WO2016194193A1 - Wavelength conversion material - Google Patents

Wavelength conversion material Download PDF

Info

Publication number
WO2016194193A1
WO2016194193A1 PCT/JP2015/066176 JP2015066176W WO2016194193A1 WO 2016194193 A1 WO2016194193 A1 WO 2016194193A1 JP 2015066176 W JP2015066176 W JP 2015066176W WO 2016194193 A1 WO2016194193 A1 WO 2016194193A1
Authority
WO
WIPO (PCT)
Prior art keywords
skeleton
wavelength conversion
conversion material
wavelength
solar cell
Prior art date
Application number
PCT/JP2015/066176
Other languages
French (fr)
Japanese (ja)
Inventor
荒谷 介和
広貴 佐久間
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/066176 priority Critical patent/WO2016194193A1/en
Priority to TW105116438A priority patent/TW201643202A/en
Publication of WO2016194193A1 publication Critical patent/WO2016194193A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a wavelength conversion material for solar cells and a solar cell module using the same.
  • a silicon crystal solar cell module is generally a semiconductor element having a pn junction called a cell, which is a main component that directly contributes to power generation, and is electrically connected in series, and a cover glass that is a light-transmitting member on a light-receiving surface
  • a sealing material also called a filler
  • silicon crystal solar cells generally have low sensitivity to ultraviolet light. Therefore, attempts have been made to increase the conversion efficiency by increasing the light in the wavelength region with high sensitivity by converting the light in the ultraviolet region into the wavelength in the visible region or the near infrared region.
  • Patent Documents 1 and 2, etc. have tried to increase the conversion efficiency by increasing the light in the wavelength region with high sensitivity by converting the light in the ultraviolet region of the sunlight spectrum to the visible region using a fluorescent material. It is made in.
  • the output improvement effect of the solar cell obtained by laminating layers containing wavelength conversion materials as described in Patent Documents 1 and 2 has not been sufficient. This is because the efficiency of converting light in a wavelength region with low sensitivity of conversion efficiency of solar cells into light with high sensitivity was low.
  • the subject of this invention is providing the wavelength conversion material for solar cells which can convert efficiently the light of the wavelength of less than 500 nm in which the sensitivity of a solar cell is relatively low into the light of 500 nm or more with the high sensitivity of a solar cell. is there.
  • the material (A) having an absorption wavelength peak of less than 500 nm and the material (B) having an emission wavelength peak of 500 nm or more are converted into a material (A).
  • the present invention has been completed by finding that the above-mentioned problems can be solved by making it exist so that it is possible to emit light by energy transfer from (1).
  • a solar cell wavelength conversion material comprising a material (A) having an absorption wavelength peak of less than 500 nm and a material (B) having an emission wavelength peak of 500 nm or more, The said wavelength conversion material which exists so that material (B) can be light-emitted by the energy transfer from material (A).
  • the wavelength conversion material according to (1) wherein a site contributing to energy transfer in the material (A) and a site contributing to light emission in the material (B) are bonded via a chemical bond or a linker.
  • the wavelength conversion material according to (2), wherein a site contributing to light emission in the material (B) is located at the end of the wavelength conversion material.
  • the site contributing to energy transfer in the material (A) is a carbazole skeleton, triallylamine skeleton, phenanthroline skeleton, biphenyl skeleton, benzothiophene skeleton, benzofuran skeleton, triphenylene skeleton, metal quinolinol complex, anthracene skeleton, pentacene skeleton, fluorene
  • the portion contributing to light emission in the material (B) includes at least one selected from a coumarin skeleton, a quinacridone skeleton, an anthracene skeleton, a carbazole skeleton, a rubrene skeleton, an Ir complex, and a pyran skeleton.
  • the wavelength conversion material according to any one of 7). (9) a solar battery cell; A sealing layer containing the wavelength conversion material according to any one of (1) to (8), provided on the light-receiving surface side of the solar battery cell; A solar cell module.
  • wavelength conversion material for a solar cell of the present invention light having a wavelength of less than 500 nm, which is relatively low in sensitivity of the solar cell, can be efficiently converted into light having a sensitivity of 500 nm or more.
  • the present invention is a wavelength conversion material for solar cells comprising a material (A) having an absorption wavelength peak of less than 500 nm and a material (B) having an emission wavelength peak of 500 nm or more,
  • the present invention relates to the above-described wavelength conversion material (hereinafter, also referred to as the wavelength conversion material of the present invention) that exists so that the material (B) can emit light by energy transfer from the material (A).
  • the material (B) exists so that it can emit light by energy transfer from the material (A)” means that the material (A) absorbs sunlight and emits light from the material (A). There is a portion where the spectrum overlaps with the absorption spectrum of the material (B), and the material (B) is present in the vicinity of the material (A) within 100 nm.
  • the difference between the absorption wavelength peak and the emission wavelength peak is preferably 20 to 200 nm, more preferably 50 to 200 nm, and particularly preferably 100 to 150 nm.
  • the material (A) having an absorption wavelength peak of less than 500 nm is a material that absorbs light and moves the excited state energy formed thereby to the light emitting material. “Less than 500 nm” indicates, for example, 300 to 450 nm.
  • the material (A) preferably has an emission wavelength peak at 300 to 510 nm, more preferably 300 to 450 nm, particularly preferably 400 to 450 nm, from the viewpoint of efficiently generating energy transfer with respect to the material (B).
  • the material (A) preferably has an emission wavelength peak at 300 to 510 nm, more preferably 300 to 450 nm, and particularly preferably 300 to 400 nm from the viewpoint of efficiently generating energy transfer with respect to the material (B).
  • the material (A) include polycyclic aromatic materials (carbazole materials, fluorene materials, triallylamine materials, phenanthroline materials, biphenyl materials, benzothiophene materials, benzofuran materials, acridines. Materials, triphenylene materials, metal quinolinol complex materials, anthracene materials, pyrene materials and pentacene materials), metal complex materials, silyl materials, allylmethane materials, pyridine materials, imidazole materials, and perylene materials Those skilled in the art can appropriately select the material (A) in consideration of the absorption wavelength peak of the material (B) to be used and the preferable emission wavelength peak described above.
  • the carbazole skeleton, triallylamine skeleton, phenanthroline skeleton, biphenyl skeleton, benzothiophene skeleton, benzofuran skeleton, triphenylene skeleton, metal quinolinol complex, anthracene skeleton, and pentacene skeleton are particularly considered as sites that contribute to energy transfer. And those containing at least one selected from a fluorene skeleton, a pyrene skeleton and an acridine skeleton are preferable.
  • the material (B) having an emission wavelength peak of 500 nm or more receives the excitation energy from the material (A) that is an energy transfer material and emits light.
  • “500 nm or more” indicates, for example, 500 to 900 nm.
  • the material (B) preferably has an absorption wavelength peak at 300 to 500 nm, more preferably 300 to 450 nm, from the viewpoint of efficiently generating energy transfer with respect to the material (A).
  • the material (B) preferably has an absorption wavelength peak at 300 to 500 nm, more preferably 350 to 500 nm, from the viewpoint of efficiently generating energy transfer with respect to the material (A).
  • the material (B) include polycyclic aromatic materials (coumarin materials, quinacridone materials, anthracene materials, carbazole materials, pyran materials, and rubrene materials), Ir complexes, and oxadiazoles.
  • System material, Eu complex, Ru complex, Pt complex, etc., and those skilled in the art can appropriately select the material (A) in consideration of the emission wavelength peak of the material (A) to be used and the preferable absorption wavelength peak described above. It is possible to choose.
  • the site contributing to light emission includes at least one selected from a coumarin skeleton, a quinacridone skeleton, an anthracene skeleton, a carbazole skeleton, a rubrene skeleton, an Ir complex, and a pyran skeleton.
  • a site contributing to energy transfer in the material (A) and a site contributing to light emission in the material (B) are bonded via a chemical bond or a linker.
  • the material (B) can efficiently cause energy transfer from the material (A), and can be used as it is dispersed in the sealing layer.
  • part which contributes to light emission in material (B) is located in the terminal from a viewpoint of suppressing the efficiency reduction by aggregation of the light emission site
  • the linker is a polar group, particularly a carboxyl group and an amide group, and an alkyl group, from the viewpoint of reducing the overlap of the electron cloud of the site that absorbs light and the site that emits light and not losing the properties of each bundle after bonding. It is preferable that they are bonded via at least one selected from an aryl group, an ether group and a sulfide group.
  • the linker has the following structure: Or at least one selected from the group consisting of:
  • the wavy line is a site that contributes to energy transfer in the material (A), a site that contributes to light emission in the material (B), or a binding site with a structure contained in another linker, and Ar is substituted.
  • n is an integer of 1 to 10.
  • the aromatic hydrocarbon group include monocyclic, bicyclic, and tricyclic aromatic hydrocarbon groups such as phenyl and naphthyl.
  • the site contributing to energy transfer in the material (A) and the site contributing to light emission in the material (B) are bonded via a chemical bond or a linker, in the material (A)
  • the molar ratio between the site contributing to energy transfer and the site contributing to light emission in the material (B) can be appropriately determined from the viewpoint of the ease of energy transfer and the difficulty of concentration quenching.
  • the ratio is preferably 100: 1, more preferably 5: 1 to 100: 1, and particularly preferably 5: 1 to 80: 1.
  • the wavelength conversion material of the present invention is encapsulated in resin particles from the viewpoint of efficiently generating energy transfer.
  • the dispersibility of the wavelength conversion material is improved, and the incident sunlight can be efficiently introduced into the solar battery cell without being scattered.
  • a commonly used method can be used without any particular limitation.
  • it can be prepared by preparing a mixture of the monomer compound constituting the wavelength conversion material and the resin particles and polymerizing the mixture.
  • a resin particle containing the wavelength conversion material can be obtained by preparing a mixture containing the wavelength conversion material and the vinyl compound and polymerizing the vinyl compound using a radical polymerization initiator.
  • the usage-amount of a radical polymerization initiator can be suitably selected according to the kind of vinyl compound, the refractive index of the resin particle formed, etc., and is used by the usage-amount normally used.
  • the wavelength conversion material is included in the resin particles, the content of the wavelength conversion material in the resin particles is 1 to 50 parts by mass with respect to 100 parts by mass of the resin particles from the viewpoint of efficiently generating energy transfer.
  • the amount is preferably 1 to 10 parts by mass.
  • the material (A) When the wavelength conversion material is encapsulated in the resin particle without bonding the site contributing to energy transfer in the material (A) and the site contributing to light emission in the material (B) via a chemical bond or a linker, the material (A) can be determined as appropriate from the viewpoint of efficiently performing energy transfer and not causing concentration quenching. Is preferably ⁇ 100: 1, more preferably 5: 1 to 100: 1, and particularly preferably 50: 1 to 100: 1.
  • the monomer compound constituting the resin particles is not particularly limited, but is preferably a vinyl compound from the viewpoint of suppressing light scattering.
  • the vinyl compound is not particularly limited as long as it is a compound having at least one ethylenically unsaturated bond, and an acrylic monomer, a methacrylic monomer, an acrylic oligomer, which can be converted into a vinyl resin, particularly an acrylic resin or a methacrylic resin, upon polymerization reaction, A methacryl oligomer or the like can be used without particular limitation.
  • the vinyl compound it is preferable to use at least one selected from alkyl acrylates and alkyl methacrylates, and at least one selected from methyl acrylate, methyl methacrylate, ethyl acrylate, and ethyl methacrylate is used. It is more preferable.
  • radical polymerization initiator a commonly used radical polymerization initiator can be used without any particular limitation.
  • a peroxide etc. are mentioned preferably.
  • the present invention also relates to a solar cell module.
  • the solar cell module of this invention has a photovoltaic cell and the sealing layer provided in the light-receiving surface side of the photovoltaic cell and containing the said wavelength conversion material.
  • FIG. 1 is a schematic cross-sectional view showing an example of a solar cell module.
  • a protective layer 2 is provided on the light receiving surface of the solar cell 1
  • a back film 3 is provided on the back surface side.
  • a sealing layer 4 is provided between the protective layer 2 and the solar battery cell 1.
  • the sealing layer 4 includes a wavelength conversion material.
  • a back surface sealing layer 5 is provided between the back film 3 and the solar battery cell 1. If the sealing layer 5 for back surfaces can seal the photovoltaic cell 1, it will not be specifically limited.
  • the sealing layer may contain a dispersion medium resin in addition to the wavelength conversion material.
  • the dispersion medium resin include acrylic resin, polycarbonate resin, polystyrene resin, polyolefin resin, polyvinyl chloride resin, polyether sulfone resin, polyarylate resin, polyvinyl acetal resin, epoxy resin, silicone resin, fluorine Examples thereof include resins and copolymers thereof.
  • the dispersion medium resin may be used alone or in combination of two or more. From the viewpoint of durability and versatility, those having a structural unit derived from methyl (meth) acrylate are more preferred.
  • copolymer resin examples include (meth) acrylate-styrene copolymer, ethylene-vinyl acetate copolymer (hereinafter abbreviated as “EVA”), and the like.
  • EVA is preferable in terms of moisture resistance, cost, and versatility
  • (meth) acrylic ester resin is preferable in terms of durability and surface hardness.
  • the combined use of EVA and (meth) acrylic ester resin is more preferable from the viewpoint of combining the advantages of both.
  • the wavelength conversion material in which the site contributing to energy transfer in the material (A) and the site contributing to light emission in the material (B) are bonded via a chemical bond or a linker is dispersed as it is in the dispersion medium resin.
  • the weight ratio between the wavelength conversion material and the dispersion medium resin can be appropriately determined from the viewpoint of efficiently performing energy transfer and not causing concentration quenching, and is preferably from 1: 2 to 1: 100, for example. More preferably, the ratio is 1: 2 to 1:10.
  • the weight ratio between the dispersion medium resin and the resin particles can be appropriately determined from the viewpoint of maintaining the film strength and moisture permeability.
