WO2013131490A1 - 矩形环与o形环自紧密结构 - Google Patents

矩形环与o形环自紧密结构 Download PDF

Info

Publication number
WO2013131490A1
WO2013131490A1 PCT/CN2013/072332 CN2013072332W WO2013131490A1 WO 2013131490 A1 WO2013131490 A1 WO 2013131490A1 CN 2013072332 W CN2013072332 W CN 2013072332W WO 2013131490 A1 WO2013131490 A1 WO 2013131490A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
cavity
sealing
seal
self
Prior art date
Application number
PCT/CN2013/072332
Other languages
English (en)
French (fr)
Inventor
徐长祥
Original Assignee
浙江华夏阀门有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江华夏阀门有限公司 filed Critical 浙江华夏阀门有限公司
Publication of WO2013131490A1 publication Critical patent/WO2013131490A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings

Definitions

  • the invention relates to the field of sealing technology for fluid power transmission and fluid medium conveying systems, and relates to a rod (/hole fitting) sealing and a plug (/cylinder fitting) sealing and a corresponding hole and cylinder mouth (/cover docking) sealing, in particular Compliant with the existing closed-pressure compaction technology and the existing 0-ring self-tightening technology (the inventor proposed) the rectangular ring and the 0-ring self-tight structure of the Xu seal theory, with the further disclosure of the Xu seal theory . Background technique
  • Sealing is the leak-free or leak-free fit of the surface. Therefore, according to the sealing surface type, it can be divided into end face (butt) seal and cylindrical (fit) seal.
  • an O-ring can be used ((Dd, a rectangular ring ( ⁇ ( ⁇ ) can also be used.
  • the cylinder of the 0-ring is self-tightening, as shown in Figure lb, Divided into rod (/ hole) seal ( ⁇ (1 12 ) and plug (/ cylinder) seal ( ⁇ (1 13 ).
  • 0-ring end face self-tightening seal ((Dd ⁇ , as shown in Figure lc, can be used separately).
  • Some kind of O-ring seal ((Dd u ⁇ (Dd 13 ) instead), therefore, if the replacement seal labeled ⁇ (1 12 and Odis is treated as a stationary rod (/hole) seal and a plug (/cylinder) seal, respectively, It is no doubt that the label (Ddu's replacement seal is treated as a hole and a cylinder port (/cover). Since the screw seal of Figure Id is the same as the port seal of Figure lc, given the original O-ring seal ((Dd 1()) The specification series parameters and filling characteristics (may) are the same as the mouth seals.
  • the self-tight mating or mating of the surface can be sealed by a rectangular ring self-tightening seal and a 0-ring ring seal ((Ddu ⁇ rod seal ( ⁇ 12 ) and Plug seal ( ⁇ (1 13 ) to unify research and treatment.
  • the prior art flange as shown in Fig. 2, is fastened by bolts, and is sealed by a flat pad between the two flange faces, not the self-tightness of the rectangular ring labeled ⁇ shown in Fig. 1. connection. As shown in Fig.
  • the pressure is tightly connected before the fastening, the flange is not bent, and the contact width of the pad with the flange surface is b; after the fastening, the flange bending causes the contact width b to decrease; after the fluid pressure is applied
  • the flange is further bent so that the contact width b is further reduced; that is, in general, for the prior art flange, the mounting fastening is the pad loading (so that the compressive stress is increased), and the fluid pressure is the pad unloading ( Causes its compressive stress to decrease). Therefore, the prior art flanged joints or pads are tightly connected with the following four unacceptable fatal problems:
  • the sealing is the behavior of causing the sealing surface to deform to fill the uneven contact surface; the leakage is the process in which the fluid outputs a contact separation force limit on the contact surface equal to the "contact area X fluid pressure"; therefore, the mat is not
  • the mechanical condition of the leak tight connection is that the pad can provide sufficient deformation for the sealing contact and the pad can provide sufficient strong support for the sealing contact.
  • Soft, inelastic mats such as grease have the conditions to provide adequate deformation for the sealing contact, but do not provide sufficient support for the sealed contact, while the hard and resilient mat is the opposite.
  • the prior art does not have the structural concept and method that the sealing surface reaches a soft and strong structure, so that the sealing surface and the coiled pad and the tooth pad which are inadvertently closest to the soft and strong structural concept can not reach the winding surface and the tooth under the sealing surface. Fully strong, therefore, no matter how the design of the pad-tight structure, under a certain low pressure and temperature conditions, it is leaking.
  • the flat pad compression seal is leaky.
  • the sealing requires the sealing surface to yield to fill the unevenness of the contact surface caused by the surface roughness, and the economical surface roughness of the flange surface can be no less than 3.2 ⁇ ; that is, the flange gasket is installed and fastened.
  • the resulting circumferential uniform compression deformation should not exceed ⁇ level, otherwise the large fastening force is invalid. Therefore, as shown in Fig. 3, even for the coiled mat and the tooth pad which are closest to the sealing surface and soft and strong structural concept, it is impossible to cause the circumferential fastening deformation of the pad regardless of the mounting tightening torque control method.
  • the degree of uniformity of ⁇ is achieved, or the gasket's compression seal structure is leaked regardless of the installation.
  • the fluid pressure acts on the flange end cap equal to the "fluid strength of the inner circle area X fluid pressure".
  • the compressive stress of the mat that is, the sealing property is reduced, acting on the inner cylinder surface of the mat.
  • the pad will be blown out.
  • the prior art standard stipulates that the flange surface roughness must be an abnormal value of 3.2 ⁇ 6.2 ⁇ , which is contrary to the common technical concept that the more precise the mating surface is, the easier it is to seal and the more precise the processing is. So there is an additional risk of leakage.
  • any sealing material in the case of a year-on-year temperature greater than 0.5, inevitably, the cold flow-induced compressive stress, that is, the sealing property, is lowered.
  • the filling percentage of the O-ring to its cavity should not exceed 85%, so that the end seal O-ring is only axially compressed (hence the axial seal), rod / The plug seal O-ring is only radially compressed (hence the radial seal). That is to say, the prior art 0-ring is mounted on both sides and is clearly opposed to the four-sided contact wall installation.
  • the 0-ring should be installed to r a ⁇ 0.75r u; Installation requirements, that is, the degree of penetration to the sealing contact surface by installation to the atmospheric pressure, as shown in Figure 4b, the 0-ring should be installed to r a ⁇ 0.5r u; that is, according to the theory of Xu seal, existing 0
  • the ring seal technology has an irreconcilable structural contradiction.
  • the prior art 0-ring is generally installed and compressed to r a ⁇ 0.7 ⁇ 0.85r u .
  • the squeezing force is greater than the sealing squeezing force and also causes the radius of curvature of the fluid acting surface to decrease from r a to r x such that the more resistant to fluid pressure of the pressure receiving surface or the 0-ring requires greater sealing deformation dynamics.
  • Rubber which is the same soft and incompressible and elastic, can only cause its O-ring to be pressed and only one rise Uniform internal pressure, therefore, the free surface of the 0-ring can only smoothly transition with its cavity wall with the same arc.
  • anyone can observe the cross section of the clamped O-ring or stretch the outer surface of the O-ring, and observe that the free faces of the pressed O-ring are all circular arc faces.
  • the original O-ring seal patent US 2180795 and the prior art standard ISO 3601-2008 assume that the cross-sectional shape of the O-ring that is press-fitted on both sides is elliptical; that is, the prior art does not know the seal of the O-ring at all.
  • the sealing element of 1 is easier to seal than the rubber element; that is, according to the theory of Xu's seal, the rubber seal may be the most difficult to seal, and the metal seal may be easy to seal.
  • the prior art is the most difficult to seal. Sealed rubber is considered to be the most easily sealed.
  • the Gough-Joule Effect tells that when the stretched rubber is heated, its stretching direction does not become longer but becomes shorter, and its tensile strength is not lowered but increased. Therefore, according to the ⁇ -focus effect, the 0-ring in the stretched state, coupled with the further stretching caused by the low temperature shrinkage at night, may cause further shrinkage in the morning temperature rise and the seal will fail.
  • the booster rocket of the Challenge Space Shuttle as shown in Figure 5, consists of an 11-gauge steel cylinder of approximately 3.7 m diameter, mechanically connected by a fork/prong/pronged joint structure, through a two-stage O-ring
  • the plug seal realizes the sealing connection, and the end-stage separation is caused by the internal explosion of the pin; the 0-ring is greased and stretched in the groove, and the weather is lower than the previous coldest emission temperature when the air is launched.
  • the object of the present invention is to propose a new self-tightening seal of a rectangular ring and a 0-ring according to the following Xu's sealing theory (point), inverting the existing pad compression sealing technique of black and white reversed and the existing 0-ring self-tightening technique.
  • the seal is the result of loading the sealing contact layer to the fully deformed contact and then fully intimate contact, ie, first filling Flattening the uneven deformation contact, which is sufficient to resist the tight contact of fluid penetration, and sufficient penetration (leakage) is the process of the fluid outputting a contact separation force limit on the contact surface equal to the "contact area fluid pressure".
  • the minimum sealing stress required to resist the atmospheric pressure seepage contact is the minimum required sealing stress y of the seal (equal to the contact stress when the unsealing seal contact is brought off to full close contact at atmospheric pressure temperature), to achieve the minimum required sealing stress y Contact must be at least intimately contacted; for adequately deformed contact, it is preferred to load the sealing contact layer to adequate yield; to fully seal into contact with fluid pressure relief and pressure temperature cycling, the sealing contact layer needs to be loaded. sufficient base to elastically deform; therefore, such Xu flange sealing element (FIG. 6) of the parameter curve shown in FIG.
  • a sufficient leak is caused by equal or equal water pressure inside or outside the seal ring or pressure to atmospheric pressure on the seal contact surface.
  • the contact separation force before the leakage is gradually increased due to the increasing area of the water pressure
  • the contact separation force after the leakage is gradually reduced due to the water pressure becoming smaller, so that the contact fastening force is sufficiently larger than the limit separation force of the water pressure to the contact.
  • the sealing contact will never be unloaded by the water pressure to the full close contact, even if it is separated by the instantaneous interference force, it will recover immediately after the instant leakage.
  • the sealing contact will never be separated from the contact with sufficient close contact; or the contact stress required for the anti-atmospheric contact is undoubtedly the minimum required sealing stress y required for sealing, or It is said that the seal with contact stress not less than y is absolutely not leaking, or that the leak only occurs when the seal contact stress is less than y, or that all seal elements must be structured to y ⁇ 0.2 MP a .
  • the sealing contact layer shall be soft and inelastic.
  • the sealing contact layer substrate shall be strong and elastic and shall be mounted to the sealing contact layer for sufficient plastic deformation and sufficient elastic deformation to the contact layer substrate, thus being soft and most flexible. Rubber seals and strong and least elastic steel seals should also be of particular concern.
  • the conditions for maintaining a tight structure from a tight structure are:
  • y is the minimum required sealing stress
  • P is the fluid pressure
  • a s is the area of fluid pressure (P) from the tight ring
  • a u is the sealing contact area of the sealing element.
  • the Poisson's ratio is the orthogonal strain ratio of the uncompressed and compressed directions.
  • the compressibility index or Poisson's ratio ⁇
  • the compressibility index is closer to a liquid with a liquidity close to 0.5; therefore, all materials with a Poisson's ratio close to 0.5 and can be deformed by fluid pressure, such as rubber, PTFE, etc., lead, Gold, etc., can be simply used as a self-tightening ring.
  • the sealing ring is orthogonally transmitted pressure, and is determined by whether the Poisson's ratio (orthogonal strain ratio) of the material is equal to 0.5, as shown in Fig. 10, everything can be pressurized by the fluid.
  • the deformed solid material regardless of its Poisson's ratio value smaller than 0.5, can be used as a self-tightening seal ring by compensating its orthogonal strain ratio to 0.5 by a liquid compensation angle.
  • the so-called orthogonal deformation compensation of the self-tightening ring is not equivalent to pressing the volume-compressible sealing ring into a small space from a large space to make it liquid-like incompressibility and orthogonal Pressure transfer?
  • a radial contact compensation angle e c is required for the liquid self-sealing ring to
  • the orthogonal deformation caused by the gap is proportional to the Poisson's ratio.
  • the Poisson's ratio is the total orthogonal deformation ratio at the end of creep, and the compensation angle is also required.
  • the Poisson deformation compensation or liquid compensation of the material is intended to compensate for the lack of deformation of the ring height caused by the Poisson's ratio value less than 0.5 when the radial contact of the ring is not gapped; the radial contact compensation is intended to offset When the radial contact of the ring has a gap, the ring height caused by the gap decreases in proportion to the Poisson's ratio. That is to say, both the liquid compensation and the contact compensation of the seal ring are necessary, and both of them increase the ring height deformation under the fluid pressure.
  • each material has a Poisson's ratio change limit value (0.5).
  • the full liquid compensation angle and the full contact compensation angle e c of the same decision may be collectively referred to as the basic Poisson compensation angle e e :
  • the seal ring is highly strained
  • the basic Poisson compensation angle of the sealing material involves the deformation of the material body and the force amplification function of the rigid body wedge angle. Therefore, no matter how large, the change is only the time from the tight ring to the limit of the orthogonal deformation ratio (0.5).
  • the self-tightening ring of all materials can use a larger angle ⁇ ⁇ than the basic Poisson compensation angle to make its liquid compensation angle or liquid.
  • Sexual offset angle e c the orthogonal deformation ratio ( ⁇ ) of the seal ring from 0 to 0.5 or from 0.5 to 0, or at most to eliminate the quadrature deformation ratio of the ring ( ⁇ straight hysteresis, therefore, Regardless of the influence of the temperature coefficient difference of the material, the self-tightening ring of all materials, regardless of the actual Poisson's ratio of the material, can use a larger angle ⁇ ⁇ than the basic Poisson compensation angle to make its liquid compensation angle or liquid.
  • Sexual offset angle e c the compensation angle of the seal ring from 0 to 0.5 or from 0.5 to 0, or at most to eliminate the quadrature deformation ratio of the ring ( ⁇ straight hysteresis
  • Rubber whose Poisson's ratio is close to 0.5, is a weak solid with sufficient liquidity; therefore, structurally, the rubber O-ring is a thin-walled tube filled with liquid, no matter how the cavity wall and fluid are in the cavity. Compression, "inside the tube” can only have a pressure that opposes the outside, so that the "tube wall” is either purely compressed or purely stretched, so that its fluid extrusion surface and its free extrusion surface can only be different The equal arc intersects the cavity wall.
  • Working O-ring "tube” can withstand extreme pressure
  • r u is the radius of the cross section of the 0 ring not installed
  • Ob is the tensile strength of the 0-shaped ring material.
  • the section of the 0-ring that is not installed into the cavity is like a solid-like concentric circle; as shown in 12c, the section of the 0-ring mounted into the square cavity is somewhat elastic.
  • the rubber 0-ring cross section in operation has a more liquefied zone capable of transmitting pressure as a number and a more A more solidified zone capable of bearing pressure; therefore, the larger the cross-sectional diameter of the 0-ring, the larger the arc radius r of the solidified zone, the more difficult it is to cause extrusion failure from the mating gap, or the higher the pressure. That is, the 0-ring that increases the cross-sectional diameter eliminates the need to reverse the backing ring.
  • the O-ring mounted on the four sides of the uniform contact wall has a (fluid) compression angle (right) and a (free) extrusion angle (left) when the fluid pressure comes in.
  • the seal is to prevent fluid from squeezing.
  • the pressure angle leaks to the extrusion angle.
  • the O-ring is squeezed into the large space by the fluid from the small space, causing it to peel off the cavity wall and causing its fluid extrusion area and extrusion force to increase; at the extrusion angle, the O-ring is enlarged and squeezed.
  • the pressure is squeezed into the small space from the large space and the extrusion angle seal is continuously strengthened (see Figure 10); therefore, if the in-cavity circular arc surface is used instead of the corner, only the extrusion angle and the extrusion angle are 0-shaped.
  • the ring then no excess flow of power consumption and huge static friction, so that the fluid pressure that can cause its deformation / movement can make its seal strengthen, no need to install to the extent of close contact, or can cause it
  • the leakage of the deformation/moving reaction can cause the 0-ring of the cross-sectional diameter not smaller than the diameter of the inscribed circle of the cavity to automatically contact the leak-free state; or the key to the self-tightness of the 0-ring is that it is in the cavity.
  • the uniform internal hydraulic pressure can cause the free-angle extrusion surface radius to increase with the internal pressure while being the same
  • the shrinkage, the elasticity of which can cause the radius of the extrusion surface of the free angle to decrease at the same time as the internal pressure decreases, and even the walls can automatically maintain uniform contact to effectively overcome the leakage caused by the temperature change and the ⁇ -coke effect.
  • the 0-ring can be uniformly installed on the sides of the ring; or the sealing of the 0-ring of the multi-side uniform contact wall can be called the base (intracavity) circle.
  • O-ring seal Since the diameter of the base-turn body is the hole/shaft fit diameter to be sealed, the base-round O-ring seal can be used to match the size of the O-ring seal with the base hole/base shaft. It is completely consistent, that is, the O-ring sealing system is fully coordinated with the mechanical system.
