WO2013131339A1 - 一种干扰消除的方法及装置 - Google Patents

一种干扰消除的方法及装置 Download PDF

Info

Publication number
WO2013131339A1
WO2013131339A1 PCT/CN2012/077440 CN2012077440W WO2013131339A1 WO 2013131339 A1 WO2013131339 A1 WO 2013131339A1 CN 2012077440 W CN2012077440 W CN 2012077440W WO 2013131339 A1 WO2013131339 A1 WO 2013131339A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame structure
enb
cell
macro cell
micro
Prior art date
Application number
PCT/CN2012/077440
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/383,691 priority Critical patent/US9584194B2/en
Publication of WO2013131339A1 publication Critical patent/WO2013131339A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points

Definitions

  • the present invention relates to an LTE-advance time division duplex (TDD) communication system, and more particularly to a method and apparatus for interference cancellation.
  • TDD time division duplex
  • the system frame of TDD consists of ten subframes.
  • 3GPP Stands a total of seven frame structures, as shown in Table 1, which is the uplink and downlink frame structure of the TDD system.
  • the frame structure configured by the current serving cell of the UE is notified by the system information SIB-I.
  • SIB-I system information
  • the minimum change period of SIB information is 640ms.
  • the pre-research project of "Dynamic TDD Frame Structure" officially approved by the 3GPP at the RAN54 (December 2011) sub-committee made it possible to more dynamically allocate the frame structure of the TDD system. Shortening the change period of the frame structure of the TDD system can make full use of the characteristics of TDD to better support the transmission of asymmetric services.
  • the same uplink and downlink frame structure is usually used between the base stations (eNBs) to avoid interference between the uplink and downlink of the eNB.
  • eNBs base stations
  • the information exchange between the eNBs takes a long time, if a dynamic frame of 10 ms is used, Structure switching, because there is not enough time for information exchange between eNBs, it will bring uplink and downlink interference problems between eNBs. Summary of the invention
  • the technical problem to be solved by the embodiments of the present invention is to provide a method and apparatus for interference cancellation, which can eliminate mutual interference between uplink and downlink transmissions.
  • a method for interference cancellation includes: forming a plurality of adjacent base stations (eNBs) into a coordinated group;
  • the eNB in the cooperative group sends frame structure configuration information to each eNB except itself in the cooperative group every frame structure change period;
  • the eNB in the cooperative group configures the frame structure to be used in the next frame structure change period according to the received frame structure configuration information.
  • the frame structure configuration information is system capacity information
  • the eNB in the cooperation group sends the frame structure configuration information to each eNB except the self in the coordination group every frame structure change period, including:
  • Each eNB in the collaborative group transmits a system capacity c when using each of the (1) candidate frame structures for each eNB except itself in the frame change period. ⁇ C L k _ x , where A is the number of the eNB in the collaborative group.
  • the eNB in the collaboration group configures the frame structure used in the next frame structure change period according to the received frame structure configuration information, including:
  • the coordinated total capacity C of each candidate frame structure is calculated, Q Where Z is the number of the candidate frame structure, and the candidate frame structure corresponding to the highest coordinated total capacity is configured as the next frame structure frame structure.
  • is a macro in the eNB numbered
  • the ⁇ 1 ( + ⁇ ⁇ ) resort , wherein, 7 and 7 are respectively micro cells
  • the number of downlink subframes and uplink subframes in the next frame structure change period, ⁇ .0.001
  • the average spectral efficiency of the downlink transmission of the subframes in the same transmission direction that the micro cell and the associated macro cell have, is the system bandwidth, ⁇ I
  • O(3 ⁇ 4 m denotes the interference of the downlink signal received by the eNB and the macro cell ⁇ for the uplink reception of the micro cell.
  • the ⁇ >(3 ⁇ 4+1>; ⁇ ) protest , wherein the 7 and 77 The number of the downlink subframe and the uplink subframe in the next frame structure change period of the macro cell, respectively,
  • the ej is an average spectral efficiency of downlink transmission of a subframe of the same transmission direction that the macro cell and the subordinate micro cell have, W: eJ-O.OOl--,
  • r+ocn / ⁇ is flat, oci ⁇ represents the interference of the eNB's downlink micro-cell downlink signal to the macro cell uplink reception number 7 '.
  • the eNB includes a macro cell and a micro cell, and is sent in the downlink of the macro cell, and the uplink receiving of the micro cell further includes:
  • the macro cell sends the data sent to the user equipment of the subordinate and the scheduling result of the user equipment to the micro cell;
  • the micro cell estimates, according to the data of the user equipment and the scheduling result, the channel of the macro cell to the micro cell and the interference of the macro cell to the micro cell;
  • the micro cell subtracts interference of the macro cell from the received uplink signal.
  • the method further includes: sending, by the micro cell, a scheduling result of the subordinate user equipment to the macro cell;
  • the macro cell estimates, according to a scheduling result of the user equipment, a channel of the macro cell to the micro cell and a interference of the micro cell to the macro cell;
  • the macro cell subtracts the interference of the micro cell from the received uplink signal.
  • the number of downlink subframes and uplink subframes in the next frame structure change period, ⁇ ⁇ 0.001 ⁇ , which is the downlink transmission in the subframes of the same transmission direction that the microcells have with the associated macrocells
  • the ⁇ >(3 ⁇ 4+1>; ⁇ ) protest , where
  • An apparatus for interference cancellation includes: a frame structure configuration information transceiver unit and a frame structure configuration unit, where:
  • the frame structure configuration information transceiver unit is configured to: send frame structure configuration information to each base station (eNB) other than the local eNB in the cooperative group every frame structure change period, and receive a frame structure sent by the eNB in the cooperation group.
  • Configuration information eNB
  • the frame structure configuration unit is configured to: configure, according to the frame structure configuration information received by the frame structure configuration information transceiver unit, a frame structure used in a next frame structure variation period;
  • the cooperative group is composed of a plurality of adjacent eNBs.
  • the frame structure configuration information is system capacity information.
  • the frame structure configuration information transceiving unit is configured to transmit each of the L (L > 1) candidate frame structures in each of the eNBs other than itself in the cooperative group every frame structure change period.
  • System capacity where A is the number of the eNB in the collaboration group;