  • it is preferably 1: 1 to 70: 1, preferably 1: 1 to 60: 1, particularly preferably 1: 1 to 10: 1, and 1: 1 to 5: 1 is more particularly preferable.
  • the sealing layer may contain an ultraviolet absorber in addition to the wavelength conversion material and the dispersion medium resin.
  • ultraviolet absorber as used herein means one having an absorption wavelength peak at 300 to 450 nm and not corresponding to the material (A). More preferably, the content of the ultraviolet absorber in the sealing layer substantially does not contain the ultraviolet absorber.
  • the content of the ultraviolet absorber in the sealing layer is preferably less than 0.05 parts by weight and less than 0.001 parts by weight with respect to 100 parts by weight of the dispersion medium resin. Is more preferable, and it is particularly preferable that substantially no UV absorber is contained. Thereby, since the calorific value by the relaxation process from ultraviolet absorption is suppressed and the temperature rise of a cell is suppressed, the electric power generation efficiency of a solar cell module can be improved.
  • the sealing layer is a coupling agent, a plasticizer, a flame retardant, an antioxidant, a light stabilizer, a rust inhibitor, a processing aid, as long as the effects of the present invention are not impaired.
  • You may contain other additives, such as an agent and a coloring agent.
  • the total amount of the other additives is usually 10 parts by mass or less, preferably 1 part by mass or less, with respect to 100 parts by mass of the wavelength conversion material.
  • the sealing layer can be manufactured using a known technique. For example, at least the wavelength conversion material and, if necessary, the dispersion medium resin, and if necessary, a method of melt-kneading other additives to form a sheet, or varnishing the resin and adding the wavelength conversion material Then, it is possible to use a method such as applying to a sheet and removing the solvent. Specifically, for example, two release sheets are opposed to each other through a spacer, and the melt-kneaded composition is applied to a gap formed between the two release sheets, and hot pressed from both sides. A sheet can be formed.
  • the thickness of the sealing layer is preferably 10 to 1000 ⁇ m, and more preferably 400 to 650 ⁇ m.
  • Example 1 Similar to the structure shown in FIG. 1, a solar cell module of Example 1 was fabricated using the following materials. Tempered glass was used as the protective layer 2. As a dispersion medium resin for the sealing layer 4, ethylene-vinyl acetate resin (EVA) was used.
  • EVA ethylene-vinyl acetate resin
  • Formula (1) as an energy transfer material of the wavelength conversion material The material represented by is used.
  • the peak wavelength of light absorption of this material is 420 nm, and the emission peak wavelength of this material is 506 nm.
  • the formula (2) The material represented by is used as the light emitting material of the wavelength conversion material.
  • the peak wavelength of light absorption of this material is 485 nm, and the peak wavelength of light emission is 600 nm.
  • wavelength conversion materials were included in the resin particles.
  • PMMA polymethyl methacrylate
  • the wavelength conversion material is encapsulated with the energy transfer material of the formula (1) and the light emitting material of the formula (2) using methyl methacrylate as a vinyl compound and a radical polymerization agent lauroyl peroxide. Resin particles were obtained.
  • the weight ratio of the energy transfer material of formula (1) used in the polymerization to the light emitting material of formula (2) was 99: 1.
  • the particles were kneaded with a dispersion medium resin to obtain a resin composition.
  • the weight ratio between the dispersion medium resin and the resin particles encapsulating the wavelength conversion material was 100: 2.
  • the sealing layer 4 was formed using the resin composition part obtained on the tempered glass which is a protective layer. The thickness was 0.6 mm.
  • the solar cell 1 was mounted thereon, and the back surface solar cell encapsulating sheet 5 and the back film 3 were laminated with a PEDT film to obtain a solar cell module of Example 1.
  • Comparative Example 1 A solar cell module of Comparative Example 1 was produced in the same manner as in Example 1 except that the wavelength conversion material was not used.
  • the maximum output of the solar cell modules of Example 1 and Comparative Example 1 was measured and compared.
  • the solar cell modules of Example 1 and Comparative Example 1 were installed close to each other, and the output was compared with outdoor natural light.
  • the maximum output of the solar cell module of Example 1 was 1.07 times that of the solar cell module of Comparative Example 1. This improvement in output is because the wavelength conversion material in the solar cell module of Example 1 absorbed light with a wavelength of 500 nm or less and efficiently converted it into light with a wavelength of 500 nm or more.
  • Comparative Example 2 As the energy transfer material of the wavelength conversion material, the formula (3): A solar cell module of Comparative Example 2 was produced in the same manner as in Example 1 except that the material represented by The peak wavelength of light absorption of this material is 510 nm, and the peak wavelength of light emission is 523 nm.
  • the maximum output of the solar cell module of Comparative Example 2 was measured simultaneously with Comparative Example 1 as described above. As a result, the maximum output of the solar cell module of Comparative Example 2 was 0.95 times that of Comparative Example 1. This is because in the solar cell module of Comparative Example 2, the energy transfer material absorbed light having a solar cell conversion efficiency of 500 nm or higher.
  • Comparative Example 3 As the light emitting material of the wavelength conversion material, the formula (4): A solar cell module of Comparative Example 3 was produced in the same manner as in Example 1 except that the compound represented by The peak wavelength of light absorption of this material is 339 nm, and the peak wavelength of light emission is 450 nm.
  • the maximum output of the solar cell module of Comparative Example 3 was measured simultaneously with Comparative Example 1 as described above. As a result, the maximum output of the solar cell module of Comparative Example 3 was 0.98 times that of Comparative Example 1. This is because in the solar cell module of Comparative Example 3, the light emitting material emitted light having a wavelength of less than 500 nm, and the wavelength could not be sufficiently converted to a wavelength with high conversion efficiency of the solar cell.
  • Example 2 Formula (5) as a wavelength conversion material: A solar cell module of Example 2 was produced in the same manner as in Example 1 except that the material represented by the formula (where the ratio of n to m is 10: 1) was used. This material was synthesized by the following steps (1)-(2).
  • the compound of formula (5-1) (0.5 mmol) and the compound of formula (5-4) (0.5 mmol) were placed, and dehydrated toluene (10 ml) was added.
  • a toluene solution (0.2 ml) of V-601 (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the freeze degassing operation was repeated 5 times. It sealed in vacuum and stirred at 60 ° C. for 60 hours. After the reaction, it was dropped into acetone (500 ml) to obtain a precipitate. Further, reprecipitation with toluene-acetone was repeated twice to obtain the target compound of formula (5).
  • the peak wavelength of light absorption at the part of the Be complex that contributes to the energy transfer of this material is 420 nm. Moreover, the emission peak of this part is 506 nm. The peak wavelength of light absorption of the Ir complex portion that contributes to the light emission of this material is 485 nm. Moreover, the emission peak wavelength of this part is 600 nm. The ratio of n to m was set to 10: 1.
  • This material was kneaded with the dispersion medium resin as it was without being encapsulated in the resin particles to obtain a resin composition.
  • the weight ratio of the wavelength conversion material and the dispersion medium resin was 99: 1.
  • the maximum output of the solar cell module of Example 2 was measured simultaneously with Comparative Example 1. As a result, the maximum output of the solar cell module of Example 2 was 1.07 times that of the solar cell module of Comparative Example 1. This improvement in output is because the wavelength conversion material in the solar cell module of Example 2 absorbed light with a wavelength of 500 nm or less and efficiently converted it into light with a wavelength of 500 nm or more.
  • Example 3 As an energy transfer material of the wavelength conversion material, the formula (6): A solar cell module of Example 3 was produced in the same manner as Example 1 except that the material represented by The peak wavelength of light absorption of this material is 395 nm, and the peak wavelength of light emission is 425 nm.
  • the maximum output of the solar cell module of Example 3 was measured simultaneously with the solar cell module of Comparative Example 1. As a result, the maximum output of the solar cell module of Example 3 was 1.09 times that of the solar cell module of Comparative Example 1. This improvement in output is because the wavelength conversion material in the solar cell module of Example 3 more efficiently absorbs light having a wavelength of 500 nm or less and efficiently converts it into light having a wavelength of 500 nm or more.
  • Example 4 As a wavelength conversion material, the formula (7): A solar cell module of Example 4 was produced in the same manner as in Example 2 except that the material represented by the formula (where the ratio of n to m is 10: 1) was used. This material was synthesized as follows.
  • the peak wavelength of light absorption at the site contributing to the energy transfer of this material is 395 nm, and the peak wavelength of light emission at that site is 425 nm. Further, the peak wavelength of light absorption at the site contributing as the light emitting material is 485 nm, and the site of the emission peak at that site is 600 nm.
  • the ratio of n to m of this material was set to 10: 1.
  • the maximum output of the solar cell module of Example 4 was measured simultaneously with the solar cell module of Comparative Example 1. As a result, the maximum output of the solar cell module of Example 4 was 1.1 times that of the solar cell module of Comparative Example 1. This improvement in output is because the wavelength conversion material in the solar cell module of Example 4 more efficiently absorbs light having a wavelength of 500 nm or less and efficiently converts it into light having a wavelength of 500 nm or more.
  • Example 5 As a wavelength conversion material, the formula (8): Wherein n is about 6, R 1 is hydrogen, an alkyl group such as optionally substituted methyl, ethyl and propyl groups, R 2 is hydrogen, optionally substituted methyl, ethyl and A solar cell module of Example 5 was fabricated in the same manner as Example 2 except that a material such as a propyl group was used.
  • the peak wavelength of light absorption at the site contributing to the energy transfer of this material is 378 nm, and the peak wavelength of light emission at that site is 414 nm. Further, the peak wavelength of light absorption at the site contributing as the light emitting material is 485 nm, and the site of the emission peak at that site is 600 nm.
  • n is an integer and is set to about 6.
  • the maximum output of the solar cell module of Example 5 was measured simultaneously with the solar cell module of Comparative Example 1. As a result, the maximum output of the solar cell module of Example 5 was 1.1 times that of the solar cell module of Comparative Example 1. This improvement in output is because the wavelength conversion material in the solar cell module of Example 5 more efficiently absorbs light having a wavelength of 500 nm or less and efficiently converts it into light having a wavelength of 500 nm or more.
  • Example 6 As the energy transfer material of the wavelength conversion material, the formula (9): A solar cell module of Example 6 was produced in the same manner as in Example 1 except that the material represented by The peak wavelength of light absorption of this material is 370 nm, and the peak wavelength of light emission is 428 nm.
  • the maximum output of the solar cell module of Example 6 was measured simultaneously with the solar cell module of Comparative Example 1. As a result, the maximum output of the solar cell module of Example 5 was 1.07 times that of the solar cell module of Comparative Example 1. This improvement in output is because the wavelength conversion material in the solar cell module of Example 6 more efficiently absorbs light having a wavelength of 500 nm or less and efficiently converts it into light having a wavelength of 500 nm or more.
  • Example 7 As an energy transfer material of the wavelength conversion material, the formula (10): A solar cell module of Example 7 was produced in the same manner as Example 1 except that the material represented by The peak wavelength of light absorption of this material is 394 nm, and the peak wavelength of light emission is 408 nm.
  • the maximum output of the solar cell module of Example 7 was measured simultaneously with the solar cell module of Comparative Example 1. As a result, the maximum output of the solar cell module of Example 5 was 1.07 times that of the solar cell module of Comparative Example 1. This improvement in output is because the wavelength conversion material in the solar cell module of Example 7 more efficiently absorbs light with a wavelength of 500 nm or less and efficiently converts it into light with a wavelength of 500 nm or more.
  • Example 8 As the energy transfer material of the wavelength conversion material, the material represented by the formula (6) is used, and as the light emitting material of the wavelength conversion material, the formula (11): A solar cell module of Example 8 was produced in the same manner as Example 1 except that the material represented by The peak wavelength of light absorption of the material represented by Formula (6) is 395 nm, and the peak wavelength of light emission is 425 nm. The light absorption peak wavelength of the material represented by the formula (11) is 471 nm, and the light emission peak wavelength is 554 nm.
  • the maximum output of the solar cell module of Example 8 was measured simultaneously with the solar cell module of Comparative Example 1. As a result, the maximum output of the solar cell module of Example 8 was 1.07 times that of the solar cell module of Comparative Example 1. This improvement in output is because the wavelength conversion material in the solar cell module of Example 8 more efficiently absorbs light having a wavelength of 500 nm or less and efficiently converts it into light having a wavelength of 500 nm or more.
  • Example 9 As the light emitting material of the wavelength converting material, (12): A solar cell module of Example 9 was produced in the same manner as Example 8 except that the material represented by The peak wavelength of light absorption of this material is 462 nm, and the peak wavelength of light emission is 577 nm.
  • the maximum output of the solar cell module of Example 9 was measured simultaneously with the solar cell module of Comparative Example 1. As a result, the maximum output of the solar cell module of Example 9 was 1.07 times that of the solar cell module of Comparative Example 1. This improvement in output is because the wavelength conversion material in the solar cell module of Example 9 more efficiently absorbs light having a wavelength of 500 nm or less and efficiently converts it into light having a wavelength of 500 nm or more.
  • the wavelength conversion material of the present invention can be used for a solar cell module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided is a wavelength conversion material for solar batteries which can efficiently convert light of wavelengths of 500 nm or less, at which the sensitivity of a solar battery is relatively low, to light of 500 nm or more, at which the solar battery sensitivity is high. The wavelength conversion material for solar batteries includes a material (A) having an absorption wavelength peak of less than 500 nm, and a material (B) having a light emission wavelength peak of 500 nm or more, wherein the material (B) is present in order to make it possible for light to be emitted as a result of the transfer of energy from the material (A).