  • the base-round O-ring seal can make the positive/negative pressure sealing structure of the O-ring uniform. If the 0-ring of the same specification is binned by volume or weight error, not only can the O-ring have a greater manufacturing error, but the cost can be significantly reduced, and the O-ring of the limited error grade can also be selected. Meet the needs of unlimited applications. That is to say, the base round 0-ring seal can make the world sealing structure highly uniform and universal.
  • the rectangular self-tight ring is operated according to the pressure deformation and the orthogonal transfer pressure. As shown in Fig. 10, the strength of the fluid on the inner cylinder surface and the reaction force strength on the ring end face are equal. It is equal to the fluid pressure intensity. Therefore, only the fluid action area (inner ring area) where the ring height is increased is not less than the fluid reaction area (ring end seal contact area) where the ring height is reduced, so as to ensure that the sealing surface always has sufficient deformation power. And support stiffness, ie its dynamic structural conditions are:
  • the dynamic structure should be considered at least according to the fluid action area larger than the sealing contact area, so as to overcome the low pressure. Huge static frictional resistance at the time of the missed shot.
  • the multi-sided uniform wall-mounted O-ring has no large static friction resistance, can be deformed/moved or moved/deformed by small pressure and automatically reaches its most efficient self-tight state, or leaks to any excess contact wall.
  • the large-small-squeezed state of the state has a sufficiently strong seal support rigidity, so that no self-exciting structural problems need to be specifically considered.
  • All seals are intended to result in a leak-free abutment of the end faces of the two pressure vessel parts or a leak-free fit of the two cylinders, thus ensuring the installation, fastening or reliable mounting/clamping or anti-crushing of the seal elements
  • Other components such as the ring (0-ring back ring), are necessary for the manufacturability or mountability of the sealing element and its cavity and the qualification or rationality, which is the leak-free connection of the two pressure vessel parts.
  • the necessary accessories not the 3rd pressure vessel parts that need to be docked originally; that is, the rectangular ring or 0-ring cavity mentioned in this specification refers to the leak-free connection of the two pressure vessel parts.
  • the cavity formed by the installation includes, but is not limited to, a cavity that is directly enclosed by only two pressure vessel members.
  • multiple pressure vessels are docked by installation of two common bodies, such as multiple combustion pressure vessels of the engine and multiple cooling pressure vessels are installed simultaneously through the installation and docking of the common cylinder head and the cylinder block.
  • Docking that is to say, the "leak-free docking installation of two pressure vessel parts" as referred to in this specification shall include "a simultaneous leak-free docking installation of a plurality of pairs of pressure vessel members of the common body".
  • a ring with a Poisson's ratio of less than 0.5 requires a liquid compensation angle
  • a ring with a Poisson's ratio of 0.5 requires a radial clearance compensation angle
  • a creeping ring requires a hysteresis load.
  • the Poisson's ratio compensation angle therefore, the compensation angle for increasing the Poisson deformation is required for the self-tight ring; since the basic Poisson compensation angle value is small and the large is not too large, the Poisson deformation compensation is excessive. Therefore, the ring is in the capacity.
  • the natural free extruding angle in the cavity is sufficient for its Poisson deformation compensation and offset; in other words, the self-tightening ring needs a free extrusion angle so that it is deformed and sealed from large space to small space by fluid pressure, or Say, all self-tightening seals have a free extrusion angle of a ring.
  • the free extrusion angle of the rubber O-ring can only be formed by multiple (two) side compression installations, the extruded corner structure of the present invention is dictated by the two-sided compression installation of the prior art standard.
  • the multi-side uniform contact wall installation ensures that the more leaky leakage penetration does not penetrate into the leakage, and the multi-side uniform contact wall installation is the result of the 0-shaped ring section being centered by the in-center of the cavity section. Therefore, the base-round O-ring seal is stipulated in the non-uniform flattening installation of the prior art.
  • the 0-ring with a cross-sectional diameter equal to the base circle is the easiest to most efficient self-tight state, or the base-shaped O-ring can be installed without stress contact, or the fixed compression deformation of the rubber is independent of the self-sealing situation
  • the round 0-ring seal is also specified in the anti-prior art installation with a flattening amount of not less than 0.2 mm.
  • the multi-sided uniform contact wall of the 0-ring of this specification is installed, and the cross section of the 0-ring is the center of the cavity, the circular wall cavity or the base circle 0-ring seal, the 0-ring fluid
  • the extrusion angles and the like are all expressions or technical features corresponding to the free-extrusion angle structure of the O-ring, or are technical features that reverse the standard of the existing O-ring sealing technique.
  • the utility model relates to a circular wall cavity 0-shaped ring self-tight structure which directly deforms the shape of a prior art 0-shaped annular cavity, which is composed of a 0-shaped ring and a cavity thereof, and is characterized in that the cavity is caused by two pressure vessel parts.
  • the inter-angle transition wall formed by the leak-free butt joint mounting with the fluid extrusion angle of the O-ring and the free-extruding angle is the inter-angle transition wall of the extrusion angle and the extrusion angle.
  • the round-wall cavity O-ring seal is a 0-ring seal with only fluid extrusion angle and free extrusion angle.
  • the O-ring whose inner core is the center of the free section of the cavity section can be evenly distributed to the right side.
  • the touch wall is installed, therefore, the round-wall cavity O-ring seal is actually the aforementioned base-round O-ring seal without a corner.
  • the transition wall, the extrusion angle and the extrusion angle are sharp corners that are not truncated or sharp corners with one or two corners being truncated or sharp corners filled with back rings.
  • the right-angled triangle-based circular wall cavity O-ring seal is a special kind of the above-mentioned round-wall cavity O-ring seal, except that both the fluid extrusion angle and the free extrusion angle can only be acute angles.
  • One of the aforementioned fluid extrusion angle and free extrusion angle may be a right angle.
  • the right-angled triangular base-wall cavity 0-ring seal is the simplest structure for a uniform port seal and rod/plug seal because the port seal has a naturally orthogonal port face and port end face.
  • the positive pressure and negative pressure application characteristics of the isosceles right triangle-shaped circular wall cavity 0-ring seal are completely the same, which is particularly contrary to the prior art.
  • Another type O-ring self-tight structure with an additional expansion space directly subverting the shape of the prior art 0-shaped annular cavity is composed of an O-ring and a main cavity and a sub-cavity thereof, characterized in that the main cavity And the sub-cavity are two pressure vessel parts
  • the interconnecting cavities formed by the leak-free docking installation are respectively for accommodating the normal volume and the expansion overflow volume of the O-ring, and the O-ring is the center of the free section of the cross-section of the main cavity To ensure that it has a free extrusion angle due to the uniform contact of the sides of the main cavity.
  • the aforementioned four O-ring self-tightening seals are base-round O-ring seals having different cavities or different extrusion angles/extrusion angles or different base wall volume chambers.
  • any leakage that can cause the deformation/movement reaction of the O-ring can cause the 0-ring with a cross-sectional diameter not less than the diameter of the inscribed circle of the cavity to be automatically and most efficiently self-tight.
  • the above-mentioned four 0-ring seal O-rings only need to have a free cross-sectional circle diameter not less than the diameter of the in-cavity circle when starting at the limit temperature; in view of the different size error, the same size 0-ring can change it to the most efficient
  • the time from the tight state may change the temperature limit of its starting or working or the seal starting characteristics of its fluid extrusion angle and free extrusion angle to adjust to the special starting limit requirements.
  • the above-mentioned four 0-ring seals are shaped like 0 If the ring is provided and selected according to the volume error or the weight error, the effect of satisfying the most demanding requirements at the lowest cost can be achieved; it is precisely because of this advantage that a number of bins according to the volume error or the weight error is proposed.
  • the 0-shaped self-tight ring provided and selected is made of rubber, PTFE, gold, silver and other non-metallic or metal soft materials with certain elasticity.
  • O-ring volume or weight up to 10% more than the volume or weight which is within the cavity of the inscribed circle, the O-ring to ensure a proper contact of each side wall caused by free extrusion installation angle. This 10% volume or weight limit is determined by the economical manufacturing and application level of the 0-ring.
  • the base-shaped O-ring seal In view of the fact that the base-shaped O-ring seal is activated by fluid osmosis contact, its O-ring, after being moved/deformed to the seal by the fluid pressure, needs to return to the pressure and then move after the fluid pressure disappears.
  • the deformed state to be activated therefore, the softer the material, the more the O-ring is more susceptible to compression deformation, and the lower the elastic elasticity of the 0-ring, the higher the tensile yield strength is required.
  • the base-shaped O-ring cannot be plastically deformed when it is subjected to the ultimate fluid pressure, or the base-shaped O-ring is required to be strong so that plasticity does not occur under the guaranteed test pressure of 2 times the rated pressure.
  • a soft material-reinforced 0-shaped self-tight ring that increases the elasticity or strength of a soft material, consisting of a non-metallic or metallic soft material such as rubber, Teflon, lead, indium, and a reinforcing soft material strength or elasticity.
  • the metal spiral spring ring core or the metal non-porous or perforated O-ring core or the metal C-shaped core or the like is integrally formed, and the outer diameter of the free-profile profile of the ring core is not greater than the inscribed circle of the cavity thereof.
  • the elastic strain limit of the metal material is 0.2%.
  • the metal spiral spring ring core and the metal C-shaped ring core whose structural elastic strain limit is much larger than 0.2% can have more installation and flattening amount; the structural elastic strain limit is almost equal to 0.2% metal without holes Or a perforated o-ring core can only have a small amount of installation and flattening, but its high strength can cause the thicker soft seal contact surface layer to be fully thinned to adapt to manufacturing variations; that is, the cross section of the toroidal core
  • the outer diameter of the profile and the thickness of the outer layer of the soft material depend on the elasticity and strength of the core ring.
  • a metal 0-shaped self-tightening ring which increases the supporting elasticity or supporting strength of a soft material surface, and is weakened by a metal solid or hollow O-ring base or a metal drill-type or slit-type C-shaped ring base and one or more layers.
  • a metal or non-metallized coating that seals the strength or elasticity of the contact surface, characterized in that the outer diameter of the free cross-sectional profile of the substrate is no more than 0.1 mm or 1% of the diameter of the inscribed circle of the cavity, or the coating The thickness does not exceed 0.05 mm to ensure that the O-ring has a free extrusion angle due to proper side wall mounting on each side.
  • a metal C-ring base whose structural elastic limit is greater than its material elastic limit (0.2%) may have a slightly more contoured flattening amount, and a metal hollow or solid 0-shaped base whose structure is not much different from the elastic limit of its material shall have A slightly smaller profile is fitted with a flattened amount, and the soft-coated structure or thickness depends on the plating process, the strength of the appendage or the corrosion resistance.
  • the 0-ring is limited by the soft material or coating on the surface, and can not meet certain high temperature and strong corrosion requirements. Therefore, a rectangular ring self-tight structure that is not limited by the surface soft material is proposed, and the metal or non-metallic rectangular ring and The cavity is composed of a cavity which is formed by a leak-free butt joint mounting of two end faces of the pressure vessel member, and includes two mutually parallel end face walls and a cylindrical wall orthogonal to the end face wall The cylindrical outer wall outer drum, the rectangular ring is mounted in close contact with the two walls of the end wall and the middle of the cylindrical wall to ensure that the rectangular ring is at both ends of the low pressure side There is a free extrusion angle.
  • the rectangular ring can be made of equivalent metal of the docking container, without different temperature limit, thermal expansion and contraction and corrosion; the two ends of the rectangular section are tapered outward or gradually widened by a triangle or an arc to press "Ring body compression area> ring end compression area”
  • the seal strength or elasticity is weakened. Therefore, the installation can simultaneously cause the ring end contact surface to fully yield deformation and the ring body to fully elastically deform and form two free extrusions on the cavity wall.
  • the angle is such that the ring is more elastic or plastically deformed by the fluid when it is subjected to fluid pressure; but it is also a non-metallic rectangular ring and a metal-coated rectangular ring which are flush or slightly tapered at both ends.
  • Figure 1 is a structural view of a self-tightening seal classification in accordance with the present invention.
  • Figure 2 is a prior art bolted flange and Figure 3 is a variation of a prior art bolted flange.
  • Figure 4 is a prior art 0-ring seal with mounting compression requirements that are not adjustable.
  • Figure 4a shows the state in which the O-ring must be installed to r a > 0.75r u from the tight power requirement
  • Figure 4b shows the state in which the O-ring must be installed to r a ⁇ 0.5r u according to the minimum necessary close contact requirement.
  • 4c is a prior art according to standard O-ring is attached to r a> low pressure leak condition 0.7 ⁇ 0.85r u
  • FIG. 4d is a standard O-ring is attached to r a> 0.7 ⁇ 0.85r u High pressure leak condition.
  • Figure 5 is a prior art 0-ring seal structure for the booster rocket body of the Challenge Space Shuttle.
  • FIG. 6 is a bolt-on flange for a non-leaking butt joint of a rectangular ring self-tightening seal according to the present invention, which is also a specifier
  • FIG. 6a is a schematic view of the bolted flange assembly
  • FIG. 6b is the edge macro support serrated ring (05) of FIG. 6a, in combination with the structural requirements and parameters of the conventional sealing element including the O-ring.
  • FIG. 6c is a partial enlarged view of the micro-saw ring (04) compacting element and the metal rectangular ring (02) self-tight element of FIG. 6a
  • FIG. 6d is a micro-saw ring (04) compacting element of FIG.
  • Fig. 6e is a further enlarged view of Fig. 6c.
  • Figure 7 is a diagram showing the installation and operating parameter of a sealing element in accordance with the present invention, wherein the S c _ (S cl ⁇ 3 ) line is the original sealing contact layer structure of the sealing element or the mounting line or loading line after the material yields, S s _ The (S sl ⁇ 3 ) line is the support structure of the sealing contact layer or the mounting line or loading line of the base material, and the S w _ (S wl ⁇ 3 ) line is the working line or the unloading line of the sealing contact surface, and the group line is made of steel.
  • the S c _ (S cl ⁇ 3 ) line is the original sealing contact layer structure of the sealing element or the mounting line or loading line after the material yields
  • S s _ The (S sl ⁇ 3 ) line is the support structure of the sealing contact layer or the mounting line or loading line of the base material
  • the S w _ (S wl ⁇ 3 ) line is the working line or
  • the tightness line of the micro-saw ring is the self-tight line of the steel coating ring
  • the S_ 3 line is the self-tight line of the rubber ring
  • G b _ is the sealing contact surface is assembled or loaded to the fully deformed contact
  • S a _ is the stress when the support or the substrate is assembled or loaded to a sufficient elastic deformation
  • S e _ is the limit of the yield strength of the support or the base, and is the residual elastic modulus after sealing the contact layer structure or the material yields
  • E s is the modulus of elasticity of the support or matrix
  • 13 ⁇ 4 £.
  • / is the sealing factor of the sealing element
  • G s is the stress when the sealing contact surface is unloaded to the fully deformed contact
  • G smm 0 MP a (the sealing start stress of the grease element of mfO), Gsmax Ol MP m ⁇ l
  • y is the stress at which the minimum must be in close contact with the minimum (the minimum required sealing stress)
  • the minimum required sealing stress of the rubber element of m ⁇ 1, s b ⁇ 0 is the strain corresponding to G b
  • P m- is the maximum sealing pressure.
  • FIG. 10 and FIG. 11 are respectively explanatory views of the working principle of the self-tightening ring and the Poisson deformation compensation and cancellation according to the present invention, wherein A is a (special) mouth end, B is a (full flat) cover end, 02 It is a self-tight ring and C is a radial gap.
  • Figure 12 is a simulation diagram of the liquid and weakness of the rubber O-ring in accordance with the present invention during installation and operation, wherein Figure 12a is an uncompressed or free O-ring that concentrates on the simulation of solidity (equivalent to a ring)
  • Figure 12b is an uncompressed O-ring that disperses the simulated solidity (the solidity of which is somewhat concentric in cross section), and
  • Figure 12c shows the installed pressure of the dispersive simulated solidity.
  • the 0-ring (which has a solid-like concentric rounded rectangular line on the cross section)
  • Figure 12d is a fluid-compressed O-ring that disperses the simulated solidity (there is a more variable transmission pressure) Liquefaction zone and a more solidified zone that can withstand pressure).
  • Figure 13 is a square, O-ring seal, rod seal and plug seal in accordance with the present invention.
  • Figure 14 is a square seal, rod seal and plug seal of a square-based circular wall cavity 0-ring seal in accordance with the present invention.
  • Figure 15 is a port seal, rod seal and plug seal of a polygonal baseed circular wall cavity 0-ring seal in accordance with the present invention.
  • Figure 16 is a port seal, rod seal and plug seal of a right-angled triangular base-wall cavity 0-ring seal in accordance with the present invention.
  • Figure 17 is a sharp-angled truncated or filled right-angled triangular base-cavity O-ring seal in accordance with the present invention.
  • Figure 18 is the most efficient self-tightening state of the base-round O-ring seal in accordance with the present invention.
  • Figure 19 is a soft material 0-shaped self-tightening ring (06) of an inlaid metal helical spring ring core (07) in accordance with the present invention.
  • Figure 20 is a soft material 0-shaped self-tightening ring (06) of an inlaid metal non-porous (08) or perforated (09) O-ring core or metal C-ring core (10) in accordance with the present invention.
  • Figure 21 is a solid or hollow (11) 0-shaped self-tight ring or metal-drilled or slit-type (12) C-shaped self-tight ring of a soft metal or non-metallized coating (6) in accordance with the present invention.
  • Figure 22 is a view showing the installation, operation and suspension of the metal-cut type C-ring having the outer soft coating layer in accordance with the present invention. The best way to implement the invention
  • the end face (butt) seal can be used with a 0-ring ((Dd 1 ( , can also use a rectangular ring ( ⁇ ); as shown in Figure lb, the cylinder with a 0-ring (dynamic fit) seal , including a rod hole) seal ( ⁇ (1 12 ) and a plug cylinder) seal Dd 13 ); as shown in Figure lc, the end face seal using the 0-ring can be used not only to seal the ⁇ Ddu) or (static) rod Seal ( ⁇ (1 12 ) or (static) plug seal ( ⁇ (1 13 ) instead, but also have a series of parameters and structural characteristics instead of seal; as shown in Figure id, use a 0-ring screw seal It can also be sealed with the hole of the hole and the cylinder ((Ddu)-like series of parameters and structural characteristics; therefore, the present invention uses a rectangular ring seal ( ⁇ ( ⁇ ) or
  • these rectangular rings and O-ring seals have a tube and a tube.
  • Figure 13 is a base (2ax2a square cavity inscribed) round 0-ring seal in accordance with the present invention ((Ddu rod seal ( ⁇ (1 12 ) and plug seal ( ⁇ (1 13 ), excluding additional expansion overflow pair) Cavity cross-sectional area r a xr a
  • Cavity cross-sectional area A v 4r a 2 - ; ir a 2
  • an expansion overflow sub-cavity with a cross-sectional area of r a 2 or other value may be added to the extrusion angle of the main volume to maximize the percentage of the cavity. Expanded from 21.5% to 46% or other values.
  • the cavity wall angle can increase the percentage of the cavity of the cavity to expand the allowable expansion limit of the O-ring, but can also cause the O-ring to endlessly consume the extrusion-extrusion power and reduce the sealing speed. Therefore, if the corner of the cavity is used instead of the corner of the cavity, in addition to eliminating the influence of the corner on the seal, the excess deformation of the O-ring can be avoided, so that the temperature coefficient and the elasticity are smaller than that of the rubber.
  • O-rings such as indium, PTFE, and gold.
  • the cavity which replaces the corner of the square cavity with the inner circular arc surface of the cavity wall may be called a square base circular wall cavity, as shown in FIG. 14, excluding the overflow cavity sectional area r a 2 ,
  • the cavity cross-sectional area A e 2a 2 - 2r a 2 + 0.5 ⁇ ⁇ 2 + 0.5 ⁇ 2
  • Cavity cross-sectional area A v 2r a 2 - 0.5?ir a 2
  • the O-ring in the installation has the same arc of extrusion at the extrusion angle and the extrusion angle, it can automatically cause the O-ring to be applied.
  • the overflow port that is not separated from the cavity can also cause the arc of the surplus 0-shaped ring material in the installation to be squeezed into the overflow cavity to avoid over-deformation. This is a non-rubber 0-ring or a soft coating. Rings are especially important.
  • the basic cavity shape can be changed from a square to a polygon.
  • the polygon-based circular wall cavity as shown in Fig. 15 can be regarded as based on the inscribed circle of the triangle AEG, and can also be regarded as the inscribed circle of the trapezoidal AEFD, but it can be regarded as a square.
  • the inscribed circle of ABCD is based on the reference, excluding the cross-sectional area of the empty knife cavity.
  • the cavity cross-sectional area A e (1 + ⁇ 3 + ⁇ /4 + ⁇ /6) ⁇ 2
  • Cavity cross-sectional area A v r a 2 - 7ir a 2 /4 + 3 ⁇ 4 2 - ⁇ ⁇ 2 /3
  • the polygonal-based circular wall cavity can satisfy both the sealing and cavity percentage requirements, it has the disadvantages of positive pressure and negative pressure sealing.
  • the cavity cross-sectional area A e 2(2 ⁇ '- ⁇ ) ⁇ +0.25 ⁇ 2
  • Cavity cross-sectional area A v 2r a 2 /tg22.5° - 0.75 ⁇ ⁇ 2
  • the isosceles right triangle base circle cavity is more than other polygon bases.
  • the circular wall cavity requires more structural arrangement space or an O-ring that requires a smaller cross-sectional diameter; therefore, in the case of limited layout space, a polygonal-based circular wall cavity capable of accommodating a large-section diameter 0-shaped ring is more suitable for high pressure application.
  • the structural arrangement of the isosceles right triangle base circular wall cavity can be reduced. Space, while avoiding excessive deformation of the O-ring.
  • the closed contour composed of a pressing angle, an extrusion angle and a common inscribed circle of two corners is a sectional profile.
  • the pressed O-ring can only be squeezed and extruded in the cavity angle with a circular arc tangential to the wall, therefore, for the round-wall cavity O-ring seal, once the O-ring is fully extruded, the extrusion angle Or when it is peeled off to the same diameter as the inscribed circle or when it is infiltrated by the fluid to the tangent point of the inscribed circle, the fluid will cause the O-ring to completely leave the cavity wall to the most efficient self-tight state, because at this time The ring is no longer affected by any excess frictional resistance; that is, for a round-walled cavity O-ring seal, the less the base circle is installed, the easier it is to get to the most efficient self-tight state.
  • the deformation of the O-ring having a cross-sectional diameter of not less than the base circle in the square cavity can only be the sealing deformation shown by the solid line in the figure instead of the leakage deformation shown by the broken line.
  • the deformation of the dotted line with the same cross-sectional area of the line deformation must be such that the pressure is large and small, so that it is deformed according to the solid line; in other words, the deformation of the 0-shaped ring whose cross-sectional diameter is not less than the base circle in the cavity can only be sealed and deformed;
  • the deformation/movement distance e of the circular section of the 0-ring the e s of the square cavity > the e t of the triangular base volume cavity ⁇ ⁇ 8 of the polygonal base volume, or the most efficient In terms of the speed of the tight state, the faster the base circle, the faster the 0-ring in the cavity. Therefore, from the point of improving its sealing speed, the 0-ring seal should be excellent.
  • the most efficient self-tight state of the rubber O-ring is that it is subjected to fluid squeezing in a large-small end plug structure, which can effectively avoid the huge static frictional resistance of the excess cavity wall and the sealing contact surface.
  • the disadvantage of the rubber of the element, or the round-wall cavity O-ring seal can fully utilize the soft elasticity of the rubber and self-excited to fully deformed contact and fully intimate contact, or can effectively reduce the sealing factor of the rubber sealing element. .
  • the cavity design is an extrusion and extrusion angle chamber with an O-ring attached to its base circular cavity, and its O-ring design ensures its cross section.
  • the diameter is not less than the diameter of the base circle when starting under the most unfavorable conditions, or the same size 0 ring of different volume or weight error is selected to change the filling percentage in the cavity or adjust the deformation time to the most efficient self-tight state. .
  • the sealing speed at the right angle (A) is higher than the sealing speed at the acute angle (E); the filling percentage of the opposite sealing chamber is the same
  • the offset 0-ring can cause the filling ratio of the rod sealing cavity to be slightly larger, and the filling ratio of the sealing cavity can be slightly smaller; the same cavity, when equipped with the differential 0-ring, than when the lower differential 0-ring is provided More than that.
  • the sealing contact layer should be soft and inelastic
  • the base of the sealing contact layer should be strong and flexible, and should be mounted to the sealing contact layer for adequate plastic deformation and sufficient elastic deformation to the substrate; therefore, as shown in Figures 19 and 20
  • the soft material O-ring (06) such as PTFE, lead, and indium is also more desirable than the coreless rubber O-ring. In addition to improving the pressure and temperature application limits, it can also improve its corrosion resistance.
  • the core of the ring should have better structural strength than the corresponding elastic-free coreless soft material ring, and have better structural elasticity than the corresponding lean coreless soft material ring.
  • the structural strength and the core-shaped finished 0-ring meet the needs of repeated resetting; the size and the number of holes of the hole-shaped O-ring core should meet the requirements of structural elasticity and structural strength, and the C-ring core cut can be more suitable.
  • Solid or hollow (11) O-rings and C-rings (12) of soft layers (6) such as PTFE, indium, lead, nickel, gold, etc. shall be strong enough to be free of plastic deformation at extreme working pressures or to ensure test pressure; for example
  • the C-ring should have sufficient wall thickness to avoid plastic deformation that would affect its reset to the state to be activated shown in Figure 22a under the extreme fluid pressure shown in Figure 22b.
  • the soft coating can simultaneously satisfy the deformation requirements of the sealing and the interference assembly, and the body can be the same or the cavity.
  • the equivalent material has neither thermal expansion and contraction problems nor fluid infiltration expansion problems, and is therefore more desirable than a coreless rubber O-ring.
  • the round-wall cavity is the necessary cavity for the soft and most elastic rubber O-ring, it is also suitable for other hard-to-seal factors including hard and leanest metal O-rings.
  • Nn ⁇ 1
  • the ideal cavity of the 0-ring, or a circular cavity of a certain size of the base-shaped O-ring seal can be replaced with different structures of different specifications or different error-shaped O-rings according to service requirements. The key is to consider that the impact cannot be reset to the limit pressure temperature cycle.
  • the plastic deformation of the starting state or the initial mounting state and relates to the mounting compression amount of the ring cross-sectional structure diameter i>c and "(see Figs. 19 to 21). For example, for the metal C-ring shown in Fig.
  • the most The Jiarong cavity is the square-shaped circular wall cavity with the largest base circle wall without the additional overflow cavity shown in Fig. 14, because the larger the base circle wall, the more the C-shaped ring touches the wall and the cross section is bent.
  • the wall thickness, the installation can cause its soft coating to the initial installation state of sufficient close contact as shown in Figure 22a; as shown in Figure 22b, the pressure fluid first bends into the C-shaped ring cavity without bending the C-ring.
  • the C-ring having sufficient wall thickness only undergoes elastic deformation/movement of the enhanced seal; as shown in Fig. 22c, once the fluid pressure outside the C-ring is lowered or disappears, the pressure fluid in the ring is first stretched and not resistant to bending. C-ring and trap the pressure fluid in the C-shaped ring cavity, even if it is over-pressed
  • the micro-plastic deformation of the raw material can also be corrected and restored to the state to be activated; that is, the key is that the C-shaped ring cannot undergo plastic deformation under the limit pressure to be reset to the state to be activated shown in Fig. 22a; In a system in which a fluid is trapped in a ring cavity, it is conceivable to replace the slit with a drill hole and to place the gap in an easy-out direction.
  • the basic requirements of the base-shaped O-ring seal are: 1 0-ring can be installed or self-excited to the lowest close contact, can be deformed after being pressed but can not have plastic deformation that affects the reset, 2 cavity and 0-ring have Cross section and swivel diameter of the same specification.
  • Figure 6 is a bolt-free flange for achieving a leak-free butt joint of an end face with a rectangular ring self-tightening seal according to the present invention, and is also the best structure for explaining the structural requirements and parameters of a conventional sealing element including the O-ring according to the present invention.
  • A is the special end (port end) of the steel flange, and has a ring edge macro support serrated ring (05) and two rings on the end face ( ⁇ (1 2 and ⁇ (1 3 ) micro-sealed serrated ring (04) And a ring ( ⁇ (1 2 ) rectangular ring cavity; ⁇ is the full flat end (cover end) of the steel flange, the end face is a full flat smooth surface; 01 is the cavity arc-shaped wall, 02 is soft Optional steel rectangular ring coated, 03 is an optional rubber rectangular ring; a two-ring micro-saw ring provides a compression seal, a ring of optional rectangular ring provides a self-tight seal, double to ensure seal safety.
  • Rectangular self-tight ring The inner diameter ( ⁇ ) is greater than or equal to the outer diameter of the connected pipe ( ⁇ (1.), which can not only tolerate the manufacture and installation of the flange, but also cause the rectangular ring and the 0-ring to have the same ⁇ for the self-tightening seal ( 1. Series specifications.
  • the micro-toothed ring (04) is equivalent to lowering the contact rigidity of the sealing surface, so that the sealing is difficult to be a coefficient 1, and the tooth height Z t is equal to 0.02 to 0.03 mm (about 10 to 15 times the abutment surface roughness Ra value),
  • the pitch X s / tooth height Z t is about 20-500, which is enough to easily deform to fill the sealing contact surface with the surface roughness Ra value not more than 3.2 ⁇ , and ensure that the saw teeth only elastically deform and can be used repeatedly. .
  • the crest of the edge macro support serrated ring (05) is on the same side as the crest of the micro sawtooth ring (04), so that the actual compression load can only be a microscopic sawtooth root surface with a much larger bearing area. It is not the crest of the macro-saw ring with a bearing area of 0, so that the macro-saw ring does not affect the full deformation of the micro-saw ring.
  • the first round of the finger tightening and the secondary wheel wrench can not be lightly tightened, and even after the round of the wrench, the tightening of the wrench is less likely to result in a single wheel compression or single wheel of the macro sawtooth ring.
  • the circumferential non-uniform compression exceeds 1 ⁇ , so that the circumferential seal compression deformation difference of the final sealing contact surface can never exceed ⁇ level, so that the calculated sealing stress can be sufficiently approximated to the actual sealing stress.
  • the wall (01) of the annular cavity is radially convex, which can give the self-tight ring of the central contact wall.
  • (02/03) simultaneously provides a rotational deformation fulcrum with radius r and two Poisson compensation angles ⁇ ⁇ , so that before the ring yields, the fluid pressure causes the elastic rotation of the ring wall to cause the ring end high contact to The wedge stress is close to the wedge surface and the sealing stress approaches the infinity; after the ring yields, the Poisson compensation angle ⁇ ⁇ can cause any ring with a Poisson ratio less than 0.5 to work according to the self-tightening seal.
  • both ends of the steel ring (02) are “pointed from the bottom of the ring (In) ⁇ ring cavity height (h) ⁇ from the tip of the ring height (h 2 )
  • the fasteners that are gradually reduced to the end face potential of the crushing ring can not be bent to the extent of the ring body, so as to ensure that the sealing is difficult to achieve a factor of 13 ⁇ 4 ⁇ 1, and the film and the pressed material (such as water) sealed to the non-extrusion gap
  • the infinite compressive strength of rubber, etc. ensures that the ring-shaped end face layer which is thinned to the film shape and the ring body sealed in the cavity will never be crushed; therefore, the bolting total tensile strength/area is moderately >The tube's tensile capacity/area>ring cross-sectional area>ring end area” design ensures that:
  • the fasteners of the flange are stronger than the connected pipe, and there are conditions for the plastic deformation of the ring end and the elastic deformation of the ring body.
  • the ring body and the flange body are made of the same or equivalent material, which ensures that the temperature coefficient difference between the ring body and the flange body does not cause the ring to generate a contact gap in the pressure temperature cycle. Therefore, the ring is installed and tightened.
  • the radial contact gap due to manufacturing tolerances can be eliminated, ensuring that the ring is self-tightly deformed by fluid pressure at any pressure and temperature cycle.
  • the ring surface is coated with nickel or gold and is low-elasticity and low-strength anti-corrosion material, which can further reduce the sealing difficulty of the ring sealing surface to nn « 1, thus ensuring that the minimum required sealing stress of the ring can be sufficiently small to approach 0.
  • the seal can be easily implemented and maintained so that it can be mounted to a self-tight connection that is sufficiently intimately contacted, and then loosened in place until the finger is tightened, and can be tested by any low pressure to burst pressure.
  • the fluid pressure in the self-tightening seal ring not only does not reduce the pre-compression stress of the ring, but also causes the ring that has been cold-flowed and relaxed to return to the pre-compressed state, and any The elastic pre-compressed ring cannot be loosened by the cold flow until the finger is tightened. Therefore, it can be said that the self-sealing of the ring can endure all the cold flow relaxation of the ring.
  • the rubber rectangular ring (03) pressed against the wall (01) is equivalent to a rubber O-ring with a wall support and a body support cross-sectional area increased. Therefore, the rubber rectangular ring is smaller than the rubber O-ring ring. The support is stronger and more sealable.
  • the rectangular ring can be free of a soft seal layer, which is not limited by the soft skin layer in service temperature and chemical compatibility, while the 0-ring is limited by the necessary soft skin layer; it is advantageous for the rectangular ring seal when installed in close contact but is not suitable for the O-ring Sealing; compression plastic deformation is advantageous for the rectangular ring to restart, but it is not suitable for the 0-ring to restart; therefore, in terms of face seal, the rectangular ring is better than the 0-ring.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gasket Seals (AREA)

Abstract

一种自紧密矩形环密封和自紧密O形环口密封、杆密封及塞密封,对于金属和非金属矩形环,环截面按"体抗压面积>端抗压面积"结构设计,以便安装同时使环端面充分屈服变形和环体充分弹性变形,环腔按安装可致环和腔于中部点紧密接触结构设计,以便受压便致环密封变形;对于无芯橡胶O形环、有芯软金属/非金属O形环和有软涂镀层金属O形/C形环,腔按"环流体挤压角+自由挤出角+圆弧过渡"结构设计,环按截面圆与腔内切圆同心结构和按受压便致密封变形但不能有影响环复位的塑性变形结构设计;这样,密封的最小必须密封应力均小于0.2MPa,同规格环和腔可互换结合使用。

Description

矩形环与 o形环自紧密结构 技术领域
本发明属流体动力传输与流体介质输送系统的密封技术领域,涉及杆 (/孔配合)密封和 塞 (/缸配合)密封及其对应的孔和缸的口 (/盖对接)密封,特别涉及符合终结现有垫压紧密技 术和现有 0形环自紧密技术的 (本发明人提出的)徐氏密封理论的矩形环与 0形环自紧密 结构, 并伴随对徐氏密封理论的进一步披露。 背景技术
密封, 是致表面的无漏对接或无漏配合, 因此, 按密封面型, 可分为端面 (对接)密封 和柱面 (配合)密封。 实现端面的自紧密封, 如图 la所示, 可使用 0形环 ((Dd , 也可使 用矩形环 (Φ(^)。 0形环的柱面自紧密封, 如图 lb所示, 可分为杆 (/孔)密封 (Φ(112)和塞 (/ 缸)密封 (Φ(113)。 0形环的端面自紧密封 ((Dd^, 如图 lc所示, 可分别用某种 0形环密封 ((Ddu〜(Dd13)替代, 因此, 如果将标注 Φ(112和 Odis的替代密封分别视作静止杆 (/孔)密封和 塞 (/缸)密封, 则无疑可将标注 (Ddu的替代密封视作孔和缸的口 (/盖)密封。鉴于图 Id的螺 口密封与图 lc的口密封相同, 鉴于原始 0形环面密封 ((Dd1())的规格系列参数及其填充特 征 (可)与口密封相同, 因此,表面的自紧密对接或配合可按矩形环自紧密封和 0形环口密 封 ((Ddu^ 杆密封 (Φά12)及塞密封 (Φ(113)来统一研究处理。
现有技术的法兰, 如图 2所示, 通过螺栓实施紧固连接, 通过两个法兰面间的平垫 压紧实现密封连接, 不是图 1所示的标注 Φ 的矩形环的自紧密连接。 如图 3所示, 压 紧密连接在紧固前, 法兰无弯曲, 垫与法兰面的接触宽度为 b; 在紧固后, 法兰弯曲致接 触宽度 b减小; 在加流体压力后, 法兰进一步弯曲致接触宽度 b再减小; 也就是说, 总 体上, 对于现有技术法兰, 安装紧固是致垫加载 (致其压縮应力增加), 流体压力是致垫卸 载 (致其压縮应力减小)。所以, 现有技术的法兰连接或垫的压紧密连接有如下四个不可克 服的致命问题:
• 无论怎样设计, 平垫压紧密封都是泄漏的
密封, 是致密封面变形至填平补齐凸凹不平的接触面的行为; 泄漏, 是流体在接触 面上输出一个接触分离力极限等于 "接触面积 X流体压强"的过程; 因此, 致垫的无漏压紧 密连接的力学条件是, 既能致垫为密封接触提供充分变形, 又能致垫为密封接触提供充 分强的支撑。 软而无弹性的垫材 (如油脂)有为密封接触提供充分变形的条件, 但却没有为 密封接触提供充分强的支撑条件, 硬而富弹的垫材则反之。 现有技术无致其密封面达到 又软又强的结构理念和方法以至于密封面无意间最接近又软又强结构理念的盘绕垫和齿 垫也无法致其密封面下盘绕带和齿达到充分强的地步, 因此, 无论怎样设计的垫压紧密 结构, 在某个不高的压力温度条件下, 都是泄漏的。
· 无论怎样安装, 平垫压紧密封都是泄漏的 密封需要密封面屈服至填平补齐表面粗糙度所致的接触面的凸凹不平, 而法兰面的 经济加工表面粗糙度可不低于 3.2μηι; 也就是说, 法兰密封垫的安装紧固所致的周向均匀 压縮变形不应超过 μηι级, 否则再大的紧固力都是无效的。 因此, 如图 3所示, 即使对于 密封面最接近又软又强结构理念的盘绕垫和齿垫, 无论采用何种安装紧固力矩控制方法, 也都不可能致垫的周向紧固变形达到 μηι级均匀程度, 或无论怎样安装, 垫的压紧密封结 构都是泄漏的。
• 流体压力总是致平垫压紧密封性下降
流体压力, 无论大小, 作用在相当于法兰端盖上的等于"垫内堂圆面积 X流体压强"的 力都是致垫的压縮应力即密封性下降, 作用在垫内柱面上的力有致垫被吹出的风险。 为 了遏制垫被吹出, 现有技术标准规定法兰面粗糙度须是一个 3.2μηι〜6.2μηι的非正常值, 与对接面越精密、 越易密封和加工越精密、 越好的普通技术理念相左以至于有额外的泄 漏风险。
• 垫材冷流总是致平垫压紧密性下降
任何密封材料, 在同比温度大于 0.5时, 都不可避免地会冷流致垫压縮应力即密封性 下降。
也就是说, 按徐氏密封理论, 现有技术的垫压紧密封原本是一个泄漏装置。
按 0形环密封技术标准 ISO 3601-2008, 0形环对其容腔的填充百分比不得大于 85%, 以至于端面密封 0形环只轴向受压安装 (因而叫轴向密封), 杆 /塞密封 0形环只径向受压 安装 (因而叫径向密封)。也就是说, 现有技术 0形环是两侧受压安装, 明确反对四侧触壁 安装。
按自紧密所需的动力要求, 即按流体的密封挤压面积大于泄漏流体的挤压面积设计, 如图 4a所示, 0形环应安装至 ra≥0.75ru; 按最低必须紧密接触安装要求, 即按安装至抗 大气压力渗穿密封接触面的程度, 如图 4b所示, 0形环应安装至 ra≤ 0.5ru; 也就是说, 按徐氏密封理论, 现有 0形环密封技术具有不可调和的结构矛盾。 现有技术 0形环, 一 般安装压縮至 ra≥ 0.7〜0.85ru, 按照徐氏公式计算, 有 0.14〜0.12MPa的安装接触应力, 不 及最低必须紧密接触所需的 0.2MPa安装应力; 因此, 鉴于大约 1〜4的静摩擦系数和 3〜5 倍于流体密封作用面积的总密封接触面积, 对于安装应力达到 0.14〜0.12MPa的 0形环, 如图 4c所示, 大致需要大于 0.5〜1.5MPa的流体压力才能致其先移动至触第 3壁后而变形 至充分紧密接触; 也就是说, 按徐氏密封理论, 低压系统和普通压力系统启停阶段的现 有技术 0形环密封都是不密封的; 然而, 现有技术却一直把 0形环当作最好的低压密封 手段。 对于普通压力和高压系统的 0形环密封, 如图 4d所示, 在 0形环弹性下降后或 固性增加后, 都是一旦泄漏便不可止的, 因为按照徐氏密封理论, 泄漏不仅致泄漏挤压 力大于密封挤压力而且还致流体作用面曲率半径由 ra减小至 rx而致受压面的更抗流体压 力或致 0形环要求更大的密封变形动力。
橡胶, 其各向相同的软而不可压縮和富弹性只能致其 0形环受压便只有一个升高的 均匀内压力, 因此, 0 形环的自由表面只能以相同圆弧与其腔壁平滑过渡。 任何人都可 通过观察受夹 0形环的截面或绷伸 0形环的外表面,观察到受压 0形环的自由面都是圆 弧面。 然而, 原始 0形环密封专利 US 2180795和现有技术标准 ISO 3601-2008却认为, 两侧受压安装的 0形环截面形状是椭圆; 也就是说, 现有技术根本不知 0形环的密封机 理, 乃至无法将 0形环的极限工作压力与其截面直径和材料强度关联起来规定 0形环密 封的结构、 制造和安装。
接触层的强度和弹性越强的密封元越难至充分变形接触, 接触层基体的强度和弹性 越强的密封元则越易至充分变形接触, 因此,其接触层的弹性模量 (Eey其接触层基体的弹 性模量 (Es) ≡ 1 的橡胶元最难至密封, Ee/Es=0的油脂元最易至密封, 其它可屈服致 0 < EC/ES< 1的密封元比橡胶元更易至密封; 也就是说, 按照徐氏密封理论, 橡胶密封可能是 最难至密封的, 金属密封可能是易至密封的。 然而, 现有技术却把最难至密封的橡胶当 作是最易至密封的。
苟-焦效应 (Gough-Joule Effect)告知,绷伸着的橡胶受热时其拉伸方向不是变长而是变 短, 其抗拉强度不是降低而是增加。 因此, 根据苟-焦效应, 处在绷伸安装状态的 0形环, 加上夜里低温冷縮所致的进一步绷伸, 有可能致其早上开机温升中再进一步收縮而致密 封失效。
挑战号航天飞机的助推火箭体, 如图 5所示, 由大约 3.7米直径的 11级钢筒组成, 通过叉口 /叉舌 /叉销活接结构实现机械连接, 通过两级 0形环塞密封实现密封连接, 通过 销的内爆炸外喷致耗尽末级分离; 其 0形环是涂脂和绷伸在槽中的, 在空难发射时, 天 气比此前的最冷发射温度还低 8.3°C, 便有更多及时冷縮绷伸; 因此, 点火后的温升中便 有更多及时苟 -焦热收縮; 也就是说, 0形环的安装绷伸收縮、 最冷发射所致的更多冷收 縮和苟 -焦热收縮, 加上燃烧气压所致的叉舌和叉口间的分离变形, 便致 0形环于点火后 过度縮离密封接触面 (叉舌面)而致密封油脂的吹出泄漏; 或者说, 根据徐氏密封理论和事 故调查报告 (Report of the PRESIDENTIAL COMMISSION on the Space Shuttle Challenger Accident)记录可知, 挑战号航天飞机升空 73 秒后起火爆炸事故是由不耐天气冷縮和苟- 焦热縮的 0形环的两侧受压安装结构和凃脂所致。 然而, 事故调查报告却既未关注橡胶 的苟-焦效应影响也未关注 0形环的凃脂影响以至于错误地认定, 事故是由有可能出现的 0形环的四侧触壁安装极限所致的。
所以,现有技术 0形环密封是一个被彻底误解的结构,并有泄漏致重大事故的风险。 发明的公开
本发明的目的是根据如下徐氏密封理论 (要点)提出新的矩形环与 0形环自紧密封,把 黑白颠倒的现有垫压紧密封技术和现有 0形环自紧密技术颠倒过来。
• 密封元的结构要求与参数 (最小必须密封应力 y与密封难至系数 m0
密封是加载密封接触层至充分变形接触后再至充分紧密接触的结果, 即先致充分填 平补齐凸凹不平的变形接触, 后致充分抗流体渗穿的紧密接触, 而充分渗穿 (泄漏)则是流 体在接触面上输出一个接触分离力极限等于"接触面积 流体压强"的过程, 因此, 抗大气 压力渗穿接触所需的最小密封应力是密封的最小必须密封应力 y (等于大气压力温度下卸 载密封接触至脱离充分紧密接触时的接触应力), 达到最小必须密封应力 y时的接触叫最 低必须紧密接触; 为至充分变形接触, 最好是加载密封接触层至充分屈服; 为至充分紧 密接触到可充分抗流体压力卸载和抗压力温度循环卸载的程度, 需要加载密封接触层基 体至充分弹性变形; 所以, 如徐氏法兰密封元 (图 6)的参数曲线图 7所示, 在大气压力温 度下, 加载密封接触至充分变形接触时的应力是密封开始应力 Gb, 加载密封接触层基体 至充分弹性变形时的安装应力 8 应逼近其屈服强度极限 Se值, 卸载密封接触至脱离充分 紧密接触时的应力是最小必须密封应力 y,卸载密封接触至脱离充分变形接触时的应力是 密封终止应力 Gs, 而且 y = ye + ya, 其中 ye是沿卸载线从无变形至充分变形接触的变形 加载分量, ya = 0.1 MPa是从充分变形接触至充分抗大气渗穿的最低必须紧密接触时的紧 密加载分量。
鉴于接触层的强度和弹性越强的密封元越难至或越难持充分变形接触, 而接触层基 体的强度和弹性越强的密封元则越易至或越易持充分变形接触, 因此, 其"接触层的弹性 模量 (Eey基体的弹性模量 (ES) "值越大的密封元, 越难至或越难持密封状态; 也就是说, rm Ee/Es是密封元的密封难至系数,值越大,密封元的 和 值同时越大。如图 8所示, 密封元的接触层的弹性模量 (Ee)可是材料屈服后的残余弹性模量 (Δσε), 密封元的接触层 基体的弹性模量 (Es)可是未屈服材料的弹性模量 (Δσε), 弹性体因不能致其屈服而始终有 Ec = E
鉴于橡胶的 ≡ ^而致其密封元的 tm = 1, 油脂的屈服强度 Ee = 0而致其密封元的 mi = 0, 其它一切密封元均可通过表面弱化层或镀涂层确保其 Ee < Es而致 1 > mi > 0, 因 此, 橡胶密封元应是最难至密封的, 油脂密封元是最易至密封的, 其它一切密封元应比 橡胶元易至而比油脂元难至密封, 或者说, 其它一切密封元的 和 的值均应小于橡胶 密封元而大于油脂密封元的相关值。
由"油脂可在大气压力温度下轻易变形至任意形状后不恢复"的事实可知,自由油脂体 内压力或油脂的弹性变形强度 ou = 0, 即致油脂元至充分变形接触或至密封开始时的应力 Gb等于致油脂元至脱离充分变形接触或至密封终止时的应力 Gs并等于 0, 也就是说, 致 油脂元充分变形所需的变形加载分量 ye = 0; 由"橡胶可在大气压力温度下轻易变形后恢 复"的事实可知, 自由橡胶体内压力或橡胶的弹性变形强度 σ„ = 0.1 MPa, 即致橡胶元至充 分变形接触或至密封开始时的应力 Gb等于致橡胶元至脱离充分变形接触或至密封终止时 的应力 Gs并等于 0.1 MPa,也就是说,致橡胶元充分变形所需的变形加载分量 ye = 0.1 MPa; 因此, 对一切合格密封元, 其密封终止应力下限 Gsmm = 0 (等于油脂元的密封开始应力), 其密封终止应力上限 Gsmax = 0.1MPa (等于橡胶元的密封开始应力), 其最小必须密封应力 下限 ymm = 0.1 MPa (等于油脂元的最小必须密封应力), 其最小必须密封应力上限 ymax = 0.2 MPa (等于橡胶元的最小必须密封应力), 而且 Gsmax - Gsmm = ymax - ymin = y - Gs = 0.1 MPa (标准大气压力); 或者说, 凡是相关应力值超出该范围的密封元皆为不合格。
充分泄漏, 是致密封环内、 外水压相等或是致密封接触面上压力至大气压力。 鉴于 泄漏前的接触分离力因水压作用面积渐大而渐大、 泄漏后的接触分离力因水压渐小而渐 小, 因此, 只要接触紧固力足够大于水压对接触的极限分离力, 密封接触永远不会被水 压卸载至脱离充分紧密接触, 即使被瞬间干扰力分开, 也会于瞬间泄漏后即刻恢复。 因 此, 在接触被分离至分离力达到 "接触面积 X水压压强"极限瞬间或被分离至充分泄漏瞬间 或被分离至接触面上压力至大气压力瞬间, 如果接触紧固中还有一份抗大气分开接触的 接触应力, 那么, 密封接触就绝对不会被分离至脱离充分紧密接触而泄漏; 或者说, 抗 大气渗穿接触所需的接触应力无疑是密封所需的最小必须密封应力 y, 或者说, 接触应力 不小于 y的密封是绝对不会漏的, 或者说, 泄漏仅发生在密封接触应力小于 y时, 或者 说, 一切密封元必须结构至 y < 0.2 MPa
所以, 如图 7所示, 一般密封元可结构至也应结构至其密封难至系数 nn = Ec/Es < 1 或最小必须密封应力 y < 0.2 MPa; 或者说, 在理论上, 密封接触层应是软而无弹性的, 密封接触层基体应是强而富弹性的, 并应安装至密封接触层充分塑性变形和至接触层基 体充分弹性变形, 因而对软而最富弹性的橡胶密封元和强而最无弹性的钢密封元还应特 别关注。
• 密封连接的总必须紧固件载荷 Fn (密封维持或抗干扰系数 m2)
根据最小必须密封应力 y的含义,如果定义 m2 = 结构的 "密封作用力 (Fs)/去密封作用 力 (Fu)"为结构的密封维持系数或抗干扰系数, 其中 Fs是能致接触紧密的紧固件或流体作 用力, Fu是能致接触分开的极限力(= 接触面积 X流体压强), 则压紧密结构维持不漏的条 件是:
(Fs - Fu ) > yAu→ (m2PAu - PAU) > yAu→ m2 > (1 + y/P);
自紧密结构维持不漏的条件是:
(Fs - Fu ) > yAu→ (PAS - PAU) > yAu→ m2 = As/Au > (1 + y/P);
其中 y是最小必须密封应力, P是流体压力, As是自紧密环的流体压力 (P)作用面积, Au 是密封元的密封接触面积。
鉴于 y≤0.2 MPa, 因此, 如果将额定压力 Pn≤ lMPa的结构一律按 Pn = lMPa设计, 则一切密封结构,无论是压紧密封还是自紧密封,其达到抗连接体强度极限压力 (Pb = 4Pn) 干扰程度的条件皆是,其决定密封作用力 )的密封维持系数 m2 > (l + y/Pb) = (l + 0.2/4) =
1。 也就是说, 一切密封连接的总必须紧固件载荷 Fn = Pnd2 (Pn是额定压力, d是密封环 外径)。
• 材料的泊松变形致密封机理与泊松变形补偿及抵消
自紧密封的实质, 如图 9所示, 是密封环 (02)将其内柱面上的流体压力 P如数转换为 其端面上的密封应力 S, 即按 S = P正交传递压力, 因此, 具充分液性的材料可简单用作 自紧密环。
对于普通物质, 在其 y向受压变短时, 其非受压的 X和 z两向将分别变长, 其泊松 比是其非受压与受压方向的正交应变比 μ = = 浓液体各向相同传递压力的特性 源于其体积不可压縮的可流动性; 由物质的体积模数 Κ = Ε/[3(1-2μ)]公式可知, 泊松比越 接近 0.5的物质的不可压縮性越大到接近无穷大,而纯液体的泊松比 μ = 0.5,普通物质的 泊松比大于 0小于 0.5 ; 因此, 可以说, 泊松比 μ是物质的液性指数或不可压縮性指数, 或泊松比值 μ越大到接近 0.5的物质越接近有充分液性; 所以, 一切泊松比值接近 0.5并 可被流体压变形的材料, 如橡胶、 PTFE等塑料、铅、黄金等, 都可简单用作自紧密封环。
既然自紧密封的实质是致密封环如数正交传递压力, 并且是由材料的泊松比 (正交应 变比)是否等于 0.5决定的, 因此, 如图 10所示, 一切可被流体压变形的固体材料, 无论 其泊松比值比 0.5小多少, 都可通过一个液性补偿角 把其正交应变比补偿到 0.5而用作 自紧密封环。 换种角度看, 所谓自紧密封环的正交变形补偿, 不就是等于把体积可压縮 的密封环由大空间压入小空间而使其拥有液体般的不可压縮性和如数正交压力传递性 吗!
如图 11所示,对于与其缚腔 (Φ(12')有径向间隙 (C)的自紧密封环 (02),流体压力下的环 周增长和环高度减小的泊松变形将致环端部脱离密封接触。 实际上, 对于有液性的密封 环, 只有其径向和轴向接触同时无间隙时, 才能及时依托其不可压縮性而正交如数传递 压力或自激密封。 然而, 环的制造误差和材料的热胀冷縮系数差, 往往会致环径向接触 有间隙, 因此, 对有液性的自密封环还需要一个径向接触补偿角 ec, 以及时抵消间隙所 致的与泊松比值成正比的受压正交变形。 此外, 泊松比值是蠕变终结时的总正交变形比, 也需滞后补偿角。
材质的泊松变形补偿或液性补偿, 是旨在补偿环的径向接触无间隙时由泊松比值不 足 0.5所致的环高的变形增量的不足; 径向接触补偿, 是旨在抵消环的径向接触有间隙时 由间隙所致的环高随泊松比值成正比地减少。 也就是说, 密封环的液性补偿和接触补偿 都是必须的, 而且都是致流体压力下的环高变形增加。 鉴于密封材料的泊松比大于 0 小 于 0.5, 因此, 如果其液性补偿统一按 0补偿到 0.5, 其接触补偿统一按 0.5补偿到 0, 则 每种材料都有泊松比值变化极限值 (0.5)相同决定的充分液性补偿角 和充分接触补偿角 ec, 并可统称为基本泊松补偿角 ee:
tg9e = Ah/Ar
= (Ah/h)/(Ar/h)
= [(Ah/h)]/[(Ar/r)/(h/r)]
= [(h/r)(Ah/h)]/[(Ar/r)]
= [(h/r)][(Ah/h)/(Ar/r)]
= [(1ι/Γ)][(Δ/1ι)/(2πΔΓ/2πΓ)]
= [(h/r)] [(£h)/(8c)] = [(h r)]
tgBe = (μ!ι)/Γ = h/d (μ = 0.5时)
其中 ¾, 密封环高度应变
8C, 密封环内周长应变
h, 密封料环高度
d = 2r, 密封料环内径
μ = 8h/8c, 泊松比定义
μ = 0.5, 泊松比值变化极限。
密封材质的基本泊松补偿角 , 涉及料体受压变形, 无刚体楔角的力放大功能, 因 此, 无论再大, 所改变的仅是自紧密环达到正交变形比值极限 (0.5)的时间而不是极限值, 或至多是将密封环的正交变形比 (μ)由 0补偿到 0.5或由 0.5抵消到 0, 或至多是消除环的 正交变形比 (μ 直的滞后性, 因此, 在不顾材料温度系数差的影响时, 一切材料的自紧密 环, 无论其材质实际泊松比值多大, 都可用一个比基本泊松补偿角 更大的角度 θχ来作 其液性补偿角 或液性抵消角 ec
· 0形环的流体渗透致密封机理与结构
橡胶, 其泊松比值逼近 0.5, 是具有充分液性的弱固体; 因此, 在结构上, 橡胶 0形 环是一环装满液体的薄壁管,在容腔中无论怎样受腔壁和流体压縮, "管内"只能有一个与 外部抗衡的压力,致"管壁"不是受纯压縮就是受纯拉伸, 以至于其流体挤压面和其自由挤 出面只能分别以不同的等圆弧与容腔壁相切过渡。 如果将橡胶 0形环的弱固性和强液性 分别视为无限薄壁 0形金属环管和纯液体 (参见图 12a),则根据薄壁管的强度公式 (P = ot/r) 可知, 受压变形 0形环的 "内部压力 (Px) x自由挤出面半径 (rx)"= okt =常数, 因为同一个 0 形环的假想管材强度 (ok)和壁厚 (t = kru)值是不变的; 也就是说,
ΡχΓχ = Puru 或 Px = Puru/rx
其中, Px受压 0形环的内部压力
Pu未受压 0形环的内部压力
rx受压 0形环的自由挤出面半径
ru未受压 0形环的自由挤出面半径。
鉴于外部受压 0形环的外压力总是微大于内压力的, 因此, 根据"橡胶可在大气压力 温度下轻易变形后恢复"的事实可知, 其弹性所致的未安装橡胶 0形环的内压力 Pu = 标 准大气压 (0.1MPa), 安装中的橡胶 0形环的密封应力 Sa或内压力 Pa = Puru/ra = 0.1ru/ra (MPa), 其中 ru/ra =未安装与安装 0形环的自由挤出面半径之比。
如图 12a所示, 鉴于假想管是金属的, 其壁厚 t = kru趋于无穷小, 因此, 根据假想管 截面与实际截面的抗拉能力相等的原则, 即根据 (2;n kru k) =(7iru b)便可知,
2kak =。b
未安装 0形环"管"可耐的极限压力 Pum =。k(kru/ru) = k。k = 0.5。b
工作 O形环"管"可耐的极限压力
Pm = 0.5。bru/re
其中 re是 O形环的间隙挤出弧半径
ru是未安装 0形环截面半径
Ob是 0形环材抗拉强度。
由于普通软材料是压縮致截面积增加而致强、 拉伸致截面积减少而致弱, 而橡胶则 是压縮致更液化而致弱、 拉伸致更固化而致强, 因此, 如图 12b所示, 未安装入容腔的 0 形环截面的固性似一些富弹的同心圆线; 如 12c所示, 安装入正方形容腔的 0形环截面 的固性似一些富弹的同心圆角矩形线, 有被拉伸强化而更能承受内压力的自由圆角; 如 图 12d所示, 工作中的橡胶 0形环截面有一个能如数传递压力的更液化区和一个更能承 压力的更固化区; 所以, 截面直径越大的 0形环, 更固化区圆弧半径 r,越大, 越难从配 合间隙中挤出致失效, 或越能承受更高的压力。 也就是说, 增大截面直径的 0形环可省 去反挤出背环。
如图 12c所示,四侧均匀触壁安装的 0形环在流体压力到来时有一个 (流体)挤压角 (右) 和一个 (自由)挤出角 (左), 密封在于阻止流体从挤压角泄漏至挤出角。 在挤压角, 0形环 被流体从小空间挤入大空间, 是致其剥离腔壁而致其流体挤压面积和挤压力不断增加; 在挤出角, 0形环被增大的挤压力从大空间挤入小空间而致挤出角密封不断加强 (参见图 10); 因此, 如果再用腔内切圆弧面替代壁角, 则只有挤压角和挤出角的 0形环, 便再无 消耗动力的多余流动和巨大静摩擦, 以至于凡是可致其变形 /移动的流体压力都可致其密 封不断加强, 再无需安装至充分紧密接触的程度, 或者说凡是可致其有变形 /移动反应的 泄漏都可致其截面直径不小于容腔内切圆直径的 0形环自动至无漏接触状态; 或者说, 0形环的自紧密性的关键是其在容腔中的多侧均匀触壁安装所致的 (流体)挤压角和(自由) 挤出角结构或均匀渗透致密封性。
对于多侧均匀触壁安装的 0形环, 或者说对有挤压角和挤出角的 0形环, 其内部的 均匀液压力可致自由角的挤出面半径随内压力增加而同时相同縮小, 其弹性可致自由角 的挤出面半径随内压力降低而同时相同增大, 乃至可致各壁自动维持均匀接触而有效克 服温度变化和苟-焦效应所致的泄漏。
如果 0形环截面以腔壁内切圆心为圆心,则可致 0形环多侧均匀触壁安装;或者说, 多侧均匀触壁安装 0形环的密封可叫基 (腔内切)圆制 0形环密封。 鉴于其基圆回转体直 径是要密封的孔 /轴配合直径, 因此, 基圆制 0形环密封可致 0形环密封的规格与基孔 / 基轴配合制的配合直径规格和螺纹直径规格完全一致, 即致 0形环密封系统与机械系统 充分协调一致。 鉴于其 0形环是多侧相同触壁安装的, 因此, 基圆制 0形环密封可致 0 形环的正 /负压密封结构统一。 如果同规格的 0形环按体积或重量误差分档, 则不仅可容 忍 0形环有更大的制造误差而显著降低成本, 而且还可通过选择有限误差档次的 0形环 满足无限应用需求。 也就是说, 基圆制 0形环密封可致天下密封结构高度统一和万用。
• 自紧密动力结构原理
矩形自紧密环, 是按受压变形而如数正交传递压力工作的, 如图 10所示, 流体在其 内柱面上的作用力强度和在其环端面上的反作用力强度大小相等并等于流体压力强度, 因此,只有致环高增加的流体作用面积 (环内柱面积)不小于致环高减少的流体反作用面积 (环端密封接触面积), 才能确保密封面始终有足够的变形动力和支撑刚性, 即其动力结构 条件是:
π<1ΐΓ1ι > π(<1ΐΓ + b)b
dirkb > (dir + b)b
Figure imgf000011_0001
其中 b是矩形环壁厚
h (= kb)是矩形环高
(^是矩形环内柱面直径。
对于两侧受压安装的 0形环, 受压时需要移动一定距离后才能触第 3壁而致密封变 形, 因此, 其动力结构至少应按流体作用面积大于密封接触面积考虑, 以利克服低压时 和失弹时的巨大静摩擦阻力。 多侧均匀触壁安装的 0形环, 无巨大静摩擦阻力, 受小压 力便可变形 /移动或移动 /变形而自动至其最高效自紧密状态, 或泄漏便可致其至无任何多 余触壁状态的大 -小塞挤动状态而具有足够强的密封支撑刚性, 因此, 无需专门考虑自激 动力结构问题。
根据上述徐氏密封理论要点,特提出如下一些完全反现有技术标准规定的矩形环与 0 形环密封结构。
一种直接颠覆现有技术 0形环密封机制的基 (容腔内切)圆制 0形环自紧密结构, 由 0 形环及其容腔组成, 其特征是所述容腔是致两个压力容器件的无漏对接安装形成的, 所述 0形环以所述容腔的截面内切圆心为其自由截面圆心, 以确保其在所述容腔中有一 个各侧均匀触壁安装所致的自由挤出角。
凡是密封都是旨在致两个压力容器件的端面的无漏对接或两个柱面的无漏配合, 因 此,确保密封元的安装、紧固或可靠性的安装 /压紧件或防挤出环 (0形环背环)等其它元件, 是致密封元及其容腔的可制造性或可安装性与合格性或合理性所必须的, 是致两个压力 容器件的无漏对接或配合所必须的附件, 不是原始需要对接的第 3 压力容器件; 也就是 说, 本说明书所说的矩形环或 0形环容腔都是指 "致"两个压力容器件的无漏对接安装 形成的容腔, 包括但不是单指只由两个压力容器件直接围成的容腔。 有时候, 多个压力 容器是通过两个公共体的安装对接而同时安装对接的, 如发动机的多个燃烧压力容器和 多个冷却压力容器是通过公共缸盖和缸体的安装对接而同时安装对接的; 也就是说, 本 说明书所说的 "两个压力容器件的无漏对接安装 "应包括"共体的多对压力容器件的同时无 漏对接安装"。 对于环的自紧密封而言, 泊松比值不足 0.5的环材需要一个液性补偿角, 泊松比值足 够 0.5的环材需要一个径向间隙补偿角,有蠕变的环材需要一个滞后载荷的泊松比值补偿 角, 因此, 凡是自紧密环都需要有增加泊松变形的补偿角; 鉴于基本泊松补偿角值小而 且再大也不会致泊松变形补偿过分, 因此, 环在容腔中的自然自由挤出角便足够其泊松 变形补偿与抵消; 或者说, 凡是自紧密环都需要一个自由挤出角以致其一受流体压力便 从大空间至小空间地变形密封, 或者说, 一切自紧密封在于有一个环的自由挤出角。 鉴 于橡胶 0形环的自由挤出角只能是多 (于两)侧受压安装才可形成, 因此,本发明的挤出角 结构是反现有技术标准的两侧受压安装规定的。 鉴于只有多侧均匀触壁安装才可确保越 渗越透的泄漏渗透不会渗透至泄漏, 而多侧均匀触壁安装就是 0形环截面以其容腔截面 内切圆心为其圆心的结果, 因此, 基圆制 0形环密封是反现有技术的不均匀压扁安装规 定的。 鉴于截面直径等于基圆的 0形环最易至最高效自紧密状态, 或者说基圆制 0形环 可是无应力接触安装的, 或者说橡胶的固定压縮变形无关自密封大局, 因此, 基圆制 0 形环密封又是反现有技术的安装压扁量不低于 0.2mm规定的。 其实, 本说明书的 0形环 的多侧均匀触壁安装、 0形环截面以其容腔截面内切圆心为其圆心、圆壁容腔或基圆制 0 形环密封、 0形环的流体挤压角等都是与 0形环的自由挤出角结构相对应的表达或技术 特征, 或都是致现有 0形环密封技术标准颠倒的技术特征。
一种直接颠覆现有技术 0形环容腔形状的圆壁容腔 0形环自紧密结构, 由 0形环及 其容腔组成,其特征是所述容腔是致两个压力容器件的无漏对接安装形成的,并以所述 0 形环的流体挤压角和自由挤出角的内切圆壁为所述挤压角和挤出角的角间过渡壁。 其实, 本圆壁容腔 0形环密封是只有流体挤压角和自由挤出角的 0形环密封。鉴于只有 0形环 的多侧触壁安装才能致其拥有流体挤压角和自由挤出角, 而以其容腔截面内切圆心为其 自由截面圆心的 0形环才可致其至多侧均匀触壁安装, 因此, 本圆壁容腔 0形环密封实 际上就是无壁角的前述基圆制 0形环密封。
又一种直接颠覆现有技术 0形环容腔形状的直角三角形基圆壁容腔 0形环自紧密结 构, 由 0形环及其容腔组成, 其特征是所述容腔是致两个压力容器件的无漏对接安装形 成的, 并以所述三角形的两锐角为所述 0形环的流体挤压角和自由挤出角, 以所述三角 形的内切圆弧面为其直角部位过渡壁, 所述挤压角和挤出角是不截顶的尖角或是一角或 两角是截顶的尖角或是有背环填充的尖角。 其实, 本直角三角形基圆壁容腔 0形环密封 是一种特殊的前述圆壁容腔 0形环密封, 只是本流体挤压角和自由挤出角的两角都只能 是锐角、 而前述流体挤压角和自由挤出角中的一角可是直角。 此外, 本直角三角形基圆 壁容腔 0形环密封是统一口密封和杆 /塞密封的最简单结构, 因为口密封有自然正交的口 柱面和口端面。 还有, 等腰直角三角形基圆壁容腔 0形环密封的正压与负压应用特性完 全相同, 这一点是特别反现有技术的。
又一种直接颠覆现有技术 0形环容腔形状的有附加膨胀空间的 0形环自紧密结构, 由 0形环及其主容腔和副容腔组成, 其特征是所述主容腔和副容腔是致两个压力容器件 的无漏对接安装形成的相互连通腔, 分别用于容装所述 0形环的正常体积和膨胀溢出体 积, 所述 0形环以所述主容腔的截面内切圆心为其自由截面圆心, 以确保其在所述主容 腔中有一个各侧均匀触壁安装所致的自由挤出角。 容腔的基圆壁份越大, 0 形环至最高 效自紧密状态后的流体作用表面越大、 并至最高效自紧密状态的变形时间或启动时间越 短因而密封越可靠, 但却致 0形环对容腔填充越满而越需要附加膨胀空间, 这就是有附 加膨胀空间的意义所在。
实际上, 前述 4项 0形环自紧密封是具有不同容腔或不同挤压角 /挤出角或不同基圆 壁份容腔的基圆制 0形环密封。 对于基圆制 0形环密封, 凡是可致 0形环有变形 /移动 反应的泄漏都可致其截面直径不小于容腔内切圆直径的 0 形环自动至最高效自紧密状 态, 因此, 前述 4项 0形环密封的 0形环都只需要求其自由截面圆直径在极限温度启动 时不小于其腔内切圆直径; 鉴于不同尺寸误差的同规格 0形环可改变其至最高效自紧密 状态的时间或改变其启动或工作的温度极限或可调整其流体挤压角和自由挤出角的密封 启动特性以适应特别启动极限需求, 因此, 前述 4项 0形环密封的 0形环如果按体积误 差或重量误差多少分档提供和选用, 则可达到以最低的成本满足最苛刻的要求的效果; 正是鉴于这种优势, 特提出一种按体积误差或重量误差多少分档提供和选用的 0形自紧 密环, 由橡胶、 聚四氟乙烯、 金、 银等有一定弹性的非金属或金属软材料制成, 其特征 是所述 0形环的体积或重量至多比其容腔内切圆内的体积或重量多 10%, 以确保所述 0 形环有一个各侧适当触壁安装所致的自由挤出角。 这个 10%的体积或重量多出极限是 0 形环的经济制造和应用水准决定的。
鉴于基圆制 0形环密封是按流体渗透接触致密封启动的, 其 0形环, 在受流体压力 而移动 /变形至密封后, 需要在流体压力消失后返回至能再受压而移动 /变形的待启动状 态, 因此, 材质越软的 0形环体因越易受压变形而越需要有复位弹性, 而材质弹性越低 的 0形环体则越需要有高的抗拉屈服强度, 或者说, 基圆制 0形环不能在受极限流体压 力时发生影响其复原的塑性变形, 或者说, 基圆制 0形环体需要强至在 2倍额定压力的 保证测试压力下不发生塑性变形, 在安装中不仅需要环的软密封接触层被压至尽量薄的 程度以避免在极限流体压力下发生塑性变形, 还需要环体被压至尽量多的弹性变形以备 容忍极限压力下发生点塑性变形。 所以, 特提出增加软材质体弹性或强度或增加软材质 表面的支撑弹性或强度的两种 0形环:
一种增加软材质体弹性或强度的软材质体增强型 0形自紧密环,由橡胶、聚四氟乙烯、 铅、 铟等一种非金属或金属软材料和一种增强软材料强度或弹性的金属螺旋弹簧环芯或 金属无孔或有孔 0形环芯或金属 C形环芯等制成一体, 其特征是所述环芯的自由截面轮廓 外径不大于其容腔的内切圆直径的 0.2mm或 2%, 或所述软材料的外层厚度不超过所述环 芯的轮廓外表面 0.1mm, 以确保 0形环有一个各侧适当触壁安装所致的自由挤出角。 金属 材料的弹性应变极限是 0.2%, 因此, 其结构弹性应变极限远大于 0.2%的金属螺旋弹簧环 芯和金属 C形环芯可有较多的安装压扁量;其结构弹性应变极限几乎等于 0.2%的金属无孔 或有孔 o形环芯只能有较少的安装压扁量,但其高强度可致较厚的软密封接触面层充分压 薄而适应制造误差的变化; 也就是说, 环芯的截面轮廓外径和软材料外层厚度视芯环弹 性和强度而定。
一种增加软材质表面的支撑弹性或支撑强度的金属 0形自紧密环, 由一种金属实心 或空心 0形环基体或金属钻口型或切口型 C形环基体和一层或多层弱化密封接触面强度 或弹性的金属或非金属涂镀层制成, 其特征是所述基体的自由截面轮廓外径不大于其容 腔的内切圆直径的 0.1mm或 1%, 或所述涂镀层的厚度不超过 0.05mm, 以确保 0形环有 一个各侧适当触壁安装所致的自由挤出角。 其结构弹性极限大于其材料弹性极限 (0.2%) 的金属 C形环基体可有稍多的轮廓安装压扁量, 其结构与其材料的弹性极限相差不大的 金属空心或实心 0形基体应有稍小的轮廓安装压扁量,软涂镀层结构或厚度视涂镀工艺、 附体强度或抗腐蚀性而定。
0 形环受其表面软材质或涂镀层限制, 不能满足某些高温和强腐蚀要求, 因此, 特 提出一种可不受表面软材质限制的矩形环自紧密结构, 由金属或非金属矩形环及其容腔 组成, 其特征是所述容腔是致两个压力容器件端面的无漏对接安装形成的, 包括两个相 互平行的端面壁和一个与所述端面壁正交的柱面型壁, 所述柱面型壁中部外鼓, 所述矩 形环被安装至与所述端面壁的两壁和所述柱面型壁的中部紧密接触, 以确保所述矩形环 在低压侧两端各有一个自由挤出角。 矩形环可用对接容器件的相当金属制成, 无不同的 温度极限、 热胀冷縮及腐蚀等问题; 矩形截面两端向外呈渐尖状或以三角形或弧形向外 渐小, 以按"环体抗压面积 >环端抗压面积 "地致密封接触强度或弹性弱化, 因此, 安装可 同时致环端接触面充分屈服变形和环体充分弹性变形而触腔壁形成两个自由挤出角, 以 至于环受流体压力时首先更多发生致密封的弹性或塑性变形; 但也可是两端齐平的或微 渐尖的非金属矩形环和金属涂镀矩形环。 附图的简要说明
在本说明书的附图中,软材质 0形环截面或 0形环的软涂层均以灰色实心填充代表, ru代表其未安装受压的 0形环的自由截面圆半径, r, = a代表其容腔的内切圆半径。
图 1是符合本发明的自紧密封分类的结构图。
图 2是现有技术的栓接法兰, 图 3是现有技术栓接法兰的变形。
图 4是安装压縮要求不可调和的现有技术 0形环密封。图 4a是按自紧密动力要求而 必须安装 0形环至 ra > 0.75ru的状态, 图 4b是按最低必须紧密接触要求而必须安装 0形 环至 ra < 0.5ru的状态, 图 4c是按现有技术标准要求而安装 0形环至 ra > 0.7〜0.85ru的低 压泄漏状态, 图 4d是按现有技术标准要求而安装 0形环至 ra > 0.7〜0.85ru的高压泄漏状 态。
图 5是致挑战号航天飞机毁人亡的助推火箭体的现有技术 0形环密封结构。
图 6是用符合本发明的矩形环自紧密封实现端面的无漏对接的栓接法兰, 也是说明符 合本发明的包括 O形环在内的普通密封元的结构要求与参数的最好结构; 其中图 6a是栓接 法兰总装图, 图 6b是图 6a的边缘宏观支撑锯齿环 (05)的局部放大视图, 图 6c是图 6a的微观 锯齿环 (04)压紧密元与金属矩形环 (02)自紧密元的局部放大视图, 图 6d是图 6a的微观锯齿 环 (04)压紧密元与橡胶矩形环 (03)自紧密元的局部放大视图, 图 6e是图 6c的进一步放大视 图。
图 7是符合本发明的密封元的安装与工作参数曲线, 其中 Sc_ (Scl~3)线是密封元的原始 密封接触层结构或材料屈服后的安装线或加载线, Ss_ (Ssl~3)线是密封接触层的支撑结构或 基体材的安装线或加载线, Sw_ (Swl~3)线是密封接触面的工作线或卸载线, 组线是钢制 微观锯齿环的压紧密线, S_2组线是钢制镀凃环的自紧密线, S_3组线是橡胶环的自紧密线, Gb_是密封接触面被装配或加载至充分变形接触时的应力, Sa_是支撑或基体被装配或加载 至充分弹性变形时的应力, Se_是支撑或基体的屈服强度极限, 是密封接触层结构或材料 屈服后的残留弹性模量, Es是支撑或基体的弹性模量, = £。/ 是密封元的密封难至系 数, Gs是密封接触面被卸载至充分变形接触时的应力, Gsmm = 0 MPa (mfO的油脂元的密 封开始应力), Gsmax O.l MP m^ l的橡胶元的密封开始应力), y是卸载至最低必须紧密 接触时的应力 (最小必须密封应力), ymn = 0.1 MPa (rm = 0的油脂元的最小必须密封应 力), ymax O^ MPa m^ 1的橡胶元的最小必须密封应力), sb≠0是与 Gb对应的应变, Pm- 是最大密封压力。
图 8是符合本发明的密封难至系数 nn = Ee/Ej释图。
图 9、图 10和图 11是符合本发明的自紧密环的工作原理和泊松变形补偿及抵消的分 别解释图, 其中 A是 (特设)口端, B是 (全平)盖端, 02是自紧密环, C是径向间隙。
图 12是符合本发明的橡胶 0形环在安装和工作中的强液性和弱固性模拟图,其中图 12a是集中模拟固性的未受压或自由 0形环 (相当于一环装满液体的薄壁管), 图 12b是分 散模拟固性的未受压 0形环 (其固性在截面上似一些富弹的同心圆线),图 12c是分散模拟 固性的受安装压縮 0形环 (其固性在截面上似一些富弹的同心圆角矩形线),图 12d是分散 模拟固性的受流体压縮 0形环 (有一个能如数各向传递压力的更液化区和一个更能承压力 的更固化区)。
图 13是符合本发明的正方形容腔 0形环密封的口密封、 杆密封和塞密封。
图 14是符合本发明的正方形基圆壁容腔 0形环密封的口密封、 杆密封和塞密封。 图 15是符合本发明的多边形基圆壁容腔 0形环密封的口密封、 杆密封和塞密封。 图 16是符合本发明的直角三角形基圆壁容腔 0形环密封的口密封、杆密封和塞密封。 图 17是符合本发明的尖角截顶或填充的直角三角形基圆壁容腔 0形环密封。
图 18是符合本发明的基圆制 0形环密封自动所至的最高效自紧密状态。
图 19是符合本发明的内嵌金属螺旋弹簧环芯 (07)的软材料 0形自紧密环 (06)。
图 20是符合本发明的内嵌金属无孔 (08)或有孔 (09)0形环芯或金属 C形环芯 (10)的软 材料 0形自紧密环环 (06)。 图 21是符合本发明的外有软金属或非金属涂镀层 (6)的金属实心或空心 (11)0形自紧 密环或金属钻口型或切口型 (12)C形自紧密环。
图 22是符合本发明的外有软涂镀层的金属切口型 C形环的安装、 工作和暂停状态。 实现本发明的最佳方式
密封, 是致端面的无漏对接或柱面的无漏 (动 /静)配合。 如图 la所示, 端面 (对接)密 封, 可使用 0形环 ((Dd1( , 也可使用矩形环 (Φ ); 如图 lb所示, 使用 0形环的柱面 (动 配合)密封, 包括一种杆 孔)密封 (Φ(112)和一种塞 缸)密封 Dd13); 如图 lc所示, 使用 0 形环的端面密封 不仅可用口密封 ^Ddu)或 (静)杆密封 (Φ(112)或 (静)塞密封 (Φ(113)替代, 而且还可有其替代密封一样的系列参数和结构特性; 如图 id所示, 使用 0形环的螺口密 封也可与孔和缸的口密封 ((Ddu)—样的系列参数和结构特性; 因此, 本发明用矩形环密封 (Φ(^)或 0形环口密封 ((Ddu)来实现端面的自紧密对接, 用 0形环杆密封 (<Dd12)或塞密封 Dd13)来实现柱面的自紧密配合。 如图 la〜d所示, 这些矩形环与 0形环密封都有一个与 管 (螺纹)外径 (Φ(1。)、 紧固件螺纹 (<Dd。xP)大径及孔轴配合直径 Dd^ Φ(112及 Φ(113)相同的 规格尺寸系列。
图 13是符合本发明的基 (2ax2a正方形容腔内切)圆制 0形环口密封 ((Ddu 杆密封 (Φ(112)和塞密封 (Φ(113), 不包括附加膨胀溢出副腔截面积 raxra在内, 其
容腔截面积 = 4a2
空腔截面积 Av = 4ra 2 - ;ira 2
空腔百分数 CV = AV/AC
= (4ra 2 - 7ira 2)/4a2
= (l-7i/4)ra 2/a2
= 0.2146ra 2/a2
= 21.5% (ra = a时)
满腔百分数 Cf = l - Cv
· 7iru 2 = Ac(l - Cv)
= 4a2(l - Cv)
.·. 取 Cv = l l%时,
未安装 O形环的截面半径 ru = 1.0645a
安装 O形环的挤出弧半径 ra = 0.7159a
安装压縮比 ru/ra = 1.5。
由于确保 O形环被安装至充分变形接触的条件是 ru/ra > 1, 确保 0形环被安装至最低必 须紧密接触的条件是 ru/ra = 2, 因此, 由上述计算可知, 取中间制造误差状态时的 Cv = 1 1% 的 0形环可被安装至 ru/ra = 1.5的半紧密状态。
根据 0形环的流体渗透致密封机理, 只要常温启动时的 0形环的安装压縮比 ru/ra ^ 1, o形环就会自动至自紧密接触而无论启动后的体积如何变化都能确保密封绝对安全可靠; 再鉴于制造和温度所致的积累误差一般不会致橡胶 0形环的体积在常温启动时减少 10% 而至 ru/a < l, 因此, 以安装至空腔百分数 Cv = 11%为准取 0形环的截面半径 ru, 即按许可 0 形环体积最多减少 10%设计, 是可行的。
为了满足更大温升和流体浸孕所致 0形环的体积膨胀, 可在主容腔的挤压角增设一 个截面积为 ra 2或其它值的膨胀溢出副腔, 将最大空腔百分数由 21.5%扩大至 46%或其它 值。
如图 13所示, 容腔壁角可致容腔的空腔百分数增大而扩大 0形环的许可膨胀极限, 但也可致 0形环无端消耗挤压-挤出动力而致密封速度降低, 因此, 如果以腔壁内切圆弧 面替代壁角, 则除可消除壁角对密封的影响外, 还可避免 0形环的多余变形, 以便采用 温度系数和弹性比橡胶小的铅、 铟、 PTFE、 黄金等 0形环。 实际上, 以腔壁内切圆弧面 替代正方形容腔壁角的容腔可叫正方形基圆壁容腔, 如图 14所示, 不包括溢出腔截面积 ra 2在内, 其
容腔截面积 Ae = 2a2 - 2ra 2 + 0.5πΓα 2 + 0.5πα2
= (2 + 0.5?i)a2 - (2 - 0.57i)ra 2
空腔截面积 Av = 2ra 2 - 0.5?ira 2
= (2 - 0.57i)ra 2
空腔百分数 CV = AV/AC
= (2 - 0.5π)Γα 2/[(2 + 0.5π)α2 - (2 - 0.57i)ra 2]
= (2 - 0.5π)/π (ra = a时)
= 2/π - 0.5
= 0.1366 (最大空腔百分数)
· 7iru 2 = Ac(l - Cv)
= [(2+0.5π)α2 - (2 - 0.5π)Γα 2](1 - Cv)
.·. · 取 Cv = 5%时,
未安装 0形环的截面半径 ru = 1.0141a
安装 0形环的挤出弧半径 ra = 0.6294a
安装压縮比 ru/ra = 1.6
• 取 Cv = 6%时,
未安装 0形环的截面半径 ru = 1.0040a
安装 O形环的挤出弧半径 ra = 0.6862a
安装压縮比 ru/ra = 1.5。
由上计算可知, 对于正方形基圆壁容腔 0形环密封, 如果设计超过 5%的空腔百分数, 则对未安装 0形环的截面半径 ru误差要求很严以至于无法制造, 因此, 溢出腔是可考虑的。
由于安装中的 0形环在挤压角和挤出角的挤出弧度相等, 因此, 除可致 0形环自动适 应制造误差外,非离腔渐小的溢出口还可致安装中的富余 0形环料等圆弧挤入溢出腔而避 免过变形, 这对非橡胶 0形环或有软凃层的 0形环特别重要。
为了增加图 14所示正方形基圆壁容腔的空腔百分数, 可将基本容腔形状由正方形改 为多边形。 对图 15那样的多边形基圆壁容腔, 可以看成是以三角形 AEG的内切圆为基 准的也可以看成是以梯形 AEFD的内切圆为基准的, 但还是可看成是以正方形 ABCD的 内切圆为基准的, 不包括空刀腔截面积在内, 其
容腔截面积 Ae =(1 + ^3 + π/4 + π/6)α2
= 4.0410a2
空腔截面积 Av = ra 2 - 7ira 2/4 + ¾2 - πΓα 2/3
= (1 + ^3 - π/4 - π/3)Γα 2
= 0.8994ra 2
空腔百分数 CV = AV/AC
= 0.8994ra 2/4.0410a2
= 0.2226ra 2/a2
= 22% (ra = a时)
= 10% (ra = a/1.5时)
· 7iru 2 = Ac(l - Cv)
= 4.0410a2(l - Cv)
.·. · 取 Cv = 11%时,
未安装 O形环的截面半径 ru = 1.0700a
安装 O形环的挤出弧半径 ra = 0.7030a
安装压縮比 ru/ra = 1.5。
由上述计算可知, 采用多边形基圆壁容腔不仅可消除壁角对密封的影响, 而且还不 致最大空腔百分数减小。
虽然多边形基圆壁容腔可以同时满足密封和空腔百分数要求, 但却有正压与负压密 封性不同的缺陷。 对于图 16那样有相同挤压 /挤出角的等腰直角三角形基圆壁容腔, 其 内切圆半径 a = J2a'tg22.5° = 0.5858a'
直角边半长 a' = a/(¾g22.5°) = 1.7071a
容腔截面积 Ae = 2(2α'-α)α+0.25πα2
= 4a2/(¾g22.5°) - 2a2 + 0.25πα2
= [4/(¾22.5°) - 2 + 0.25π]α2
= 5.6138a2
空腔截面积 Av = 2ra 2/tg22.5° - 0.75πΓα 2
=2.4722ra 2
空腔百分数 CV = AV/AC = 0.4404ra a'
44% (ra = a时)
20% (ra = 0.67a时)
10% (ra = 0.48a时)
Figure imgf000019_0001
= 5.6138a2(l - Cv)
.·. 取 Cv = 24%时,
未安装 O形环的截面半径 ru = 1.1654a
安装 O形环的挤出弧半径 ra = 0.7382a
安装压縮比 ru/ra = 1.6。
由上计算可知, 采用等腰直角三角形基圆壁容腔可同时足够满足密封、 空腔百分数 和正压与负压相同密封的要求。
如图 16所示, 由等腰直角三角形基圆壁容腔的尺寸 a' = a/^¾g22.5°) = 1.7a = 1.7^可 知, 等腰直角三角形基圆壁容腔比其它多边形基圆壁容腔需要更多的结构布置空间或需 要更小截面直径的 0形环; 因此, 在布置空间有限的情况下, 能够容纳大截面直径 0形环 的多边形基圆壁容腔更适合高压应用。但是, 如果采用图 17a的小截顶尖角, 或采用图 17b 的背环填充尖角, 或采用图 17c的任选大截顶尖角, 则可减少等腰直角三角形基圆壁容腔 的结构布置空间, 同时还可避免 0形环的过度变形。
实际上, 无论是三角形基圆壁容腔还是多边形基圆壁容腔, 都是以挤压角、 挤出角 及两角公共内切圆组成的封闭轮廓为截面轮廓的。 鉴于受压 0形环只能以与壁相切的圆 弧在容腔角中挤进和挤出, 因此, 对于圆壁容腔 0形环密封, 一旦 0形环被全挤出挤压 角或被剥离至与内切圆同径时或被流体渗透接触至内切圆的切点时, 流体将致 0形环顷 刻完全离开容腔圆壁而至最高效自紧密状态, 因为此时 0形环已不再受任何多余摩擦阻 力的影响; 也就是说, 对于圆壁容腔 0形环密封, 超出基圆越少的 0形环安装, 越易顷 刻至最高效自紧密状态。
对于截面直径等于基圆的 0形环, 如图 18所示, 如果流体能致其变形 /移动, 则只 能发生如图所示的密封变形 /移动,因为任何可致其微变形 /移动或微动 /变形的流体压力都 可致其内部压力升高而致其更自由的挤出面外鼓变形, 以至于任何对泄漏流体有阻尼或 有变形 /微动反应的 0形环都可顷刻至最高效自紧密状态。 例如, 如图 18a所示, 截面直 径不小于基圆的 0形环在正方形容腔中的变形, 只能是图中实线所示的密封变形而不是 虚线所示的泄漏变形, 因为与实线变形截面积相等的虚线变形必至压力上大下小而致其 再按实线变形; 或者说, 截面直径不小于基圆的 0形环在容腔中的变形只能是密封变形; 但就 0形环圆截面的变形 /移动距离 e而论, 正方形容腔的 es > 三角形基圆壁容腔的 et > 多边形基圆壁容腔的 ≤μηι8, 或者说就自激至最高效自紧密状态的速度而论, 基圆壁份 越大的容腔中的 0形环的速度越快。 因此, 从提高其致密封速度考虑, 0形环密封应优 先采用圆壁容腔, 避免采用正方形容腔。
如图 18所示, 橡胶 0形环的最高效自紧密状态就是其以大-小端塞结构受流体挤动 状态, 既能有效避开多余腔壁的巨大静摩擦阻力, 又能对密封接触面提供足够强的支撑; 也就是说, 橡胶 0形环在挤压角里的小空间至大空间的无摩擦流动性和在挤出角里的大- 小塞的强支撑性可充分克服作为密封元的橡胶的不利性, 或者说, 圆壁容腔 0形环密封 可充分利用橡胶的软弹性而自激至充分变形接触和充分紧密接触, 或可有效降低橡胶密 封元的密封难至系数值。
因此, 对于圆壁容腔或基圆制橡胶 0形环密封, 其容腔设计是在其基圆腔上附加 0 形环的挤压和挤出角腔, 其 0形环设计是确保其截面直径在最不利条件下启动时不小于 基圆直径, 或选择不同体积或重量误差档的同规格 0形环以改变其在容腔中的填充百分 比或调节其至最高效自紧密状态的变形时间。 例如, 如图 15b和图 15c所示, 以直角 (A) 为挤压角的致密封速度高于以锐角 (E)为挤压角的致密封速度; 相对致口密封腔的填充百 分比, 相同误差档 0形环可致杆密封腔的填充比稍大, 可致塞密封腔的填充比稍小; 相 同容腔, 配备上差挡 0形环时比配备下差挡 0形环时的填充比更大。
就理想而论, 密封接触层应软而无弹性, 密封接触层的基体应强而富弹性, 并应安 装至密封接触层充分塑性变形和至基体充分弹性变形; 因此, 如图 19和图 20所示, 内 夹金属螺旋弹簧环芯 (07)或内夹金属无孔 0形环芯 (涂镀层 08)或有孔 0形环芯 (09)或金属 C形环芯 (10)的橡胶、 PTFE、 铅、 铟等软材料 0形环 (06)便比无芯橡胶 0形环还理想, 除可改进其压力温度应用极限外, 还可改进其抗腐蚀性。 对这种软材体增强型 0形环, 其环芯应该比相应富弹的无芯软材料环有更好的结构强度, 比相应贫弹的无芯软材料环 有更好的结构弹性和结构强度并能致有芯的成品 0形环满足反复复位的需要; 有孔 0形 环芯的孔的大小和多少应满足结构弹性和结构强度的要求, C形环芯的切口可在更适合应 用或制造的方向。
如图 18所示, 材质越软的 0形环体越需要有复位弹性, 材质弹性越小的 0形环体 则越需要有抗塑性变形的高强度, 因此, 如图 21所示, 外涂 PTFE、 铟、 铅、 镍、 黄金 等软层 (6)的金属实心或空心 (11)0形环和 C形环 (12)应强至在极限工作压力或保证测试压 力下无塑性变形;例如, C形环应该有足够的壁厚以免在图 22b所示的极限流体压力下发 生影响其复位至图 22a所示的待启动状态的塑性变形。 对这种有软涂层的金属 0形环, 虽然其体的弹性小、 强度高, 但其软涂层可同时满足密封和过盈装配的变形需求, 而且 其体可是容腔体的相同或相当材料, 既无热胀冷縮问题也无流体浸孕膨胀问题, 因而比 无芯橡胶 0形环还理想。
综上所述, 虽然圆壁容腔是软而最富弹的橡胶 0形环的必须容腔, 但它也是其它包 括硬而最贫弹的金属 0形环在内的一切符合密封难至系数 nn < 1的 0形环的理想容腔, 或者说, 基圆制 0形环密封的某规格圆壁容腔可根据服务需要而换装相同规格的不同结 构或不同误差挡的 0形环, 关键在于考虑在极限压力温度循环中不能发生影响复位至待 启动状态或初始安装状态的塑性变形, 并涉及对环截面结构直径 i>c 和 "(见图 19〜21) 的安装压縮量。 例如, 对于图 21b所示的金属 C形环, 其最佳容腔是图 14所示的无附加 溢出腔的基圆壁份最大的正方形基圆壁容腔, 因为基圆壁份越大的容腔致 C形环触壁越 多而致其截面弯矩越小, 但它也可在基圆壁份最小的直角三角形基圆壁容腔中使用; 如 图 22所示, 只要 C形环有图 22b所示的在极限流体压力下不产生塑性变形的壁厚, 安装 就能致其软凃层至图 22a所示的充分紧密接触的初始安装状态; 如图 22b所示, 压力流 体首先致不抗弯的 C形环弯曲而进入 C形环腔, 然后致有足够壁厚的 C形环只发生增强 密封的弹性变形 /移动; 如图 22c所示, 一旦 C形环外的流体压力下降或消失, 则环内压 力流体首先撑开不抗弯的 C形环而把压力流体陷在 C形环腔内, 以至于即使过压下发生 的微量塑性变形也能得到矫正而恢复至待启动状态; 也就是说, 关键是 C形环在极限压 力下不能发生影响复位至图 22a所示的待启动状态的塑性变形; 对于不许可 C形环腔内 陷入流体的系统, 可考虑用钻孔替代切口并置缺口于易流出方向。
总之, 基圆制 0形环密封的结构要领是: ① 0形环能安装或自激至最低紧密接触, 受压后能变形但不能有影响复位的塑性变形,② 容腔和 0形环有相同规格的截面及回转 直径。
图 6 是用符合本发明的矩形环自紧密封实现端面的无漏对接的栓接法兰, 也是说明 符合本发明的包括 0形环在内的普通密封元的结构要求与参数的最好结构; A是钢制法 兰的特设端 (口端), 其端面上有一环边缘宏观支撑锯齿环 (05)、 两环 (Φ(12和 Φ(13)微观密封 锯齿环 (04)和一环 (Φ(12)矩形环容腔; Β是钢制法兰的全平端 (盖端),其端面为全平光滑面; 01是容腔弧形缚壁, 02是可有软涂层的任选钢矩形环, 03是任选的橡胶矩形环; 由两环 微观锯齿环提供一道压紧密封, 由一环任选矩形环提供一道自紧密封, 双重确保密封安 全。矩形自紧密环的内径 (Φ )大于或等于被连管外径 (Φ(1。), 既可致容忍法兰的不同心制 造和安装, 又可致矩形环和 0形环自紧密封有相同的 Φ(1。系列规格。
微观锯齿环 (04)相当于降低密封面的接触刚性而致其密封难至系数 1, 而其齿高 Zt等于 0.02〜0.03mm (约等于 10〜15倍对接表面粗糙度 Ra值), 其齿距 Xs/齿高 Zt约为 20-500, 既足以轻易变形至填平补齐表面粗糙度 Ra值不大于 3.2μηι的密封接触面, 又能 确保锯齿只发生弹性变形而可反复使用。
边缘宏观支撑锯齿环 (05)的齿顶与微观锯齿环 (04)的齿顶同面, 因此, 能真正抗紧固 压縮载荷的只能是承载面积大得多的微观锯齿环根面而不是承载面积趋于 0 的宏观锯齿 环的齿顶, 以至于宏观锯齿环丝毫不影响微观锯齿环的充分变形。 但是, 在分轮次十字 交叉拧紧程序中, 首轮手指头拧紧和次轮扳手轻拧紧不可能乃至此后轮次的扳手增强拧 紧就更不可能致宏观锯齿环的单轮压縮量或单轮周向不均匀压縮量超过 1 μηι, 因此, 最 终的密封接触面的周向紧固压縮变形差绝不可能超过 μηι级,便可使计算密封应力充分逼 近实际密封应力。
如图 6c〜e 所示, 环容腔的缚壁 (01)是径向内凸的, 便可给中部触缚壁的自紧密环 (02/03)同时提供一个以 r为半径的转动变形支点和两个泊松补偿角 θχ, 以至于在环屈服 前, 流体压力致环壁的弹性转动便可致环端高触点以接近 0楔角地楔紧在被密封面上而 致密封应力逼近无穷大; 在环屈服后, 泊松补偿角 θχ便可致任何泊松比值小于 0.5 的环 按自紧密封工作。
如图 6e所示,钢制环 (02)截面两端按"自尖底的环高 (In) < 环容腔高 (h) < 自尖顶的环 高 (h2)"地向外渐尖或渐小至有压碎环端面潜能的紧固件也无法压屈服环体的程度, 便可 绝对确保密封难至系数 1¾ < 1, 而薄膜和密闭至无挤出间隙的受压材料 (如水和橡胶等)的 无限受压强度又可确保压薄至膜状的环端面层和密闭在容腔中的环体永不会被压碎; 因 此, 适度按 "螺栓总抗拉能力 /面积 >管的抗拉能力 /面积 >环体截面积 >环端面积"设计, 便 可确保:
• 法兰的紧固件强于被连接管, 有同时致环端充分塑性变形和环体充分弹性变形的 条件,
• 在装配和工作中, 首先更多发生的是环的致密封变形而非其它零部件的任何其它 变形, 所以, 加上环的足够自紧密动力设计或按 k > l + b/dk的高度设计, 便可确保法兰 连接的密封永不会因自身的密封性和强度问题失效。
环体与法兰体使用相同或相当材料制造, 可确保环与法兰体间的温度系数差不会致 环在压力温度循环中产生接触间隙, 因此, 加上环的安装紧固泊松变形可消除制造公差 所致的径向接触间隙, 便可确保环在任何压力温度循环下, 一受流体压力便产生自紧密 变形。
环表面镀镍或黄金一类低弹性低强度的抗腐蚀材料, 可进一步降低环密封面的密封 难至系数至 nn « 1, 因此, 可确保环的最小必须密封应力能充分小至接近 0而致密封可轻 易实现和维持, 以至于安装至充分紧密接触的自紧密连接, 再原位松开至手指头拧紧时, 便可通过任意低压至破裂压力测试。
在螺栓和被连接体屈服失效前, 自紧密封环内的流体压力不仅不致环的预压縮应力 减小, 而且还可致已冷流而松弛的环再恢复至预压縮状态, 而任何有弹性预压縮的环又 不可能因冷流而松弛到手指头拧紧的地步, 因此, 可以说, 环的自密封可忍受环的一切 冷流松弛。
其实, 压贴在缚壁 (01)上的橡胶矩形环 (03)相当一个附加有缚壁支撑的和体支撑截面 积增加的橡胶 0形环, 因此, 橡胶矩形环比橡胶 0形环因环体支撑更强而更易致密封。
总体上, 矩形环可无软密封层, 在服务温度和化学兼容上可不受软皮层限制, 而 0 形环则受必需软皮层限制; 安装至紧密接触时有利矩形环密封但却不利 0形环密封; 受 压塑性变形有利矩形环再启动, 但却不利 0形环再启动; 因此, 就端面密封而论, 矩形 环优于 0形环。

Claims

权利要求书
一种基容腔内切圆制 0形环自紧密结构, 由 0形环及其容腔组成, 其特征是所述容 腔是致两个压力容器件的无漏对接安装形成的, 所述 0形环以所述容腔的截面内切 圆心为其自由截面圆心, 以确保其在所述容腔中有一个各侧均匀触壁安装所致的自 由挤出角。 一种圆壁容腔 0形环自紧密结构, 由 0形环及其圆壁容腔组成, 其特征是所述容腔 是致两个压力容器件的无漏对接安装形成的, 并致安装后的所述 0形环有一个流体 挤压角和一个自由挤出角, 所述圆壁与所述挤压角和挤出角的角壁相切。 一种直角三角形基圆壁容腔 0形环自紧密结构, 由 0形环及其圆壁容腔组成, 其特 征是所述容腔是致两个压力容器件的无漏对接安装形成的, 并致安装后的所述 0形 环有一个流体挤压角和一个自由挤出角, 所述挤压角和挤出角是所述三角形的两锐 角或是不截顶的尖角或是一角或两角是截顶的尖角或是有背环填充的尖角, 所述圆 壁在所述三角形的直角处与所述挤压角和挤出角的角壁相切。 一种有附加膨胀空间的 0形环自紧密结构, 由 0形环及其主容腔和副容腔组成, 其 特征是所述主容腔和副容腔是致两个压力容器件的无漏对接安装形成的相互连通 腔, 分别用于容装所述 0形环的正常体积和膨胀溢出体积, 所述 0形环以所述主容 腔的截面内切圆心为其自由截面圆心, 以确保其在所述主容腔中有一个各侧均匀触 壁安装所致的自由挤出角。 一种按权利要求 1或权利要求 2或权利要求 3或权利要求 4的 0形环自紧密结构, 其特征是所述 0形环的自由截面圆直径不小于所述内切圆直径。 一种按权利要求 1或权利要求 2或权利要求 3或权利要求 4的 0形环自紧密结构, 其特征是所述 0形环按体积误差或重量误差多少分档提供或选用。 一种 0形自紧密环, 由橡胶、 聚四氟乙烯、 金、 银等有一定弹性的非金属或金属软 材料制成, 其特征是所述 0形环的体积或重量至多比其容腔内切圆内的体积或重量 多 10%, 以确保所述 0形环有一个各侧适当触壁安装所致的自由挤出角。 一种软材质体增强型 0形自紧密环, 由橡胶、 聚四氟乙烯、 铅、 铟等一种非金属或 金属软材料和一种增强软材料强度或弹性的金属螺旋弹簧环芯或金属无孔或有孔 0 形环芯或金属 C形环芯等制成一体, 其特征是所述环芯的自由截面轮廓外径不大于 其容腔的内切圆直径的 0.2mm或 2%, 或所述软材料的外层厚度不超过所述环芯的 轮廓外表面 0.1mm, 以确保 0形环有一个各侧适当触壁安装所致的自由挤出角。 一种金属 0形自紧密环, 由一种金属实心或空心 0形环基体或金属钻口型或切口型 C形环基体和一层或多层弱化密封接触面强度或弹性的金属或非金属涂镀层制成, 其特征是所述基体的自由截面轮廓外径不大于其容腔的内切圆直径的 0.1mm或 1%, 或所述涂镀层的厚度不超过 0.05mm, 以确保 0形环有一个各侧适当触壁安装所致 的自由挤出角。 一种矩形环自紧密结构, 由金属或非金属矩形环及其容腔组成, 其特征是所述容腔 是致两个压力容器件端面的无漏对接安装形成的, 包括两个相互平行的端面壁和一 个与所述端面壁正交的柱面型壁, 所述柱面型壁中部外鼓, 所述矩形环被安装至与 所述端面壁的两壁和所述柱面型壁的中部紧密接触, 以确保所述矩形环在低压侧两 端各有一个自由挤出角。 一种按权利要求 10的矩形环自紧密结构,其特征是所述矩形环的矩形截面两端向外 微呈渐尖状或渐小状或不呈渐尖状或渐小状, 所述矩形环的两端表面有软涂镀层或 无软涂镀层。
PCT/CN2013/072332 2012-03-09 2013-03-08 矩形环与o形环自紧密结构 WO2013131490A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210070823.2 2012-03-09
CN201210070823.2A CN102619980B (zh) 2012-03-09 2012-03-09 矩形环与o形环自紧密结构

Publications (1)

Publication Number Publication Date
WO2013131490A1 true WO2013131490A1 (zh) 2013-09-12

Family

ID=46560099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072332 WO2013131490A1 (zh) 2012-03-09 2013-03-08 矩形环与o形环自紧密结构

Country Status (2)

Country Link
CN (1) CN102619980B (zh)
WO (1) WO2013131490A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106931162A (zh) * 2017-02-13 2017-07-07 上海大学 一种适用于窄小空间的密封压紧器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102619980B (zh) * 2012-03-09 2015-07-08 浙江华夏阀门有限公司 矩形环与o形环自紧密结构
JP2017089681A (ja) * 2015-11-04 2017-05-25 サンデン・オートモーティブコンポーネント株式会社 流体機械のハウジング接合部のシール構造
CN107764639B (zh) * 2017-09-01 2019-11-15 中广核研究院有限公司 保持圆管曲率的自紧式圆管环向拉伸试验装置
CN108547950A (zh) * 2018-01-01 2018-09-18 保集团有限公司 三角形环的杆密封
CN108825777B (zh) * 2018-06-21 2021-04-27 常州大学 一种预应力超高压绕丝容器筒体结构
CN111692268B (zh) * 2020-06-28 2022-03-22 株洲时代新材料科技股份有限公司 一种空气弹簧及间隙自动补偿方法
CN112879386A (zh) * 2021-02-25 2021-06-01 包头钢铁(集团)有限责任公司 一种油缸结合面漏油的封堵方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101551013A (zh) * 2008-12-31 2009-10-07 浙江华夏阀门有限公司 槽垫密封结构
JP2011067714A (ja) * 2009-09-24 2011-04-07 Ngk Insulators Ltd ろ過モジュール
CN202132501U (zh) * 2011-07-27 2012-02-01 重庆水泵厂有限责任公司 一种轴向静密封结构
CN102619980A (zh) * 2012-03-09 2012-08-01 浙江华夏阀门有限公司 矩形环与o形环自紧密结构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3406350A1 (de) * 1984-02-22 1985-08-22 Anton Hummel Gmbh Metallwarenfabrik, 7808 Waldkirch Abdichtvorrichtung
CN2077936U (zh) * 1990-11-28 1991-05-29 沈阳辽宁机械密封技术服务公司 一种机械密封
CN2095304U (zh) * 1991-05-06 1992-02-05 黄瑞延 非机动车气筒活塞
JPH06288476A (ja) * 1993-03-31 1994-10-11 Nippon Valqua Ind Ltd 複合シール
CN201090735Y (zh) * 2007-09-18 2008-07-23 中国重汽集团济南技术中心有限公司 载重车驱动桥轮边减壳密封装置
CN101865288B (zh) * 2010-05-13 2013-01-30 励行根 一种c形包覆密封环

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101551013A (zh) * 2008-12-31 2009-10-07 浙江华夏阀门有限公司 槽垫密封结构
JP2011067714A (ja) * 2009-09-24 2011-04-07 Ngk Insulators Ltd ろ過モジュール
CN202132501U (zh) * 2011-07-27 2012-02-01 重庆水泵厂有限责任公司 一种轴向静密封结构
CN102619980A (zh) * 2012-03-09 2012-08-01 浙江华夏阀门有限公司 矩形环与o形环自紧密结构

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XU, CHANGXIANG: "Seal - designing Principle and Gland Gasket Seals", PETRO - CHEMICAL EQUIPMENT, vol. 38, no. 5, 30 September 2009 (2009-09-30), pages 79 - 85 *
XU, CHANGXIANG: "The Seal - designing Principle and the Gland Gasket Seals", CHINESE HYDRAULICS & PNEUMATICS, no. 8, 31 August 2009 (2009-08-31), pages 74 - 78 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106931162A (zh) * 2017-02-13 2017-07-07 上海大学 一种适用于窄小空间的密封压紧器

Also Published As

Publication number Publication date
CN102619980B (zh) 2015-07-08
CN102619980A (zh) 2012-08-01

Similar Documents

Publication Publication Date Title
WO2013131490A1 (zh) 矩形环与o形环自紧密结构
CN107044572B (zh) 一种海洋复合柔性管用预压自紧接头
RU2492382C1 (ru) Система для линейного перемещения и составного уплотнения (варианты)
US20170009918A1 (en) Gasket with compression and rotation control
EP2343468A1 (en) Double annular rod shoulder seal and independent double valve rod seal
EA029434B1 (ru) Прокладка для металлического фланцевого соединения
US20140125012A1 (en) Compressable sealing ring assembly
US20160003385A1 (en) Gasket with compression and rotation control
WO2008071084A1 (fr) Joint d&#39;étanchéité combiné de type manchon
CN102777598A (zh) 一种高压密封方法及密封圈
CN106885073A (zh) 胀缩管道连接结构
CN110671558A (zh) 抗压防爆等内径免维护旋转补偿器
CN208010818U (zh) 一种齿面预紧碟簧
CN110985783A (zh) 一种柔性石墨金属波齿复合垫片密封结构
US10619657B2 (en) Reversible connecting of machine components
AU2005214453B2 (en) Seals for hydraulic assemblies
US9464719B2 (en) Seal assembly for use in harsh environments
CN108571630A (zh) 一种防脱型管道连接装置
WO2021047670A1 (zh) 金属压环复合密封填料装置及其制作方法
WO2016065651A1 (zh) 一种管路连接管件
RU94659U1 (ru) Металлическая прокладка к-образной формы
CN202433243U (zh) 油管外压密封实验装置
CN110500355B (zh) 一种止推垫圈
CN220186149U (zh) 一种新型排气管膨胀接头
CN111322476A (zh) 山字型高压自紧式法兰

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13757793

Country of ref document: EP

Kind code of ref document: A1