  • the frame structure configuration unit is configured to calculate a coordinated total capacity of each candidate frame structure after the frame structure configuration information transceiving unit receives the system capacity information transmitted by each eNB except the self in the cooperative group.
  • C,, Q The candidate frame structure corresponding to the highest coordinated total capacity is configured as the frame structure used in the next frame structure variation period, which is the number of the candidate frame structure.
  • the Cf jn + j ⁇ m p where " ⁇ is the macro in the eNB numbered
  • the capacity of the micro cell p when the frame structure is used in the next frame structure variation period, and the frame structure used by the micro cell p is a frame structure different from the frame structure selected by the micro cell according to its own performance.
  • O(3 ⁇ 4 m denotes the interference of the downlink signal of the eNB and the macro cell to the uplink reception of the micro cell;
  • the foregoing apparatus further includes: a macro cell unit and a micro cell unit, where:
  • the macro cell unit is configured to send data sent to the subordinate user equipment and a scheduling result to the user equipment to the micro cell unit when transmitting in the downlink;
  • the micro cell unit is configured to, when uplink receiving, estimate, according to the data of the user equipment and the scheduling result, the channel of the macro cell unit to the micro cell unit and the macro cell unit interfere with the micro cell unit, and receive the received The interference of the macro cell unit is subtracted from the uplink signal.
  • the micro cell unit is further configured to: when the downlink transmission is performed, send a scheduling result of the subordinate user equipment to the macro cell unit;
  • the macro cell unit is further configured to estimate, according to a scheduling result of the user equipment, a channel of the macro cell unit to the micro cell unit and an interference of the micro cell unit to the macro cell unit, and the received uplink signal The interference of the micro cell unit is subtracted. T r ⁇ r
  • the number of downlink subframes and uplink subframes in the next frame structure change period, ⁇ .0.001, which is the average spectral efficiency of the downlink transmission in the subframes of the same transmission direction that the microcell and the associated macrocell have System bandwidth, , said / tiny Ping "" O ( m is the number of the eNB's 5 macro cell's downlink signal to the micro-cell uplink reception interference;
  • the 7 and 7 are respectively the number of the downlink subframe and the uplink subframe in the next frame structure change period of the macro cell, where the ej is the macro cell and the subordinate micro cell.
  • the average spectral efficiency of the downlink transmission in the subframes of the same transmission direction, mf'n ⁇ 0.001.
  • the embodiment of the present invention can eliminate uplink and downlink interference when introducing a 10 ms dynamic frame structure switching, especially for uplink and downlink mutual interference between base stations on the system side.
  • FIG. 1 is a schematic diagram of a hierarchical frame structure configuration of the present embodiment
  • FIG. 2 is a flowchart of a method for interference cancellation between eNBs according to an embodiment of the present invention
  • FIG. 3 is a block diagram of an apparatus for interference cancellation according to an embodiment of the present invention.
  • the frame structure configuration information is transmitted between the eNBs in the cooperation group by forming a coordinated group for the adjacent base stations (eNBs), and the eNB in the cooperation group determines the frame change period in the next frame according to the received frame structure configuration information.
  • the frame structure used by the middle frame eliminates interference between system nodes by the scheme of cooperative frame structure configuration, and estimates the channel and interference for the data and scheduling result of the macro cell and the micro cell interaction user equipment in the eNB, thereby eliminating the eNB.
  • Internal interference in order to reduce the maximum performance gain of uplink and downlink interference.
  • the typical scenario such as the X2 interface between the eNBs
  • the typical scenario can eliminate the uplink and downlink interference between the eNBs by using the following frame structure configuration scheme, including:
  • the adjacent ( ⁇ >1) eNBs are grouped into a cooperative group, and the eNBs in the cooperative group send frame structure configuration information to each eNB except the self in the cooperative group every frame structure variation period, and the frame structure variation period
  • the unit is milliseconds, which is determined by the interaction delay between eNBs;
  • the eNB in the cooperative group configures the frame structure to be used in the next frame structure change period according to the received frame structure configuration information.
  • the frame structure configuration information includes: system capacity information;
  • the eNB ( ⁇ ) (the eNB numbered k in the cooperative group) uses the system capacity of each of the J (J > 1) candidate frame structures for each eNB ( ) in a frame change period.
  • ⁇ ' - ⁇ is sent to each eNB in the cooperative group except itself.
  • the total cooperative capacity -0 for each candidate frame structure is calculated.
  • the next frame structure variation period is configured according to the frame structure type with the highest total cooperative capacity (max ⁇ '.
  • the physical meaning of the system capacity is that the eNB( ) uses the frame structure Z transmission in the next frame structure variation period T, the predicted system capacity, and Z is the number of the candidate frame structure.
  • the system capacity of the eNB can be calculated by the following formula (1).
  • is the capacity of the macro cell predicted by the macro cell s in the next frame structure variation period, and is the micro cell in the eNB (A).
  • p is under
  • a frame structure that optimizes the performance of the micro cell itself ie, may be a frame structure different from Z
  • the micro cell may Use a different frame structure variation period than the macro cell.
  • the macro cell has a higher transmit power, and thus uses the frame structure selected from the candidate frame structure, thus forming a hierarchical
  • the frame structure configuration effect as shown in FIG. 1, the micro cell uses a frame structure different from the frame structure of the associated macro cell.
  • ⁇ ⁇ "represents the number of downlink subframes and uplink subframes in the next frame structure change period, respectively;
  • is the average spectrum of downlink transmissions of subframes (for example, 0/1/2/5/6 subframes) of the same transmission direction that the macro cell and the micro cell inside the macro cell have in the past history (predefined statistical window 2) effectiveness;
  • OCI d ' m represents interference from the eNB (the downlink signal of the macro cell of 0 to the uplink reception of the micro cell;
  • OCP d m mean , where c' m represents the micro cell in the macro cell of the eNB( ' ⁇ )
  • the received signal at the CRS/CSI-RS position, ⁇ indicates averaging over the full band (and the predefined time window).
  • OC/ represents interference from the eNB (the downlink signal of the micro cell of 0 to the uplink reception of the macro cell;
  • OCI' mean ) j , where the macro cell is represented in the micro cell of eNB( i )