Description

波長変換材料Wavelength conversion material
 本発明は、太陽電池用波長変換材料、及びこれを用いた太陽電池モジュールに関する。 The present invention relates to a wavelength conversion material for solar cells and a solar cell module using the same.
 シリコン結晶系の太陽電池モジュールは、通常、発電に直接寄与する主要部品であるセルと呼ばれるpn接合をもった半導体素子を、直列に電気接続し、受光面の光透過性部材であるカバーガラスと、非受光面の防湿、耐候性向上の目的をもつバックシートの間に、封止材(充填材とも呼ばれる)を介し、構成される。 A silicon crystal solar cell module is generally a semiconductor element having a pn junction called a cell, which is a main component that directly contributes to power generation, and is electrically connected in series, and a cover glass that is a light-transmitting member on a light-receiving surface Between the back sheet having the purpose of improving moisture resistance and weather resistance of the non-light-receiving surface, a sealing material (also called a filler) is interposed.
 またシリコン結晶系の太陽電池は、一般に紫外域の光に対し感度が低い。そこで、紫外域の光を可視領域又は近赤外域の波長に変換することによって、感度の高い波長領域の光を増大させ変換効率を増加させる試みがなされている。これまでに、蛍光物質を用いて太陽光スペクトルのうち紫外域の光を可視域に変換することによって、感度の高い波長領域の光を増大させ変換効率を増加させる試みが特許文献1及び2等でなされている。しかしながら、特許文献1及び2に記載されるような波長変換材料を含む層を積層することにより得られる、太陽電池の出力向上効果はいまだ十分ではなかった。それは、太陽電池の変換効率の感度の低い波長領域の光を感度の高い光に変換する効率が低かったためである。 Also, silicon crystal solar cells generally have low sensitivity to ultraviolet light. Therefore, attempts have been made to increase the conversion efficiency by increasing the light in the wavelength region with high sensitivity by converting the light in the ultraviolet region into the wavelength in the visible region or the near infrared region. Until now, Patent Documents 1 and 2, etc. have tried to increase the conversion efficiency by increasing the light in the wavelength region with high sensitivity by converting the light in the ultraviolet region of the sunlight spectrum to the visible region using a fluorescent material. It is made in. However, the output improvement effect of the solar cell obtained by laminating layers containing wavelength conversion materials as described in Patent Documents 1 and 2 has not been sufficient. This is because the efficiency of converting light in a wavelength region with low sensitivity of conversion efficiency of solar cells into light with high sensitivity was low.
特開2013-123037号公報JP 2013-123037 A 特開2012-33605号公報JP 2012-33605 A
 本発明の課題は、太陽電池の感度が相対的に低い、500nm未満の波長の光を太陽電池の感度の高い500nm以上の光に効率よく変換できる、太陽電池用波長変換材料を提供することである。 The subject of this invention is providing the wavelength conversion material for solar cells which can convert efficiently the light of the wavelength of less than 500 nm in which the sensitivity of a solar cell is relatively low into the light of 500 nm or more with the high sensitivity of a solar cell. is there.
 そこで、本発明者らが鋭意研究を行った結果、500nm未満の吸収波長ピークを有する材料(A)と500nm以上の発光波長ピークを有する材料(B)とを、材料(B)が材料(A)からのエネルギー移動により発光することが可能であるように存在させることにより、上記課題を解決できることを見出し、本発明を完成した。 Thus, as a result of intensive studies by the present inventors, the material (A) having an absorption wavelength peak of less than 500 nm and the material (B) having an emission wavelength peak of 500 nm or more are converted into a material (A). The present invention has been completed by finding that the above-mentioned problems can be solved by making it exist so that it is possible to emit light by energy transfer from (1).
 上記課題を解決するための本発明の特徴は以下の通りである。
(1)500nm未満の吸収波長ピークを有する材料(A)と500nm以上の発光波長ピークを有する材料(B)とを含む太陽電池用波長変換材料であって、
 材料(B)が材料(A)からのエネルギー移動により発光することが可能であるように存在する、上記波長変換材料。
(2)材料(A)におけるエネルギー移動に寄与する部位と材料(B)における発光に寄与する部位とが化学結合又はリンカーを介して結合している、(1)に記載の波長変換材料。
(3)材料(B)における発光に寄与する部位が波長変換材料の末端に位置する、(2)に記載の波長変換材料。
(4)リンカーが極性基を介して結合している、(2)又は(3)に記載の波長変換材料。
(5)リンカーがアルキル基、アリール基、エーテル基又はスルフィド基を介して結合している、(2)又は(3)に記載の波長変換材料。
(6)波長変換材料が樹脂粒子中に内包されている、(1)に記載の波長変換材料。
(7)材料(A)におけるエネルギー移動に寄与する部位が、カルバゾール骨格、トリアリルアミン骨格、フェナントロリン骨格、ビフェニル骨格、ベンゾチオフェン骨格、ベンゾフラン骨格、トリフェニレン骨格、金属キノリノール錯体、アントラセン骨格、ペンタセン骨格、フルオレン骨格、ピレン骨格及びアクリジン骨格から選択される少なくとも1種を含む、(1)~(6)のいずれかに記載の波長変換材料。
(8)材料(B)における発光に寄与する部位が、クマリン骨格、キナクリドン骨格、アントラセン骨格、カルバゾール骨格、ルブレン骨格、Ir錯体及びピラン骨格から選択される少なくとも1種を含む、(1)~(7)のいずれかに記載の波長変換材料。
(9)太陽電池セルと、
 太陽電池セルの受光面側に設けられた、(1)~(8)のいずれかに記載の波長変換材料を含む封止層と、
を有する太陽電池モジュール。
The features of the present invention for solving the above-described problems are as follows.
(1) A solar cell wavelength conversion material comprising a material (A) having an absorption wavelength peak of less than 500 nm and a material (B) having an emission wavelength peak of 500 nm or more,
The said wavelength conversion material which exists so that material (B) can be light-emitted by the energy transfer from material (A).
(2) The wavelength conversion material according to (1), wherein a site contributing to energy transfer in the material (A) and a site contributing to light emission in the material (B) are bonded via a chemical bond or a linker.
(3) The wavelength conversion material according to (2), wherein a site contributing to light emission in the material (B) is located at the end of the wavelength conversion material.
(4) The wavelength conversion material according to (2) or (3), wherein the linker is bonded via a polar group.
(5) The wavelength conversion material according to (2) or (3), wherein the linker is bonded via an alkyl group, an aryl group, an ether group or a sulfide group.
(6) The wavelength conversion material according to (1), wherein the wavelength conversion material is encapsulated in resin particles.
(7) The site contributing to energy transfer in the material (A) is a carbazole skeleton, triallylamine skeleton, phenanthroline skeleton, biphenyl skeleton, benzothiophene skeleton, benzofuran skeleton, triphenylene skeleton, metal quinolinol complex, anthracene skeleton, pentacene skeleton, fluorene The wavelength conversion material according to any one of (1) to (6), comprising at least one selected from a skeleton, a pyrene skeleton, and an acridine skeleton.
(8) The portion contributing to light emission in the material (B) includes at least one selected from a coumarin skeleton, a quinacridone skeleton, an anthracene skeleton, a carbazole skeleton, a rubrene skeleton, an Ir complex, and a pyran skeleton. The wavelength conversion material according to any one of 7).
(9) a solar battery cell;
A sealing layer containing the wavelength conversion material according to any one of (1) to (8), provided on the light-receiving surface side of the solar battery cell;
A solar cell module.
 本発明の太陽電池用波長変換材料によれば、太陽電池の感度が相対的に低い、500nm未満の波長の光を太陽電池の感度の高い500nm以上の光に効率よく変換することができる。 According to the wavelength conversion material for a solar cell of the present invention, light having a wavelength of less than 500 nm, which is relatively low in sensitivity of the solar cell, can be efficiently converted into light having a sensitivity of 500 nm or more.
本発明の太陽電池モジュールの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the solar cell module of this invention.
 上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。なお、本明細書において「~」は、その前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。 Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments. In the present specification, “to” indicates a range including the numerical values described before and after the minimum and maximum values, respectively.
<太陽電池用波長変換材料>
 本発明は、500nm未満の吸収波長ピークを有する材料(A)と500nm以上の発光波長ピークを有する材料(B)とを含む太陽電池用波長変換材料であって、
 材料(B)が材料(A)からのエネルギー移動により発光することが可能であるように存在する、上記波長変換材料に関する(以下、本発明の波長変換材料ともいう)。
<Wavelength conversion material for solar cells>
The present invention is a wavelength conversion material for solar cells comprising a material (A) having an absorption wavelength peak of less than 500 nm and a material (B) having an emission wavelength peak of 500 nm or more,
The present invention relates to the above-described wavelength conversion material (hereinafter, also referred to as the wavelength conversion material of the present invention) that exists so that the material (B) can emit light by energy transfer from the material (A).
 ここで、「材料(B)が材料(A)からのエネルギー移動により発光することが可能であるように存在する」とは、材料(A)が太陽光を吸収し、材料(A)の発光スペクトルが材料(B)の吸収スペクトルと重なる部分があり、材料(B)が材料(A)の100nm以内の近傍に存在することを言う。これにより、紫外光を吸収して感度の高い波長領域の光を増大させ変換効率を増加させることができると共に、無輻射過程からの発熱を防ぎ、発電効率が低下することを防ぐことも可能となる。本発明の波長変換材料において、吸収波長ピークと発光波長ピークとの差が、20~200nmあることが好ましく、50~200nmであることがさらに好ましく、100~150nmであることが特に好ましい。 Here, “the material (B) exists so that it can emit light by energy transfer from the material (A)” means that the material (A) absorbs sunlight and emits light from the material (A). There is a portion where the spectrum overlaps with the absorption spectrum of the material (B), and the material (B) is present in the vicinity of the material (A) within 100 nm. As a result, it is possible to increase the conversion efficiency by increasing the light in the wavelength region with high sensitivity by absorbing the ultraviolet light, and it is also possible to prevent the heat generation from the non-radiation process and to reduce the power generation efficiency. Become. In the wavelength conversion material of the present invention, the difference between the absorption wavelength peak and the emission wavelength peak is preferably 20 to 200 nm, more preferably 50 to 200 nm, and particularly preferably 100 to 150 nm.
 上記500nm未満の吸収波長ピークを有する材料(A)は、光を吸収し、それによって形成された励起状態のエネルギーを発光材料に移動させる材料である。「500nm未満」とは、例えば300~450nmを示す。また、材料(A)は、材料(B)に対してエネルギー移動を効率的に生じさせる観点から、好ましくは300~510nm、さらに好ましくは300~450nm、特に好ましくは400~450nmに発光波長ピークを有する。また、材料(A)は、材料(B)に対してエネルギー移動を効率的に生じさせる観点から、好ましくは300~510nm、さらに好ましくは300~450nm、特に好ましくは300~400nmに発光波長ピークを有する。材料(A)としては、具体的には、多環芳香族系材料(カルバゾール系材料、フルオレン系材料、トリアリルアミン系材料、フェナントロリン系材料、ビフェニル系材料、ベンゾチオフェン系材料、ベンゾフラン系材料、アクリジン系材料、トリフェニレン系材料、金属キノリノール錯体系材料、アントラセン系材料、ピレン系材料及びペンタセン系材料)、金属錯体系材料、シリル系材料、アリルメタン系材料、ピリジン系材料、イミダゾール系材料、及びペリレン系材料等が挙げられ、当業者であれば、使用する材料(B)の吸収波長ピーク及び上述した好ましい発光波長ピークを考慮して、材料(A)を適宜選択することは可能である。このような観点から、特には、エネルギー移動に寄与する部位として、カルバゾール骨格、トリアリルアミン骨格、フェナントロリン骨格、ビフェニル骨格、ベンゾチオフェン骨格、ベンゾフラン骨格、トリフェニレン骨格、金属キノリノール錯体、アントラセン骨格、及びペンタセン骨格、フルオレン骨格、ピレン骨格及びアクリジン骨格から選択される少なくとも1種を含むものが好ましい。 The material (A) having an absorption wavelength peak of less than 500 nm is a material that absorbs light and moves the excited state energy formed thereby to the light emitting material. “Less than 500 nm” indicates, for example, 300 to 450 nm. The material (A) preferably has an emission wavelength peak at 300 to 510 nm, more preferably 300 to 450 nm, particularly preferably 400 to 450 nm, from the viewpoint of efficiently generating energy transfer with respect to the material (B). Have. Further, the material (A) preferably has an emission wavelength peak at 300 to 510 nm, more preferably 300 to 450 nm, and particularly preferably 300 to 400 nm from the viewpoint of efficiently generating energy transfer with respect to the material (B). Have. Specific examples of the material (A) include polycyclic aromatic materials (carbazole materials, fluorene materials, triallylamine materials, phenanthroline materials, biphenyl materials, benzothiophene materials, benzofuran materials, acridines. Materials, triphenylene materials, metal quinolinol complex materials, anthracene materials, pyrene materials and pentacene materials), metal complex materials, silyl materials, allylmethane materials, pyridine materials, imidazole materials, and perylene materials Those skilled in the art can appropriately select the material (A) in consideration of the absorption wavelength peak of the material (B) to be used and the preferable emission wavelength peak described above. From this point of view, the carbazole skeleton, triallylamine skeleton, phenanthroline skeleton, biphenyl skeleton, benzothiophene skeleton, benzofuran skeleton, triphenylene skeleton, metal quinolinol complex, anthracene skeleton, and pentacene skeleton are particularly considered as sites that contribute to energy transfer. And those containing at least one selected from a fluorene skeleton, a pyrene skeleton and an acridine skeleton are preferable.
 上記500nm以上の発光波長ピークを有する材料(B)は、エネルギー移動材料である材料(A)から励起エネルギーを受け取り、発光する材料である。「500nm以上」とは、例えば500~900nmを示す。また、材料(B)は、材料(A)に対してエネルギー移動を効率的に生じさせる観点から、好ましくは300~500nm、さらに好ましくは300~450nmに吸収波長ピークを有する。また、材料(B)は、材料(A)に対してエネルギー移動を効率的に生じさせる観点から、好ましくは300~500nm、さらに好ましくは350~500nmに吸収波長ピークを有する。材料(B)としては、具体的には、多環芳香族系材料(クマリン系材料、キナクリドン系材料、アントラセン系材料、カルバゾール系材料、ピラン系材料及びルブレン系材料)、Ir錯体、オキサジアゾール系材料、Eu錯体、Ru錯体、Pt錯体等が挙げられ、当業者であれば、使用する材料(A)の発光波長ピーク及び上述した好ましい吸収波長ピークを考慮して、材料(A)を適宜選択することは可能である。このような観点から、特には、発光に寄与する部位として、クマリン骨格、キナクリドン骨格、アントラセン骨格、カルバゾール骨格、ルブレン骨格、Ir錯体及びピラン骨格から選択される少なくとも1種を含むものが好ましい。 The material (B) having an emission wavelength peak of 500 nm or more receives the excitation energy from the material (A) that is an energy transfer material and emits light. “500 nm or more” indicates, for example, 500 to 900 nm. The material (B) preferably has an absorption wavelength peak at 300 to 500 nm, more preferably 300 to 450 nm, from the viewpoint of efficiently generating energy transfer with respect to the material (A). The material (B) preferably has an absorption wavelength peak at 300 to 500 nm, more preferably 350 to 500 nm, from the viewpoint of efficiently generating energy transfer with respect to the material (A). Specific examples of the material (B) include polycyclic aromatic materials (coumarin materials, quinacridone materials, anthracene materials, carbazole materials, pyran materials, and rubrene materials), Ir complexes, and oxadiazoles. System material, Eu complex, Ru complex, Pt complex, etc., and those skilled in the art can appropriately select the material (A) in consideration of the emission wavelength peak of the material (A) to be used and the preferable absorption wavelength peak described above. It is possible to choose. From such a viewpoint, it is particularly preferable that the site contributing to light emission includes at least one selected from a coumarin skeleton, a quinacridone skeleton, an anthracene skeleton, a carbazole skeleton, a rubrene skeleton, an Ir complex, and a pyran skeleton.
 本発明の波長変換材料の一実施形態において、材料(A)におけるエネルギー移動に寄与する部位と材料(B)における発光に寄与する部位とが化学結合又はリンカーを介して結合している。これにより、材料(B)が材料(A)からのエネルギー移動を効率的に生じさせることが可能となると共に、封止層にそのまま分散して使用することが可能となる。また、本発明の波長変換材料において、発光する部位の凝集による効率低減を抑制する観点から、材料(B)における発光に寄与する部位はその末端に位置することが好ましい。上記リンカーは、光吸収する部位と発光する部位の電子雲の重なりを小さくし、束れぞれの特性を結合後に損なわなくする観点から、極性基、特にカルボキシル基及びアミド基、及びアルキル基、アリール基、エーテル基及びスルフィド基などから選択される少なくとも1種を介して結合していることが好ましい。リンカーとしては、具体的には以下の構造:
Figure JPOXMLDOC01-appb-C000001
から選択される少なくとも1種又はこれを含むものが挙げられる。上記式中、波線は材料(A)におけるエネルギー移動に寄与する部位、材料(B)における発光に寄与する部位、又は他のリンカーに含まれる構造との結合部位であり、Arは置換されていてもよい芳香族炭化水素基であり、nは1~10の整数である。芳香族炭化水素基としてはフェニル又はナフチル等の単環式、二環式、又は三環式芳香族炭化水素基が挙げられる。
In one embodiment of the wavelength conversion material of the present invention, a site contributing to energy transfer in the material (A) and a site contributing to light emission in the material (B) are bonded via a chemical bond or a linker. As a result, the material (B) can efficiently cause energy transfer from the material (A), and can be used as it is dispersed in the sealing layer. Moreover, in the wavelength conversion material of this invention, it is preferable that the site | part which contributes to light emission in material (B) is located in the terminal from a viewpoint of suppressing the efficiency reduction by aggregation of the light emission site | part. The linker is a polar group, particularly a carboxyl group and an amide group, and an alkyl group, from the viewpoint of reducing the overlap of the electron cloud of the site that absorbs light and the site that emits light and not losing the properties of each bundle after bonding. It is preferable that they are bonded via at least one selected from an aryl group, an ether group and a sulfide group. Specifically, the linker has the following structure:
Figure JPOXMLDOC01-appb-C000001
Or at least one selected from the group consisting of: In the above formula, the wavy line is a site that contributes to energy transfer in the material (A), a site that contributes to light emission in the material (B), or a binding site with a structure contained in another linker, and Ar is substituted. And n is an integer of 1 to 10. Examples of the aromatic hydrocarbon group include monocyclic, bicyclic, and tricyclic aromatic hydrocarbon groups such as phenyl and naphthyl.
 本発明の波長変換材料において、材料(A)におけるエネルギー移動に寄与する部位と材料(B)における発光に寄与する部位とが化学結合又はリンカーを介して結合している場合、材料(A)におけるエネルギー移動に寄与する部位と材料(B)における発光に寄与する部位とのモル比は、エネルギー移動の起こりやすさと濃度消光の起こりにくさの観点から適宜決定することができ、例えば1:1~100:1であることが好ましく、5:1~100:1であることがさらに好ましく、5:1~80:1であることが特に好ましい。 In the wavelength conversion material of the present invention, when the site contributing to energy transfer in the material (A) and the site contributing to light emission in the material (B) are bonded via a chemical bond or a linker, in the material (A) The molar ratio between the site contributing to energy transfer and the site contributing to light emission in the material (B) can be appropriately determined from the viewpoint of the ease of energy transfer and the difficulty of concentration quenching. The ratio is preferably 100: 1, more preferably 5: 1 to 100: 1, and particularly preferably 5: 1 to 80: 1.
 本発明の波長変換材料の一実施形態において、エネルギー移動を効率的に生じさせる観点から、樹脂粒子中に内包されている。樹脂粒子中に内包されていることにより、波長変換材料の分散性がよくなり、入射した太陽光を散乱させることなく太陽電池セルへ効率よく導入することも可能となる。 In one embodiment of the wavelength conversion material of the present invention, it is encapsulated in resin particles from the viewpoint of efficiently generating energy transfer. By being encapsulated in the resin particles, the dispersibility of the wavelength conversion material is improved, and the incident sunlight can be efficiently introduced into the solar battery cell without being scattered.
 本発明の波長変換材料を樹脂粒子に内包する方法としては、通常用いられる方法を特に制限なく用いることができる。例えば、波長変換材料と樹脂粒子を構成するモノマー化合物の混合物を調製し、これを重合することで調製することができる。例えば、波長変換材料とビニル化合物を含む混合物を調製し、ラジカル重合開始剤を用いてビニル化合物を重合することで、波長変換材料を内包した樹脂粒子を得ることができる。ラジカル重合開始剤の使用量は、ビニル化合物の種類や形成される樹脂粒子の屈折率等に応じて適宜選択することができ、通常用いられる使用量で使用される。波長変換材料を樹脂粒子に内包させる場合、樹脂粒子中の波長変換材料の含有率は、エネルギー移動を効率的に生じさせる観点から、樹脂粒子100質量部に対し1~50質量部であることが好ましく1~10質量部であることがさらに好ましい。 As a method for encapsulating the wavelength conversion material of the present invention in resin particles, a commonly used method can be used without any particular limitation. For example, it can be prepared by preparing a mixture of the monomer compound constituting the wavelength conversion material and the resin particles and polymerizing the mixture. For example, a resin particle containing the wavelength conversion material can be obtained by preparing a mixture containing the wavelength conversion material and the vinyl compound and polymerizing the vinyl compound using a radical polymerization initiator. The usage-amount of a radical polymerization initiator can be suitably selected according to the kind of vinyl compound, the refractive index of the resin particle formed, etc., and is used by the usage-amount normally used. When the wavelength conversion material is included in the resin particles, the content of the wavelength conversion material in the resin particles is 1 to 50 parts by mass with respect to 100 parts by mass of the resin particles from the viewpoint of efficiently generating energy transfer. The amount is preferably 1 to 10 parts by mass.
 材料(A)におけるエネルギー移動に寄与する部位と材料(B)における発光に寄与する部位とを化学結合又はリンカーを介して結合させることなく、波長変換材料を樹脂粒子に内包させる場合、材料(A)におけるエネルギー移動に寄与する部位と材料(B)における発光に寄与する部位とのモル比は、エネルギー移動を効率よく行いかつ濃度消光をおこさない観点から適宜決定することができ、例えば1:1~100:1であることが好ましく、5:1~100:1であることがさらに好ましく、50:1~100:1であることが特に好ましい。 When the wavelength conversion material is encapsulated in the resin particle without bonding the site contributing to energy transfer in the material (A) and the site contributing to light emission in the material (B) via a chemical bond or a linker, the material (A The molar ratio of the site contributing to energy transfer in (1) to the site contributing to light emission in the material (B) can be determined as appropriate from the viewpoint of efficiently performing energy transfer and not causing concentration quenching. Is preferably ˜100: 1, more preferably 5: 1 to 100: 1, and particularly preferably 50: 1 to 100: 1.
 上記樹脂粒子を構成するモノマー化合物としては、特に制限はないが、光の散乱抑制の観点から、ビニル化合物であることが好ましい。ビニル化合物とは、エチレン性不飽和結合を少なくとも1つ有する化合物であれば特に制限はなく、重合反応した際にビニル樹脂、特にアクリル樹脂又はメタクリル樹脂になり得るアクリルモノマー、メタクリルモノマー、アクリルオリゴマー、メタクリルオリゴマー等を特に制限なく用いることができる。ビニル化合物としては、アクリル酸アルキルエステル及びメタクリル酸アルキルエステルから選ばれる少なくとも1種を用いることが好ましく、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、及びメタクリル酸エチルから選ばれる少なくとも1種を用いることがより好ましい。 The monomer compound constituting the resin particles is not particularly limited, but is preferably a vinyl compound from the viewpoint of suppressing light scattering. The vinyl compound is not particularly limited as long as it is a compound having at least one ethylenically unsaturated bond, and an acrylic monomer, a methacrylic monomer, an acrylic oligomer, which can be converted into a vinyl resin, particularly an acrylic resin or a methacrylic resin, upon polymerization reaction, A methacryl oligomer or the like can be used without particular limitation. As the vinyl compound, it is preferable to use at least one selected from alkyl acrylates and alkyl methacrylates, and at least one selected from methyl acrylate, methyl methacrylate, ethyl acrylate, and ethyl methacrylate is used. It is more preferable.
 上記ラジカル重合開始剤としては、特に制限なく通常用いられるラジカル重合開始剤を用いることができる。例えば、過酸化物等が好ましく挙げられる。 As the radical polymerization initiator, a commonly used radical polymerization initiator can be used without any particular limitation. For example, a peroxide etc. are mentioned preferably.
<太陽電池モジュール>
 本発明は太陽電池モジュールにも関する。本発明の太陽電池モジュールは、太陽電池セルと、太陽電池セルの受光面側に設けられた、上記波長変換材料を含む封止層と、を有する。
<Solar cell module>
The present invention also relates to a solar cell module. The solar cell module of this invention has a photovoltaic cell and the sealing layer provided in the light-receiving surface side of the photovoltaic cell and containing the said wavelength conversion material.
 図1は、太陽電池モジュールの一例を示す概略断面図である。図1の太陽電池モジュールでは、太陽電池セル1の受光面に、保護層2を備え、裏面側にはバックフィルム3を備える。さらに、保護層2と太陽電池セル1の間に封止層4を設ける。この封止層4は波長変換材料を含む。また、バックフィルム3と太陽電池セル1の間には、裏面用封止層5を設ける。裏面用封止層5は太陽電池セル1を封止できるものであれば特に限定されない。また、図1には図示していないが、表面に反射防止層等、通常太陽電池モジュールに設けられる部材を有していてもよい。上記保護層には強化ガラス等を用いることができる。 FIG. 1 is a schematic cross-sectional view showing an example of a solar cell module. In the solar cell module of FIG. 1, a protective layer 2 is provided on the light receiving surface of the solar cell 1, and a back film 3 is provided on the back surface side. Further, a sealing layer 4 is provided between the protective layer 2 and the solar battery cell 1. The sealing layer 4 includes a wavelength conversion material. Further, a back surface sealing layer 5 is provided between the back film 3 and the solar battery cell 1. If the sealing layer 5 for back surfaces can seal the photovoltaic cell 1, it will not be specifically limited. Moreover, although not shown in FIG. 1, you may have the members normally provided in a solar cell module, such as an antireflection layer, on the surface. Tempered glass or the like can be used for the protective layer.
 上記封止層は波長変換材料の他に、分散媒樹脂を含んでいてもよい。分散媒樹脂の具体的な例としては、アクリル系樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリオレフィン樹脂、ポリ塩化ビニル樹脂、ポリエーテルサルフォン樹脂、ポリアリレート樹脂、ポリビニルアセタール樹脂、エポキシ樹脂、シリコーン樹脂、フッ素樹脂やこれらの共重合体等が挙げられる。分散媒樹脂は1種単独或いは2種以上の組合せで使用してもよい。耐久性や汎用性の観点からは、(メタ)アクリル酸メチルに由来する構成単位を有するものがより好ましい。共重合体の樹脂としては、例えば、(メタ)アクリル酸エステル-スチレン共重合体、エチレン-酢酸ビニル共重合体(以下、「EVA」と略称する。)、等が挙げられる。耐湿性や、コスト、汎用性の点でEVAが好ましく、また耐久性と表面硬度の点からは(メタ)アクリル酸エステル樹脂が好ましい。さらに、EVAと(メタ)アクリル酸エステル樹脂との併用が、両者の利点を兼ね備える観点からより好適である。 The sealing layer may contain a dispersion medium resin in addition to the wavelength conversion material. Specific examples of the dispersion medium resin include acrylic resin, polycarbonate resin, polystyrene resin, polyolefin resin, polyvinyl chloride resin, polyether sulfone resin, polyarylate resin, polyvinyl acetal resin, epoxy resin, silicone resin, fluorine Examples thereof include resins and copolymers thereof. The dispersion medium resin may be used alone or in combination of two or more. From the viewpoint of durability and versatility, those having a structural unit derived from methyl (meth) acrylate are more preferred. Examples of the copolymer resin include (meth) acrylate-styrene copolymer, ethylene-vinyl acetate copolymer (hereinafter abbreviated as “EVA”), and the like. EVA is preferable in terms of moisture resistance, cost, and versatility, and (meth) acrylic ester resin is preferable in terms of durability and surface hardness. Furthermore, the combined use of EVA and (meth) acrylic ester resin is more preferable from the viewpoint of combining the advantages of both.
 上記封止層において、材料(A)におけるエネルギー移動に寄与する部位と材料(B)における発光に寄与する部位とが化学結合又はリンカーを介して結合させた波長変換材料をそのまま分散媒樹脂に分散させる場合、波長変換材料と分散媒樹脂との重量比は、エネルギー移動を効率よく行いかつ濃度消光をおこさない観点から適宜決定することができ、例えば1:2~1:100であることが好ましく、1:2~1:10であることがさらに好ましい。 In the sealing layer, the wavelength conversion material in which the site contributing to energy transfer in the material (A) and the site contributing to light emission in the material (B) are bonded via a chemical bond or a linker is dispersed as it is in the dispersion medium resin. In this case, the weight ratio between the wavelength conversion material and the dispersion medium resin can be appropriately determined from the viewpoint of efficiently performing energy transfer and not causing concentration quenching, and is preferably from 1: 2 to 1: 100, for example. More preferably, the ratio is 1: 2 to 1:10.
