WO2013183752A1 - Solar cell module and photovoltaic power generation device - Google Patents

Solar cell module and photovoltaic power generation device Download PDF

Info

Publication number
WO2013183752A1
WO2013183752A1 PCT/JP2013/065790 JP2013065790W WO2013183752A1 WO 2013183752 A1 WO2013183752 A1 WO 2013183752A1 JP 2013065790 W JP2013065790 W JP 2013065790W WO 2013183752 A1 WO2013183752 A1 WO 2013183752A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
light
light guide
phosphor
layer
Prior art date
Application number
PCT/JP2013/065790
Other languages
French (fr)
Japanese (ja)
Inventor
英臣 由井
前田 強
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013183752A1 publication Critical patent/WO2013183752A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar cell module and a solar power generation device.
  • the solar power generation device of Patent Document 1 includes a solar electronic element and a light guide disposed on the incident side of the light receiving surface.
  • the light guide is made of a transparent plate having a facing region facing the light receiving surface of the solar cell element and a peripheral region of the peripheral portion thereof, and light incident on the facing region is transmitted through the light guide and passes through the solar electronic device.
  • the light incident on the peripheral region propagates through the light guide and enters the solar cell element from the opposing region.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2003-218378
  • an uneven surface is formed as a light introducing means on the surface of the peripheral region in order to take light incident on the peripheral region into the light guide.
  • the light incident on the uneven surface is refracted or reflected by the uneven portion and introduced into the light guide.
  • the light incident on the light guide at an angle greater than the critical angle propagates through the light guide and enters the solar cell element. Since the reflected angle varies depending on the incident angle of the light to the light guide, when light enters the light guide at various angles such as scattered light, only a part of it can be used for power generation. Can not. Therefore, when light is scattered on the cloud and the light is incident on the light guide at various angles like a cloudy day, it is difficult to perform efficient power generation.
  • An object of the present invention is to provide a solar cell module and a solar power generation apparatus that can efficiently generate power using external light.
  • the solar cell module of the present invention absorbs light incident from the outside by a phosphor and propagates the fluorescence emitted from the phosphor inside, and a surface facing the light incident surface of the light guide
  • a solar cell element installed on the light guide, the light guide body is provided with a facing region facing the light receiving surface of the solar cell element, and a peripheral region around the facing region,
  • the phosphor is provided in at least a part of the peripheral region of the light guide.
  • the phosphor may not be provided in at least a part of the facing region of the light guide.
  • the phosphor may be provided in the facing region of the light guide, and the concentration of the phosphor in the facing region may be lower than the concentration of the phosphor in the peripheral region.
  • the thickness of the peripheral region of the light guide may increase as it approaches the solar cell element.
  • a plurality of the solar cell elements may be installed on a surface of the light guide that faces the light incident surface.
  • a reflection layer that reflects the fluorescence may be provided on a portion of the surface of the light guide opposite to the light incident surface other than the portion where the solar cell element is installed.
  • a reflection layer that reflects the fluorescence may be provided on an end surface adjacent to the light incident surface of the light guide.
  • the light guide may be formed by laminating a layer containing the phosphor and a layer not containing the phosphor.
  • the light guide may include a plurality of types of phosphors as the phosphor.
  • the spectral sensitivity of the solar cell element at the peak wavelength of the emission spectrum of the phosphor having the largest emission spectrum peak wavelength among the plurality of types of phosphors is that of the solar cell element at the peak wavelength of the emission spectrum of the other phosphors. It may be larger than the spectral sensitivity.
  • the area of the peripheral region of the light guide that is provided with the phosphor is the area of the counter region of the light guide. It may be larger than the area of the region where the phosphor is not provided.
  • the solar power generation device of the present invention includes the solar cell module of the present invention.
  • the present invention it is possible to provide a solar cell module and a solar power generation device that can efficiently generate power using external light.
  • FIG.1 (a) is a top view of the solar cell module 1 of 1st Embodiment.
  • FIG. 1B is a cross-sectional view of the solar cell module 1.
  • the solar cell module 1 includes a light guide 4 and solar cell elements 6 installed on a surface 4 b facing the light incident surface 4 a of the light guide 4.
  • the light guide 4 is a substantially rectangular plate member having a constant thickness.
  • the 1st main surface 4a of the light guide 4 is a light-incidence surface in which light enters from the exterior, and the part in which the solar cell element 6 is installed among the 2nd main surfaces 4b of the light guide 4 is a solar cell. This is a light emission surface 4 c that emits light to the element 6.
  • the light guide 4 is obtained by dispersing the optical functional material 8 in a base material (transparent substrate) made of a highly transparent organic material or inorganic material such as acrylic resin, polycarbonate resin, or glass.
  • a base material transparent substrate
  • the optical functional material 8 include a phosphor that absorbs ultraviolet light or visible light and emits visible light or infrared light. Note that visible light is light in a wavelength region of 380 nm to 750 nm, ultraviolet light is light in a wavelength region less than 380 nm, and infrared light is light in a wavelength region larger than 750 nm.
  • Lumogen® Red® 305 (trade name) manufactured by BASF is used as the optical functional material.
  • Lumogen Red 305 (trade name) is a phosphor having an emission spectrum peak wavelength at 578 nm.
  • the light guide 4 is provided with only one type of phosphor as the optical functional material 8, but a plurality of types of phosphors are provided in the light guide 4 in order to absorb light of a wide range of wavelengths. May be.
  • the light guide 4 includes a facing region 4T facing the light receiving surface 6a of the solar cell element 6, and a peripheral region 4F around the facing region 4T.
  • An optical functional material 8 is provided in at least a part of the peripheral region 4F.
  • the optical functional material 8 is provided in the entire peripheral region 4F, and the optical functional material 8 is not provided at all in the facing region 4T, but the configuration of the light guide 4 is not limited to this.
  • the optical functional material 8 may be provided only in a part of the peripheral region 4F, or the optical functional material 8 may be provided in a part of the facing region 4T.
  • the solar cell element 6 is disposed with the light receiving surface facing the light exit surface 4 c of the light guide 4.
  • the solar cell element 6 is preferably optically bonded to the light emitting surface 4c with a transparent adhesive.
  • a known solar cell such as a silicon solar cell, a compound solar cell, or an organic solar cell can be used.
  • the solar cell element 6 one having a spectral sensitivity corresponding to the spectrum of light incident from the light exit surface 4c is selected.
  • the area of the peripheral region 4 ⁇ / b> F of the light guide 4 where the optical functional material 8 is provided is equal to the opposing region 4 ⁇ / b> T of the light guide 4. If the area is larger than the area of the region where the optical functional material 8 is not provided, the amount of light that passes through the facing region 4T and directly enters the solar cell element 6 is changed from the peripheral region 4F to the solar cell element 6. Increasing the amount of incident fluorescence.
  • a solar cell having a spectral sensitivity suitable for the fluorescence spectrum is selected.
  • the solar cell element 6 only needs to have a high spectral sensitivity with respect to light in a narrow wavelength region, so even if a tandem solar cell is used, the number of semiconductor layers to be manufactured is reduced. Can be configured easily.
  • FIG. 2 is a diagram for explaining the operation of the solar cell module 1.
  • the light L incident on the facing region 4T of the light guide 4 passes through the facing region 4T and enters the solar cell element 6. Since the optical functional material 8 is not included in the facing region 4T, the light L is incident on the solar cell element 6 without being absorbed by the optical functional material 8. Therefore, the light L incident on the facing region 4T can be efficiently used for power generation.
  • the light L incident on the peripheral region 4F of the light guide 4 excites the optical functional material 8.
  • the light L1 (fluorescence) emitted from the optical functional material 8 propagates through the light guide 4 and enters the solar cell element 6 from the light exit surface 4c. Since the optical functional material 8 absorbs light incident from all directions, not only light incident perpendicularly to the peripheral region 4F but also light incident obliquely can be used for power generation. Therefore, even when the incident angle of the light L is different depending on the time zone, such as daytime and evening, or when the incident angle of the light L is irregular because the light is scattered by the clouds, efficient power generation is possible. Become.
  • FIG. 3 is a diagram showing the relationship between the solar radiation intensity and the conversion efficiency of the solar cell element 6.
  • the solid line indicates the conversion efficiency of the solar cell element 6 when the peripheral region 4F is provided around the facing region 4T.
  • a dotted line indicates the conversion efficiency of the solar cell element 6 when the peripheral region 4F is not provided around the facing region 4T.
  • the conversion efficiency of the solar cell element 6 shows a substantially constant value in a region where the solar radiation intensity is strong, and greatly decreases as the solar radiation intensity decreases in a region where the solar radiation intensity is weak. Therefore, when only the light directly incident on the solar cell element 6 is used for power generation without providing the peripheral region 4F, the intensity of the light incident on the solar cell element 6 does not increase so much, so the conversion efficiency varies depending on the solar radiation intensity. It becomes easy.
  • the intensity of light incident on the solar cell element 6 is increased by the intensity of the light collected from the peripheral region 4F.
  • the conversion efficiency of the element 6 is less likely to vary depending on the solar radiation intensity. Therefore, efficient power generation can be performed even on a cloudy day or dusk.
  • the peripheral region 4F is provided around the solar cell element 6, and the light L incident on the peripheral region 4F is converted into fluorescence and incident on the solar cell element 6. Yes. Therefore, not only the light L directly incident on the solar cell element 6 but also the light incident on the peripheral portion of the solar cell element 6 can be used for power generation. Further, since the optical functional material 8 absorbs the light L incident from all directions, even when light scattered by the clouds enters the light guide 4 as in a cloudy day, efficient power generation can be performed. It becomes possible.
  • the light guide 4 is a plate-like member having a constant thickness, but the configuration of the light guide 4 is not limited to this.
  • a film-like member having a constant thickness, or a plate-like or film-like member having a partially different thickness may be used as the light guide 4.
  • the planar shape of the light guide 4 was made into the substantially rectangular shape, the structure of the light guide 4 is not restricted to this.
  • a plate-like or film-like member having an arbitrary shape other than a rectangle such as a circle, an ellipse, or a polygon may be used as the light guide 4.
  • FIG. 4 is a cross-sectional view of the solar cell module 10 of the second embodiment.
  • This embodiment is different from the first embodiment in that the thickness of the light guide 5 in the peripheral region 5F increases as the solar cell element 6 is approached. Note that the thickness of the light guide 5 in the facing region 5T is constant.
  • the second main surface 5b of the light guide 5 excluding the light exit surface 5c is inclined at a constant angle with respect to the light incident surface 5a. It is not limited. For example, a part or all of the second main surface 5b of the light guide 5 except the light emission surface 5c may be curved.
  • FIG. 5B is a diagram for explaining the operation of the solar cell module 10.
  • FIG. 5A is a diagram for explaining the operation of the solar cell module when the thickness of the light guide is constant (when the light guide 4 of the first embodiment is used) as a comparative example.
  • the light incident on the peripheral region 4F of the light guide 4 is absorbed by the optical functional material 8 and converted into light L1 (fluorescence).
  • the light L1 is emitted in all directions, but the light L1 incident on the main surface of the light guide 4 (the second main surface 4b in FIG. 5A) at an angle smaller than the critical angle is not totally reflected. Leaks out of the light guide 4.
  • the light guide 5 is not a flat plate, but is inclined toward the second main surface 5b side so as to become thicker toward the solar cell element installation portion (opposite region). Then, most of the fluorescence emitted from the optical functional material 8 to the solar cell element side satisfies the total reflection condition. Therefore, more light can be made incident on the solar cell element than when the light guide is formed in a flat plate shape.
  • the solar cell element 6 efficiently emits the light L1 emitted from the optical functional material 8 by the inclined surface provided on the second main surface 5b of the light guide 5. Can be made incident. Therefore, efficient power generation becomes possible.
  • FIG. 6A is a plan view of the solar cell module 11 of the third embodiment.
  • FIG. 6B is a cross-sectional view of the solar cell module 11.
  • the difference from the first embodiment is that a plurality of solar cell elements 6 are installed on a surface (second main surface 4b) facing the light incident surface 4a of the light guide 4.
  • the four solar cell elements 6 are arranged in a square lattice shape when viewed from the light incident surface 4a side of the light guide 4, but the number and arrangement of the solar cell elements 6 are limited to this. Not.
  • five or more solar cell elements 6 may be arranged in a rectangular lattice shape, an oblique lattice shape, or a hexagonal lattice shape when viewed from the light incident surface 4 a side of the light guide 4.
  • the pitch of the solar cell elements 6 (the distance between the centers of two adjacent solar cell elements 6) may be different between the central portion and the peripheral portion of the light guide 5.
  • FIG. 7A and FIG. 7B are diagrams for explaining the operation of the solar cell module 11.
  • the light L1 (fluorescence) emitted from the optical functional material 8 travels in all directions. Since a plurality of solar cell elements 6 are arranged in the light guide 4, the light L ⁇ b> 1 enters one of the solar cell elements 6 without propagating a long distance. When the light L1 propagates through the light guide 4 for a long distance, a part of the light L1 is lost due to absorption by the base material of the light guide 4 and self-absorption by the optical functional material 8. However, if the propagation distance of the light L1 is shortened as in the present embodiment, such loss can be reduced, and efficient power generation is possible.
  • the solar cell module 11 of this embodiment capable of reducing the loss of the light L1 when the light L1 propagates through the light guide 4 and performing efficient power generation. Is provided.
  • FIG. 8 is a cross-sectional view of the solar cell module 12 of the fourth embodiment.
  • the difference from the third embodiment is that the thickness of the light guide 13 in the peripheral region 13F increases as the solar cell element 6 is approached. Note that the thickness of the light guide 13 in the facing region 13T is constant.
  • the second main surface 13b of the light guide body 13 excluding the light exit surface 13c is inclined at a constant angle with respect to the light incident surface 13a at a portion located in the vicinity of the solar cell element 6.
  • the portion located in the middle between the two adjacent solar cell elements 6 is parallel to the light incident surface 13a, but the configuration of the light guide 13 is not limited to this.
  • a part or all of the second main surface 13b of the light guide 13 except the light emission surface 13c may be curved.
  • the light L1 emitted from the optical functional material 8 can be efficiently incident on the solar cell element 6 by the inclined surface provided on the second main surface 13b of the light guide 13. it can. Therefore, efficient power generation becomes possible.
  • FIG. 9 (a) is a top view of the solar cell module 14 of 5th Embodiment.
  • FIG. 9B is a cross-sectional view of the solar cell module 14.
  • This embodiment differs from the first embodiment in that a reflective layer 9 that reflects light L1 (fluorescence) emitted from the optical functional material 8 is provided on the end surface 4d adjacent to the light incident surface 4a of the light guide 4. This is the point.
  • the reflective layer 9 is provided on all four end faces 4d of the light guide 4.
  • the reflective layer 9 may be provided in direct contact with the end surface 4d without an air layer, or may be provided with an air layer on the end surface 4d.
  • a reflective layer made of a metal film such as silver or aluminum, or a reflective layer made of a dielectric multilayer film such as an ESR (Enhanced Specular Reflector) reflective film (manufactured by 3M) can be used.
  • the reflection layer 9 may be a specular reflection layer that specularly reflects incident light, or may be a scattering reflection layer that scatters and reflects incident light.
  • micro-fired PET polyethylene terephthalate
  • Furukawa Electric can be used as the scattering reflection layer.
  • the reflection layer 9 reflects the light L1 traveling from the inside of the light guide 4 toward the outside of the light guide 4 toward the inside of the light guide 4. Therefore, the light L1 leaking outside from the end face 4d of the light guide 4 can be reduced, and the light L1 can be efficiently incident on the solar cell element 6.
  • a solar cell module 14 of the present embodiment a solar cell module capable of reducing the light L1 leaking from the end face 4d of the light guide 4 and efficiently generating power is provided.
  • FIG. 10 is a cross-sectional view of the solar cell module 15 of the sixth embodiment.
  • the difference from the first embodiment is that a portion (light emission surface 4c) where the solar cell element 6 is installed in a surface (second main surface 4b) facing the light incident surface 4a of the light guide 4.
  • a reflective layer 7 for reflecting the light L1 (fluorescence) emitted from the optical functional material 8 is provided.
  • the reflective layer 7 is provided on the entire surface of the second main surface 4b other than the light exit surface 4c of the light guide 4.
  • the reflective layer 7 may be provided in direct contact with the second main surface 4b without an air layer, or may be provided on the second main surface 4b with an air layer interposed therebetween.
  • the reflective layer 7 a reflective layer made of a metal film such as silver or aluminum, or a reflective layer made of a dielectric multilayer film such as an ESR (Enhanced Specular Reflector) reflective film (manufactured by 3M) can be used.
  • the reflection layer 7 may be a specular reflection layer that specularly reflects incident light, or a scattering reflection layer that scatters and reflects incident light.
  • a scattering reflection layer is used for the reflection layer 7, the amount of light that goes directly in the direction of the solar cell element 6 increases, so that the light collection efficiency to the solar cell element 6 increases and the amount of power generation increases. In addition, since the reflected light is scattered, changes in the amount of power generation with time and season are averaged.
  • micro-fired PET polyethylene terephthalate
  • Furukawa Electric can be used as the scattering reflection layer.
  • the reflection layer 7 reflects the light L 1 traveling from the inside of the light guide 4 toward the outside of the light guide 4 toward the inside of the light guide 4. Therefore, the light L1 leaking outside from the second main surface 4b of the light guide 4 can be reduced, and the light L1 can be efficiently incident on the solar cell element 6.
  • the reflection layer 7 reflects the light L, which is incident from the light incident surface 4 a but is not absorbed by the optical functional material 8 and is emitted from the second main surface 4 b, toward the inside of the light guide 4. Therefore, both the light L directly incident from the light incident surface 4 a and the light L reflected by the reflective layer 7 can be absorbed by the optical functional material 8. Therefore, even if the concentration of the optical functional material 8 is reduced, the light L incident from the light incident surface 4a can be efficiently converted into light L1 (fluorescence).
  • the optical functional material 8 used for the light guide 4 a material having a high fluorescence quantum yield is desirable.
  • the optical functional material 8 having a high fluorescence quantum yield has a small Stokes shift, it absorbs the light L ⁇ b> 1 emitted by itself. This causes the problem of self-absorption. Therefore, the loss of the light L1 due to self absorption increases as the concentration of the contained optical functional material 8 increases.
  • the reflective layer 7 is provided on the second main surface 4b, the light L can be sufficiently absorbed even if the concentration of the optical functional material 8 contained in the light guide 4 is reduced. it can. By reducing the concentration of the optical functional material 8, the loss of the light L1 due to self-absorption is reduced, and efficient power generation becomes possible.
  • the solar cell module 14 of the present embodiment the light L1 leaking from the second main surface 4b of the light guide 4 is reduced by the reflective layer 7, and self-absorption by the optical functional material is suppressed. Since it is possible, efficient power generation becomes possible.
  • FIG. 11 is a cross-sectional view of the solar cell module 16 of the seventh embodiment.
  • This embodiment is different from the sixth embodiment in that the thickness of the light guide 5 in the peripheral region 5F increases as the solar cell element 6 is approached.
  • the second main surface 5b of the light guide 5 excluding the light exit surface 5c is inclined at a constant angle with respect to the light incident surface 5a. It is not limited. For example, a part or all of the second main surface 5b of the light guide 5 except the light emission surface 5c may be curved.
  • the light L1 emitted from the optical functional material 8 can be efficiently incident on the solar cell element 6 by the inclined surface provided on the second main surface 5b of the light guide 5. it can. Therefore, efficient power generation becomes possible.
  • FIG. 12 is a cross-sectional view of the solar cell module 17 according to the eighth embodiment.
  • This embodiment is different from the first embodiment in that the light guide 20 is formed by laminating a first layer 19 including an optical functional material and a second layer 18 not including the optical functional material. It is a point.
  • the first layer 19 is a fluorescent film that includes a transparent base material that does not contain a phosphor and an optical functional material dispersed inside the transparent base material.
  • the optical functional material the same one as in the first embodiment (one that converts light incident from the outside of the light guide 20 into fluorescence) is used.
  • the second layer 18 is a plate-like transparent light guide made of a highly transparent organic material or inorganic material such as acrylic resin, polycarbonate resin, or glass.
  • the transparent base material and the transparent light guide are transparent layers that do not contain an optical functional material. Even those made of a material that is not transparent can be used as a transparent substrate and a transparent light guide.
  • the first layer 19 and the second layer 18 are detachably bonded with an adhesive.
  • the first layer 19 is peeled off from the second layer 18 and replaced when damage, deterioration, or adhesion of foreign matter (such as dust or bird droppings) occurs.
  • the first layer 19 and the second layer 18 are arranged in this order from the outside light incident side.
  • the surface of the first layer 19 opposite to the second layer 18 is the first main surface 20a of the light guide 20, and the main surface of the second layer 18 opposite to the first layer 19 is conductive.
  • the solar cell element 6 is installed on the second main surface 20 b of the light guide 20.
  • the first main surface 20a of the light guide 20 is a light incident surface on which light enters from the outside, and the portion of the second main surface 20b of the light guide 20 where the solar cell element 6 is installed is a solar cell. This is a light emission surface 20 c that emits light to the element 6.
  • the light guide 20 includes a facing region 20T facing the light receiving surface of the solar cell element 6, and a peripheral region 20F around the facing region 20T.
  • the first layer 19 is provided in at least a part of the peripheral region 20F.
  • the first layer 19 has an opening having the same size as the light receiving surface of the solar cell element 6, and the first layer 19 is provided in the entire peripheral region 20F.
  • the configuration of the first layer 19 is not limited to this.
  • the opening of the first layer 19 may be made larger than the light receiving surface of the solar cell element 6 or may be made smaller than the light receiving surface of the solar cell element 6.
  • the light (fluorescence) emitted from the first layer 19 propagates through the first layer 19 and the second layer 18 and enters the solar cell element 6 from the light exit surface 20c. Since light enters the solar cell element 6 through both the first layer 19 containing the optical functional material and the second layer 18 not containing the optical functional material, the entire light guide is a layer containing the optical functional material. Compared with the case where it is formed by, self-absorption by the optical functional material can be suppressed.
  • the light incident on the facing region 20T of the light guide 20 passes through the opening of the first layer 19 and the second layer 18 and enters the solar cell element 6. Since the opto-region 20T does not contain the optical functional material, the light incident from the outside enters the solar cell element 6 without being absorbed by the optical functional material. Therefore, the light incident on the facing region 20T can be efficiently used for power generation.
  • the light guide 20 is formed by the two-layer structure of the first layer 19 and the second layer 18, the light guide 20 is made light. Therefore, it is possible to reduce the loss of light when propagating and to efficiently generate power.
  • the first layer 18 and the second layer 19 are joined so as to be able to chestnuts depending on the adhesive, the first layer 19 is damaged, deteriorated, or has adhered foreign matter (such as dust or bird droppings).
  • the power generation efficiency is reduced, only the first layer 19 can be peeled off from the second layer 18 and replaced. Therefore, the maintenance cost can be reduced as compared with the case where the entire light guide is replaced.
  • FIG. 13 is a cross-sectional view of the solar cell module 21 of the ninth embodiment.
  • This embodiment is different from the eighth embodiment in that the light guide 25 includes a first layer 24 that does not include an optical functional material, a second layer 23 that includes an optical functional material, and a first layer that does not include an optical functional material.
  • the third layer 22 is laminated.
  • the above layered structure (first layer 24, A second layer 23 and a third layer 22) are formed.
  • the optical functional material in the solution penetrates into the PMMA substrate, and selectively forms a layer (second layer 23) of the optical functional material in a specific region in the thickness direction of the PMMA substrate.
  • Transparent layers (the first layer 24 and the third layer 22) containing almost no optical functional material are formed above and below the optical functional material layer.
  • the first layer 24, the second layer 23, and the third layer 22 are arranged in this order from the outside light incident side.
  • the surface of the first layer 24 opposite to the second layer 23 is the first main surface 25a of the light guide 25, and the main surface of the third layer 22 opposite to the second layer 23 is conductive.
  • the solar cell element 6 is installed on the second main surface 25 b of the light guide 25.
  • the 1st main surface 25a of the light guide 25 is a light-incidence surface in which light injects from the outside, and the part in which the solar cell element 6 is installed among the 2nd main surfaces 25b of the light guide 25 is a solar cell.
  • the light guide 25 includes a facing region 25T facing the light receiving surface of the solar cell element 6, and a peripheral region 25F around the facing region 25T.
  • the second layer 23 is provided in at least a part of the peripheral region 25F.
  • the second layer 23 has an opening having the same size as the light receiving surface of the solar cell element 6, and the second layer 23 is provided in the entire peripheral region 25F.
  • the configuration of the second layer 23 is not limited to this.
  • the opening of the second layer 23 may be made larger than the light receiving surface of the solar cell element 6 or may be made smaller than the light receiving surface of the solar cell element 6.
  • the light (fluorescence) emitted from the second layer 23 propagates through the first layer 24, the second layer 23, and the third layer 22, and enters the solar cell element 6 from the light exit surface 25c. . Since light enters the solar cell element 6 through both the second layer 23 containing the optical functional material and the first layer 24 and the third layer 22 not containing the optical functional material, the entire light guide is Self-absorption by the optical functional material can be suppressed as compared with the case where the optical functional material is used.
  • the light incident on the facing region 25T of the light guide 25 passes through the first layer 24, the opening of the second layer 23, and the third layer 22 and enters the solar cell element 6. Since the optical functional material is not included in the facing region 25T, light incident from the outside enters the solar cell element 6 without being absorbed by the optical functional material. Therefore, the light incident on the facing region 25T can be efficiently used for power generation.
  • the light guide 25 is formed by the three-layer structure of the first layer 24, the second layer 23, and the third layer 22, Light loss when light propagates through the light guide 25 can be reduced, and efficient power generation can be performed.
  • FIG. 14 is a cross-sectional view of the solar cell module 26 of the tenth embodiment.
  • the tail point of the eighth embodiment is that the light guide 29 is formed by laminating the first layer 27 containing the optical functional material and the second layer 28 not containing the optical functional material.
  • the light (fluorescence) radiated from the optical functional material is reflected on the end face and the end face adjacent to the light incident face 29a of the light guide 29 (end faces of the first layer 27 and the second layer 28).
  • the point is that a reflective layer 9 is provided.
  • the first layer 27 has the same configuration as the first layer 19 of the eighth embodiment, and the second layer 28 has the same configuration as the second layer 18 of the eighth embodiment.
  • This embodiment is different from the eighth embodiment in that the second layer 28 and the first layer 27 are arranged in this order from the external light incident side.
  • the first layer 27 and the second layer 28 are detachably bonded with an adhesive.
  • the first layer 27 is peeled off from the second layer 28 and exchanged when damage, deterioration, or adhesion of foreign matter (such as dust or bird droppings) occurs.
  • the surface of the second layer 28 opposite to the first layer 27 is a first main surface 29a of the light guide 29, and the main surface of the first layer 27 opposite to the second layer 28 and the first surface 27a.
  • the portion exposed from the first layer 27 is the second main surface of the light guide 29.
  • the solar cell element 6 is installed on the second main surface 29 b of the light guide 29.
  • the first main surface 29a of the light guide 29 is a light incident surface on which light enters from the outside, and the portion of the second main surface 29b of the light guide 29 where the solar cell element 6 is installed is a solar cell. This is a light emission surface 29 c that emits light to the element 6.
  • the light guide 29 includes a facing area 29T facing the light receiving surface of the solar cell element 6, and a peripheral area 29F around the facing area 29T.
  • the first layer 27 is provided in at least a part of the peripheral region 29F.
  • the first layer 27 has an opening having the same size as the light receiving surface of the solar cell element 6, and the first layer 27 is provided in the entire peripheral region 29 ⁇ / b> F.
  • the configuration of the first layer 27 is not limited to this.
  • the opening of the first layer 27 may be made larger than the light receiving surface of the solar cell element 6 or may be made smaller than the light receiving surface of the solar cell element 6.
  • the light (fluorescence) emitted from the first layer 27 propagates through the first layer 27 and the second layer 28 and enters the solar cell element 6 from the light exit surface 29c. Since light enters the solar cell element 6 through both the first layer 27 containing the optical functional material and the second layer 28 not containing the optical functional material, the entire light guide is a layer containing the optical functional material. Compared with the case where it is formed by, self-absorption by the optical functional material can be suppressed.
  • the light incident on the facing region 29T of the light guide 29 passes through the openings of the second layer 28 and the first layer 27 and enters the solar cell element 6. Since the optical functional material is not included in the facing region 29T, the light incident from the outside enters the solar cell element 6 without being absorbed by the optical functional material. Therefore, the light incident on the facing region 29T can be efficiently used for power generation.
  • the reflective layer 9 described in the fifth embodiment is provided on the four end faces of the light guide 29.
  • the reflective layer 9 may be provided in direct contact with the end face of the light guide 29 without an air layer, or may be provided on the end face of the light guide 29 with an air layer interposed therebetween.
  • the reflective layer 9 reflects light traveling from the inside of the light guide 29 toward the outside of the light guide 29 toward the inside of the light guide 29. Therefore, light leaking out from the end face of the light guide 29 can be reduced, and light can be efficiently incident on the solar cell element 6.
  • the light guide 29 is formed by the two-layer structure of the first layer 27 and the second layer 28, the light is transmitted through the light guide 29. Light loss during propagation can be reduced, and efficient power generation can be performed. Moreover, since the reflective layer 9 is provided on the end surface of the light guide 29, light leaking from the end surface of the light guide 29 is reduced, and more efficient power generation is possible.
  • FIG. 15 is a cross-sectional view of the solar cell module 30 of the eleventh embodiment.
  • the difference from the tenth embodiment is that a portion (light emission surface 33c) where the solar cell element 6 is installed in the surface (second main surface 33b) of the light guide 33 that faces the light incident surface 33a.
  • a reflective layer 7 for reflecting light (fluorescence) emitted from the optical functional material is provided.
  • the reflective layer is not provided on the end surface of the light guide 33, but the same reflective layer 9 as in the tenth embodiment may be provided on the end surface of the light guide 33.
  • the light guide 33 is formed by laminating a first layer 31 containing an optical functional material and a second layer 32 not containing the optical functional material.
  • the first layer 31 has the same configuration as the first layer 27 of the tenth embodiment, and the second layer 32 has the same configuration as the second layer 28 of the tenth embodiment.
  • the first layer 31 and the second layer 32 are detachably bonded with an adhesive.
  • the first layer 31 is peeled off from the second layer 32 and replaced when damage, deterioration, or adhesion of foreign matter (such as dust or bird droppings) occurs.
  • the surface of the second layer 32 opposite to the first layer 31 is the first main surface 33a of the light guide 33, the main surface of the first layer 31 opposite to the second layer 32, and the first surface.
  • the portion exposed from the first layer 31 is the second main surface of the light guide 33.
  • the solar cell element 6 is installed on the second main surface 33 b of the light guide 33.
  • the first main surface 33a of the light guide 33 is a light incident surface on which light enters from the outside, and the portion of the second main surface 33b of the light guide 33 where the solar cell element 6 is installed is a solar cell. This is a light emission surface 33 c that emits light to the element 6.
  • the light guide 33 includes a facing region 33T facing the light receiving surface of the solar cell element 6, and a peripheral region 33F around the facing region 33T.
  • the first layer 31 is provided in at least a part of the peripheral region 33F.
  • the first layer 31 has an opening having the same size as the light receiving surface of the solar cell element 6, and the first layer 31 is provided in the entire peripheral region 33F.
  • the configuration of the first layer 31 is not limited to this.
  • the opening of the first layer 31 may be made larger than the light receiving surface of the solar cell element 6 or may be made smaller than the light receiving surface of the solar cell element 6.
  • the reflective layer 7 described in the sixth embodiment is provided in a region other than the light emission surface 33c in the second main surface 33b of the light guide 33.
  • the reflective layer 7 may be provided in direct contact with the second main surface 33b of the light guide 33 without using an air layer, or provided on the second main surface 33b of the light guide 33 with an air layer interposed therebetween. It may be done.
  • the reflection layer 7 reflects light traveling from the inside of the light guide 33 toward the outside of the light guide 33 toward the inside of the light guide 33. Therefore, light leaking out from the end face of the light guide 33 can be reduced, and light can be efficiently incident on the solar cell element 6.
  • the reflective layer 7 directs the light that has entered the light incident surface 33 a but is not absorbed by the optical functional material included in the first layer 31 and is emitted from the second main surface 33 b toward the inside of the light guide 33. reflect. Therefore, both the light directly incident from the light incident surface 33a and the light reflected by the reflective layer 7 can be absorbed by the optical functional material. Therefore, even if the concentration of the optical functional material is reduced, the light incident from the light incident surface 33a can be efficiently converted into fluorescence. By reducing the concentration of the optical functional material, light loss due to self-absorption is reduced, and efficient power generation becomes possible.
  • the light guide 33 is formed by the two-layer structure of the first layer 31 and the second layer 32. Therefore, it is possible to reduce the loss of light when propagating and to efficiently generate power. Further, light leaking from the second main surface 33b of the light guide 33 can be reduced by the reflective layer 7, and self-absorption by the optical functional material can be suppressed, so that more efficient power generation is possible.
  • FIG. 16 is a cross-sectional view of the light guide 36 used in the solar cell module 34 of the twelfth embodiment.
  • This embodiment is different from the eighth embodiment in that the light guide 36 is provided with a plurality of types of optical functional materials as optical functional materials.
  • the light guide 36 is formed by laminating a first layer 35 containing an optical functional material and a second layer 18 not containing the optical functional material.
  • the first layer 35 has a plurality of types of phosphors having different absorption wavelength ranges as optical functional materials (for example, the first phosphor 8a, the second phosphor 8b, and the third phosphor in FIG. 16).
  • the body 8c) is dispersed.
  • the first phosphor 8a absorbs ultraviolet light and emits blue fluorescence
  • the second phosphor 8b absorbs blue light and emits green fluorescence
  • the third phosphor 8c emits green light. Absorbs and emits red fluorescence.
  • the base material on which the optical functional material is dispersed is the same as that described in the eighth embodiment.
  • the first layer 35 and the second layer 18 are detachably bonded with an adhesive.
  • the first layer 35 is peeled off from the second layer 18 and replaced when damage, deterioration, or adhesion of foreign matter (such as dust or bird droppings) occurs.
  • the first layer 35 and the second layer 18 are arranged in this order from the outside light incident side.
  • the surface of the first layer 35 opposite to the second layer 18 is the first main surface 36a of the light guide 36, and the main surface of the second layer 18 opposite to the first layer 35 is conductive. This is the second main surface of the light body.
  • the solar cell element 6 (see FIG. 12) is installed on the second main surface 36 b of the light guide 36.
  • the first main surface 36a of the light guide 36 is a light incident surface on which light L enters from the outside, and the portion of the second main surface 36b of the light guide 36 where the solar cell element 6 is installed is the sun. It is a light emission surface for emitting light L1 to the battery element 6.
  • the mixing ratio of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is, for example, as follows.
  • the mixing ratio of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is shown as a volume ratio with respect to the substrate.
  • First phosphor 8a BASF Lumogen F Violet 570 (trade name) 0.02%
  • Second phosphor 8b BASF Lumogen F Yellow 083 (trade name) 0.02%
  • Third phosphor 8c BASF Lumogen F Red 305 (trade name) 0.02%
  • FIGS. 17 to 20 are diagrams showing the emission characteristics and absorption characteristics of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c.
  • first phosphor indicates the spectrum of sunlight after ultraviolet light is absorbed by the first phosphor 8a
  • second phosphor indicates that blue light is emitted by the second phosphor 8b.
  • third phosphor shows the spectrum of sunlight after green light is absorbed by the third phosphor 8c.
  • first phosphor + second phosphor + third phosphor absorbs ultraviolet light, blue light, and green light by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c.
  • first phosphor is an emission spectrum of the first phosphor 8 a
  • second phosphor is an emission spectrum of the second phosphor 8 b
  • third phosphor is It is an emission spectrum of the 3rd fluorescent substance 8c.
  • first phosphor + second phosphor + third phosphor is emitted from the first end face of the light guide including the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c. Is the spectrum of the emitted light.
  • the first phosphor 8a absorbs light having a wavelength of approximately 420 nm or less
  • the second phosphor 8b absorbs light having a wavelength of approximately 420 nm or more and 520 nm or less
  • the phosphor 8c absorbs light having a wavelength of approximately 520 nm or more and 620 nm or less.
  • the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c absorb almost all light having a wavelength of 620 nm or less in the sunlight incident on the light guide.
  • the proportion of light having a wavelength of 620 nm or less is about 37%. Therefore, 37% of the light incident on the light incident surface of the light guide is absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c included in the light guide.
  • the emission spectrum of the first phosphor 8a has a peak wavelength at 430 nm
  • the emission spectrum of the second phosphor 8b has a peak wavelength at 520 nm
  • the emission of the third phosphor 8c has a peak wavelength at 630 nm.
  • the spectrum of light emitted from the first end face of the light guide including the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is the same as that of the third phosphor 8c.
  • It has a peak wavelength only at a wavelength corresponding to the peak wavelength (630 nm) of the emission spectrum, and the peak wavelength (430 nm) of the emission spectrum of the first phosphor 8a and the peak wavelength (520 nm) of the emission spectrum of the second phosphor 8b.
  • the corresponding wavelength does not have a peak wavelength.
  • the cause of the disappearance of the peak of the emission spectrum corresponding to the first phosphor 8a and the peak of the emission spectrum corresponding to the second phosphor 8b is the energy transfer between the phosphors due to photoluminescence (PL) and the Forster mechanism.
  • Examples thereof include energy transfer between phosphors by (fluorescence resonance energy transfer).
  • Energy transfer by photoluminescence occurs when fluorescence emitted from one phosphor is used as excitation energy for another phosphor.
  • excitation energy directly moves between two adjacent phosphors by electron resonance without going through such light emission and absorption processes. Since energy transfer between phosphors by the Förster mechanism is performed without going through light emission and absorption processes, energy loss is small under optimum conditions.
  • the density of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is increased, and the Forster mechanism is used between the phosphors. Energy transfer is performed.
  • FIG. 21A is a diagram showing energy transfer by photoluminescence
  • FIG. 21B is a diagram showing energy transfer by the Forster mechanism
  • FIG. 22A is a diagram for explaining a generation mechanism of energy transfer by the Förster mechanism
  • FIG. 22B is a diagram showing energy transfer by the Förster mechanism.
  • energy transfer may occur from the excited molecule A to the ground molecule B by the Forster mechanism.
  • the molecule A when the molecule A is excited and undergoes energy transfer to the molecule B, the molecule B emits light. This energy transfer depends on the distance between molecules, the emission spectrum of molecule A, and the absorption spectrum of molecule B.
  • the rate constant k H ⁇ G moving probability
  • is the frequency
  • f ′ H ( ⁇ ) is the emission spectrum of the host molecule A
  • ⁇ ( ⁇ ) is the absorption spectrum of the guest molecule B
  • N is the Avogadro constant
  • n is the refractive index
  • ⁇ 0 is the fluorescence lifetime of the host molecule A
  • R is the intermolecular distance
  • K 2 is the transition dipole moment (2/3 at random).
  • [1] represents the ease of resonance between two adjacent phosphors.
  • FIG. 22A when the peak wavelength of the emission spectrum of the host molecule A is close to the peak wavelength of the absorption spectrum of the guest molecule B, energy transfer due to the Forster mechanism is likely to occur.
  • FIG. 22B when the guest molecule B in the ground state exists near the host molecule A in the excited state, the wave function of the guest molecule A changes due to resonance properties, and the ground state host molecule A and An excited guest molecule B is formed. Thereby, energy transfer occurs between the host molecule A and the guest molecule B, and the guest molecule B emits light.
  • the intermolecular distance at which energy transfer by the Forster mechanism occurs is usually about 10 nm. If the conditions are met, energy transfer occurs even when the intermolecular distance is about 20 nm. If the mixing ratio of the first phosphor, the second phosphor, and the third phosphor described above is used, the distance between the phosphors is shorter than 20 nm. Therefore, energy transfer by the Forster mechanism can occur sufficiently. Moreover, the emission spectra and absorption spectra of the first phosphor, the second phosphor, and the third phosphor shown in FIGS. 17 and 19 sufficiently satisfy the condition [1].
  • the light guide although the phosphors having the three different emission spectra (the first phosphor, the second phosphor, and the third phosphor) are mixed, the light guide is substantially affected by the energy transfer by the Förster mechanism. In this case, only the emission of the third phosphor occurs.
  • the emission quantum efficiency of the third phosphor is, for example, 92%. Therefore, by mixing the first phosphor, the second phosphor, and the third phosphor in the light guide, light in the wavelength region up to 620 nm is absorbed, and red light emission with a peak wavelength of 630 nm is achieved with an efficiency of 92%. Can be generated.
  • This type of energy transfer phenomenon is unique to organic phosphors and is generally considered not to occur in inorganic phosphors, but in some inorganic nanoparticle phosphors such as quantum dots, Those that cause energy transfer between inorganic materials or between inorganic materials and organic materials by a star mechanism are known.
  • energy transfer occurs between two types of quantum dots having different sizes of ZnO / MgZnO core / shell structure. Since a quantum dot having a dimensional ratio of 1: ⁇ 2 has a resonating exciton level, for example, 2 having a radius of 3 nm (peak wavelength of emission spectrum: 350 nm) and a radius of 4.5 nm (peak wavelength of emission spectrum: 357 nm). Between types of quantum dots, energy transfer occurs from small to large quantum dots. Energy transfer also occurs between two different sized quantum dots of the CdSe / ZnS core-shell structure.
  • Mn2 + doped ZnSe quantum dots having a diameter of 8 nm to 9 nm have emission peaks at 450 nm and 580 nm, and are dye molecules 1 ', 3'-dihydro-1', 3 ', 3'-trimethyl-6-nitrospiro [ 2H-1-benzopyran-2,2 '-(2H) -indole] is in good agreement with the light absorption spectrum of ring-opened Spiropyran molecule (SPO open; Merocynanine form) Energy transfer to the dye molecule occurs.
  • SPO open Merocynanine form
  • the phosphor A first emits light with a certain efficiency, enters the phosphor B, and the phosphor B absorbs and emits light. Through this process, light is emitted from the phosphor B. In such energy transfer by photoluminescence, energy loss occurs in the light emission process in the phosphor A and the light absorption process in the phosphor B, and the energy transfer efficiency is small.
  • energy transfer by the Forster mechanism occurs not only in a luminescent material such as a phosphor, but also in a non-luminescent material that is excited by external light but deactivates without generating light.
  • the final power generation amount depends on the fluorescence quantum yield of the guest molecule and does not depend on the fluorescence quantum yield of the host molecule. Therefore, even if only the guest molecule is composed of a phosphor having a high fluorescence quantum yield and the host molecule is composed of a phosphor having a low fluorescence quantum yield or a non-light emitting material that does not emit fluorescence, the same amount of power generation can be obtained. Therefore, as compared with the case where a high fluorescence quantum yield is required for all phosphors, such as when energy transfer is performed by photoluminescence, the range of material selection for the host molecule is widened.
  • FIG. 23 is a diagram showing a spectral sensitivity curve of an amorphous silicon solar cell which is an example of the solar cell element 6 together with an emission spectrum of the first phosphor, an emission spectrum of the second phosphor, and an emission spectrum of the third phosphor.
  • the spectrum of the light L1 emitted from the first end face 17c of the light guide body 17 substantially coincides with the emission spectrum of the third phosphor 8c. Therefore, the solar cell element 6 should just have a high sensitivity in the peak wavelength (630 nm) of the emission spectrum of the 3rd fluorescent substance 8c. As shown in FIG. 23, the amorphous silicon solar cell has the highest spectral sensitivity with respect to light having a wavelength near 600 nm.
  • the peak wavelength of the emission spectrum of the third phosphor having the largest peak wavelength of the emission spectrum
  • the spectral sensitivity of the amorphous silicon solar cell at is higher than the spectral sensitivity of the amorphous silicon solar cell at the peak wavelength of the emission spectrum of any of the other phosphors (first phosphor and second phosphor) provided in the light guide. large. Therefore, if an amorphous silicon solar cell is used as the solar cell element 6, power generation can be performed with high efficiency.
  • a part of the external light L incident on the light incident surface 36a is converted into a plurality of optical functional materials (first phosphor 8a, second phosphor 8b, third fluorescence).
  • the light L1 emitted from the optical functional material (third phosphor 8c) having the largest peak wavelength of the emission spectrum, which is absorbed by the body 8c) causes energy transfer by the Forster mechanism between the plurality of optical functional materials.
  • the light is condensed on a light exit surface having a smaller area than the light incident surface 36a and is incident on the solar cell element. Therefore, as the solar cell element, a solar cell having very high spectral sensitivity in a limited narrow wavelength range can be used, and a solar cell module with high power generation efficiency is provided.
  • FIG. 24 is a cross-sectional view of the solar cell module 37 of the thirteenth embodiment.
  • the present embodiment is different from the first embodiment in that the optical functional material 8 is provided in the opposing region 38T of the light guide 38, and the concentration of the optical functional material 8 in the opposing region 38T is the optical functional material in the peripheral region 38F. This is the point where the density is lower than 8.
  • the base material and the optical functional material 8 constituting the light guide 38 are the same as those described in the first embodiment.
  • a transparent region that allows external light to pass through the solar cell element as it is is formed in at least a part of the facing region. However, in the present embodiment, there is no such transparent region.
  • the optical functional material 8 is dispersed throughout the counter area 38T.
  • the optical functional material 8 is dispersed at a uniform concentration throughout the opposing region 38T, but the configuration of the opposing region 38T is not limited to this.
  • the concentration of the optical functional material 8 may be different between the central portion and the peripheral portion (boundary portion with the peripheral region 38F) of the facing region 38T.
  • the solar cell module 37 of the present embodiment a part of the external light incident on the facing region 38T is absorbed by the optical functional material 8 and converted into fluorescence. Therefore, light in which external light and fluorescence are mixed enters the solar cell element 6 from the light exit surface 38c. Even in this configuration, the same effect as in the first embodiment can be obtained.
  • FIG. 25 is a cross-sectional view of the solar cell module 39 of the fourteenth embodiment.
  • This embodiment is different from the first embodiment in that a transparent region in which the optical functional material 8 is not included is provided in a part of the peripheral region 40F of the light guide 40.
  • a transparent region that allows external light to pass through is formed in the vicinity of the facing region 40T. Therefore, light incident obliquely to the light incident surface 40a out of light incident near the facing region 40T is incident on the solar cell element 6 from the light emitting surface 40c without being absorbed by the optical functional material 8. To do. Therefore, the external light that can be used for power generation can be increased.
  • FIG. 26 is a schematic configuration diagram of the solar power generation device 1000.
  • the solar power generation apparatus 1000 includes a solar cell module 1001 that converts sunlight energy into electric power, an inverter (DC / AC converter) 1004 that converts DC power output from the solar cell module 1001 into AC power, A storage battery 1005 that stores DC power output from the battery module 1001.
  • a solar cell module 1001 that converts sunlight energy into electric power
  • an inverter (DC / AC converter) 1004 that converts DC power output from the solar cell module 1001 into AC power
  • a storage battery 1005 that stores DC power output from the battery module 1001.
  • the solar cell module 1001 includes a light guide body 1002 that condenses sunlight and a solar cell element 1003 that generates power by the sunlight collected by the light guide body 1002.
  • a solar cell module 1001 for example, the solar cell module of the above-described embodiment is used.
  • the solar power generation apparatus 1000 supplies power to the external electronic device 1006.
  • the electronic device 1006 is supplied with power from the auxiliary power source 1007 as necessary.
  • the photovoltaic power generation apparatus 1000 includes the above-described solar cell module according to the present invention, the photovoltaic power generation apparatus 1000 has a high power generation efficiency.
  • the present invention can be used for a solar cell module and a solar power generation device.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided is a solar cell module capable of efficiently generating electric power using external light. A solar cell module (1) is provided with: a light guide body (4) which allows fluorescent bodies (8) to absorb light entering from the outside and which propagates within the light guide body (4), fluorescent light radiated from the fluorescent bodies (8); and a solar cell element (6) which is disposed on a surface (4c) of the light guide body (4), the surface (4c) facing the light incident surface (4a) of the light guide body (4). The light guide body (4) is provided with: a facing region (4T) which faces the light receiving surface (6a) of the solar cell element (6); and a peripheral region (4F) which is located around the facing region (4T). The fluorescent bodies (8) are provided in a part of at least the peripheral region (4F) of the light guide body (4).

Description

太陽電池モジュールおよび太陽光発電装置Solar cell module and solar power generation device
 本発明は、太陽電池モジュールおよび太陽光発電装置に関する。 The present invention relates to a solar cell module and a solar power generation device.
 導光体の端面に太陽電池素子を設置し、導光体の内部を伝播した光を太陽電池素子に入射させて発電を行う太陽光発電装置として、特許文献1に記載の太陽光発電装置が知られている。特許文献1の太陽光発電装置は、太陽電子素子とその受光面の入射側に配置された導光体とからなる。導光体は、太陽電池素子の受光面に対向する対向領域と、その周辺部の周辺領域とを備えた透明板からなり、対向領域に入射した光は導光体を透過して太陽電子素子に入射し、周辺領域に入射した光は導光体の内部を伝播して対向領域から太陽電池素子に入射する。 As a solar power generation device that installs a solar cell element on the end face of a light guide and makes light propagated through the light guide enter the solar cell element to generate power, the solar power generation device described in Patent Document 1 is Are known. The solar power generation device of Patent Document 1 includes a solar electronic element and a light guide disposed on the incident side of the light receiving surface. The light guide is made of a transparent plate having a facing region facing the light receiving surface of the solar cell element and a peripheral region of the peripheral portion thereof, and light incident on the facing region is transmitted through the light guide and passes through the solar electronic device. The light incident on the peripheral region propagates through the light guide and enters the solar cell element from the opposing region.
日本国公開特許公報「特開2003-218378号公報」Japanese Patent Publication “Japanese Patent Laid-Open No. 2003-218378”
 特許文献1の太陽光発電装置では、周辺領域に入射した光を導光体の内部に取り込むために、周辺領域の表面に光導入手段として凹凸面を形成している。凹凸面に入射した光は、凹凸部で屈折若しくは反射され、導光体の内部に導入される。導光体の内部に導入された光のうち臨界角以上の角度で導光体の内部に入射した光が導光体の内部を伝播して太陽電池素子に入射するが、凹凸部で屈折若しくは反射される角度は導光体への光の入射角によって変化するため、散乱光のように様々な角度で導光体に光が入射する場合には、その一部しか発電に利用することができない。そのため、曇りの日のように光が雲に散乱されて様々な角度で導光体に光が入射する場合には、効率のよい発電を行うことが難しい。 In the solar power generation device of Patent Document 1, an uneven surface is formed as a light introducing means on the surface of the peripheral region in order to take light incident on the peripheral region into the light guide. The light incident on the uneven surface is refracted or reflected by the uneven portion and introduced into the light guide. Of the light introduced into the light guide, the light incident on the light guide at an angle greater than the critical angle propagates through the light guide and enters the solar cell element. Since the reflected angle varies depending on the incident angle of the light to the light guide, when light enters the light guide at various angles such as scattered light, only a part of it can be used for power generation. Can not. Therefore, when light is scattered on the cloud and the light is incident on the light guide at various angles like a cloudy day, it is difficult to perform efficient power generation.
 本発明の目的は、外光を利用して効率よく発電を行うことが可能な太陽電池モジュールおよび太陽光発電装置を提供することにある。 An object of the present invention is to provide a solar cell module and a solar power generation apparatus that can efficiently generate power using external light.
 本発明の太陽電池モジュールは、外部から入射した光を蛍光体によって吸収し、前記蛍光体から放射された蛍光を内部で伝播させる導光体と、前記導光体の光入射面と対向する面に設置された太陽電池素子と、を備え、前記導光体には、前記太陽電池素子の受光面と対向する対向領域と、前記対向領域の周囲の周辺領域と、が備えられており、前記導光体の少なくとも前記周辺領域の一部に、前記蛍光体が備えられている。 The solar cell module of the present invention absorbs light incident from the outside by a phosphor and propagates the fluorescence emitted from the phosphor inside, and a surface facing the light incident surface of the light guide A solar cell element installed on the light guide, the light guide body is provided with a facing region facing the light receiving surface of the solar cell element, and a peripheral region around the facing region, The phosphor is provided in at least a part of the peripheral region of the light guide.
 前記導光体の前記対向領域の少なくとも一部には、前記蛍光体が備えられていなくてもよい。 The phosphor may not be provided in at least a part of the facing region of the light guide.
 前記導光体の前記対向領域には前記蛍光体が備えられており、前記対向領域の前記蛍光体の濃度は前記周辺領域の前記蛍光体の濃度よりも薄くなっていてもよい。 The phosphor may be provided in the facing region of the light guide, and the concentration of the phosphor in the facing region may be lower than the concentration of the phosphor in the peripheral region.
 前記導光体の前記周辺領域の厚みは、前記太陽電池素子に近付くにつれて大きくなっていてもよい。 The thickness of the peripheral region of the light guide may increase as it approaches the solar cell element.
 前記導光体の前記光入射面と対向する面には、複数の前記太陽電池素子が設置されていてもよい。 A plurality of the solar cell elements may be installed on a surface of the light guide that faces the light incident surface.
 前記導光体の前記光入射面と対向する面のうち前記太陽電池素子が設置される部分以外の部分には、前記蛍光を反射する反射層が設けられていてもよい。 A reflection layer that reflects the fluorescence may be provided on a portion of the surface of the light guide opposite to the light incident surface other than the portion where the solar cell element is installed.
 前記導光体の前記光入射面と隣接する端面には、前記蛍光を反射する反射層が設けられていてもよい。 A reflection layer that reflects the fluorescence may be provided on an end surface adjacent to the light incident surface of the light guide.
 前記導光体が、前記蛍光体を含む層と、前記蛍光体を含まない層とを積層して形成されていてもよい。 The light guide may be formed by laminating a layer containing the phosphor and a layer not containing the phosphor.
 前記導光体には、前記蛍光体として、複数種類の蛍光体が備えられていてもよい。 The light guide may include a plurality of types of phosphors as the phosphor.
 前記複数種類の蛍光体のうち最も発光スペクトルのピーク波長が大きい蛍光体の発光スペクトルのピーク波長における前記太陽電池素子の分光感度は、他の蛍光体の発光スペクトルのピーク波長における前記太陽電池素子の分光感度よりも大きくてもよい。 The spectral sensitivity of the solar cell element at the peak wavelength of the emission spectrum of the phosphor having the largest emission spectrum peak wavelength among the plurality of types of phosphors is that of the solar cell element at the peak wavelength of the emission spectrum of the other phosphors. It may be larger than the spectral sensitivity.
 前記導光体の前記光入射面の法線方向から見て、前記導光体の前記周辺領域のうち前記蛍光体が備えられた領域の面積が、前記導光体の前記対向領域のうち前記蛍光体が備えられていない領域の面積よりも大きくてもよい。 When viewed from the normal direction of the light incident surface of the light guide, the area of the peripheral region of the light guide that is provided with the phosphor is the area of the counter region of the light guide. It may be larger than the area of the region where the phosphor is not provided.
 本発明の太陽光発電装置は、本発明の太陽電池モジュールを備えている。 The solar power generation device of the present invention includes the solar cell module of the present invention.
 本発明によれば、外光を利用して効率よく発電を行うことが可能な太陽電池モジュールおよび太陽光発電装置を提供することができる。 According to the present invention, it is possible to provide a solar cell module and a solar power generation device that can efficiently generate power using external light.
第1実施形態の太陽電池モジュールの平面図および断面図である。It is the top view and sectional drawing of the solar cell module of 1st Embodiment. 太陽電池モジュールの作用を説明する図である。It is a figure explaining the effect | action of a solar cell module. 日射強度と太陽電池素子の変換効率との関係を示す図である。It is a figure which shows the relationship between solar radiation intensity and the conversion efficiency of a solar cell element. 第2実施形態の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module of 2nd Embodiment. 太陽電池モジュールの作用を説明する図である。It is a figure explaining the effect | action of a solar cell module. 第3実施形態の太陽電池モジュールの平面図および断面図である。It is the top view and sectional drawing of the solar cell module of 3rd Embodiment. 太陽電池モジュールの作用を説明する図である。It is a figure explaining the effect | action of a solar cell module. 第4実施形態の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module of 4th Embodiment. 第5実施形態の太陽電池モジュールの平面図および断面図である。It is the top view and sectional drawing of the solar cell module of 5th Embodiment. 第6実施形態の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module of 6th Embodiment. 第7実施形態の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module of 7th Embodiment. 第8実施形態の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module of 8th Embodiment. 第9実施形態の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module of 9th Embodiment. 第10実施形態の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module of 10th Embodiment. 第11実施形態の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module of 11th Embodiment. 第12実施形態の太陽電池モジュールに用いられる導光体の断面図である。It is sectional drawing of the light guide used for the solar cell module of 12th Embodiment. 蛍光体の吸収特性を示す図である。It is a figure which shows the absorption characteristic of fluorescent substance. 蛍光体の吸収特性を示す図である。It is a figure which shows the absorption characteristic of fluorescent substance. 蛍光体の発光特性を示す図である。It is a figure which shows the light emission characteristic of fluorescent substance. 蛍光体の発光特性を示す図である。It is a figure which shows the light emission characteristic of fluorescent substance. フェルスター機構の説明図である。It is explanatory drawing of a Forster mechanism. フェルスター機構の説明図である。It is explanatory drawing of a Forster mechanism. アモルファスシリコン太陽電池の分光感度曲線を第1蛍光体の発光スペクトル、第2蛍光体の発光スペクトルおよび第3蛍光体の発光スペクトルとともに示す図である。It is a figure which shows the spectral sensitivity curve of an amorphous silicon solar cell with the emission spectrum of 1st fluorescent substance, the emission spectrum of 2nd fluorescent substance, and the emission spectrum of 3rd fluorescent substance. 第13実施形態の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module of 13th Embodiment. 第14実施形態の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module of 14th Embodiment. 太陽光発電装置の概略構成図である。It is a schematic block diagram of a solar power generation device.
[第1実施形態]
 図1(a)は、第1実施形態の太陽電池モジュール1の平面図である。図1(b)は、太陽電池モジュール1の断面図である。
[First Embodiment]
Fig.1 (a) is a top view of the solar cell module 1 of 1st Embodiment. FIG. 1B is a cross-sectional view of the solar cell module 1.
 太陽電池モジュール1は、導光体4と、導光体4の光入射面4aと対向する面4bに設置された太陽電池素子と6と、を備えている。 The solar cell module 1 includes a light guide 4 and solar cell elements 6 installed on a surface 4 b facing the light incident surface 4 a of the light guide 4.
 導光体4は、厚みが一定の略矩形の板状部材である。導光体4の第1主面4aは、外部から光が入射する光入射面であり、導光体4の第2主面4bのうち太陽電池素子6が設置されている部分は、太陽電池素子6に光を射出する光射出面4cである。 The light guide 4 is a substantially rectangular plate member having a constant thickness. The 1st main surface 4a of the light guide 4 is a light-incidence surface in which light enters from the exterior, and the part in which the solar cell element 6 is installed among the 2nd main surfaces 4b of the light guide 4 is a solar cell. This is a light emission surface 4 c that emits light to the element 6.
 導光体4は、アクリル樹脂、ポリカーボネート樹脂、ガラスなどの透明性の高い有機材料もしくは無機材料からなる基材(透明基板)の内部に、光機能材料8を分散させたものである。光機能材料8としては、例えば、紫外光又は可視光を吸収して可視光又は赤外光を放射する蛍光体が含まれている。なお、可視光は380nm以上750nm以下の波長領域の光であり、紫外光は380nm未満の波長領域の光であり、赤外光は750nmよりも大きい波長領域の光である。 The light guide 4 is obtained by dispersing the optical functional material 8 in a base material (transparent substrate) made of a highly transparent organic material or inorganic material such as acrylic resin, polycarbonate resin, or glass. Examples of the optical functional material 8 include a phosphor that absorbs ultraviolet light or visible light and emits visible light or infrared light. Note that visible light is light in a wavelength region of 380 nm to 750 nm, ultraviolet light is light in a wavelength region less than 380 nm, and infrared light is light in a wavelength region larger than 750 nm.
 本実施形態の場合、導光体4の母材としてPMMAが用いられ、光機能材料として、BASF社製のLumogen Red 305(商品名)が用いられている。Lumogen Red 305(商品名)は、578nmに発光スペクトルのピーク波長を有する蛍光体である。導光体4には、光機能材料8として、1種類の蛍光体のみが備えられているが、幅広い波長の光を吸収するために、複数種類の蛍光体が導光体4に備えられていてもよい。 In the case of this embodiment, PMMA is used as the base material of the light guide 4, and Lumogen® Red® 305 (trade name) manufactured by BASF is used as the optical functional material. Lumogen Red 305 (trade name) is a phosphor having an emission spectrum peak wavelength at 578 nm. The light guide 4 is provided with only one type of phosphor as the optical functional material 8, but a plurality of types of phosphors are provided in the light guide 4 in order to absorb light of a wide range of wavelengths. May be.
 導光体4は、太陽電池素子6の受光面6aと対向する対向領域4Tと、対向領域4Tの周囲の周辺領域4Fと、を備えている。周辺領域4Fの少なくとも一部には、光機能材料8が備えられている。 The light guide 4 includes a facing region 4T facing the light receiving surface 6a of the solar cell element 6, and a peripheral region 4F around the facing region 4T. An optical functional material 8 is provided in at least a part of the peripheral region 4F.
 本実施形態の場合、周辺領域4F全体に光機能材料8が設けられており、対向領域4Tには光機能材料8が全く設けられていないが、導光体4の構成はこれに限定されない。例えば、周辺領域4Fの一部のみに光機能材料8が設けられていてもよく、対向領域4Tの一部に光機能材料8が設けられていてもよい。 In the case of this embodiment, the optical functional material 8 is provided in the entire peripheral region 4F, and the optical functional material 8 is not provided at all in the facing region 4T, but the configuration of the light guide 4 is not limited to this. For example, the optical functional material 8 may be provided only in a part of the peripheral region 4F, or the optical functional material 8 may be provided in a part of the facing region 4T.
 太陽電池素子6は、受光面を導光体4の光射出面4cと対向させて配置されている。太陽電池素子6は、透明な接着剤によって光射出面4cと光学接着されていることが好ましい。太陽電池素子6としては、シリコン系太陽電池、化合物系太陽電池、有機系太陽電池などの公知の太陽電池を使用することができる。 The solar cell element 6 is disposed with the light receiving surface facing the light exit surface 4 c of the light guide 4. The solar cell element 6 is preferably optically bonded to the light emitting surface 4c with a transparent adhesive. As the solar cell element 6, a known solar cell such as a silicon solar cell, a compound solar cell, or an organic solar cell can be used.
 太陽電池素子6は、光射出面4cから入射する光のスペクトルに応じた分光感度を有するものが選択される。例えば、導光体4の光入射面4aの法線方向から見て、導光体4の周辺領域4Fのうち光機能材料8が備えられた領域の面積が、導光体4の対向領域4Tのうち光機能材料8が備えられていない領域の面積よりも大きい場合には、対向領域4Tを透過して直接太陽電池素子6に入射する光の光量よりも周辺領域4Fから太陽電池素子6に入射する蛍光の光量のほうが多くなる。よって、この場合には、蛍光のスペクトルに適した分光感度を有する太陽電池が選定される。この場合、太陽電池素子6は、狭い波長領域の光に対して高い分光感度を有していればよいため、仮にタンデム型の太陽電池を用いる場合でも、作製すべき半導体層の数を少なくすることができ、構成が簡単になる。 As the solar cell element 6, one having a spectral sensitivity corresponding to the spectrum of light incident from the light exit surface 4c is selected. For example, when viewed from the normal direction of the light incident surface 4 a of the light guide 4, the area of the peripheral region 4 </ b> F of the light guide 4 where the optical functional material 8 is provided is equal to the opposing region 4 </ b> T of the light guide 4. If the area is larger than the area of the region where the optical functional material 8 is not provided, the amount of light that passes through the facing region 4T and directly enters the solar cell element 6 is changed from the peripheral region 4F to the solar cell element 6. Increasing the amount of incident fluorescence. Therefore, in this case, a solar cell having a spectral sensitivity suitable for the fluorescence spectrum is selected. In this case, the solar cell element 6 only needs to have a high spectral sensitivity with respect to light in a narrow wavelength region, so even if a tandem solar cell is used, the number of semiconductor layers to be manufactured is reduced. Can be configured easily.
 図2は、太陽電池モジュール1の作用を説明する図である。 FIG. 2 is a diagram for explaining the operation of the solar cell module 1.
 導光体4の対向領域4Tに入射した光Lは、対向領域4Tを透過し、太陽電池素子6に入射する。対向領域4Tには光機能材料8が含まれていないので、光Lは光機能材料8によって吸収されることなく太陽電池素子6に入射する。よって、対向領域4Tに入射した光Lを効率よく発電に利用することができる。 The light L incident on the facing region 4T of the light guide 4 passes through the facing region 4T and enters the solar cell element 6. Since the optical functional material 8 is not included in the facing region 4T, the light L is incident on the solar cell element 6 without being absorbed by the optical functional material 8. Therefore, the light L incident on the facing region 4T can be efficiently used for power generation.
 導光体4の周辺領域4Fに入射した光Lは、光機能材料8を励起する。光機能材料8から放射された光L1(蛍光)は、導光体4の内部を伝播し、光射出面4cから太陽電池素子6に入射する。光機能材料8は、あらゆる方向から入射した光を吸収するため、周辺領域4Fに垂直に入射した光だけでなく、斜めに入射した光も発電に利用することができる。よって、昼間と夕方のように時間帯によって光Lの入射角が異なっていたり、雲によって光が散乱されて光Lの入射角度が不規則になっていた場合でも、効率のよい発電が可能となる。 The light L incident on the peripheral region 4F of the light guide 4 excites the optical functional material 8. The light L1 (fluorescence) emitted from the optical functional material 8 propagates through the light guide 4 and enters the solar cell element 6 from the light exit surface 4c. Since the optical functional material 8 absorbs light incident from all directions, not only light incident perpendicularly to the peripheral region 4F but also light incident obliquely can be used for power generation. Therefore, even when the incident angle of the light L is different depending on the time zone, such as daytime and evening, or when the incident angle of the light L is irregular because the light is scattered by the clouds, efficient power generation is possible. Become.
 図3は、日射強度と太陽電池素子6の変換効率との関係を示す図である。図3中、実線は、対向領域4Tの周囲に周辺領域4Fを設けた場合の太陽電池素子6の変換効率を示している。点線は、対向領域4Tの周囲に周辺領域4Fを設けない場合の太陽電池素子6の変換効率を示している。 FIG. 3 is a diagram showing the relationship between the solar radiation intensity and the conversion efficiency of the solar cell element 6. In FIG. 3, the solid line indicates the conversion efficiency of the solar cell element 6 when the peripheral region 4F is provided around the facing region 4T. A dotted line indicates the conversion efficiency of the solar cell element 6 when the peripheral region 4F is not provided around the facing region 4T.
 点線で示すように、太陽電池素子6の変換効率は、日射強度が強い領域では概ね一定の値を示し、日射強度が弱い領域では日射強度の低下とともに大きく低下する。よって、周辺領域4Fを設けずに、直接太陽電池素子6に入射する光のみを発電に利用すると、太陽電池素子6に入射する光の強度がそれほど大きくならないため、日射強度によって変換効率が変動しやすくなる。 As shown by a dotted line, the conversion efficiency of the solar cell element 6 shows a substantially constant value in a region where the solar radiation intensity is strong, and greatly decreases as the solar radiation intensity decreases in a region where the solar radiation intensity is weak. Therefore, when only the light directly incident on the solar cell element 6 is used for power generation without providing the peripheral region 4F, the intensity of the light incident on the solar cell element 6 does not increase so much, so the conversion efficiency varies depending on the solar radiation intensity. It becomes easy.
 一方、実線で示すように、周辺領域4Fを設けた場合には、太陽電池素子6に入射する光の強度は、周辺領域4Fから集光された光の強度のぶんだけ強くなるため、太陽電池素子6の変換効率は日射強度によって変動しにくくなる。よって、曇りの日や夕暮れ時などでも効率のよい発電を行うことが可能となる。 On the other hand, as shown by the solid line, when the peripheral region 4F is provided, the intensity of light incident on the solar cell element 6 is increased by the intensity of the light collected from the peripheral region 4F. The conversion efficiency of the element 6 is less likely to vary depending on the solar radiation intensity. Therefore, efficient power generation can be performed even on a cloudy day or dusk.
 以上のように、本実施形態の太陽電池モジュール1では、太陽電池素子6の周囲に周辺領域4Fを設け、周辺領域4Fに入射した光Lを蛍光に変換して太陽電池素子6に入射させている。そのため、太陽電池素子6に直接入射する光Lだけでなく、太陽電池素子6の周辺部に入射した光も発電に利用することができる。また、光機能材料8はあらゆる方向から入射した光Lを吸収するため、曇りの日のように雲によって散乱された光が導光体4に入射する場合でも、効率のよい発電を行うことが可能となる。 As described above, in the solar cell module 1 of the present embodiment, the peripheral region 4F is provided around the solar cell element 6, and the light L incident on the peripheral region 4F is converted into fluorescence and incident on the solar cell element 6. Yes. Therefore, not only the light L directly incident on the solar cell element 6 but also the light incident on the peripheral portion of the solar cell element 6 can be used for power generation. Further, since the optical functional material 8 absorbs the light L incident from all directions, even when light scattered by the clouds enters the light guide 4 as in a cloudy day, efficient power generation can be performed. It becomes possible.
 なお、本実施形態では、導光体4を厚みが一定の板状部材としたが、導光体4の構成はこれに限らない。例えば、厚みが一定のフィルム状の部材、あるいは、厚みが部分的に異なる板状若しくはフィルム状の部材を導光体4として用いてもよい。また、本実施形態では、導光体4の平面形状を略矩形したが、導光体4の構成はこれに限らない。例えば、平面形状が円、楕円、多角形など、矩形以外の任意の形状の板状若しくはフィルム状の部材を導光体4として用いてもよい。 In this embodiment, the light guide 4 is a plate-like member having a constant thickness, but the configuration of the light guide 4 is not limited to this. For example, a film-like member having a constant thickness, or a plate-like or film-like member having a partially different thickness may be used as the light guide 4. Moreover, in this embodiment, although the planar shape of the light guide 4 was made into the substantially rectangular shape, the structure of the light guide 4 is not restricted to this. For example, a plate-like or film-like member having an arbitrary shape other than a rectangle such as a circle, an ellipse, or a polygon may be used as the light guide 4.
[第2実施形態]
 図4は、第2実施形態の太陽電池モジュール10の断面図である。
[Second Embodiment]
FIG. 4 is a cross-sectional view of the solar cell module 10 of the second embodiment.
 本実施形態において第1実施形態と異なる点は、周辺領域5Fの導光体5の厚みが、太陽電池素子6に近付くにつれて大きくなっている点である。なお、対向領域5Tの導光体5の厚みは一定である。 This embodiment is different from the first embodiment in that the thickness of the light guide 5 in the peripheral region 5F increases as the solar cell element 6 is approached. Note that the thickness of the light guide 5 in the facing region 5T is constant.
 本実施形態の場合、光射出面5cを除く導光体5の第2主面5bは、光入射面5aに対して一定の角度で傾斜しているが、導光体5の構成はこれに限定されない。例えば、光射出面5cを除く導光体5の第2主面5bの一部若しくは全部が湾曲していてもよい。 In the case of the present embodiment, the second main surface 5b of the light guide 5 excluding the light exit surface 5c is inclined at a constant angle with respect to the light incident surface 5a. It is not limited. For example, a part or all of the second main surface 5b of the light guide 5 except the light emission surface 5c may be curved.
 図5(b)は、太陽電池モジュール10の作用を説明する図である。図5(a)は、比較例として、導光体の厚みが一定の場合(第1実施形態の導光体4を用いた場合)の太陽電池モジュールの作用を説明する図である。 FIG. 5B is a diagram for explaining the operation of the solar cell module 10. FIG. 5A is a diagram for explaining the operation of the solar cell module when the thickness of the light guide is constant (when the light guide 4 of the first embodiment is used) as a comparative example.
 図5(a)に示すように、導光体4の周辺領域4Fに入射した光は、光機能材料8で吸収されて光L1(蛍光)に変換される。光L1は全方位に放射されるが、臨界角よりも小さい角度で導光体4の主面(図5(a)では第2主面4b)に入射した光L1は、全反射されずに導光体4の外部に漏れ出す。 As shown in FIG. 5A, the light incident on the peripheral region 4F of the light guide 4 is absorbed by the optical functional material 8 and converted into light L1 (fluorescence). The light L1 is emitted in all directions, but the light L1 incident on the main surface of the light guide 4 (the second main surface 4b in FIG. 5A) at an angle smaller than the critical angle is not totally reflected. Leaks out of the light guide 4.
 図5(b)に示すように、導光体5が平板ではなく、太陽電池素子設置部(対向領域)に向かって肉厚となるように第2主面5b側に傾斜がつけられていると、光機能材料8から太陽電池素子側に放射された蛍光の多くが全反射条件を満たすようになる。そのため、導光体を平板状に形成した場合に比べて、より多くの光を太陽電池素子に入射させることができる。 As shown in FIG. 5B, the light guide 5 is not a flat plate, but is inclined toward the second main surface 5b side so as to become thicker toward the solar cell element installation portion (opposite region). Then, most of the fluorescence emitted from the optical functional material 8 to the solar cell element side satisfies the total reflection condition. Therefore, more light can be made incident on the solar cell element than when the light guide is formed in a flat plate shape.
 以上のように、本実施形態の太陽電池モジュール10では、導光体5の第2主面5bに設けられた傾斜面によって、光機能材料8から放射された光L1を効率よく太陽電池素子6に入射させることができる。よって、効率のよい発電が可能となる。 As described above, in the solar cell module 10 of the present embodiment, the solar cell element 6 efficiently emits the light L1 emitted from the optical functional material 8 by the inclined surface provided on the second main surface 5b of the light guide 5. Can be made incident. Therefore, efficient power generation becomes possible.
[第3実施形態]
 図6(a)は、第3実施形態の太陽電池モジュール11の平面図である。図6(b)は、太陽電池モジュール11の断面図である。
[Third Embodiment]
FIG. 6A is a plan view of the solar cell module 11 of the third embodiment. FIG. 6B is a cross-sectional view of the solar cell module 11.
 本実施形態において第1実施形態と異なる点は、導光体4の光入射面4aと対向する面(第2主面4b)に、複数の太陽電池素子6が設置されている点である。 In the present embodiment, the difference from the first embodiment is that a plurality of solar cell elements 6 are installed on a surface (second main surface 4b) facing the light incident surface 4a of the light guide 4.
 本実施形態の場合、例えば、4つの太陽電池素子6が導光体4の光入射面4a側から見て正方格子状に配置されているが、太陽電池素子6の数や配置はこれに限定されない。例えば、5以上の太陽電池素子6を導光体4の光入射面4a側から見て長方格子状、斜方格子状若しくは六方格子状に配置してもよい。また、太陽電池素子6のピッチ(隣接する2つの太陽電池素子6の中心間の距離)を導光体5の中央部と周辺部で異ならせてもよい。 In the case of this embodiment, for example, the four solar cell elements 6 are arranged in a square lattice shape when viewed from the light incident surface 4a side of the light guide 4, but the number and arrangement of the solar cell elements 6 are limited to this. Not. For example, five or more solar cell elements 6 may be arranged in a rectangular lattice shape, an oblique lattice shape, or a hexagonal lattice shape when viewed from the light incident surface 4 a side of the light guide 4. Further, the pitch of the solar cell elements 6 (the distance between the centers of two adjacent solar cell elements 6) may be different between the central portion and the peripheral portion of the light guide 5.
 図7(a)および図7(b)は、太陽電池モジュール11の作用を説明する図である。 FIG. 7A and FIG. 7B are diagrams for explaining the operation of the solar cell module 11.
 光機能材料8から放射された光L1(蛍光)はあらゆる方向に向かう。導光体4には複数の太陽電池素子6が配置されているため、光L1は長い距離を伝播することなく何れかの太陽電池素子6に入射する。導光体4の内部を光L1が長い距離伝播すると、導光体4の基材による吸収や光機能材料8による自己吸収の影響によって、光L1の一部がロスされる。しかし、本実施形態のように光L1の伝播距離を短くすれば、このようなロスを少なくすることができ、効率のよい発電が可能となる。 The light L1 (fluorescence) emitted from the optical functional material 8 travels in all directions. Since a plurality of solar cell elements 6 are arranged in the light guide 4, the light L <b> 1 enters one of the solar cell elements 6 without propagating a long distance. When the light L1 propagates through the light guide 4 for a long distance, a part of the light L1 is lost due to absorption by the base material of the light guide 4 and self-absorption by the optical functional material 8. However, if the propagation distance of the light L1 is shortened as in the present embodiment, such loss can be reduced, and efficient power generation is possible.
 以上のように、本実施形態の太陽電池モジュール11によれば、導光体4を光L1が伝播する際の光L1のロスを低減し、効率のよい発電を行うことが可能な太陽電池モジュールが提供される。 As described above, according to the solar cell module 11 of this embodiment, the solar cell module capable of reducing the loss of the light L1 when the light L1 propagates through the light guide 4 and performing efficient power generation. Is provided.
[第4実施形態]
 図8は、第4実施形態の太陽電池モジュール12の断面図である。
[Fourth Embodiment]
FIG. 8 is a cross-sectional view of the solar cell module 12 of the fourth embodiment.
 本実施形態において第3実施形態と異なる点は、周辺領域13Fの導光体13の厚みが、太陽電池素子6に近付くにつれて大きくなっている点である。なお、対向領域13Tの導光体13の厚みは一定である。 In this embodiment, the difference from the third embodiment is that the thickness of the light guide 13 in the peripheral region 13F increases as the solar cell element 6 is approached. Note that the thickness of the light guide 13 in the facing region 13T is constant.
 本実施形態の場合、光射出面13cを除く導光体13の第2主面13bは、太陽電池素子6の近傍に位置する部分が光入射面13aに対して一定の角度で傾斜しており、隣接する2つの太陽電池素子6の中間に位置する部分が光入射面13aと平行になっているが、導光体13の構成はこれに限定されない。例えば、光射出面13cを除く導光体13の第2主面13bの一部若しくは全部が湾曲していてもよい。 In the case of the present embodiment, the second main surface 13b of the light guide body 13 excluding the light exit surface 13c is inclined at a constant angle with respect to the light incident surface 13a at a portion located in the vicinity of the solar cell element 6. The portion located in the middle between the two adjacent solar cell elements 6 is parallel to the light incident surface 13a, but the configuration of the light guide 13 is not limited to this. For example, a part or all of the second main surface 13b of the light guide 13 except the light emission surface 13c may be curved.
 本実施形態の太陽電池モジュール12では、導光体13の第2主面13bに設けられた傾斜面によって、光機能材料8から放射された光L1を効率よく太陽電池素子6に入射させることができる。よって、効率のよい発電が可能となる。 In the solar cell module 12 of this embodiment, the light L1 emitted from the optical functional material 8 can be efficiently incident on the solar cell element 6 by the inclined surface provided on the second main surface 13b of the light guide 13. it can. Therefore, efficient power generation becomes possible.
[第5実施形態]
 図9(a)は、第5実施形態の太陽電池モジュール14の平面図である。図9(b)は、太陽電池モジュール14の断面図である。
[Fifth Embodiment]
Fig.9 (a) is a top view of the solar cell module 14 of 5th Embodiment. FIG. 9B is a cross-sectional view of the solar cell module 14.
 本実施形態において第1実施形態と異なる点は、導光体4の光入射面4aと隣接する端面4dに、光機能材料8から放射された光L1(蛍光)を反射する反射層9が設けられている点である。 This embodiment differs from the first embodiment in that a reflective layer 9 that reflects light L1 (fluorescence) emitted from the optical functional material 8 is provided on the end surface 4d adjacent to the light incident surface 4a of the light guide 4. This is the point.
 本実施形態の場合、導光体4の4つの端面4d全てに反射層9が設けられている。反射層9は、端面4dに空気層を介さずに直接接触して設けられていてもよく、端面4dに空気層を介して設けられていてもよい。 In the case of this embodiment, the reflective layer 9 is provided on all four end faces 4d of the light guide 4. The reflective layer 9 may be provided in direct contact with the end surface 4d without an air layer, or may be provided with an air layer on the end surface 4d.
 反射層9としては、銀やアルミニウムなどの金属膜からなる反射層や、ESR(Enhanced Specular Reflector)反射フィルム(3M社製)などの誘電体多層膜からなる反射層などを用いることができる。反射層9は、入射した光を鏡面反射する鏡面反射層でもよいし、入射した光を散乱反射する散乱反射層でもよい。なお、散乱反射層としては、マイクロ発砲PET(ポリエチレン-テレフタレート)(古河電工社製)などを用いることができる。 As the reflective layer 9, a reflective layer made of a metal film such as silver or aluminum, or a reflective layer made of a dielectric multilayer film such as an ESR (Enhanced Specular Reflector) reflective film (manufactured by 3M) can be used. The reflection layer 9 may be a specular reflection layer that specularly reflects incident light, or may be a scattering reflection layer that scatters and reflects incident light. As the scattering reflection layer, micro-fired PET (polyethylene terephthalate) (manufactured by Furukawa Electric) can be used.
 反射層9は、導光体4の内部から導光体4の外部に向けて進行する光L1を導光体4の内部に向けて反射する。そのため、導光体4の端面4dから外部に漏れ出す光L1を少なくし、太陽電池素子6に効率よく光L1を入射させることができる。 The reflection layer 9 reflects the light L1 traveling from the inside of the light guide 4 toward the outside of the light guide 4 toward the inside of the light guide 4. Therefore, the light L1 leaking outside from the end face 4d of the light guide 4 can be reduced, and the light L1 can be efficiently incident on the solar cell element 6.
 以上のように、本実施形態の太陽電池モジュール14によれば、導光体4の端面4dから漏れ出す光L1を低減し、効率よく発電を行うことが可能な太陽電池モジュールが提供される。 As described above, according to the solar cell module 14 of the present embodiment, a solar cell module capable of reducing the light L1 leaking from the end face 4d of the light guide 4 and efficiently generating power is provided.
[第6実施形態]
 図10は、第6実施形態の太陽電池モジュール15の断面図である。
[Sixth Embodiment]
FIG. 10 is a cross-sectional view of the solar cell module 15 of the sixth embodiment.
 本実施形態において第1実施形態と異なる点は、導光体4の光入射面4aと対向する面(第2主面4b)のうち太陽電池素子6が設置される部分(光射出面4c)以外の部分に、光機能材料8から放射された光L1(蛍光)を反射する反射層7が設けられている点である。 In this embodiment, the difference from the first embodiment is that a portion (light emission surface 4c) where the solar cell element 6 is installed in a surface (second main surface 4b) facing the light incident surface 4a of the light guide 4. In other parts, a reflective layer 7 for reflecting the light L1 (fluorescence) emitted from the optical functional material 8 is provided.
 本実施形態の場合、導光体4の光射出面4c以外の第2主面4bの全面に反射層7が設けられている。反射層7は、第2主面4bに空気層を介さずに直接接触して設けられていてもよく、第2主面4bに空気層を介して設けられていてもよい。 In the case of the present embodiment, the reflective layer 7 is provided on the entire surface of the second main surface 4b other than the light exit surface 4c of the light guide 4. The reflective layer 7 may be provided in direct contact with the second main surface 4b without an air layer, or may be provided on the second main surface 4b with an air layer interposed therebetween.
 反射層7としては、銀やアルミニウムなどの金属膜からなる反射層や、ESR(Enhanced Specular Reflector)反射フィルム(3M社製)などの誘電体多層膜からなる反射層などを用いることができる。反射層7は、入射した光を鏡面反射する鏡面反射層でもよいし、入射した光を散乱反射する散乱反射層でもよい。反射層7に散乱反射層を用いた場合には、太陽電池素子6の方向に直接向かう光の光量が増えるため、太陽電池素子6への集光効率が高まり、発電量が増加する。また、反射光が散乱されるため、時間や季節による発電量の変化が平均化される。なお、散乱反射層としては、マイクロ発砲PET(ポリエチレン-テレフタレート)(古河電工社製)などを用いることができる。 As the reflective layer 7, a reflective layer made of a metal film such as silver or aluminum, or a reflective layer made of a dielectric multilayer film such as an ESR (Enhanced Specular Reflector) reflective film (manufactured by 3M) can be used. The reflection layer 7 may be a specular reflection layer that specularly reflects incident light, or a scattering reflection layer that scatters and reflects incident light. When a scattering reflection layer is used for the reflection layer 7, the amount of light that goes directly in the direction of the solar cell element 6 increases, so that the light collection efficiency to the solar cell element 6 increases and the amount of power generation increases. In addition, since the reflected light is scattered, changes in the amount of power generation with time and season are averaged. As the scattering reflection layer, micro-fired PET (polyethylene terephthalate) (manufactured by Furukawa Electric) can be used.
 反射層7は、導光体4の内部から導光体4の外部に向けて進行する光L1を導光体4の内部に向けて反射する。そのため、導光体4の第2主面4bから外部に漏れ出す光L1を少なくし、太陽電池素子6に効率よく光L1を入射させることができる。 The reflection layer 7 reflects the light L 1 traveling from the inside of the light guide 4 toward the outside of the light guide 4 toward the inside of the light guide 4. Therefore, the light L1 leaking outside from the second main surface 4b of the light guide 4 can be reduced, and the light L1 can be efficiently incident on the solar cell element 6.
 また、反射層7は、光入射面4aから入射したが光機能材料8に吸収されずに第2主面4bから射出した光Lを導光体4の内部に向けて反射する。そのため、光入射面4aから直接入射した光Lと反射層7で反射された光Lの双方を光機能材料8に吸収させることができる。よって、光機能材料8の濃度を薄くしても、光入射面4aから入射した光Lを効率よく光L1(蛍光)に変換することができる。 The reflection layer 7 reflects the light L, which is incident from the light incident surface 4 a but is not absorbed by the optical functional material 8 and is emitted from the second main surface 4 b, toward the inside of the light guide 4. Therefore, both the light L directly incident from the light incident surface 4 a and the light L reflected by the reflective layer 7 can be absorbed by the optical functional material 8. Therefore, even if the concentration of the optical functional material 8 is reduced, the light L incident from the light incident surface 4a can be efficiently converted into light L1 (fluorescence).
 導光体4に用いる光機能材料8としては、蛍光量子収率が高いものが望ましいが、蛍光量子収率の高い光機能材料8は、ストークスシフトが小さいため、自身が発光した光L1を吸収してしまう自己吸収の問題が生じる。よって、含有されている光機能材料8の濃度が高いほど自己吸収による光L1のロスは大きくなる。 As the optical functional material 8 used for the light guide 4, a material having a high fluorescence quantum yield is desirable. However, since the optical functional material 8 having a high fluorescence quantum yield has a small Stokes shift, it absorbs the light L <b> 1 emitted by itself. This causes the problem of self-absorption. Therefore, the loss of the light L1 due to self absorption increases as the concentration of the contained optical functional material 8 increases.
 本実施形態では、第2主面4bに反射層7を設置しているため、導光体4に含有されている光機能材料8の濃度を薄くしても光Lを十分に吸収することができる。光機能材料8の濃度を薄くすることで、自己吸収による光L1のロスが低減され、効率のよい発電が可能となる。 In the present embodiment, since the reflective layer 7 is provided on the second main surface 4b, the light L can be sufficiently absorbed even if the concentration of the optical functional material 8 contained in the light guide 4 is reduced. it can. By reducing the concentration of the optical functional material 8, the loss of the light L1 due to self-absorption is reduced, and efficient power generation becomes possible.
 以上のように、本実施形態の太陽電池モジュール14によれば、反射層7によって導光体4の第2主面4bから漏れ出す光L1を低減し、且つ、光機能材料による自己吸収を抑制可能なことから、効率のよい発電が可能となる。 As described above, according to the solar cell module 14 of the present embodiment, the light L1 leaking from the second main surface 4b of the light guide 4 is reduced by the reflective layer 7, and self-absorption by the optical functional material is suppressed. Since it is possible, efficient power generation becomes possible.
[第7実施形態]
 図11は、第7実施形態の太陽電池モジュール16の断面図である。
[Seventh Embodiment]
FIG. 11 is a cross-sectional view of the solar cell module 16 of the seventh embodiment.
 本実施形態において第6実施形態と異なる点は、周辺領域5Fの導光体5の厚みが、太陽電池素子6に近付くにつれて大きくなっている点である。 This embodiment is different from the sixth embodiment in that the thickness of the light guide 5 in the peripheral region 5F increases as the solar cell element 6 is approached.
 本実施形態の場合、光射出面5cを除く導光体5の第2主面5bは、光入射面5aに対して一定の角度で傾斜しているが、導光体5の構成はこれに限定されない。例えば、光射出面5cを除く導光体5の第2主面5bの一部若しくは全部が湾曲していてもよい。 In the case of the present embodiment, the second main surface 5b of the light guide 5 excluding the light exit surface 5c is inclined at a constant angle with respect to the light incident surface 5a. It is not limited. For example, a part or all of the second main surface 5b of the light guide 5 except the light emission surface 5c may be curved.
 本実施形態の太陽電池モジュール16では、導光体5の第2主面5bに設けられた傾斜面によって、光機能材料8から放射された光L1を効率よく太陽電池素子6に入射させることができる。よって、効率のよい発電が可能となる。 In the solar cell module 16 of the present embodiment, the light L1 emitted from the optical functional material 8 can be efficiently incident on the solar cell element 6 by the inclined surface provided on the second main surface 5b of the light guide 5. it can. Therefore, efficient power generation becomes possible.
[第8実施形態]
 図12は、第8実施形態の太陽電池モジュール17の断面図である。
[Eighth Embodiment]
FIG. 12 is a cross-sectional view of the solar cell module 17 according to the eighth embodiment.
 本実施形態において第1実施形態と異なる点は、導光体20が、光機能材料を含む第1の層19と、光機能材料を含まない第2の層18とを積層して形成されている点である。 This embodiment is different from the first embodiment in that the light guide 20 is formed by laminating a first layer 19 including an optical functional material and a second layer 18 not including the optical functional material. It is a point.
 本実施形態の場合、第1の層19は、蛍光体を含まない透明基材と、透明基材の内部に分散された光機能材料と、を含む蛍光フィルムである。光機能材料としては、第1実施形態と同様のもの(導光体20の外部から入射した光を蛍光に変換するもの)が用いられる。第2の層18は、アクリル樹脂、ポリカーボネート樹脂、ガラスなどの透明性の高い有機材料もしくは無機材料からなる板状の透明導光体である。 In the case of this embodiment, the first layer 19 is a fluorescent film that includes a transparent base material that does not contain a phosphor and an optical functional material dispersed inside the transparent base material. As the optical functional material, the same one as in the first embodiment (one that converts light incident from the outside of the light guide 20 into fluorescence) is used. The second layer 18 is a plate-like transparent light guide made of a highly transparent organic material or inorganic material such as acrylic resin, polycarbonate resin, or glass.
 透明基材および透明導光体は、光機能材料を含まない透明層であるが、波長変換を目的として意図的に光機能材料を分散したものでなければ、若干の光機能材料を含み、完全に透明ではない材料で製造されたものであっても透明基材および透明導光体として使用可能である。 The transparent base material and the transparent light guide are transparent layers that do not contain an optical functional material. Even those made of a material that is not transparent can be used as a transparent substrate and a transparent light guide.
 第1の層19と第2の層18は、粘着剤によって剥離可能に接着されている。第1の層19は、破損、劣化、又は異物(砂埃や鳥の糞など)の付着などが生じた場合に、第2の層18から剥離して交換される。 The first layer 19 and the second layer 18 are detachably bonded with an adhesive. The first layer 19 is peeled off from the second layer 18 and replaced when damage, deterioration, or adhesion of foreign matter (such as dust or bird droppings) occurs.
 第1の層19と第2の層18は外光入射側からこの順に配置されている。第1の層19の第2の層18と反対側の面は導光体20の第1主面20aであり、第2の層18の第1の層19とは反対側の主面は導光体20の第2主面である。太陽電池素子6は、導光体20の第2主面20bに設置されている。導光体20の第1主面20aは、外部から光が入射する光入射面であり、導光体20の第2主面20bのうち太陽電池素子6が設置されている部分は、太陽電池素子6に光を射出する光射出面20cである。 The first layer 19 and the second layer 18 are arranged in this order from the outside light incident side. The surface of the first layer 19 opposite to the second layer 18 is the first main surface 20a of the light guide 20, and the main surface of the second layer 18 opposite to the first layer 19 is conductive. This is the second main surface of the light body 20. The solar cell element 6 is installed on the second main surface 20 b of the light guide 20. The first main surface 20a of the light guide 20 is a light incident surface on which light enters from the outside, and the portion of the second main surface 20b of the light guide 20 where the solar cell element 6 is installed is a solar cell. This is a light emission surface 20 c that emits light to the element 6.
 導光体20は、太陽電池素子6の受光面と対向する対向領域20Tと、対向領域20Tの周囲の周辺領域20Fと、を備えている。周辺領域20Fの少なくとも一部には、第1の層19が設置されている。 The light guide 20 includes a facing region 20T facing the light receiving surface of the solar cell element 6, and a peripheral region 20F around the facing region 20T. The first layer 19 is provided in at least a part of the peripheral region 20F.
 本実施形態の場合、第1の層19には、太陽電池素子6の受光面と同じ大きさの開口部が形成されており、第1の層19は周辺領域20F全体に設けられているが、第1の層19の構成はこれに限定されない。例えば、第1の層19の開口部を太陽電池素子6の受光面よりも大きくしてもよいし、太陽電池素子6の受光面よりも小さくしてもよい。 In the case of the present embodiment, the first layer 19 has an opening having the same size as the light receiving surface of the solar cell element 6, and the first layer 19 is provided in the entire peripheral region 20F. The configuration of the first layer 19 is not limited to this. For example, the opening of the first layer 19 may be made larger than the light receiving surface of the solar cell element 6 or may be made smaller than the light receiving surface of the solar cell element 6.
 第1の層19から放射された光(蛍光)は、第1の層19および第2の層18の内部を伝播し、光射出面20cから太陽電池素子6に入射する。光は、光機能材料を含む第1の層19と光機能材料を含まない第2の層18の双方を通って太陽電池素子6に入射するため、導光体全体が光機能材料を含む層で形成されている場合に比べて、光機能材料による自己吸収を抑制することができる。 The light (fluorescence) emitted from the first layer 19 propagates through the first layer 19 and the second layer 18 and enters the solar cell element 6 from the light exit surface 20c. Since light enters the solar cell element 6 through both the first layer 19 containing the optical functional material and the second layer 18 not containing the optical functional material, the entire light guide is a layer containing the optical functional material. Compared with the case where it is formed by, self-absorption by the optical functional material can be suppressed.
 導光体20の対向領域20Tに入射した光は、第1の層19の開口部および第2の層18を通過して太陽電池素子6に入射する。対向領域20Tには光機能材料が含まれていないので、外部から入射した光は光機能材料によって吸収されることなく太陽電池素子6に入射する。よって、対向領域20Tに入射した光を効率よく発電に利用することができる。 The light incident on the facing region 20T of the light guide 20 passes through the opening of the first layer 19 and the second layer 18 and enters the solar cell element 6. Since the opto-region 20T does not contain the optical functional material, the light incident from the outside enters the solar cell element 6 without being absorbed by the optical functional material. Therefore, the light incident on the facing region 20T can be efficiently used for power generation.
 以上のように、本実施形態の太陽電池モジュール17によれば、導光体20を第1の層19と第2の層18の2層構造によって形成しているので、導光体20を光が伝播する際の光のロスを低減し、効率のよい発電を行うことが可能となる。 As described above, according to the solar cell module 17 of the present embodiment, since the light guide 20 is formed by the two-layer structure of the first layer 19 and the second layer 18, the light guide 20 is made light. Therefore, it is possible to reduce the loss of light when propagating and to efficiently generate power.
 また、第1の層18と第2の層19が粘着剤によっては栗可能に接合されているので、第1の層19破損、劣化、又は異物の付着(砂埃や鳥の糞など)などが生じ発電効率が低下した場合には、第1の層19のみを第2の層18から剥がして交換することができる。よって、導光体全体を交換する場合に比べて、保守の費用を少なくすることができる。 In addition, since the first layer 18 and the second layer 19 are joined so as to be able to chestnuts depending on the adhesive, the first layer 19 is damaged, deteriorated, or has adhered foreign matter (such as dust or bird droppings). When the power generation efficiency is reduced, only the first layer 19 can be peeled off from the second layer 18 and replaced. Therefore, the maintenance cost can be reduced as compared with the case where the entire light guide is replaced.
[第9実施形態]
 図13は、第9実施形態の太陽電池モジュール21の断面図である。
[Ninth Embodiment]
FIG. 13 is a cross-sectional view of the solar cell module 21 of the ninth embodiment.
 本実施形態において第8実施形態と異なる点は、導光体25が、光機能材料を含まない第1の層24と光機能材料を含む第2の層23と、光機能材料を含まない第3の層22とを積層して形成されている点である。 This embodiment is different from the eighth embodiment in that the light guide 25 includes a first layer 24 that does not include an optical functional material, a second layer 23 that includes an optical functional material, and a first layer that does not include an optical functional material. The third layer 22 is laminated.
 本実施形態の場合、太陽電池素子の設置部をマスクした透明なPMMA基板に、トルエン溶媒中に光機能材料を分散させた溶液を塗布することで、上記の層状構造(第1の層24、第2の層23および第3の層22)を形成している。溶液中の光機能材料は、PMMA基板の内部に浸透し、PMMA基板の厚み方向の特定領域に選択的に光機能材料の層(第2の層23)を形成する。光機能材料の層の上下には、光機能材料が殆ど含まれない透明な層(第1の層24および第3の層22)が形成される。 In the case of this embodiment, by applying a solution in which an optical functional material is dispersed in a toluene solvent to a transparent PMMA substrate masking the installation portion of the solar cell element, the above layered structure (first layer 24, A second layer 23 and a third layer 22) are formed. The optical functional material in the solution penetrates into the PMMA substrate, and selectively forms a layer (second layer 23) of the optical functional material in a specific region in the thickness direction of the PMMA substrate. Transparent layers (the first layer 24 and the third layer 22) containing almost no optical functional material are formed above and below the optical functional material layer.
 第1の層24と第2の層23と第3の層22は外光入射側からこの順に配置されている。第1の層24の第2の層23と反対側の面は導光体25の第1主面25aであり、第3の層22の第2の層23とは反対側の主面は導光体25の第2主面である。太陽電池素子6は、導光体25の第2主面25bに設置されている。導光体25の第1主面25aは、外部から光が入射する光入射面であり、導光体25の第2主面25bのうち太陽電池素子6が設置されている部分は、太陽電池素子6に光を射出する光射出面25cである。 The first layer 24, the second layer 23, and the third layer 22 are arranged in this order from the outside light incident side. The surface of the first layer 24 opposite to the second layer 23 is the first main surface 25a of the light guide 25, and the main surface of the third layer 22 opposite to the second layer 23 is conductive. This is the second main surface of the light body 25. The solar cell element 6 is installed on the second main surface 25 b of the light guide 25. The 1st main surface 25a of the light guide 25 is a light-incidence surface in which light injects from the outside, and the part in which the solar cell element 6 is installed among the 2nd main surfaces 25b of the light guide 25 is a solar cell. This is a light emission surface 25 c that emits light to the element 6.
 導光体25は、太陽電池素子6の受光面と対向する対向領域25Tと、対向領域25Tの周囲の周辺領域25Fと、を備えている。周辺領域25Fの少なくとも一部には、第2の層23が設置されている。 The light guide 25 includes a facing region 25T facing the light receiving surface of the solar cell element 6, and a peripheral region 25F around the facing region 25T. The second layer 23 is provided in at least a part of the peripheral region 25F.
 本実施形態の場合、第2の層23には、太陽電池素子6の受光面と同じ大きさの開口部が形成されており、第2の層23は周辺領域25F全体に設けられているが、第2の層23の構成はこれに限定されない。例えば、第2の層23の開口部を太陽電池素子6の受光面よりも大きくしてもよいし、太陽電池素子6の受光面よりも小さくしてもよい。 In the case of the present embodiment, the second layer 23 has an opening having the same size as the light receiving surface of the solar cell element 6, and the second layer 23 is provided in the entire peripheral region 25F. The configuration of the second layer 23 is not limited to this. For example, the opening of the second layer 23 may be made larger than the light receiving surface of the solar cell element 6 or may be made smaller than the light receiving surface of the solar cell element 6.
 第2の層23から放射された光(蛍光)は、第1の層24、第2の層23および第3の層22の内部を伝播し、光射出面25cから太陽電池素子6に入射する。光は、光機能材料を含む第2の層23と光機能材料を含まない第1の層24および第3の層22の双方を通って太陽電池素子6に入射するため、導光体全体が光機能材料を含む層で形成されている場合に比べて、光機能材料による自己吸収を抑制することができる。 The light (fluorescence) emitted from the second layer 23 propagates through the first layer 24, the second layer 23, and the third layer 22, and enters the solar cell element 6 from the light exit surface 25c. . Since light enters the solar cell element 6 through both the second layer 23 containing the optical functional material and the first layer 24 and the third layer 22 not containing the optical functional material, the entire light guide is Self-absorption by the optical functional material can be suppressed as compared with the case where the optical functional material is used.
 導光体25の対向領域25Tに入射した光は、第1の層24、第2の層23の開口部および第3の層22を通過して太陽電池素子6に入射する。対向領域25Tには光機能材料が含まれていないので、外部から入射した光は光機能材料によって吸収されることなく太陽電池素子6に入射する。よって、対向領域25Tに入射した光を効率よく発電に利用することができる。 The light incident on the facing region 25T of the light guide 25 passes through the first layer 24, the opening of the second layer 23, and the third layer 22 and enters the solar cell element 6. Since the optical functional material is not included in the facing region 25T, light incident from the outside enters the solar cell element 6 without being absorbed by the optical functional material. Therefore, the light incident on the facing region 25T can be efficiently used for power generation.
 以上のように、本実施形態の太陽電池モジュール21によれば、導光体25を第1の層24と第2の層23と第3の層22の3層構造によって形成しているので、導光体25を光が伝播する際の光のロスを低減し、効率のよい発電を行うことが可能となる。 As described above, according to the solar cell module 21 of the present embodiment, the light guide 25 is formed by the three-layer structure of the first layer 24, the second layer 23, and the third layer 22, Light loss when light propagates through the light guide 25 can be reduced, and efficient power generation can be performed.
[第10実施形態]
 図14は、第10実施形態の太陽電池モジュール26の断面図である。
[Tenth embodiment]
FIG. 14 is a cross-sectional view of the solar cell module 26 of the tenth embodiment.
 本実施形態において第8実施形態と尾となる点は、導光体29が、光機能材料を含む第1の層27と、光機能材料を含まない第2の層28とを積層して形成されている点と、導光体29の光入射面29aと隣接する端面(第1の層27および第2の層28の端面)に、光機能材料から放射された光(蛍光)を反射する反射層9が設けられている点である。 In this embodiment, the tail point of the eighth embodiment is that the light guide 29 is formed by laminating the first layer 27 containing the optical functional material and the second layer 28 not containing the optical functional material. The light (fluorescence) radiated from the optical functional material is reflected on the end face and the end face adjacent to the light incident face 29a of the light guide 29 (end faces of the first layer 27 and the second layer 28). The point is that a reflective layer 9 is provided.
 第1の層27は、第8実施形態の第1の層19と同じ構成であり、第2の層28は、第8実施形態の第2の層18と同じ構成である。本実施形態では、第2の層28と第1の層27が外光入射側からこの順に配置されている点が、第8実施形態と異なる。 The first layer 27 has the same configuration as the first layer 19 of the eighth embodiment, and the second layer 28 has the same configuration as the second layer 18 of the eighth embodiment. This embodiment is different from the eighth embodiment in that the second layer 28 and the first layer 27 are arranged in this order from the external light incident side.
 第1の層27と第2の層28は、粘着剤によって剥離可能に接着されている。第1の層27は、破損、劣化、又は異物(砂埃や鳥の糞など)の付着などが生じた場合に、第2の層28から剥離して交換される。 The first layer 27 and the second layer 28 are detachably bonded with an adhesive. The first layer 27 is peeled off from the second layer 28 and exchanged when damage, deterioration, or adhesion of foreign matter (such as dust or bird droppings) occurs.
 第2の層28の第1の層27と反対側の面は導光体29の第1主面29aであり、第1の層27の第2の層28とは反対側の主面および第2の層28の光入射面29aと対向する主面のうち第1の層27から露出している部分は導光体29の第2主面である。太陽電池素子6は導光体29の第2主面29bに設置されている。導光体29の第1主面29aは、外部から光が入射する光入射面であり、導光体29の第2主面29bのうち太陽電池素子6が設置されている部分は、太陽電池素子6に光を射出する光射出面29cである。 The surface of the second layer 28 opposite to the first layer 27 is a first main surface 29a of the light guide 29, and the main surface of the first layer 27 opposite to the second layer 28 and the first surface 27a. Of the main surface of the second layer 28 facing the light incident surface 29 a, the portion exposed from the first layer 27 is the second main surface of the light guide 29. The solar cell element 6 is installed on the second main surface 29 b of the light guide 29. The first main surface 29a of the light guide 29 is a light incident surface on which light enters from the outside, and the portion of the second main surface 29b of the light guide 29 where the solar cell element 6 is installed is a solar cell. This is a light emission surface 29 c that emits light to the element 6.
 導光体29は、太陽電池素子6の受光面と対向する対向領域29Tと、対向領域29Tの周囲の周辺領域29Fと、を備えている。周辺領域29Fの少なくとも一部には、第1の層27が設置されている。 The light guide 29 includes a facing area 29T facing the light receiving surface of the solar cell element 6, and a peripheral area 29F around the facing area 29T. The first layer 27 is provided in at least a part of the peripheral region 29F.
 本実施形態の場合、第1の層27には、太陽電池素子6の受光面と同じ大きさの開口部が形成されており、第1の層27は周辺領域29F全体に設けられているが、第1の層27の構成はこれに限定されない。例えば、第1の層27の開口部を太陽電池素子6の受光面よりも大きくしてもよいし、太陽電池素子6の受光面よりも小さくしてもよい。 In the present embodiment, the first layer 27 has an opening having the same size as the light receiving surface of the solar cell element 6, and the first layer 27 is provided in the entire peripheral region 29 </ b> F. The configuration of the first layer 27 is not limited to this. For example, the opening of the first layer 27 may be made larger than the light receiving surface of the solar cell element 6 or may be made smaller than the light receiving surface of the solar cell element 6.
 第1の層27から放射された光(蛍光)は、第1の層27および第2の層28の内部を伝播し、光射出面29cから太陽電池素子6に入射する。光は、光機能材料を含む第1の層27と光機能材料を含まない第2の層28の双方を通って太陽電池素子6に入射するため、導光体全体が光機能材料を含む層で形成されている場合に比べて、光機能材料による自己吸収を抑制することができる。 The light (fluorescence) emitted from the first layer 27 propagates through the first layer 27 and the second layer 28 and enters the solar cell element 6 from the light exit surface 29c. Since light enters the solar cell element 6 through both the first layer 27 containing the optical functional material and the second layer 28 not containing the optical functional material, the entire light guide is a layer containing the optical functional material. Compared with the case where it is formed by, self-absorption by the optical functional material can be suppressed.
 導光体29の対向領域29Tに入射した光は、第2の層28および第1の層27の開口部を通過して太陽電池素子6に入射する。対向領域29Tには光機能材料が含まれていないので、外部から入射した光は光機能材料によって吸収されることなく太陽電池素子6に入射する。よって、対向領域29Tに入射した光を効率よく発電に利用することができる。 The light incident on the facing region 29T of the light guide 29 passes through the openings of the second layer 28 and the first layer 27 and enters the solar cell element 6. Since the optical functional material is not included in the facing region 29T, the light incident from the outside enters the solar cell element 6 without being absorbed by the optical functional material. Therefore, the light incident on the facing region 29T can be efficiently used for power generation.
 導光体29の4つの端面には、第5実施形態で説明した反射層9が設けられている。反射層9は、導光体29の端面に空気層を介さずに直接接触して設けられていてもよく、導光体29の端面に空気層を介して設けられていてもよい。反射層9は、導光体29の内部から導光体29の外部に向けて進行する光を導光体29の内部に向けて反射する。そのため、導光体29の端面から外部に漏れ出す光を少なくし、太陽電池素子6に効率よく光を入射させることができる。 The reflective layer 9 described in the fifth embodiment is provided on the four end faces of the light guide 29. The reflective layer 9 may be provided in direct contact with the end face of the light guide 29 without an air layer, or may be provided on the end face of the light guide 29 with an air layer interposed therebetween. The reflective layer 9 reflects light traveling from the inside of the light guide 29 toward the outside of the light guide 29 toward the inside of the light guide 29. Therefore, light leaking out from the end face of the light guide 29 can be reduced, and light can be efficiently incident on the solar cell element 6.
 以上のように、本実施形態の太陽電池モジュール26よれば、導光体29を第1の層27と第2の層28の2層構造によって形成しているので、導光体29を光が伝播する際の光のロスを低減し、効率のよい発電を行うことが可能となる。また、反射層9を導光体29の端面に設けているので、導光体29の端面から漏れ出す光を低減し、さらに効率のよい発電が可能となる。 As described above, according to the solar cell module 26 of the present embodiment, since the light guide 29 is formed by the two-layer structure of the first layer 27 and the second layer 28, the light is transmitted through the light guide 29. Light loss during propagation can be reduced, and efficient power generation can be performed. Moreover, since the reflective layer 9 is provided on the end surface of the light guide 29, light leaking from the end surface of the light guide 29 is reduced, and more efficient power generation is possible.
[第11実施形態]
 図15は、第11実施形態の太陽電池モジュール30の断面図である。
[Eleventh embodiment]
FIG. 15 is a cross-sectional view of the solar cell module 30 of the eleventh embodiment.
 本実施形態において第10実施形態と異なる点は、導光体33の光入射面33aと対向する面(第2主面33b)のうち太陽電池素子6が設置される部分(光射出面33c)以外の部分に、光機能材料から放射された光(蛍光)を反射する反射層7が設けられている点である。なお、図15では、導光体33の端面に反射層が設けられていないが、導光体33の端面に第10実施形態と同様の反射層9を設けてもよい。 In the present embodiment, the difference from the tenth embodiment is that a portion (light emission surface 33c) where the solar cell element 6 is installed in the surface (second main surface 33b) of the light guide 33 that faces the light incident surface 33a. In other parts, a reflective layer 7 for reflecting light (fluorescence) emitted from the optical functional material is provided. In FIG. 15, the reflective layer is not provided on the end surface of the light guide 33, but the same reflective layer 9 as in the tenth embodiment may be provided on the end surface of the light guide 33.
 導光体33は、光機能材料を含む第1の層31と、光機能材料を含まない第2の層32とを積層して形成されている。第1の層31は、第10実施形態の第1の層27と同じ構成であり、第2の層32は、第10実施形態の第2の層28と同じ構成である。 The light guide 33 is formed by laminating a first layer 31 containing an optical functional material and a second layer 32 not containing the optical functional material. The first layer 31 has the same configuration as the first layer 27 of the tenth embodiment, and the second layer 32 has the same configuration as the second layer 28 of the tenth embodiment.
 第1の層31と第2の層32は、粘着剤によって剥離可能に接着されている。第1の層31は、破損、劣化、又は異物(砂埃や鳥の糞など)の付着などが生じた場合に、第2の層32から剥離して交換される。 The first layer 31 and the second layer 32 are detachably bonded with an adhesive. The first layer 31 is peeled off from the second layer 32 and replaced when damage, deterioration, or adhesion of foreign matter (such as dust or bird droppings) occurs.
 第2の層32の第1の層31と反対側の面は導光体33の第1主面33aであり、第1の層31の第2の層32とは反対側の主面および第2の層32の光入射面33aと対向する主面のうち第1の層31から露出している部分は導光体33の第2主面である。太陽電池素子6は導光体33の第2主面33bに設置されている。導光体33の第1主面33aは、外部から光が入射する光入射面であり、導光体33の第2主面33bのうち太陽電池素子6が設置されている部分は、太陽電池素子6に光を射出する光射出面33cである。 The surface of the second layer 32 opposite to the first layer 31 is the first main surface 33a of the light guide 33, the main surface of the first layer 31 opposite to the second layer 32, and the first surface. Of the main surface of the second layer 32 facing the light incident surface 33 a, the portion exposed from the first layer 31 is the second main surface of the light guide 33. The solar cell element 6 is installed on the second main surface 33 b of the light guide 33. The first main surface 33a of the light guide 33 is a light incident surface on which light enters from the outside, and the portion of the second main surface 33b of the light guide 33 where the solar cell element 6 is installed is a solar cell. This is a light emission surface 33 c that emits light to the element 6.
 導光体33は、太陽電池素子6の受光面と対向する対向領域33Tと、対向領域33Tの周囲の周辺領域33Fと、を備えている。周辺領域33Fの少なくとも一部には、第1の層31が設置されている。 The light guide 33 includes a facing region 33T facing the light receiving surface of the solar cell element 6, and a peripheral region 33F around the facing region 33T. The first layer 31 is provided in at least a part of the peripheral region 33F.
 本実施形態の場合、第1の層31には、太陽電池素子6の受光面と同じ大きさの開口部が形成されており、第1の層31は周辺領域33F全体に設けられているが、第1の層31の構成はこれに限定されない。例えば、第1の層31の開口部を太陽電池素子6の受光面よりも大きくしてもよいし、太陽電池素子6の受光面よりも小さくしてもよい。 In the case of the present embodiment, the first layer 31 has an opening having the same size as the light receiving surface of the solar cell element 6, and the first layer 31 is provided in the entire peripheral region 33F. The configuration of the first layer 31 is not limited to this. For example, the opening of the first layer 31 may be made larger than the light receiving surface of the solar cell element 6 or may be made smaller than the light receiving surface of the solar cell element 6.
 導光体33の第2主面33bのうち光射出面33c以外の領域には、第6実施形態で説明した反射層7が設けられている。反射層7は、導光体33の第2主面33bに空気層を介さずに直接接触して設けられていてもよく、導光体33の第2主面33bに空気層を介して設けられていてもよい。 The reflective layer 7 described in the sixth embodiment is provided in a region other than the light emission surface 33c in the second main surface 33b of the light guide 33. The reflective layer 7 may be provided in direct contact with the second main surface 33b of the light guide 33 without using an air layer, or provided on the second main surface 33b of the light guide 33 with an air layer interposed therebetween. It may be done.
 反射層7は、導光体33の内部から導光体33の外部に向けて進行する光を導光体33の内部に向けて反射する。そのため、導光体33の端面から外部に漏れ出す光を少なくし、太陽電池素子6に効率よく光を入射させることができる。 The reflection layer 7 reflects light traveling from the inside of the light guide 33 toward the outside of the light guide 33 toward the inside of the light guide 33. Therefore, light leaking out from the end face of the light guide 33 can be reduced, and light can be efficiently incident on the solar cell element 6.
 また、反射層7は、光入射面33aから入射したが第1の層31に含まれる光機能材料に吸収されずに第2主面33bから射出した光を導光体33の内部に向けて反射する。そのため、光入射面33aから直接入射した光と反射層7で反射された光の双方を光機能材料に吸収させることができる。よって、光機能材料の濃度を薄くしても、光入射面33aから入射した光を効率よく蛍光に変換することができる。光機能材料の濃度を薄くすることで、自己吸収による光のロスが低減され、効率のよい発電が可能となる。 In addition, the reflective layer 7 directs the light that has entered the light incident surface 33 a but is not absorbed by the optical functional material included in the first layer 31 and is emitted from the second main surface 33 b toward the inside of the light guide 33. reflect. Therefore, both the light directly incident from the light incident surface 33a and the light reflected by the reflective layer 7 can be absorbed by the optical functional material. Therefore, even if the concentration of the optical functional material is reduced, the light incident from the light incident surface 33a can be efficiently converted into fluorescence. By reducing the concentration of the optical functional material, light loss due to self-absorption is reduced, and efficient power generation becomes possible.
 以上のように、本実施形態の太陽電池モジュール30によれば、導光体33を第1の層31と第2の層32の2層構造によって形成しているので、導光体33を光が伝播する際の光のロスを低減し、効率のよい発電を行うことが可能となる。また、反射層7によって導光体33の第2主面33bから漏れ出す光を低減し、且つ、光機能材料による自己吸収を抑制可能なことから、さらに効率のよい発電が可能となる。 As described above, according to the solar cell module 30 of the present embodiment, the light guide 33 is formed by the two-layer structure of the first layer 31 and the second layer 32. Therefore, it is possible to reduce the loss of light when propagating and to efficiently generate power. Further, light leaking from the second main surface 33b of the light guide 33 can be reduced by the reflective layer 7, and self-absorption by the optical functional material can be suppressed, so that more efficient power generation is possible.
[第12実施形態]
 図16は、第12実施形態の太陽電池モジュール34に用いられる導光体36の断面図である。
[Twelfth embodiment]
FIG. 16 is a cross-sectional view of the light guide 36 used in the solar cell module 34 of the twelfth embodiment.
 本実施形態において第8実施形態と異なる点は、導光体36に、光機能材料として、複数種類の光機能材料が備えられている点である。 This embodiment is different from the eighth embodiment in that the light guide 36 is provided with a plurality of types of optical functional materials as optical functional materials.
 導光体36は、光機能材料を含む第1の層35と、光機能材料を含まない第2の層18とを積層して形成されている。本実施形態の場合、第1の層35には、光機能材料として、互いに吸収波長域の異なる複数種類の蛍光体(図16では例えば第1蛍光体8a、第2蛍光体8b及び第3蛍光体8c)が分散されている。第1蛍光体8aは、紫外光を吸収して青色の蛍光を放射し、第2蛍光体8bは、青色光を吸収して緑色の蛍光を放射し、第3蛍光体8cは、緑色光を吸収して赤色の蛍光を放射する。光機能材料が分散される基材は、第8実施形態で説明したものと同じである。 The light guide 36 is formed by laminating a first layer 35 containing an optical functional material and a second layer 18 not containing the optical functional material. In the case of this embodiment, the first layer 35 has a plurality of types of phosphors having different absorption wavelength ranges as optical functional materials (for example, the first phosphor 8a, the second phosphor 8b, and the third phosphor in FIG. 16). The body 8c) is dispersed. The first phosphor 8a absorbs ultraviolet light and emits blue fluorescence, the second phosphor 8b absorbs blue light and emits green fluorescence, and the third phosphor 8c emits green light. Absorbs and emits red fluorescence. The base material on which the optical functional material is dispersed is the same as that described in the eighth embodiment.
 第1の層35と第2の層18は、粘着剤によって剥離可能に接着されている。第1の層35は、破損、劣化、又は異物(砂埃や鳥の糞など)の付着などが生じた場合に、第2の層18から剥離して交換される。 The first layer 35 and the second layer 18 are detachably bonded with an adhesive. The first layer 35 is peeled off from the second layer 18 and replaced when damage, deterioration, or adhesion of foreign matter (such as dust or bird droppings) occurs.
 第1の層35と第2の層18は外光入射側からこの順に配置されている。第1の層35の第2の層18と反対側の面は導光体36の第1主面36aであり、第2の層18の第1の層35とは反対側の主面は導光体36の第2主面である。太陽電池素子6(図12参照)は、導光体36の第2主面36bに設置されている。導光体36の第1主面36aは、外部から光Lが入射する光入射面であり、導光体36の第2主面36bのうち太陽電池素子6が設置されている部分は、太陽電池素子6に光L1を射出する光射出面である。 The first layer 35 and the second layer 18 are arranged in this order from the outside light incident side. The surface of the first layer 35 opposite to the second layer 18 is the first main surface 36a of the light guide 36, and the main surface of the second layer 18 opposite to the first layer 35 is conductive. This is the second main surface of the light body. The solar cell element 6 (see FIG. 12) is installed on the second main surface 36 b of the light guide 36. The first main surface 36a of the light guide 36 is a light incident surface on which light L enters from the outside, and the portion of the second main surface 36b of the light guide 36 where the solar cell element 6 is installed is the sun. It is a light emission surface for emitting light L1 to the battery element 6.
 第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cの混合比率は、例えば以下の通りである。なお、第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cの混合比率は基材に対する体積比率で示している。 The mixing ratio of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is, for example, as follows. The mixing ratio of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is shown as a volume ratio with respect to the substrate.
第1蛍光体8a:BASF社製Lumogen F Violet 570(商品名) 0.02%
第2蛍光体8b:BASF社製Lumogen F Yellow 083(商品名) 0.02%
第3蛍光体8c:BASF社製Lumogen F Red 305(商品名) 0.02%
First phosphor 8a: BASF Lumogen F Violet 570 (trade name) 0.02%
Second phosphor 8b: BASF Lumogen F Yellow 083 (trade name) 0.02%
Third phosphor 8c: BASF Lumogen F Red 305 (trade name) 0.02%
 図17ないし図20は、第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cの発光特性及び吸収特性を示す図である。図17において、「第1蛍光体」は、第1蛍光体8aによって紫外光が吸収された後の太陽光のスペクトルを示し、「第2蛍光体」は、第2蛍光体8bによって青色光が吸収された後の太陽光のスペクトルを示し、「第3蛍光体」は、第3蛍光体8cによって緑色光が吸収された後の太陽光のスペクトルを示す。図18において、「第1蛍光体+第2蛍光体+第3蛍光体」は、第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cによって紫外光、青色光及び緑色光が吸収された後の太陽光のスペクトルを示す。図19において、「第1蛍光体」は、第1蛍光体8aの発光スペクトルであり、「第2蛍光体」は、第2蛍光体8bの発光スペクトルであり、「第3蛍光体」は、第3蛍光体8cの発光スペクトルである。図20において、「第1蛍光体+第2蛍光体+第3蛍光体」は、第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cを含む導光体の第1端面から射出される光のスペクトルである。 FIGS. 17 to 20 are diagrams showing the emission characteristics and absorption characteristics of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c. In FIG. 17, “first phosphor” indicates the spectrum of sunlight after ultraviolet light is absorbed by the first phosphor 8a, and “second phosphor” indicates that blue light is emitted by the second phosphor 8b. The spectrum of sunlight after being absorbed is shown, and “third phosphor” shows the spectrum of sunlight after green light is absorbed by the third phosphor 8c. In FIG. 18, “first phosphor + second phosphor + third phosphor” absorbs ultraviolet light, blue light, and green light by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c. The spectrum of sunlight after being applied. In FIG. 19, “first phosphor” is an emission spectrum of the first phosphor 8 a, “second phosphor” is an emission spectrum of the second phosphor 8 b, and “third phosphor” is It is an emission spectrum of the 3rd fluorescent substance 8c. In FIG. 20, “first phosphor + second phosphor + third phosphor” is emitted from the first end face of the light guide including the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c. Is the spectrum of the emitted light.
 図17及び図18に示すように、第1蛍光体8aは、概ね420nm以下の波長の光を吸収し、第2蛍光体8bは、概ね420nm以上520nm以下の波長の光を吸収し、第3蛍光体8cは、概ね520nm以上620nm以下の波長の光を吸収する。第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cによって、導光体に入射した太陽光のうち620nm以下の波長の光が概ね全て吸収される。太陽光のスペクトルにおいて波長が620nm以下の光の割合は37%程度である。よって、導光体の光入射面に入射した光のうち37%は導光体に含まれる第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cに吸収される。 As shown in FIGS. 17 and 18, the first phosphor 8a absorbs light having a wavelength of approximately 420 nm or less, and the second phosphor 8b absorbs light having a wavelength of approximately 420 nm or more and 520 nm or less. The phosphor 8c absorbs light having a wavelength of approximately 520 nm or more and 620 nm or less. The first phosphor 8a, the second phosphor 8b, and the third phosphor 8c absorb almost all light having a wavelength of 620 nm or less in the sunlight incident on the light guide. In the sunlight spectrum, the proportion of light having a wavelength of 620 nm or less is about 37%. Therefore, 37% of the light incident on the light incident surface of the light guide is absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c included in the light guide.
 図19に示すように、第1蛍光体8aの発光スペクトルは、430nmにピーク波長を有し、第2蛍光体8bの発光スペクトルは、520nmにピーク波長を有し、第3蛍光体8cの発光スペクトルは、630nmにピーク波長を有する。しかしながら、図20に示すように、第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cを含む導光体の第1端面から射出される光のスペクトルは、第3蛍光体8cの発光スペクトルのピーク波長(630nm)に対応する波長にのみピーク波長を有し、第1蛍光体8aの発光スペクトルのピーク波長(430nm)及び第2蛍光体8bの発光スペクトルのピーク波長(520nm)に対応する波長にはピーク波長を有しない。 As shown in FIG. 19, the emission spectrum of the first phosphor 8a has a peak wavelength at 430 nm, the emission spectrum of the second phosphor 8b has a peak wavelength at 520 nm, and the emission of the third phosphor 8c. The spectrum has a peak wavelength at 630 nm. However, as shown in FIG. 20, the spectrum of light emitted from the first end face of the light guide including the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is the same as that of the third phosphor 8c. It has a peak wavelength only at a wavelength corresponding to the peak wavelength (630 nm) of the emission spectrum, and the peak wavelength (430 nm) of the emission spectrum of the first phosphor 8a and the peak wavelength (520 nm) of the emission spectrum of the second phosphor 8b. The corresponding wavelength does not have a peak wavelength.
 第1蛍光体8aに対応する発光スペクトルのピーク及び第2蛍光体8bに対応する発光スペクトルのピークが消失した原因は、フォトルミネッセンス(Photoluminescence ;PL)による蛍光体間のエネルギー移動や、フェルスター機構(蛍光共鳴エネルギー移動)による蛍光体間のエネルギー移動などが挙げられる。フォトルミネッセンスによるエネルギー移動は、一の蛍光体から放射された蛍光が他の蛍光体の励起エネルギーとして利用されることにより生じるものである。フェルスター機構は、このような光の発光及び吸収のプロセスを経ずに、近接した2つの蛍光体の間で励起エネルギーが電子の共鳴により直接移動するものである。フェルスター機構による蛍光体間のエネルギー移動は、光の発光及び吸収のプロセスを介さずに行われるため、最適条件ではエネルギーのロスが小さい。よって、太陽電池モジュールの発電効率の向上に寄与する。本実施形態では、エネルギーロスを抑制して効率よく発電を行うために、第1蛍光体8a、第2蛍光体8bおよび第3蛍光体8cの密度を高くし、蛍光体間でフェルスター機構によるエネルギー移動が行われるようにしている。 The cause of the disappearance of the peak of the emission spectrum corresponding to the first phosphor 8a and the peak of the emission spectrum corresponding to the second phosphor 8b is the energy transfer between the phosphors due to photoluminescence (PL) and the Forster mechanism. Examples thereof include energy transfer between phosphors by (fluorescence resonance energy transfer). Energy transfer by photoluminescence occurs when fluorescence emitted from one phosphor is used as excitation energy for another phosphor. In the Förster mechanism, excitation energy directly moves between two adjacent phosphors by electron resonance without going through such light emission and absorption processes. Since energy transfer between phosphors by the Förster mechanism is performed without going through light emission and absorption processes, energy loss is small under optimum conditions. Therefore, it contributes to the improvement of the power generation efficiency of the solar cell module. In the present embodiment, in order to efficiently generate power while suppressing energy loss, the density of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is increased, and the Forster mechanism is used between the phosphors. Energy transfer is performed.
 ここで、図21及び図22を用いてフェルスター機構について説明する。図21(a)は、フォトルミネッセンスによるエネルギー移動を示す図であり、図21(b)は、フェルスター機構によるエネルギー移動を示す図である。図22(a)は、フェルスター機構によるエネルギー移動の発生機構を説明するための図であり、図22(b)は、フェルスター機構によるエネルギー移動を示す図である。 Here, the Förster mechanism will be described with reference to FIGS. 21 and 22. FIG. 21A is a diagram showing energy transfer by photoluminescence, and FIG. 21B is a diagram showing energy transfer by the Forster mechanism. FIG. 22A is a diagram for explaining a generation mechanism of energy transfer by the Förster mechanism, and FIG. 22B is a diagram showing energy transfer by the Förster mechanism.
 図21(b)に示すように、有機分子や無機ナノ粒子の蛍光体では、励起状態にある分子Aから基底状態の分子Bに対してフェルスター機構によってエネルギー移動が生じることがある。蛍光体では、分子Aが励起されたときに、分子Bにエネルギー移動を起こすと、分子Bが発光する。このエネルギー移動は、分子間の距離と分子Aの発光スペクトルと分子Bの吸収スペクトルに依存する。分子Aをホスト分子、分子Bをゲスト分子とするとき、エネルギー移動するときの速度定数kH→G(移動確率)は式(1)のようになる。 As shown in FIG. 21B, in the phosphor of organic molecules or inorganic nanoparticles, energy transfer may occur from the excited molecule A to the ground molecule B by the Forster mechanism. In the phosphor, when the molecule A is excited and undergoes energy transfer to the molecule B, the molecule B emits light. This energy transfer depends on the distance between molecules, the emission spectrum of molecule A, and the absorption spectrum of molecule B. When the molecule A is a host molecule and the molecule B is a guest molecule, the rate constant k H → G (movement probability) when energy is transferred is as shown in Equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、式(1)において、νは振動数、f′(ν)はホスト分子Aの発光スペクトル、ε(ν)はゲスト分子Bの吸収スペクトル、Nはアボガドロ定数、nは屈折率、τはホスト分子Aの蛍光寿命、Rは分子間距離、Kは遷移双極子モーメント(ランダム時2/3)である。 In equation (1), ν is the frequency, f ′ H (ν) is the emission spectrum of the host molecule A, ε (ν) is the absorption spectrum of the guest molecule B, N is the Avogadro constant, n is the refractive index, τ 0 is the fluorescence lifetime of the host molecule A, R is the intermolecular distance, and K 2 is the transition dipole moment (2/3 at random).
 速度定数が大きいと、蛍光体間でエネルギー移動が生じやすくなる。大きな速度定数を得るためには、以下の条件が満たされることが望ましい。
[1]ホスト分子Aの発光スペクトルとゲスト分子の吸収スペクトルの重なりが大きい。[2]ゲスト分子Bの吸光係数が大きい。
[3]ホスト分子Aとゲスト分子Bとの間の距離が小さい。
When the rate constant is large, energy transfer tends to occur between the phosphors. In order to obtain a large rate constant, it is desirable that the following conditions are satisfied.
[1] The overlap between the emission spectrum of the host molecule A and the absorption spectrum of the guest molecule is large. [2] The extinction coefficient of guest molecule B is large.
[3] The distance between the host molecule A and the guest molecule B is small.
 上記[1]は、近接した2つの蛍光体間での共鳴のし易さを表すものである。例えば、図22(a)に示すように、ホスト分子Aの発光スペクトルのピーク波長とゲスト分子Bの吸収スペクトルのピーク波長とが近いと、フェルスター機構によるエネルギー移動が生じやすくなる。図22(b)に示すように、励起状態のホスト分子Aの近くに基底状態のゲスト分子Bが存在すると、共鳴的性質によりゲスト分子Aの波動関数が変化し、基底状態のホスト分子Aと励起状態のゲスト分子Bができる。これにより、ホスト分子Aとゲスト分子Bとの間でエネルギー移動が生じ、ゲスト分子Bが発光する。 [1] represents the ease of resonance between two adjacent phosphors. For example, as shown in FIG. 22A, when the peak wavelength of the emission spectrum of the host molecule A is close to the peak wavelength of the absorption spectrum of the guest molecule B, energy transfer due to the Forster mechanism is likely to occur. As shown in FIG. 22B, when the guest molecule B in the ground state exists near the host molecule A in the excited state, the wave function of the guest molecule A changes due to resonance properties, and the ground state host molecule A and An excited guest molecule B is formed. Thereby, energy transfer occurs between the host molecule A and the guest molecule B, and the guest molecule B emits light.
 上記[3]において、フェルスター機構によるエネルギー移動が起こる分子間距離は、通常、10nm程度である。条件が合えば、分子間距離が20nm程度であってもエネルギー移動は起きる。上述した第1蛍光体、第2蛍光体及び第3蛍光体の混合比率であれば、蛍光体間の距離は20nmよりも短くなる。よって、フェルスター機構によるエネルギー移動は十分に生じうる。また、図17及び図19に示した第1蛍光体、第2蛍光体及び第3蛍光体の発光スペクトル及び吸収スペクトルは、上記[1]の条件を十分に満たしている。よって、第1蛍光体から第2蛍光体へのエネルギー移動、及び、第2蛍光体から第3蛍光体へのエネルギー移動が生じ、第1蛍光体、第2蛍光体、第3蛍光体の順にカスケード型のエネルギー移動が生じる。 In the above [3], the intermolecular distance at which energy transfer by the Forster mechanism occurs is usually about 10 nm. If the conditions are met, energy transfer occurs even when the intermolecular distance is about 20 nm. If the mixing ratio of the first phosphor, the second phosphor, and the third phosphor described above is used, the distance between the phosphors is shorter than 20 nm. Therefore, energy transfer by the Forster mechanism can occur sufficiently. Moreover, the emission spectra and absorption spectra of the first phosphor, the second phosphor, and the third phosphor shown in FIGS. 17 and 19 sufficiently satisfy the condition [1]. Therefore, energy transfer from the first phosphor to the second phosphor and energy transfer from the second phosphor to the third phosphor occur, and the first phosphor, the second phosphor, and the third phosphor in this order. Cascade type energy transfer occurs.
 導光体では、3つの異なる発光スペクトルを有する蛍光体(第1蛍光体、第2蛍光体、第3蛍光体)を混入しているにもかかわらず、フェルスター機構によるエネルギー移動により、実質的には第3蛍光体の発光のみが生じる。第3蛍光体の発光量子効率は例えば92%である。よって、導光体に第1蛍光体、第2蛍光体及び第3蛍光体を混入することで、620nmまでの波長領域の光を吸収し、92%の効率でピーク波長が630nmの赤色の発光を生じさせることができる。 In the light guide, although the phosphors having the three different emission spectra (the first phosphor, the second phosphor, and the third phosphor) are mixed, the light guide is substantially affected by the energy transfer by the Förster mechanism. In this case, only the emission of the third phosphor occurs. The emission quantum efficiency of the third phosphor is, for example, 92%. Therefore, by mixing the first phosphor, the second phosphor, and the third phosphor in the light guide, light in the wavelength region up to 620 nm is absorbed, and red light emission with a peak wavelength of 630 nm is achieved with an efficiency of 92%. Can be generated.
 このようなエネルギー移動現象は、有機の蛍光体に特有の現象で、一般的に無機の蛍光体では起こらないとされているが、量子ドットなどのいくつかの無機ナノ粒子の蛍光体においてはフェルスター機構により、無機材料間、或いは、無機材料と有機材料との間でエネルギー移動を生じるものが知られている。 This type of energy transfer phenomenon is unique to organic phosphors and is generally considered not to occur in inorganic phosphors, but in some inorganic nanoparticle phosphors such as quantum dots, Those that cause energy transfer between inorganic materials or between inorganic materials and organic materials by a star mechanism are known.
 例えば、ZnO/MgZnOコア・シェル構造の2種類の異なったサイズの量子ドットの間でエネルギー移動が起こる。1:√2の寸法比を持つ量子ドットは共鳴する励起子準位を持つため、例えば半径3nm(発光スペクトルのピーク波長:350nm)と半径4.5nm(発光スペクトルのピーク波長:357nm)の2種類の量子ドットの間では、小さい量子ドットから大きい量子ドットへエネルギー移動が起こる。またCdSe/ZnSコア・シェル構造の2種類の異なったサイズの量子ドットの間でもエネルギー移動が起こる。また、直径8nmないし9nmのMn2+ドープZnSe量子ドットは、450nmと580nmに発光ピークを持ち、色素分子である1’,3’-dihydro-1’,3’,3’-trimethyl-6-nitrospiro[2H-1-benzopyran-2,2’-(2H)-indole] に紫外線を照射して得られる開環型のSpiropyran分子(SPO open; Merocynanine form)の光吸収スペクトルとよく一致し、量子ドットから色素分子へのエネルギー移動が起こる。一般に、無機の蛍光体は、有機の蛍光体に比べて耐光性が優れるため、長期間使用する場合に有利である。 For example, energy transfer occurs between two types of quantum dots having different sizes of ZnO / MgZnO core / shell structure. Since a quantum dot having a dimensional ratio of 1: √2 has a resonating exciton level, for example, 2 having a radius of 3 nm (peak wavelength of emission spectrum: 350 nm) and a radius of 4.5 nm (peak wavelength of emission spectrum: 357 nm). Between types of quantum dots, energy transfer occurs from small to large quantum dots. Energy transfer also occurs between two different sized quantum dots of the CdSe / ZnS core-shell structure. In addition, Mn2 + doped ZnSe quantum dots having a diameter of 8 nm to 9 nm have emission peaks at 450 nm and 580 nm, and are dye molecules 1 ', 3'-dihydro-1', 3 ', 3'-trimethyl-6-nitrospiro [ 2H-1-benzopyran-2,2 '-(2H) -indole] is in good agreement with the light absorption spectrum of ring-opened Spiropyran molecule (SPO open; Merocynanine form) Energy transfer to the dye molecule occurs. In general, an inorganic phosphor is superior in light resistance as compared with an organic phosphor, and thus is advantageous when used for a long period of time.
 通常、2種類の蛍光体を混入した場合には、図21(a)のように、まず蛍光体Aがある効率で発光し、蛍光体Bに入射し、蛍光体Bで光の吸収及び発光のプロセスを経ることによって、蛍光体Bから光が放射される。このようなフォトルミネッセンスによるエネルギー移動は、蛍光体Aにおける光の発光プロセス及び蛍光体Bにおける光の吸収プロセスでエネルギーのロスが生じ、エネルギー移動効率が小さい。 Usually, when two kinds of phosphors are mixed, as shown in FIG. 21A, the phosphor A first emits light with a certain efficiency, enters the phosphor B, and the phosphor B absorbs and emits light. Through this process, light is emitted from the phosphor B. In such energy transfer by photoluminescence, energy loss occurs in the light emission process in the phosphor A and the light absorption process in the phosphor B, and the energy transfer efficiency is small.
 一方、図21(b)に示したフェルスター機構によるエネルギー移動は、蛍光体間でダイレクトにエネルギーのみが移動するので、エネルギー移動効率はほぼ100%にすることが可能であり、高効率にエネルギー移動を生じさせることができる。 On the other hand, in the energy transfer by the Förster mechanism shown in FIG. 21 (b), only the energy moves directly between the phosphors, so that the energy transfer efficiency can be almost 100%, and the energy transfer is highly efficient. Movement can occur.
 また、フェルスター機構によるエネルギー移動は、蛍光体のような発光材料だけでなく、外光によって励起されるが、光を発生せずに失活する非発光体においても生じる。最終的な発電量は、ゲスト分子の蛍光量子収率によって決まり、ホスト分子の蛍光量子収率には依存しない。よって、ゲスト分子のみを蛍光量子収率の高い蛍光体で構成し、ホスト分子を蛍光量子収率の低い蛍光体又は蛍光を発しない非発光体で構成しても、同じ発電量が得られる。よって、フォトルミネッセンスによりエネルギー移動を行う場合のように、全ての蛍光体に対して高い蛍光量子収率が求められる場合に比べて、ホスト分子の材料選択の幅が広がる。 In addition, energy transfer by the Forster mechanism occurs not only in a luminescent material such as a phosphor, but also in a non-luminescent material that is excited by external light but deactivates without generating light. The final power generation amount depends on the fluorescence quantum yield of the guest molecule and does not depend on the fluorescence quantum yield of the host molecule. Therefore, even if only the guest molecule is composed of a phosphor having a high fluorescence quantum yield and the host molecule is composed of a phosphor having a low fluorescence quantum yield or a non-light emitting material that does not emit fluorescence, the same amount of power generation can be obtained. Therefore, as compared with the case where a high fluorescence quantum yield is required for all phosphors, such as when energy transfer is performed by photoluminescence, the range of material selection for the host molecule is widened.
 図23は、太陽電池素子6の一例であるアモルファスシリコン太陽電池の分光感度曲線を第1蛍光体の発光スペクトル、第2蛍光体の発光スペクトルおよび第3蛍光体の発光スペクトルとともに示す図である。 FIG. 23 is a diagram showing a spectral sensitivity curve of an amorphous silicon solar cell which is an example of the solar cell element 6 together with an emission spectrum of the first phosphor, an emission spectrum of the second phosphor, and an emission spectrum of the third phosphor.
 導光体17の第1端面17cから射出される光L1のスペクトルは、第3蛍光体8cの発光スペクトルと概ね一致する。よって、太陽電池素子6は、第3蛍光体8cの発光スペクトルのピーク波長(630nm)において高い感度を有するものであればよい。図23に示すように、アモルファスシリコン太陽電池は600nm付近の波長の光に対して最も高い分光感度を有する。第1蛍光体、第2蛍光体および第3蛍光体の発光スペクトルのピーク波長におけるアモルファスシリコン太陽電池の分光感度を比較すると、最も発光スペクトルのピーク波長の大きい第3蛍光体の発光スペクトルのピーク波長におけるアモルファスシリコン太陽電池の分光感度は、導光体に備えられた他のいずれの蛍光体(第1蛍光体、第2蛍光体)の発光スペクトルのピーク波長におけるアモルファスシリコン太陽電池の分光感度よりも大きい。そのため、太陽電池素子6としてアモルファスシリコン太陽電池を用いれば、高い効率で発電を行うことができる。 The spectrum of the light L1 emitted from the first end face 17c of the light guide body 17 substantially coincides with the emission spectrum of the third phosphor 8c. Therefore, the solar cell element 6 should just have a high sensitivity in the peak wavelength (630 nm) of the emission spectrum of the 3rd fluorescent substance 8c. As shown in FIG. 23, the amorphous silicon solar cell has the highest spectral sensitivity with respect to light having a wavelength near 600 nm. Comparing the spectral sensitivities of the amorphous silicon solar cells at the peak wavelengths of the emission spectra of the first phosphor, the second phosphor and the third phosphor, the peak wavelength of the emission spectrum of the third phosphor having the largest peak wavelength of the emission spectrum The spectral sensitivity of the amorphous silicon solar cell at is higher than the spectral sensitivity of the amorphous silicon solar cell at the peak wavelength of the emission spectrum of any of the other phosphors (first phosphor and second phosphor) provided in the light guide. large. Therefore, if an amorphous silicon solar cell is used as the solar cell element 6, power generation can be performed with high efficiency.
 以上のように、本実施形態の太陽電池モジュール34では、光入射面36aに入射した外光Lの一部を複数の光機能材料(第1蛍光体8a、第2蛍光体8b、第3蛍光体8c)によって吸収し、複数の光機能材料の間でフェルスター機構によるエネルギー移動を生じさせ、最も発光スペクトルのピーク波長の大きい光機能材料(第3蛍光体8c)から放射された光L1を光入射面36aよりも面積の小さい光射出面に集光させて太陽電池素子に入射させている。そのため、太陽電池素子としては、限定された狭い波長範囲において非常に高い分光感度を有する太陽電池を用いることができ、発電効率の高い太陽電池モジュールが提供される。 As described above, in the solar cell module 34 of the present embodiment, a part of the external light L incident on the light incident surface 36a is converted into a plurality of optical functional materials (first phosphor 8a, second phosphor 8b, third fluorescence). The light L1 emitted from the optical functional material (third phosphor 8c) having the largest peak wavelength of the emission spectrum, which is absorbed by the body 8c), causes energy transfer by the Forster mechanism between the plurality of optical functional materials. The light is condensed on a light exit surface having a smaller area than the light incident surface 36a and is incident on the solar cell element. Therefore, as the solar cell element, a solar cell having very high spectral sensitivity in a limited narrow wavelength range can be used, and a solar cell module with high power generation efficiency is provided.
[第13実施形態]
 図24は、第13実施形態の太陽電池モジュール37の断面図である。
[Thirteenth embodiment]
FIG. 24 is a cross-sectional view of the solar cell module 37 of the thirteenth embodiment.
 本実施形態において第1実施形態と異なる点は、導光体38の対向領域38Tに光機能材料8が備えられており、対向領域38Tの光機能材料8の濃度が周辺領域38Fの光機能材料8の濃度よりも薄くなっている点である。 The present embodiment is different from the first embodiment in that the optical functional material 8 is provided in the opposing region 38T of the light guide 38, and the concentration of the optical functional material 8 in the opposing region 38T is the optical functional material in the peripheral region 38F. This is the point where the density is lower than 8.
 導光体38を構成する基材および光機能材料8は、第1実施形態で説明したものと同じである。第1実施形態では、対向領域の少なくとも一部に、外光をそのまま太陽電池素子に透過させる透明領域が形成されていたが、本実施形態ではこのような透明領域がない。対向領域38Tを光入射面38a側見たときに、対向領域38T全体に光機能材料8が分散されている。 The base material and the optical functional material 8 constituting the light guide 38 are the same as those described in the first embodiment. In the first embodiment, a transparent region that allows external light to pass through the solar cell element as it is is formed in at least a part of the facing region. However, in the present embodiment, there is no such transparent region. When the counter area 38T is viewed from the light incident surface 38a side, the optical functional material 8 is dispersed throughout the counter area 38T.
 本実施形態の場合、対向領域38T全体に均一な濃度で光機能材料8が分散されているが、対向領域38Tの構成はこれに限定されない。例えば、対向領域38Tの中央部と周縁部(周辺領域38Fとの境界部)で光機能材料8の濃度を異ならせてもよい。 In the case of this embodiment, the optical functional material 8 is dispersed at a uniform concentration throughout the opposing region 38T, but the configuration of the opposing region 38T is not limited to this. For example, the concentration of the optical functional material 8 may be different between the central portion and the peripheral portion (boundary portion with the peripheral region 38F) of the facing region 38T.
 本実施形態の太陽電池モジュール37では、対向領域38Tに入射した外光の一部が光機能材料8によって吸収され、蛍光に変換される。よって、外光と蛍光が混合した光が光射出面38cから太陽電池素子6に入射する。この構成でも第1実施形態と同様の効果が得られる。 In the solar cell module 37 of the present embodiment, a part of the external light incident on the facing region 38T is absorbed by the optical functional material 8 and converted into fluorescence. Therefore, light in which external light and fluorescence are mixed enters the solar cell element 6 from the light exit surface 38c. Even in this configuration, the same effect as in the first embodiment can be obtained.
[第14実施形態]
 図25は、第14実施形態の太陽電池モジュール39の断面図である。
[Fourteenth embodiment]
FIG. 25 is a cross-sectional view of the solar cell module 39 of the fourteenth embodiment.
 本実施形態において第1実施形態と異なる点は、導光体40の周辺領域40Fの一部に光機能材料8が含まれていない透明領域が設けられている点である。 This embodiment is different from the first embodiment in that a transparent region in which the optical functional material 8 is not included is provided in a part of the peripheral region 40F of the light guide 40.
 本実施形態の場合、対向領域40Tの近傍に、外光をそのまま透過させる透明領域が形成されている。よって、対向領域40Tの近傍に入射した光のうち、光入射面40aに対して斜めに入射した光は、光機能材料8に吸収されることなく、光射出面40cから太陽電池素子6に入射する。よって、発電に利用できる外光を増やすことができる。 In the case of the present embodiment, a transparent region that allows external light to pass through is formed in the vicinity of the facing region 40T. Therefore, light incident obliquely to the light incident surface 40a out of light incident near the facing region 40T is incident on the solar cell element 6 from the light emitting surface 40c without being absorbed by the optical functional material 8. To do. Therefore, the external light that can be used for power generation can be increased.
[変形形態]
 本発明の太陽電池モジュールの好適な一例を第1実施形態ないし第14実施形態に示したが、本発明の技術範囲は上記の実施形態に限定されない。第1実施形態ないし第14実施形態に示した構成は適宜組み合わせが可能であり、また、本発明の主旨を逸脱しない範囲内で多様な変形が可能である。
[Deformation]
Although the suitable example of the solar cell module of this invention was shown in 1st Embodiment thru | or 14th Embodiment, the technical scope of this invention is not limited to said embodiment. The configurations shown in the first to fourteenth embodiments can be combined as appropriate, and various modifications can be made without departing from the gist of the present invention.
[太陽光発電装置]
 図26は、太陽光発電装置1000の概略構成図である。
[Solar power generator]
FIG. 26 is a schematic configuration diagram of the solar power generation device 1000.
 太陽光発電装置1000は、太陽光のエネルギーを電力に変換する太陽電池モジュール1001と、太陽電池モジュール1001から出力された直流電力を交流電力に変換するインバータ(直流/交流変換器)1004と、太陽電池モジュール1001から出力された直流電力を蓄える蓄電池1005と、を備えている。 The solar power generation apparatus 1000 includes a solar cell module 1001 that converts sunlight energy into electric power, an inverter (DC / AC converter) 1004 that converts DC power output from the solar cell module 1001 into AC power, A storage battery 1005 that stores DC power output from the battery module 1001.
 太陽電池モジュール1001は、太陽光を集光する導光体1002と、導光体1002によって集光された太陽光によって発電を行う太陽電池素子1003と、を備えている。太陽電池モジュール1001としては、例えば、前述した実施形態の太陽電池モジュールが用いられる。 The solar cell module 1001 includes a light guide body 1002 that condenses sunlight and a solar cell element 1003 that generates power by the sunlight collected by the light guide body 1002. As the solar cell module 1001, for example, the solar cell module of the above-described embodiment is used.
 太陽光発電装置1000は外部の電子機器1006に対して電力を供給する。電子機器1006には、必要に応じて補助電力源1007から電力が供給される。 The solar power generation apparatus 1000 supplies power to the external electronic device 1006. The electronic device 1006 is supplied with power from the auxiliary power source 1007 as necessary.
 太陽光発電装置1000は、上述した本発明に係る太陽電池モジュールを備えているため、発電効率の高い太陽光発電装置となる。 Since the photovoltaic power generation apparatus 1000 includes the above-described solar cell module according to the present invention, the photovoltaic power generation apparatus 1000 has a high power generation efficiency.
 本発明は、太陽電池モジュールおよび太陽光発電装置に利用することができる。 The present invention can be used for a solar cell module and a solar power generation device.
1…太陽電池モジュール、4…導光体、4a…光入射面、4c…光射出面、4F…周辺領域、4T…対向領域、5…導光体、5a…光入射面、5c…光射出面、5F…周辺領域、5T…対向領域、6…太陽電池素子、6a…受光面、7…反射層、8,8a,8b,8c…光機能材料(蛍光体)、9…反射層、10,11,12…太陽電池モジュール、13…導光体、13a…光入射面、13c…光射出面、13F…周辺領域、13T…対向領域、14,15,16,17…太陽電池モジュール、18…光機能材料を含まない層、19…光機能材料を含む層、20…導光体、20a…光入射面、20c…光射出面、20F…周辺領域、20T…対向領域、21…太陽電池モジュール、22…光機能材料を含まない層、23…光機能材料を含む層、24…光機能材料を含まない層、25…導光体、25a…光入射面、25c…光射出面、25F…周辺領域、25T…対向領域、26…太陽電池モジュール、27…光機能材料を含む層、28…光機能材料を含まない層、29…導光体、29a…光入射面、29c…光射出面、29F…周辺領域、29T…対向領域、30…太陽電池モジュール、31…光機能材料を含む層、32…光機能材料を含まない層、33…導光体、33a…光入射面、33c…光射出面、33F…周辺領域、33T…対向領域、34…太陽電池モジュール、35…光機能材料を含む層、36…導光体、36a…光入射面、36F…周辺領域、37…太陽電池モジュール、38…導光体、38a…光入射面、38c…光射出面、38F…周辺領域、38T…対向領域、39…太陽電池モジュール、40…導光体、40a…光入射面、40c…光射出面、40F…周辺領域、40T…対向領域、L…外光、L1…蛍光 DESCRIPTION OF SYMBOLS 1 ... Solar cell module, 4 ... Light guide, 4a ... Light incident surface, 4c ... Light emission surface, 4F ... Peripheral area | region, 4T ... Opposite area | region, 5 ... Light guide, 5a ... Light incident surface, 5c ... Light emission Surface, 5F ... Peripheral region, 5T ... Opposite region, 6 ... Solar cell element, 6a ... Light receiving surface, 7 ... Reflective layer, 8, 8a, 8b, 8c ... Optical functional material (phosphor), 9 ... Reflective layer, 10 , 11, 12 ... solar cell module, 13 ... light guide, 13a ... light incident surface, 13c ... light exit surface, 13F ... peripheral region, 13T ... opposing region, 14, 15, 16, 17 ... solar cell module, 18 A layer containing no optical functional material, 19 a layer containing an optical functional material, 20 a light guide, 20a a light incident surface, 20c a light emitting surface, 20F a peripheral region, 20T a facing region, 21 a solar cell. Module, 22 ... layer not containing optical functional material, 23 ... layer containing optical functional material 24 ... layer not containing optical functional material, 25 ... light guide, 25a ... light incident surface, 25c ... light emitting surface, 25F ... peripheral region, 25T ... opposing region, 26 ... solar cell module, 27 ... optical functional material Including layer, 28 ... layer not including optical functional material, 29 ... light guide, 29a ... light incident surface, 29c ... light emitting surface, 29F ... peripheral region, 29T ... opposing region, 30 ... solar cell module, 31 ... light Layer containing functional material, 32 ... Layer not containing optical functional material, 33 ... Light guide, 33a ... Light incident surface, 33c ... Light emitting surface, 33F ... Peripheral region, 33T ... Counter region, 34 ... Solar cell module, 35 ... layer containing optical functional material, 36 ... light guide, 36a ... light incident surface, 36F ... peripheral region, 37 ... solar cell module, 38 ... light guide, 38a ... light incident surface, 38c ... light exit surface, 38F ... peripheral area, 38T ... opposite area 39 ... solar cell module, 40 ... light guide, 40a ... light incident surface, 40c ... light exit plane, 40F ... peripheral region, 40T ... opposed region, L ... external light, L1 ... fluorescent

Claims (12)

  1.  外部から入射した光を蛍光体によって吸収し、前記蛍光体から放射された蛍光を内部で伝播させる導光体と、前記導光体の光入射面と対向する面に設置された太陽電池素子と、を備え、前記導光体には、前記太陽電池素子の受光面と対向する対向領域と、前記対向領域の周囲の周辺領域と、が備えられており、前記導光体の少なくとも前記周辺領域の一部に、前記蛍光体が備えられている太陽電池モジュール。 A light guide that absorbs light incident from the outside by the phosphor and propagates the fluorescence emitted from the phosphor inside, and a solar cell element disposed on a surface facing the light incident surface of the light guide; The light guide includes a facing region facing the light receiving surface of the solar cell element, and a peripheral region around the facing region, and at least the peripheral region of the light guide A solar cell module in which the phosphor is provided in a part of the solar cell module.
  2.  前記導光体の前記対向領域の少なくとも一部には、前記蛍光体が備えられていない請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein the phosphor is not provided in at least a part of the facing region of the light guide.
  3.  前記導光体の前記対向領域には前記蛍光体が備えられており、前記対向領域の前記蛍光体の濃度は前記周辺領域の前記蛍光体の濃度よりも薄くなっている請求項1に記載の太陽電池モジュール。 The said opposing area | region of the said light guide is equipped with the said fluorescent substance, The density | concentration of the said fluorescent substance of the said opposing area | region is thinner than the density | concentration of the said fluorescent substance of the said peripheral area | region. Solar cell module.
  4.  前記導光体の前記周辺領域の厚みは、前記太陽電池素子に近付くにつれて大きくなっている請求項1ないし3のいずれか1項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 3, wherein a thickness of the peripheral region of the light guide body increases as the thickness approaches the solar cell element.
  5.  前記導光体の前記光入射面と対向する面には、複数の前記太陽電池素子が設置されている請求項1ないし4のいずれか1項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 4, wherein a plurality of the solar cell elements are installed on a surface of the light guide that faces the light incident surface.
  6.  前記導光体の前記光入射面と対向する面のうち前記太陽電池素子が設置される部分以外の部分には、前記蛍光を反射する反射層が設けられている請求項1ないし5のいずれか1項に記載の太陽電池モジュール。 6. The reflective layer for reflecting the fluorescence is provided on a portion of the surface of the light guide opposite to the light incident surface other than the portion where the solar cell element is installed. 2. The solar cell module according to item 1.
  7.  前記導光体の前記光入射面と隣接する端面には、前記蛍光を反射する反射層が設けられている請求項1ないし6のいずれか1項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 6, wherein a reflection layer that reflects the fluorescence is provided on an end surface adjacent to the light incident surface of the light guide.
  8.  前記導光体が、前記蛍光体を含む層と、前記蛍光体を含まない層とを積層して形成されている請求項1ないし7のいずれか1項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 7, wherein the light guide is formed by laminating a layer including the phosphor and a layer not including the phosphor.
  9.  前記導光体には、前記蛍光体として、複数種類の蛍光体が備えられている請求項1ないし8のいずれか1項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 8, wherein the light guide includes a plurality of types of phosphors as the phosphor.
  10.  前記複数種類の蛍光体のうち最も発光スペクトルのピーク波長が大きい蛍光体の発光スペクトルのピーク波長における前記太陽電池素子の分光感度は、他の蛍光体の発光スペクトルのピーク波長における前記太陽電池素子の分光感度よりも大きい請求項9に記載の太陽電池モジュール。 The spectral sensitivity of the solar cell element at the peak wavelength of the emission spectrum of the phosphor having the largest emission spectrum peak wavelength among the plurality of types of phosphors is that of the solar cell element at the peak wavelength of the emission spectrum of the other phosphors. The solar cell module according to claim 9, wherein the solar cell module is larger than the spectral sensitivity.
  11.  前記導光体の前記光入射面の法線方向から見て、前記導光体の前記周辺領域のうち前記蛍光体が備えられた領域の面積が、前記導光体の前記対向領域のうち前記蛍光体が備えられていない領域の面積よりも大きい請求項1ないし10のいずれか1項に記載の太陽電池モジュール。 When viewed from the normal direction of the light incident surface of the light guide, the area of the peripheral region of the light guide that is provided with the phosphor is the area of the counter region of the light guide. The solar cell module of any one of Claims 1 thru | or 10 larger than the area of the area | region where the fluorescent substance is not provided.
  12.  請求項1ないし11のいずれか1項に記載の太陽電池モジュールを備えている太陽光発電装置。 A solar power generation device comprising the solar cell module according to any one of claims 1 to 11.
PCT/JP2013/065790 2012-06-07 2013-06-07 Solar cell module and photovoltaic power generation device WO2013183752A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012129740A JP2013254854A (en) 2012-06-07 2012-06-07 Solar cell module and soler power generation apparatus
JP2012-129740 2012-06-07

Publications (1)

Publication Number Publication Date
WO2013183752A1 true WO2013183752A1 (en) 2013-12-12

Family

ID=49712138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065790 WO2013183752A1 (en) 2012-06-07 2013-06-07 Solar cell module and photovoltaic power generation device

Country Status (2)

Country Link
JP (1) JP2013254854A (en)
WO (1) WO2013183752A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015185855A1 (en) * 2014-06-05 2015-12-10 Electricite De France Photovoltaic device and associated manufacturing process
CN106449844A (en) * 2016-10-20 2017-02-22 北京交通大学 Photovoltaic power generation system and manufacture method
IT202200014764A1 (en) * 2022-07-15 2024-01-15 Claudio Romagnoli LUMINESCENT CONCENTRATING SOLAR PANEL (LSC) ENHANCED BY “FUNNEL” CONCENTRATION AND REFLECTION

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015152783A (en) * 2014-02-14 2015-08-24 日本発條株式会社 Reflective sheet for condensation type solar battery device or solar power generation device and reflective member for condensation type solar battery device or solar power generation device
EP3113233A4 (en) * 2014-02-26 2017-03-08 Panasonic Intellectual Property Management Co., Ltd. Solar cell module
JP6634389B2 (en) * 2014-05-27 2020-01-22 ルミレッズ ホールディング ベーフェー Solid-state lighting device based on non-radiative energy transfer
FR3063575B1 (en) * 2017-03-02 2019-03-22 Thales PHOTOVOLTAIC CELL EQUIPPED

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027271A (en) * 2005-07-13 2007-02-01 Univ Of Electro-Communications Solar power generation module
JP2011171389A (en) * 2010-02-16 2011-09-01 Fujifilm Corp Light guide film, device promoting photosynthesis of plant using the same, solar cell, and photoelectric conversion element
JP2011171512A (en) * 2010-02-18 2011-09-01 Sony Chemical & Information Device Corp Sealant for solar cell, and solar cell using the same
WO2012063651A1 (en) * 2010-11-11 2012-05-18 シャープ株式会社 Solar cell module and solar generator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060107993A1 (en) * 2004-11-19 2006-05-25 General Electric Company Building element including solar energy converter
KR101567764B1 (en) * 2009-11-25 2015-11-11 반얀 에너지, 인크 Solar module construction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027271A (en) * 2005-07-13 2007-02-01 Univ Of Electro-Communications Solar power generation module
JP2011171389A (en) * 2010-02-16 2011-09-01 Fujifilm Corp Light guide film, device promoting photosynthesis of plant using the same, solar cell, and photoelectric conversion element
JP2011171512A (en) * 2010-02-18 2011-09-01 Sony Chemical & Information Device Corp Sealant for solar cell, and solar cell using the same
WO2012063651A1 (en) * 2010-11-11 2012-05-18 シャープ株式会社 Solar cell module and solar generator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015185855A1 (en) * 2014-06-05 2015-12-10 Electricite De France Photovoltaic device and associated manufacturing process
FR3022073A1 (en) * 2014-06-05 2015-12-11 Electricite De France FLUORESCENT CONCENTRATING PHOTOVOLTAIC DEVICE AND METHOD FOR MANUFACTURING THE SAME
CN106463560A (en) * 2014-06-05 2017-02-22 法国电力公司 Photovoltaic device and associated manufacturing process
CN106463560B (en) * 2014-06-05 2019-10-18 法国电力公司 Photovoltaic device and relative manufacturing process
US10770611B2 (en) 2014-06-05 2020-09-08 Electricite De France Photovoltaic device and associated fabrication method
CN106449844A (en) * 2016-10-20 2017-02-22 北京交通大学 Photovoltaic power generation system and manufacture method
IT202200014764A1 (en) * 2022-07-15 2024-01-15 Claudio Romagnoli LUMINESCENT CONCENTRATING SOLAR PANEL (LSC) ENHANCED BY “FUNNEL” CONCENTRATION AND REFLECTION
WO2024013773A1 (en) * 2022-07-15 2024-01-18 Claudio Romagnoli Luminescent solar concentrator enhanced panels (lsc) through concentration and funnel reflection

Also Published As

Publication number Publication date
JP2013254854A (en) 2013-12-19

Similar Documents

Publication Publication Date Title
WO2013183752A1 (en) Solar cell module and photovoltaic power generation device
WO2013133105A1 (en) Light guide, photovoltaic module, and photovoltaic power-generation device
US11652181B2 (en) Visibly transparent, luminescent solar concentrator
EP3149782B1 (en) Solid state illumination device based on non-radiative energy transfer
US10781999B2 (en) Luminous systems
CN105409016A (en) Enhanced emission from plasmonic coupled emitters for solid state lighting
WO2013180298A1 (en) Solar cell module and solar power generation device
US8416485B2 (en) Designing the host of nano-structured optoelectronic devices to improve performance
US9306089B2 (en) Solar cell module and solar generator
WO2011033958A1 (en) Solar cell module and solar photovoltaic system
US20140318601A1 (en) Light guide body, solar cell module, and solar photovoltaic power generation device
WO2013069785A1 (en) Light guide body, solar cell module, and photovoltaic power generation device
WO2011061987A1 (en) Solar cell module and solar power generating apparatus
JP2019520696A (en) Large area light emitting solar concentrator based on indirect transition semiconductor nanocrystals
JP2011054814A (en) Light collecting member for solar cell, and solar cell
US20140318621A1 (en) Solar cell module and photovoltaic power generation device
CN108150968A (en) Reflectance coating
JP5885338B2 (en) Solar cell module and solar power generation device
WO2012128339A1 (en) Solar cell module, solar photovoltaic power generation device, and method for installing solar cell module
WO2012050059A1 (en) Solar cell module and solar power generation device
WO2012115248A1 (en) Solar cell module and solar generator device
WO2013089132A1 (en) Solar cell module and photovoltaic power generator
JP2015153836A (en) Solar cell module and photovoltaic power generator
CN103869389B (en) A kind of photonic crystal cascade structure improving quantum dot far-field emission efficiency
Sidahmed et al. Tandem Ce: YAG fluorescent solar concentrator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13800348

Country of ref document: EP

Kind code of ref document: A1