  • the received signal at the CRS/CSI-RS position indicates an average over the full band (and a predefined time window).
  • the OCI (Other Cell Interference) can be obtained by measuring the CSI-RS of the interfering cell in the conflicting subframe.
  • the steps of performing interference cancellation by using the coordinated frame structure configuration scheme in this embodiment include:
  • Step 201 The micro cell determines the optimal frame structure of the current cell according to the single cell scheduling scheme; the scheduling of the micro cell may have a faster period, for example, 10 ms.
  • Step 202 The micro cell informs the associated macro cell of the frame structure spectral efficiency of the next frame structure change period, and the uplink interference level, for the macro cell to calculate the system capacity of the micro cell;
  • Step 203 Composing the adjacent f eNBs Collaborative group, for each candidate frame structure /, calculate its system capacity in the next configuration cycle according to formulas (2) ⁇ (8);
  • Step 204 The eNB in the cooperative group sends system capacity information to each eNB except the self in the cooperative group every cycle.
  • the system capacity information includes the system capacity of each of the eNB ( ) in the candidate frame structure, ie: c ⁇ .
  • Step 205 Calculate the coordinated total capacity of each candidate frame structure in each eNB in the cooperative group.
  • the eNB in the cooperative group corresponds to the highest coordinated total capacity ( max ⁇ C ' ⁇ ).
  • the frame structure is configured.
  • the foregoing method provides fast inter-eNB coordinated frame structure scheduling, and the X2 interface only needs to perform single-item information transmission to complete the frame structure configuration of the entire eNB group.
  • the interference between the macro cell and the RRH can be eliminated by the signal processing.
  • the following is the method for eliminating interference when the macro cell downlink transmission and the RRH uplink reception are performed, including:
  • Step a The macro cell transmits the data of the UE/) and the scheduling result of the UE to the RRH;
  • the scheduling result may include: a scheduled UE, a resource configuration of the UE, and a selection of the MCS.
  • the macro cell can notify the RRH of the data before encoding, and encode it by itself.
  • Step b The RRH estimates the channel H of the eNB->RRH and the interference of the macro cell signal to the RRH according to the data S and the scheduling result of the UE.
  • Step c The RRH subtracts the interference ( ) of the eNB from the uplink received signal of the current cell, and performs uplink data demodulation of the data.
  • Step A The micro cell transmits the scheduling result to the eNB;
  • the data sent by the micro cell to the user equipment is transmitted by the macro cell to the micro cell. Therefore, in this embodiment, the micro cell does not need to send the data of the user equipment to the macro cell.
  • Step B The eNB estimates the interference of the eNB->RRH channel and the micro cell signal to the macro cell;
  • Step C The eNB subtracts the interference of the micro cell from the uplink received signal, and performs uplink data demodulation.
  • the embodiment further provides an apparatus for interference cancellation, including: a frame structure, a configuration information transceiver unit, and a frame structure configuration unit, where:
  • a frame structure configuration information transceiver unit configured to send frame structure configuration information to each base station (eNB) other than itself in the coordinated group every frame structure change period, and receive frame structure configuration information sent by the eNB in the cooperation group;
  • a frame structure configuration unit configured to configure, according to a frame structure configuration information received by the frame structure configuration information transceiver unit, a frame structure used in a next frame structure change period;
  • the cooperative group is composed of a plurality of adjacent eNBs.
  • the frame structure configuration information is system capacity information
  • the frame structure configuration information transceiving unit is specifically configured to, when the frame structure change period is transmitted to each eNB other than itself in the cooperative group, when each of the L (L > 1) candidate frame structures is used.
  • System capacity where A is the number of the eNB in the collaboration group;
  • is the capacity of the macro cell in the numbered eNB when the next frame structure changes 3 ⁇ 4 period of the frame structure
  • the micro cell p in the numbered eNB is The frame structure of the next frame structure variation period is the capacity when the frame structure is used
  • the frame structure used for the micro cell area is a frame structure different from the frame structure Z selected by the micro cell according to its own performance.
  • 77 and 7 are respectively the number of sub-frames of the micro-area in the next frame structure change period 1 f-row subframes, K om -F , which is the micro-cell and system bandwidth, ⁇ e d r -O.OOl - - , / is the upper tfi of the subframes of the same transmission direction that the micro cell has the same transmission direction as the associated macro cell, and the ocr d m represents the downlink of the macro cell under the numbered eNB The interference of the signal to the uplink reception of the micro cell;
  • m ⁇ ⁇ m ⁇ (t) d + ⁇ m ⁇ (t) u
  • ej is the macro cell
  • the half-average interference level of the uplink transmission of the subframe in the direction, and OCI/ 1 indicates the interference of the downlink signal of the micro cell under the eNB numbered i to the uplink reception of the macro cell.
  • the apparatus further includes: a macro cell unit and a micro cell unit, wherein:
  • a macro cell unit configured to send data sent to the subordinate user equipment and a scheduling result of the user equipment to the micro cell unit when transmitting in downlink;
  • a micro cell unit configured to estimate, according to the data of the user equipment and the scheduling result, the channel of the macro cell unit to the micro cell unit and the macro cell unit to interfere with the micro cell unit, and subtract the received uplink signal from the received uplink signal.
  • the interference to the macro cell unit configured to estimate, according to the data of the user equipment and the scheduling result, the channel of the macro cell unit to the micro cell unit and the macro cell unit to interfere with the micro cell unit, and subtract the received uplink signal from the received uplink signal.
  • the micro cell unit is further configured to send a scheduling result of the subordinate user equipment to the macro cell unit when transmitting in downlink;
  • the macro cell unit is further configured to estimate, according to the scheduling result of the user equipment, the channel of the macro cell unit to the micro cell unit and the interference of the micro cell unit to the macro cell unit, and subtract the interference of the micro cell unit from the received uplink signal. .
  • m ⁇ ⁇ m ⁇ (t) d + ⁇ m ⁇ (t) u
  • ej is macro cell ⁇ 0.001 ⁇ .
  • the embodiment of the present invention can eliminate uplink and downlink interference, especially for uplink and downlink mutual interference between base stations on the system side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种干扰消除的方法及装置,该方法包括:将相邻的多个基站(eNB)组成协同组;协同组中的eNB每隔帧结构变动周期向协同组内的除自身之外的每个eNB发送帧结构配置信息;协同组中的eNB根据接收到的帧结构配置信息配置在下一个帧结构变动周期中采用的帧结构。该方法在引入10ms动态帧结构切换时,能够消除上下行干扰,尤其对于系统侧的基站之间的上下行相互干扰。

Description

一种干扰消除的方法及装置
技术领域
本发明涉及 LTE-advance (长期演进-增强型) 时分双工 ( TDD )通信系 统, 尤其涉及一种干扰消除的方法及装置。 背景技术
在 LTE及 LTE-A标准中 , TDD的系统帧由十个子帧组成。 3GPP—共支 持 7种帧结构, 如表 1所示, 为 TDD系统上下行帧结构。
表 1
Figure imgf000003_0001
目前 3GPP标准中是通过系统信息 SIB-I来通知 UE当前服务小区所配置 的帧结构。根据现有标准, SIB信息最小变动周期是 640ms。在 3GPP于 RAN54 ( 2011年 12月)次全会正式批准的 "动态 TDD帧结构" 的预研项目, 使更 加动态的分配 TDD系统的帧结构成为可能。 缩短 TDD系统帧结构的变动周 期可以充分利用 TDD的特性以更好地支持非对称业务的传输。
目前, 基站(eNB )之间通常釆用相同的上下行帧结构, 以避免 eNB上 下行相互之间的干扰, 然而, 由于 eNB之间的信息交互需要较长的时间, 如 果釆用 10ms动态帧结构切换, 由于没有足够的时间给 eNB进行信息交互, 将会带来 eNB之间的上下行干扰问题。 发明内容
本发明实施例要解决的技术问题是提供一种干扰消除的方法及装置, 能 够消除上下行传输之间的相互干扰。
为解决上述技术问题, 本发明实施例的一种干扰消除的方法, 包括: 将相邻的多个基站 (eNB)组成协同组;
协同组中的 eNB每隔帧结构变动周期向协同组内的除自身之外的每个 eNB发送帧结构配置信息;
协同组中的 eNB才艮据接收到的帧结构配置信息配置在下一个帧结构变动 周期中釆用的帧结构。
可选的, 所述帧结构配置信息为系统容量信息, 协同组中的 eNB每隔帧 结构变动周期向协同组内的除自身之外的每个 eNB发送帧结构配置信息, 包 括:
所述协同组中的每个 eNB每隔帧结构变动周期向协同组内的除自身之外 的每个 eNB 发送在釆用 ( > 1)种候选帧结构中的每一种时的系统容量 c ~ CL k_x , 其中, A为 eNB在协同组中的编号。
可选的, 协同组中的 eNB才艮据接收到的帧结构配置信息配置在下一个帧 结构变动周期中釆用的帧结构, 包括:
所述协同组中的每个 eNB接收到协同组中除自身之外的每个 eNB发送的 系统容量信息后, 计算出每一种候选帧结构的协同总容量 C,, Q
Figure imgf000004_0001
, 其 中, Z为候选帧结构的编号, 将最高的协同总容量对应的候选帧结构配置为在 下一个帧结构 帧结构。
可选的, 其中, 《^为编号为 的 eNB中的宏小
Figure imgf000004_0002
区 s在下一帧结构变动周期釆用帧结构 /时的容量, 为编号为 的 eNB中的 微小区 p在下一帧结构变动周期釆用帧结构 时的容量,所述微小区 p釆用的 帧结构 ^为微小区才艮据自身性能选择的不同于帧结构 的帧结构。
f r f r
可选的, 所述^ = 1 ( +∑< )„ , 其中, 7和 7:分别为微小区
t=0 t=0
在下一帧结构变动周期中下行子帧和上行子帧的数目, ^ = .0.001 , 所述 为微小区与所属的宏小区具有的相同传输方向的子帧的下行传输的平 均频谱效率, 为系统带宽, η I
ed r -O.OOl- -- : , 所述 /:;为微小 i:+∑ocr/'
O(¾m表示编号为 、 eNB下^宏小区 ^下行信号对微小区上行接收的干扰。 可选的, 所述^= > (¾+1>;^)„ , 其中, 所述 7 和 77分别为 宏小区在下一帧结构变动周期中下行子帧和上行子帧的数目, 所述
Figure imgf000005_0001
, 所述 ej为宏小区与下属的微小区具有的相同传输方向的 子帧的下行传输的平均频谱效率, W : eJ-O.OOl- - , 所述
r+ocn /Γ为 平, oci^表示编号为7 '的、 eNB下^微小区 下行信号对宏小区上行接收的干 扰。
可选的, 所述 eNB包括宏小区和微小区, 在所述宏小区下行发送, 所述 微小区上行接收时还包括:
所述宏小区将发送给下属的用户设备的数据和对用户设备的调度结果发 送给微小区;
所述微小区根据用户设备的数据和调度结果, 估计所述宏小区到该微小 区的信道和宏小区对该微小区的干扰;
所述微小区从接收到的上行信号中减去所述宏小区的干扰。
可选的, 在所述宏小区上行接收, 所述微小区下行发送时还包括: 所述微小区将对下属的用户设备的调度结果发送给宏小区;
所述宏小区根据所述用户设备的调度结果估计该宏小区到所述微小区的 信道和所述微小区对该宏小区的干扰;
所述宏小区从接收到的上行信号中减去所述微小区的干扰。
f r f r
可选的, 所述^=1 ( +∑< )„ , 其中, 7和 7:分别为微小区 t=0 t=0
在下一帧结构变动周期中下行子帧和上行子帧的数目, ^= ·0.001· , 所述 为微小区与所属的宏小区具有的相同传输方向的子帧中的下行传输的 平均频谱效率, 为系统带宽, , 所述 /微小
Figure imgf000006_0001
平"" O(¾m为编号为;的 eNB的5宏小区的°下行信号对微小区上行接收的干扰。 可选的, 所述^ = > (¾+1>;^)„ , 其中, 所述 7 和 77分别为 宏小区在下一帧结构变动周期中下行子帧和上行子帧的数目, 所述 mk s {t)d = ed m -
Figure imgf000006_0002
-F , 所述 ej为宏小区与下属的微小区具有的相同传输方向的 子帧中的下行传输的平均频谱效率, mk s
Figure imgf000006_0003
= ed m · 0.001 · F。 本发明实施例的一种干扰消除的装置, 包括: 帧结构配置信息收发单元 和和帧结构配置单元, 其中:
所述帧结构配置信息收发单元设置为: 每隔帧结构变动周期向协同组内 的除本 eNB之外的每个基站 (eNB)发送帧结构配置信息,并接收协同组中 eNB 发送的帧结构配置信息;
所述帧结构配置单元设置为: 根据所述帧结构配置信息收发单元接收到 的帧结构配置信息配置在下一个帧结构变动周期中釆用的帧结构;
其中, 所述协同组由相邻的多个 eNB组成。
可选的, 所述帧结构配置信息为系统容量信息;
所述帧结构配置信息收发单元是设置为每隔帧结构变动周期向协同组内 的除自身之外的每个 eNB发送在釆用 L (L > 1)种候选帧结构中的每一种时的 系统容量 其中, A为 eNB在协同组中的编号;
所述帧结构配置单元是设置为在所述帧结构配置信息收发单元接收到协 同组中除自身之外的每个 eNB发送的系统容量信息后, 计算出每一种候选帧 结构的协同总容量 C,, Q
Figure imgf000006_0004
, 其中, 为候选帧结构的编号, 将最高的协 同总容量对应的候选帧结构配置为在下一个帧结构变动周期中釆用的帧结 构。
可选的, 所逸 Cf = j n +j †m p 其中, 《^为编号为 的 eNB中的宏小
=0 p=0
区 s在下一帧结构变动周期釆用帧结构 /时的容量, 为编号为 的 eNB中的 微小区 p在下一帧结构变动周期釆用帧结构 时的容量,所述微小区 p釆用的 帧结构 ^为微小区才艮据自身性能选择的不同于帧结构 的帧结构。
f r f r
可选的, 所述^=1 ( +∑< )„ , 其中, 7和 7:分别为微小区 t=0 t=0
在下一帧结构变动周期中下行子帧和上行子帧的数目, ^= .0.001 , 所述 为微小区与所属的宏小区具有的相同传输方向的子帧的下行传输的平 均频谱效率, 为系统带宽,
Figure imgf000007_0001
( Κ = ·0.001· —— , 所述 /为微小
" i:+∑ crd m
i=0
O(¾m表示编号为 、 eNB下^宏小区 下行信号对微小区上行接收的干扰; 所
Figure imgf000007_0002
,其中, 所述 7 和 7 分别为宏小区在 下一帧结构变动周期中下行子帧和上行子帧的数目,所述 = .0.001 , 所述 ej为宏小区与下属的微小区具有的相同传输方向的子帧的下行传输的平 均频谱效率, , 所述 /„m为宏小区与下属的微小
Figure imgf000007_0003
的 eNB下 微小区 下行信号对宏小区上行接收的干扰。 ' 口 可选的, 上述装置还包括: 宏小区单元和微小区单元, 其中:
所述宏小区单元, 设置为在下行发送时, 将发送给下属的用户设备的数 据和对用户设备的调度结果发送给微小区单元;
所述微小区单元, 设置为在上行接收时, 根据用户设备的数据和调度结 果, 估计所述宏小区单元到该微小区单元的信道和宏小区单元对该微小区单 元的干扰, 从接收到的上行信号中减去所述宏小区单元的干扰。
可选的, 所述微小区单元, 还设置为在下行发送时, 将对下属的用户设 备的调度结果发送给宏小区单元;
所述宏小区单元, 还设置为根据所述用户设备的调度结果估计该宏小区 单元到所述微小区单元的信道和所述微小区单元对该宏小区单元的干扰, 从 接收到的上行信号中减去所述微小区单元的干扰。 T r τ r
可选的, 所述^=1 ( +∑< )„ , 其中, 7和 7:分别为微小区 t=0 t=0
在下一帧结构变动周期中下行子帧和上行子帧的数目, ^ = .0.001 , 所述 为微小区与所属的宏小区具有的相同传输方向的子帧中的下行传输的 平均频谱效率, 为系统带宽, , 所述 /微小
Figure imgf000008_0001
平"" O( m为编号为;的 eNB的5宏小区的°下行信号对微小区上行接收的干扰; 所
Figure imgf000008_0002
, 其中, 所述 7 和 7 分别为宏小区在 下一帧结构变动周期中下行子帧和上行子帧的数目,所述 = ·ο.οοι , 所述 ej为宏小区与下属的微小区具有的相同传输方向的子帧中的下行传输的 平均频谱效率, mf'n = · 0.001 。 综上所述,本发明实施例在引入 10ms动态帧结构切换时, 能够消除上下 行干扰, 尤其对于系统侧的基站之间的上下行相互干扰。
附图概述
图 1为本实施方式的分等级的帧结构配置的示意图;
图 2为本实施方式的 eNB之间的干扰消除的方法的流程图;
图 3为本实施方式的干扰消除的装置的架构图。
本发明的较佳实施方式
本实施方式通过对相邻的基站 (eNB)组成协同组, 在协同组中的 eNB之 间传送帧结构配置信息, 协同组中的 eNB根据接收到的帧结构配置信息确定 在下一个帧结构变动周期中釆用的帧结构, 通过协同帧结构配置的方案消除 系统节点之间的干扰, 并且, 对 eNB内的宏小区和微小区交互用户设备的数 据及调度结果, 估计信道及干扰, 进而消除 eNB内的干扰, 以此来减小上下 行干扰达到最大的性能增益。
在现有异构蜂窝网架构中,不同系统节点之间的数据传输延时是不同的, 下面分两类进行说明:
(一)在系统节点之间的数据传输延时较大时, 典型的场景如 eNB之间 的 X2接口, 可以通过如下帧结构配置方案消除 eNB之间的上下行干扰, 包 括:
将相邻的 ( ^ > 1 )个 eNB组成协同组, 协同组中的 eNB每隔帧结构 变动周期 Γ对协同组内的除自身之外的每一个 eNB发送帧结构配置信息, 帧 结构变动周期 的单位为毫秒, 由 eNB之间的交互延时决定;
协同组中的 eNB才艮据接收到的帧结构配置信息配置在下一个帧结构变动 周期中釆用的帧结构。
帧结构配置信息包括: 系统容量信息;
eNB ( ^ ) (协同组中编号为 k的 eNB )每隔帧结构变动周期将该 eNB ( ) 釆用 J (J > 1)种候选帧结构中的每一种帧结构时的系统容量 ' '···' -ι发送 给协同组中除自身之外的每个 eNB。
协同组内的每一个 eNB, 当接收到组内其他 eNB的系统容量信息以后, c = Yck
计算出对于每一种候选帧结构的协同总容量 -0 在下一个帧结构变动 周期按照协同总容量最高 (max^' 的帧结构类型配置。
其中, 系统容量 的物理含义是 eNB( )在下一帧结构变动周期 T时间内 釆用帧结构 Z传输, 所预测的系统容量, Z为候选帧结构的编号。
目前, 可釆用下面的公式 (1)计算 eNB的系统容量 。
Figure imgf000009_0001
在公式 (1)中,《^是6湖( 中的宏小区 s在下一帧结构变动周期 时间内 釆用帧结构 Z传输时所预测的宏小区的容量, 是 eNB(A)中的微小区 p在下
本实施方式中, 考虑到微小区具有较小的覆盖范围和发射功率, 因此可 以釆用使微小区本身性能最优的帧结构(即可以是不同于 Z的帧结构),并且, 微小区可以釆用与宏小区不同的帧结构变动周期。 而宏小区具有较高的发射 功率, 因而釆用从候选帧结构中选择的帧结构, 这样就构成了一种分等级的 帧结构配置效果, 如图 1所示, 微小区釆用不同于所属宏小区的帧结构的帧 结构。
因此, 确定如下公式 (2)计算'
Figure imgf000010_0001
其中, r^是 eNB(A)中的宏小区在下一帧结构变动周期 时间内釆用帧结 构 Z传输时, 微小区 P釆用最优的帧结构 时所预测的微小区的容量。 根据数据业务类型和不同的调度 /接收算法, 和 可以有多种计算方 法, 下面以 ftp业务传输为例, 说明"^和 的计算方法。
定义如下变量(以下变量省略了右上标, 后续使用中, 如下变量填加右 上标 , 分别表示该变量针对宏小区和微小区) :
Τ Τ"分别表示下一帧结构变动周期 中的下行子帧和上行子帧的数目;
^是过往历史(预定义的统计窗口 2 )中宏小区与宏小区内部的微小区具 有的相同传输方向的子帧(例如 0/1/2/5/6子帧 )的下行传输的平均频谱效率;
7«是过往历史(预定义的统计窗口 3 )中宏小区与该宏小区内部的微小区 具有的相同传输方向的子帧 (例如 0/1/2/5/6子帧 ) 的上行传输的平均干扰水 平;
是系统带宽;
OCId' m表示来自 eNB(0的宏小区的下行信号对微小区上行接收的干扰;
OCPd m = mean , 其中, c' m表示微小区在 eNB( '· )的宏小区的
Figure imgf000010_0002
CRS/CSI-RS位置的接收信号, ^表示在全频带 (以及预定义的时间窗口) 上取平均。
OC/ 表示来自 eNB(0的微小区的下行信号对宏小区上行接收的干扰;
OCI' = mean )j , 其中, 表示宏小区在 eNB( i )的微小区的
Figure imgf000010_0003
CRS/CSI-RS位置的接收信号, 表示在全频带 (以及预定义的时间窗口) 上取平均。
根据以上定义, 有: m^ =∑m^(t)d +∑m^(t)u (3) = iH + H (4) 忽略 UE对 UE的干扰, 对于下行子帧 有:
^(^=^•0.001·^ (5)
UK0 'F (6)
忽略微小区之间的干扰以及微小区对非所属宏小区的干扰, 对于上行子 帧, 有: d +OCIk (7) p (α = · o.001 ·^ ττ—— (8)
Figure imgf000011_0001
对于宏小区和微小区而言, OCI ( Other Cell Interference )可以通过在冲 突子帧测量干扰小区的 CSI-RS获得。
下面结合附图对本实施方式的干扰消除的方法进行说明。
如图 2所示, 本实施方式通过协同帧结构配置的方案进行干扰消除的步 骤包括:
步骤 201: 微小区按照单小区调度方案确定本小区最优的帧结构; 微小区的调度可以具有较快的周期, 例如 10ms。
步骤 202:微小区通知所属的宏小区其在下一帧结构变动周期 的帧结构 频谱效率 , 以及上行干扰水平 , 用于宏小区计算微小区的系统容量; 步骤 203: 将相邻的 f个 eNB组成协同组, 对每一种候选帧结构 /, 按照 公式 (2)〜 (8)计算出其在下一次配置周期中的系统容量;
步骤 204: 协同组中的 eNB每隔周期 Γ向协同组中除自身之外的每一个 eNB发送系统容量信息; 系统容量信息包含 eNB ( )在釆用 种候选帧结构中每一种时的系统容 量, 即: c ^。
步骤 205: 协同组中的每个 eNB计算出每一种候选帧结构的协同总容量 , 在下一个帧结构变动周期, 协同组中的 eNB 按照最高的协同总容量 ( max{C'} )对应的帧结构进行配置。
上述方法提供了较快的 eNB之间协同帧结构调度, X2接口只需要一次 单项信息传送即可以完成整个 eNB组的帧结构配置。
(二)在系统节点之间的数据传输无延时(或延时可以忽略不计) , 典 型的场景例如, 宏小区和 RRH ( Remote Radio Head )之间的交互。
对于没有传输延时的异构网,宏小区和 RRH之间的干扰可以通过信号处 理的办法消除, 以下为宏小区下行发送与 RRH上行接收时干扰的消除方法, 包括:
步骤 a: 宏小区将 UE的数据 /)和对 UE的调度结果传送给 RRH;
调度结果可以包括: 调度的 UE, UE的资源配置和 MCS的选择等。 为了降低回传数据量, 宏小区可以将编码前的数据通知 RRH, 由其自行 编码。
步骤 b: RRH根据 UE的数据 S和调度结果估计出 eNB->RRH的信道 H和 宏小区信号对 RRH的干扰 H . S ;
步骤 c: RRH从本小区的上行接收信号 中减去 eNB的干扰( ) , 并进行数据的上行数据解调。
以下为宏小区上行接收与 RRH下行发送时干扰的消除方法, 包括: 步骤 A: 微小区将调度结果传送给 eNB;
由于微小区向用户设备发送的数据均是由宏小区传输给微小区, 因此, 本实施方式中, 微小区无需将用户设备的数据发送给宏小区。
步骤 B: eNB估计出的 eNB->RRH信道和微小区信号对宏小区的干扰; 步骤 C: eNB从上行接收信号中减去微小区的干扰, 并进行的上行数据 解调。
在釆用上述宏小区与微小区之间的干扰消除方案以后, 因为消除了 eNB 内部的干扰, 因此, 上述公式 (7)和公式 (8)可以改进为:
ml k's {t)u = ej · 0.001 - (9)
P
Figure imgf000013_0001
(10)
+∑ cir
如图 3所示, 本实施方式还提供了一种干扰消除的装置, 包括: 帧结构 配置信息收发单元和和帧结构配置单元, 其中:
帧结构配置信息收发单元, 用于每隔帧结构变动周期向协同组内的除自 身之外的每个基站 (eNB)发送帧结构配置信息, 并接收协同组中 eNB发送的 帧结构配置信息;
帧结构配置单元, 用于根据帧结构配置信息收发单元接收到的帧结构配 置信息配置在下一个帧结构变动周期中釆用的帧结构;
其中, 协同组由相邻的多个 eNB组成。
帧结构配置信息为系统容量信息;
帧结构配置信息收发单元, 具体用于每隔帧结构变动周期向协同组内的 除自身之外的每个 eNB发送在釆用 L (L > 1)种候选帧结构中的每一种时的系 统容量 其中, A为 eNB在协同组中的编号;
帧结构配置单元, 具体用于在帧结构配置信息收发单元接收到协同组中 除自身之外的每个 eNB发送的系统容量信息后, 计算出每一种候选帧结构的 协同总容量 C,, =∑ k , 其中, 为候选帧结构的编号, 将最高的协同总容 量对应的候选帧结构" 1 置为在下一个帧结构变动周期中釆用的帧结构。
c = j i +j m p 其中, 《^为编号为 的 eNB中的宏小区 在下一帧 结构变动¾期釆周帧结构 时的容量, 为编号为 的 eNB 中的微小区 p在 下一帧结构变动周期釆用帧结构 时的容量,微小区 p釆用的帧结构 为微小 区才艮据自身性能选择的不同于帧结构 Z的帧结构。
Td r τ r
ΐ^Σί ,+Σί ^其中, 77和 7:分别为微小区在下一帧结构 变动周期1 f 行子帧 °上行子帧的数目, K om -F , 为微小区与 系统带宽, ■■ed r -O.OOl- - , /为微小区与所属的宏小区具有 的相同传输方向的子帧的上 tfi夸 §„均干扰水平, ocrd m表示编号为 的 eNB下的宏小区的下行信号对微小区上行接收的干扰;
m^ =∑m^(t)d+^m^(t)u , 其中, 和 7:™分别为宏小区在下一帧结 构变动周期中下行子帧和上行子帧的数目, ^= .0.001 , ej为宏小区
- 、 ' r
m, = ·0.001 ·- I:为宏小区与下属的微小区具有的相同传输 r+ocir
方向的子帧的上行传输的半均干扰水平, OCI/1 表示编号为 i的 eNB下的微小 区的下行信号对宏小区上行接收的干扰。
该装置还包括: 宏小区单元和微小区单元, 其中:
宏小区单元, 用于在下行发送时, 将发送给下属的用户设备的数据和对 用户设备的调度结果发送给微小区单元;
微小区单元, 用于在上行接收时, 根据用户设备的数据和调度结果, 估 计宏小区单元到该微小区单元的信道和宏小区单元对该微小区单元的干扰, 从接收到的上行信号中减去宏小区单元的干扰。
微小区单元, 还用于在下行发送时, 将对下属的用户设备的调度结果发 送给宏小区单元;
宏小区单元, 还用于根据用户设备的调度结果估计该宏小区单元到微小 区单元的信道和微小区单元对该宏小区单元的干扰, 从接收到的上行信号中 减去微小区单元的干扰。
基于宏小 单元与微^区单元的干扰消除,还可以釆用以下方式计算 和 P = T f 、t、d+^f 、t、u , 其中, 77和 7:分别为微小区在下一帧 构变动周期中 行子帧和 行子帧的数目, K om -F , 为微小区 与所属的宏小
为系统带宽, I:
■ ed r -0.001- F■ M , /微小区与所属的宏小区具 eNB的宏小区的下行信号对微小区上行接收的干扰;
m^ =∑m^ (t)d +^m^ (t)u , 其中, 和 7:™分别为宏小区在下一帧结 构变动周期中下行子帧和上行子帧的数目, ^= .0.001 , ej为宏小区 · 0.001 · 。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保护 范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保护范围之内。
工业实用性
本发明实施例在引入 10ms动态帧结构切换时, 能够消除上下行干扰,尤 其对于系统侧的基站之间的上下行相互干扰。

Claims

权 利 要 求 书
1、 一种干扰消除的方法, 其包括:
将相邻的多个基站 (eNB)组成协同组;
所述协同组中的 eNB每隔一个帧结构变动周期向协同组内的除自身之外 的每个 eNB发送帧结构配置信息;
所述协同组中的 eNB才艮据接收到的所述帧结构配置信息配置在下一个帧 结构变动周期中釆用的帧结构。
2、 如权利要求 1所述的方法, 其中:
所述帧结构配置信息为系统容量信息, 所述协同组中的 eNB每隔帧结构 变动周期向协同组内的除自身之外的每个 eNB发送帧结构配置信息的步骤包 括:
所述协同组中的每个 eNB每隔帧结构变动周期向协同组内的除自身之外 的每个 eNB发送在釆用 种候选帧结构中的每一种时的系统容量 〜 C\_x,其 中, A为 eNB在协同组中的编号, L为大于 1的整数。
3、 如权利要求 2所述的方法, 其中, 所述协同组中的 eNB根据接收到 的帧结构配置信息配置在下一个帧结构变动周期中釆用的帧结构的步骤包 括:
所述协同组中的每个 eNB接收到协同组中除自身之外的每个 eNB发送的 系统容量信息后, 计算出每一种候选帧结构的协同总容量 C,, Q
Figure imgf000016_0001
, 将 最高的协同总容量对应的候选帧结构配置为在下一个帧结构变动周期中釆用 的帧结构;
其中, /为候选帧结构的编号, K为所述协同组中的 eNB的数量。
4、 如权利要求 3所述的方法, 其中: 所 Cf =j ^ 其中, 《^为编号为 的 eNB中的宏小区 s在下
=0 p=0
一帧结构变动周期釆用帧结构 Z时的容量, 为编号为 的 eNB中的 小区 p 在下一帧结构变动周期釆用帧结构 lm时的容量,所述微小区 p釆用的帧结构 lm 为微小区根据自身性能选择的不同于帧结构 /的帧结构。
5、 如权利要求 4所述的方法, 其中:
f r f r
所述^ =ί ( 其中, 77和 77分别为微小区在下一帧 t=0 t=0
结构变动周期中下行子帧和上行子帧的数目, /^(^= .0.001 , 所述 为 率, 为系统带宽, f ( = ·ο.οοι· ·- , 所述 /,:为微小区与所属 i:+∑ crd m
i=0 编号为的 eNB下的5宏小区的 °下行信号对微小区上行接:收的干 4尤。
6、 如权利要求 5所述的方法, 其中: 所述 w = wf'O)rf+ Jwf'^)u , 其中, 所述 7 和 7 分别为宏小区在 下一帧结构变动周期中下行子帧和上行子帧的数目,所述 = ·ο.οοι , 所述 ej为宏小区与下属的微小区具有的相同传输方向的子帧的下行传输的平 均频谱效率, m, = ·0.001 ' -, 所述 为宏小区与下属的微小 r+oci
尤水平, ocr/表示编号为 i的 eNB下的微小区的下行信号对宏小区上行接收的干扰。
7、 如权利要求 4所述的方法, 其中, 所述 eNB包括宏小区和微小区, 在所述宏小区下行发送, 所述微小区上行接收时, 所述方法还包括:
所述宏小区将发送给下属的用户设备的数据和对用户设备的调度结果发 送给微小区;
所述微小区根据用户设备的数据和调度结果, 估计所述宏小区到该微小 区的信道和宏小区对该微小区的干扰;
所述微小区从接收到的上行信号中减去所述宏小区的干扰。
8、 如权利要求 4所述的方法, 其中, 所述 eNB包括宏小区和微小区, 在所述宏小区上行接收, 所述微小区下行发送时, 所述方法还包括:
所述微小区将对下属的用户设备的调度结果发送给宏小区; 所述宏小区根据所述用户设备的调度结果估计该宏小区到所述微小区的 信道和所述微小区对该宏小区的干扰;
所述宏小区从接收到的上行信号中减去所述微小区的干扰。
9、 如权利要求 8所述的方法, 其中:
f r f r
所述^ =i Wrf +l W„, 其中, 77和 77分别为微小区在下一帧 t=0 t=0
结构变动周期中下行子帧和上行子帧的数目, /^ (^ = .0.001 , 所述 为 效率, 为系统带宽, , 所述 /微小区与所属
Figure imgf000018_0001
编号为 ^的 eNB的宏5小区的^行信号对微小区上行接收的 ^干扰: ' '
10、 如权利要求 8所述的方法, 其中: 所述 w = wf'O)rf + Jwf'^)u , 其中, 所述 7 和 7 分别为宏小区在 下一帧结构变动周期中下行子帧和上行子帧的数目,所述 = ·ο.οοι , 所述 ej为宏小区与下属的微小区具有的相同传输方向的子帧中的下行传输的 平均频谱效率, = · 0.001 。
11、 一种干扰消除的装置, 其包括: 帧结构配置信息收发单元和和帧结 构配置单元, 其中:
所述帧结构配置信息收发单元设置为: 每隔一个帧结构变动周期向协同 组内的除自身之外的每个基站 (eNB)发送帧结构配置信息, 并接收协同组中 eNB发送的帧结构配置信息;
所述帧结构配置单元设置为: 根据所述帧结构配置信息收发单元接收到 的帧结构配置信息配置在下一个帧结构变动周期中釆用的帧结构;
其中, 所述协同组由相邻的多个 eNB组成。
12、 如权利要求 11所述的装置, 其中: 所述帧结构配置信息为系统容量信息;
所述帧结构配置信息收发单元是恶化值为: 每隔一个帧结构变动周期向 协同组内的除自身之外的每个 eNB发送在釆用 L种候选帧结构中的每一种时 的系统容量 其中, A为 eNB在协同组中的编号, L为大于 1的整数; 所述帧结构配置单元是设置为: 在所述帧结构配置信息收发单元接收到 协同组中除自身之外的每个 eNB发送的系统容量信息后, 计算出每一种候选 帧结构的协同总容量 C,, Q
Figure imgf000019_0001
, 将最高的协同总容量对应的候选帧结构 配置为在下一个帧结构变动周期中釆用的帧结构;
其中, /为候选帧结构的编号, K为所述协同组中的 eNB的数量。
13、 如权利要求 12所述的装置, 其中: 所 Cf =j ^ 其中, 《^为编号为 的 eNB中的宏小区 s在下
=0 p=0
一帧结构变动周期釆用帧结构 Z时的容量, r^为编号为 的 eNB中的 小区 p 在下一帧结构变动周期釆用帧结构 时的容量 ,所述微小区 p釆用的帧结构 为微小区根据自身性能选择的不同于帧结构 的帧结构。
14、 如权利要求 13所述的装置, 其中:
f r f r
所述^ =ί ( 其中, 77和 77分别为微小区在下一帧
t=0 t=0
结构变动周期中下行子帧和上行子帧的数目, /^ (^ = .0.001 , 所述 为 率, 为系统带宽,
Figure imgf000019_0002
= ·0.001· —— , 所述 /为微小区与所属 i: +∑ crd m
i=0 编号为的 eNB下的5宏小区的 °下行信号对微小区上行接:收的干 4尤; 所述 w = wf'O)rf + Jwf'^)u , 其中, 所述 7 和 7 分别为宏小区在 下一帧结构变动周期中下行子帧和上行子帧的数目,所述 = ·ο.οοι , 所述 ej为宏小区与下属的微小区具有的相同传输方向的子帧的下行传输的平 均频谱效率,
Figure imgf000019_0003
- F—— , 所述 /„m为宏小区与下属的微小 水平, ooy表示编号为 i的 eNB下的微小区的下行信号对宏小区上行接收的干扰。
15、 如权利要求 13所述的装置, 其还包括: 宏小区单元和微小区单元, 其中:
所述宏小区单元设置为: 在下行发送时, 将发送给下属的用户设备的数 据和对用户设备的调度结果发送给微小区单元;
所述微小区单元设置为: 在上行接收时, 根据用户设备的数据和调度结 果, 估计所述宏小区单元到该微小区单元的信道和宏小区单元对该微小区单 元的干扰, 从接收到的上行信号中减去所述宏小区单元的干扰。
16、 如权利要求 13所述的装置, 其还包括宏小区单元和微小区单元, 其 所述微小区单元设置为: 在下行发送时, 将对下属的用户设备的调度结 果发送给宏小区单元;
所述宏小区单元设置为: 根据所述用户设备的调度结果估计该宏小区单 元到所述微小区单元的信道和所述微小区单元对该宏小区单元的干扰, 从接 收到的上行信号中减去所述微小区单元的干扰。
17、 如权利要求 15所述的装置, 其中:
f r f r
所述^ =ί ( 其中, 77和 77分别为微小区在下一帧 t=0 t=0
结构变动周期中下行子帧和上行子帧的数目, /^ (^ = .0.001 , 所述 为 效率, 为系统带宽,
Figure imgf000020_0001
, 所述 /微小区与所属
m " I: +∑oci
编号为 eNB的宏5小区的^行信号对微小区上行接收的 ^干扰: ' ' ' 所述 w = wf'O)rf + J wf'^)u , 其中, 所述 7 和 7 分别为宏小区在 下一帧结构变动周期中下行子帧和上行子帧的数目,所述 = ·ο.οοι , 所述 ej为宏小区与下属的微小区具有的相同传输方向的子帧中的下行传输的 平均频谱效率 ,
Figure imgf000021_0001
= ed m · 0.001 · F。
PCT/CN2012/077440 2012-03-09 2012-06-25 一种干扰消除的方法及装置 WO2013131339A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/383,691 US9584194B2 (en) 2012-03-09 2012-06-25 Method and apparatus for cancelling interference

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210061520.4 2012-03-09
CN2012100615204A CN103313398A (zh) 2012-03-09 2012-03-09 一种干扰消除的方法及装置

Publications (1)

Publication Number Publication Date
WO2013131339A1 true WO2013131339A1 (zh) 2013-09-12

Family

ID=49115910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077440 WO2013131339A1 (zh) 2012-03-09 2012-06-25 一种干扰消除的方法及装置

Country Status (3)

Country Link
US (1) US9584194B2 (zh)
CN (1) CN103313398A (zh)
WO (1) WO2013131339A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105306184B (zh) * 2014-07-24 2019-09-06 上海朗帛通信技术有限公司 一种laa传输方法和装置
CN106412947B (zh) * 2015-07-31 2019-11-01 华为技术有限公司 一种干扰的消除方法和用户设备以及基站
CN108574953B (zh) 2017-03-09 2020-06-09 华为技术有限公司 一种信道接入方法、装置及计算机存储介质
CN109302708A (zh) * 2017-07-24 2019-02-01 中国移动通信有限公司研究院 一种基于交叉链路干扰测量的帧结构配置方法和基站
CN109803387B (zh) * 2017-11-17 2021-01-15 中国移动通信有限公司研究院 一种资源配置方法及网络侧设备
WO2020061724A1 (en) * 2018-09-24 2020-04-02 Qualcomm Incorporated Triggering mechanism for remote interference management

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090059854A1 (en) * 2006-01-13 2009-03-05 Matsaushita Electric Industrial Co., Ltd. Radio communication base station apparatus and radio communication method
KR100982730B1 (ko) * 2010-05-31 2010-09-16 삼성탈레스 주식회사 가변 프레임 구조를 이용하여 인프라 네트워크와 애드혹 네트워크를 연동하여 통신을 수행하는 방법 및 시스템
CN102025411A (zh) * 2010-10-11 2011-04-20 中兴通讯股份有限公司 一种时分双工系统及其动态帧结构和配置方法
CN102137499A (zh) * 2011-04-14 2011-07-27 电信科学技术研究院 一种进行干扰协调的方法、系统和设备
CN102196580A (zh) * 2011-06-22 2011-09-21 新邮通信设备有限公司 一种动态配置tdd基站上下行子帧比例的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7894371B2 (en) * 2007-07-31 2011-02-22 Motorola, Inc. System and method of resource allocation within a communication system
CN101772029B (zh) * 2009-01-05 2016-03-23 上海贝尔股份有限公司 频率资源分配方法和设备以及无线通信系统
US8248981B2 (en) * 2010-01-21 2012-08-21 Eigent Technologies, Inc. Method and apparatus for low cost, long range, power efficient, wireless system with enhanced functionality
EP2604055B1 (en) * 2010-08-13 2018-07-25 Telefonaktiebolaget LM Ericsson (publ) Automatic guard period adjustment in time division duplexed wireless communication
US8666341B2 (en) * 2010-10-22 2014-03-04 Ultra Electronics Tcs Inc. Multi-mode communication unit
CN102281638B (zh) * 2011-08-02 2014-07-09 电信科学技术研究院 一种调度子帧的方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090059854A1 (en) * 2006-01-13 2009-03-05 Matsaushita Electric Industrial Co., Ltd. Radio communication base station apparatus and radio communication method
KR100982730B1 (ko) * 2010-05-31 2010-09-16 삼성탈레스 주식회사 가변 프레임 구조를 이용하여 인프라 네트워크와 애드혹 네트워크를 연동하여 통신을 수행하는 방법 및 시스템
CN102025411A (zh) * 2010-10-11 2011-04-20 中兴通讯股份有限公司 一种时分双工系统及其动态帧结构和配置方法
CN102137499A (zh) * 2011-04-14 2011-07-27 电信科学技术研究院 一种进行干扰协调的方法、系统和设备
CN102196580A (zh) * 2011-06-22 2011-09-21 新邮通信设备有限公司 一种动态配置tdd基站上下行子帧比例的方法

Also Published As

Publication number Publication date
CN103313398A (zh) 2013-09-18
US20150016293A1 (en) 2015-01-15
US9584194B2 (en) 2017-02-28

Similar Documents

Publication Publication Date Title
EP2850880B1 (en) Inter-cell cooperation for making handover decisions in multi-sector deployments
CN110915258B (zh) 用于移动性的同步信号传输
JP6104966B2 (ja) 異種ネットワークにおけるサブフレーム・インターレースのための方法および装置
US9843416B2 (en) Management server, communication system, communication terminal, and relay device
US9100092B2 (en) Communication system, base station, relay node and user equipment
KR101398060B1 (ko) 광대역 네트워크에서 피어-투-피어 통신을 지원하기 위한 간섭 관리
JP2022050676A (ja) 通信システム
US8755325B2 (en) Communication system, relay device, management server, and communication terminal
Guey et al. On 5G radio access architecture and technology [Industry Perspectives]
EP2684411B1 (en) A method and a system for avoiding interferences in frequency division duplex operating areas
CN112789888A (zh) 切换中的配置增强
US20130322322A1 (en) Relay-to-Relay Interference Coordination in a Wireless Communication Network
US20150195057A1 (en) Cell-Specific Reference Signal Interference Cancellation Improvement
CN109891799A (zh) 在新无线电中的解调参考信号管理
TW201116119A (en) Association and resource partitioning in a wireless network with relays
JP2023543204A (ja) 干渉の低減及び調整のための方法及びその装置
WO2010118701A1 (zh) 一种确定协作传输节点的方法及系统、装置
Han et al. Full duplex: Coming into reality in 2020?
WO2013131339A1 (zh) 一种干扰消除的方法及装置
JP2019512959A (ja) 無線通信システムにおける接続を管理するためのシステムおよび方法
WO2014000236A1 (zh) 一种时分双工系统的干扰协调方法、基站及系统
KR20170007338A (ko) 무선 다운 링크 / 업 링크에서의 동기화 및 상태 정보 전파를 위한 방법 및 장치
WO2013023517A1 (zh) 基站及其控制方法
WO2015078483A1 (en) Method and apparatus for combining half- and full duplex transmission in a relay
CN103929771A (zh) 一种多点协作传输方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870535

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14383691

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870535

Country of ref document: EP

Kind code of ref document: A1