 上記封止層において、波長変換材料を樹脂粒子に内包させて分散媒樹脂に分散させる場合、分散媒樹脂と樹脂粒子との重量比は、膜強度や透湿性維持の観点から適宜決定することができ、例えば、1:1~70:1であることが好ましく、1:1~60:1であることが好ましく、1:1~10:1であることが特に好ましく、1:1~5:1であることがより特に好ましい。 In the sealing layer, when the wavelength conversion material is encapsulated in the resin particles and dispersed in the dispersion medium resin, the weight ratio between the dispersion medium resin and the resin particles can be appropriately determined from the viewpoint of maintaining the film strength and moisture permeability. For example, it is preferably 1: 1 to 70: 1, preferably 1: 1 to 60: 1, particularly preferably 1: 1 to 10: 1, and 1: 1 to 5: 1 is more particularly preferable.
 上記封止層は、波長変換材料及び分散媒樹脂の他に、紫外線吸収剤を含有してもよい。ここでいう紫外線吸収剤とは、300~450nmに吸収波長ピークを有するものであって、上記材料(A)に該当しないものをいう。上記封止層中の紫外線吸収剤の含有率は、実質、紫外線吸収剤を含まないことがさらに好ましい。上記封止層中の紫外線吸収剤の含有率は、分散媒樹脂を含む場合、分散媒樹脂100質量部に対し0.05質量部未満であることが好ましく、0.001質量部未満であることがさらに好ましく、実質的、紫外線吸収剤を含まないことが特に好ましい。これにより、紫外線吸収からの緩和過程による発熱量を抑制し、セルの温度上昇が抑えられるため、太陽電池モジュールの発電効率を向上させることができる。 The sealing layer may contain an ultraviolet absorber in addition to the wavelength conversion material and the dispersion medium resin. The term “ultraviolet absorber” as used herein means one having an absorption wavelength peak at 300 to 450 nm and not corresponding to the material (A). More preferably, the content of the ultraviolet absorber in the sealing layer substantially does not contain the ultraviolet absorber. When the dispersion medium resin is contained, the content of the ultraviolet absorber in the sealing layer is preferably less than 0.05 parts by weight and less than 0.001 parts by weight with respect to 100 parts by weight of the dispersion medium resin. Is more preferable, and it is particularly preferable that substantially no UV absorber is contained. Thereby, since the calorific value by the relaxation process from ultraviolet absorption is suppressed and the temperature rise of a cell is suppressed, the electric power generation efficiency of a solar cell module can be improved.
 上記封止層は、上記成分の他に、本発明の効果を損なわない範囲で、必要に応じてカップリング剤、可塑剤、難燃剤、酸化防止剤、光安定剤、防錆剤、加工助剤、着色剤等のその他の添加剤を含有してもよい。上記その他の添加剤の合計配合量は、波長変換材料100質量部に対して、通常10質量部以下、好ましくは1質量部以下である。 In addition to the above components, the sealing layer is a coupling agent, a plasticizer, a flame retardant, an antioxidant, a light stabilizer, a rust inhibitor, a processing aid, as long as the effects of the present invention are not impaired. You may contain other additives, such as an agent and a coloring agent. The total amount of the other additives is usually 10 parts by mass or less, preferably 1 part by mass or less, with respect to 100 parts by mass of the wavelength conversion material.
 上記封止層は、公知の技術を利用して製造することができる。例えば、少なくとも上記波長変換材料、及び必要に応じて上記分散媒樹脂、さらに必要に応じてその他の添加剤を溶融混練しシートを成形する方法、或いは、上記樹脂をワニス化し上記波長変換材料を添加した後、シート状に付与し、溶媒を除去する方法等が利用できる。具体的には、例えば、スペーサーを介して2枚の離型シートを対向させ、2枚の離型シート間に形成された空隙に上記溶融混練した組成物を付与し、両側から熱プレスしてシートを形成することができる。封止層の厚みは、10~1000μmであることが好ましく、400~650μmであることがより好ましい。 The sealing layer can be manufactured using a known technique. For example, at least the wavelength conversion material and, if necessary, the dispersion medium resin, and if necessary, a method of melt-kneading other additives to form a sheet, or varnishing the resin and adding the wavelength conversion material Then, it is possible to use a method such as applying to a sheet and removing the solvent. Specifically, for example, two release sheets are opposed to each other through a spacer, and the melt-kneaded composition is applied to a gap formed between the two release sheets, and hot pressed from both sides. A sheet can be formed. The thickness of the sealing layer is preferably 10 to 1000 μm, and more preferably 400 to 650 μm.
 以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[実施例1]
 図1に示す構造と同様にして、以下のような材料を用い、実施例1の太陽電池モジュールを作製した。保護層2として強化ガラスを用いた。封止層4の分散媒樹脂として、エチレン-酢酸ビニル樹脂(EVA)を用いた。
[Example 1]
Similar to the structure shown in FIG. 1, a solar cell module of Example 1 was fabricated using the following materials. Tempered glass was used as the protective layer 2. As a dispersion medium resin for the sealing layer 4, ethylene-vinyl acetate resin (EVA) was used.
 波長変換材料のエネルギー移動材料として式(1):
Figure JPOXMLDOC01-appb-C000002
で表わされる材料を使用した。この材料の光吸収のピーク波長は420nmであり、また、この材料の発光ピーク波長は506nmである。また、波長変換材料の発光材料として式(2):
Figure JPOXMLDOC01-appb-C000003
で表わされる材料を使用した。この材料の光吸収のピーク波長は485nmであり、また、発光のピーク波長は600nmである。
Formula (1) as an energy transfer material of the wavelength conversion material:
Figure JPOXMLDOC01-appb-C000002
The material represented by is used. The peak wavelength of light absorption of this material is 420 nm, and the emission peak wavelength of this material is 506 nm. Further, as the light emitting material of the wavelength conversion material, the formula (2):
Figure JPOXMLDOC01-appb-C000003
The material represented by is used. The peak wavelength of light absorption of this material is 485 nm, and the peak wavelength of light emission is 600 nm.
 これらの波長変換材料を樹脂粒子中に包含させた。樹脂にはPMMA(ポリメタクリル酸メチル)を用いた。波長変換材料である式(1)のエネルギー移動材料と式(2)の発光材料とを、ビニル化合物としてメタクリル酸メチルを用い、ラジカル重合剤ラウロイルパーオキサイドを用いて重合させ、波長変換材料を内包した樹脂粒子を得た。重合に用いた式(1)のエネルギー移動材料と式(2)の発光材料との重量比は99:1とした。 These wavelength conversion materials were included in the resin particles. PMMA (polymethyl methacrylate) was used as the resin. The wavelength conversion material is encapsulated with the energy transfer material of the formula (1) and the light emitting material of the formula (2) using methyl methacrylate as a vinyl compound and a radical polymerization agent lauroyl peroxide. Resin particles were obtained. The weight ratio of the energy transfer material of formula (1) used in the polymerization to the light emitting material of formula (2) was 99: 1.
 この粒子を分散媒樹脂に混練して、樹脂組成物を得た。分散媒樹脂と波長変換材料を内包した樹脂粒子との重量比は、100:2とした。保護層である強化ガラスの上に得られた樹脂組成部物を用いて封止層4を形成した。厚みは0.6mmとした。その上に太陽電池セル1を載せ、さらに裏面用太陽電池封止シート5、バックフィルム3としてPEDTフィルムをラミネートして、実施例1の太陽電池モジュールを得た。 The particles were kneaded with a dispersion medium resin to obtain a resin composition. The weight ratio between the dispersion medium resin and the resin particles encapsulating the wavelength conversion material was 100: 2. The sealing layer 4 was formed using the resin composition part obtained on the tempered glass which is a protective layer. The thickness was 0.6 mm. The solar cell 1 was mounted thereon, and the back surface solar cell encapsulating sheet 5 and the back film 3 were laminated with a PEDT film to obtain a solar cell module of Example 1.
[比較例1]
 波長変換材料を用いていない点を除いては、実施例1と同様にして比較例1の太陽電池モジュールを作製した。
[Comparative Example 1]
A solar cell module of Comparative Example 1 was produced in the same manner as in Example 1 except that the wavelength conversion material was not used.
 上記実施例1と比較例1の太陽電池モジュールの最大出力を測定、比較した。比較のため、実施例1と比較例1の太陽電池モジュールを近接して設置し、屋外の自然光にて出力を比較した。その結果、実施例1の太陽電池モジュールの最大出力は比較例1の太陽電池モジュールと比較して、1.07倍であった。この出力の向上は、実施例1の太陽電池モジュールにおける波長変換材料が波長500nm以下の光を吸収して効率よく波長500nm以上の光に変換したためである。 The maximum output of the solar cell modules of Example 1 and Comparative Example 1 was measured and compared. For comparison, the solar cell modules of Example 1 and Comparative Example 1 were installed close to each other, and the output was compared with outdoor natural light. As a result, the maximum output of the solar cell module of Example 1 was 1.07 times that of the solar cell module of Comparative Example 1. This improvement in output is because the wavelength conversion material in the solar cell module of Example 1 absorbed light with a wavelength of 500 nm or less and efficiently converted it into light with a wavelength of 500 nm or more.
[比較例2]
 波長変換材料のエネルギー移動材料として、式(3):
Figure JPOXMLDOC01-appb-C000004
で表わされる材料を用いた点を除いては、実施例1と同様にして比較例2の太陽電池モジュールを作製した。この材料の光吸収のピーク波長は510nmであり、発光のピーク波長は523nmである。
[Comparative Example 2]
As the energy transfer material of the wavelength conversion material, the formula (3):
Figure JPOXMLDOC01-appb-C000004
A solar cell module of Comparative Example 2 was produced in the same manner as in Example 1 except that the material represented by The peak wavelength of light absorption of this material is 510 nm, and the peak wavelength of light emission is 523 nm.
 この比較例2の太陽電池モジュールの最大出力を、上記同様に比較例1と同時に測定した。その結果、この比較例2の太陽電池モジュールの最大出力は、比較例1と比較して、0.95倍であった。これは、比較例2の太陽電池モジュールにおいてエネルギー移動材料が太陽電池の変換効率の高い500nm以上の光を吸収したためである。 The maximum output of the solar cell module of Comparative Example 2 was measured simultaneously with Comparative Example 1 as described above. As a result, the maximum output of the solar cell module of Comparative Example 2 was 0.95 times that of Comparative Example 1. This is because in the solar cell module of Comparative Example 2, the energy transfer material absorbed light having a solar cell conversion efficiency of 500 nm or higher.
[比較例3]
 波長変換材料の発光材料として、式(4):
Figure JPOXMLDOC01-appb-C000005
で表わされる化合物を用いた点を除いては、実施例1と同様にして比較例3の太陽電池モジュールを作製した。この材料の光吸収のピーク波長は、339nmであり、発光のピーク波長は450nmである。
[Comparative Example 3]
As the light emitting material of the wavelength conversion material, the formula (4):
Figure JPOXMLDOC01-appb-C000005
A solar cell module of Comparative Example 3 was produced in the same manner as in Example 1 except that the compound represented by The peak wavelength of light absorption of this material is 339 nm, and the peak wavelength of light emission is 450 nm.
 この比較例3の太陽電池モジュールの最大出力を上記同様に比較例1と同時に測定した。その結果、この比較例3の太陽電池モジュールの最大出力は、比較例1と比較して、0.98倍であった。これは、比較例3の太陽電池モジュールにおいて発光材料が波長500nm未満の光を発光してしまい、太陽電池の変換効率の高い波長に十分に波長を変換できなかったためである。 The maximum output of the solar cell module of Comparative Example 3 was measured simultaneously with Comparative Example 1 as described above. As a result, the maximum output of the solar cell module of Comparative Example 3 was 0.98 times that of Comparative Example 1. This is because in the solar cell module of Comparative Example 3, the light emitting material emitted light having a wavelength of less than 500 nm, and the wavelength could not be sufficiently converted to a wavelength with high conversion efficiency of the solar cell.
[実施例2]
 波長変換材料として式(5):
Figure JPOXMLDOC01-appb-C000006
(式中、nとmとの比は10:1である)で表わされる材料を用いた点を除いては、実施例1と同様にして実施例2の太陽電池モジュールを作製した。この材料の合成は下記(1)-(2)の工程により行った。
[Example 2]
Formula (5) as a wavelength conversion material:
Figure JPOXMLDOC01-appb-C000006
A solar cell module of Example 2 was produced in the same manner as in Example 1 except that the material represented by the formula (where the ratio of n to m is 10: 1) was used. This material was synthesized by the following steps (1)-(2).
(1)式(5-1)の化合物の合成
 BeSO・5HO(5mmol)を溶解させたメタノール(30ml)を、式(5-2)の化合物(5mmol)及び式(5-3)の化合物(5mmol)を溶解させたメタノール30mlに撹拌しながら加えた。その後、NaOHを用いてpH12となるように調整し、室温で5時間撹拌した。その結果、無色固体が析出した。濾過及びシリカゲルのカラムクロマトグラフィ―を行い、式(5-1)の化合物を得た。
(1) Synthesis of Compound of Formula (5-1) Methanol (30 ml) in which BeSO 4 .5H 2 O (5 mmol) was dissolved was converted into a compound (5 mmol) of formula (5-2) and a formula (5-3). The compound (5 mmol) was dissolved in 30 ml of methanol with stirring. Then, it adjusted so that it might become pH 12 using NaOH, and stirred at room temperature for 5 hours. As a result, a colorless solid was precipitated. Filtration and column chromatography on silica gel were performed to obtain the compound of formula (5-1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(2)式(5-4)の化合物の合成
 式(5-5)の配位子(0.5mmol)と式(5-6)の2核錯体(2mmol)を炭酸ナトリウム(2mmol)とともに、N,N-ジメチルホルムアミド(20ml)中90℃で4時間加熱撹拌した。得られた反応液を水中に投入し、生じた沈殿を水洗後、減圧乾燥した。シリカゲルのカラムクロマトグラフィ―で精製し、式(5-4)の化合物を得た。
(2) Synthesis of Compound of Formula (5-4) A ligand (0.5 mmol) of formula (5-5) and a binuclear complex (2 mmol) of formula (5-6) together with sodium carbonate (2 mmol) The mixture was stirred with heating in N, N-dimethylformamide (20 ml) at 90 ° C. for 4 hours. The obtained reaction solution was poured into water, and the resulting precipitate was washed with water and dried under reduced pressure. Purification by column chromatography on silica gel gave the compound of formula (5-4).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 密閉容器に、式(5-1)の化合物(0.5mmol)と式(5-4)の化合物(0.5mmol)を入れ、脱水トルエン(10ml)を加えた。次にV-601(和光純薬工業(株)製)のトルエン溶液(0.2ml)を加え、凍結脱気操作を5回繰り返した。真空のまま密閉し、60℃で60時間撹拌した。反応後アセトン(500ml)中に滴下し、沈殿を得た。さらにトルエン-アセトンでの再沈殿を2回繰り返し、目的物である式(5)の化合物を得た。 In a sealed container, the compound of formula (5-1) (0.5 mmol) and the compound of formula (5-4) (0.5 mmol) were placed, and dehydrated toluene (10 ml) was added. Next, a toluene solution (0.2 ml) of V-601 (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the freeze degassing operation was repeated 5 times. It sealed in vacuum and stirred at 60 ° C. for 60 hours. After the reaction, it was dropped into acetone (500 ml) to obtain a precipitate. Further, reprecipitation with toluene-acetone was repeated twice to obtain the target compound of formula (5).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 この材料のエネルギー移動に寄与するBe錯体の部分の光吸収のピーク波長は420nmである。また、この部分の発光ピークは506nmである。また、この材料の発光に寄与するIr錯体の部分の光吸収のピーク波長は485nmである。また、この部分の発光ピーク波長は600nmである。このnとmの比は10:1となるようにした。 The peak wavelength of light absorption at the part of the Be complex that contributes to the energy transfer of this material is 420 nm. Moreover, the emission peak of this part is 506 nm. The peak wavelength of light absorption of the Ir complex portion that contributes to the light emission of this material is 485 nm. Moreover, the emission peak wavelength of this part is 600 nm. The ratio of n to m was set to 10: 1.
 この材料は樹脂粒子に内包させることなく、このまま、分散媒樹脂に混練して、樹脂組成物を得た。波長変換材料と分散媒樹脂の重量比は99:1とした。 This material was kneaded with the dispersion medium resin as it was without being encapsulated in the resin particles to obtain a resin composition. The weight ratio of the wavelength conversion material and the dispersion medium resin was 99: 1.
 この実施例2の太陽電池モジュールの最大出力を比較例1と同時に測定した。その結果、実施例2の太陽電池モジュールの最大出力は比較例1の太陽電池モジュールと比較して、1.07倍であった。この出力の向上は、実施例2の太陽電池モジュールにおいて波長変換材料が波長500nm以下の光を吸収して効率よく波長500nm以上の光に変換したためである。 The maximum output of the solar cell module of Example 2 was measured simultaneously with Comparative Example 1. As a result, the maximum output of the solar cell module of Example 2 was 1.07 times that of the solar cell module of Comparative Example 1. This improvement in output is because the wavelength conversion material in the solar cell module of Example 2 absorbed light with a wavelength of 500 nm or less and efficiently converted it into light with a wavelength of 500 nm or more.
[実施例3]
 波長変換材料のエネルギー移動材料として、式(6):
Figure JPOXMLDOC01-appb-C000010
で表わされる材料を用いた点を除いては、実施例1と同様にして実施例3の太陽電池モジュールを作製した。この材料の光吸収のピーク波長は395nmであり、発光のピーク波長は425nmである。
[Example 3]
As an energy transfer material of the wavelength conversion material, the formula (6):
Figure JPOXMLDOC01-appb-C000010
A solar cell module of Example 3 was produced in the same manner as Example 1 except that the material represented by The peak wavelength of light absorption of this material is 395 nm, and the peak wavelength of light emission is 425 nm.
 この実施例3の太陽電池モジュールの最大出力を比較例1の太陽電池モジュールと同時に測定した。その結果、実施例3の太陽電池モジュールの最大出力は比較例1の太陽電池モジュールと比較して、1.09倍であった。この出力の向上は、実施例3の太陽電池モジュールにおいて波長変換材料が波長500nm以下の光をより吸収して効率よく波長500nm以上の光に変換したためである。 The maximum output of the solar cell module of Example 3 was measured simultaneously with the solar cell module of Comparative Example 1. As a result, the maximum output of the solar cell module of Example 3 was 1.09 times that of the solar cell module of Comparative Example 1. This improvement in output is because the wavelength conversion material in the solar cell module of Example 3 more efficiently absorbs light having a wavelength of 500 nm or less and efficiently converts it into light having a wavelength of 500 nm or more.
[実施例4]
 波長変換材料として、式(7):
Figure JPOXMLDOC01-appb-C000011
(式中、nとmとの比は10:1である)で表わされる材料を用いた点を除いては、実施例2と同様にして実施例4の太陽電池モジュールを作製した。この材料の合成は下記のように行った。
[Example 4]
As a wavelength conversion material, the formula (7):
Figure JPOXMLDOC01-appb-C000011
A solar cell module of Example 4 was produced in the same manner as in Example 2 except that the material represented by the formula (where the ratio of n to m is 10: 1) was used. This material was synthesized as follows.
 密閉容器に、式(7-1)の化合物(0.5mmol)と式(5-4)の化合物(0.5mmol)を入れ、脱水トルエン(10ml)を加えた。次にV-601(和光純薬工業(株)製)のトルエン溶液(0.2ml)を加え、凍結脱気操作を5回繰り返した。真空のまま密閉し、60℃で60時間撹拌した。反応後アセトン500ml中に滴下し、沈殿を得た。さらにトルエン-アセトンでの再沈殿を2回繰り返し、目的物である式(7)の化合物を得た。 In a sealed container, the compound of formula (7-1) (0.5 mmol) and the compound of formula (5-4) (0.5 mmol) were placed, and dehydrated toluene (10 ml) was added. Next, a toluene solution (0.2 ml) of V-601 (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the freeze degassing operation was repeated 5 times. It sealed in vacuum and stirred at 60 ° C. for 60 hours. After the reaction, it was dropped into 500 ml of acetone to obtain a precipitate. Further, reprecipitation with toluene-acetone was repeated twice to obtain the target compound of the formula (7).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 この材料のエネルギー移動に寄与する部位の光吸収のピーク波長は395nmであり、その部位の発光のピーク波長は425nmである。また、発光材料として寄与する部位の光吸収のピーク波長は485nmであり、その部位の発光ピークの部位は600nmである。この材料のnとmの比は10:1となるようにした。 The peak wavelength of light absorption at the site contributing to the energy transfer of this material is 395 nm, and the peak wavelength of light emission at that site is 425 nm. Further, the peak wavelength of light absorption at the site contributing as the light emitting material is 485 nm, and the site of the emission peak at that site is 600 nm. The ratio of n to m of this material was set to 10: 1.
 この実施例4の太陽電池モジュールの最大出力を比較例1の太陽電池モジュールと同時に測定した。その結果、実施例4の太陽電池モジュールの最大出力は比較例1の太陽電池モジュールと比較して、1.1倍であった。この出力の向上は、実施例4の太陽電池モジュールにおいて波長変換材料が波長500nm以下の光をより吸収して効率よく波長500nm以上の光に変換したためである。 The maximum output of the solar cell module of Example 4 was measured simultaneously with the solar cell module of Comparative Example 1. As a result, the maximum output of the solar cell module of Example 4 was 1.1 times that of the solar cell module of Comparative Example 1. This improvement in output is because the wavelength conversion material in the solar cell module of Example 4 more efficiently absorbs light having a wavelength of 500 nm or less and efficiently converts it into light having a wavelength of 500 nm or more.
[実施例5]
 波長変換材料として、式(8):
Figure JPOXMLDOC01-appb-C000013
(式中、nは約6であり、Rは水素、置換されていてもよいメチル、エチル及びプロピル基等のアルキル基であり、Rは水素、置換されていてもよいメチル、エチル及びプロピル基等のアルキル基である)で表わされるような材料を用いた点を除いては、実施例2と同様にして実施例5の太陽電池モジュールを作製した。この材料のエネルギー移動に寄与する部位の光吸収のピーク波長は378nmであり、その部位の発光のピーク波長は414nmである。また、発光材料として寄与する部位の光吸収のピーク波長は485nmであり、その部位の発光ピークの部位は600nmである。この材料のnは整数であり、6程度となるようにした。
[Example 5]
As a wavelength conversion material, the formula (8):
Figure JPOXMLDOC01-appb-C000013
Wherein n is about 6, R 1 is hydrogen, an alkyl group such as optionally substituted methyl, ethyl and propyl groups, R 2 is hydrogen, optionally substituted methyl, ethyl and A solar cell module of Example 5 was fabricated in the same manner as Example 2 except that a material such as a propyl group was used. The peak wavelength of light absorption at the site contributing to the energy transfer of this material is 378 nm, and the peak wavelength of light emission at that site is 414 nm. Further, the peak wavelength of light absorption at the site contributing as the light emitting material is 485 nm, and the site of the emission peak at that site is 600 nm. In this material, n is an integer and is set to about 6.
 この実施例5の太陽電池モジュールの最大出力を比較例1の太陽電池モジュールと同時に測定した。その結果、実施例5の太陽電池モジュールの最大出力は比較例1の太陽電池モジュールと比較して、1.1倍であった。この出力の向上は、実施例5の太陽電池モジュールにおける波長変換材料が波長500nm以下の光をより吸収して効率よく波長500nm以上の光に変換したためである。 The maximum output of the solar cell module of Example 5 was measured simultaneously with the solar cell module of Comparative Example 1. As a result, the maximum output of the solar cell module of Example 5 was 1.1 times that of the solar cell module of Comparative Example 1. This improvement in output is because the wavelength conversion material in the solar cell module of Example 5 more efficiently absorbs light having a wavelength of 500 nm or less and efficiently converts it into light having a wavelength of 500 nm or more.
[実施例6]
 波長変換材料のエネルギー移動材料として、式(9):
Figure JPOXMLDOC01-appb-C000014
で表わされる材料を用いた点を除いては、実施例1と同様にして実施例6の太陽電池モジュールを作製した。この材料の光吸収のピーク波長は370nmであり、その発光のピーク波長は428nmである。
[Example 6]
As the energy transfer material of the wavelength conversion material, the formula (9):
Figure JPOXMLDOC01-appb-C000014
A solar cell module of Example 6 was produced in the same manner as in Example 1 except that the material represented by The peak wavelength of light absorption of this material is 370 nm, and the peak wavelength of light emission is 428 nm.
 この実施例6の太陽電池モジュールの最大出力を比較例1の太陽電池モジュールと同時に測定した。その結果、実施例5の太陽電池モジュールの最大出力は比較例1の太陽電池モジュールと比較して、1.07倍であった。この出力の向上は、実施例6の太陽電池モジュールにおいて波長変換材料が波長500nm以下の光をより吸収して効率よく波長500nm以上の光に変換したためである。 The maximum output of the solar cell module of Example 6 was measured simultaneously with the solar cell module of Comparative Example 1. As a result, the maximum output of the solar cell module of Example 5 was 1.07 times that of the solar cell module of Comparative Example 1. This improvement in output is because the wavelength conversion material in the solar cell module of Example 6 more efficiently absorbs light having a wavelength of 500 nm or less and efficiently converts it into light having a wavelength of 500 nm or more.
[実施例7]
 波長変換材料のエネルギー移動材料として、式(10):
Figure JPOXMLDOC01-appb-C000015
で表わされる材料を用いた点を除いては、実施例1と同様にして実施例7の太陽電池モジュールを作製した。この材料の光吸収のピーク波長は394nmであり、その発光のピーク波長は408nmである。
[Example 7]
As an energy transfer material of the wavelength conversion material, the formula (10):
Figure JPOXMLDOC01-appb-C000015
A solar cell module of Example 7 was produced in the same manner as Example 1 except that the material represented by The peak wavelength of light absorption of this material is 394 nm, and the peak wavelength of light emission is 408 nm.
 この実施例7の太陽電池モジュールの最大出力を比較例1の太陽電池モジュールと同時に測定した。その結果、実施例5の太陽電池モジュールの最大出力は比較例1の太陽電池モジュールと比較して、1.07倍であった。この出力の向上は、実施例7の太陽電池モジュールにおいて波長変換材料が波長500nm以下の光をより吸収して効率よく波長500nm以上の光に変換したためである。 The maximum output of the solar cell module of Example 7 was measured simultaneously with the solar cell module of Comparative Example 1. As a result, the maximum output of the solar cell module of Example 5 was 1.07 times that of the solar cell module of Comparative Example 1. This improvement in output is because the wavelength conversion material in the solar cell module of Example 7 more efficiently absorbs light with a wavelength of 500 nm or less and efficiently converts it into light with a wavelength of 500 nm or more.
[実施例8]
 波長変換材料のエネルギー移動材料として、式(6)で表わされる材料を用い、波長変換材料の発光材料として、式(11):
Figure JPOXMLDOC01-appb-C000016
で表わされる材料を用いた点を除いては、実施例1と同様にして実施例8の太陽電池モジュールを作製した。式(6)で表わされる材料の光吸収のピーク波長は395nmであり、発光のピーク波長は425nmである。式(11)で表わされる材料の光吸収のピーク波長は471nmであり、発光のピーク波長は554nmである。
[Example 8]
As the energy transfer material of the wavelength conversion material, the material represented by the formula (6) is used, and as the light emitting material of the wavelength conversion material, the formula (11):
Figure JPOXMLDOC01-appb-C000016
A solar cell module of Example 8 was produced in the same manner as Example 1 except that the material represented by The peak wavelength of light absorption of the material represented by Formula (6) is 395 nm, and the peak wavelength of light emission is 425 nm. The light absorption peak wavelength of the material represented by the formula (11) is 471 nm, and the light emission peak wavelength is 554 nm.
 この実施例8の太陽電池モジュールの最大出力を比較例1の太陽電池モジュールと同時に測定した。その結果、実施例8の太陽電池モジュールの最大出力は比較例1の太陽電池モジュールと比較して、1.07倍であった。この出力の向上は、実施例8の太陽電池モジュールにおいて波長変換材料が波長500nm以下の光をより吸収して効率よく波長500nm以上の光に変換したためである。 The maximum output of the solar cell module of Example 8 was measured simultaneously with the solar cell module of Comparative Example 1. As a result, the maximum output of the solar cell module of Example 8 was 1.07 times that of the solar cell module of Comparative Example 1. This improvement in output is because the wavelength conversion material in the solar cell module of Example 8 more efficiently absorbs light having a wavelength of 500 nm or less and efficiently converts it into light having a wavelength of 500 nm or more.
[実施例9]
 波長変換材料の発光材料として、(12):
Figure JPOXMLDOC01-appb-C000017
で表わされる材料を用いた点を除いては、実施例8と同様にして実施例9の太陽電池モジュールを作製した。この材料の光吸収のピーク波長は462nmであり、発光のピーク波長は577nmである。
[Example 9]
As the light emitting material of the wavelength converting material, (12):
Figure JPOXMLDOC01-appb-C000017
A solar cell module of Example 9 was produced in the same manner as Example 8 except that the material represented by The peak wavelength of light absorption of this material is 462 nm, and the peak wavelength of light emission is 577 nm.
 この実施例9の太陽電池モジュールの最大出力を比較例1の太陽電池モジュールと同時に測定した。その結果、実施例9の太陽電池モジュールの最大出力は比較例1の太陽電池モジュールと比較して、1.07倍であった。この出力の向上は、実施例9の太陽電池モジュールにおいて波長変換材料が波長500nm以下の光をより吸収して効率よく波長500nm以上の光に変換したためである。 The maximum output of the solar cell module of Example 9 was measured simultaneously with the solar cell module of Comparative Example 1. As a result, the maximum output of the solar cell module of Example 9 was 1.07 times that of the solar cell module of Comparative Example 1. This improvement in output is because the wavelength conversion material in the solar cell module of Example 9 more efficiently absorbs light having a wavelength of 500 nm or less and efficiently converts it into light having a wavelength of 500 nm or more.
 本発明の波長変換材料は、太陽電池モジュールに用いることができる。 The wavelength conversion material of the present invention can be used for a solar cell module.
1.太陽電池セル
2.保護層
3.バックフィルム
4.封止層
5.裏面用封止層
1. 1. Solar cell Protective layer 3. 3. Back film 4. sealing layer Back side sealing layer
 本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書にとり入れるものとする。 All publications, patents and patent applications cited in this specification shall be incorporated into this specification as they are.

Claims (9)

  1.  500nm未満の吸収波長ピークを有する材料(A)と500nm以上の発光波長ピークを有する材料(B)とを含む太陽電池用波長変換材料であって、
     材料(B)が材料(A)からのエネルギー移動により発光することが可能であるように存在する、上記波長変換材料。
    A solar cell wavelength conversion material comprising a material (A) having an absorption wavelength peak of less than 500 nm and a material (B) having an emission wavelength peak of 500 nm or more,
    The said wavelength conversion material which exists so that material (B) can be light-emitted by the energy transfer from material (A).
  2.  材料(A)におけるエネルギー移動に寄与する部位と材料(B)における発光に寄与する部位とが化学結合又はリンカーを介して結合している、請求項1に記載の波長変換材料。 The wavelength conversion material according to claim 1, wherein a site contributing to energy transfer in the material (A) and a site contributing to light emission in the material (B) are bonded via a chemical bond or a linker.
  3.  材料(B)における発光に寄与する部位が波長変換材料の末端に位置する、請求項2に記載の波長変換材料。 3. The wavelength conversion material according to claim 2, wherein a site contributing to light emission in the material (B) is located at an end of the wavelength conversion material.
  4.  リンカーが極性基を介して結合している、請求項2又は3に記載の波長変換材料。 The wavelength conversion material according to claim 2 or 3, wherein the linker is bonded via a polar group.
  5.  リンカーがアルキル基、アリール基、エーテル基又はスルフィド基を介して結合している、請求項2又は3に記載の波長変換材料。 The wavelength conversion material according to claim 2 or 3, wherein the linker is bonded via an alkyl group, an aryl group, an ether group or a sulfide group.
  6.  波長変換材料が樹脂粒子中に内包されている、請求項1に記載の波長変換材料。 The wavelength conversion material according to claim 1, wherein the wavelength conversion material is encapsulated in resin particles.
  7.  材料(A)におけるエネルギー移動に寄与する部位が、カルバゾール骨格、トリアリルアミン骨格、フェナントロリン骨格、ビフェニル骨格、ベンゾチオフェン骨格、ベンゾフラン骨格、トリフェニレン骨格、金属キノリノール錯体、アントラセン骨格、ペンタセン骨格、フルオレン骨格、ピレン骨格及びアクリジン骨格から選択される少なくとも1種を含む、請求項1~6のいずれかに記載の波長変換材料。 The sites contributing to energy transfer in the material (A) are carbazole skeleton, triallylamine skeleton, phenanthroline skeleton, biphenyl skeleton, benzothiophene skeleton, benzofuran skeleton, triphenylene skeleton, metal quinolinol complex, anthracene skeleton, pentacene skeleton, fluorene skeleton, pyrene. The wavelength conversion material according to any one of claims 1 to 6, comprising at least one selected from a skeleton and an acridine skeleton.
  8.  材料(B)における発光に寄与する部位が、クマリン骨格、キナクリドン骨格、アントラセン骨格、カルバゾール骨格、ルブレン骨格、Ir錯体及びピラン骨格から選択される少なくとも1種を含む、請求項1~7のいずれかに記載の波長変換材料。 The part contributing to light emission in the material (B) includes at least one selected from a coumarin skeleton, a quinacridone skeleton, an anthracene skeleton, a carbazole skeleton, a rubrene skeleton, an Ir complex, and a pyran skeleton. The wavelength conversion material described in 1.
  9.  太陽電池セルと、
     太陽電池セルの受光面側に設けられた、請求項1~8のいずれかに記載の波長変換材料を含む封止層と、
    を有する太陽電池モジュール。
    Solar cells,
    A sealing layer containing the wavelength conversion material according to any one of claims 1 to 8, provided on the light-receiving surface side of the solar battery cell;
    A solar cell module.
PCT/JP2015/066176 2015-06-04 2015-06-04 Wavelength conversion material WO2016194193A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/066176 WO2016194193A1 (en) 2015-06-04 2015-06-04 Wavelength conversion material
TW105116438A TW201643202A (en) 2015-06-04 2016-05-26 Wavelength conversion material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/066176 WO2016194193A1 (en) 2015-06-04 2015-06-04 Wavelength conversion material

Publications (1)

Publication Number Publication Date
WO2016194193A1 true WO2016194193A1 (en) 2016-12-08

Family

ID=57441328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066176 WO2016194193A1 (en) 2015-06-04 2015-06-04 Wavelength conversion material

Country Status (2)

Country Link
TW (1) TW201643202A (en)
WO (1) WO2016194193A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513794A (en) * 1991-07-04 1993-01-22 Ricoh Co Ltd Fluorescence-sensitizing photoelectric conversion element
JP2011222749A (en) * 2010-04-09 2011-11-04 Hitachi Chem Co Ltd Wavelength conversion type solar battery sealing material, solar battery module using the same, and manufacturing method of the same
WO2013077323A1 (en) * 2011-11-24 2013-05-30 シャープ株式会社 Light guide body, solar cell module, and solar photovoltaic power generation device
JP2013110356A (en) * 2011-11-24 2013-06-06 Sharp Corp Solar cell module and solar light power generation apparatus
JP2013149729A (en) * 2012-01-18 2013-08-01 Fujifilm Corp Quantum dot structure, wavelength conversion element, and photoelectric conversion device
JP2014156428A (en) * 2013-02-15 2014-08-28 Univ Of Tokyo Antibody binding protein
JP2015099807A (en) * 2012-03-07 2015-05-28 シャープ株式会社 Light guide body, solar cell module, and photovoltaic power generation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513794A (en) * 1991-07-04 1993-01-22 Ricoh Co Ltd Fluorescence-sensitizing photoelectric conversion element
JP2011222749A (en) * 2010-04-09 2011-11-04 Hitachi Chem Co Ltd Wavelength conversion type solar battery sealing material, solar battery module using the same, and manufacturing method of the same
WO2013077323A1 (en) * 2011-11-24 2013-05-30 シャープ株式会社 Light guide body, solar cell module, and solar photovoltaic power generation device
JP2013110356A (en) * 2011-11-24 2013-06-06 Sharp Corp Solar cell module and solar light power generation apparatus
JP2013149729A (en) * 2012-01-18 2013-08-01 Fujifilm Corp Quantum dot structure, wavelength conversion element, and photoelectric conversion device
JP2015099807A (en) * 2012-03-07 2015-05-28 シャープ株式会社 Light guide body, solar cell module, and photovoltaic power generation device
JP2014156428A (en) * 2013-02-15 2014-08-28 Univ Of Tokyo Antibody binding protein

Also Published As

Publication number Publication date
TW201643202A (en) 2016-12-16

Similar Documents

Publication Publication Date Title
CA2666666C (en) Fluorescent resin composition and solar battery module using the same
TWI474490B (en) Wavelength conversion type photovoltaic cell sealing sheet, and photovoltaic cell module
JP5920215B2 (en) Wavelength conversion type solar cell encapsulant and solar cell module
JP2012230968A (en) Sealing material sheet and solar battery module
WO2014197393A1 (en) Photostable wavelength conversion composition
WO2016013481A1 (en) Fluorescent dye compound having benzotriazole structure, polymer fluorescent dye compound and wavelength converting sealing material composition using same
Huang et al. Large-area transparent “quantum dot glass” for building-integrated photovoltaics
JP2013087243A (en) Spherical phosphor, sealing material for wavelength conversion type solar battery, solar battery module, and methods for producing them
WO2016112200A1 (en) Thermal regulating wavelength conversion films incorporating phase change materials
CN115274900B (en) Quantum dot photovoltaic backboard and double-sided photovoltaic module
KR20160143642A (en) Sealing film for solar cell, and solar cell using same
Li et al. Low-loss, high-transparency luminescent solar concentrators with a bioinspired self-cleaning surface
JP2015195397A (en) Solar battery module
WO2016031421A1 (en) Luminescent ethylene-based copolymer, sealing material composition for solar cell, and solar cell module obtained using same
WO2016013483A1 (en) Fluorescent dye compound having benzotriazole structure and wavelength converting sealing material composition using same
JP2015053368A (en) Wavelength conversion material for solar batteries, and solar battery module
CN105684163B (en) Wavelength conversion type encapsulant compositions, wavelength conversion type encapsulating material layer and use its solar cell module
JP2013077705A (en) Wavelength conversion solar cell module and method of manufacturing the same
JP2014060418A (en) Solar battery module
WO2016194193A1 (en) Wavelength conversion material
JP2014237792A (en) Fluorescent dye compound having benzothiadiazole structure and wavelength conversion-type sealing material composition using the same
JP2013065595A (en) Wavelength conversion type solar cell sealing material and solar cell module
WO2018042643A1 (en) Composition for forming sealing material, sealing material and solar cell module
JP2013087242A (en) Spherical phosphor, wavelength conversion type solar cell sealing material, solar cell module, and method of manufacturing them
CN104485374A (en) High-reliability solar photovoltaic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP