as the wavelength λ increases. As the first transparent layer 23, the second transparent layer 21, and the third transparent layer 22, a member that exhibits anomalous dispersion in a wide wavelength region including the wavelength λ1 and the wavelength λ2 is preferably used. As such a member, a member similar to that shown in the first embodiment can be used.
 本実施形態の太陽電池モジュール18では、蛍光フィルム20の外光入射側に透明保護膜21が配置されている。しかし、透明保護膜21として屈折率が異常分散を示すものを用いているため、少なくとも前記特定の蛍光体の吸収波長の光を効率よく蛍光フィルム20の内部に取り込むことができ、且つ、第3蛍光体8cから放射された蛍光を無駄なく太陽電池素子6に導くことができる。よって、外光Lを利用して効率よく発電を行うことが可能な太陽電池モジュール18を提供することができる。この場合、第1蛍光体8a、第2蛍光体8bおよび第3蛍光体8cのうち任意の蛍光体の吸収スペクトルのピーク波長をλ1としたときに、n1(λ1)、n2(λ1)、n3(λ1)、n1(λ2)、n2(λ2)およびn3(λ2)が、n1(λ1)<n1(λ2)、n2(λ1)<n2(λ2)、且つ、n3(λ1)<n3(λ2)の関係を満たすものとすれば、全ての蛍光体の吸収波長の光を効率よく蛍光フィルム20の内部に取り込むことができ、さらに効率のよい発電が可能となる。 In the solar cell module 18 of the present embodiment, the transparent protective film 21 is disposed on the external light incident side of the fluorescent film 20. However, since the transparent protective film 21 having a refractive index exhibiting anomalous dispersion is used, at least light having an absorption wavelength of the specific phosphor can be efficiently taken into the fluorescent film 20, and the third The fluorescence emitted from the phosphor 8c can be guided to the solar cell element 6 without waste. Therefore, it is possible to provide the solar cell module 18 that can efficiently generate power using the external light L. In this case, when the peak wavelength of the absorption spectrum of any phosphor among the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is λ1, n1 (λ1), n2 (λ1), n3 (Λ1), n1 (λ2), n2 (λ2), and n3 (λ2) are n1 (λ1) <n1 (λ2), n2 (λ1) <n2 (λ2), and n3 (λ1) <n3 (λ2) ), The light having the absorption wavelength of all the phosphors can be efficiently taken into the fluorescent film 20, and more efficient power generation becomes possible.
 また、本実施形態の場合、第1透明層23、第2透明層21および第3透明層22は同じ材料で形成されているので、第3蛍光体8cから放射された蛍光は第1透明層23と第2透明層21との界面および第1透明層23と第3透明層22との界面で表面反射されることなく第1透明層23、第2透明層21および第3透明層22の内部を伝播する。第3蛍光体8cから放射された蛍光は第1透明層23(蛍光フィルム20)に閉じ込められることがないため、第3蛍光体8cの自己吸収による光のロスが低減される。よって、さらに効率よく発電を行うことが可能な太陽電池モジュール18が提供される。 In the present embodiment, since the first transparent layer 23, the second transparent layer 21 and the third transparent layer 22 are formed of the same material, the fluorescence emitted from the third phosphor 8c is the first transparent layer. Of the first transparent layer 23, the second transparent layer 21, and the third transparent layer 22 without being surface-reflected at the interface between the first transparent layer 23 and the second transparent layer 21 and the interface between the first transparent layer 23 and the third transparent layer 22. Propagate inside. Since the fluorescence emitted from the third phosphor 8c is not confined in the first transparent layer 23 (fluorescent film 20), the light loss due to the self-absorption of the third phosphor 8c is reduced. Therefore, the solar cell module 18 capable of generating power more efficiently is provided.
 なお、本実施形態では、第1透明層23、第2透明層21および第3透明層22を同じ材料で形成したが、第1透明層23、第2透明層21および第3透明層22は必ずしも同じ材料で形成される必要はない。第1透明層23、第2透明層21および第3透明層22が異なる材料で形成されていても、n1(λ2)、n2(λ2)およびn3(λ2)が十分に近ければ、第3蛍光体8cから放射された蛍光を第1透明層23、第2透明層21および第3透明層22に跨って伝播させることができる。例えば、n1,n2およびn3がいずれも異常分散を示すものである場合、あるいは、n2が異常分散を示しn1およびn3が正常分散を示すものであっても、n1(λ1)、n2(λ1)およびn3(λ1)が十分に近く、且つ、n1(λ2)、n2(λ2)およびn3(λ2)が十分に近い場合には、上述した効果が得られる。この場合、n2(λ2)とn1(λ2)が、n2(λ2)≧n1(λ2)の関係を満たし、n3(λ2)とn1(λ2)が、n3(λ2)≧n1(λ2)の関係を満たすものとすれば、第1透明層23と第2透明層21との界面および第1透明層23と第3透明層22との海面での表面反射が低減し、第3蛍光体8cから放射された蛍光が第1透明層23から第2透明層21および第3透明層22に取り込まれ易くなる。 In the present embodiment, the first transparent layer 23, the second transparent layer 21, and the third transparent layer 22 are formed of the same material, but the first transparent layer 23, the second transparent layer 21, and the third transparent layer 22 are It is not always necessary to form the same material. Even if the first transparent layer 23, the second transparent layer 21, and the third transparent layer 22 are formed of different materials, the third fluorescence can be obtained if n1 (λ2), n2 (λ2), and n3 (λ2) are sufficiently close. The fluorescence emitted from the body 8 c can be propagated across the first transparent layer 23, the second transparent layer 21, and the third transparent layer 22. For example, if n1, n2, and n3 all indicate anomalous dispersion, or n2 indicates anomalous dispersion and n1 and n3 indicate normal dispersion, n1 (λ1), n2 (λ1) When n3 (λ1) is sufficiently close and n1 (λ2), n2 (λ2), and n3 (λ2) are sufficiently close, the above-described effects can be obtained. In this case, n2 (λ2) and n1 (λ2) satisfy the relationship of n2 (λ2) ≧ n1 (λ2), and n3 (λ2) and n1 (λ2) have a relationship of n3 (λ2) ≧ n1 (λ2). If the above condition is satisfied, surface reflection at the interface between the first transparent layer 23 and the second transparent layer 21 and the sea surface between the first transparent layer 23 and the third transparent layer 22 is reduced. The emitted fluorescence is easily taken into the second transparent layer 21 and the third transparent layer 22 from the first transparent layer 23.
[第5実施形態]
 図19は、第5実施形態の太陽電池モジュール24の断面図である。導光体25以外の構成は、第4実施形態の太陽電池モジュール18と同じである。よって、ここでは導光体25の構成を中心に説明する。また、第4実施形態の太陽電池モジュール18と共通する構成については、同じ符号を付し、詳細な説明は省略する。
[Fifth Embodiment]
FIG. 19 is a cross-sectional view of the solar cell module 24 of the fifth embodiment. The configuration other than the light guide 25 is the same as that of the solar cell module 18 of the fourth embodiment. Therefore, here, the configuration of the light guide 25 will be mainly described. Moreover, about the structure which is common in the solar cell module 18 of 4th Embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
 導光体25は、蛍光フィルム20と、蛍光フィルム20の第1主面20aに接着された透明導光体26と、を備えている。透明導光体26と蛍光フィルム20は、外光Lの入射側から順に配置されている。透明導光体26の蛍光フィルム20とは反対側の第1主面26aは導光体25の光入射面であり、透明導光体26の第1端面26cおよび蛍光フィルム20の第1端面20cは導光体25の光射出面である。太陽電池素子6の受光面は、光射出面である透明導光体26の第1端面26cおよび蛍光フィルム20の第1端面20cに対向させて配置されている。 The light guide 25 includes a fluorescent film 20 and a transparent light guide 26 bonded to the first main surface 20 a of the fluorescent film 20. The transparent light guide 26 and the fluorescent film 20 are disposed in order from the incident side of the external light L. The first main surface 26 a of the transparent light guide 26 opposite to the fluorescent film 20 is a light incident surface of the light guide 25, and the first end surface 26 c of the transparent light guide 26 and the first end surface 20 c of the fluorescent film 20. Is a light exit surface of the light guide 25. The light receiving surface of the solar cell element 6 is disposed so as to face the first end surface 26c of the transparent light guide 26 and the first end surface 20c of the fluorescent film 20 which are light emitting surfaces.
 蛍光フィルム20の基材23および透明導光体26は、蛍光体を含まない透明層である。しかし、蛍光フィルム20および透明導光体26の内部での波長変換を目的として意図的に蛍光体を分散したものでなければ、若干の蛍光体を含み、完全に透明ではない材料で製造されたものであっても基材23および透明導光体26として使用可能である。以下、蛍光フィルム20の基材23を第1透明層と呼び、透明導光体26を第2透明層と呼ぶことがある。 The base material 23 and the transparent light guide 26 of the fluorescent film 20 are transparent layers that do not contain a fluorescent material. However, unless the phosphor is intentionally dispersed for the purpose of wavelength conversion inside the fluorescent film 20 and the transparent light guide 26, it is made of a material that contains some phosphor and is not completely transparent. Even if it is a thing, it can be used as the base material 23 and the transparent light guide 26. Hereinafter, the base material 23 of the fluorescent film 20 may be referred to as a first transparent layer, and the transparent light guide 26 may be referred to as a second transparent layer.
 図20は、第1透明層23の屈折率n1および第2透明層26の屈折率n2の波長分散特性を示す図である。本実施形態の場合、第1透明層23と第2透明層26は同じ材料で形成されており、第1透明層23および第2透明層26の屈折率n1,n2は同じ波長分散特性を示す。 FIG. 20 is a diagram showing the wavelength dispersion characteristics of the refractive index n1 of the first transparent layer 23 and the refractive index n2 of the second transparent layer 26. FIG. In the present embodiment, the first transparent layer 23 and the second transparent layer 26 are formed of the same material, and the refractive indexes n1 and n2 of the first transparent layer 23 and the second transparent layer 26 exhibit the same wavelength dispersion characteristics. .
 本実施形態では、第1蛍光体8a、第2蛍光体8bおよび第3蛍光体8cのうちの少なくとも1種類の蛍光体(以下、特定の蛍光体ということがある)の吸収スペクトルのピーク波長をλ1とし、第3蛍光体8cの発光スペクトルのピーク波長をλ2とし、波長λ1における第1透明層23の屈折率をn1(λ1)とし、波長λ1における第2透明層26の屈折率をn2(λ1)とし、波長λ2における第1透明層23の屈折率をn1(λ2)とし、波長λ2における第2透明層26の屈折率をn2(λ2)としたときに、n1(λ1)、n2(λ1)、n1(λ2)およびn2(λ2)が、n1(λ1)<n1(λ2)、且つ、n2(λ1)<n2(λ2)の関係を満たすものとされている。波長λ1と波長λ2との間の波長領域では、例えば、波長λが大きくなるほど屈折率n1,n2が大きくなるような波長分散特性(異常分散)を示す。第1透明層23、第2透明層21および第3透明層22としては波長λ1と波長λ2を含む広い波長領域で異常分散を示す部材が好適に用いられる。このような部材としては、第1実施形態に示したものと同様の部材が利用可能である。 In this embodiment, the peak wavelength of the absorption spectrum of at least one of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c (hereinafter sometimes referred to as a specific phosphor) is set. λ1, the peak wavelength of the emission spectrum of the third phosphor 8c is λ2, the refractive index of the first transparent layer 23 at the wavelength λ1 is n1 (λ1), and the refractive index of the second transparent layer 26 at the wavelength λ1 is n2 ( λ1), the refractive index of the first transparent layer 23 at the wavelength λ2 is n1 (λ2), and the refractive index of the second transparent layer 26 at the wavelength λ2 is n2 (λ2), where n1 (λ1), n2 ( λ1), n1 (λ2), and n2 (λ2) satisfy the relationship of n1 (λ1) <n1 (λ2) and n2 (λ1) <n2 (λ2). In the wavelength region between the wavelength λ1 and the wavelength λ2, for example, wavelength dispersion characteristics (anomalous dispersion) are shown such that the refractive indexes n1 and n2 increase as the wavelength λ increases. As the first transparent layer 23, the second transparent layer 21, and the third transparent layer 22, a member that exhibits anomalous dispersion in a wide wavelength region including the wavelength λ1 and the wavelength λ2 is preferably used. As such a member, a member similar to that shown in the first embodiment can be used.
 本実施形態の太陽電池モジュール24では、蛍光フィルム20の外光入射側に透明導光体26が配置されている。しかし、透明導光体26として屈折率が異常分散を示すものを用いているため、少なくとも前記特定の蛍光体の吸収波長の光を効率よく蛍光フィルム20の内部に取り込むことができ、且つ、第3蛍光体8cから放射された蛍光を無駄なく太陽電池素子6に導くことができる。よって、外光Lを利用して効率よく発電を行うことが可能な太陽電池モジュール24を提供することができる。この場合、第1蛍光体8a、第2蛍光体8bおよび第3蛍光体8cのうち任意の蛍光体の吸収スペクトルのピーク波長をλ1としたときに、n1(λ1)、n2(λ1)、n1(λ2)およびn2(λ2)が、n1(λ1)<n1(λ2)、且つ、n2(λ1)<n2(λ2)の関係を満たすものとすれば、全ての蛍光体の吸収波長の光を効率よく蛍光フィルム20の内部に取り込むことができ、さらに効率のよい発電が可能となる。 In the solar cell module 24 of the present embodiment, the transparent light guide 26 is disposed on the external light incident side of the fluorescent film 20. However, since the transparent light guide 26 has a refractive index exhibiting anomalous dispersion, at least light having an absorption wavelength of the specific phosphor can be efficiently taken into the fluorescent film 20, and The fluorescence emitted from the three phosphors 8c can be guided to the solar cell element 6 without waste. Therefore, it is possible to provide the solar cell module 24 that can efficiently generate power using the external light L. In this case, when the peak wavelength of the absorption spectrum of any phosphor among the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is λ1, n1 (λ1), n2 (λ1), n1 If (λ2) and n2 (λ2) satisfy the relationship of n1 (λ1) <n1 (λ2) and n2 (λ1) <n2 (λ2), the light having the absorption wavelength of all the phosphors The fluorescent film 20 can be efficiently taken in, and more efficient power generation is possible.
 また、本実施形態の場合、第1透明層23および第3透明層26は同じ材料で形成されているので、第3蛍光体8cから放射された蛍光は第1透明層23と第2透明層26との界面で表面反射されることなく第1透明層23および第2透明層26の内部を伝播する。
第3蛍光体8cから放射された蛍光は第1透明層23(蛍光フィルム20)に閉じ込められることがないため、第3蛍光体8cの自己吸収による光のロスが低減される。よって、さらに効率よく発電を行うことが可能な太陽電池モジュール24が提供される。
In the present embodiment, since the first transparent layer 23 and the third transparent layer 26 are made of the same material, the fluorescence emitted from the third phosphor 8c is the first transparent layer 23 and the second transparent layer. It propagates inside the first transparent layer 23 and the second transparent layer 26 without being surface-reflected at the interface with H.26.
Since the fluorescence emitted from the third phosphor 8c is not confined in the first transparent layer 23 (fluorescent film 20), the light loss due to the self-absorption of the third phosphor 8c is reduced. Therefore, the solar cell module 24 capable of generating power more efficiently is provided.
 なお、本実施形態では、第1透明層23および第2透明層26を同じ材料で形成したが、第1透明層23および第2透明層26は必ずしも同じ材料で形成される必要はない。第1透明層23および第2透明層26が異なる材料で形成されていても、n1(λ2)およびn2(λ2)が十分に近ければ、第3蛍光体8cから放射された蛍光を第1透明層23および第2透明層26に跨って伝播させることができる。例えば、n1およびn2がいずれも異常分散を示すものである場合、あるいは、n2が異常分散を示しn1が正常分散を示すものであっても、n1(λ1)およびn2(λ1)が十分に近く、且つ、n1(λ2)およびn2(λ2)が十分に近い場合には、上述した効果が得られる。この場合、n1(λ2)とn2(λ2)が、n2(λ2)≧n1(λ2)の関係を満たすものとすれば、第1透明層23と第2透明層26との界面での表面反射が低減し、第3蛍光体8cから放射された蛍光が第1透明層23から第2透明層26に取り込まれ易くなる。 In addition, in this embodiment, although the 1st transparent layer 23 and the 2nd transparent layer 26 were formed with the same material, the 1st transparent layer 23 and the 2nd transparent layer 26 do not necessarily need to be formed with the same material. Even if the first transparent layer 23 and the second transparent layer 26 are made of different materials, if n1 (λ2) and n2 (λ2) are close enough, the fluorescence emitted from the third phosphor 8c is changed to the first transparent layer. It can be propagated across the layer 23 and the second transparent layer 26. For example, when both n1 and n2 indicate anomalous dispersion, or n2 indicates anomalous dispersion and n1 indicates a normal dispersion, n1 (λ1) and n2 (λ1) are sufficiently close When n1 (λ2) and n2 (λ2) are close enough, the above-described effect can be obtained. In this case, if n1 (λ2) and n2 (λ2) satisfy the relationship n2 (λ2) ≧ n1 (λ2), the surface reflection at the interface between the first transparent layer 23 and the second transparent layer 26 is performed. , And the fluorescence emitted from the third phosphor 8c is easily taken into the second transparent layer 26 from the first transparent layer 23.
[第6実施形態]
 図21は、第6実施形態の太陽電池モジュール27の断面図である。導光体28以外の構成は、第4実施形態の太陽電池モジュール18と同じである。よって、ここでは導光体28の構成を中心に説明する。また、第4実施形態の太陽電池モジュール18と共通する構成については、同じ符号を付し、詳細な説明は省略する。
[Sixth Embodiment]
FIG. 21 is a cross-sectional view of the solar cell module 27 of the sixth embodiment. The configuration other than the light guide 28 is the same as that of the solar cell module 18 of the fourth embodiment. Therefore, here, the configuration of the light guide 28 will be mainly described. Moreover, about the structure which is common in the solar cell module 18 of 4th Embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
 導光体28は、透明導光体29と、透明導光体29の第1主面29aに接着された蛍光フィルム20と、を備えている。蛍光フィルム20と透明導光体29は、外光Lの入射側から順に配置されている。蛍光フィルム20の透明導光体29とは反対側の第1主面20aは導光体28の光入射面であり、蛍光フィルム20の第1端面20cおよび透明導光体29の第1端面29cは導光体28の光射出面である。太陽電池素子6の受光面は、光射出面である蛍光フィルム20の第1端面20cおよび透明導光体29の第1端面29cに対向させて配置されている。 The light guide 28 includes a transparent light guide 29 and a fluorescent film 20 bonded to the first main surface 29 a of the transparent light guide 29. The fluorescent film 20 and the transparent light guide 29 are disposed in order from the incident side of the external light L. The first main surface 20 a of the fluorescent film 20 opposite to the transparent light guide 29 is a light incident surface of the light guide 28, and the first end surface 20 c of the fluorescent film 20 and the first end surface 29 c of the transparent light guide 29. Is a light exit surface of the light guide 28. The light receiving surface of the solar cell element 6 is disposed so as to face the first end surface 20c of the fluorescent film 20 and the first end surface 29c of the transparent light guide 29 which are light emitting surfaces.
 蛍光フィルム20は、第1主面20aに入射した外光L(例えば太陽光)の一部を蛍光に変換し、透明導光体29に向けて放射する。蛍光フィルム20から放射された蛍光の一部は、蛍光フィルム20および透明導光体29の内部を全反射しながら伝播し、光入射面よりも面積の小さい光射出面(蛍光フィルム20の第1端面20cおよび透明導光体29の第1端面29c)に導かれる。蛍光フィルム20の第1端面20cおよび透明導光体29の第1端面29cから射出された蛍光は、太陽電池素子6に入射し、発電に利用される。 The fluorescent film 20 converts part of the external light L (for example, sunlight) incident on the first main surface 20 a into fluorescence and radiates it toward the transparent light guide 29. A part of the fluorescence radiated from the fluorescent film 20 propagates through the fluorescent film 20 and the transparent light guide 29 while being totally reflected, and is a light emitting surface (first surface of the fluorescent film 20 having a smaller area than the light incident surface). It is led to the end face 20c and the first end face 29c) of the transparent light guide 29. The fluorescence emitted from the first end face 20c of the fluorescent film 20 and the first end face 29c of the transparent light guide 29 is incident on the solar cell element 6 and used for power generation.
 透明導光体29は、蛍光体を含まない透明層である。しかし、透明導光体29の内部での波長変換を目的として意図的に蛍光体を分散したものでなければ、若干の蛍光体を含み、完全に透明ではない材料で製造されたものであっても透明導光体29として使用可能である。以下、蛍光フィルム20の基材23を第1透明層と呼び、透明導光体29を第2透明層と呼ぶことがある。 The transparent light guide 29 is a transparent layer that does not contain a phosphor. However, unless the phosphor is intentionally dispersed for the purpose of wavelength conversion inside the transparent light guide 29, it is made of a material that contains some phosphor and is not completely transparent. Can also be used as the transparent light guide 29. Hereinafter, the base material 23 of the fluorescent film 20 may be referred to as a first transparent layer, and the transparent light guide 29 may be referred to as a second transparent layer.
 図22は、第1透明層23の屈折率n1および第2透明層29の屈折率n2の波長分散特性を示す図である。 FIG. 22 is a diagram showing the wavelength dispersion characteristics of the refractive index n1 of the first transparent layer 23 and the refractive index n2 of the second transparent layer 29. FIG.
 第1透明層23では、第1蛍光体8a、第2蛍光体8bおよび第3蛍光体8cのうちの少なくとも1種類の蛍光体(以下、特定の蛍光体ということがある)の吸収スペクトルのピーク波長をλ1とし、第3蛍光体8cの発光スペクトルのピーク波長をλ2とし、波長λ1における第1透明層23の屈折率をn1(λ1)とし、波長λ2における第1透明層23の屈折率をn1(λ2)としたときに、n1(λ1)とn1(λ2)が、n1(λ1)<n1(λ2)の関係を満たすものとされている。波長λ1と波長λ2との間の波長領域では、例えば、波長λが大きくなるほど屈折率n1が大きくなるような波長分散特性(異常分散)を示す。第1透明層23としては波長λ1と波長λ2を含む広い波長領域で異常分散を示す部材が好適に用いられる。このような部材としては、第1実施形態に示したものと同様の部材が利用可能である。 In the first transparent layer 23, the peak of the absorption spectrum of at least one of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c (hereinafter sometimes referred to as a specific phosphor). The wavelength is λ1, the peak wavelength of the emission spectrum of the third phosphor 8c is λ2, the refractive index of the first transparent layer 23 at the wavelength λ1 is n1 (λ1), and the refractive index of the first transparent layer 23 at the wavelength λ2 is When n1 (λ2) is set, n1 (λ1) and n1 (λ2) satisfy the relationship n1 (λ1) <n1 (λ2). In the wavelength region between the wavelength λ1 and the wavelength λ2, for example, the wavelength dispersion characteristic (abnormal dispersion) is shown such that the refractive index n1 increases as the wavelength λ increases. As the first transparent layer 23, a member exhibiting anomalous dispersion in a wide wavelength region including the wavelengths λ1 and λ2 is preferably used. As such a member, a member similar to that shown in the first embodiment can be used.
 一方、第2透明層29では、波長λ1における第2透明層29の屈折率をn2(λ1)とし、波長λ2における第2透明層29の屈折率をn2(λ2)としたときに、n2(λ1)とn2(λ2)が、n2(λ1)≧n2(λ2)、且つ、n2(λ2)≧n1(λ2)の関係を満たすものとされている。波長λ1と波長λ2との間の波長領域では、例えば、波長λが大きくなるほど屈折率n2が小さくなるような波長分散特性(正常分散)を示す。一般的な透明部材はこのような正常分散を示すため、第2透明層29としてはPMMA樹脂などの一般的な公知の透明部材を用いることができる。 On the other hand, in the second transparent layer 29, when the refractive index of the second transparent layer 29 at the wavelength λ1 is n2 (λ1) and the refractive index of the second transparent layer 29 at the wavelength λ2 is n2 (λ2), n2 ( λ1) and n2 (λ2) satisfy the relationship of n2 (λ1) ≧ n2 (λ2) and n2 (λ2) ≧ n1 (λ2). In the wavelength region between the wavelength λ1 and the wavelength λ2, for example, a wavelength dispersion characteristic (normal dispersion) is shown such that the refractive index n2 decreases as the wavelength λ increases. Since a general transparent member exhibits such normal dispersion, a general known transparent member such as PMMA resin can be used as the second transparent layer 29.
 本実施形態の太陽電池モジュール27では、第2透明層29の屈折率が正常分散を示すものとなっている。しかし、n2(λ2)がn1(λ2)と同じかそれよりも大きいため、第3蛍光体8cから放射された蛍光は第1透明層23と第2透明層29との界面で表面反射されることなく第1透明層23および第2透明層29の内部を伝播する。第3蛍光体8cから放射された蛍光は第1透明層23(蛍光フィルム20)に閉じ込められることがないため、第3蛍光体8cの自己吸収による光のロスが低減される。また、n1は異常分散を示すため、少なくとも特定の蛍光体の吸収波長の光を効率よく蛍光フィルム20の内部に取り込むことができ、且つ、第3蛍光体8cから放射された蛍光を無駄なく太陽電池素子6に導くことができる。よって、本実施形態においても、効率よく発電を行うことが可能な太陽電池モジュール27が提供される。この場合、第1蛍光体8a、第2蛍光体8bおよび第3蛍光体8cのうち任意の蛍光体の吸収スペクトルのピーク波長をλ1としたときに、n1(λ1)およびn2(λ1)が、n1(λ1)<n1(λ2)の関係を満たすものとすれば、全ての蛍光体の吸収波長の光を効率よく蛍光フィルム20の内部に取り込むことができ、さらに効率のよい発電が可能となる。 In the solar cell module 27 of the present embodiment, the refractive index of the second transparent layer 29 shows normal dispersion. However, since n2 (λ2) is equal to or larger than n1 (λ2), the fluorescence emitted from the third phosphor 8c is surface-reflected at the interface between the first transparent layer 23 and the second transparent layer 29. It propagates in the inside of the 1st transparent layer 23 and the 2nd transparent layer 29, without. Since the fluorescence emitted from the third phosphor 8c is not confined in the first transparent layer 23 (fluorescent film 20), the light loss due to the self-absorption of the third phosphor 8c is reduced. In addition, since n1 indicates anomalous dispersion, at least light having the absorption wavelength of a specific phosphor can be efficiently taken into the inside of the fluorescent film 20, and the fluorescence emitted from the third phosphor 8c can be used without waste. It can lead to the battery element 6. Therefore, also in this embodiment, the solar cell module 27 capable of efficiently generating power is provided. In this case, when the peak wavelength of the absorption spectrum of any phosphor among the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is λ1, n1 (λ1) and n2 (λ1) are If the relationship of n1 (λ1) <n1 (λ2) is satisfied, light having an absorption wavelength of all phosphors can be taken into the fluorescent film 20 efficiently, and more efficient power generation becomes possible. .
[第7実施形態]
 図23は、第7実施形態の太陽電池モジュール50の断面図である。導光体51以外の構成は、第4実施形態の太陽電池モジュール18と同じである。よって、ここでは導光体51の構成を中心に説明する。また、第4実施形態の太陽電池モジュール18と共通する構成については、同じ符号を付し、詳細な説明は省略する。
[Seventh Embodiment]
FIG. 23 is a cross-sectional view of the solar cell module 50 of the seventh embodiment. The configuration other than the light guide 51 is the same as that of the solar cell module 18 of the fourth embodiment. Therefore, here, the configuration of the light guide 51 will be mainly described. Moreover, about the structure which is common in the solar cell module 18 of 4th Embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
 導光体51は、透明導光体53と、透明導光体53の第1主面53aに接着された蛍光フィルム52と、蛍光フィルム52の第1主面52aを覆う透明保護膜21と、を備えている。透明保護膜21と蛍光フィルム52と透明導光体53は、外光Lの入射側から順に配置されている。透明保護膜21の蛍光フィルム52とは反対側の第1主面21aは導光体51の光入射面であり、透明保護膜21の第1端面21c、蛍光フィルム52の第1端面52cおよび透明導光体53の第1端面53cは導光体51の光射出面である。太陽電池素子6の受光面は、光射出面である透明保護膜21の第1端面21c、蛍光フィルム52の第1端面52cおよび透明導光体53の第1端面53cに対向させて配置されている。 The light guide 51 includes a transparent light guide 53, a fluorescent film 52 bonded to the first main surface 53a of the transparent light guide 53, a transparent protective film 21 covering the first main surface 52a of the fluorescent film 52, It has. The transparent protective film 21, the fluorescent film 52, and the transparent light guide 53 are disposed in order from the incident side of the external light L. The first main surface 21a of the transparent protective film 21 opposite to the fluorescent film 52 is a light incident surface of the light guide 51, the first end surface 21c of the transparent protective film 21, the first end surface 52c of the fluorescent film 52, and the transparent film. The first end surface 53 c of the light guide 53 is a light exit surface of the light guide 51. The light receiving surface of the solar cell element 6 is disposed so as to face the first end surface 21c of the transparent protective film 21, the first end surface 52c of the fluorescent film 52, and the first end surface 53c of the transparent light guide 53, which are light emission surfaces. Yes.
 蛍光フィルム52は、蛍光体を含まない透明な基材54と、基材54の内部に分散された複数の光機能材料(図23では、第1蛍光体8a、第2蛍光体8bおよび第3蛍光体8c)と、を含んで構成されている。蛍光フィルム52は、第1主面52aに入射した外光L(例えば太陽光)の一部を蛍光に変換し、透明導光体53および透明保護膜21に向けて放射する。蛍光フィルム52から放射された蛍光の一部は、透明保護膜21、蛍光フィルム52および透明導光体53の内部を全反射しながら伝播し、光入射面よりも面積の小さい光射出面(透明保護膜21の第1端面21c、蛍光フィルム52の第1端面52cおよび透明導光体53の第1端面53c)に導かれる。透明保護膜21の第1端面21c、蛍光フィルム52の第1端面52cおよび透明導光体53の第1端面53cから射出された蛍光は、太陽電池素子6に入射し、発電に利用される。 The fluorescent film 52 includes a transparent base material 54 that does not contain a fluorescent material, and a plurality of optical functional materials dispersed in the base material 54 (in FIG. 23, the first fluorescent material 8a, the second fluorescent material 8b, and the third fluorescent material). Phosphor 8c). The fluorescent film 52 converts part of the external light L (for example, sunlight) incident on the first main surface 52 a into fluorescence and radiates it toward the transparent light guide 53 and the transparent protective film 21. A part of the fluorescence emitted from the fluorescent film 52 propagates while totally reflecting inside the transparent protective film 21, the fluorescent film 52, and the transparent light guide 53, and is a light emitting surface (transparent) having a smaller area than the light incident surface. The first end face 21 c of the protective film 21, the first end face 52 c of the fluorescent film 52, and the first end face 53 c of the transparent light guide 53). The fluorescence emitted from the first end surface 21c of the transparent protective film 21, the first end surface 52c of the fluorescent film 52, and the first end surface 53c of the transparent light guide 53 is incident on the solar cell element 6 and used for power generation.
 透明保護膜21、基材54および透明導光体53は、蛍光体を含まない透明層である。
しかし、透明保護膜21、蛍光フィルム52および透明導光体53の内部での波長変換を目的として意図的に蛍光体を分散したものでなければ、若干の蛍光体を含み、完全に透明ではない材料で製造されたものであっても透明保護膜21、基材54および透明導光体53として使用可能である。以下、蛍光フィルム52の基材54を第1透明層と呼び、透明保護膜21を第2透明層と呼び、透明導光体53を第3透明層と呼ぶことがある。
The transparent protective film 21, the base material 54, and the transparent light guide 53 are transparent layers that do not contain a phosphor.
However, if the phosphor is not intentionally dispersed for the purpose of wavelength conversion inside the transparent protective film 21, the phosphor film 52, and the transparent light guide 53, it contains some phosphor and is not completely transparent. Even those made of materials can be used as the transparent protective film 21, the base material 54, and the transparent light guide 53. Hereinafter, the base 54 of the fluorescent film 52 may be referred to as a first transparent layer, the transparent protective film 21 may be referred to as a second transparent layer, and the transparent light guide 53 may be referred to as a third transparent layer.
 図24は、第1透明層54の屈折率n1、第2透明層21の屈折率n2および第3透明層53の屈折率n3の波長分散特性を示す図である。本実施形態の場合、第1透明層54と第3透明層53は同じ材料で形成されており、第1透明層54と第3透明層53の屈折率n1,n3は同じ波長分散特性を示す。 FIG. 24 is a diagram showing the wavelength dispersion characteristics of the refractive index n1 of the first transparent layer 54, the refractive index n2 of the second transparent layer 21, and the refractive index n3 of the third transparent layer 53. In the present embodiment, the first transparent layer 54 and the third transparent layer 53 are formed of the same material, and the refractive indexes n1 and n3 of the first transparent layer 54 and the third transparent layer 53 exhibit the same wavelength dispersion characteristics. .
 第2透明層21では、第1蛍光体8a、第2蛍光体8bおよび第3蛍光体8cのうち少なくとも1種類の蛍光体(以下、特定の蛍光体ということがある)の吸収スペクトルのピーク波長をλ1とし、第3蛍光体8cの発光スペクトルのピーク波長をλ2とし、波長λ1における第2透明層21の屈折率をn2(λ1)とし、波長λ2における第2透明層21の屈折率をn2(λ2)としたときに、n2(λ1)とn2(λ2)が、n2(λ1)<n2(λ2)の関係を満たすものとなっている。波長λ1と波長λ2との間の波長領域では、例えば、波長λが大きくなるほど屈折率n2が大きくなるような波長分散特性(異常分散)を示す。第2透明層21としては波長λ1と波長λ2を含む広い波長領域で異常分散を示す部材が好適に用いられる。このような部材としては、第1実施形態に示したものと同様の部材が利用可能である。 In the second transparent layer 21, the peak wavelength of the absorption spectrum of at least one of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c (hereinafter sometimes referred to as a specific phosphor). Is λ1, the peak wavelength of the emission spectrum of the third phosphor 8c is λ2, the refractive index of the second transparent layer 21 at the wavelength λ1 is n2 (λ1), and the refractive index of the second transparent layer 21 at the wavelength λ2 is n2. When (λ2), n2 (λ1) and n2 (λ2) satisfy the relationship n2 (λ1) <n2 (λ2). In the wavelength region between the wavelength λ1 and the wavelength λ2, for example, the wavelength dispersion characteristic (abnormal dispersion) is shown such that the refractive index n2 increases as the wavelength λ increases. As the second transparent layer 21, a member exhibiting anomalous dispersion in a wide wavelength region including the wavelengths λ1 and λ2 is preferably used. As such a member, a member similar to that shown in the first embodiment can be used.
 一方、第1透明層54と第3透明層53では、波長λ1における第1透明層54の屈折率をn1(λ1)とし、波長λ1における第3透明層53の屈折率をn3(λ1)とし、波長λ2における第1透明層54の屈折率をn1(λ2)とし、波長λ2における第3透明層53の屈折率をn3(λ2)としたときに、n1(λ1)、n1(λ2)、n3(λ1)、n3(λ2)が、n1(λ1)≧n1(λ2)、n3(λ1)≧n3(λ2)、n2(λ2)≧n1(λ2)、且つ、n2(λ2)≧n3(λ2)の関係を満たすものとなっている。波長λ1と波長λ2との間の波長領域では、例えば、波長λが大きくなるほど屈折率n1,n3が小さくなるような波長分散特性(正常分散)を示す。一般的な透明部材はこのような正常分散を示すため、第1透明層54と第3透明層53としてはPMMA樹脂などの一般的な公知の透明部材を用いることができる。 On the other hand, in the first transparent layer 54 and the third transparent layer 53, the refractive index of the first transparent layer 54 at the wavelength λ1 is n1 (λ1), and the refractive index of the third transparent layer 53 at the wavelength λ1 is n3 (λ1). When the refractive index of the first transparent layer 54 at the wavelength λ2 is n1 (λ2) and the refractive index of the third transparent layer 53 at the wavelength λ2 is n3 (λ2), n1 (λ1), n1 (λ2), n3 (λ1) and n3 (λ2) are n1 (λ1) ≧ n1 (λ2), n3 (λ1) ≧ n3 (λ2), n2 (λ2) ≧ n1 (λ2), and n2 (λ2) ≧ n3 ( λ2) is satisfied. In the wavelength region between the wavelengths λ1 and λ2, for example, wavelength dispersion characteristics (normal dispersion) are shown such that the refractive indexes n1 and n3 decrease as the wavelength λ increases. Since general transparent members exhibit such normal dispersion, general known transparent members such as PMMA resin can be used as the first transparent layer 54 and the third transparent layer 53.
 本実施形態の太陽電池モジュール50では、第1透明層54および第3透明層53の屈折率が正常分散を示すものとなっている。しかし、n2(λ2)がn1(λ2)と同じかそれよりも大きく、且つ、n3(λ2)がn1(λ2)と同じであるため、第3蛍光体8cから放射された蛍光は第1透明層54と第2透明層21との界面および第1透明層54と第3透明層53との界面で表面反射されることなく第1透明層54、第2透明層21および第3透明層53の内部を伝播する。第3蛍光体8cから放射された蛍光は第1透明層54(蛍光フィルム52)に閉じ込められることがないため、第3蛍光体8cの自己吸収による光のロスが低減される。 In the solar cell module 50 of the present embodiment, the refractive indexes of the first transparent layer 54 and the third transparent layer 53 indicate normal dispersion. However, since n2 (λ2) is the same as or larger than n1 (λ2) and n3 (λ2) is the same as n1 (λ2), the fluorescence emitted from the third phosphor 8c is the first transparent The first transparent layer 54, the second transparent layer 21, and the third transparent layer 53 are not surface-reflected at the interface between the layer 54 and the second transparent layer 21 and at the interface between the first transparent layer 54 and the third transparent layer 53. Propagate inside. Since the fluorescence emitted from the third phosphor 8c is not confined in the first transparent layer 54 (fluorescence film 52), the light loss due to the self-absorption of the third phosphor 8c is reduced.
 また、n2は異常分散を示すため、少なくとも前記特定の蛍光体の吸収波長の光を効率よく第2透明層21の内部に取り込むことができる。n2(λ1)は導光体の外部の屈折率(例えば空気の屈折率)n0とn1(λ1)との間の値をとるため、第2透明層21の内部に取り込まれた外光は、第2透明層21を介さずに直接導光体の外部から第1透明層54に外光を入射させる場合に比べて、表面反射によるロスが少ない状態で第1透明層54の内部に取り込まれる。 Further, since n2 indicates anomalous dispersion, at least light having an absorption wavelength of the specific phosphor can be efficiently taken into the second transparent layer 21. Since n2 (λ1) takes a value between the refractive index outside the light guide (for example, the refractive index of air) n0 and n1 (λ1), the external light taken into the second transparent layer 21 is Compared with the case where external light is directly incident on the first transparent layer 54 from the outside of the light guide without passing through the second transparent layer 21, the light is taken into the first transparent layer 54 with less loss due to surface reflection. .
 以上のように本実施形態においても前記特定の蛍光体の吸収波長の光を効率よく蛍光フィルム52の内部に取り込むことができ、且つ、第3蛍光体8cから放射された蛍光を無駄なく太陽電池素子6に導くことができる。よって、効率よく発電を行うことが可能な太陽電池モジュール50が提供される。この場合、第1蛍光体8a、第2蛍光体8bおよび第3蛍光体8cのうち任意の蛍光体の吸収スペクトルのピーク波長をλ1としたときに、n1(λ1)、n2(λ1)、n3(λ1)、n1(λ2)、n2(λ2)およびn3(λ2)が、n2(λ1)<n2(λ2)の関係を満たすものとすれば、全ての蛍光体の吸収波長の光を効率よく蛍光フィルム20の内部に取り込むことができ、さらに効率のよい発電が可能となる。 As described above, also in this embodiment, the light having the absorption wavelength of the specific phosphor can be efficiently taken into the fluorescent film 52, and the fluorescence emitted from the third phosphor 8c can be used without waste. It can be led to the element 6. Therefore, the solar cell module 50 capable of generating power efficiently is provided. In this case, when the peak wavelength of the absorption spectrum of any phosphor among the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is λ1, n1 (λ1), n2 (λ1), n3 If (λ1), n1 (λ2), n2 (λ2), and n3 (λ2) satisfy the relationship of n2 (λ1) <n2 (λ2), the light having the absorption wavelength of all phosphors is efficiently emitted. It can be taken into the fluorescent film 20 and more efficient power generation becomes possible.
[第7実施形態の変形例]
 図25Aないし図27Cは、n1,n2およびn3の波長分散特性の変形例を示す図である。
[Modification of the seventh embodiment]
FIGS. 25A to 27C are diagrams showing modifications of the wavelength dispersion characteristics of n1, n2, and n3.
 図24では、第1透明層54および第3透明層53を同じ材料で形成したが、第1透明層54および第3透明層53は必ずしも同じ材料で形成される必要はない。以下、n1,n2およびn3の波長分散特性のバリエーションを説明する。 In FIG. 24, the first transparent layer 54 and the third transparent layer 53 are formed of the same material, but the first transparent layer 54 and the third transparent layer 53 are not necessarily formed of the same material. Hereinafter, variations of the wavelength dispersion characteristics of n1, n2, and n3 will be described.
 図25Aないし図25Cは、図24と同様に、n2が異常分散を示し、n1およびn3が正常分散を示す例である。図25Aないし図25Cの例では、第1透明層54と第3透明層53は異なる材料で形成されており、n1およびn3の波長分散特性は必ずしも一致しない。また、n1(λ2)やn3(λ2)が、n2(λ2)≧n1(λ2)、あるいは、n2(λ2)≧n3(λ2)の関係を必ずしも満たしていない。蛍光体から放射された蛍光を効率よく第2透明層21および第3透明層53に取り込むためには、n2(λ2)≧n1(λ2)あるいはn3(λ2)≧n1(λ2)の関係を満たすことが好ましい。ただし、n2(λ2)<n1(λ2)、あるいは、n3(λ2)<n1(λ2)の関係を満たすものであっても、n1(λ2)およびn3(λ2)がn2(λ2)に十分近ければ、第1透明層54と第2透明層21との界面および第1透明層54と第3透明層53との界面での表面反射を低減することができる。 25A to 25C are examples in which n2 indicates anomalous dispersion and n1 and n3 indicate normal dispersion, as in FIG. In the example of FIGS. 25A to 25C, the first transparent layer 54 and the third transparent layer 53 are formed of different materials, and the wavelength dispersion characteristics of n1 and n3 do not necessarily match. Further, n1 (λ2) and n3 (λ2) do not necessarily satisfy the relationship of n2 (λ2) ≧ n1 (λ2) or n2 (λ2) ≧ n3 (λ2). In order to efficiently capture the fluorescence emitted from the phosphor into the second transparent layer 21 and the third transparent layer 53, the relationship of n2 (λ2) ≧ n1 (λ2) or n3 (λ2) ≧ n1 (λ2) is satisfied. It is preferable. However, even if the relationship of n2 (λ2) <n1 (λ2) or n3 (λ2) <n1 (λ2) is satisfied, n1 (λ2) and n3 (λ2) are sufficiently close to n2 (λ2). For example, the surface reflection at the interface between the first transparent layer 54 and the second transparent layer 21 and the interface between the first transparent layer 54 and the third transparent layer 53 can be reduced.
 図26Aないし図26Cは、n1およびn2が異常分散を示し、n3が正常分散を示す例である。図26Aないし図26Cの例では、第1透明層54と第2透明層21は同じ材料で形成されていてもよく、異なる材料で形成されていてもよい。図26Aないし図26Cの例では、n1(λ2)やn3(λ2)が、n2(λ2)≧n1(λ2)、あるいは、n2(λ2)≧n3(λ2)の関係を必ずしも満たしていない。蛍光体から放射された蛍光を効率よく第2透明層21および第3透明層53に取り込むためには、n2(λ2)≧n1(λ2)あるいはn3(λ2)≧n1(λ2)の関係を満たすことが好ましい。ただし、n2(λ2)<n1(λ2)、あるいは、n3(λ2)<n1(λ2)の関係を満たすものであっても、n1(λ2)およびn3(λ2)がn2(λ2)に十分近ければ、第1透明層54と第2透明層21との界面および第1透明層54と第3透明層53との界面での表面反射を低減することができる。図26Aないし図26Cの例では、n1,n2がいずれも異常分散を示すため、n1(λ1)とn2(λ1)の屈折率差およびn1(λ2)とn2(λ2)の屈折率差が小さくなり易い。よって、第1蛍光体8a、第2蛍光体8bおよび第3蛍光体8cの吸収波長の光を効率よく蛍光フィルム52の内部に取り込むことができ、且つ、第3蛍光体8cから放射された蛍光を第1透明層54および第2透明層21に跨って伝播させることができる。 26A to 26C are examples in which n1 and n2 indicate anomalous dispersion and n3 indicates normal dispersion. In the example of FIGS. 26A to 26C, the first transparent layer 54 and the second transparent layer 21 may be formed of the same material, or may be formed of different materials. In the example of FIGS. 26A to 26C, n1 (λ2) and n3 (λ2) do not necessarily satisfy the relationship of n2 (λ2) ≧ n1 (λ2) or n2 (λ2) ≧ n3 (λ2). In order to efficiently capture the fluorescence emitted from the phosphor into the second transparent layer 21 and the third transparent layer 53, the relationship of n2 (λ2) ≧ n1 (λ2) or n3 (λ2) ≧ n1 (λ2) is satisfied. It is preferable. However, even if the relationship of n2 (λ2) <n1 (λ2) or n3 (λ2) <n1 (λ2) is satisfied, n1 (λ2) and n3 (λ2) are sufficiently close to n2 (λ2). For example, the surface reflection at the interface between the first transparent layer 54 and the second transparent layer 21 and the interface between the first transparent layer 54 and the third transparent layer 53 can be reduced. In the examples of FIGS. 26A to 26C, since both n1 and n2 exhibit anomalous dispersion, the refractive index difference between n1 (λ1) and n2 (λ1) and the refractive index difference between n1 (λ2) and n2 (λ2) are small. Easy to be. Therefore, the light having the absorption wavelength of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c can be efficiently taken into the fluorescent film 52, and the fluorescence emitted from the third phosphor 8c. Can be propagated across the first transparent layer 54 and the second transparent layer 21.
 図27Aないし図27Cは、n1,n2およびn3がいずれも異常分散を示す例である。図27Aないし図27Cの例では、第1透明層54、第2透明層21および第3透明層53は異なる材料で形成されており、これらの屈折率の波長分散特性は必ずしも一致しない。図27Aないし図27Cの例では、n1(λ2)やn3(λ2)が、n2(λ2)≧n1(λ2)、あるいは、n2(λ2)≧n3(λ2)の関係を必ずしも満たしていない。蛍光体から放射された蛍光を効率よく第2透明層21および第3透明層53に取り込むためには、n2(λ2)≧n1(λ2)あるいはn3(λ2)≧n1(λ2)の関係を満たすことが好ましい。ただし、n2(λ2)<n1(λ2)、あるいは、n3(λ2)<n1(λ2)の関係を満たすものであっても、n1(λ2)およびn3(λ2)がn2(λ2)に十分近ければ、第1透明層54と第2透明層21との界面および第1透明層54と第3透明層53との界面での表面反射を低減することができる。図27Aないし図27Cの例では、n1,n2およびn3がいずれも異常分散を示すため、n1(λ1)、n2(λ1)およびn3(λ1)の屈折率差、n1(λ2)、n2(λ2)およびn3(λ2)の屈折率差が小さくなり易い。よって、第1蛍光体8a、第2蛍光体8bおよび第3蛍光体8cの吸収波長の光を効率よく蛍光フィルム52の内部に取り込むことができ、且つ、第3蛍光体8cから放射された蛍光を第1透明層54、第2透明層21および第3透明層53に跨って伝播させることができる。 27A to 27C are examples in which n1, n2, and n3 all exhibit anomalous dispersion. In the example of FIGS. 27A to 27C, the first transparent layer 54, the second transparent layer 21, and the third transparent layer 53 are formed of different materials, and the wavelength dispersion characteristics of these refractive indexes do not necessarily match. 27A to 27C, n1 (λ2) and n3 (λ2) do not necessarily satisfy the relationship of n2 (λ2) ≧ n1 (λ2) or n2 (λ2) ≧ n3 (λ2). In order to efficiently capture the fluorescence emitted from the phosphor into the second transparent layer 21 and the third transparent layer 53, the relationship of n2 (λ2) ≧ n1 (λ2) or n3 (λ2) ≧ n1 (λ2) is satisfied. It is preferable. However, even if the relationship of n2 (λ2) <n1 (λ2) or n3 (λ2) <n1 (λ2) is satisfied, n1 (λ2) and n3 (λ2) are sufficiently close to n2 (λ2). For example, the surface reflection at the interface between the first transparent layer 54 and the second transparent layer 21 and the interface between the first transparent layer 54 and the third transparent layer 53 can be reduced. In the examples of FIGS. 27A to 27C, since n1, n2, and n3 all exhibit anomalous dispersion, the refractive index difference between n1 (λ1), n2 (λ1), and n3 (λ1), n1 (λ2), n2 (λ2 ) And n3 (λ2) tend to be small in refractive index difference. Therefore, the light having the absorption wavelength of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c can be efficiently taken into the fluorescent film 52, and the fluorescence emitted from the third phosphor 8c. Can be propagated across the first transparent layer 54, the second transparent layer 21, and the third transparent layer 53.
 なお、第7実施形態およびその変形例では、導光体の内部に複数種類の光機能材料(例えば、第1蛍光体8a、第2蛍光体8b、第3蛍光体8c)が含まれている例を示したが、この構成は一例であり、光機能材料は必ずしも複数種類分散されている必要はない。第1実施形態や第2実施形態のように1種類の光機能材料(例えば、蛍光体8)のみを分散させる構成も第7実施形態およびその変形例に適用することができる。その場合も、上述した効果と同様の効果を奏することができる。 In the seventh embodiment and its modifications, a plurality of types of optical functional materials (for example, the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c) are included in the light guide. Although an example is shown, this configuration is an example, and a plurality of types of optical functional materials are not necessarily dispersed. A configuration in which only one type of optical functional material (for example, phosphor 8) is dispersed as in the first embodiment and the second embodiment can also be applied to the seventh embodiment and its modifications. In that case, the same effect as described above can be obtained.
[第8実施形態]
 図28は、第8実施形態の太陽電池モジュール55の断面図である。導光体56以外の構成は、第7実施形態の太陽電池モジュール50と同じである。よって、ここでは導光体56の構成を中心に説明する。また、第7実施形態の太陽電池モジュール50と共通する構成については、同じ符号を付し、詳細な説明は省略する。
[Eighth Embodiment]
FIG. 28 is a cross-sectional view of the solar cell module 55 of the eighth embodiment. The configuration other than the light guide 56 is the same as that of the solar cell module 50 of the seventh embodiment. Therefore, here, the configuration of the light guide 56 will be mainly described. Moreover, about the structure which is common in the solar cell module 50 of 7th Embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
 導光体56は、蛍光フィルム52と、蛍光フィルム52の第1主面52aに接着された透明導光体57と、透明導光体57の第1主面57aを覆う透明保護膜21と、を備えている。透明保護膜21と透明導光体57と蛍光フィルム52は、外光Lの入射側から順に配置されている。透明保護膜21の透明導光体57とは反対側の第1主面21aは導光体56の光入射面であり、透明保護膜21の第1端面21c、透明導光体57の第1端面57cおよび蛍光フィルム52の第1端面52cは導光体56の光射出面である。太陽電池素子6の受光面は、光射出面である透明保護膜21の第1端面21c、透明導光体57の第1端面57cおよび蛍光フィルム52の第1端面52cに対向させて配置されている。 The light guide 56 includes a fluorescent film 52, a transparent light guide 57 bonded to the first main surface 52a of the fluorescent film 52, a transparent protective film 21 covering the first main surface 57a of the transparent light guide 57, It has. The transparent protective film 21, the transparent light guide 57, and the fluorescent film 52 are disposed in order from the incident side of the external light L. The first main surface 21 a opposite to the transparent light guide 57 of the transparent protective film 21 is a light incident surface of the light guide 56, the first end face 21 c of the transparent protective film 21, and the first surface of the transparent light guide 57. The end surface 57 c and the first end surface 52 c of the fluorescent film 52 are light emission surfaces of the light guide 56. The light receiving surface of the solar cell element 6 is disposed so as to oppose the first end surface 21c of the transparent protective film 21, the first end surface 57c of the transparent light guide 57, and the first end surface 52c of the fluorescent film 52, which are light emitting surfaces. Yes.
 本実施形態の導光体56は、透明導光体57がフィルム状の導光体として構成され、蛍光フィルム52と透明保護膜21との間に配置されている点が、第7実施形態の導光体51と異なる。 The light guide 56 of the present embodiment is that the transparent light guide 57 is configured as a film-shaped light guide, and is disposed between the fluorescent film 52 and the transparent protective film 21 in the seventh embodiment. Different from the light guide 51.
 透明保護膜21、透明導光体57および基材54は、蛍光体を含まない透明層である。
しかし、透明保護膜21、透明導光体57および蛍光フィルム52の内部での波長変換を目的として意図的に蛍光体を分散したものでなければ、若干の蛍光体を含み、完全に透明ではない材料で製造されたものであっても透明保護膜21、透明導光体57および基材54として使用可能である。以下、蛍光フィルム52の基材54を第1透明層と呼び、透明保護膜21を第2透明層と呼び、透明導光体57を第3透明層と呼ぶことがある。
The transparent protective film 21, the transparent light guide 57, and the base material 54 are transparent layers that do not contain a phosphor.
However, if the phosphor is not intentionally dispersed for the purpose of wavelength conversion inside the transparent protective film 21, the transparent light guide 57 and the phosphor film 52, it contains some phosphor and is not completely transparent. Even those made of materials can be used as the transparent protective film 21, the transparent light guide 57 and the substrate 54. Hereinafter, the base 54 of the fluorescent film 52 may be referred to as a first transparent layer, the transparent protective film 21 may be referred to as a second transparent layer, and the transparent light guide 57 may be referred to as a third transparent layer.
 図29は、第1透明層54の屈折率n1、第2透明層21の屈折率n2および第3透明層57の屈折率n3の波長分散特性を示す図である。本実施形態の場合、第1透明層54と第3透明層57は同じ材料で形成されており、第1透明層54と第3透明層57の屈折率n1,n3は同じ波長分散特性を示す。 FIG. 29 is a diagram showing the wavelength dispersion characteristics of the refractive index n1 of the first transparent layer 54, the refractive index n2 of the second transparent layer 21, and the refractive index n3 of the third transparent layer 57. In the present embodiment, the first transparent layer 54 and the third transparent layer 57 are formed of the same material, and the refractive indexes n1 and n3 of the first transparent layer 54 and the third transparent layer 57 exhibit the same wavelength dispersion characteristics. .
 第2透明層21では、第1蛍光体8a、第2蛍光体8bおよび第3蛍光体8cのうち少なくとも1種類の蛍光体(以下、特定の蛍光体ということがある)の吸収スペクトルのピーク波長をλ1とし、第3蛍光体8cの発光スペクトルのピーク波長をλ2とし、波長λ1における第2透明層21の屈折率をn2(λ1)とし、波長λ2における第2透明層21の屈折率をn2(λ2)としたときに、n2(λ1)とn2(λ2)が、n2(λ1)<n2(λ2)の関係を満たすものとなっている。波長λ1と波長λ2との間の波長領域では、例えば、波長λが大きくなるほど屈折率n2が大きくなるような波長分散特性(異常分散)を示す。第2透明層21としては波長λ1と波長λ2を含む広い波長領域で異常分散を示す部材が好適に用いられる。このような部材としては、第1実施形態に示したものと同様の部材が利用可能である。 In the second transparent layer 21, the peak wavelength of the absorption spectrum of at least one of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c (hereinafter sometimes referred to as a specific phosphor). Is λ1, the peak wavelength of the emission spectrum of the third phosphor 8c is λ2, the refractive index of the second transparent layer 21 at the wavelength λ1 is n2 (λ1), and the refractive index of the second transparent layer 21 at the wavelength λ2 is n2. When (λ2), n2 (λ1) and n2 (λ2) satisfy the relationship n2 (λ1) <n2 (λ2). In the wavelength region between the wavelength λ1 and the wavelength λ2, for example, the wavelength dispersion characteristic (abnormal dispersion) is shown such that the refractive index n2 increases as the wavelength λ increases. As the second transparent layer 21, a member exhibiting anomalous dispersion in a wide wavelength region including the wavelengths λ1 and λ2 is preferably used. As such a member, a member similar to that shown in the first embodiment can be used.
 一方、第1透明層54と第3透明層57では、波長λ1における第1透明層54の屈折率をn1(λ1)とし、波長λ1における第3透明層57の屈折率をn3(λ1)とし、波長λ2における第1透明層54の屈折率をn1(λ2)とし、波長λ2における第3透明層57の屈折率をn3(λ2)としたときに、n1(λ1)、n1(λ2)、n3(λ1)、n3(λ2)が、n1(λ1)≧n1(λ2)、n3(λ1)≧n3(λ2)、n2(λ2)≧n1(λ2)、且つ、n2(λ2)≧n3(λ2)の関係を満たすものとなっている。波長λ1と波長λ2との間の波長領域では、例えば、波長λが大きくなるほど屈折率n1,n3が小さくなるような波長分散特性(正常分散)を示す。一般的な透明部材はこのような正常分散を示すため、第1透明層54と第3透明層57としてはPMMA樹脂などの一般的な公知の透明部材を用いることができる。 On the other hand, in the first transparent layer 54 and the third transparent layer 57, the refractive index of the first transparent layer 54 at the wavelength λ1 is n1 (λ1), and the refractive index of the third transparent layer 57 at the wavelength λ1 is n3 (λ1). When the refractive index of the first transparent layer 54 at the wavelength λ2 is n1 (λ2) and the refractive index of the third transparent layer 57 at the wavelength λ2 is n3 (λ2), n1 (λ1), n1 (λ2), n3 (λ1) and n3 (λ2) are n1 (λ1) ≧ n1 (λ2), n3 (λ1) ≧ n3 (λ2), n2 (λ2) ≧ n1 (λ2), and n2 (λ2) ≧ n3 ( λ2) is satisfied. In the wavelength region between the wavelengths λ1 and λ2, for example, wavelength dispersion characteristics (normal dispersion) are shown such that the refractive indexes n1 and n3 decrease as the wavelength λ increases. Since a general transparent member exhibits such normal dispersion, a general known transparent member such as PMMA resin can be used as the first transparent layer 54 and the third transparent layer 57.
 本実施形態の太陽電池モジュール55でも、n2(λ2)がn1(λ2)と同じかそれよりも大きく、且つ、n3(λ2)がn1(λ2)と同じであるため、第3蛍光体8cから放射された蛍光は第1透明層54と第3透明層57との界面および第3透明層57と第2透明層21との界面で表面反射されることなく第1透明層54、第2透明層21および第3透明層57の内部を伝播する。第3蛍光体8cから放射された蛍光は第1透明層54(蛍光フィルム52)に閉じ込められることがないため、第3蛍光体8cの自己吸収による光のロスが低減される。 Also in the solar cell module 55 of the present embodiment, since n2 (λ2) is the same as or larger than n1 (λ2) and n3 (λ2) is the same as n1 (λ2), the third phosphor 8c The emitted fluorescence is not surface-reflected at the interface between the first transparent layer 54 and the third transparent layer 57 and at the interface between the third transparent layer 57 and the second transparent layer 21, and the first transparent layer 54 and the second transparent layer. It propagates inside the layer 21 and the third transparent layer 57. Since the fluorescence emitted from the third phosphor 8c is not confined in the first transparent layer 54 (fluorescence film 52), the light loss due to the self-absorption of the third phosphor 8c is reduced.
 また、n2は異常分散を示すため、少なくとも前記特定の蛍光体の吸収波長の光を効率よく第2透明層21の内部に取り込むことができる。n2(λ1)は導光体の外部の屈折率(例えば空気の屈折率)n0とn3(λ1)との間の値をとるため、第2透明層21の内部に取り込まれた外光は、第2透明層21を介さずに直接導光体の外部から第3透明層57に外光を入射させる場合に比べて、表面反射によるロスが少ない状態で第3透明層57の内部に取り込まれる。また、第3透明層57の内部に取り込まれた外光は、n3(λ1)とn1(λ1)が同じであるため、第3透明層57と第1透明層54との界面で表面反射されることなく第1透明層54の内部に取り込まれる。 Further, since n2 indicates anomalous dispersion, at least light having an absorption wavelength of the specific phosphor can be efficiently taken into the second transparent layer 21. Since n2 (λ1) takes a value between the refractive index outside the light guide (for example, the refractive index of air) n0 and n3 (λ1), the external light taken into the second transparent layer 21 is Compared to the case where external light is directly incident on the third transparent layer 57 from the outside of the light guide without passing through the second transparent layer 21, the light is taken into the third transparent layer 57 with less loss due to surface reflection. . Further, the external light taken into the third transparent layer 57 is reflected on the surface at the interface between the third transparent layer 57 and the first transparent layer 54 because n3 (λ1) and n1 (λ1) are the same. Without being taken into the first transparent layer 54.
 よって、本実施形態においても前記特定の蛍光体の吸収波長の光を効率よく蛍光フィルム52の内部に取り込むことができ、且つ、第3蛍光体8cから放射された蛍光を無駄なく太陽電池素子6に導くことができる。よって、効率よく発電を行うことが可能な太陽電池モジュール55が提供される。この場合、第1蛍光体8a、第2蛍光体8bおよび第3蛍光体8cのうち任意の蛍光体の吸収スペクトルのピーク波長をλ1としたときに、n1(λ1)、n2(λ1)、n3(λ1)、n1(λ2)、n2(λ2)およびn3(λ2)が、n2(λ1)<n2(λ2)の関係を満たすものとすれば、全ての蛍光体の吸収波長の光を効率よく蛍光フィルム20の内部に取り込むことができ、さらに効率のよい発電が可能となる。 Therefore, also in the present embodiment, the light having the absorption wavelength of the specific phosphor can be efficiently taken into the fluorescent film 52, and the fluorescence emitted from the third phosphor 8c can be used without waste. Can lead to. Therefore, the solar cell module 55 capable of generating power efficiently is provided. In this case, when the peak wavelength of the absorption spectrum of any phosphor among the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is λ1, n1 (λ1), n2 (λ1), n3 If (λ1), n1 (λ2), n2 (λ2), and n3 (λ2) satisfy the relationship of n2 (λ1) <n2 (λ2), the light having the absorption wavelength of all phosphors is efficiently emitted. It can be taken into the fluorescent film 20 and more efficient power generation becomes possible.
[第8実施形態の変形例]
 図30Aないし図32Cは、n1,n2およびn3の波長分散特性の変形例を示す図である。
[Modification of Eighth Embodiment]
FIG. 30A to FIG. 32C are diagrams showing modifications of the wavelength dispersion characteristics of n1, n2, and n3.
 図29では、第1透明層54および第3透明層57を同じ材料で形成したが、第1透明層54および第3透明層57は必ずしも同じ材料で形成される必要はない。以下、n1,n2およびn3の波長分散特性のバリエーションを説明する。 In FIG. 29, the first transparent layer 54 and the third transparent layer 57 are formed of the same material, but the first transparent layer 54 and the third transparent layer 57 are not necessarily formed of the same material. Hereinafter, variations of the wavelength dispersion characteristics of n1, n2, and n3 will be described.
 図30Aないし図30Cは、図29と同様に、屈折率n2が異常分散を示し、n1およびn3が正常分散を示す例である。図30Aないし図30Cの例では、第1透明層54と第3透明層57は異なる材料で形成されており、n1およびn3の波長分散特性は必ずしも一致しない。また、n1(λ2)やn3(λ2)が、n2(λ2)≧n1(λ2)、あるいは、n2(λ2)≧n3(λ2)の関係を必ずしも満たしていない。蛍光体から放射された蛍光を効率よく第2透明層21および第3透明層57に取り込むためには、n3(λ2)≧n1(λ2)あるいはn2(λ2)≧n3(λ2)の関係を満たすことが好ましい。ただし、n3(λ2)<n1(λ2)、あるいは、n2(λ2)<n3(λ2)の関係を満たすものであっても、n1(λ2)およびn3(λ2)がn2(λ2)に十分近ければ、第1透明層54と第3透明層57との界面および第3透明層57と第2透明層21との界面での表面反射を低減することができる。 30A to 30C are examples in which the refractive index n2 indicates anomalous dispersion and n1 and n3 indicate normal dispersion, as in FIG. In the example of FIGS. 30A to 30C, the first transparent layer 54 and the third transparent layer 57 are formed of different materials, and the wavelength dispersion characteristics of n1 and n3 do not necessarily match. Further, n1 (λ2) and n3 (λ2) do not necessarily satisfy the relationship of n2 (λ2) ≧ n1 (λ2) or n2 (λ2) ≧ n3 (λ2). In order to efficiently incorporate the fluorescence emitted from the phosphor into the second transparent layer 21 and the third transparent layer 57, the relationship of n3 (λ2) ≧ n1 (λ2) or n2 (λ2) ≧ n3 (λ2) is satisfied. It is preferable. However, even if the relationship of n3 (λ2) <n1 (λ2) or n2 (λ2) <n3 (λ2) is satisfied, n1 (λ2) and n3 (λ2) are sufficiently close to n2 (λ2). For example, surface reflection at the interface between the first transparent layer 54 and the third transparent layer 57 and at the interface between the third transparent layer 57 and the second transparent layer 21 can be reduced.
 図31Aないし図31Cは、n2およびn3が異常分散を示し、n1が正常分散を示す例である。図31Aないし図31Cの例では、第3透明層57と第2透明層21は同じ材料で形成されていてもよく、異なる材料で形成されていてもよい。図31Aないし図31Cの例では、n1(λ2)やn3(λ2)が、n2(λ2)≧n1(λ2)、あるいは、n2(λ2)≧n3(λ2)の関係を必ずしも満たしていない。蛍光体から放射された蛍光を効率よく第2透明層21および第3透明層57に取り込むためには、n3(λ2)≧n1(λ2)あるいはn2(λ2)≧n3(λ2)の関係を満たすことが好ましい。ただし、n3(λ2)<n1(λ2)、あるいは、n2(λ2)<n3(λ2)の関係を満たすものであっても、n1(λ2)およびn3(λ2)がn2(λ2)に十分近ければ、第1透明層54と第3透明層57との界面および第3透明層57と第2透明層21との界面での表面反射を低減することができる。図31Aないし図31Cの例では、n2およびn3がいずれも異常分散を示すため、n2(λ1)とn3(λ1)の屈折率差およびn2(λ2)とn3(λ2)の屈折率差が小さくなり易い。よって、第1蛍光体8a、第2蛍光体8bおよび第3蛍光体8cの吸収波長の光を効率よく蛍光フィルム52の内部に取り込むことができ、且つ、第3蛍光体8cから放射された蛍光を第2透明層21および第3透明層57に跨って伝播させることができる。 31A to 31C are examples in which n2 and n3 indicate anomalous dispersion and n1 indicates normal dispersion. In the example of FIGS. 31A to 31C, the third transparent layer 57 and the second transparent layer 21 may be formed of the same material, or may be formed of different materials. In the examples of FIGS. 31A to 31C, n1 (λ2) and n3 (λ2) do not necessarily satisfy the relationship of n2 (λ2) ≧ n1 (λ2) or n2 (λ2) ≧ n3 (λ2). In order to efficiently incorporate the fluorescence emitted from the phosphor into the second transparent layer 21 and the third transparent layer 57, the relationship of n3 (λ2) ≧ n1 (λ2) or n2 (λ2) ≧ n3 (λ2) is satisfied. It is preferable. However, even if the relationship of n3 (λ2) <n1 (λ2) or n2 (λ2) <n3 (λ2) is satisfied, n1 (λ2) and n3 (λ2) are sufficiently close to n2 (λ2). For example, surface reflection at the interface between the first transparent layer 54 and the third transparent layer 57 and at the interface between the third transparent layer 57 and the second transparent layer 21 can be reduced. In the examples of FIGS. 31A to 31C, since n2 and n3 both exhibit anomalous dispersion, the refractive index difference between n2 (λ1) and n3 (λ1) and the refractive index difference between n2 (λ2) and n3 (λ2) are small. Easy to be. Therefore, the light having the absorption wavelength of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c can be efficiently taken into the fluorescent film 52, and the fluorescence emitted from the third phosphor 8c. Can be propagated across the second transparent layer 21 and the third transparent layer 57.
 図32Aないし図32Cは、n1,n2およびn3がいずれも異常分散を示す例である。図32Aないし図32Cの例では、第1透明層54、第2透明層21および第3透明層57は異なる材料で形成されており、これらの屈折率の波長分散特性は必ずしも一致しない。図32Aないし図32Cの例では、n1(λ2)やn3(λ2)が、n2(λ2)≧n1(λ2)、あるいは、n2(λ2)≧n3(λ2)の関係を必ずしも満たしていない。蛍光体から放射された蛍光を効率よく第2透明層21および第3透明層57に取り込むためには、n3(λ2)≧n1(λ2)あるいはn2(λ2)≧n3(λ2)の関係を満たすことが好ましい。ただし、n3(λ2)<n1(λ2)、あるいは、n2(λ2)<n3(λ2)の関係を満たすものであっても、n1(λ2)およびn3(λ2)がn2(λ2)に十分近ければ、第1透明層54と第3透明層57との界面および第3透明層57と第2透明層21との界面での表面反射を低減することができる。図32Aないし図32Cの例では、n1,n2およびn3がいずれも異常分散を示すため、n1(λ1)、n2(λ1)およびn3(λ1)の屈折率差、n1(λ2)、n2(λ2)およびn3(λ2)の屈折率差が小さくなり易い。よって、第1蛍光体8a、第2蛍光体8bおよび第3蛍光体8cの吸収波長の光を効率よく蛍光フィルム52の内部に取り込むことができ、且つ、第3蛍光体8cから放射された蛍光を第1透明層54、第2透明層21および第3透明層57に跨って伝播させることができる。 32A to 32C are examples in which n1, n2, and n3 all show anomalous dispersion. In the example of FIGS. 32A to 32C, the first transparent layer 54, the second transparent layer 21, and the third transparent layer 57 are formed of different materials, and the wavelength dispersion characteristics of these refractive indexes do not necessarily match. In the example of FIGS. 32A to 32C, n1 (λ2) and n3 (λ2) do not necessarily satisfy the relationship of n2 (λ2) ≧ n1 (λ2) or n2 (λ2) ≧ n3 (λ2). In order to efficiently incorporate the fluorescence emitted from the phosphor into the second transparent layer 21 and the third transparent layer 57, the relationship of n3 (λ2) ≧ n1 (λ2) or n2 (λ2) ≧ n3 (λ2) is satisfied. It is preferable. However, even if n3 (λ2) <n1 (λ2) or n2 (λ2) <n3 (λ2) is satisfied, n1 (λ2) and n3 (λ2) are sufficiently close to n2 (λ2). For example, surface reflection at the interface between the first transparent layer 54 and the third transparent layer 57 and at the interface between the third transparent layer 57 and the second transparent layer 21 can be reduced. In the examples of FIGS. 32A to 32C, since n1, n2, and n3 all exhibit anomalous dispersion, the refractive index difference between n1 (λ1), n2 (λ1), and n3 (λ1), n1 (λ2), n2 (λ2 ) And n3 (λ2) tend to be small in refractive index difference. Therefore, the light having the absorption wavelength of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c can be efficiently taken into the fluorescent film 52, and the fluorescence emitted from the third phosphor 8c. Can be propagated across the first transparent layer 54, the second transparent layer 21, and the third transparent layer 57.
 図30Aないし図32Cにおいては、n3(λ1)とn2(λ1)とn1(λ1)が、n2(λ1)≦n3(λ1)≦n1(λ1)の関係を満たすことが好ましい。これにより、第1透明層54と第3透明層57との界面および第3透明層57と第2透明層21との界面での表面反射が低減でき、第1蛍光体8a、第2蛍光体8bおよび第3蛍光体8cの吸収波長の光を効率よく蛍光フィルム52の内部に取り込むことが可能となる。 30A to 32C, it is preferable that n3 (λ1), n2 (λ1), and n1 (λ1) satisfy the relationship of n2 (λ1) ≦ n3 (λ1) ≦ n1 (λ1). Thereby, the surface reflection at the interface between the first transparent layer 54 and the third transparent layer 57 and the interface between the third transparent layer 57 and the second transparent layer 21 can be reduced, and the first phosphor 8a and the second phosphor. The light having the absorption wavelength of 8b and the third phosphor 8c can be efficiently taken into the fluorescent film 52.
 なお、第8実施形態およびその変形例では、導光体の内部に複数種類の光機能材料(例えば、第1蛍光体8a、第2蛍光体8b、第3蛍光体8c)が含まれている例を示したが、この構成は一例であり、光機能材料は必ずしも複数種類分散されている必要はない。第1実施形態や第2実施形態のように1種類の光機能材料(例えば、蛍光体8)のみを分散させる構成も第8実施形態およびその変形例に適用することができる。その場合も、上述した効果と同様の効果を奏することができる。 In the eighth embodiment and its modification, a plurality of types of optical functional materials (for example, the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c) are included in the light guide. Although an example is shown, this configuration is an example, and a plurality of types of optical functional materials are not necessarily dispersed. A configuration in which only one type of optical functional material (for example, phosphor 8) is dispersed as in the first embodiment and the second embodiment can also be applied to the eighth embodiment and its modifications. In that case, the same effect as described above can be obtained.
[第9実施形態]
 図33は、第9実施形態の太陽電池モジュール32の模式図である。太陽電池モジュール32では、第3実施形態の太陽電池モジュール16と比較して、導光体30と太陽電池素子31の形状及び配置が異なる。よって、ここでは、導光体30と太陽電池素子31の形状及び配置について説明し、それ以外の構成については、詳細な説明は省略する。
[Ninth Embodiment]
FIG. 33 is a schematic diagram of the solar cell module 32 of the ninth embodiment. In the solar cell module 32, the shape and arrangement of the light guide 30 and the solar cell element 31 are different from those of the solar cell module 16 of the third embodiment. Therefore, here, the shape and arrangement of the light guide 30 and the solar cell element 31 will be described, and detailed description of the other configurations will be omitted.
 太陽電池モジュール32では、導光体30は、湾曲した板状の部材として構成され、太陽電池素子31は、光射出面である導光体30の湾曲した第1端面30cから射出された光を受光するように構成されている。導光体30は、例えば、厚みが一定の板状の部材をY軸と平行な軸の回りに湾曲させた形状を有する。導光体30の第1主面30aと第2主面30bのうち、外側に凸状に湾曲した第1主面30aが、外光(例えば太陽光)Lが入射する光入射面である。 In the solar cell module 32, the light guide 30 is configured as a curved plate-like member, and the solar cell element 31 emits light emitted from the curved first end surface 30c of the light guide 30 that is a light emission surface. It is configured to receive light. The light guide 30 has, for example, a shape in which a plate-like member having a constant thickness is curved around an axis parallel to the Y axis. Of the first main surface 30a and the second main surface 30b of the light guide 30, the first main surface 30a that is curved outwardly is a light incident surface on which external light (for example, sunlight) L is incident.
 光入射面30aに入射した光Lは、導光体30の内部に分散された図示略の複数の光機能材料によって吸収される。そして、複数の光機能材料の間でフェルスター機構によるエネルギー移動が生じ、最も発光スペクトルのピーク波長の大きい光機能材料から放射された光が、光入射面30aよりも面積の小さい光射出面30cに集光して射出される。導光体30の内部に分散される複数の光機能材料としては、例えば、図9ないし図13に示した第1蛍光体8a、第2蛍光体8bおよび第3蛍光体8cが用いられている。 The light L incident on the light incident surface 30 a is absorbed by a plurality of optical functional materials (not shown) dispersed inside the light guide 30. Then, energy transfer due to the Forster mechanism occurs between the plurality of optical functional materials, and light emitted from the optical functional material having the largest peak wavelength of the emission spectrum is a light emitting surface 30c having a smaller area than the light incident surface 30a. It is condensed and ejected. As the plurality of optical functional materials dispersed inside the light guide 30, for example, the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c shown in FIGS. 9 to 13 are used. .
 太陽電池素子31としては、第3実施形態と同じアモルファスシリコン太陽電池が用いられている。太陽電池素子31は、受光面を導光体30の第1端面30cと対向させて配置されている。第1蛍光体8a、第2蛍光体8bおよび第3蛍光体8cの発光スペクトルのピーク波長における太陽電池素子31の分光感度を比較すると、複数の光機能材料(第1蛍光体8a、第2蛍光体8b、第3蛍光体8c)のうち最も発光スペクトルのピーク波長が大きい光機能材料(第3蛍光体8c)の発光スペクトルのピーク波長における太陽電池素子31の分光感度は、導光体30に備えられた他のいずれの光機能材料(第1蛍光体8a、第2蛍光体8b)の発光スペクトルのピーク波長における太陽電池素子31の分光感度よりも大きい。これにより、発電効率の高い太陽電池モジュール32が提供される。 As the solar cell element 31, the same amorphous silicon solar cell as in the third embodiment is used. The solar cell element 31 is disposed with the light receiving surface facing the first end surface 30 c of the light guide 30. When the spectral sensitivities of the solar cell elements 31 at the peak wavelengths of the emission spectra of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c are compared, a plurality of optical functional materials (first phosphor 8a, second fluorescence The spectral sensitivity of the solar cell element 31 at the peak wavelength of the emission spectrum of the optical functional material (third phosphor 8c) having the largest emission spectrum peak of the body 8b and the third phosphor 8c) It is larger than the spectral sensitivity of the solar cell element 31 at the peak wavelength of the emission spectrum of any of the other optical functional materials (the first phosphor 8a and the second phosphor 8b). Thereby, the solar cell module 32 with high power generation efficiency is provided.
 太陽電池モジュール32では、導光体30の光入射面30aが湾曲した面となっている。そのため、昼間と夕方のように時間帯によって光Lの入射角が導光体30の湾曲方向に沿って変化した場合でも、発電量は大きく変化しない。通常、太陽電池で発電を行う場合には、太陽電池の受光面が光の入射方向を向くように、追尾装置を設けて太陽電池の角度を2軸方向で制御することが行われるが、本実施形態のように、導光体30の光入射面30aが様々な方向を向くように湾曲した形状となっている場合には、そのような追尾装置を設ける必要がない。仮に追尾装置を設ける場合でも、湾曲方向と直交する方向の角度制御のみでよいため、2軸方向で角度制御を行う場合に比べて追尾装置の構成を簡素化することができる。本実施形態の場合、導光体30は一方向に湾曲した形状とされているが、導光体30の形状はこれに限らない。例えば半球状や釣鐘状などのドーム形状とすることもできる。その場合には、追尾装置は不要になる。 In the solar cell module 32, the light incident surface 30a of the light guide 30 is a curved surface. Therefore, even when the incident angle of the light L changes along the bending direction of the light guide 30 depending on the time zone such as daytime and evening, the amount of power generation does not change greatly. Normally, when power is generated by a solar cell, a tracking device is provided so that the light receiving surface of the solar cell faces the incident direction of light, and the angle of the solar cell is controlled in two axial directions. When the light incident surface 30a of the light guide 30 is curved so as to face various directions as in the embodiment, there is no need to provide such a tracking device. Even if a tracking device is provided, only the angle control in the direction orthogonal to the bending direction is required, and therefore the configuration of the tracking device can be simplified as compared with the case where the angle control is performed in the biaxial direction. In the present embodiment, the light guide 30 has a shape curved in one direction, but the shape of the light guide 30 is not limited to this. For example, a dome shape such as a hemispherical shape or a bell shape may be used. In that case, no tracking device is required.
 太陽電池モジュール32では、導光体30が湾曲しているため、導光体30を、曲面形状に形成された建物の壁面や屋根に設置することができる。本実施形態の場合、導光体30は一方向に湾曲した形状とされているが、導光体30の形状はこのような単純な形状に限らない。例えば、瓦状の形状や波状の形状など、自由な形状に設計することができる。
 導光体30を設置する場所に応じて、湾曲形状だけでなく、稜線を有して屈曲した屈曲形状を有していてもよい。湾曲した面や屈曲した面は、光入射面の少なくとも一部に設けられていればよく、それにより、上述した効果が得られる。
In the solar cell module 32, since the light guide 30 is curved, the light guide 30 can be installed on the wall or roof of a building formed in a curved shape. In the present embodiment, the light guide 30 has a shape curved in one direction, but the shape of the light guide 30 is not limited to such a simple shape. For example, it can be designed into a free shape such as a tile shape or a wavy shape.
Depending on the place where the light guide 30 is installed, it may have not only a curved shape but also a bent shape having a ridgeline. The curved surface or the bent surface may be provided on at least a part of the light incident surface, whereby the above-described effects can be obtained.
[第10実施形態]
 図34は、第10実施形態の太陽電池モジュール35の模式図である。太陽電池モジュール35では、第3実施形態の太陽電池モジュール16と比較して、導光体33と太陽電池素子34の形状及び配置が異なる。よって、ここでは、導光体33と太陽電池素子34の形状及び配置について説明し、それ以外の構成については、詳細な説明は省略する。
[Tenth embodiment]
FIG. 34 is a schematic diagram of the solar cell module 35 of the tenth embodiment. In the solar cell module 35, the shape and arrangement of the light guide 33 and the solar cell element 34 are different from those of the solar cell module 16 of the third embodiment. Therefore, here, the shape and arrangement of the light guide 33 and the solar cell element 34 will be described, and detailed description of the other components will be omitted.
 太陽電池モジュール35では、導光体33は、Y軸と平行な軸を中心軸とする筒状の部材として構成され、太陽電池素子34は、光射出面である導光体33の第1端面33cから射出された光を受光するように構成されている。導光体33は、例えば、厚みが一定の円筒状の形状を有する。導光体33の外周面が第1主面33aであり、導光体33の内周面が第2主面33bである。導光体33の第1主面33aと第2主面33bのうち、外側に凸状に湾曲した第1主面33aが、外光(例えば太陽光)Lが入射する光入射面である。 In the solar cell module 35, the light guide 33 is configured as a cylindrical member having an axis parallel to the Y axis as a central axis, and the solar cell element 34 is a first end surface of the light guide 33 that is a light emission surface. It is configured to receive light emitted from 33c. The light guide 33 has, for example, a cylindrical shape with a constant thickness. The outer peripheral surface of the light guide 33 is a first main surface 33a, and the inner peripheral surface of the light guide 33 is a second main surface 33b. Of the first main surface 33a and the second main surface 33b of the light guide 33, the first main surface 33a that is curved outwardly is a light incident surface on which external light (for example, sunlight) L is incident.
 光入射面33aに入射した光Lは、導光体33の内部に分散された図示略の複数の光機能材料によって吸収される。そして、複数の光機能材料の間でフェルスター機構によるエネルギー移動が生じ、最も発光スペクトルのピーク波長の大きい光機能材料から放射された光が、光入射面33aよりも面積の小さい光射出面33cに集光して射出される。導光体33の内部に分散される複数の光機能材料としては、例えば、図9ないし図13に示した第1蛍光体8a、第2蛍光体8bおよび第3蛍光体8cが用いられている。 The light L incident on the light incident surface 33 a is absorbed by a plurality of optical functional materials (not shown) dispersed inside the light guide 33. Then, energy transfer occurs due to the Forster mechanism between the plurality of optical functional materials, and the light emitted from the optical functional material having the largest peak wavelength of the emission spectrum has a light exit surface 33c having a smaller area than the light incident surface 33a. It is condensed and ejected. As the plurality of optical functional materials dispersed in the light guide 33, for example, the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c shown in FIGS. 9 to 13 are used. .
 太陽電池素子34としては、第3実施形態と同じアモルファスシリコン太陽電池が用いられている。太陽電池素子34は、受光面を導光体33の第1端面33cと対向させて配置されている。第1蛍光体8a、第2蛍光体8bおよび第3蛍光体8cの発光スペクトルのピーク波長における太陽電池素子34の分光感度を比較すると、複数の光機能材料(第1蛍光体8a、第2蛍光体8b、第3蛍光体8c)のうち最も発光スペクトルのピーク波長が大きい光機能材料(第3蛍光体8c)の発光スペクトルのピーク波長における太陽電池素子34の分光感度は、導光体33に備えられた他のいずれの光機能材料(第1蛍光体8a、第2蛍光体8b)の発光スペクトルのピーク波長における太陽電池素子34の分光感度よりも大きい。これにより、発電効率の高い太陽電池モジュール35が提供される。 As the solar cell element 34, the same amorphous silicon solar cell as in the third embodiment is used. The solar cell element 34 is disposed with the light receiving surface facing the first end surface 33 c of the light guide 33. When the spectral sensitivities of the solar cell elements 34 at the peak wavelengths of the emission spectra of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c are compared, a plurality of optical functional materials (first phosphor 8a, second fluorescence The spectral sensitivity of the solar cell element 34 at the peak wavelength of the emission spectrum of the optical functional material (third phosphor 8c) having the longest emission spectrum peak wavelength of the phosphor 8b and the third phosphor 8c) It is larger than the spectral sensitivity of the solar cell element 34 at the peak wavelength of the emission spectrum of any of the other optical functional materials (the first phosphor 8a and the second phosphor 8b). Thereby, the solar cell module 35 with high power generation efficiency is provided.
 太陽電池モジュール35では、導光体33の光入射面33aが湾曲した面となっている。そのため、昼間と夕方のように時間帯によって光Lの入射角が導光体33の湾曲方向に沿って変化した場合でも、発電量は大きく変化しない。また、導光体33が筒状に形成されているため、導光体33を建物の柱や電柱などに設置することができる。本実施形態の場合、導光体33は円筒状に形成されているが、導光体33の形状はこのような形状に限らす、XZ平面と平行な平面で切った断面が楕円や多角形など、導光体33を設置する場所に応じて自由な形状に設計することができる。 In the solar cell module 35, the light incident surface 33a of the light guide 33 is a curved surface. Therefore, even when the incident angle of the light L changes along the bending direction of the light guide 33 depending on the time zone such as daytime and evening, the amount of power generation does not change greatly. Moreover, since the light guide 33 is formed in a cylindrical shape, the light guide 33 can be installed on a pillar of a building, a utility pole, or the like. In the case of this embodiment, the light guide 33 is formed in a cylindrical shape, but the shape of the light guide 33 is not limited to such a shape, and a cross section cut by a plane parallel to the XZ plane is an ellipse or a polygon. For example, it can be designed in a free shape according to the place where the light guide 33 is installed.
[第11実施形態]
 図35は、第11実施形態の太陽電池モジュール38の模式図である。太陽電池モジュール38では、第3実施形態の太陽電池モジュール16と比較して、導光体36と太陽電池素子37の形状及び配置が異なる。よって、ここでは、導光体36と太陽電池素子37の形状及び配置について説明し、それ以外の構成については、詳細な説明は省略する。
[Eleventh embodiment]
FIG. 35 is a schematic diagram of the solar cell module 38 of the eleventh embodiment. In the solar cell module 38, the shape and arrangement of the light guide 36 and the solar cell element 37 are different from those of the solar cell module 16 of the third embodiment. Therefore, here, the shape and arrangement of the light guide 36 and the solar cell element 37 will be described, and detailed description of other configurations will be omitted.
 太陽電池モジュール38では、導光体36は、Y方向に延びる柱状の部材として構成され、太陽電池素子37は、光射出面である導光体36の第1端面36cから射出された光を受光するように構成されている。導光体36は、例えば、Y軸と平行な軸を中心軸とする円柱状の形状を有する。導光体36の外周面が第1主面36aであり、該第1主面36aが、外光(例えば太陽光)Lが入射する光入射面である。 In the solar cell module 38, the light guide 36 is configured as a columnar member extending in the Y direction, and the solar cell element 37 receives light emitted from the first end surface 36c of the light guide 36 that is a light emission surface. Is configured to do. The light guide 36 has, for example, a cylindrical shape whose central axis is an axis parallel to the Y axis. The outer peripheral surface of the light guide 36 is a first main surface 36a, and the first main surface 36a is a light incident surface on which external light (for example, sunlight) L is incident.
 太陽電池素子37としては、第3実施形態と同じアモルファスシリコン太陽電池が用いられている。太陽電池素子37は、受光面を導光体36の第1端面36cと対向させて配置されている。第1蛍光体8a、第2蛍光体8bおよび第3蛍光体8cの発光スペクトルのピーク波長における太陽電池素子37の分光感度を比較すると、複数の光機能材料(第1蛍光体8a、第2蛍光体8b、第3蛍光体8c)のうち最も発光スペクトルのピーク波長が大きい光機能材料(第3蛍光体8c)の発光スペクトルのピーク波長における太陽電池素子37の分光感度は、導光体36に備えられた他のいずれの光機能材料(第1蛍光体8a、第2蛍光体8b)の発光スペクトルのピーク波長における太陽電池素子37の分光感度よりも大きい。これにより、発電効率の高い太陽電池モジュール38が提供される。 As the solar cell element 37, the same amorphous silicon solar cell as in the third embodiment is used. The solar cell element 37 is disposed with the light receiving surface facing the first end surface 36 c of the light guide 36. When the spectral sensitivities of the solar cell elements 37 at the peak wavelengths of the emission spectra of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c are compared, a plurality of optical functional materials (first phosphor 8a, second fluorescence The spectral sensitivity of the solar cell element 37 at the peak wavelength of the emission spectrum of the optical functional material (third phosphor 8c) having the longest emission spectrum peak wavelength is the light guide 36. It is larger than the spectral sensitivity of the solar cell element 37 at the peak wavelength of the emission spectrum of any other optical functional material (the first phosphor 8a and the second phosphor 8b). Thereby, the solar cell module 38 with high power generation efficiency is provided.
 図35では、導光体36と太陽電池素子37とを1組とする単位ユニット39がX方向に互いに隣接して8組設置されているが、単位ユニット39の数はこれに限定されない。
単位ユニット39の数は1組でもよいし、8組以外の複数組でもよい。単位ユニット39を複数組設けた場合には、平面への設置が可能となる。複数組の単位ユニット39を紐状の連結部材40で柔軟に連結した場合には、平面でない曲面などに自由に形を変えて設置することができとともに、簾のように必要なときに展開し、必要でないときに巻き取って収納するなどの調整が可能となる。また、複数組の単位ユニット39を硬い棒状の連結部材40などで互いに間隔を空けて連結した場合には、導光体36間の空間を風が通るため、風圧を緩和することができ、太陽電池モジュールの架台の設置が簡単になる。
In FIG. 35, eight unit units 39 each including the light guide 36 and the solar cell element 37 are disposed adjacent to each other in the X direction, but the number of unit units 39 is not limited to this.
The number of unit units 39 may be one set or a plurality of sets other than eight sets. When a plurality of unit units 39 are provided, they can be installed on a flat surface. When a plurality of sets of unit units 39 are flexibly connected by a string-like connecting member 40, they can be freely changed in shape on a curved surface that is not flat and can be deployed when necessary, such as a basket. It is possible to make adjustments such as winding and storing when not needed. Further, when a plurality of sets of unit units 39 are connected with a hard rod-like connecting member 40 at an interval, the wind passes through the space between the light guides 36, so that the wind pressure can be reduced. Installation of the battery module stand is simplified.
 なお、本実施形態の場合、導光体36は円柱状に形成されているが、導光体36の形状はこのような形状に限らす、XZ平面と平行な平面で切った断面が楕円や多角形など、導光体36を設置する場所に応じて自由な形状に設計することができる。 In the case of the present embodiment, the light guide 36 is formed in a cylindrical shape, but the shape of the light guide 36 is not limited to such a shape, and a cross section cut by a plane parallel to the XZ plane is an ellipse or It can be designed in a free shape such as a polygon according to the place where the light guide 36 is installed.
 太陽電池モジュール38では、導光体36の光入射面36aが湾曲した面となっている。そのため、昼間と夕方のように時間帯によって光Lの入射角が導光体36の湾曲方向に沿って変化した場合でも、発電量は大きく変化しない。また、導光体36が柱状に形成されているため、複数の導光体36を並べて柔軟に連結することにより、平面上のみならず曲面上への設置が可能となり、また、簾のように展開/巻き取りが可能な構成を実現することができる。 In the solar cell module 38, the light incident surface 36a of the light guide 36 is a curved surface. Therefore, even when the incident angle of the light L changes along the bending direction of the light guide 36 depending on the time zone such as daytime and evening, the power generation amount does not change greatly. In addition, since the light guide 36 is formed in a columnar shape, by arranging a plurality of light guides 36 and flexibly connecting them, it is possible to install on a curved surface as well as on a plane. A configuration capable of unfolding / winding can be realized.
[太陽光発電装置]
 図36は、太陽光発電装置1000の概略構成図である。
[Solar power generator]
FIG. 36 is a schematic configuration diagram of the solar power generation device 1000.
 太陽光発電装置1000は、太陽光のエネルギーを電力に変換する太陽電池モジュール1001と、太陽電池モジュール1001から出力された直流電力を交流電力に変換するインバータ(直流/交流変換器)1004と、太陽電池モジュール1001から出力された直流電力を蓄える蓄電池1005と、を備えている。 The solar power generation apparatus 1000 includes a solar cell module 1001 that converts sunlight energy into electric power, an inverter (DC / AC converter) 1004 that converts DC power output from the solar cell module 1001 into AC power, A storage battery 1005 that stores DC power output from the battery module 1001.
 太陽電池モジュール1001は、太陽光を集光する導光体1002と、導光体1002によって集光された太陽光によって発電を行う太陽電池素子1003と、を備えている。
 太陽電池モジュール1001としては、例えば、第1実施形態ないし第11実施形態で説明した太陽電池モジュールが用いられる。
The solar cell module 1001 includes a light guide body 1002 that collects sunlight, and a solar cell element 1003 that generates power using sunlight collected by the light guide body 1002.
As the solar cell module 1001, for example, the solar cell module described in the first to eleventh embodiments is used.
 太陽光発電装置1000は外部の電子機器1006に対して電力を供給する。電子機器1006には、必要に応じて補助電力源1007から電力が供給される。 The solar power generation apparatus 1000 supplies power to the external electronic device 1006. The electronic device 1006 is supplied with power from the auxiliary power source 1007 as necessary.
 太陽光発電装置1000は、上述した本発明に係る太陽電池モジュールを備えているため、発電効率の高い太陽光発電装置となる。 Since the photovoltaic power generation apparatus 1000 includes the above-described solar cell module according to the present invention, the photovoltaic power generation apparatus 1000 has a high power generation efficiency.
 本発明は、導光体、太陽電池モジュールおよび太陽光発電装置に利用することができる。 The present invention can be used for a light guide, a solar cell module, and a solar power generation device.
1…太陽電池モジュール、4…導光体、5…基材(第1透明層)、6…太陽電池素子、8,8a,8b,8c…蛍光体(光機能材料)、11…太陽電池モジュール、12…導光体、14…透明導光体(第2透明層)、15…基材(第1透明層)、16…太陽電池モジュール、17…導光体、18…太陽電池モジュール、19…導光体、21…透明保護膜(第2透明層)、22…透明導光体(第3透明層)、23…基材(第1透明層)、24…太陽電池モジュール、25…導光体、26…透明導光体(第2透明層)、27…太陽電池モジュール、28…導光体、29…透明導光体(第2透明層)、30…導光体、30…光入射面、30c…光射出面、31…太陽電池素子、32…太陽電池モジュール、33…導光体、33a…光入射面、33c…光射出面、34…太陽電池素子、35…太陽電池モジュール、36…導光体、36a…光入射面、36c…光射出面、37…太陽電池素子、38…太陽電池モジュール、39…単位ユニット、40…連結部材、50…太陽電池モジュール、51…導光体、53…透明導光体(第3透明層)、54…基材(第1透明層)、55…太陽電池モジュール、56…導光体、57…透明導光体(第3透明層)、1000…太陽光発電装置 DESCRIPTION OF SYMBOLS 1 ... Solar cell module, 4 ... Light guide, 5 ... Base material (1st transparent layer), 6 ... Solar cell element, 8, 8a, 8b, 8c ... Phosphor (optical functional material), 11 ... Solar cell module , 12 ... Light guide, 14 ... Transparent light guide (second transparent layer), 15 ... Base material (first transparent layer), 16 ... Solar cell module, 17 ... Light guide, 18 ... Solar cell module, 19 DESCRIPTION OF SYMBOLS ... Light guide, 21 ... Transparent protective film (2nd transparent layer), 22 ... Transparent light guide (3rd transparent layer), 23 ... Base material (1st transparent layer), 24 ... Solar cell module, 25 ... Guide Light body 26 ... Transparent light guide (second transparent layer), 27 ... Solar cell module, 28 ... Light guide, 29 ... Transparent light guide (second transparent layer), 30 ... Light guide, 30 ... Light Incident surface, 30c: Light exit surface, 31: Solar cell element, 32: Solar cell module, 33: Light guide, 33a: Light incident surface, 33c Light exit surface, 34 ... solar cell element, 35 ... solar cell module, 36 ... light guide, 36a ... light incident surface, 36c ... light exit surface, 37 ... solar cell element, 38 ... solar cell module, 39 ... unit , 40 ... connecting member, 50 ... solar cell module, 51 ... light guide, 53 ... transparent light guide (third transparent layer), 54 ... base material (first transparent layer), 55 ... solar cell module, 56 ... Light guide, 57 ... Transparent light guide (third transparent layer), 1000 ... Solar power generation device

Claims (28)

  1.  第1透明層と、
     前記第1透明層の内部に分散された光機能材料と、を備え、
     前記光機能材料の吸収スペクトルのピーク波長をλ1とし、前記光機能材料の発光スペクトルのピーク波長をλ2とし、前記波長λ1における前記第1透明層の屈折率をn1(λ1)とし、前記波長λ2における前記第1透明層の屈折率をn1(λ2)としたときに、前記n1(λ1)と前記n1(λ2)が、n1(λ1)<n1(λ2)の関係を満たす導光体。
    A first transparent layer;
    An optical functional material dispersed inside the first transparent layer,
    The peak wavelength of the absorption spectrum of the optical functional material is λ1, the peak wavelength of the emission spectrum of the optical functional material is λ2, the refractive index of the first transparent layer at the wavelength λ1 is n1 (λ1), and the wavelength λ2 A light guide body in which n1 (λ1) and n1 (λ2) satisfy a relationship of n1 (λ1) <n1 (λ2), where n1 (λ2) is the refractive index of the first transparent layer.
  2.  第1透明層と、
     前記第1透明層の内部に分散された複数種類の光機能材料と、を備え、
     前記複数種類の光機能材料のうちいずれか1種類の光機能材料の吸収スペクトルのピーク波長をλ1とし、前記複数種類の光機能材料のうち最も発光スペクトルのピーク波長が大きい光機能材料の発光スペクトルのピーク波長をλ2とし、前記波長λ1における前記第1透明層の屈折率をn1(λ1)とし、前記波長λ2における前記第1透明層の屈折率をn1(λ2)としたときに、前記n1(λ1)と前記n1(λ2)が、n1(λ1)<n1(λ2)の関係を満たす導光体。
    A first transparent layer;
    A plurality of types of optical functional materials dispersed inside the first transparent layer,
    The peak wavelength of the absorption spectrum of any one of the plurality of types of optical functional materials is λ1, and the emission spectrum of the optical functional material having the largest emission spectrum peak wavelength among the plurality of types of optical functional materials. When the peak wavelength of λ2 is λ2, the refractive index of the first transparent layer at the wavelength λ1 is n1 (λ1), and the refractive index of the first transparent layer at the wavelength λ2 is n1 (λ2), the n1 A light guide body in which (λ1) and n1 (λ2) satisfy a relationship of n1 (λ1) <n1 (λ2).
  3.  前記複数種類の光機能材料のうち任意の光機能材料の発光スペクトルのピーク波長をλ1としたときに、前記n1(λ1)と前記n1(λ2)が、n1(λ1)<n1(λ2)の関係を満たす請求項2に記載の導光体。 When the peak wavelength of the emission spectrum of any optical functional material among the plurality of types of optical functional materials is λ1, n1 (λ1) and n1 (λ2) satisfy n1 (λ1) <n1 (λ2). The light guide according to claim 2 that satisfies the relationship.
  4.  前記複数種類の光機能材料の間でエネルギー移動が生じ、最も発光スペクトルのピーク波長の大きい光機能材料から光が放射される請求項3に記載の導光体。 The light guide according to claim 3, wherein energy transfer occurs between the plurality of types of optical functional materials, and light is emitted from the optical functional material having the largest peak wavelength of the emission spectrum.
  5.  前記第1透明層の一面側に第2透明層が設けられ、
     前記波長λ1における前記第2透明層の屈折率をn2(λ1)とし、前記波長λ2における前記第2透明層の屈折率をn2(λ2)としたときに、前記n2(λ1)と前記n2(λ2)が、n2(λ1)<n2(λ2)の関係を満たす請求項1ないし4のいずれか1項に記載の導光体。
    A second transparent layer is provided on one side of the first transparent layer;
    When the refractive index of the second transparent layer at the wavelength λ1 is n2 (λ1) and the refractive index of the second transparent layer at the wavelength λ2 is n2 (λ2), the n2 (λ1) and the n2 ( The light guide according to any one of claims 1 to 4, wherein λ2) satisfies a relationship of n2 (λ1) <n2 (λ2).
  6.  前記n2(λ2)と前記n1(λ2)が、n2(λ2)≧n1(λ2)の関係を満たす請求項5に記載の導光体。 The light guide according to claim 5, wherein the n2 (λ2) and the n1 (λ2) satisfy a relationship of n2 (λ2) ≧ n1 (λ2).
  7.  前記第1透明層の一面側に第2透明層が設けられ、
     前記波長λ1における前記第2透明層の屈折率をn2(λ1)とし、前記波長λ2における前記第2透明層の屈折率をn2(λ2)としたときに、前記n2(λ1)と前記n2(λ2)が、n2(λ1)>n2(λ2)の関係を満たし、
     前記n2(λ2)と前記n1(λ2)が、n2(λ2)≧n1(λ2)の関係を満たす請求項1ないし4のいずれか1項に記載の導光体。
    A second transparent layer is provided on one side of the first transparent layer;
    When the refractive index of the second transparent layer at the wavelength λ1 is n2 (λ1) and the refractive index of the second transparent layer at the wavelength λ2 is n2 (λ2), the n2 (λ1) and the n2 ( λ2) satisfies the relationship n2 (λ1)> n2 (λ2),
    5. The light guide according to claim 1, wherein the n2 (λ2) and the n1 (λ2) satisfy a relationship of n2 (λ2) ≧ n1 (λ2).
  8.  前記第1透明層の他面側に第3透明層が設けられ、
     前記波長λ2における前記第3透明層の屈折率をn3(λ2)としたときに、前記n3(λ2)と前記n1(λ2)が、n3(λ2)≧n1(λ2)の関係を満たす請求項5ないし7のいずれか1項に記載の導光体。
    A third transparent layer is provided on the other surface side of the first transparent layer;
    The n3 (λ2) and the n1 (λ2) satisfy a relationship of n3 (λ2) ≧ n1 (λ2), where n3 (λ2) is a refractive index of the third transparent layer at the wavelength λ2. The light guide according to any one of 5 to 7.
  9.  第1透明層と、
     前記第1透明層の内部に分散された光機能材料と、
     前記第1透明層の一面側に設けられた第2透明層と、を備え、
     前記光機能材料の吸収スペクトルのピーク波長をλ1とし、前記光機能材料の発光スペクトルのピーク波長をλ2とし、前記波長λ1における前記第2透明層の屈折率をn2(λ1)とし、前記波長λ2における前記第2透明層の屈折率をn2(λ2)としたときに、前記n2(λ1)と前記n2(λ2)が、n2(λ1)<n2(λ2)の関係を満たす導光体。
    A first transparent layer;
    An optical functional material dispersed inside the first transparent layer;
    A second transparent layer provided on one side of the first transparent layer,
    The peak wavelength of the absorption spectrum of the optical functional material is λ1, the peak wavelength of the emission spectrum of the optical functional material is λ2, the refractive index of the second transparent layer at the wavelength λ1 is n2 (λ1), and the wavelength λ2 A light guide body in which n2 (λ1) and n2 (λ2) satisfy a relationship of n2 (λ1) <n2 (λ2), where n2 (λ2) is the refractive index of the second transparent layer.
  10.  第1透明層と、
     前記第1透明層の内部に分散された複数種類の光機能材料と、
     前記第1透明層の一面側に設けられた第2透明層と、を備え、
     前記複数種類の光機能材料のうちいずれか1種類の光機能材料の吸収スペクトルのピーク波長をλ1とし、前記複数種類の光機能材料のうち最も発光スペクトルのピーク波長が大きい光機能材料の発光スペクトルのピーク波長をλ2とし、前記波長λ1における前記第2透明層の屈折率をn2(λ1)とし、前記波長λ2における前記第2透明層の屈折率をn2(λ2)としたときに、前記n2(λ1)と前記n2(λ2)が、n2(λ1)<n2(λ2)の関係を満たす導光体。
    A first transparent layer;
    A plurality of types of optical functional materials dispersed in the first transparent layer;
    A second transparent layer provided on one side of the first transparent layer,
    The peak wavelength of the absorption spectrum of any one of the plurality of types of optical functional materials is λ1, and the emission spectrum of the optical functional material having the largest emission spectrum peak wavelength among the plurality of types of optical functional materials. When the peak wavelength of λ2 is λ2, the refractive index of the second transparent layer at the wavelength λ1 is n2 (λ1), and the refractive index of the second transparent layer at the wavelength λ2 is n2 (λ2), the n2 A light guide body in which (λ1) and n2 (λ2) satisfy a relationship of n2 (λ1) <n2 (λ2).
  11.  前記複数種類の光機能材料のうち任意の光機能材料の発光スペクトルのピーク波長をλ1としたときに、前記n2(λ1)と前記n2(λ2)が、n2(λ1)<n2(λ2)の関係を満たす請求項10に記載の導光体。 When the peak wavelength of the emission spectrum of an arbitrary optical functional material among the plural types of optical functional materials is λ1, the n2 (λ1) and the n2 (λ2) satisfy n2 (λ1) <n2 (λ2). The light guide according to claim 10 that satisfies the relationship.
  12.  前記複数種類の光機能材料の間でエネルギー移動が生じ、最も発光スペクトルのピーク波長の大きい光機能材料から光が放射される請求項11に記載の導光体。 The light guide according to claim 11, wherein energy transfer occurs between the plurality of types of optical functional materials, and light is emitted from the optical functional material having the largest peak wavelength of the emission spectrum.
  13.  前記波長λ1における前記第1透明層の屈折率をn1(λ1)とし、前記波長λ2における前記第1透明層の屈折率をn1(λ2)としたときに、前記n1(λ1)と前記n1(λ2)が、n1(λ1)<n1(λ2)の関係を満たす請求項9ないし12のいずれか1項に記載の導光体。 When the refractive index of the first transparent layer at the wavelength λ1 is n1 (λ1) and the refractive index of the first transparent layer at the wavelength λ2 is n1 (λ2), the n1 (λ1) and the n1 ( The light guide according to any one of claims 9 to 12, wherein λ2) satisfies a relationship of n1 (λ1) <n1 (λ2).
  14.  前記波長λ1における前記第1透明層の屈折率をn1(λ1)とし、前記波長λ2における前記第1透明層の屈折率をn1(λ2)としたときに、前記n1(λ1)と前記n1(λ2)が、n1(λ1)>n1(λ2)の関係を満たす請求項9ないし12のいずれか1項に記載の導光体。 When the refractive index of the first transparent layer at the wavelength λ1 is n1 (λ1) and the refractive index of the first transparent layer at the wavelength λ2 is n1 (λ2), the n1 (λ1) and the n1 ( The light guide according to any one of claims 9 to 12, wherein λ2) satisfies a relationship of n1 (λ1)> n1 (λ2).
  15.  前記n2(λ2)と前記n1(λ2)が、n2(λ2)≧n1(λ2)の関係を満たす請求項13又は14に記載の導光体。 The light guide according to claim 13 or 14, wherein the n2 (λ2) and the n1 (λ2) satisfy a relationship of n2 (λ2) ≧ n1 (λ2).
  16.  前記第1透明層の他面側に第3透明層が設けられ、
     前記波長λ2における前記第3透明層の屈折率をn3(λ2)としたときに、前記n3(λ2)と前記n1(λ2)が、n3(λ2)≧n1(λ2)の関係を満たす請求項9ないし15のいずれか1項に記載の導光体。
    A third transparent layer is provided on the other surface side of the first transparent layer;
    The n3 (λ2) and the n1 (λ2) satisfy a relationship of n3 (λ2) ≧ n1 (λ2), where n3 (λ2) is a refractive index of the third transparent layer at the wavelength λ2. The light guide according to any one of 9 to 15.
  17.  前記第1透明層と前記第2透明層との間に第3透明層が設けられ、
     前記波長λ2における前記第3透明層の屈折率をn3(λ2)としたときに、前記n3(λ2)と前記n1(λ2)が、n3(λ2)≧n1(λ2)の関係を満たす請求項9ないし15のいずれか1項に記載の導光体。
    A third transparent layer is provided between the first transparent layer and the second transparent layer;
    The n3 (λ2) and the n1 (λ2) satisfy a relationship of n3 (λ2) ≧ n1 (λ2), where n3 (λ2) is a refractive index of the third transparent layer at the wavelength λ2. The light guide according to any one of 9 to 15.
  18.  前記波長λ1における前記第3透明層の屈折率をn3(λ1)としたときに、前記n3(λ1)と前記n2(λ1)と前記n1(λ1)が、n2(λ1)≦n3(λ1)≦n1(λ1)の関係を満たす請求項17に記載の導光体。 When the refractive index of the third transparent layer at the wavelength λ1 is n3 (λ1), the n3 (λ1), the n2 (λ1), and the n1 (λ1) are n2 (λ1) ≦ n3 (λ1) The light guide according to claim 17, satisfying a relationship of ≦ n1 (λ1).
  19.  請求項1ないし18のいずれか1項に記載の導光体と、
     前記導光体から射出された光を受光する太陽電池素子と、を備えている太陽電池モジュール。
    A light guide according to any one of claims 1 to 18,
    A solar cell module comprising: a solar cell element that receives light emitted from the light guide.
  20.  前記導光体の光入射面は平坦な面である請求項19に記載の太陽電池モジュール。 The solar cell module according to claim 19, wherein the light incident surface of the light guide is a flat surface.
  21.  前記導光体は、平坦な板状の部材として構成され、
     前記太陽電池素子は、光射出面である前記導光体の端面から射出された前記蛍光を受光する請求項20に記載の太陽電池モジュール。
    The light guide is configured as a flat plate-shaped member,
    The solar cell module according to claim 20, wherein the solar cell element receives the fluorescence emitted from an end surface of the light guide that is a light emission surface.
  22.  前記導光体の光入射面の少なくとも一部は屈曲又は湾曲した面である請求項19に記載の太陽電池モジュール。 The solar cell module according to claim 19, wherein at least a part of the light incident surface of the light guide is a bent or curved surface.
  23.  前記導光体は、湾曲した板状の部材として構成され、
     前記太陽電池素子は、光射出面である前記導光体の端面から射出された前記蛍光を受光する請求項22に記載の太陽電池モジュール。
    The light guide is configured as a curved plate-shaped member,
    The solar cell module according to claim 22, wherein the solar cell element receives the fluorescence emitted from an end surface of the light guide that is a light emission surface.
  24.  前記導光体は、筒状の部材として構成され、
     前記太陽電池素子は、光射出面である前記導光体の端面から射出された前記蛍光を受光する請求項22に記載の太陽電池モジュール。
    The light guide is configured as a cylindrical member,
    The solar cell module according to claim 22, wherein the solar cell element receives the fluorescence emitted from an end surface of the light guide that is a light emission surface.
  25.  前記導光体は、柱状の部材として構成され、
     前記太陽電池素子は、光射出面である前記導光体の端面から射出された前記光を受光する請求項22に記載の太陽電池モジュール。
    The light guide is configured as a columnar member,
    The solar cell module according to claim 22, wherein the solar cell element receives the light emitted from an end surface of the light guide that is a light emission surface.
  26.  前記導光体と前記太陽電池素子とを1組とする単位ユニットが、互いに隣接して複数組設置され、前記複数組の単位ユニットが紐状の連結部材で互いに柔軟に連結されている請求項25に記載の太陽電池モジュール。 A plurality of unit units each including the light guide body and the solar cell element as a set are installed adjacent to each other, and the plurality of unit units are flexibly connected to each other by a string-like connecting member. The solar cell module according to 25.
  27.  前記導光体と前記太陽電池素子とを1組とする単位ユニットが、互いに隣接して複数組設置され、前記複数組の単位ユニットが互いに間隔を空けて連結されている請求項25に記載の太陽電池モジュール。 26. The unit unit according to claim 25, wherein a plurality of unit units each including the light guide body and the solar cell element are installed adjacent to each other, and the plurality of unit units are connected to each other with a space therebetween. Solar cell module.
  28.  請求項19ないし27のいずれか1項に記載の太陽電池モジュールを備えている太陽光発電装置。 A solar power generation device comprising the solar cell module according to any one of claims 19 to 27.
PCT/JP2013/055158 2012-03-07 2013-02-27 Light guide, photovoltaic module, and photovoltaic power-generation device WO2013133105A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-050524 2012-03-07
JP2012050524A JP2015099807A (en) 2012-03-07 2012-03-07 Light guide body, solar cell module, and photovoltaic power generation device

Publications (1)

Publication Number Publication Date
WO2013133105A1 true WO2013133105A1 (en) 2013-09-12

Family

ID=49116587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055158 WO2013133105A1 (en) 2012-03-07 2013-02-27 Light guide, photovoltaic module, and photovoltaic power-generation device

Country Status (2)

Country Link
JP (1) JP2015099807A (en)
WO (1) WO2013133105A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111149023A (en) * 2017-09-29 2020-05-12 积水化学工业株式会社 Light-emitting structure and solar photovoltaic power generation system
EP3690961A4 (en) * 2017-09-29 2021-06-30 Sekisui Chemical Co., Ltd. Laminated structure and solar power generation system
WO2022085248A1 (en) * 2020-10-22 2022-04-28 株式会社ジャパンディスプレイ Solar cell device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194193A1 (en) * 2015-06-04 2016-12-08 株式会社日立製作所 Wavelength conversion material
EP3174107A1 (en) * 2015-11-25 2017-05-31 AGC Glass Europe Photovoltaic device
US20180308601A1 (en) * 2017-04-21 2018-10-25 Nimbus Engineering Inc. Systems and methods for energy storage
US11368045B2 (en) 2017-04-21 2022-06-21 Nimbus Engineering Inc. Systems and methods for energy storage using phosphorescence and waveguides
EP3690960A4 (en) * 2017-09-29 2021-06-23 Sekisui Chemical Co., Ltd. Solar cell system
KR20200136414A (en) 2018-03-05 2020-12-07 님버스 엔지니어링 인크. Systems and methods for energy storage using phosphorescent and waveguides
WO2019213655A1 (en) 2018-05-04 2019-11-07 Nimbus Engineering Inc. Regenerative braking using phosphorescence

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225692A (en) * 2009-03-19 2010-10-07 Toshiba Corp Solar cell and method for manufacturing the same
JP2010263115A (en) * 2009-05-08 2010-11-18 Mitsubishi Plastics Inc Solar light collector
JP2011054814A (en) * 2009-09-03 2011-03-17 Mitsubishi Rayon Co Ltd Light collecting member for solar cell, and solar cell
JP2011071504A (en) * 2009-08-27 2011-04-07 Mitsubishi Rayon Co Ltd Plate-like member of solar cell front, and solar cell module
WO2011061987A1 (en) * 2009-11-18 2011-05-26 シャープ株式会社 Solar cell module and solar power generating apparatus
WO2011074295A1 (en) * 2009-12-17 2011-06-23 シャープ株式会社 Electronic device
WO2011158568A1 (en) * 2010-06-15 2011-12-22 シャープ株式会社 Solar cell unit
WO2011162130A1 (en) * 2010-06-21 2011-12-29 シャープ株式会社 Plate member, light condensing solar battery, and solar energy generating window

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225692A (en) * 2009-03-19 2010-10-07 Toshiba Corp Solar cell and method for manufacturing the same
JP2010263115A (en) * 2009-05-08 2010-11-18 Mitsubishi Plastics Inc Solar light collector
JP2011071504A (en) * 2009-08-27 2011-04-07 Mitsubishi Rayon Co Ltd Plate-like member of solar cell front, and solar cell module
JP2011054814A (en) * 2009-09-03 2011-03-17 Mitsubishi Rayon Co Ltd Light collecting member for solar cell, and solar cell
WO2011061987A1 (en) * 2009-11-18 2011-05-26 シャープ株式会社 Solar cell module and solar power generating apparatus
WO2011074295A1 (en) * 2009-12-17 2011-06-23 シャープ株式会社 Electronic device
WO2011158568A1 (en) * 2010-06-15 2011-12-22 シャープ株式会社 Solar cell unit
WO2011162130A1 (en) * 2010-06-21 2011-12-29 シャープ株式会社 Plate member, light condensing solar battery, and solar energy generating window

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111149023A (en) * 2017-09-29 2020-05-12 积水化学工业株式会社 Light-emitting structure and solar photovoltaic power generation system
EP3690961A4 (en) * 2017-09-29 2021-06-30 Sekisui Chemical Co., Ltd. Laminated structure and solar power generation system
EP3690498A4 (en) * 2017-09-29 2021-08-04 Sekisui Chemical Co., Ltd. Light emitting structure and solar photovoltaic power generation system
WO2022085248A1 (en) * 2020-10-22 2022-04-28 株式会社ジャパンディスプレイ Solar cell device

Also Published As

Publication number Publication date
JP2015099807A (en) 2015-05-28

Similar Documents

Publication Publication Date Title
WO2013133105A1 (en) Light guide, photovoltaic module, and photovoltaic power-generation device
US11652181B2 (en) Visibly transparent, luminescent solar concentrator
US8463092B2 (en) Waveguide assisted solar energy harvesting
WO2013183752A1 (en) Solar cell module and photovoltaic power generation device
US8969715B2 (en) Luminescent optical device and solar cell system with such luminescent optical device
EP3031086B1 (en) Enhanced emission from plasmonic coupled emitters for solid state lighting
US10781999B2 (en) Luminous systems
WO2013077323A1 (en) Light guide body, solar cell module, and solar photovoltaic power generation device
US9880336B2 (en) Light-emitting device including photoluminescent layer
WO2013069785A1 (en) Light guide body, solar cell module, and photovoltaic power generation device
WO2011033958A1 (en) Solar cell module and solar photovoltaic system
JP2010263115A (en) Solar light collector
WO2013042688A1 (en) Solar cell module and solar power generation apparatus
JP2011054814A (en) Light collecting member for solar cell, and solar cell
WO2012070374A1 (en) Photovoltaic module and photovoltaic power generation device
JP5885338B2 (en) Solar cell module and solar power generation device
US10331011B2 (en) Optical device with photon flipping
WO2013089132A1 (en) Solar cell module and photovoltaic power generator
US20160359091A1 (en) Light-emitting apparatus including photoluminescent layer
US20200292743A1 (en) Waveguide energy conversion illumination system
Rivera et al. Enhanced photoluminescence of active ions in rugate type multilayer structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13758415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP