WO2013132541A1 - Video data transfer system - Google Patents

Video data transfer system Download PDF

Info

Publication number
WO2013132541A1
WO2013132541A1 PCT/JP2012/001649 JP2012001649W WO2013132541A1 WO 2013132541 A1 WO2013132541 A1 WO 2013132541A1 JP 2012001649 W JP2012001649 W JP 2012001649W WO 2013132541 A1 WO2013132541 A1 WO 2013132541A1
Authority
WO
WIPO (PCT)
Prior art keywords
video data
session
relay device
data transmission
network
Prior art date
Application number
PCT/JP2012/001649
Other languages
French (fr)
Japanese (ja)
Inventor
宙蔵 中尾
Original Assignee
ネクシオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ネクシオン株式会社 filed Critical ネクシオン株式会社
Priority to PCT/JP2012/001649 priority Critical patent/WO2013132541A1/en
Publication of WO2013132541A1 publication Critical patent/WO2013132541A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/643Communication protocols
    • H04N21/64322IP
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1101Session protocols
    • H04L65/1104Session initiation protocol [SIP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/61Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
    • H04L65/612Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio for unicast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/643Communication protocols
    • H04N21/6437Real-time Transport Protocol [RTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/647Control signaling between network components and server or clients; Network processes for video distribution between server and clients, e.g. controlling the quality of the video stream, by dropping packets, protecting content from unauthorised alteration within the network, monitoring of network load, bridging between two different networks, e.g. between IP and wireless

Definitions

  • the present invention relates to a video data transmission system for distributing video data for broadcasting.
  • the video data transmission network is an NGN network
  • a session between transmission / reception devices is established by the SIP protocol, and a specific bandwidth is set.
  • the present invention relates to a video data transmission system that guarantees efficiency, high quality, and economy by using it.
  • the Internet is often used as a network network for transmission media.
  • the Internet is a best-effort network, which is not always perfect in terms of reliability, efficiency, and performance, and has a problem that it is not sufficient as a means for transmitting video data.
  • Japanese Unexamined Patent Application Publication No. 2011-82934 exists as a technology related to a video distribution system.
  • a technique for controlling on the transmission side so that the quality of video and audio viewed on the reception side via the network is increased a dummy packet is added inside the IP packet containing video and audio.
  • a technique is disclosed in which the transmission quality of an IP packet itself containing video and audio is directly measured by inserting and transmitting to maintain high quality of video and audio data.
  • NGN Next Generation Network
  • QoS Quality of Service
  • Re-published patent No. 2008/091009 exists as a technology related to video distribution using this NGN technology.
  • the SIP session control device provided in the system uses video distribution.
  • a technique for securing a bandwidth and securing a further bandwidth in response to a bandwidth change request from a video distribution server is disclosed.
  • JP 2011-82934 A Republished Patent No. 2008/091009
  • the present invention uses an NGN network as a video data transmission network, establishes a session between transmitting and receiving devices using the SIP protocol, and uses a specific band to improve efficiency and high quality.
  • An object of the present invention is to provide a video data transmission system that maintains economic efficiency.
  • a video data transmission system includes a video data transmission apparatus equipped with an encoding means for receiving video data and converting it into a transport stream (TS) format, and transmission / reception of video data.
  • a video data transmission system via an IP network comprising: a relay device that performs decoding, and a video data receiving device equipped with a decoding unit that decodes received TS format data, and transmits and receives the video data
  • the relay device is provided separately for each of the video data transmitting device and the video data receiving device, and monitors session established means for establishing a SIP session in response to a SIP session establishment request, and the established session.
  • Session management means to control and disconnect established sessions on demand
  • a session disconnection means for consists of a band securing means for securing a bandwidth for video distribution, which is configured to transmit and receive video data to the IP network through the SIP.
  • the relay device includes a video data receiving unit that starts receiving video data converted into the TS format by the encoding unit and a video data transmitting unit that sends the video data to an IP network when transmitting video data. And a video data receiving means for receiving the video data sent via the IP network when receiving the video data, the session establishing means responding to the SIP session establishment request by the relay device.
  • the relay device that receives the establishment request automatically establishes the SIP session by performing an automatic response.
  • the relay device sends an error response without performing the retreat operation when the session establishment means does not accept the session transmission request. And the session establishment request is resumed, and the session disconnection means disconnects the session without waiting for a response to the session disconnection request.
  • the relay device includes a TS transmission unit that transmits video data in a transport stream (TS) format to the IP network.
  • the relay device includes a communication control unit based on TCP / IP.
  • the relay device includes a failure detection unit that detects the occurrence of a communication failure, and a data transmission path switching unit that switches a data transmission path when a failure is detected.
  • the IP network is composed of an NGN (Next Generation Network), and a band used for transmitting video data is a band secured on the NGN by the band securing means. Further, the bandwidth securing means has a bandwidth of 10 Mbps to 25 Mbps.
  • the relay device is configured to perform streaming transmission of video data using RTP under session management by RTCP.
  • a relay device that transmits and receives video data is installed separately in the video data transmission device and the video data reception device, establishes a session using the SIP protocol, monitors and controls the established session, and responds to requests. Since the session is disconnected, stable video data transmission / reception is possible.
  • the bandwidth securing means for securing the bandwidth for video distribution is provided, stable video data transmission / reception can be performed by bandwidth-guaranteed communication using a specific bandwidth.
  • video data is transmitted / received to / from the IP network via SIP, inexpensive and stable video data can be transmitted / received using the existing communication network.
  • the relay device includes a video data receiving unit and a video data transmission unit that operate when video data is transmitted, and a video data reception unit that operates when video data is received, a relay device that is used for both transmission and reception can be configured.
  • the relay device automatically responds to the SIP session establishment request and automatically establishes the SIP session, the session establishing means can efficiently transmit video data with little delay.
  • the session establishment means sends an error response and resumes the session establishment request.
  • the session disconnection means disconnects the session without waiting for a response to the session disconnection request.
  • Video data It is possible to ensure the continuity of video and increase the transmission efficiency of video data. 4). Since video data in the transport stream format is transmitted to the IP network, it is possible to transmit general-purpose data in accordance with the communication standard and eliminate the need for further conversion of the data format for non-compliant devices. Can do.
  • the relay device includes a communication control unit based on TCP / IP, the relay device itself can have a function of transmitting and receiving data. 6). Since the relay device consists of a failure detection unit and a data transmission path switching unit, when a failure occurs on the network, the route where the failure has occurred can be quickly blocked, another route can be detected, and data transmission can continue. This makes it possible to realize highly stable data transmission / reception.
  • NGN Next Generation Network
  • bandwidth-guaranteed data transmission is possible, and stable and high-speed data transmission can be realized.
  • bandwidth secured by the bandwidth securing means is 10 Mbps to 25 Mbps, stable high-speed data transmission is possible.
  • the relay device performs streaming transmission of video data by RTP by session management by RTCP, it is possible to transmit video data with higher stability.
  • FIG. 1 is a schematic diagram of a video data transmission system according to the present invention
  • FIG. 2 is a schematic diagram of a relay device.
  • FIG. 3A is a sequence diagram showing terminal registration processing by SIP of the relay device
  • FIG. 3B is a sequence diagram showing session establishment processing by SIP of the relay device.
  • 3c is a sequence diagram showing session cancellation processing by SIP of the relay device
  • FIG. 3d is a sequence diagram showing session update processing by SIP of the relay device
  • FIG. 3e is a session disconnection processing by SIP of the relay device FIG.
  • FIG. 4a is a sequence diagram showing an internal operation of the relay device when transmitting video data
  • FIG. 4b is a sequence diagram showing an internal operation of the relay device when receiving video data
  • FIG. 4c is a sequence diagram of the relay device. It is a sequence diagram which shows the internal operation
  • FIG. 5a is a schematic diagram of an embodiment of a video data transmission system that performs unidirectional data transfer
  • FIG. 5b is a schematic diagram of an embodiment of a video data transmission system that performs bidirectional data transfer.
  • a video data transmission system 10 includes a video data transmission device 20, a video data reception device 30, and a relay device 100, and is mainly used for real-time distribution of video data 50 via an IP network 60. .
  • the video data transmitting device 20 is a device used for converting the video data 50 into a format that can be transmitted to the IP network 60 and transmitting it to the IP network 60. As shown in FIG. Equipped with.
  • the encoding means 22 is means for receiving the video data 50 and converting it into a transport stream (TS) format, which is one of multiple signal formats.
  • TS transport stream
  • the video data 50 converted into the TS format is the IP network 60. Sent out.
  • the video data transmission apparatus 20 is supplied with video data before being converted from the outside into the TS format, and it is desirable to distribute the video data after confirming the quality of the video data.
  • a pre-transmission video monitoring means 24 is provided for confirming whether or not the supplied video data is proper, and the video sent from the outside is encoded by the encoding means 22 via the distribution device 26. And distributed to the pre-transmission video monitoring means 24.
  • the video data transmission device 20 can be arranged at a base where video distribution is performed, an embodiment in which the video data transmission device 20 can be loaded on a relay vehicle and moved to mainly handle video data sent from the outside is considered. It is done.
  • the video data receiving device 30 is arranged at a base where video distribution is performed.
  • the video data receiving device 30 is a device that receives the video data 50 sent from the video data transmitting device 20 to the IP network 60, and is equipped with a decoding means 32 as shown in FIG.
  • the decoding means 32 is means for decoding the received TS format data, and the decoded video data 50 is sent to a user such as a broadcasting station.
  • the video data receiving device 30 has a function of sending the decoded video data to the user, but it is desirable to send the video data after confirming the quality of the video data.
  • the received video monitoring means 34 for confirming whether the decoded video data is proper is provided, and the decoded video data is distributed to the received video monitoring means 34 to manage the video quality.
  • it is configured to be sent to the user via the exchange 36 and the electric / optical exchange 38.
  • the relay device 100 is a device that is separately installed in the video data transmission device 20 and the video data reception device 30, and transmits and receives the video data 50 between the video data transmission device 20 and the video data reception device 30.
  • the relay device 100 includes a session establishment unit 110, a session management unit 120, a session disconnection unit 130, and a bandwidth securing unit 140.
  • the video data transmission system 10 of the present invention transmits and receives video data 50 to and from the IP network 60 via the SIP protocol, and the session establishing means 110 is connected to one of the relay devices via the IP network 60.
  • 100a issues a SIP session establishment request
  • the relay device 100b issues a status code (acceptance response) in response to this request, thereby establishing a SIP session between both relay devices.
  • the session management unit 120 monitors and controls the state of the established session.
  • As a session management protocol in the embodiment of the present invention, session management using RTP and RTCP is performed.
  • the present invention is not limited to this, and session management using SDP, for example, is also possible.
  • the session disconnection unit 130 performs a disconnection process on the session established by the session establishment unit 110 in response to a request from the relay device 100.
  • Band securing means 140 is means for securing a band for transmission of video data 50 in IP network 60. Based on the number of bands used to transmit the video data 50 registered in the relay device 100 in advance, the band securing unit 140 secures the band. Thereby, stable transmission of the video data 50 is possible.
  • a best effort network such as the Internet
  • it is difficult to secure a bandwidth because of its specifications. Therefore, it is desirable to use a bandwidth guaranteed network that realizes QoS such as admission control, priority control, and fairness control.
  • the relay device 100 is further equipped with a video data receiving unit 150, a video data transmitting unit 160, and a video data receiving unit 170.
  • the receiving means 150 and the video data transmitting means 160 operate, and when receiving the video data 50, the video data receiving means 170 operates.
  • the video data receiving means 150 can receive the video data 50 sent from the outside of the video data transmitting apparatus 20 and converted into the TS format by the encoding means 22 when the video data 50 is transmitted. When it has been supplied, transmission by the video data transmission means 160 is made possible or temporarily stored in the relay device 100. Thereby, the relay device 100 is always in the standby state, and the video data 50 can be quickly transmitted.
  • the video data transmission means 160 transmits the video data 50 to the IP network 60 when the video data 50 is transmitted.
  • the session is established by the session establishing means 110, transmission of the video data 50 to the IP network 60 is automatically started.
  • the transmission of the video data 50 by the video data transmission unit 160 is configured to perform streaming delivery by the RTP protocol in the present embodiment, but is not limited to this method.
  • the video data receiving unit 170 receives the video data 50 sent via the IP network 60 when the video data 50 is received. After the session is established by the session establishment unit 110, the video data 50 automatically transmitted by the video data transmission unit 160 is automatically received by the video data reception unit 170.
  • the session establishing means 110 In response to the SIP session establishment request from one of the relay devices 100a, the session establishing means 110 automatically sends both statuses of the relay devices by the relay device 100b receiving the SIP session establishment request automatically responding with a status code (acceptance response). It is possible to adopt a configuration in which SIP sessions between 100 are established. As a result, the video data transmission device 20 and the video data reception device 30 automatically perform the transmission to reception of the video data 50, so that the video data can be transmitted and received quickly and efficiently.
  • the relay device 100 receives an unacceptable (rejected) response from the relay device 100b in response to a session establishment request from one of the relay devices 100a. In such a case, an error response is made and the session establishment request is resumed. Normally, when an unacceptable (rejected) response is made, it is conceivable to cope with the change to the retreat operation. However, by performing the processing as described above, it is possible to respond to another transmission route (video data receiving device 30). It is possible to quickly switch between session establishment requests, and to improve the transmission efficiency of video data.
  • the terminal registration process by SIP is configured such that new registration, registration update, and registration deletion of a terminal (relay device 100) are performed in response to a registration request (REGISTER) from the software of the relay device 100.
  • the session establishment process by the session establishment unit 110 is accepted after a response in process from the other relay device 100b to the session establishment request (INVITE) from the software of the relay device 100a.
  • the session is established.
  • an unacceptable (rejection) response is made to the session establishment request, an error response is made, and the session establishment process ends.
  • the software of the relay device 100 issues a cancellation request (CANCEL) after the session establishment request (INVITE) and receives a normal processing response, thereby canceling the session establishment.
  • the software of the relay device 100 makes a session update request (UPDATE) and receives a normal process response, whereby the session is updated.
  • the software of the relay device 100 makes a session disconnect request (BYE), thereby disconnecting the session.
  • the session disconnection unit 130 is configured not to wait for a normal process response, and after the session disconnection request, the video data transmitting device 20 stops transmitting the video data 50.
  • the video data receiving unit 150 starts receiving the video data 50 converted into the TS format by the encoding unit 22.
  • the session is automatically established by the session establishing means 110, and the video data 50 can be transmitted.
  • automatic transmission of the video data 50 is started by the video data transmission means 160.
  • the video data receiving means 150 starts receiving the video data 50 (the same relay device 100 is used on the transmission / reception side). Therefore, the video data receiving means 150 always operates).
  • Session establishment means 110 automatically makes an acceptance response when a session establishment request is received from relay device 100a of video data transmission apparatus 20. As a result, a session is automatically established and the video data 50 can be received. Thereafter, reception of the video data 50 transmitted from the video data transmission unit 160 is started by the video data reception unit 170.
  • a session disconnection request by the session disconnecting means 130 is transmitted in response to a session disconnection instruction by the GUI.
  • the transmission of the video data 50 of the video data receiving device 30 is stopped, and then the transmission / reception process to the IP network 60 is stopped.
  • the relay device 100 is further equipped with TS transmission means 180 as shown in FIG.
  • the TS transmission unit 180 is for transmitting the video data 50 converted into the TS format by the encoding unit 22 to the IP network 60. Since the video data in the TS format is divided into fixed-length TS packets, it is desirable that the data transmission means be specialized in the TS format. By providing the TS transmission unit 180 that transmits the video data 50 converted into the TS format, the video data 50 can be efficiently transmitted.
  • the relay device 100 includes a communication control unit using TCP / IP. As a result, it can be configured as a router having a SIP server function, and the transmission of video data 50 and session management can be performed by the router alone. As a result, space saving can be achieved, and at the same time, the maintenance can be unified and maintenance can be facilitated.
  • the relay device 100 can further be equipped with a failure detection means 190 and a data transmission path switching means 200.
  • the failure detection unit 190 detects the occurrence of a communication failure, and the data transmission path switching unit 200 switches the data transmission path when a failure is detected by the failure detection unit 190.
  • the failure detection unit 190 and the data transmission path switching unit 200 cooperate to detect a failure at the time of transmission / reception of the video data 50 at an early stage.
  • the video data 50 can be stably transmitted and received.
  • the IP network 60 is composed of NGN (Next Generation Network).
  • NGN is a bandwidth-guaranteed network, unlike the normal Internet, which is a best-effort network. Accordingly, it is possible to easily secure the bandwidth.
  • the band used by the video data transmission system 10 of the present invention for transmitting the video data 50 is a band secured by the bandwidth securing unit 140 on the NGN, so that stable transmission of the video data 50 is possible. It is possible to construct the video data transmission system 10 that is excellent in terms of cost performance.
  • the bandwidth securing means 140 secures a bandwidth of 10 Mbps to 25 Mbps.
  • a bandwidth of 10 Mbps to 25 Mbps is appropriate as the bandwidth, and the video data transmission system 10 can be made excellent in terms of performance.
  • the relay device 100 performs session management using RTP and RTCP in the session management means 120. That is, it is configured to perform streaming transmission of video data using RTP under session management by RTCP. By using this protocol, it is possible to efficiently transmit the video data 50 and to make the video data transmission system 10 with high versatility.
  • the video data transmitting device 20 can be posted on a relay vehicle, and the video data receiving device 30 can be used as a base in each city, so that the flexible video data 50 can be distributed.
  • FIG. 5b a configuration in which the video data 50 is transmitted bidirectionally can be considered.
  • this configuration it is possible to exchange video data 50 between the bases, and it is possible to select various data transmission paths. Can be selected, and a significant loss of the video data 50 can be prevented (particularly during live broadcasting).
  • Schematic diagram of video data transmission system Schematic diagram of relay equipment Sequence diagram showing terminal registration processing by SIP of relay device Sequence diagram showing session establishment processing by SIP of relay device Sequence diagram showing session cancellation processing by SIP of relay device Sequence diagram showing session update processing by SIP of relay device Sequence diagram showing session disconnection processing by SIP of relay device Sequence diagram showing the internal operation of the relay device during video data transmission Sequence diagram showing the internal operation of the relay device when receiving video data Sequence diagram showing internal operation during session disconnection processing of relay device Schematic diagram of an embodiment of a video data transmission system that performs unidirectional data transfer Schematic diagram of an embodiment of a video data transmission system that performs bidirectional data transfer
  • Video data transmission system 20
  • Video data transmission apparatus 22
  • Encoding means 24
  • Pre-transmission video monitoring means 26
  • Distribution apparatus 30
  • Video data receiving apparatus 32
  • Decoding means 34
  • Received video monitoring means 36
  • Switch 38 Electric / optical switch 50
  • Video data 60
  • IP network 100
  • Relay equipment 100a
  • Relay equipment 100b
  • Session establishment means 120
  • Session management means 130
  • Session disconnection means 140
  • Band securing means 150
  • Video data reception means 160
  • Video data transmission means 170
  • Video data reception means 180
  • TS transmission means 190
  • Data transmission Route switching means 200

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

[Problem] To provide a video data transfer system that uses an NGN as a video data transfer network and establishes a session between transmission and reception units by the SIP protocol and that uses a specific band to maintain efficiency, high quality, and economy. [Solution] A video data transfer system connected through an IP network and formed of a video data transmission apparatus equipped with an encoding means, relay units, and a video data reception apparatus equipped with a decoding means. The relay units are separately provided for the video data transmission apparatus and the video data reception apparatus. Each of the relay units includes a session establishment means, a session management means, a session disconnection means, and a band maintaining means.

Description

映像データ伝送システムVideo data transmission system
 本発明は、放送用の映像データを配信するための映像データ伝送システムに関し、特に、映像データの伝送網をNGN網とし、SIPプロトコルによって送受信機器相互間のセッションを確立するとともに、特定の帯域を利用することで、効率性や高品質性、経済性を担保した映像データ伝送システムに関する。 The present invention relates to a video data transmission system for distributing video data for broadcasting. In particular, the video data transmission network is an NGN network, a session between transmission / reception devices is established by the SIP protocol, and a specific bandwidth is set. The present invention relates to a video data transmission system that guarantees efficiency, high quality, and economy by using it.
 従来より、テレビジョン放送等に用いられる映像を伝送するための各種の技術が開発されており、安定性、効率性を配慮した上で多くの機能を有する映像伝送に関するシステムが開発され、使用されている。映像データは容量が大きいため、映像データの伝送には大容量のデータを高速で送受信することができる大容量に対応した通信回線が必要となる。また、映像データが放送用に使用される場合は、特に生放送であれば一層、大容量データの送受信速度が問題となり、情報の送受信手段の信頼性が重要となる。 Conventionally, various technologies for transmitting video used in television broadcasting and the like have been developed, and a system related to video transmission having many functions has been developed and used in consideration of stability and efficiency. ing. Since video data has a large capacity, a communication line corresponding to a large capacity capable of transmitting and receiving a large amount of data at a high speed is required for transmission of the video data. In addition, when video data is used for broadcasting, particularly in the case of live broadcasting, the transmission / reception speed of large-capacity data becomes even more problematic, and the reliability of information transmission / reception means becomes important.
 現状では、大容量のデータ通信を必要とする映像データの送信は、専用回線を用いる等の手段があるが、対応する機器、設備、サービスが充実していることやコストパフォーマンスの観点から、データ送信媒体のネットワーク網としてインターネットを用いることが多い。しかし、インターネットはベストエフォート型のネットワークであり、信頼性や効率・性能という点からは必ずしも万全とは言えず、映像データの伝送手段としては充分ではないという問題点があった。 At present, video data transmission that requires large-capacity data communication can be done by using a dedicated line, etc. The Internet is often used as a network network for transmission media. However, the Internet is a best-effort network, which is not always perfect in terms of reliability, efficiency, and performance, and has a problem that it is not sufficient as a means for transmitting video data.
 例えば、映像配信を行うシステムに関する技術として、特開2011-82934号が存在する。ここでは、ネットワークを介して受信側で視聴される映像や音声の品質が高くなるように送信側において制御するための技術として、映像や音声の入ったIPパケットの内部に、ダミーパケットを追加で入れ込んで送信することで、映像や音声の入ったIPパケット自体についての伝送品質を直接測定し、映像や音声データの高品質を保つ技術が開示されている。 For example, Japanese Unexamined Patent Application Publication No. 2011-82934 exists as a technology related to a video distribution system. Here, as a technique for controlling on the transmission side so that the quality of video and audio viewed on the reception side via the network is increased, a dummy packet is added inside the IP packet containing video and audio. A technique is disclosed in which the transmission quality of an IP packet itself containing video and audio is directly measured by inserting and transmitting to maintain high quality of video and audio data.
 しかし、ここで開示されている技術はインターネット等のベストエフォート型のネットワークを使用することが考えられるため、IPパケットの損失や遅延の可能性がなくなる事はなく、テレビジョン放送に求められる高品質な映像を配信するには充分とはいえなかった。 However, since the technology disclosed here may use a best-effort network such as the Internet, there is no possibility of loss or delay of IP packets, and high quality required for television broadcasting is eliminated. It was not enough to deliver a good image.
 NGN(Next Generation Netowork:次世代ネットワーク)は、IP技術を基礎として開発された基幹通信回線網であり、帯域保証型のネットワークである。QoS(Quality of Service=通信速度の保証)が実現されたこの帯域保証型ネットワークを用いることにより、より安定した、効率的な映像データの送信が可能になると考えられる。 NGN (Next Generation Network) is a backbone communication network developed based on IP technology, and is a bandwidth-guaranteed network. By using this bandwidth guaranteed network in which QoS (Quality of Service = communication speed guarantee) is realized, it is considered that more stable and efficient transmission of video data becomes possible.
 このNGNの技術を利用した映像配信に関する技術としては、再公表特許第2008/091009号が存在する。ここでは、NGN上で従来のポータルサーバや映像配信サーバを大きく変更する事なく、QoSを保証した高品質な映像配信サービスを実現する技術として、システムに設けられたSIPセッション制御装置が、映像配信をする為に帯域の確保を行い、映像配信サーバからの帯域変更要求に応じて更なる帯域確保を行う技術が開示されている。 Re-published patent No. 2008/091009 exists as a technology related to video distribution using this NGN technology. Here, as a technology for realizing a high-quality video distribution service that guarantees QoS without greatly changing the conventional portal server and video distribution server on NGN, the SIP session control device provided in the system uses video distribution. In order to achieve this, a technique for securing a bandwidth and securing a further bandwidth in response to a bandwidth change request from a video distribution server is disclosed.
 この技術によれば、高品質な映像データを配信することが可能となると考えられるが、使用する帯域が一定ではなく、セッション確立要求毎に使用する帯域の確保および再確保が必要であるため、この帯域確保の処理に負荷が掛かり、かつ帯域確保を行うための時間が必要となり、途切れることが許されない生放送の送受信をスムースに行う上で問題となることが考えられた。 According to this technology, it is considered that high-quality video data can be distributed, but the bandwidth to be used is not constant, and it is necessary to secure and re-secure the bandwidth to be used for each session establishment request. It is considered that this bandwidth securing process is burdensome and requires time to secure the bandwidth, which may be a problem in smoothly performing transmission / reception of live broadcasts that are not allowed to be interrupted.
 そこで、データ伝送時におけるシステムへの負荷が抑えられた、高品質かつ効率の良い映像データ伝送を可能とする技術の開発が望まれていた。
特開2011-82934号公報 再公表特許第2008/091009号公報
Therefore, it has been desired to develop a technology that enables high-quality and efficient video data transmission with reduced load on the system during data transmission.
JP 2011-82934 A Republished Patent No. 2008/091009
 本発明は上記問題を解決するために、映像データの伝送網をNGN網とし、SIPプロトコルによって送受信機器相互間のセッションを確立するとともに、特定の帯域を利用することで、効率性や高品質性、経済性を保持する映像データ伝送システムを提供することを目的とする。 In order to solve the above problems, the present invention uses an NGN network as a video data transmission network, establishes a session between transmitting and receiving devices using the SIP protocol, and uses a specific band to improve efficiency and high quality. An object of the present invention is to provide a video data transmission system that maintains economic efficiency.
 上記の目的を達成するために本発明にかかる映像データ伝送システムは、映像データを受信してトランスポート・ストリーム(TS)形式に変換するエンコード手段を装備した映像データ送信装置と、映像データの送受信を行う中継機器と、受信したTS形式のデータのデコードを行うデコード手段を装備した映像データ受信装置とからなる、IPネットワーク網を介した映像データ伝送システムであって、前記映像データの送受信を行う中継機器は、前記映像データ送信装置および前記映像データ受信装置にそれぞれ別個に装備されるもので、SIPセッション確立要求に応じてSIPセッションの確立を行うセッション確立手段と、確立されたセッションを監視し制御するセッション管理手段と、確立したセッションを要求に応じて切断するセッション切断手段と、映像配信用の帯域を確保する帯域確保手段とからなり、SIPを介してIPネットワーク網に映像データの送受信を行う構成である。 In order to achieve the above object, a video data transmission system according to the present invention includes a video data transmission apparatus equipped with an encoding means for receiving video data and converting it into a transport stream (TS) format, and transmission / reception of video data. A video data transmission system via an IP network, comprising: a relay device that performs decoding, and a video data receiving device equipped with a decoding unit that decodes received TS format data, and transmits and receives the video data The relay device is provided separately for each of the video data transmitting device and the video data receiving device, and monitors session established means for establishing a SIP session in response to a SIP session establishment request, and the established session. Session management means to control and disconnect established sessions on demand A session disconnection means for, consists of a band securing means for securing a bandwidth for video distribution, which is configured to transmit and receive video data to the IP network through the SIP.
 また、前記中継機器は、映像データ送信時において、前記エンコード手段によりTS形式に変換された映像データの受入れを開始する映像データ受入手段と、前記映像データをIPネットワーク網に送出する映像データ送信手段と、映像データ受信時において、IPネットワーク網を介して送給された前記映像データを受信する映像データ受信手段とからなり、前記セッション確立手段は、中継機器によるSIPセッション確立要求に対してSIPセッション確立要求を受けた中継機器が自動応答を行うことで、自動的にSIPセッションを確立する構成である。 The relay device includes a video data receiving unit that starts receiving video data converted into the TS format by the encoding unit and a video data transmitting unit that sends the video data to an IP network when transmitting video data. And a video data receiving means for receiving the video data sent via the IP network when receiving the video data, the session establishing means responding to the SIP session establishment request by the relay device The relay device that receives the establishment request automatically establishes the SIP session by performing an automatic response.
 また、前記中継機器は、映像データ映像の連続性を確保し、映像データの伝送効率を高めるため、前記セッション確立手段において、セッション発信要求に対する受理不能応答時には、退行運転を行うことなくエラー応答を行うとともにセッション確立要求を再開し、前記セッション切断手段は、セッション切断要求に対する応答を待たずにセッションを切断する構成である。 In addition, in order to ensure the continuity of the video data video and increase the transmission efficiency of the video data, the relay device sends an error response without performing the retreat operation when the session establishment means does not accept the session transmission request. And the session establishment request is resumed, and the session disconnection means disconnects the session without waiting for a response to the session disconnection request.
 また、前記中継機器は、トランスポート・ストリーム(TS)形式の映像データをIPネットワーク網へ送信するTS送信手段を備える構成である。また、前記中継機器は、TCP/IPによる通信制御手段を備える構成である。
 更に、前記中継機器は、通信障害の発生を検知する障害検知手段と、障害検知時にデータ伝送経路を切り替えるデータ伝送経路切替手段を備える構成である。
The relay device includes a TS transmission unit that transmits video data in a transport stream (TS) format to the IP network. In addition, the relay device includes a communication control unit based on TCP / IP.
Furthermore, the relay device includes a failure detection unit that detects the occurrence of a communication failure, and a data transmission path switching unit that switches a data transmission path when a failure is detected.
 また、前記IPネットワーク網は、NGN(Next Generation Network:次世代ネットワーク)からなり、映像データを伝送するために使用する帯域が、NGN上において前記帯域確保手段によって確保した帯域からなる構成である。
 また、前記帯域確保手段は、10Mbps~25Mbpsの帯域からなる構成である。
The IP network is composed of an NGN (Next Generation Network), and a band used for transmitting video data is a band secured on the NGN by the band securing means.
Further, the bandwidth securing means has a bandwidth of 10 Mbps to 25 Mbps.
 また、前記中継機器は、RTCPによるセッション管理のもとで、RTPを用いた映像データのストリーミング送信を行う構成である。 Also, the relay device is configured to perform streaming transmission of video data using RTP under session management by RTCP.
 本発明は、上記詳述した通りの構成であるので、以下のような効果がある。
1.映像データの送受信を行う中継機器が、映像データ送信装置および映像データ受信装置にそれぞれ別個に装備されて、SIPプロトコルを用いたセッションの確立行い、確立されたセッションを監視し制御し、要求に応じてセッションを切断するため、安定した映像データの送受信ができる。また、映像配信用の帯域を確保する帯域確保手段を設けたため、特定の帯域を利用した帯域保証型通信による安定した映像データの送受信ができる。また、SIPを介してIPネットワーク網に映像データの送受信を行うため、既存の通信網を利用した安価かつ安定的な映像データの送受信ができる。
2.中継機器が、映像データ送信時に動作する映像データ受入手段と映像データ送信手段と、映像データ受信時に動作する映像データ受信手段とからなるため、送受信兼用の中継機器を構成することができる。また、セッション確立手段は、中継機器がSIPセッション確立要求に対して自動応答を行い自動的にSIPセッションを確立するため、効率的で遅延の少ない映像データ伝送が可能となる。
Since the present invention is configured as described in detail above, the following effects are obtained.
1. A relay device that transmits and receives video data is installed separately in the video data transmission device and the video data reception device, establishes a session using the SIP protocol, monitors and controls the established session, and responds to requests. Since the session is disconnected, stable video data transmission / reception is possible. In addition, since the bandwidth securing means for securing the bandwidth for video distribution is provided, stable video data transmission / reception can be performed by bandwidth-guaranteed communication using a specific bandwidth. In addition, since video data is transmitted / received to / from the IP network via SIP, inexpensive and stable video data can be transmitted / received using the existing communication network.
2. Since the relay device includes a video data receiving unit and a video data transmission unit that operate when video data is transmitted, and a video data reception unit that operates when video data is received, a relay device that is used for both transmission and reception can be configured. In addition, since the relay device automatically responds to the SIP session establishment request and automatically establishes the SIP session, the session establishing means can efficiently transmit video data with little delay.
3.セッション確立手段は、セッション発信要求が受理不能であった場合、エラー応答を行うとともにセッション確立要求を再開し、また、セッション切断手段は、セッション切断要求に対する応答を待たずにセッションを切断するため、映像データ映像の連続性を確保し、映像データの伝送効率を高めることができる。
4.トランスポート・ストリーム形式の映像データをIPネットワーク網へ送信するため、通信規格に沿った汎用性のあるデータの送信を実現でき、非対応機器のためのデータ形式の更なる変換を不要とすることができる。
3. If the session establishment request is unacceptable, the session establishment means sends an error response and resumes the session establishment request. The session disconnection means disconnects the session without waiting for a response to the session disconnection request. Video data It is possible to ensure the continuity of video and increase the transmission efficiency of video data.
4). Since video data in the transport stream format is transmitted to the IP network, it is possible to transmit general-purpose data in accordance with the communication standard and eliminate the need for further conversion of the data format for non-compliant devices. Can do.
5.中継機器が、TCP/IPによる通信制御手段を具備するため、中継機器自体にデータ送受信を行う機能を持たせることが可能となる。
6.中継機器が、障害検知手段とデータ伝送経路切替手段とからなるため、ネットワーク網上の障害発生時において、迅速に障害が発生した経路を遮断し、別経路を検出してデータ送信を継続する事が可能となり、安定性の高いデータ送受信の実現が可能となる。
5. Since the relay device includes a communication control unit based on TCP / IP, the relay device itself can have a function of transmitting and receiving data.
6). Since the relay device consists of a failure detection unit and a data transmission path switching unit, when a failure occurs on the network, the route where the failure has occurred can be quickly blocked, another route can be detected, and data transmission can continue. This makes it possible to realize highly stable data transmission / reception.
7.IPネットワーク網として、NGN(Next Generation Network:次世代ネットワーク)を利用するため、帯域保証型のデータ伝送が可能となり、安定的かつ高速度なデータ伝送が実現可能となる。
8.帯域確保手段によって確保する帯域を10Mbps~25Mbpsとしたため、安定した高速データ送信が可能となる。
9.中継機器が、RTCPによるセッション管理によってRTPによる映像データのストリーミング送信を行うため、より安定性の高い映像データ送信が可能となる。
7). Since NGN (Next Generation Network) is used as the IP network, bandwidth-guaranteed data transmission is possible, and stable and high-speed data transmission can be realized.
8). Since the bandwidth secured by the bandwidth securing means is 10 Mbps to 25 Mbps, stable high-speed data transmission is possible.
9. Since the relay device performs streaming transmission of video data by RTP by session management by RTCP, it is possible to transmit video data with higher stability.
 以下、本発明に係る映像データ伝送システムを、図面に示す実施例に基づいて詳細に説明する。図1は、本発明に係る映像データ伝送システムの概略図であり、図2は、中継機器の概略図である。また、図3aは、中継機器のSIPによる端末登録処理を示すシーケンス図であり、図3bは、中継機器のSIPによるセッション確立処理を示すシーケンス図である。図3cは、中継機器のSIPによるセッション取消処理を示すシーケンス図であり、図3dは、中継機器のSIPによるセッション更新処理を示すシーケンス図であり、図3eは、中継機器のSIPによるセッション切断処理を示すシーケンス図である。 Hereinafter, a video data transmission system according to the present invention will be described in detail based on embodiments shown in the drawings. FIG. 1 is a schematic diagram of a video data transmission system according to the present invention, and FIG. 2 is a schematic diagram of a relay device. FIG. 3A is a sequence diagram showing terminal registration processing by SIP of the relay device, and FIG. 3B is a sequence diagram showing session establishment processing by SIP of the relay device. 3c is a sequence diagram showing session cancellation processing by SIP of the relay device, FIG. 3d is a sequence diagram showing session update processing by SIP of the relay device, and FIG. 3e is a session disconnection processing by SIP of the relay device FIG.
 また、図4aは、中継機器の映像データ送信時における内部動作を示すシーケンス図であり、図4bは、中継機器の映像データ受信時における内部動作を示すシーケンス図であり、図4cは、中継機器のセッション切断処理時における内部動作を示すシーケンス図である。
 また、図5aは、片方向データ転送を行う映像データ伝送システムの実施例の概略図であり、図5bは、双方向データ転送を行う映像データ伝送システムの実施例の概略図である。
4a is a sequence diagram showing an internal operation of the relay device when transmitting video data, FIG. 4b is a sequence diagram showing an internal operation of the relay device when receiving video data, and FIG. 4c is a sequence diagram of the relay device. It is a sequence diagram which shows the internal operation | movement at the time of a session cutting | disconnection process.
FIG. 5a is a schematic diagram of an embodiment of a video data transmission system that performs unidirectional data transfer, and FIG. 5b is a schematic diagram of an embodiment of a video data transmission system that performs bidirectional data transfer.
 本発明に係る映像データ伝送システム10は、映像データ送信装置20と、映像データ受信装置30と、中継機器100とからなり、主にIPネットワーク網60を介した映像データ50のリアルタイム配信に用いられる。 A video data transmission system 10 according to the present invention includes a video data transmission device 20, a video data reception device 30, and a relay device 100, and is mainly used for real-time distribution of video data 50 via an IP network 60. .
 映像データ送信装置20は、映像データ50をIPネットワーク網60に送出可能な形式に変換してIPネットワーク網60に送出することに供される装置であり、図1に示すように、エンコード手段22を装備する。エンコード手段22は、映像データ50を受信して、多重信号形式の1つであるトランスポート・ストリーム(TS)形式に変換する手段であり、TS形式に変換された映像データ50がIPネットワーク網60上に送出される。 The video data transmitting device 20 is a device used for converting the video data 50 into a format that can be transmitted to the IP network 60 and transmitting it to the IP network 60. As shown in FIG. Equipped with. The encoding means 22 is means for receiving the video data 50 and converting it into a transport stream (TS) format, which is one of multiple signal formats. The video data 50 converted into the TS format is the IP network 60. Sent out.
 映像データ送信装置20には、外部からTS形式に変換される前の映像データが送給されるが、映像データの品質を確認した後に映像データを配信することが望ましい。本実施例では、送給された映像データが適正であるかどうかを確認するための送信前映像監視手段24を設け、外部より送給された映像は、分配装置26を経由してエンコード手段22と送信前映像監視手段24に分配される構成となっている。 The video data transmission apparatus 20 is supplied with video data before being converted from the outside into the TS format, and it is desirable to distribute the video data after confirming the quality of the video data. In this embodiment, a pre-transmission video monitoring means 24 is provided for confirming whether or not the supplied video data is proper, and the video sent from the outside is encoded by the encoding means 22 via the distribution device 26. And distributed to the pre-transmission video monitoring means 24.
 映像データ送信装置20は、映像配信を行う拠点に配置することが可能であるが、外部から送給される映像データを主に扱うため、中継車両に積載して移動可能とする実施例が考えられる。 Although the video data transmission device 20 can be arranged at a base where video distribution is performed, an embodiment in which the video data transmission device 20 can be loaded on a relay vehicle and moved to mainly handle video data sent from the outside is considered. It is done.
 映像データ受信装置30は、映像配信を行う拠点に配置される。映像データ受信装置30は、映像データ送信装置20からIPネットワーク網60に送出された映像データ50を受信する装置であり、図1に示すようにデコード手段32を装備する。デコード手段32は、受信したTS形式のデータのデコードを行う手段であり、デコードされた映像データ50は放送局等のユーザへ送給される。 The video data receiving device 30 is arranged at a base where video distribution is performed. The video data receiving device 30 is a device that receives the video data 50 sent from the video data transmitting device 20 to the IP network 60, and is equipped with a decoding means 32 as shown in FIG. The decoding means 32 is means for decoding the received TS format data, and the decoded video data 50 is sent to a user such as a broadcasting station.
 映像データ受信装置30は、デコードされた映像データをユーザへ送給する機能を有するが、映像データの品質を確認した後に映像データを送給することが望ましい。本実施例では、デコードされた映像データが適正であるかどうかを確認するための受信映像監視手段34を設け、デコードされた映像データは、受信映像監視手段34に分配されて映像の品質が管理されると共に、交換機36および電気/光交換機38を経由してユーザに送給される構成となっている。 The video data receiving device 30 has a function of sending the decoded video data to the user, but it is desirable to send the video data after confirming the quality of the video data. In this embodiment, the received video monitoring means 34 for confirming whether the decoded video data is proper is provided, and the decoded video data is distributed to the received video monitoring means 34 to manage the video quality. In addition, it is configured to be sent to the user via the exchange 36 and the electric / optical exchange 38.
 中継機器100は、映像データ送信装置20および映像データ受信装置30にそれぞれ別個に装備される機器であり、映像データ送信装置20と映像データ受信装置30の間における映像データ50の送受信を行い、その制御および管理を行う機器である。中継機器100は、図2に示すように、セッション確立手段110と、セッション管理手段120と、セッション切断手段130と、帯域確保手段140を装備している。 The relay device 100 is a device that is separately installed in the video data transmission device 20 and the video data reception device 30, and transmits and receives the video data 50 between the video data transmission device 20 and the video data reception device 30. A device that performs control and management. As illustrated in FIG. 2, the relay device 100 includes a session establishment unit 110, a session management unit 120, a session disconnection unit 130, and a bandwidth securing unit 140.
 本発明の映像データ伝送システム10は、SIPプロトコルを介してIPネットワーク網60に映像データ50の送受信を行うものであり、セッション確立手段110は、IPネットワーク網60を経由して、一方の中継機器100aがSIPセッション確立要求を発し、中継機器100bがこれに応じたステータスコード(受理応答)を発することによって両中継機器間におけるSIPセッションの確立を行うものである。また、セッション管理手段120は、確立されたセッションの状態を監視し制御するものである。セッション管理プロトコルとしては、本発明の実施例では、RTPおよびRTCPを用いたセッション管理を行っているが、これに限定されるものではなく、例えばSDPを用いたセッション管理とすることも可能である。また、セッション切断手段130は、セッション確立手段110によって確立したセッションを中継機器100の要求に応じて切断処理を行うものである。 The video data transmission system 10 of the present invention transmits and receives video data 50 to and from the IP network 60 via the SIP protocol, and the session establishing means 110 is connected to one of the relay devices via the IP network 60. 100a issues a SIP session establishment request, and the relay device 100b issues a status code (acceptance response) in response to this request, thereby establishing a SIP session between both relay devices. The session management unit 120 monitors and controls the state of the established session. As a session management protocol, in the embodiment of the present invention, session management using RTP and RTCP is performed. However, the present invention is not limited to this, and session management using SDP, for example, is also possible. . In addition, the session disconnection unit 130 performs a disconnection process on the session established by the session establishment unit 110 in response to a request from the relay device 100.
 帯域確保手段140は、IPネットワーク網60における映像データ50の送信に供する帯域を確保する手段である。予め中継機器100に登録された、映像データ50を送信するために使用する帯域数を元に、帯域確保手段140が帯域を確保する。これにより、安定した映像データ50の送信が可能となる。なお、インターネットなどベストエフォート型ネットワークを用いると、その仕様上、帯域確保が困難であるため、受付制御、優先制御、公平制御等のQoSが実現された帯域保証型ネットワークを用いるのが望ましい。 Band securing means 140 is means for securing a band for transmission of video data 50 in IP network 60. Based on the number of bands used to transmit the video data 50 registered in the relay device 100 in advance, the band securing unit 140 secures the band. Thereby, stable transmission of the video data 50 is possible. When a best effort network such as the Internet is used, it is difficult to secure a bandwidth because of its specifications. Therefore, it is desirable to use a bandwidth guaranteed network that realizes QoS such as admission control, priority control, and fairness control.
 中継機器100は、図2に示すように、更に、映像データ受入手段150と、映像データ送信手段160と、映像データ受信手段170を装備しており、映像データ50の送信時においては、映像データ受入手段150と、映像データ送信手段160が動作し、映像データ50の受信時においては、映像データ受信手段170が動作する仕組みとなっている。 As shown in FIG. 2, the relay device 100 is further equipped with a video data receiving unit 150, a video data transmitting unit 160, and a video data receiving unit 170. The receiving means 150 and the video data transmitting means 160 operate, and when receiving the video data 50, the video data receiving means 170 operates.
 映像データ受入手段150は、映像データ50の送信時において、映像データ送信装置20の外部より送給され、エンコード手段22によりTS形式に変換された映像データ50を受入れ可能とし、映像データ50が送給されてきた場合に映像データ送信手段160による送信を可能とし、または一時的に中継機器100内に蓄積するものである。これにより、中継機器100が常にスタンバイ状態となり、迅速な映像データ50の送信が可能となる。 The video data receiving means 150 can receive the video data 50 sent from the outside of the video data transmitting apparatus 20 and converted into the TS format by the encoding means 22 when the video data 50 is transmitted. When it has been supplied, transmission by the video data transmission means 160 is made possible or temporarily stored in the relay device 100. Thereby, the relay device 100 is always in the standby state, and the video data 50 can be quickly transmitted.
 映像データ送信手段160は、映像データ50の送信時において、映像データ50をIPネットワーク網60に送出するものである。セッション確立手段110によりセッションが確立されると、自動的に映像データ50のIPネットワーク網60への送出を開始する。映像データ送信手段160による映像データ50の送信は、本実施例ではRTPプロトコルによるストリーミング配信を行う構成となっているが、この方法に限定されるものではない。 The video data transmission means 160 transmits the video data 50 to the IP network 60 when the video data 50 is transmitted. When the session is established by the session establishing means 110, transmission of the video data 50 to the IP network 60 is automatically started. The transmission of the video data 50 by the video data transmission unit 160 is configured to perform streaming delivery by the RTP protocol in the present embodiment, but is not limited to this method.
 映像データ受信手段170は、映像データ50の受信時において、IPネットワーク網60を介して送給された映像データ50を受信するものである。セッション確立手段110によるセッション確立後、映像データ送信手段160によって自動送信された映像データ50を映像データ受信手段170によって自動受信する。 The video data receiving unit 170 receives the video data 50 sent via the IP network 60 when the video data 50 is received. After the session is established by the session establishment unit 110, the video data 50 automatically transmitted by the video data transmission unit 160 is automatically received by the video data reception unit 170.
 セッション確立手段110は、一方の中継機器100aによるSIPセッション確立要求に対し、SIPセッション確立要求を受けた中継機器100bがステータスコード(受理応答)の自動応答を行うことで、自動的に両中継機器100間におけるSIPセッションを確立する構成とすることが可能である。これにより、映像データ送信装置20および映像データ受信装置30による映像データ50の送信から受信までが自動的に行われることとなり、迅速かつ効率的な映像データの送受信が実現可能となる。 In response to the SIP session establishment request from one of the relay devices 100a, the session establishing means 110 automatically sends both statuses of the relay devices by the relay device 100b receiving the SIP session establishment request automatically responding with a status code (acceptance response). It is possible to adopt a configuration in which SIP sessions between 100 are established. As a result, the video data transmission device 20 and the video data reception device 30 automatically perform the transmission to reception of the video data 50, so that the video data can be transmitted and received quickly and efficiently.
 中継機器100は、図3bに示すように、セッション確立時において、セッション確立手段110の動作時に、一方の中継機器100aからのセッション確立要求に対し、中継機器100bから受理不能(拒否)応答がなされた場合には、エラー応答を行うとともにセッション確立要求を再開する構成となっている。通常、受理不能(拒否)応答がなされた場合には退行運転への変更で対応することが考えられるが、上記のように処理をすることで、他の伝送ルート(映像データ受信装置30)に対する迅速なセッション確立要求の切り換えが可能となり、映像データの伝送効率を高めることが可能となる。 As shown in FIG. 3b, when the session establishing means 110 is operated, the relay device 100 receives an unacceptable (rejected) response from the relay device 100b in response to a session establishment request from one of the relay devices 100a. In such a case, an error response is made and the session establishment request is resumed. Normally, when an unacceptable (rejected) response is made, it is conceivable to cope with the change to the retreat operation. However, by performing the processing as described above, it is possible to respond to another transmission route (video data receiving device 30). It is possible to quickly switch between session establishment requests, and to improve the transmission efficiency of video data.
 また、図3eに示すように、セッション切断時において、一方の中継機器100aからのセッション切断手段130によるセッション切断要求に対し、他の中継機器100bからのセッション終了応答を待たずにセッションを切断する構成である。このような一方的な切断により、応答待ち時間を省略できるため、映像データ映像の連続性を確保し、映像データの伝送効率を高めることが可能となる。 Also, as shown in FIG. 3e, when a session is disconnected, in response to a session disconnection request from the session disconnecting means 130 from one relay device 100a, the session is disconnected without waiting for a session end response from the other relay device 100b. It is a configuration. Such a unilateral disconnection can eliminate the response waiting time, so that the continuity of the video data video can be ensured and the transmission efficiency of the video data can be improved.
 次に、中継機器100のSIPによるセッション管理について説明する。SIPによる端末登録処理は、図3aに示すように、中継機器100のソフトウェアからの登録要求(REGISTER)に対して端末(中継機器100)の新規登録、登録更新、登録削除が行われる構成となっている。また、セッション確立手段110によるセッション確立処理は、図3bに示すように、中継機器100aのソフトウェアからのセッション確立要求(INVITE)に対して、他方の中継機器100bからの処理中応答の後、受理応答を受けることにより、セッションが確立される。ここで、セッション確立要求に対して受理不能(拒否)応答がなされた場合、エラー応答が行われ、セッション確立処理は終了する。 Next, session management by SIP of the relay device 100 will be described. As shown in FIG. 3A, the terminal registration process by SIP is configured such that new registration, registration update, and registration deletion of a terminal (relay device 100) are performed in response to a registration request (REGISTER) from the software of the relay device 100. ing. Further, as shown in FIG. 3b, the session establishment process by the session establishment unit 110 is accepted after a response in process from the other relay device 100b to the session establishment request (INVITE) from the software of the relay device 100a. By receiving the response, the session is established. Here, when an unacceptable (rejection) response is made to the session establishment request, an error response is made, and the session establishment process ends.
 セッション確立要求の取消処理は、図3cに示すように、中継機器100のソフトウェアがセッション確立要求(INVITE)後に取消要求(CANCEL)を行い、正常処理応答を受けることにより、セッション確立が取り消される。また、セッションの更新処理は、図3dに示すように、中継機器100のソフトウェアがセッション更新要求(UPDATE)を行い、正常処理応答を受けることにより、セッションが更新される。 In the session establishment request cancellation process, as shown in FIG. 3c, the software of the relay device 100 issues a cancellation request (CANCEL) after the session establishment request (INVITE) and receives a normal processing response, thereby canceling the session establishment. Also, in the session update process, as shown in FIG. 3d, the software of the relay device 100 makes a session update request (UPDATE) and receives a normal process response, whereby the session is updated.
 セッション切断手段130によるセッション切断処理は、図3eに示すように、中継機器100のソフトウェアがセッション切断要求(BYE)を行うことで、セッションが切断される。セッション切断手段130は、図3eおよび図4cに示すように、正常処理応答は待たない構成となっており、セッション切断要求後、映像データ送信装置20は、映像データ50の送信を停止する。 In the session disconnection process by the session disconnection means 130, as shown in FIG. 3e, the software of the relay device 100 makes a session disconnect request (BYE), thereby disconnecting the session. As shown in FIGS. 3e and 4c, the session disconnection unit 130 is configured not to wait for a normal process response, and after the session disconnection request, the video data transmitting device 20 stops transmitting the video data 50.
 次に、中継機器100の内部動作を説明する。映像データ50の送信時においては、図4aに示すように、中継機器100aのサービス起動後、映像データ受入手段150により、エンコード手段22によってTS形式に変換された映像データ50の受入れを開始する。GUI操作による映像データ50の送信開始指示があった場合、セッション確立手段110によりセッションが自動的に確立され、映像データ50の送信が可能な状態となる。その後、映像データ送信手段160により映像データ50の自動送信が開始される。 Next, the internal operation of the relay device 100 will be described. At the time of transmitting the video data 50, as shown in FIG. 4a, after the service of the relay device 100a is activated, the video data receiving unit 150 starts receiving the video data 50 converted into the TS format by the encoding unit 22. When there is an instruction to start transmission of the video data 50 by the GUI operation, the session is automatically established by the session establishing means 110, and the video data 50 can be transmitted. Thereafter, automatic transmission of the video data 50 is started by the video data transmission means 160.
 映像データ50の受信時においては、図4bに示すように、中継機器100bのサービス起動後、映像データ受入手段150により、映像データ50の受入れを開始する(送受信側で同じ中継機器100を使用するため、映像データ受入手段150は必ず動作する)。セッション確立手段110は、映像データ送信装置20の中継機器100aよりセッション確立要求があった場合、自動的に受理応答を行う。これによりセッションが自動的に確立され、映像データ50の受信が可能な状態となる。その後、映像データ受信手段170により、映像データ送信手段160より送信された映像データ50の受信が開始される。 At the time of receiving the video data 50, as shown in FIG. 4b, after the service of the relay device 100b is started, the video data receiving means 150 starts receiving the video data 50 (the same relay device 100 is used on the transmission / reception side). Therefore, the video data receiving means 150 always operates). Session establishment means 110 automatically makes an acceptance response when a session establishment request is received from relay device 100a of video data transmission apparatus 20. As a result, a session is automatically established and the video data 50 can be received. Thereafter, reception of the video data 50 transmitted from the video data transmission unit 160 is started by the video data reception unit 170.
 セッションの切断処理においては、図4cに示すように、GUIによるセッション切断指示に応じて、セッション切断手段130によるセッション切断要求が発信される。切断イベントを経た後、映像データ受信装置30の映像データ50の送信を停止し、続いて、IPネットワーク網60への送受信処理を停止する。 In the session disconnection process, as shown in FIG. 4c, a session disconnection request by the session disconnecting means 130 is transmitted in response to a session disconnection instruction by the GUI. After the disconnection event, the transmission of the video data 50 of the video data receiving device 30 is stopped, and then the transmission / reception process to the IP network 60 is stopped.
 中継機器100は、図2に示すように、更にTS送信手段180を装備する。TS送信手段180は、エンコード手段22によってTS形式に変換された映像データ50をIPネットワーク網60へ送信するためのものである。TS形式の映像データは固定長のTSパケットに分割されているため、データ送信手段はTS形式に特化するのが望ましい。TS形式に変換された映像データ50を送信するTS送信手段180を設けることにより、効率の良い映像データ50の送信が可能となる。 The relay device 100 is further equipped with TS transmission means 180 as shown in FIG. The TS transmission unit 180 is for transmitting the video data 50 converted into the TS format by the encoding unit 22 to the IP network 60. Since the video data in the TS format is divided into fixed-length TS packets, it is desirable that the data transmission means be specialized in the TS format. By providing the TS transmission unit 180 that transmits the video data 50 converted into the TS format, the video data 50 can be efficiently transmitted.
 また、中継機器100は、TCP/IPによる通信制御手段を備えている。これにより、SIPサーバ機能を持つルータとして構成することができ、ルータ単体で映像データ50の送信やセッション管理を行うことが可能となる。これにより、省スペース化を図ることが可能となると同時に、メンテナンスの一元化が可能となり、維持管理を容易とすることが可能となった。 Further, the relay device 100 includes a communication control unit using TCP / IP. As a result, it can be configured as a router having a SIP server function, and the transmission of video data 50 and session management can be performed by the router alone. As a result, space saving can be achieved, and at the same time, the maintenance can be unified and maintenance can be facilitated.
 中継機器100は、図2に示すように、更に、障害検知手段190と、データ伝送経路切替手段200を装備することが可能である。障害検知手段190は、通信障害の発生を検知するものであり、データ伝送経路切替手段200は、障害検知手段190による障害検知時にデータ伝送経路を切り替えるものである。特に生放送では映像データ50の欠損は致命的であるため、障害検知手段190とデータ伝送経路切替手段200が協調することにより、映像データ50の送受信時における障害を早期に検知し、データ伝送経路を変更することが可能となり、安定した映像データ50の送受信が可能となる。 As shown in FIG. 2, the relay device 100 can further be equipped with a failure detection means 190 and a data transmission path switching means 200. The failure detection unit 190 detects the occurrence of a communication failure, and the data transmission path switching unit 200 switches the data transmission path when a failure is detected by the failure detection unit 190. In particular, since the loss of the video data 50 is fatal in live broadcasting, the failure detection unit 190 and the data transmission path switching unit 200 cooperate to detect a failure at the time of transmission / reception of the video data 50 at an early stage. The video data 50 can be stably transmitted and received.
 IPネットワーク網60は、本実施例では、NGN(Next Generation Network:次世代ネットワーク)からなる。NGNは、ベストエフォート型ネットワークである通常のインターネットとは異なり、帯域保証型ネットワークである。したがって、帯域確保を容易に行うことが可能となる。本発明の映像データ伝送システム10が映像データ50を伝送するために使用する帯域は、NGN上において帯域確保手段140によって確保した帯域からなるため、安定した映像データ50の伝送が可能となり、また、コストパフォーマンスの面でも優れた映像データ伝送システム10の構築が可能となる。 In this embodiment, the IP network 60 is composed of NGN (Next Generation Network). NGN is a bandwidth-guaranteed network, unlike the normal Internet, which is a best-effort network. Accordingly, it is possible to easily secure the bandwidth. The band used by the video data transmission system 10 of the present invention for transmitting the video data 50 is a band secured by the bandwidth securing unit 140 on the NGN, so that stable transmission of the video data 50 is possible. It is possible to construct the video data transmission system 10 that is excellent in terms of cost performance.
 帯域確保手段140は、本発明の実施例では、10Mbps~25Mbpsの帯域を確保する。帯域としては10Mbps~25Mbpsが妥当であり、かつストパフォーマンスの面でも優れた映像データ伝送システム10とすることが可能となる。 In the embodiment of the present invention, the bandwidth securing means 140 secures a bandwidth of 10 Mbps to 25 Mbps. A bandwidth of 10 Mbps to 25 Mbps is appropriate as the bandwidth, and the video data transmission system 10 can be made excellent in terms of performance.
 中継機器100は、本実施例では、セッション管理手段120において、RTPおよびRTCPを用いたセッション管理を行っている。すなわち、RTCPによるセッション管理のもとで、RTPを用いた映像データのストリーミング送信を行う構成となっている。このプロトコルを用いることで、効率よい映像データ50の伝送が可能となるとともに、汎用性の高い映像データ伝送システム10とすることが可能となる。 In the present embodiment, the relay device 100 performs session management using RTP and RTCP in the session management means 120. That is, it is configured to perform streaming transmission of video data using RTP under session management by RTCP. By using this protocol, it is possible to efficiently transmit the video data 50 and to make the video data transmission system 10 with high versatility.
 本発明の映像データ伝送システム10の実施例としては、図5aに示すように、映像データ50を片方向の送信とする構成が考えられる。この構成とすることで、映像データ送信装置20を中継車両に掲載し、映像データ受信装置30は各都市の拠点とすることが可能となり、機動的な映像データ50の配信が可能となる。 As an embodiment of the video data transmission system 10 of the present invention, a configuration in which the video data 50 is transmitted in one direction as shown in FIG. With this configuration, the video data transmitting device 20 can be posted on a relay vehicle, and the video data receiving device 30 can be used as a base in each city, so that the flexible video data 50 can be distributed.
 また、本発明の映像データ伝送システム10の他の実施例として、図5bに示すように、映像データ50を双方向に向けた送信とする構成が考えられる。この構成とすることで、各拠点間の相互の映像データ50のやり取りが実現できるとともに、様々なデータ伝送経路の選択が可能となり、伝送経路に障害が発生した場合であっても、速やかに他の経路を選定することができ、映像データ50の大幅な欠損を防止(特に生放送時)することが可能となる。 Further, as another embodiment of the video data transmission system 10 of the present invention, as shown in FIG. 5b, a configuration in which the video data 50 is transmitted bidirectionally can be considered. With this configuration, it is possible to exchange video data 50 between the bases, and it is possible to select various data transmission paths. Can be selected, and a significant loss of the video data 50 can be prevented (particularly during live broadcasting).
映像データ伝送システムの概略図Schematic diagram of video data transmission system 中継機器の概略図Schematic diagram of relay equipment 中継機器のSIPによる端末登録処理を示すシーケンス図Sequence diagram showing terminal registration processing by SIP of relay device 中継機器のSIPによるセッション確立処理を示すシーケンス図Sequence diagram showing session establishment processing by SIP of relay device 中継機器のSIPによるセッション取消処理を示すシーケンス図Sequence diagram showing session cancellation processing by SIP of relay device 中継機器のSIPによるセッション更新処理を示すシーケンス図Sequence diagram showing session update processing by SIP of relay device 中継機器のSIPによるセッション切断処理を示すシーケンス図Sequence diagram showing session disconnection processing by SIP of relay device 中継機器の映像データ送信時における内部動作を示すシーケンス図Sequence diagram showing the internal operation of the relay device during video data transmission 中継機器の映像データ受信時における内部動作を示すシーケンス図Sequence diagram showing the internal operation of the relay device when receiving video data 中継機器のセッション切断処理時における内部動作を示すシーケンス図Sequence diagram showing internal operation during session disconnection processing of relay device 片方向データ転送を行う映像データ伝送システムの実施例の概略図Schematic diagram of an embodiment of a video data transmission system that performs unidirectional data transfer 双方向データ転送を行う映像データ伝送システムの実施例の概略図Schematic diagram of an embodiment of a video data transmission system that performs bidirectional data transfer
 10  映像データ伝送システム
 20  映像データ送信装置
 22  エンコード手段
 24  送信前映像監視手段
 26  分配装置
 30  映像データ受信装置
 32  デコード手段
 34  受信映像監視手段
 36  交換機
 38  電気/光交換機
 50  映像データ
 60  IPネットワーク網
 100  中継機器
 100a  中継機器
 100b  中継機器
 110  セッション確立手段
 120  セッション管理手段
 130  セッション切断手段
 140  帯域確保手段
 150  映像データ受入手段
 160  映像データ送信手段
 170  映像データ受信手段
 180  TS送信手段
 190  障害検知手段
 200  データ伝送経路切替手段
DESCRIPTION OF SYMBOLS 10 Video data transmission system 20 Video data transmission apparatus 22 Encoding means 24 Pre-transmission video monitoring means 26 Distribution apparatus 30 Video data receiving apparatus 32 Decoding means 34 Received video monitoring means 36 Switch 38 Electric / optical switch 50 Video data 60 IP network 100 Relay equipment 100a Relay equipment 100b Relay equipment 110 Session establishment means 120 Session management means 130 Session disconnection means 140 Band securing means 150 Video data reception means 160 Video data transmission means 170 Video data reception means 180 TS transmission means 190 Fault detection means 200 Data transmission Route switching means

Claims (9)

  1.  映像データを受信してトランスポート・ストリーム(TS)形式に変換するエンコード手段を装備した映像データ送信装置と、映像データの送受信を行う中継機器と、受信したTS形式のデータのデコードを行うデコード手段を装備した映像データ受信装置とからなる、IPネットワーク網を介した映像データ伝送システムにおいて、
     前記映像データの送受信を行う中継機器は、前記映像データ送信装置および前記映像データ受信装置にそれぞれ別個に装備されるもので、SIPセッション確立要求に応じてSIPセッションの確立を行うセッション確立手段と、確立されたセッションを監視し制御するセッション管理手段と、確立したセッションを要求に応じて切断するセッション切断手段と、映像配信用の帯域を確保する帯域確保手段とからなり、SIPを介してIPネットワーク網に映像データの送受信を行うことを特徴とする映像データ伝送システム。
    Video data transmitting apparatus equipped with an encoding means for receiving video data and converting it to a transport stream (TS) format, a relay device for transmitting and receiving video data, and a decoding means for decoding received TS format data In a video data transmission system via an IP network, comprising a video data receiving device equipped with
    The relay device for transmitting and receiving the video data is separately provided in the video data transmitting device and the video data receiving device, respectively, session establishment means for establishing a SIP session in response to a SIP session establishment request; The session management means for monitoring and controlling the established session, the session disconnecting means for disconnecting the established session in response to a request, and the bandwidth securing means for securing the bandwidth for video distribution. A video data transmission system for transmitting and receiving video data to and from a network.
  2.  前記中継機器は、
     映像データ送信時において、前記エンコード手段によりTS形式に変換された映像データの受入れを開始する映像データ受入手段と、前記映像データをIPネットワーク網に送出する映像データ送信手段と、
     映像データ受信時において、IPネットワーク網を介して送給された前記映像データを受信する映像データ受信手段とからなり、
     前記セッション確立手段は、中継機器によるSIPセッション確立要求に対してSIPセッション確立要求を受けた中継機器が自動応答を行うことで、自動的にSIPセッションを確立することを特徴とする請求項1記載の映像データ伝送システム。
    The relay device is
    Video data receiving means for starting reception of video data converted into TS format by the encoding means, and video data transmitting means for sending the video data to an IP network when sending video data;
    When receiving video data, the video data receiving means for receiving the video data sent via the IP network,
    2. The session establishing means automatically establishes a SIP session when a relay device that has received a SIP session establishment request in response to a SIP session establishment request from a relay device makes an automatic response. Video data transmission system.
  3.  前記中継機器は、映像データ映像の連続性を確保し、映像データの伝送効率を高めるため、
     前記セッション確立手段において、セッション発信要求に対する受理不能応答時には、退行運転を行うことなくエラー応答を行うとともにセッション確立要求を再開し、
     前記セッション切断手段は、セッション切断要求に対する応答を待たずにセッションを切断することを特徴とする請求項1及び請求項2記載の映像データ伝送システム。
    The relay device ensures the continuity of video data video and increases the transmission efficiency of video data.
    In the session establishment means, at the time of an unacceptable response to the session transmission request, an error response is performed without performing the retreat operation and the session establishment request is resumed.
    3. The video data transmission system according to claim 1, wherein the session disconnecting unit disconnects the session without waiting for a response to the session disconnection request.
  4.  前記中継機器は、トランスポート・ストリーム(TS)形式の映像データをIPネットワーク網へ送信するTS送信手段を備えることを特徴とする請求項1及び請求項3記載の映像データ伝送システム。 4. The video data transmission system according to claim 1, wherein the relay device includes TS transmission means for transmitting video data in a transport stream (TS) format to an IP network.
  5.  前記中継機器は、TCP/IPによる通信制御手段を備えることを特徴とする請求項1乃至請求項4記載の映像データ伝送システム。 5. The video data transmission system according to claim 1, wherein the relay device includes a communication control unit based on TCP / IP.
  6.  前記中継機器は、通信障害の発生を検知する障害検知手段と、障害検知時にデータ伝送経路を切り替えるデータ伝送経路切替手段を備えることを特徴とする請求項1乃至請求項5記載の映像データ伝送システム。 6. The video data transmission system according to claim 1, wherein the relay device includes failure detection means for detecting occurrence of a communication failure, and data transmission path switching means for switching a data transmission path when a failure is detected. .
  7.  前記IPネットワーク網は、NGN(Next Generation Network:次世代ネットワーク)からなり、映像データを伝送するために使用する帯域が、NGN上において前記帯域確保手段によって確保した帯域からなることを特徴とする請求項1乃至請求項6記載の映像データ伝送システム。 The IP network includes an NGN (Next Generation Network), and a band used for transmitting video data includes a band secured by the band securing unit on the NGN. The video data transmission system according to any one of claims 1 to 6.
  8.  前記帯域確保手段は、10Mbps~25Mbpsの帯域からなることを特徴とする請求項1乃至請求項7記載の映像データ伝送システム。 8. The video data transmission system according to claim 1, wherein said bandwidth securing means comprises a bandwidth of 10 Mbps to 25 Mbps.
  9.  前記中継機器は、RTCPによるセッション管理のもとで、RTPを用いた映像データのストリーミング送信を行うことを特徴とする請求項1乃至請求項8記載の映像データ伝送システム。 The video data transmission system according to any one of claims 1 to 8, wherein the relay device performs streaming transmission of video data using RTP under session management by RTCP.
PCT/JP2012/001649 2012-03-09 2012-03-09 Video data transfer system WO2013132541A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/001649 WO2013132541A1 (en) 2012-03-09 2012-03-09 Video data transfer system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/001649 WO2013132541A1 (en) 2012-03-09 2012-03-09 Video data transfer system

Publications (1)

Publication Number Publication Date
WO2013132541A1 true WO2013132541A1 (en) 2013-09-12

Family

ID=49116057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001649 WO2013132541A1 (en) 2012-03-09 2012-03-09 Video data transfer system

Country Status (1)

Country Link
WO (1) WO2013132541A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245655A (en) * 2005-02-28 2006-09-14 Fuji Photo Film Co Ltd Communication terminal and communication system
JP2007235594A (en) * 2006-03-01 2007-09-13 Nippon Telegr & Teleph Corp <Ntt> Network access system and network access method
JP2009010863A (en) * 2007-06-29 2009-01-15 Oki Electric Ind Co Ltd Audio/video synchronizing method, audio/video synchronizing system and audio/video receiving terminal
JP2012019340A (en) * 2010-07-07 2012-01-26 Fujitsu Ltd Data transfer device, data transfer method, and program for data transfer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245655A (en) * 2005-02-28 2006-09-14 Fuji Photo Film Co Ltd Communication terminal and communication system
JP2007235594A (en) * 2006-03-01 2007-09-13 Nippon Telegr & Teleph Corp <Ntt> Network access system and network access method
JP2009010863A (en) * 2007-06-29 2009-01-15 Oki Electric Ind Co Ltd Audio/video synchronizing method, audio/video synchronizing system and audio/video receiving terminal
JP2012019340A (en) * 2010-07-07 2012-01-26 Fujitsu Ltd Data transfer device, data transfer method, and program for data transfer

Similar Documents

Publication Publication Date Title
US10158577B2 (en) Devices, systems, and methods for adaptive switching of multicast content delivery to optimize bandwidth usage
US9083585B2 (en) Retransmission-based stream repair and stream join
EP2086184B1 (en) Session mobility method and session mobility system
US20090300193A1 (en) Content distribution server and content distribution method
EP2892194B1 (en) Media stream transmission method and device
EP2611067A1 (en) System and method for combining multiple communication links
US9100690B2 (en) Mechanism to divert an IP flow over a non-IP transport
CN111614927A (en) Video session establishment method, device, electronic equipment and storage medium
WO2008117892A1 (en) Content delivery system, conversion device, and content delivery method used therefor
EP2899969A1 (en) Processing method and device for packet loss compensation in video-conferencing system
WO2013132541A1 (en) Video data transfer system
JPWO2013132541A1 (en) Video data transmission system
CN111245592B (en) Signaling transmission method and device and computer readable storage medium
JP2010081067A (en) Repeater, relay method, relay program, receiver, communication end method and communication end program
US20110075570A1 (en) Server apparatus, communication method and program
JP2013062678A (en) Ip connection device
JP2001069483A (en) Image distribution system
CN111988585B (en) Video transmission method suitable for satellite data communication network
WO2009043241A1 (en) A method, system and device for controling media stream by the service providing entity
JP4379601B2 (en) Packet relay method, packet relay device, and program
US20110078314A1 (en) Signal processing device, signal processing program and communication system
JP5659802B2 (en) Communication terminal, transmission / reception method thereof, and communication system including the terminal
JP2010199857A (en) Multicast gateway video distribution route control method, and video distribution system of the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012555242

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870814

Country of ref document: EP

Kind code of ref document: A1