WO2013129347A1 - Fiber structure - Google Patents

Fiber structure Download PDF

Info

Publication number
WO2013129347A1
WO2013129347A1 PCT/JP2013/054834 JP2013054834W WO2013129347A1 WO 2013129347 A1 WO2013129347 A1 WO 2013129347A1 JP 2013054834 W JP2013054834 W JP 2013054834W WO 2013129347 A1 WO2013129347 A1 WO 2013129347A1
Authority
WO
WIPO (PCT)
Prior art keywords
fabric
fiber
fiber structure
cross
hygroscopic polymer
Prior art date
Application number
PCT/JP2013/054834
Other languages
French (fr)
Japanese (ja)
Inventor
孝宗 白井
周作 成田
藤山 友道
柄澤 留美
梶山 宏史
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2013510153A priority Critical patent/JP6007898B2/en
Priority to US14/380,573 priority patent/US20150038035A1/en
Priority to EP13755717.9A priority patent/EP2821535A4/en
Publication of WO2013129347A1 publication Critical patent/WO2013129347A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/356Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D27/00Woven pile fabrics
    • D03D27/02Woven pile fabrics wherein the pile is formed by warp or weft
    • D03D27/10Fabrics woven face-to-face, e.g. double velvet
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • D04B1/16Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/14Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes
    • D04B21/16Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes incorporating synthetic threads
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • D06M15/233Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated aromatic, e.g. styrene
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • D06M15/27Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof of alkylpolyalkylene glycol esters of unsaturated carboxylic acids
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/285Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acid amides or imides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/327Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof
    • D06M15/333Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof of vinyl acetate; Polyvinylalcohol
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/356Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms
    • D06M15/3566Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms containing sulfur
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/02Moisture-responsive characteristics
    • D10B2401/022Moisture-responsive characteristics hydrophylic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/01Surface features
    • D10B2403/011Dissimilar front and back faces
    • D10B2403/0111One hairy surface, e.g. napped or raised
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/01Surface features
    • D10B2403/011Dissimilar front and back faces
    • D10B2403/0114Dissimilar front and back faces with one or more yarns appearing predominantly on one face, e.g. plated or paralleled yarns
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/08Upholstery, mattresses
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/12Vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2484Coating or impregnation is water absorbency-increasing or hydrophilicity-increasing or hydrophilicity-imparting

Definitions

  • the present invention relates to a fiber structure whose temperature changes due to moisture absorption and desorption.
  • Patent Document 1 uses a knitted fabric having a function of adsorbing a lot of water using a synthetic fiber multifilament having a single fiber fineness larger than that of a layer opposite to the skin surface on the skin surface side.
  • Patent Document 2 proposes an interior material that is a sheet-like structure to which fine particles having high hygroscopicity are fixed, and the temperature rise due to moisture absorption is 3 ° C. or more.
  • the temperature drop due to the release of water vapor by the fabric, the structure of the woven fabric and the structure of the knitted fabric that easily release water vapor have not been studied.
  • An object of the present invention is to provide a fiber structure that can further change the surface temperature of the fabric by moisture absorption or moisture release.
  • the present invention employs the following means.
  • the present invention adopts the following configuration.
  • [1] A fiber structure in which a hygroscopic polymer is fixed to a fiber of a fabric, and the fiber density of the surface layer on the front side and the back layer on the back side are different with the center line of the cross section of the fiber structure as a boundary.
  • Group a warp knitted fabric manufactured from a knitting machine having two or more ridges, and the structure of the back layer is a two-needle or three-needle swing structure
  • b group a weft knitted fabric knitted by a double-sided knitting machine
  • the surface layer structure is a handle structure.
  • Group c Pile fabric having a ground structure. [7] A vehicle interior material having the fiber structure according to any one of [1] to [6].
  • a fiber structure having a woven fabric or knitted fabric in which the temperature of the fabric is greatly changed by moisture absorption or moisture release.
  • FIG. 1 is a cross-sectional photograph of the fiber structure of Example 1.
  • FIG. FIG. 2 is a cross-sectional photograph of the fiber structure of Example 2.
  • FIG. 3 is a cross-sectional photograph of the fiber structure of Example 3.
  • 4 is a cross-sectional photograph of the fiber structure of Comparative Example 1.
  • FIG. 5 is a cross-sectional photograph of the fiber structure of Comparative Example 2.
  • the fabric of the present invention is preferably in the form of a nonwoven fabric, a woven fabric, or a knitted fabric, but is preferably in the form of a woven fabric or a knitted fabric.
  • the back layer preferably has a ground texture that affects physical properties such as tensile strength and tear strength of the fabric.
  • the surface layer generally gives a comfortable texture, touch, appearance and the like of the fabric.
  • the fiber density of the surface layer on the front surface side and the back layer on the back surface side are different with the center line of the cross section of the fiber structure as a boundary.
  • the ground structure is a structure that largely governs physical properties such as tensile strength and tear strength of a fabric, unlike piles and patterns in woven fabrics and knitted fabrics. If it is a warp knitted fabric manufactured by two or more wrinkles, it has a 2-needle or 3-needle swing structure. In the case of a weft knitted fabric, it is an organization knitted by a double-sided knitting machine. In the case of a woven fabric, it is a structure for fixing a pile in a woven fabric having a pile such as a moquette pile woven fabric. In the present invention, the ground tissue is used as the back layer on the skin surface side, and the portion having a high fiber density is used as the back layer of the fabric.
  • the hygroscopic polymer or the liquid containing the hygroscopic polymer raw material is impregnated between the fibers by capillary action. Many can be fixed.
  • the fibers constituting the back layer preferably have a total fineness in the range of 30 to 500 dtex.
  • the total fineness is less than 30 dtex, the mechanical strength of the ground structure is lowered, and thread breakage may occur when it is actually used as a vehicle interior material, for example, a sheet fabric.
  • the total fineness is larger than 500 dtex, the amount of fibers per unit volume on the back layer side becomes too large, so that when the hygroscopic polymer is fixed to the fabric, the texture of the entire fabric tends to be hard.
  • the single fiber fineness is preferably 0.8 to 5 dtex.
  • the strength of the fiber used for this back layer is preferably 2.0 cN / dtex or more, more preferably 2.5 cN / dtex or more.
  • the single fiber fineness is 0.5 to 5.0 dtex, more preferably 0.8 dtex or more, and further 5.0 dtex or less.
  • multifilament and spun yarn are suitable.
  • the value obtained by dividing the number of fiber cross-sections in the back layer by the number of fiber cross-sections in the surface layer (fiber cross-section number ratio) is in the range of 2-10. Is preferred. A more preferable range of the fiber cross-section number ratio is 2.5 or more, further 3.0 or more, and on the other hand, a range of 9.5 or less, further 9.0 or less.
  • FIGS. 1 to 5 are cross-sectional photographs of the fiber structure cut in a direction perpendicular to the weaving or knitting direction.
  • the number of fibers contained in each back layer is counted, and the number of fibers is defined as the number of fiber cross sections.
  • the more hygroscopic polymer is fixed between the fibers as the number of fibers existing in the unit volume is larger. Therefore, if the number of fiber cross sections of the back layer is larger than the number of fiber cross sections of the surface layer, the hygroscopic polymer is present in the back layer more than the surface layer. Since the back layer contains more hygroscopic polymer, more water vapor is released from the back layer. The water vapor released from the hygroscopic polymer of the back layer is also released from the hail surface of the back layer, but also passes between the fibers of the fabric.
  • the surface layer has fewer fibers and more space than the back layer, water vapor easily passes through, and water vapor is likely to be released from the surface of the surface layer to the atmosphere. Water vapor reaching the surface layer from the back layer is released to the atmosphere from the surface of the surface layer. As a result, the humidity in the fabric is lowered, and the temperature of the fabric is further lowered by the heat of vaporization of water vapor released to the atmosphere.
  • the surface layer polymer and the back layer polymer fixed to the fabric have the same degree. Therefore, the difference in the amount of water vapor released between the back layer and the surface layer is reduced, and the difference in the space volume that is the water vapor passage between the back layer and the surface layer is also reduced, so that the water vapor released from the back layer is vaporized from the top surface of the surface layer. It becomes difficult. Furthermore, since the water vapor supplied from the back layer is absorbed by the polymer in the surface layer, the temperature of the fabric is unlikely to decrease.
  • the ratio of the number of fiber cross sections (the number of fiber cross sections in the back layer / the number of fiber cross sections in the surface layer) is preferably 2 to 10.
  • a more preferable range of the fiber cross-section number ratio is 2.5 or more, further 3.0 or more, and on the other hand, a range of 9.5 or less, further 9.0 or less.
  • An embodiment of the fiber structure of the present invention is characterized in that one of the structures is selected from the following groups a to c. Also in this fiber structure, the fiber density of the surface layer on the front surface side and the back layer on the back surface side are different with the center line of the cross section of the fiber structure as a boundary.
  • Group a A warp knitted fabric manufactured from a knitting machine having two or more wrinkles, and the structure as the back layer is a 2-needle or 3-needle swing structure.
  • Group b a weft knitted fabric knitted by a double-sided knitting machine, and the surface layer is a patterned structure.
  • Group c Pile fabric having a ground texture.
  • This fiber structure also preferably has a fiber cross section number ratio of 2 to 10, and a more preferable range of the fiber cross section number ratio is 2.5 or more, further 3.0 or more, while 9.5 or less, Furthermore, it is the range of 9.0 or less.
  • This fiber structure also has a temperature lower than the environmental temperature due to a decrease in the relative humidity of the environment. The reason for this is the same as described above.
  • Group a is a warp knitted fabric manufactured from a knitting machine having two or more ridges, and the back layer serving as the ground texture is preferably a 2-needle or 3-needle swing structure.
  • the ground organization include 1-0 / 2-3, 2-3 / 1-0, 0-1 / 3-2, 3-2 / 0-1 and the like.
  • the three-needle swing structure include 1-0 / 3-4, 3-4 / 1-0, 0-1 / 4-3, 0-1 / 3-4, and the like.
  • the ground organization may be a combination with other organizations as long as it contains at least one of these organizations.
  • the surface layer constituting the group a may be a 1-to-3 needle swing structure, an atlas structure, or other changed structures, and a thread-removed structure that does not pass through all the needles is also preferable.
  • Group b is a weft knitted fabric knitted by a double-sided knitting machine, and the surface layer is a patterned structure.
  • the ground structure constituting the back layer is a dense structure such as a flat knitting or a rubber knitting structure, and a weft knitted fabric having a pattern structure which is a slightly sparse structure as the surface layer is preferable.
  • Group c is preferably a moquette pile fabric or a double velvet fabric using rayon fibers as a ground fabric having a ground texture.
  • the fiber structure of the present invention starts to use an air conditioner in an atmosphere of 80% relative humidity at 40 ° C., assuming the interior of a car in summer, and within 10 minutes from the atmospheric conditions, warms to an atmosphere of 70% relative humidity at 35 ° C.
  • the surface temperature drop of the fabric when the humidity condition is changed is preferably 1.5 ° C. to 4 ° C.
  • the fiber structure to which the hygroscopic polymer of the present invention is fixed is hygroscopic.
  • the surface temperature is preferably 1.5 ° C. to 4.0 ° C. lower than the fiber structure to which the conductive polymer is not fixed, and the lower limit is preferably 1.7 ° C. or higher and 1.9 ° C. or higher.
  • the hygroscopic polymer fixed to the fibers of the fabric of the present invention is changed from an atmospheric condition of 65% relative humidity at 20 ° C. to an atmospheric condition of 90% relative humidity at 30 ° C.
  • the degree of increase in mass due to moisture absorption (hereinafter referred to as moisture absorption rate) is preferably 10 to 75%, more preferably 15% or more, and even more preferably 20% or more. On the other hand, it is preferably 70% or less, and more preferably 65% or less.
  • the hygroscopic polymer satisfying such hygroscopicity is selected from monomers having a vinyl group having a sulfo group, a carboxyl group, a hydroxyl group, an amide group, or an alkali metal salt (preferably a sodium salt) thereof as a functional group. It is preferable that it is a polymer or a copolymer containing at least one monomer.
  • the polymer having a sulfo group is preferably poly (sodium amide-2-propanesulfonate), sodium polystyrenesulfonate, sodium polyisoprenesulfonate, sodium polyallylsulfonate, sodium polymethallylsulfonate, or the like.
  • polymer having a carboxyl group sodium polyacrylate is preferred.
  • polymer having a hydroxyl group polyethylene glycol, polyvinyl alcohol and the like are preferable.
  • polymer having an amide group poly-N-methylolacrylamide, polyacrylamide and the like are preferable.
  • sodium 2-acrylamido-2-methylsulfonate is particularly preferred from the viewpoint of high hygroscopicity.
  • a copolymer in which another monomer unit is contained in the polymer can also be used.
  • a copolymer in which another monomer unit is contained in the polymer can also be used.
  • a hygroscopic polymer in order to improve the adhesiveness to the fiber of a hygroscopic polymer, it is preferable to make a hygroscopic polymer have a crosslinked structure using a crosslinking agent.
  • the crosslinking agent include polyfunctional epoxy compounds, polyfunctional isocyanate compounds, urea resins, melamine resins, and compounds having at least two polymerizable double bonds.
  • Examples of the compound having a polymerizable double bond include compounds in which (meth) acrylic acid is esterified to the terminal hydroxyl group of polyethylene glycol (for example, number average repeatability 250).
  • polyethylene glycol for example, number average repeatability 250.
  • ethylene oxide having an average repetition frequency of 9 to 23 and two methacrylic acids esterified can be used.
  • the fiber constituting the fabric can be impregnated with a monomer that becomes a hygroscopic polymer and, if necessary, a polymerization initiator. If necessary, a crosslinking agent can also be included.
  • polymerization initiator examples include inorganic polymerization initiators such as ammonium persulfate, potassium persulfate, and hydrogen peroxide, 2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′- Organic polymerization initiators such as azobis (N, N-dimethyleneisobutyramide) dihydrochloride and 2- (carbamoylazo) isobutyronitrile are preferably used.
  • inorganic polymerization initiators such as ammonium persulfate, potassium persulfate, and hydrogen peroxide
  • 2,2′-azobis (2-amidinopropane) dihydrochloride 2,2′- Organic polymerization initiators such as azobis (N, N-dimethyleneisobutyramide) dihydrochloride and 2- (carbamoylazo) isobutyronitrile are preferably used.
  • a treatment liquid containing a monomer, a crosslinking agent (if necessary), a polymerization initiator (if necessary) and a solvent or a dispersion medium was applied to the fiber by a padding method. Then, heat and dry. Subsequently, the monomer and the like are polymerized by being placed in a high temperature state such as steam application, and the resulting hygroscopic polymer is fixed to the fiber surface.
  • the method of impregnating the fabric with a polymer solution such as sodium polyacrylamido-2-propanesulfonate, sodium styrenesulfonate, sodium isoprenesulfonate, sodium allylsulfonate, sodium methallylsulfonate, and drying is hygroscopic. It is exemplified as a method for fixing the polymer to the fiber.
  • the concentration of the treatment liquid in the padding method is preferably 20 to 150 g / L of the monomer serving as a hygroscopic polymer.
  • the concentration is preferably 20 to 150 g / L.
  • a polymerization initiator is used, its concentration is preferably 1 to 10 g / L, more preferably 3 g / L or more, and still more preferably 5 g / L or more.
  • a concentration of 20 to 150 g / L is preferred. Whether the polymerization is performed or the polymer solution is used, if the concentration is low, the amount of the hygroscopic polymer fixed becomes low and the cooling performance is lowered. If the concentration is high, the amount of the hygroscopic polymer fixed is too high, and the texture of the fiber structure becomes hard.
  • the heat treatment temperature is preferably from 80 ° C to 170 ° C.
  • the heat treatment time is arbitrary, but it is preferable to treat for 5 to 15 minutes. More preferably, it is 6 to 15 minutes, and further preferably 7 to 15 minutes.
  • the steam pressure is arbitrary, but is preferably in the range of 0.09 to 0.50 MPa in order to promote polymerization.
  • a processing method for fixing the hygroscopic polymer to the fibers of the fabric it is preferable to fix the hygroscopic polymer by a padding method, a spray method, a roll coating method, or the like. preferable.
  • the fixing rate of the hygroscopic polymer fixed to the fibers of the fabric is preferably in the range of 4 to 20% by mass with respect to the fabric.
  • the amount is less than 4% by mass, sufficient moisture absorption performance cannot be obtained, and as a result, a large temperature change cannot be obtained.
  • the adhesion rate of the hygroscopic polymer to the fabric fiber is more preferably in the range of 5 to 18% by mass.
  • fibers constituting the fabric of the present invention for example, synthetic fibers such as polyester fibers and polyamide fibers, natural fibers such as cotton, rayon, or the like can be used alone or in combination of two or more.
  • biomass fibers such as polyethylene terephthalate fibers, polytrimethylene terephthalate fibers, polyamide fibers, and other polylactic acid fibers using plant-derived raw materials are preferably used.
  • polytrimethylene terephthalate fiber has a low Young's modulus, it has a good texture, hand feeling, and sitting comfort and is preferably used.
  • the polylactic acid fiber is preferably a fiber that can be produced from 100% plant as a raw material and can contribute most to the reduction of the use of petroleum resources.
  • multifilaments and spun yarns are used, but multifilaments are suitable when fabric strength and wear resistance are required.
  • the preferred total fineness and single fiber fineness of the biomass fiber are as described in the above paragraph [0013].
  • the above-mentioned fibers include dulling agents such as titanium oxide powder, dyes, pigments, flame retardants, hygroscopic agents, heat stabilizers, ultraviolet absorbers, antibacterial agents, fungicides, as long as the effects of the present invention are not impaired.
  • An agent, a deodorant, etc. may be included.
  • the light fastness of the fiber structure of the present invention is preferably 4th or higher. After irradiating with a fade meter at 83 ° C. for 200 hours, if the level is lower than the fourth grade as judged by the gray scale for color fading, problems such as fading occur when used as a car seat.
  • the fiber structure of the present invention is preferably used as a vehicular interior material application, as well as used for clothing such as underwear, sports clothing, and shirts, and interior goods such as chairs.
  • a vehicle interior material application As a particularly preferable application, it is a vehicle interior material application, and particularly as a vehicle application, it is a seat.
  • a seat When used for a seat, it is preferable for a main material, a gusset part, a back part, a headrest, a seat cover, a headrest cover, etc. Can be used.
  • the micrograph is divided into two on the front surface 2 side and the back surface 3 side with respect to the center line 1, and the surface layer and the center line that range from the center line 1 to the surface 2
  • the number of fibers contained in each of the back layers in the range from 1 to the back surface 3 was counted, and the number of fibers was defined as the number of fiber cross sections.
  • the surface temperatures of the fabric (A) and the fabric (B) were measured with a thermography camera (manufactured by NEC AVIO Infrared Technology Co., Ltd., model number: TH7102MX).
  • the fabric of the present invention is laminated to a car seat so that a person touches the surface, and the car seat is placed in a constant temperature and humidity room set at 40 ° C. and assuming a relative humidity of 80% assuming a car interior in summer. After installing the subject and sitting on the car seat for 5 minutes, the temperature and humidity setting conditions were changed to a relative humidity of 40% at 25 ° C., and the coolness of the seat surface after sitting for 3 minutes was subjected to sensory evaluation. The number of subjects who were evaluated by 10 subjects and who felt that they were cool displayed 8 or more as “very good”, 4 to 7 as “good”, and 3 or less as “poor”.
  • the core-sheath composite drawn yarn had a tensile strength of 3.3 cN / dtex and an elongation of 45%.
  • the tensile strength of the 84T36F polyethylene terephthalate false twisted yarn is 3.6 cN / dtex and the elongation is 23%, and the tensile strength of the 167T48F polyethylene terephthalate false twisted yarn is 4.0 cN / dtex and the elongation is 22%. It was.
  • Example 1 A 28 gauge tricot knitting machine was used. Supply the core-sheath composite drawn yarn of 84 dtex-48f (filament) of Reference Example 1 in a full set of yarn arrangement to L1 (becomes a ground texture) using 4 scissors, and reference to L2 (becomes a ground texture) 84 dtex-36f (filament) polyethylene terephthalate false twisted yarn of Example 2 is supplied in a full set of yarn arrangement, and 84 dtex-48f (filament) core-sheath composite drawn yarn of Reference Example 1 is threaded into L3 and L4. The drawn machine was fed in an alternating yarn arrangement, and the raw machine was knitted in the form of the following structure 1 at a density of an on-machine course of 42 C / 2.54 cm.
  • the resulting warp knitted fabric was dyed “Dianix” (registered trademark, the same shall apply hereinafter) as a dye.
  • the warp knitted fabric dyed as described above is immersed in a treatment liquid of the following prescription 1 and impregnated with a hygroscopic polymer, and then the fabric is squeezed with mangles so that the pickup rate becomes 90%, and 120% in a drier. Drying was performed at 2 ° C. for 2 minutes.
  • the warp knitted fabric dyed as described above was impregnated with a hygroscopic polymer, dried, then treated with a normal pressure steamer heated to 105 ° C. for 10 minutes, washed with hot water and then dried. Next, the dried product is further dried at 160 ° C. for 1 minute with a dryer, the basis weight is 310 g / m 2 , the hygroscopic polymer fixing rate is 7.3%, the fabric hygroscopic rate is 2.4%, and the hygroscopic rate is A fiber structure of Example 1 in which the moisture absorption rate of the conductive polymer was 32.8% was obtained.
  • FIG. 1 is an electron micrograph (50 ⁇ ). According to the observation results, the number of cross-sectional fibers in the surface layer was 235, the number of cross-sectional fibers in the back layer was 850, and the ratio of the number of fiber cross-sections was 3.62. Furthermore, it was observed that the hygroscopic polymer was fixed to the fibers of the knitted fabric.
  • Table 1 shows the results of performance evaluation.
  • the surface temperature drop of the fabric is 2.1 ° C
  • the coolness at the time of sitting is “very good”
  • the texture is “very good”
  • the light fastness is 4th grade
  • the comfort when the person is seated is very good It was excellent.
  • Example 2 Using a 28-gauge tricot knitting machine, supply 167 dtex-48f (filament) polyethylene terephthalate false twisted yarn of Reference Example 2 to L1 (ground texture) using four rivets in a full set yarn arrangement, L2 and L3 are supplied with 84 dtex-48f (filament) core-sheath composite drawn yarn of Reference Example 1 in an alternating yarn arrangement, and the on-machine course has a density of 50 C / 2.54 cm and the following structure Two forms of knitted fabric were produced.
  • Example 2 After dyeing the knitted fabric in the same manner as in Example 1, the hygroscopic polymer was fixed, the basis weight was 275 g / m 2 , the hygroscopic polymer fixing rate was 12.3%, and the fabric hygroscopic rate was 3.0%. Thus, a fiber structure of Example 2 in which the moisture absorption rate of the hygroscopic polymer was 24.3% was obtained.
  • FIG. 2 is an electron micrograph (100 times). According to the observation results, the number of fiber cross-sections in the surface layer was 121, the number of fiber cross-sections in the back layer was 485, and the ratio of fiber cross-sections was 4.01. Furthermore, it was observed that a large amount of hygroscopic polymer adhered to the ground structure of the knitted fabric.
  • Table 1 shows the results of performance evaluation.
  • the surface temperature drop of the fabric is 1.9 ° C, the coolness when sitting is “very good”, the texture is “very good”, the light fastness is 4th class, and the comfort when sitting is very good It was excellent.
  • Example 3 A 28-gauge tricot knitting machine was used, and a full set of 84 dtex-48f (filament) core-sheath composite drawn yarn of Reference Example 1 was used for L1 (ground texture) and L2 (ground texture) using three scissors.
  • L3 is supplied with 84 dtex-36f (filament) polyethylene terephthalate false twisted yarn of Reference Example 2 in full set, and the on-machine course has a density of 64C / 2.54 cm and the following structure 3 We knitted live machines.
  • Example 3 A fiber structure of Example 3 was obtained in which the moisture absorption rate of the hygroscopic polymer was 12.5%, the moisture absorption rate of the fabric was 3.0%, and the moisture absorption rate of the hygroscopic polymer was 24.0%.
  • FIG. 3 is an electron micrograph (50 ⁇ ). According to the observation results, the number of fiber cross-sections in the surface layer was 220, the number of fiber cross-sections in the back layer was 1380, and the fiber cross-section ratio was 6.27. Furthermore, it was observed that the hygroscopic polymer was fixed on the knitted fabric.
  • Table 1 shows the results of performance evaluation.
  • the surface temperature drop of the fabric is 2.3 ° C
  • the coolness at the time of sitting is “very good”
  • the texture is “very good”
  • the light fastness is 4th grade
  • the comfort when the person is seated is very good It was excellent.
  • Example 4 Example 1 except that a 28-gauge tricot knitting machine was used and 84 dtex-48f (filament) polyethylene terephthalate drawn yarn of Reference Example 3 was used for L1 (ground texture), L3, and L4 using four scissors. The knitting machine was knitted in the form of the following organization 4 under the same conditions as above.
  • Example 4 After dyeing the knitted fabric in the same manner as in Example 1, the hygroscopic polymer was fixed, the basis weight was 318 g / m 2 , the hygroscopic polymer fixing rate was 7.0%, and the fabric hygroscopic rate was 2.3%.
  • This fiber structure was cut in a direction perpendicular to the knitting direction and observed with an electron microscope. According to the observation results, the number of cross-sectional fibers in the surface layer was 245, the number of cross-sectional fibers in the back layer was 854, and the ratio of the number of fiber cross-sections was 3.49.
  • Table 1 shows the results of performance evaluation.
  • the surface temperature drop of the fabric is 2.0 ° C., the coolness when sitting is “very good”, the texture is “good”, the light fastness is 4th grade, and the comfort when sitting is excellent .
  • Example 5 Example using a 28-gauge tricot knitting machine, except that 84 dtex-48f (filament) polyethylene terephthalate drawn yarn of Reference Example 3 was used for L1 (ground texture) and L2 (ground texture) using three scissors. 3 was knitted in the form of the following organization 5 under the same conditions as in No. 3.
  • Example 5 A fiber structure of Example 5 was obtained in which the moisture absorption rate of the hygroscopic polymer was 12.6%, the moisture absorption rate of the fabric was 2.9%, and the moisture absorption rate of the hygroscopic polymer was 23.0%.
  • This fiber structure was cut in a direction perpendicular to the knitting direction and observed with an electron microscope. According to the observation results, the number of fiber cross-sections in the surface layer was 231, the number of fiber cross-sections in the back layer was 1417, and the ratio of the number of fiber cross-sections was 6.13.
  • Table 1 shows the results of performance evaluation.
  • the surface temperature drop of the fabric was 2.4 ° C., the coolness at the time of sitting was “very good”, the texture was “good”, the light fastness was 4th class, and the comfort when sitting by a person was excellent .
  • Example 6 A 28 gauge double-sided circular knitting machine was used.
  • the lining (ground texture) is supplied with 84 dtex-72f (filament) polyethylene terephthalate false twisted yarn, the outer surface is supplied with 84 dtex-36f (filament) polyethylene terephthalate false twisted yarn of Reference Example 2, and the outer surface is patterned.
  • the lining was a flat knitted structure, and a live machine with an on-machine course of 38 courses / 2.54 cm was knitted.
  • the structure of this knitted fabric belongs to group b.
  • Example 6 After dyeing the knitted fabric in the same manner as in Example 1, the hygroscopic polymer was fixed, the basis weight was 232 g / m 2 , the hygroscopic polymer fixing rate was 8.6%, and the fabric hygroscopic rate was 2.0%.
  • This fiber structure was cut in a direction perpendicular to the knitting direction and observed with an electron microscope. According to the observation results, the number of fiber cross-sections in the surface layer was 161, the number of fiber cross-sections in the back layer was 322, and the ratio of fiber cross-section numbers was 2.00.
  • Table 1 shows the results of performance evaluation.
  • the surface temperature drop of the fabric was 2.6 ° C., the coolness when sitting was “very good”, the texture was “good”, the light fastness was 4th grade, and the comfort when a person sat down was excellent .
  • Example 7 A polyethylene terephthalate drawn yarn of 167 dtex-72f (filament) was used for warp and weft, and a double woven fabric having a weaving density of 250 cm / cm for warp and 220 weft / cm for both the ground structure and pile was woven. The obtained woven fabric was dyed under the same conditions as in Example 1, and then a velvet woven fabric having a pile length of 1.8 mm was prepared with a shaving machine.
  • Example 7 A fiber structure of Example 7 that was .3% was obtained.
  • the structure of this fabric belongs to group c.
  • the fiber structure was cut in a direction perpendicular to the weaving direction and observed with an electron microscope. According to the observation results, the number of fiber cross-sections in the surface layer was 230, the number of fiber cross-sections in the back layer was 980, and the ratio of fiber cross-sections was 4.26.
  • Table 1 shows the results of performance evaluation.
  • the surface temperature drop of the knitted fabric is 2.3 ° C, the coolness at the time of sitting is “very good”, the texture is “very good”, the light fastness is 4th grade, and the comfort when the person is seated is excellent It was.
  • Example 6 the structure of the outer material and the lining material was changed, and the outer surface was supplied with 84 dtex-72f (filament) polyethylene terephthalate false twisted yarn with a 28-gauge double-sided circular knitting machine.
  • 84 dtex-36f (filament) polyethylene terephthalate false twisted yarn was supplied, the outer fabric was made into a flat knitted structure, the lining was made into a patterned structure, and a raw machine with an on-machine course of 38 courses / 2.54 cm was knitted.
  • Example 2 After dyeing the knitted fabric in the same manner as in Example 1, the hygroscopic polymer was fixed, the basis weight was 232 g / m 2 , the hygroscopic polymer fixing rate was 8.6%, and the fabric hygroscopic rate was 2.0%.
  • a fiber structure of Comparative Example 1 having a hygroscopic polymer moisture absorption of 23.2% was obtained.
  • FIG. 4 is an electron micrograph (50 ⁇ ). According to the observation results, the number of fiber cross sections of the surface layer is 319, the number of fiber cross sections of the back layer is 162, and the number of fiber cross sections of the back layer / the number of fiber cross sections of the surface layer (fiber cross section number ratio) is 0.51. there were. Furthermore, it was observed that the hygroscopic polymer was fixed on the knitted fabric.
  • Table 1 shows the results of performance evaluation.
  • the surface temperature drop of the fabric was 0.5 ° C., the coolness at the time of sitting was “inferior”, the texture was “possible”, the light fastness was grade 4, and the comfort when a person was seated was inferior.
  • FIG. 5 is an electron micrograph (150 times). According to the observation results, the number of fiber cross-sections in the surface layer was 107, the number of fiber cross-sections in the back layer was 133, and the ratio of fiber cross-sections was 1.24. In addition, the hygroscopic polymer was fixed to the ground texture of the fabric.
  • Table 1 shows the results of performance evaluation.
  • the surface temperature drop of the fabric was 1.3 ° C., the coolness at the time of sitting was “inferior”, the texture was “good”, the light fastness was 4th grade, and the comfort when a person sat down was inferior.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Knitting Of Fabric (AREA)
  • Woven Fabrics (AREA)

Abstract

Provided is a fabric having a ground structure in which a hygroscopic polymer has been fixed, which fabric not only generates heat in moisture-absorbing conditions but also drops in temperature in moisture-releasing conditions, thereby allowing a person to feel more comfortable. A fiber structure obtained when a hygroscopic polymer is fixed to fibers of a fabric, wherein a front layer on a front surface side and a back layer on a back surface side, the boundary for which is the center line of the fiber structure cross-section, have different fiber densities.

Description

繊維構造体Fiber structure
 本発明は、吸放湿によって温度が変化する繊維構造体に関する。 The present invention relates to a fiber structure whose temperature changes due to moisture absorption and desorption.
 従来より、布帛に対し吸湿性ポリマーを固着させることにより、吸湿することによって発熱し、保温性と発熱性を有する布帛が提案されてきた。
 例えば特許文献1では、肌面とは反対側の層よりも単繊維繊度が大きい合成繊維マルチフィラメントを肌面側に用い、布帛が水を多く吸着する機能を有する編地が使用されている。
Conventionally, a fabric having heat retention and exothermicity has been proposed by fixing a hygroscopic polymer to the fabric to generate heat by absorbing moisture.
For example, Patent Document 1 uses a knitted fabric having a function of adsorbing a lot of water using a synthetic fiber multifilament having a single fiber fineness larger than that of a layer opposite to the skin surface on the skin surface side.
 また、特許文献2では、吸湿性の高い微粒子が固着したシート状構造体であって、吸湿による温度上昇が3℃以上である内装材が提案されている。
 一方、布帛が水蒸気を放出することによる温度降下やより水蒸気を放出しやすい織物の構造および編物の構造については検討されていなかった。
Further, Patent Document 2 proposes an interior material that is a sheet-like structure to which fine particles having high hygroscopicity are fixed, and the temperature rise due to moisture absorption is 3 ° C. or more.
On the other hand, the temperature drop due to the release of water vapor by the fabric, the structure of the woven fabric and the structure of the knitted fabric that easily release water vapor have not been studied.
 一方、自動車の分野では、電気自動車やハイブリット車の普及から、使用時の消費電力を少しでも抑えて走行距離や燃費を伸ばしたいという要望がある。そのような省電力の目的を達成するため夏場のエアコン設定温度を上げることが考えられる。そこで、エアコン設定温度を上げることによる不快感をぬぐうために、自動車内装材には、温度降下させる機能をもたせたいという希望があった。しかしながら従来の吸湿性材料を用いた繊維構造体では温度降下効果が不十分であった。 On the other hand, in the field of automobiles, there is a demand for increasing the mileage and fuel consumption by suppressing the power consumption during use due to the widespread use of electric cars and hybrid cars. In order to achieve such a power saving purpose, it is conceivable to raise the air conditioner set temperature in summer. Therefore, in order to eliminate the uncomfortable feeling caused by raising the air-conditioner set temperature, there has been a desire to provide the automobile interior material with a function of lowering the temperature. However, the fiber structure using the conventional hygroscopic material has an insufficient temperature drop effect.
特開2002-327316号公報JP 2002-327316 A 特開2003-96672号公報JP 2003-96672 A
 本発明は、吸湿または放湿によって布帛の表面温度をさらに大きく変化させることができる繊維構造体を提供することを課題とする。 An object of the present invention is to provide a fiber structure that can further change the surface temperature of the fabric by moisture absorption or moisture release.
 本発明は、上記の課題を解決するために、次のような手段を採用する。
前記課題を解決するために、本発明は以下の構成を採用する。
 [1]布帛の繊維に吸湿性ポリマーが固着している繊維構造体であって、繊維構造体断面の中心線を境界として表面側である表層と裏面側である裏層の繊維密度が異なっていることを特徴とする繊維構造体。
 [2]布帛が織物または編物の形態を有し、布帛の地組織が裏層側にあることを特徴とする前記[1]に記載の繊維構造体。
 [3]吸湿性ポリマーがアクリル酸アミド-2-プロパンスルホン酸ナトリウム、スチレンスルホン酸ナトリウム、イソプレンスルホン酸ナトリウム、アリルスルホン酸ナトリウム、メタリルスルホン酸ナトリウムから選ばれる1種以上のモノマーの重合体又はこれら1種以上のモノマーおよび前記以外のモノマーとの共重合体であることを特徴とする前記[1]または[2]に記載の繊維構造体。
 [4]吸湿性ポリマーの布帛への固着率が4~20質量%であることを特徴とする前記[1]ないし[3]のいずれかに記載の繊維構造体。
 [5]前記[1]ないし[4]のいずれかに記載の繊維構造体であって、繊維構造体を製織又は製編方向に対して垂直方向に切断して、断面の中心線を境界として表面側である表層と裏面側である裏層にそれぞれ含まれる繊維断面本数を算出したとき、裏層の繊維断面本数を表層の繊維断面本数で除した数値(繊維断面本数比)が2~10の範囲であることを特徴とする繊維構造体。
 [6]布帛の組織が以下のa~c群から選ばれるものであることを特徴とする前記[1]ないし[5]のいずれかに記載の繊維構造体。
 a群:2枚以上の筬を有する編み機から製造された経編物であって、裏層となる組織が2針振り又は3針振り組織であるもの
 b群:両面編機で編成された緯編物であって表層となる組織が柄組織であるもの
 c群:地組織を有するパイル織物
 [7]前記[1]ないし[6]のいずれかに記載の繊維構造体を有する車両内装材。
In order to solve the above problems, the present invention employs the following means.
In order to solve the above problems, the present invention adopts the following configuration.
[1] A fiber structure in which a hygroscopic polymer is fixed to a fiber of a fabric, and the fiber density of the surface layer on the front side and the back layer on the back side are different with the center line of the cross section of the fiber structure as a boundary. A fibrous structure characterized by having
[2] The fiber structure according to [1], wherein the fabric has a form of a woven fabric or a knitted fabric, and the ground texture of the fabric is on the back layer side.
[3] A polymer of one or more monomers selected from the group consisting of sodium acrylamide-2-propanesulfonate, sodium styrenesulfonate, sodium isoprenesulfonate, sodium allylsulfonate, sodium methallylsulfonate, The fiber structure according to [1] or [2], wherein the fiber structure is a copolymer of one or more monomers and a monomer other than the above.
[4] The fiber structure according to any one of the above [1] to [3], wherein the hygroscopic polymer adheres to the fabric in an amount of 4 to 20% by mass.
[5] The fiber structure according to any one of [1] to [4], wherein the fiber structure is cut in a direction perpendicular to the weaving or knitting direction, with the center line of the cross section as a boundary When the number of fiber cross-sections included in the surface layer on the front surface side and the back layer on the back surface side is calculated, the value obtained by dividing the number of fiber cross-sections in the back layer by the number of fiber cross-sections in the surface layer (fiber cross-section number ratio) is 2 to 10 The fiber structure characterized by being in the range of
[6] The fiber structure according to any one of [1] to [5], wherein the fabric structure is selected from the following groups a to c.
Group a: warp knitted fabric manufactured from a knitting machine having two or more ridges, and the structure of the back layer is a two-needle or three-needle swing structure b group: a weft knitted fabric knitted by a double-sided knitting machine The surface layer structure is a handle structure. Group c: Pile fabric having a ground structure. [7] A vehicle interior material having the fiber structure according to any one of [1] to [6].
 本発明によれば、布帛が吸湿または放湿により大きく温度変化する織物または編物の形態を有する繊維構造体が提供される。 According to the present invention, there is provided a fiber structure having a woven fabric or knitted fabric in which the temperature of the fabric is greatly changed by moisture absorption or moisture release.
図1は実施例1の繊維構造体の断面写真である。1 is a cross-sectional photograph of the fiber structure of Example 1. FIG. 図2は実施例2の繊維構造体の断面写真である。FIG. 2 is a cross-sectional photograph of the fiber structure of Example 2. 図3は実施例3の繊維構造体の断面写真である。FIG. 3 is a cross-sectional photograph of the fiber structure of Example 3. 図4は比較例1の繊維構造体の断面写真である。4 is a cross-sectional photograph of the fiber structure of Comparative Example 1. FIG. 図5は比較例2の繊維構造体の断面写真である。FIG. 5 is a cross-sectional photograph of the fiber structure of Comparative Example 2.
 まず、本発明の布帛について説明する。本発明の布帛としては、不織布、織物、編物いずれの形態でも好ましいが、織物および編物の形態であることが好ましい。
 布帛の引張強力、引裂強力などの物性に影響を与える地組織が裏層にあることが好ましい。そうなると表層は一般的に布帛の心地よい風合い、手触り、外観などを与えるものとなる。
First, the fabric of the present invention will be described. The fabric of the present invention is preferably in the form of a nonwoven fabric, a woven fabric, or a knitted fabric, but is preferably in the form of a woven fabric or a knitted fabric.
The back layer preferably has a ground texture that affects physical properties such as tensile strength and tear strength of the fabric. In this case, the surface layer generally gives a comfortable texture, touch, appearance and the like of the fabric.
 本発明の繊維構造体は、繊維構造体断面の中心線を境界として表面側である表層と裏面側である裏層の繊維密度が異なっている。 In the fiber structure of the present invention, the fiber density of the surface layer on the front surface side and the back layer on the back surface side are different with the center line of the cross section of the fiber structure as a boundary.
 地組織とは、織物や編物におけるパイルや柄組織とは異なり、布帛の引張強力、引裂強力などの物性を大きく支配する組織である。2枚以上の筬によって製造される経編物であれば、2針振り又は3針振りの組織である。緯編物であれば両面編機で編成された組織である。織物であれば、モケットパイル織物のようなパイルを有する織物におけるパイルを固定する組織である。本発明では、地組織を肌面側である裏層として使用して、そして繊維密度が高い部分を布帛の裏層とする。その結果、吸湿性ポリマーを布帛に固着させるとき、吸湿性ポリマーまたは吸湿性ポリマー原料を含む液体が毛細管現象により繊維間に含浸するときに、吸湿性ポリマーを表層の繊維よりも裏層の繊維に多く固着させることができる。 The ground structure is a structure that largely governs physical properties such as tensile strength and tear strength of a fabric, unlike piles and patterns in woven fabrics and knitted fabrics. If it is a warp knitted fabric manufactured by two or more wrinkles, it has a 2-needle or 3-needle swing structure. In the case of a weft knitted fabric, it is an organization knitted by a double-sided knitting machine. In the case of a woven fabric, it is a structure for fixing a pile in a woven fabric having a pile such as a moquette pile woven fabric. In the present invention, the ground tissue is used as the back layer on the skin surface side, and the portion having a high fiber density is used as the back layer of the fabric. As a result, when the hygroscopic polymer is fixed to the fabric, the hygroscopic polymer or the liquid containing the hygroscopic polymer raw material is impregnated between the fibers by capillary action. Many can be fixed.
 裏層を構成する繊維は、総繊度が30~500dtexの範囲であることが好ましい。総繊度が30dtexより小さい場合、地組織の力学的強度が低下し、車両用内装材、例えばシート用生地として実際に使用したとき糸切れなどが起こる場合がある。一方、総繊度が500dtexより大きいと、裏層側の単位体積あたりの繊維の量が多くなり過ぎるため、吸湿性ポリマーを布帛に固着した際、布帛全体の風合いが硬くなる傾向がある。又、単繊維繊度は0.8~5dtexが好ましい。 The fibers constituting the back layer preferably have a total fineness in the range of 30 to 500 dtex. When the total fineness is less than 30 dtex, the mechanical strength of the ground structure is lowered, and thread breakage may occur when it is actually used as a vehicle interior material, for example, a sheet fabric. On the other hand, if the total fineness is larger than 500 dtex, the amount of fibers per unit volume on the back layer side becomes too large, so that when the hygroscopic polymer is fixed to the fabric, the texture of the entire fabric tends to be hard. The single fiber fineness is preferably 0.8 to 5 dtex.
 この裏層に使用する繊維の強度としては、好ましくは2.0cN/dtex以上、より好ましくは2.5cN/dtex以上である。吸湿性ポリマーを適当量固着させるために単繊維繊度は0.5~5.0dtex、より好ましくは0.8dtex以上、さらに5.0dtex以下である。これらの繊維の形態としては、マルチフィラメント、紡績糸が好適である。 The strength of the fiber used for this back layer is preferably 2.0 cN / dtex or more, more preferably 2.5 cN / dtex or more. In order to fix an appropriate amount of the hygroscopic polymer, the single fiber fineness is 0.5 to 5.0 dtex, more preferably 0.8 dtex or more, and further 5.0 dtex or less. As the form of these fibers, multifilament and spun yarn are suitable.
 本発明の態様のひとつとして、繊維構造体を製織又は製編方向に対して垂直方向に切断したとき、断面の中心線を境界として表面側(非肌面側)である表層と裏面側(肌面側)である裏層にそれぞれ含まれる繊維断面本数を算出したとき、裏層の繊維断面本数を表層の繊維断面本数で除した数値(繊維断面本数比)が2~10の範囲であることが好ましい。繊維断面本数比のより好ましい範囲としては、2.5以上、さらに3.0以上であり、一方、9.5以下、さらに9.0以下の範囲である。 As one aspect of the present invention, when the fiber structure is cut in a direction perpendicular to the weaving or knitting direction, the surface layer (non-skin surface side) and the back surface side (skin) on the surface side (non-skin surface side) with the center line of the cross section as the boundary When calculating the number of fiber cross-sections included in each of the back layers (surface side), the value obtained by dividing the number of fiber cross-sections in the back layer by the number of fiber cross-sections in the surface layer (fiber cross-section number ratio) is in the range of 2-10. Is preferred. A more preferable range of the fiber cross-section number ratio is 2.5 or more, further 3.0 or more, and on the other hand, a range of 9.5 or less, further 9.0 or less.
 繊維断面本数比の算出方法について、図1~5を用いて説明する。
 図1~5は、繊維構造体を製織又は製編方向に対して垂直方向に切断した断面写真である。繊維構造体断面の中心線1に対して表面2側と裏面3側に2分割し、中心線1から表面2に至るまでの範囲である表層と中心線1から裏面3に至るまでの範囲である裏層にそれぞれ含まれる繊維本数を数えて、その繊維本数を繊維断面本数とするものである。
A method for calculating the fiber cross-section ratio will be described with reference to FIGS.
1 to 5 are cross-sectional photographs of the fiber structure cut in a direction perpendicular to the weaving or knitting direction. In the range from the center line 1 to the back surface 3 and from the center line 1 to the back surface 3 which is divided into two on the front surface 2 side and the back surface 3 side with respect to the center line 1 of the cross section of the fiber structure The number of fibers contained in each back layer is counted, and the number of fibers is defined as the number of fiber cross sections.
 繊維断面本数比が2~10の範囲であることにより、環境の相対湿度が低下して、繊維構造体の温度が環境温度より大きく低下する。この理由について本発明者は以下のように考える。 When the fiber cross-section number ratio is in the range of 2 to 10, the relative humidity of the environment is lowered, and the temperature of the fiber structure is greatly lowered from the environment temperature. The inventor considers this reason as follows.
 布帛へ吸湿性ポリマーを固着させるとき、単位体積に存在する繊維の本数が多いほど繊維間に吸湿性ポリマーが多く固着する。従って、裏層の繊維断面本数が表層の繊維断面本数より多ければ、吸湿性ポリマーは表層より裏層に多く存在する。裏層の方が吸湿性ポリマーを多く含むため、裏層の方から水蒸気が多く放出される。裏層の吸湿性ポリマーから放出される水蒸気は、裏層のひょう面からも放出されるが、布帛の繊維の間も通過していく。表層のほうが裏層に比べて、繊維本数が少なく空間が多いので、水蒸気が通過しやすく、表層のひょう面から大気に水蒸気が放出されやすい。裏層から表層に達した水蒸気は表層のひょう面から大気に放出される。その結果、布帛中の湿度が下がるため、さらに大気に放出される水蒸気の気化熱によって布帛の温度が下がるのである。 When the hygroscopic polymer is fixed to the fabric, the more hygroscopic polymer is fixed between the fibers as the number of fibers existing in the unit volume is larger. Therefore, if the number of fiber cross sections of the back layer is larger than the number of fiber cross sections of the surface layer, the hygroscopic polymer is present in the back layer more than the surface layer. Since the back layer contains more hygroscopic polymer, more water vapor is released from the back layer. The water vapor released from the hygroscopic polymer of the back layer is also released from the hail surface of the back layer, but also passes between the fibers of the fabric. Since the surface layer has fewer fibers and more space than the back layer, water vapor easily passes through, and water vapor is likely to be released from the surface of the surface layer to the atmosphere. Water vapor reaching the surface layer from the back layer is released to the atmosphere from the surface of the surface layer. As a result, the humidity in the fabric is lowered, and the temperature of the fabric is further lowered by the heat of vaporization of water vapor released to the atmosphere.
 繊維断面本数比が1に近い場合、布帛に固着している表層のポリマーと裏層のポリマーは、同じ程度となる。そのため、裏層と表層の水蒸気放出量の差が小さくなり、裏層と表層における水蒸気通路である空間容積の差も小さくなるので、裏層から放出される水蒸気は、表層のひょう面から気化されにくくなる。さらに裏層から供給された水蒸気は、表層にあるポリマーに吸湿されるので、布帛の温度は低下しにくくなる。 When the fiber cross-section number ratio is close to 1, the surface layer polymer and the back layer polymer fixed to the fabric have the same degree. Therefore, the difference in the amount of water vapor released between the back layer and the surface layer is reduced, and the difference in the space volume that is the water vapor passage between the back layer and the surface layer is also reduced, so that the water vapor released from the back layer is vaporized from the top surface of the surface layer. It becomes difficult. Furthermore, since the water vapor supplied from the back layer is absorbed by the polymer in the surface layer, the temperature of the fabric is unlikely to decrease.
 一方、繊維断面本数比が大きくなりすぎると、表層を通って大気に放出される気化熱が少なくなり、布帛の温度が下がりにくいという不都合がある。以上述べた理由により、繊維断面本数比(裏層の繊維断面本数/表層の繊維断面本数)は2~10であるのが好ましい。繊維断面本数比のより好ましい範囲としては、2.5以上、さらに3.0以上であり、一方、9.5以下、さらに9.0以下の範囲である。 On the other hand, if the fiber cross-section ratio is too large, there is a disadvantage that the heat of vaporization released to the atmosphere through the surface layer is reduced and the temperature of the fabric is hardly lowered. For the reasons described above, the ratio of the number of fiber cross sections (the number of fiber cross sections in the back layer / the number of fiber cross sections in the surface layer) is preferably 2 to 10. A more preferable range of the fiber cross-section number ratio is 2.5 or more, further 3.0 or more, and on the other hand, a range of 9.5 or less, further 9.0 or less.
 本発明の繊維構造体の態様としては、組織が以下のa~c群から一つ選ばれることを特徴とする。この繊維構造体も繊維構造体断面の中心線を境界として表面側である表層と裏面側である裏層の繊維密度が異なっている。
 a群:2枚以上の筬を有する編み機から製造された経編物であって、裏層となる組織が2針振り又は3針振り組織であるもの。
 b群:両面編機で編成された緯編物であって表層となる組織が柄組織であるもの。
 c群:地組織を有するパイル織物。
An embodiment of the fiber structure of the present invention is characterized in that one of the structures is selected from the following groups a to c. Also in this fiber structure, the fiber density of the surface layer on the front surface side and the back layer on the back surface side are different with the center line of the cross section of the fiber structure as a boundary.
Group a: A warp knitted fabric manufactured from a knitting machine having two or more wrinkles, and the structure as the back layer is a 2-needle or 3-needle swing structure.
Group b: a weft knitted fabric knitted by a double-sided knitting machine, and the surface layer is a patterned structure.
Group c: Pile fabric having a ground texture.
 この繊維構造体も繊維断面本数比が2~10であるのが好ましく、繊維断面本数比のより好ましい範囲としては、2.5以上、さらに3.0以上であり、一方、9.5以下、さらに9.0以下の範囲である。この繊維構造体も、環境の相対湿度低下により、環境温度より大きく温度が低下する。この理由は上に述べたのと同様である。 This fiber structure also preferably has a fiber cross section number ratio of 2 to 10, and a more preferable range of the fiber cross section number ratio is 2.5 or more, further 3.0 or more, while 9.5 or less, Furthermore, it is the range of 9.0 or less. This fiber structure also has a temperature lower than the environmental temperature due to a decrease in the relative humidity of the environment. The reason for this is the same as described above.
 a群は、2枚以上の筬を有する編み機から製造された経編物であり、地組織となる裏層が2針振り又は3針振り組織であることが好ましい。地組織は、2針振り組織としては、1-0/2-3、2-3/1-0、0-1/3-2、3-2/0-1などが例示される。3針振り組織としては、1-0/3-4、3-4/1-0、0-1/4-3、0-1/3-4などが例示される。地組織はこれら組織を少なくとも1つ以上含んでいれば、その他組織との組み合わせであってもよい。また、a群を構成する表層は、1針~3針振り組織やアトラス組織、その他変化組織であってよく、全ての針に糸通ししない糸抜き組織なども好ましい。 Group a is a warp knitted fabric manufactured from a knitting machine having two or more ridges, and the back layer serving as the ground texture is preferably a 2-needle or 3-needle swing structure. Examples of the ground organization include 1-0 / 2-3, 2-3 / 1-0, 0-1 / 3-2, 3-2 / 0-1 and the like. Examples of the three-needle swing structure include 1-0 / 3-4, 3-4 / 1-0, 0-1 / 4-3, 0-1 / 3-4, and the like. The ground organization may be a combination with other organizations as long as it contains at least one of these organizations. Further, the surface layer constituting the group a may be a 1-to-3 needle swing structure, an atlas structure, or other changed structures, and a thread-removed structure that does not pass through all the needles is also preferable.
 b群は、両面編機で編成された緯編物であって表層となる組織が柄組織である。裏層を構成する地組織としては、平編やゴム編組織などの密な組織であり、表層として、やや疎な組織である柄組織を有する緯編物が好ましい。 Group b is a weft knitted fabric knitted by a double-sided knitting machine, and the surface layer is a patterned structure. The ground structure constituting the back layer is a dense structure such as a flat knitting or a rubber knitting structure, and a weft knitted fabric having a pattern structure which is a slightly sparse structure as the surface layer is preferable.
 c群は、地組織を有するパイル織物として、レーヨン繊維を地組織に用いたモケットパイル織物や2重織物のベルベット織物が好ましい。 Group c is preferably a moquette pile fabric or a double velvet fabric using rayon fibers as a ground fabric having a ground texture.
 本発明の繊維構造体は、夏場の車内を想定した40℃で相対湿度80%の雰囲気においてエアコンの使用を開始し、その雰囲気条件から10分以内に35℃で相対湿度70%の雰囲気に温湿度条件を変化させたときの布帛の表面温度降下が1.5℃~4℃であることが好ましい。40℃で相対湿度80%の雰囲気から35℃で相対湿度70%の雰囲気に10分以内に温湿度条件を変化させたとき、本発明の吸湿性ポリマーが固着している繊維構造体は、吸湿性ポリマーを固着させていない繊維構造体と比較した場合、表面温度が1.5℃~4.0℃低いことが好ましく、下限としては1.7℃以上、1.9℃以上の順に好ましい。 The fiber structure of the present invention starts to use an air conditioner in an atmosphere of 80% relative humidity at 40 ° C., assuming the interior of a car in summer, and within 10 minutes from the atmospheric conditions, warms to an atmosphere of 70% relative humidity at 35 ° C. The surface temperature drop of the fabric when the humidity condition is changed is preferably 1.5 ° C. to 4 ° C. When the temperature and humidity conditions are changed within 10 minutes from an atmosphere having a relative humidity of 80% at 40 ° C. to an atmosphere having a relative humidity of 35% at 35 ° C., the fiber structure to which the hygroscopic polymer of the present invention is fixed is hygroscopic. The surface temperature is preferably 1.5 ° C. to 4.0 ° C. lower than the fiber structure to which the conductive polymer is not fixed, and the lower limit is preferably 1.7 ° C. or higher and 1.9 ° C. or higher.
 本発明の布帛の繊維に固着している吸湿性ポリマーは、吸湿性の観点から、20℃で相対湿度65%の雰囲気条件から30℃で相対湿度90%の雰囲気条件へ変化させたときに、吸湿によって質量が増加する程度(以下、吸湿率という。)が10~75%であることが好ましく、より好ましくは15%以上、さらには20%以上である。一方、好ましくは70%以下、さらには65%以下である。かような吸湿性を満たす吸湿性ポリマーとしては、官能基としてスルホ基、カルボキシル基、水酸基、アミド基、あるいはそれらのアルカリ金属塩(望ましくはナトリウム塩)を有するビニル基を有するモノマーから選ばれるものの重合体、又はそのモノマーを少なくとも1種以上を含む共重合体であることが好ましい。例えば、スルホ基を有するポリマーとして、ポリ(アクリル酸アミド-2-プロパンスルホン酸ナトリウム)、ポリスチレンスルホン酸ナトリウム、ポリイソプレンスルホン酸ナトリウム、ポリアリルスルホン酸ナトリウム、ポリメタリルスルホン酸ナトリウムなどが好ましい。カルボキシル基を有するポリマーをしては、ポリアクリル酸ナトリウムなどが好ましい。水酸基を有するポリマーとしては、ポリエチレングリコール、ポリビニルアルコールなどが好ましい。アミド基を有するポリマーとしてはポリーN-メチロールアクリルアミド、ポリアクリルアミドなどが好ましい。かかる吸湿性モノマーのうち、高吸湿性の点から、2-アクリルアミドー2-メチルスルホン酸ナトリウムが特に好ましい。 From the viewpoint of hygroscopicity, the hygroscopic polymer fixed to the fibers of the fabric of the present invention is changed from an atmospheric condition of 65% relative humidity at 20 ° C. to an atmospheric condition of 90% relative humidity at 30 ° C. The degree of increase in mass due to moisture absorption (hereinafter referred to as moisture absorption rate) is preferably 10 to 75%, more preferably 15% or more, and even more preferably 20% or more. On the other hand, it is preferably 70% or less, and more preferably 65% or less. The hygroscopic polymer satisfying such hygroscopicity is selected from monomers having a vinyl group having a sulfo group, a carboxyl group, a hydroxyl group, an amide group, or an alkali metal salt (preferably a sodium salt) thereof as a functional group. It is preferable that it is a polymer or a copolymer containing at least one monomer. For example, the polymer having a sulfo group is preferably poly (sodium amide-2-propanesulfonate), sodium polystyrenesulfonate, sodium polyisoprenesulfonate, sodium polyallylsulfonate, sodium polymethallylsulfonate, or the like. As the polymer having a carboxyl group, sodium polyacrylate is preferred. As the polymer having a hydroxyl group, polyethylene glycol, polyvinyl alcohol and the like are preferable. As the polymer having an amide group, poly-N-methylolacrylamide, polyacrylamide and the like are preferable. Of these hygroscopic monomers, sodium 2-acrylamido-2-methylsulfonate is particularly preferred from the viewpoint of high hygroscopicity.
 さらに上記ポリマーに他のモノマーユニットが入った共重合体も使用できる。
 また、本発明においては、吸湿性ポリマーの繊維への固着性を向上させるために、架橋剤を使用して吸湿性ポリマーに架橋構造をとらせるのが好ましい。架橋剤としては、多官能のエポキシ化合物、多官能のイソシアネート化合物、尿素樹脂、メラミン樹脂、重合性二重結合を少なくとも2個有する化合物が例示される。
Furthermore, a copolymer in which another monomer unit is contained in the polymer can also be used.
Moreover, in this invention, in order to improve the adhesiveness to the fiber of a hygroscopic polymer, it is preferable to make a hygroscopic polymer have a crosslinked structure using a crosslinking agent. Examples of the crosslinking agent include polyfunctional epoxy compounds, polyfunctional isocyanate compounds, urea resins, melamine resins, and compounds having at least two polymerizable double bonds.
 重合性二重結合を有する化合物としては、ポリエチレングリコール(例えば、数平均繰り返し度数250)の末端の水酸基に(メタ)アクリル酸をエステル化した化合物が挙げられる。例えば、エチレンオキサイドの平均繰り返し度数が9~23であり、メタクリル酸2個がエステル化したものが使用できる。 Examples of the compound having a polymerizable double bond include compounds in which (meth) acrylic acid is esterified to the terminal hydroxyl group of polyethylene glycol (for example, number average repeatability 250). For example, ethylene oxide having an average repetition frequency of 9 to 23 and two methacrylic acids esterified can be used.
 さらに、布帛を構成する繊維の上で重合させて吸湿性ポリマーを得ることができる。吸湿性ポリマーとなるモノマーと必要に応じて重合開始剤を布帛を構成する繊維に含浸させることができる。必要があれば架橋剤も含むことができる。重合開始剤としては、例えば、過硫酸アンモニウム、過硫酸カリウム、過酸化水素などの無機系の重合開始剤や、2,2’-アゾビス(2-アミディノプロパン)ジハイドロクロライド、2,2’-アゾビス(N、N-ジメチレンイソブチラミディン)ジハイドロクロライド、2-(カルバモイラゾ)イソブチロニトリルなどの有機系重合開始剤が好ましく用いられる。 Furthermore, it is possible to obtain a hygroscopic polymer by polymerizing on the fibers constituting the fabric. The fiber constituting the fabric can be impregnated with a monomer that becomes a hygroscopic polymer and, if necessary, a polymerization initiator. If necessary, a crosslinking agent can also be included. Examples of the polymerization initiator include inorganic polymerization initiators such as ammonium persulfate, potassium persulfate, and hydrogen peroxide, 2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′- Organic polymerization initiators such as azobis (N, N-dimethyleneisobutyramide) dihydrochloride and 2- (carbamoylazo) isobutyronitrile are preferably used.
 吸湿性ポリマーを繊維に固着させる方法については、モノマー、(必要であれば)架橋剤、(必要であれば)重合開始剤および溶媒または分散媒を含有する処理液をパディング法で繊維に付与した後、熱を与え乾燥させる。続いてスチーム付与など高温の状態におくことによりモノマーなどを重合させ、得られる吸湿性ポリマーを繊維表面に固着させる。また、ポリアクリル酸アミド-2-プロパンスルホン酸ナトリウム、スチレンスルホン酸ナトリウム、イソプレンスルホン酸ナトリウム、アリルスルホン酸ナトリウム、メタリルスルホン酸ナトリウムなどのポリマー溶液に布帛を含浸させ、乾燥させる方法も吸湿性ポリマーを繊維に固着させる方法として例示される。 For the method of fixing the hygroscopic polymer to the fiber, a treatment liquid containing a monomer, a crosslinking agent (if necessary), a polymerization initiator (if necessary) and a solvent or a dispersion medium was applied to the fiber by a padding method. Then, heat and dry. Subsequently, the monomer and the like are polymerized by being placed in a high temperature state such as steam application, and the resulting hygroscopic polymer is fixed to the fiber surface. Also, the method of impregnating the fabric with a polymer solution such as sodium polyacrylamido-2-propanesulfonate, sodium styrenesulfonate, sodium isoprenesulfonate, sodium allylsulfonate, sodium methallylsulfonate, and drying is hygroscopic. It is exemplified as a method for fixing the polymer to the fiber.
 上記パディング法における処理液の濃度は、重合反応による場合、吸湿性ポリマーとなるモノマーの濃度が20~150g/Lであることが好ましい。重合にあたって架橋剤を使用する場合、その濃度は20~150g/Lが好ましい。また、重合開始剤を使用する場合、その濃度は、1~10g/Lが好ましく、より好ましくは、3g/L以上、さらに好ましくは、5g/L以上である。 In the case of the polymerization reaction, the concentration of the treatment liquid in the padding method is preferably 20 to 150 g / L of the monomer serving as a hygroscopic polymer. When a crosslinking agent is used in the polymerization, the concentration is preferably 20 to 150 g / L. When a polymerization initiator is used, its concentration is preferably 1 to 10 g / L, more preferably 3 g / L or more, and still more preferably 5 g / L or more.
 吸湿性ポリマーの溶液で処理する場合には、20~150g/Lの濃度が好ましい。重合させる場合であっても、ポリマーの溶液を用いる場合であっても、上記濃度が低いと、吸湿性ポリマーの固着量が低くなり、冷却性能が低下する。上記濃度が高いと吸湿性ポリマーの固着量が高すぎるため、繊維構造体の風合いが硬くなる。 In the case of treatment with a hygroscopic polymer solution, a concentration of 20 to 150 g / L is preferred. Whether the polymerization is performed or the polymer solution is used, if the concentration is low, the amount of the hygroscopic polymer fixed becomes low and the cooling performance is lowered. If the concentration is high, the amount of the hygroscopic polymer fixed is too high, and the texture of the fiber structure becomes hard.
 熱処理については、重合開始剤の活性を保持するために、常圧スチーマー、または高圧スチーマーの設備を用いることが好ましく、スチーム処理の温度は、80℃~170℃が好ましい。 Regarding the heat treatment, in order to maintain the activity of the polymerization initiator, it is preferable to use a normal-pressure steamer or a high-pressure steamer, and the steam treatment temperature is preferably from 80 ° C to 170 ° C.
 熱処理時間は任意であるが、5分間~15分間処理することが好ましい。より好ましくは6~15分間、さらに好ましくは7~15分間である。スチーム圧は任意であるが、重合を促進するために0.09~0.50MPaの範囲であることが好ましい。 The heat treatment time is arbitrary, but it is preferable to treat for 5 to 15 minutes. More preferably, it is 6 to 15 minutes, and further preferably 7 to 15 minutes. The steam pressure is arbitrary, but is preferably in the range of 0.09 to 0.50 MPa in order to promote polymerization.
 吸湿性ポリマーを布帛の繊維に固着させる加工方法として、パディング法やスプレー法やロールコート法などで固着させることが好ましく、布帛内部まで薬剤を浸漬させることができる、パディング法で加工することが特に好ましい。 As a processing method for fixing the hygroscopic polymer to the fibers of the fabric, it is preferable to fix the hygroscopic polymer by a padding method, a spray method, a roll coating method, or the like. preferable.
 布帛の繊維に固着した吸湿性ポリマーの固着率は、布帛に対して、4~20質量%の範囲であることが好ましい。4質量%より少ないと十分な吸湿性能が得られず、その結果大きな温度変化が得られない。一方、20質量%より多いと、風合いが硬いという印象を与える。吸湿性ポリマーの布帛繊維への固着率は、より好ましくは5~18質量%の範囲である。 The fixing rate of the hygroscopic polymer fixed to the fibers of the fabric is preferably in the range of 4 to 20% by mass with respect to the fabric. When the amount is less than 4% by mass, sufficient moisture absorption performance cannot be obtained, and as a result, a large temperature change cannot be obtained. On the other hand, when it is more than 20% by mass, an impression that the texture is hard is given. The adhesion rate of the hygroscopic polymer to the fabric fiber is more preferably in the range of 5 to 18% by mass.
 本発明の布帛を構成する繊維は、例えば、ポリエステル繊維やポリアミド繊維のような合成繊維や綿などの天然繊維やレーヨンなどを、単独で又は2種以上を混合したものが用いることができる。さらに、石油資源使用量低減の観点から、植物由来の原料を使用したポリエチレンテレフタレート繊維、ポリトリメチレンテレフタレート繊維、ポリアミド繊維、その他ポリ乳酸繊維などのバイオマス繊維が好適に使用される。特に、ポリトリメチレンテレフタレート繊維はヤング率が低いため、風合い、手触り、座り心地が良く、好適に使用される。また、ポリ乳酸繊維は、原料を100%植物から生成することができ、石油資源の使用低減に最も貢献できる繊維であり好ましい。 As the fibers constituting the fabric of the present invention, for example, synthetic fibers such as polyester fibers and polyamide fibers, natural fibers such as cotton, rayon, or the like can be used alone or in combination of two or more. Furthermore, from the viewpoint of reducing the amount of petroleum resources used, biomass fibers such as polyethylene terephthalate fibers, polytrimethylene terephthalate fibers, polyamide fibers, and other polylactic acid fibers using plant-derived raw materials are preferably used. In particular, since polytrimethylene terephthalate fiber has a low Young's modulus, it has a good texture, hand feeling, and sitting comfort and is preferably used. The polylactic acid fiber is preferably a fiber that can be produced from 100% plant as a raw material and can contribute most to the reduction of the use of petroleum resources.
 上記繊維の形態は、マルチフィラメントや紡績糸などが使用されるが、布帛強度や耐摩耗性が要求される場合には、マルチフィラメントが好適である。バイオマス繊維の好ましい総繊度および単繊維繊度は上記段落[0013]に記載のとおりである。 As the form of the fibers, multifilaments and spun yarns are used, but multifilaments are suitable when fabric strength and wear resistance are required. The preferred total fineness and single fiber fineness of the biomass fiber are as described in the above paragraph [0013].
 また、上記繊維には、本発明の効果を損なわない範囲で、酸化チタン粉末のようなダル化剤、染料、顔料、難燃剤、吸湿剤、熱安定剤、紫外線吸収剤、抗菌剤、防カビ剤および消臭剤などを含んでいてもよい。 In addition, the above-mentioned fibers include dulling agents such as titanium oxide powder, dyes, pigments, flame retardants, hygroscopic agents, heat stabilizers, ultraviolet absorbers, antibacterial agents, fungicides, as long as the effects of the present invention are not impaired. An agent, a deodorant, etc. may be included.
 本発明の繊維構造体の耐光堅牢度は、4級以上であることが好ましい。フェードメーターで83℃、200時間照射した後、変退色用グレースケールの判定で4級より低いレベルであるとカーシート用途として使用時に色褪せなどの問題が生じる。 The light fastness of the fiber structure of the present invention is preferably 4th or higher. After irradiating with a fade meter at 83 ° C. for 200 hours, if the level is lower than the fourth grade as judged by the gray scale for color fading, problems such as fading occur when used as a car seat.
 本発明の繊維構造体は、肌着、スポーツ衣料、ワイシャツなどの衣料用途や椅子張りなどのインテリア用品に使用する他、車両内装材用途として使用されることが好ましい。特に好ましい用途としては、車両内装材用途であり、特に車両の用途としては、シートであり、シートに使用する場合、メイン材、カマチ部、背裏部、ヘッドレスト、シートカバー、ヘッドレストカバーなどに好ましく用いることができる。 The fiber structure of the present invention is preferably used as a vehicular interior material application, as well as used for clothing such as underwear, sports clothing, and shirts, and interior goods such as chairs. As a particularly preferable application, it is a vehicle interior material application, and particularly as a vehicle application, it is a seat. When used for a seat, it is preferable for a main material, a gusset part, a back part, a headrest, a seat cover, a headrest cover, etc. Can be used.
 以下、本発明を実施例により、さらに詳細に説明する。本発明は以下の実施例に限定されるものでなく、本発明の技術的範囲を逸脱しない範囲において、様々な変更や修正が可能である。なお、以下の実施例および比較例における各評価は、次の方法で求めた。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples, and various changes and modifications can be made without departing from the technical scope of the present invention. In addition, each evaluation in the following examples and comparative examples was calculated | required with the following method.
 [測定方法]
 (1)引張強度(cN/dtex)と伸度(%)
 JIS L 1013(8.5.1)(2010)に示される定速伸長条件に準じ、オリエンテック(株)社製TENSILON(登録商標)UCT-100を用いて、糸の引張強度(cN/dtex)および伸度(%)を測定した。このとき、試料長200mm、引張速度200m/分として、引張強度は応力-歪み曲線における最大強力を示した点の強力を総繊度で除することにより求め、伸度は応力-歪み曲線における最大強力を示した点の伸びから求めた。
[Measuring method]
(1) Tensile strength (cN / dtex) and elongation (%)
Tensile strength (cN / dtex) of yarn using TENSILOON (registered trademark) UCT-100 manufactured by Orientec Co., Ltd. according to the constant speed elongation conditions shown in JIS L 1013 (8.5.1) (2010). ) And elongation (%). At this time, with a sample length of 200 mm and a tensile speed of 200 m / min, the tensile strength is obtained by dividing the strength at the point showing the maximum strength in the stress-strain curve by the total fineness, and the elongation is the maximum strength in the stress-strain curve. It was calculated | required from the elongation of the point which showed.
 (2)目付(g/m
 JIS L 1096(8.4.2)(2010)に規定された方法により、布帛の単位面積当たりの質量(g/m)を求めた。
(2) Weight per unit (g / m 2 )
The mass (g / m 2 ) per unit area of the fabric was determined by the method defined in JIS L 1096 (8.4.2) (2010).
 (3)吸湿性ポリマーの固着率
 吸湿性ポリマーが固着していない布帛から30cm×30cmの正方形状の試片を切り取り、温度が24℃で、相対湿度が60%に設定された恒温恒湿室に24時間放置し、加工前(吸湿性ポリマー固着前)の布帛重量(g)を測定した。その後、吸湿性ポリマーを固着させた加工後の布帛重量(g)も加工前布帛と同じ恒温恒湿条件で測定し、下式の通り吸湿性ポリマーの固着率を算出した。
 吸湿性ポリマーの固着率(%)=[加工後の布帛重量(g)-加工前の布帛重量(g)]/加工前の布帛重量(g)×100
(3) Adhesion rate of hygroscopic polymer A 30 cm x 30 cm square specimen was cut from a fabric not adhering to the hygroscopic polymer, the temperature was set to 24 ° C, and the relative humidity was set to 60%. The fabric weight (g) before processing (before hygroscopic polymer fixation) was measured for 24 hours. Thereafter, the weight (g) of the fabric after processing to which the hygroscopic polymer was fixed was also measured under the same constant temperature and humidity conditions as the pre-processing fabric, and the fixing rate of the hygroscopic polymer was calculated according to the following formula.
Adhesion rate of hygroscopic polymer (%) = [fabric weight after processing (g) −fabric weight before processing (g)] / fabric weight before processing (g) × 100
 (4)布帛の吸湿率(%)
 加工前(吸湿性ポリマー固着前)の布帛から約1.0gの試料を採取して、を熱風乾燥機中で105℃、24時間乾燥して重量を測定した(W1)。次に、該試料を20℃で相対湿度65%に調整した恒温恒湿器に24時間入れた後の試料重量を測定した。(W2)。さらに、30℃で×相対湿度90%調整した恒温恒湿器に24時間入れた後の試料重量を測定した(W3)。以上の測定結果から、次式によって布帛の吸湿率を算出した。
 布帛の吸湿率(%)=[(W3-W1)/W1-(W2-W1)/W1]×100
(4) Moisture absorption rate of fabric (%)
About 1.0 g of a sample was taken from the fabric before processing (before fixing the hygroscopic polymer), and the sample was dried in a hot air dryer at 105 ° C. for 24 hours, and the weight was measured (W1). Next, the weight of the sample was measured after placing the sample in a constant temperature and humidity chamber adjusted to a relative humidity of 65% at 20 ° C. for 24 hours. (W2). Further, the weight of the sample after being placed in a thermo-hygrostat adjusted at 30 ° C. and 90% relative humidity for 24 hours was measured (W3). From the above measurement results, the moisture absorption rate of the fabric was calculated by the following formula.
Moisture absorption rate of fabric (%) = [(W3-W1) / W1- (W2-W1) / W1] × 100
 (5)吸湿性ポリマーの吸湿率
 加工後(吸湿性ポリマー固着後)の布帛についても段落[0047]に記載した条件と同様に、W1とW2とW3から加工後の布帛の吸湿率を算出した。その加工後の布帛の吸湿率と、段落[0047]で算出した加工前の布帛の吸湿率と、段落[0046]で算出した吸湿性ポリマーの固着率とに基づいて、次式によって吸湿性ポリマーの吸湿率を算出した。
 吸湿性ポリマーの吸湿率(%)=(加工後の布帛吸湿率-加工前の布帛吸湿率)×100/吸湿性ポリマーの固着率
(5) Moisture absorption rate of hygroscopic polymer For fabric after processing (after hygroscopic polymer fixation), the moisture absorption rate of the fabric after processing was calculated from W1, W2 and W3 in the same manner as the conditions described in paragraph [0047]. . Based on the moisture absorption rate of the fabric after processing, the moisture absorption rate of the fabric before processing calculated in paragraph [0047], and the sticking rate of the hygroscopic polymer calculated in paragraph [0046], the hygroscopic polymer is expressed by the following equation: The moisture absorption rate was calculated.
Moisture absorption rate of hygroscopic polymer (%) = (fabric absorption rate after processing−fabric absorption rate before processing) × 100 / fixation rate of hygroscopic polymer
 (6)繊維断面本数比
 布帛の製織又は製編方向に対して垂直方向に切断した。切断した測定試料に対して日立製の金属蒸着装置(商品名E1010)を用いて金属蒸着した後、その試料を日立製の走査型電子顕微鏡(商品名S-3500)に装着し、30倍~100倍の倍率で写真撮影した。その顕微鏡写真を図1から図5に示したように、中心線1に対して表面2側と裏面3側に2分割し、中心線1から表面2に至るまでの範囲である表層と中心線1から裏面3に至るまでの範囲である裏層にそれぞれ含まれる繊維本数を数えて、その繊維本数を繊維断面本数とした。繊維断面本数比の算出式を下式に示す。
 繊維断面本数比=(裏層の繊維断面本数)/(表層の繊維断面本数)
(6) Ratio of fiber cross-sections Cut in the direction perpendicular to the weaving or knitting direction of the fabric. After the metal sample was vapor deposited on the cut measurement sample using a Hitachi metal vapor deposition device (trade name E1010), the sample was mounted on a Hitachi scanning electron microscope (trade name S-3500), 30 times to Photographs were taken at a magnification of 100 times. As shown in FIGS. 1 to 5, the micrograph is divided into two on the front surface 2 side and the back surface 3 side with respect to the center line 1, and the surface layer and the center line that range from the center line 1 to the surface 2 The number of fibers contained in each of the back layers in the range from 1 to the back surface 3 was counted, and the number of fibers was defined as the number of fiber cross sections. The formula for calculating the fiber cross-section number ratio is shown below.
Fiber cross-section ratio = (number of cross-section fibers in the back layer) / (number of cross-section fibers in the surface layer)
 (7)布帛の表面温度降下
 吸湿性ポリマーを固着させた布帛(A)と、吸湿性ポリマーを固着させる前の布帛(B)から25cm×25cmの正方形状の試片を角切り取り、温度が40℃で相対湿度80%に設定された恒温恒湿室内に吊り下げ、3時間静置した。その後、35℃で相対湿度70%に恒温恒湿室の温湿度設定条件を変更し、恒温恒湿室の温湿度表示が35℃で相対湿度70%に達したところで恒温恒湿室に固定したサーモグラフィーカメラ(NEC AVIO赤外線テクノロジー(株)製、型番:TH7102MX)にて布帛(A)と、布帛(B)それぞれの表面温度を測定した。布帛の表面温度降下量は下式で算出した。
 布帛の表面温度降下量=(B)の表面温度-(A)の表面温度
(7) Lowering of surface temperature of fabric A square specimen of 25 cm × 25 cm is cut off from the fabric (A) to which the hygroscopic polymer is fixed and the fabric (B) before the hygroscopic polymer is fixed, and the temperature is 40 It was suspended in a constant temperature and humidity room set at 80 ° C. and a relative humidity of 80%, and left to stand for 3 hours. Thereafter, the temperature and humidity setting conditions of the constant temperature and humidity chamber were changed to 35% at 35 ° C., and the temperature and humidity display of the constant temperature and humidity chamber reached 35% at 70 ° C. and the relative humidity was fixed to the constant temperature and humidity chamber. The surface temperatures of the fabric (A) and the fabric (B) were measured with a thermography camera (manufactured by NEC AVIO Infrared Technology Co., Ltd., model number: TH7102MX). The amount of surface temperature drop of the fabric was calculated by the following equation.
Fabric surface temperature drop = (B) surface temperature− (A) surface temperature
 (8)着座時の涼しさ
 表面に人が接するようにカーシートに本発明の布帛を張り合わせ、そのカーシートを夏場の車内を想定した40℃で相対湿度80%に設定した恒温恒湿室内に設置し、被験者がそのカーシートに5分間着座した後、25℃で相対湿度40%に温湿度設定条件を変更し、さらに3分間着座後のシート表面の涼しさを官能評価した。10人の被験者に評価してもらい、涼しいと感じた人が、8人以上を「非常に良好」、4~7人を「可」、3人以下を「劣る」でそれぞれ表示した。
(8) Coolness at the time of sitting The fabric of the present invention is laminated to a car seat so that a person touches the surface, and the car seat is placed in a constant temperature and humidity room set at 40 ° C. and assuming a relative humidity of 80% assuming a car interior in summer. After installing the subject and sitting on the car seat for 5 minutes, the temperature and humidity setting conditions were changed to a relative humidity of 40% at 25 ° C., and the coolness of the seat surface after sitting for 3 minutes was subjected to sensory evaluation. The number of subjects who were evaluated by 10 subjects and who felt that they were cool displayed 8 or more as “very good”, 4 to 7 as “good”, and 3 or less as “poor”.
 (9)風合い
 本発明の布帛を用い、10人のパネラーにより布帛の触感を評価した。そして、各人の評価の合計点により、総合評価した。
<評価基準>
3点:ソフトタッチで、表面の平滑性も高い。
2点:標準的な柔らかさであり、表面の平滑性も標準である。
1点:粗硬感があり、表面にざらつきがある。
<総合評価>
非常に良好 :25~30点
可  :17~24点
劣る :10~16点。
(9) Texture Using the fabric of the present invention, the touch of the fabric was evaluated by 10 panelists. And it evaluated comprehensively by the total score of each person's evaluation.
<Evaluation criteria>
3 points: Soft touch and high surface smoothness.
2 points: standard softness and surface smoothness.
1 point: There is coarseness and the surface is rough.
<Comprehensive evaluation>
Very good: 25-30 points possible: 17-24 points inferior: 10-16 points.
 (10)耐光堅牢度
 紫外線オートフェードメーター(スガ試験機(株)製、型式:U48AUHB)を用い、ブラックパネル温度が83℃の条件で200時間照射した後、JIS L 0804(2010)に準じ、変退色用グレースケールにより変退色を1級~5級で判定した。
(10) Light fastness After irradiating for 200 hours under the condition of a black panel temperature of 83 ° C. using an ultraviolet autofade meter (manufactured by Suga Test Instruments Co., Ltd., model: U48AUHB), according to JIS L 0804 (2010), The color change was judged from grade 1 to grade 5 by the gray scale for color change.
 [参考例1]
 (芯鞘複合延伸糸)
 芯部がポリエチレンテレフタレート(PET)で鞘部がポリトリメチレンテレフタレート(PTT)であり、それぞれの質量比が3対7である84T48Fの芯鞘複合延伸糸を製造した。具体的には以下のとおりである。
 上記の分率で溶融紡糸機に供給し、口金内で単芯の芯鞘構造に複合させ、紡糸温度280℃で紡糸し、第1ロール回転速度2700m/分、ロール温度40℃で紡出糸を予熱し、第2ロール回転速度4050m/分、ロール温度150℃で熱処理延伸し、巻取速度3700m/分で巻取を行い、84dtex-48f(フィラメント)の芯鞘複合延伸糸を得た。この芯鞘複合延伸糸の引張強度は3.3cN/dtexであり、伸度は45%であった。
[Reference Example 1]
(Core-sheath composite drawn yarn)
An 84T48F core-sheath composite drawn yarn having a core part of polyethylene terephthalate (PET) and a sheath part of polytrimethylene terephthalate (PTT) and a mass ratio of 3 to 7 was produced. Specifically, it is as follows.
It is supplied to the melt spinning machine at the above-mentioned fraction, combined into a single-core core-sheath structure in the die, spun at a spinning temperature of 280 ° C., and spun at a first roll rotation speed of 2700 m / min and a roll temperature of 40 ° C. Was preheated, heat-treated and drawn at a second roll rotational speed of 4050 m / min and a roll temperature of 150 ° C., and wound at a winding speed of 3700 m / min to obtain a core-sheath composite drawn yarn of 84 dtex-48f (filament). The core-sheath composite drawn yarn had a tensile strength of 3.3 cN / dtex and an elongation of 45%.
 [参考例2]
 (ポリエチレンテレフタレート仮撚加工糸)
 84T36Fのポリエチレンテレフタレート仮撚加工糸、167T48Fのポリエチレンテレフタレート仮撚加工糸の製造方法について説明する。紡糸口金の大きさと形状はそれぞれの仮撚加工糸に適したものを採用し、紡糸温度284℃、紡糸速度3000m/分で溶融紡糸を行い、未延伸糸を巻き取った。次いで、第1ヒーター(非接触タイプ)温度230℃、オーバーフィード率0.9、第2ヒーター(非接触タイプ)温度200℃、延伸倍率1.69倍、加工速度600m/分で仮撚加工を行い、84dtex-36f(フィラメント)のポリエチレンテレフタレート仮撚加工糸と、167dtex-48f(フィラメント)のポリエチレンテレフタレート仮撚加工糸を得た。84T36Fのポリエチレンテレフタレート仮撚加工糸の引張強度は3.6cN/dtex、伸度は23%であり、167T48Fのポリエチレンテレフタレート仮撚加工糸の引張強度は4.0cN/dtex、伸度は22%あった。
[Reference Example 2]
(Polyethylene terephthalate false twisted yarn)
A method for producing 84T36F polyethylene terephthalate false twisted yarn and 167T48F polyethylene terephthalate false twisted yarn will be described. As the size and shape of the spinneret, those suitable for each false twisted yarn were adopted, melt spinning was performed at a spinning temperature of 284 ° C. and a spinning speed of 3000 m / min, and the undrawn yarn was wound up. Next, false twisting is performed at a first heater (non-contact type) temperature of 230 ° C., an overfeed rate of 0.9, a second heater (non-contact type) temperature of 200 ° C., a draw ratio of 1.69 times, and a processing speed of 600 m / min. As a result, 84 dtex-36f (filament) polyethylene terephthalate false twisted yarn and 167 dtex-48f (filament) polyethylene terephthalate false twisted yarn were obtained. The tensile strength of the 84T36F polyethylene terephthalate false twisted yarn is 3.6 cN / dtex and the elongation is 23%, and the tensile strength of the 167T48F polyethylene terephthalate false twisted yarn is 4.0 cN / dtex and the elongation is 22%. It was.
 [参考例3]
 (ポリエチレンテレフタレート延伸糸)
84T48F(84dtex-48f(フィラメント))のポリエチレンテレフタレート延伸糸の製造方法について説明する。紡糸温度290℃、紡糸速度1500m/分で溶融紡糸を行い、未延伸糸を巻き取った。次いで、延伸加工装置を用い、予熱ローラー温度90℃、熱処理ローラー温度150℃、延伸倍率3.01倍、加工速度970m/分で延伸を行い、84dtex-48fのポリエチレンテレフタレート延伸糸を得た。この延伸糸の引張強度は4.0cN/dtex、伸度は35%であった。
[Reference Example 3]
(Polyethylene terephthalate drawn yarn)
A method for producing a 84T48F (84 dtex-48f (filament)) polyethylene terephthalate drawn yarn will be described. Melt spinning was performed at a spinning temperature of 290 ° C. and a spinning speed of 1500 m / min, and the undrawn yarn was wound up. Next, using a drawing apparatus, drawing was performed at a preheating roller temperature of 90 ° C., a heat treatment roller temperature of 150 ° C., a draw ratio of 3.01 times, and a working speed of 970 m / min, to obtain a drawn polyethylene terephthalate yarn of 84 dtex-48f. The drawn yarn had a tensile strength of 4.0 cN / dtex and an elongation of 35%.
 [実施例1]
 28ゲージのトリコット編機を用いた。4枚の筬を用いてL1(地組織となる)に参考例1の84dtex-48f(フィラメント)の芯鞘複合延伸糸をフルセットの糸配列で供給し、L2(地組織となる)に参考例2の84dtex-36f(フィラメント)のポリエチレンテレフタレート仮撚加工糸をフルセットの糸配列で供給し、L3、L4に参考例1の84dtex-48f(フィラメント)の芯鞘複合延伸糸を糸入糸抜1本交互の糸配列で供給し、機上コースが42C/2.54cmとなる密度で下記組織1の形態で生機を製編した。
[Example 1]
A 28 gauge tricot knitting machine was used. Supply the core-sheath composite drawn yarn of 84 dtex-48f (filament) of Reference Example 1 in a full set of yarn arrangement to L1 (becomes a ground texture) using 4 scissors, and reference to L2 (becomes a ground texture) 84 dtex-36f (filament) polyethylene terephthalate false twisted yarn of Example 2 is supplied in a full set of yarn arrangement, and 84 dtex-48f (filament) core-sheath composite drawn yarn of Reference Example 1 is threaded into L3 and L4. The drawn machine was fed in an alternating yarn arrangement, and the raw machine was knitted in the form of the following structure 1 at a density of an on-machine course of 42 C / 2.54 cm.
 (組織1)(a群の組織)
L1:84dtex-48f(PET/PTT芯鞘複合延伸糸)、1-2/1-0(糸通し:フルセット)
L2:84dtex-36f(PET仮撚加工糸)、3-4/1-0(糸通し:フルセット)
L3:84dtex-48f(PET/PTT芯鞘複合延伸糸)、2-3/2-1 1-0/1-2(糸通し:糸入糸抜1本交互)
L4:84dtex-48f(PET/PTT芯鞘複合延伸糸)、1-0/1-2 2-3/2-1(糸通し:糸入糸抜1本交互)
(Organization 1) (Organization of group a)
L1: 84 dtex-48f (PET / PTT core-sheath composite stretched yarn), 1-2 / 1-0 (threading: full set)
L2: 84 dtex-36f (PET false twisted yarn), 3-4 / 1-0 (threading: full set)
L3: 84 dtex-48f (PET / PTT core-sheath composite stretched yarn), 2-3 / 2-1 1-0 / 1-2 (threading: one thread inserted and one thread pulled out alternately)
L4: 84 dtex-48f (PET / PTT core-sheath composite stretched yarn), 1-0 / 1-2 2-3 / 2-1 (threading: one thread inserted and one thread removed)
 得られた経編地を液流染色機を用いて、染料として“Dianix”(登録商標、以下同じ) KIS-U 0.24%owf、“Dianix” AM-2R 0.11%owf、“Dianix” GL-FS 0.24%owf、耐光剤としてCiba社製の商品名fast-P 1%owfを用い、室温から130℃の染色温度まで昇温速度1℃で昇温し、染色温度130℃で25分間染色した。
 その後、上記のように染色した経編地を下記の処方1の処理液に浸漬して吸湿性ポリマーを含浸後、ピックアップ率が90%になるように布帛をマングルで絞り、乾燥機中で120℃、2分間の条件で乾燥させた。
The resulting warp knitted fabric was dyed “Dianix” (registered trademark, the same shall apply hereinafter) as a dye. KIS-U 0.24% owf, “Dianix” AM-2R 0.11% owf, “Dianix” GL-FS 0.24% owf, trade name fast-P 1% owf manufactured by Ciba as a light-proofing agent, heated from room temperature to a dyeing temperature of 130 ° C. at a heating rate of 1 ° C., dyeing temperature 130 ° C. For 25 minutes.
Thereafter, the warp knitted fabric dyed as described above is immersed in a treatment liquid of the following prescription 1 and impregnated with a hygroscopic polymer, and then the fabric is squeezed with mangles so that the pickup rate becomes 90%, and 120% in a drier. Drying was performed at 2 ° C. for 2 minutes.
 (処方1)
・2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウム(商品名:グラセットT505、メーカー:北広ケミカル(株)):120g/L
・架橋剤として「数平均重合度23のポリエチレングリコール」のジメタクリレート(商品名:グラセットT303 メーカー: 北広ケミカル(株)):120g/L)
・重合開始剤として過硫酸アンモニウム(メーカー:ナカライテスク(株)):5g/L
・水
(Prescription 1)
・ Sodium 2-acrylamido-2-methylpropanesulfonate (trade name: Graset T505, manufacturer: Kitahiro Chemical Co., Ltd.): 120 g / L
-Dimethacrylate (trade name: Graset T303 manufacturer: Kitahiro Chemical Co., Ltd.): 120 g / L as a cross-linking agent
-Ammonium persulfate as a polymerization initiator (Manufacturer: Nacalai Tesque): 5 g / L
·water
 上記のように染色した経編地に吸湿性ポリマーを含浸して乾燥後、105℃に加熱した常圧スチーマーで10分間処理し、湯で洗った後に乾燥した。次いで、その乾燥後のものをさらに乾燥機で160℃で1分間乾燥して、目付310g/m、吸湿性ポリマーの固着率が7.3%、布帛の吸湿率が2.4%、吸湿性ポリマーの吸湿率が32.8%である実施例1の繊維構造体を得た。 The warp knitted fabric dyed as described above was impregnated with a hygroscopic polymer, dried, then treated with a normal pressure steamer heated to 105 ° C. for 10 minutes, washed with hot water and then dried. Next, the dried product is further dried at 160 ° C. for 1 minute with a dryer, the basis weight is 310 g / m 2 , the hygroscopic polymer fixing rate is 7.3%, the fabric hygroscopic rate is 2.4%, and the hygroscopic rate is A fiber structure of Example 1 in which the moisture absorption rate of the conductive polymer was 32.8% was obtained.
 この繊維構造体を製編方向に対して垂直方向に切断し、電子顕微鏡で観察した。図1はその電子顕微鏡写真(50倍)である。その観察結果によると、表層の繊維断面本数は235本、裏層の繊維断面本数は850本であり、繊維断面本数比は3.62であった。さらに、編物の繊維に吸湿性ポリマーが固着していることが観察できた。 The fiber structure was cut in a direction perpendicular to the knitting direction and observed with an electron microscope. FIG. 1 is an electron micrograph (50 ×). According to the observation results, the number of cross-sectional fibers in the surface layer was 235, the number of cross-sectional fibers in the back layer was 850, and the ratio of the number of fiber cross-sections was 3.62. Furthermore, it was observed that the hygroscopic polymer was fixed to the fibers of the knitted fabric.
 性能評価の結果を表1に示す。布帛の表面温度降下が2.1℃、着座時の涼しさが「非常に良好」、風合いが「非常に良好」、耐光堅牢度が4級であり、人が着座した時の快適性が非常に優れていた。 Table 1 shows the results of performance evaluation. The surface temperature drop of the fabric is 2.1 ° C, the coolness at the time of sitting is “very good”, the texture is “very good”, the light fastness is 4th grade, and the comfort when the person is seated is very good It was excellent.
 [実施例2]
 28ゲージのトリコット編機を用い、4枚の筬を用いてL1(地組織)に参考例2の167dtex-48f(フィラメント)のポリエチレンテレフタレート仮撚加工糸をフルセットの糸配列で供給し、またL2、L3に参考例1の84dtex-48f(フィラメント)の芯鞘複合延伸糸を糸入糸抜1本交互の糸配列で供給し、機上コースが50C/2.54cmの密度で、下記組織2の形態の編物を製造した。
[Example 2]
Using a 28-gauge tricot knitting machine, supply 167 dtex-48f (filament) polyethylene terephthalate false twisted yarn of Reference Example 2 to L1 (ground texture) using four rivets in a full set yarn arrangement, L2 and L3 are supplied with 84 dtex-48f (filament) core-sheath composite drawn yarn of Reference Example 1 in an alternating yarn arrangement, and the on-machine course has a density of 50 C / 2.54 cm and the following structure Two forms of knitted fabric were produced.
 (組織2)(a群の組織)
L1:167dtex-48f(PET仮撚加工糸)、1-0/3-4(糸通し:フルセット)
L2:84dtex-48f(PET/PTT芯鞘複合延伸糸)、2-3/2-1 1-0/1-2(糸通し:糸入糸抜1本交互)
L3:84dtex-48f(PET/PTT芯鞘複合延伸糸)、1-0/1-2 2-3/2-1(糸通し:糸入糸抜1本交互)
(Organization 2) (Organization of group a)
L1: 167 dtex-48f (PET false twisted yarn), 1-0 / 3-4 (threading: full set)
L2: 84 dtex-48f (PET / PTT core-sheath composite drawn yarn), 2-3 / 2-1 1-0 / 1-2 (threading: one thread inserted and one thread removed)
L3: 84 dtex-48f (PET / PTT core-sheath composite stretched yarn), 1-0 / 1-2 2-3 / 2-1 (threading: alternating one thread with thread inserted)
 その後、上記編物を実施例1と同様の方法で染色したのち吸湿性ポリマーを固着させ、目付275g/m、吸湿性ポリマーの固着率が12.3%、布帛の吸湿率が3.0%、吸湿性ポリマーの吸湿率が24.3%である実施例2の繊維構造体を得た。 Then, after dyeing the knitted fabric in the same manner as in Example 1, the hygroscopic polymer was fixed, the basis weight was 275 g / m 2 , the hygroscopic polymer fixing rate was 12.3%, and the fabric hygroscopic rate was 3.0%. Thus, a fiber structure of Example 2 in which the moisture absorption rate of the hygroscopic polymer was 24.3% was obtained.
 この繊維構造体を製編方向に対して垂直方向に切断し、電子顕微鏡で観察した。図2はその電子顕微鏡写真(100倍)である。その観察結果によると、表層の繊維断面本数は121本、裏層の繊維断面本数は485本であり、繊維断面本数比は4.01であった。さらに、編物の地組織に吸湿性ポリマーが多く固着していることが観察できた。 The fiber structure was cut in a direction perpendicular to the knitting direction and observed with an electron microscope. FIG. 2 is an electron micrograph (100 times). According to the observation results, the number of fiber cross-sections in the surface layer was 121, the number of fiber cross-sections in the back layer was 485, and the ratio of fiber cross-sections was 4.01. Furthermore, it was observed that a large amount of hygroscopic polymer adhered to the ground structure of the knitted fabric.
 性能評価の結果を表1に示す。布帛の表面温度降下が1.9℃、着座時の涼しさが「非常に良好」、風合いが「非常に良好」、耐光堅牢度が4級であり、人が着座した時の快適性が非常に優れていた。 Table 1 shows the results of performance evaluation. The surface temperature drop of the fabric is 1.9 ° C, the coolness when sitting is "very good", the texture is "very good", the light fastness is 4th class, and the comfort when sitting is very good It was excellent.
 [実施例3]
 28ゲージのトリコット編機を用い、3枚の筬を用いてL1(地組織)、L2(地組織)に参考例1の84dtex-48f(フィラメント)の芯鞘複合延伸糸をフルセットの糸配列で供給し、L3に参考例2の84dtex-36f(フィラメント)のポリエチレンテレフタレート仮撚加工糸をフルセットの糸配列で供給し、機上コースが64C/2.54cmの密度で下記組織3の形態で生機を製編した。
[Example 3]
A 28-gauge tricot knitting machine was used, and a full set of 84 dtex-48f (filament) core-sheath composite drawn yarn of Reference Example 1 was used for L1 (ground texture) and L2 (ground texture) using three scissors. L3 is supplied with 84 dtex-36f (filament) polyethylene terephthalate false twisted yarn of Reference Example 2 in full set, and the on-machine course has a density of 64C / 2.54 cm and the following structure 3 We knitted live machines.
 (組織3)(a群の組織)
L1:84dtex-48f(PET/PTT芯鞘複合延伸糸)、2-3/1-0(糸通し:フルセット)
L2:84dtex-48f(PET/PTT芯鞘複合延伸糸)、1-0/1-2(糸通し:フルセット)
L3:84dtex-36f(PET仮撚加工糸)、1-0/3-4(糸通し:フルセット)
(Organization 3) (Organization of group a)
L1: 84 dtex-48f (PET / PTT core-sheath composite stretched yarn), 2-3 / 1-0 (threading: full set)
L2: 84 dtex-48f (PET / PTT core-sheath composite stretched yarn), 1-0 / 1-2 (threading: full set)
L3: 84 dtex-36f (PET false twisted yarn), 1-0 / 3-4 (threading: full set)
 次いで、上記編物を実施例1と同様の方法で染色し、その後、起毛機にて起毛加工を実施した布帛に実施例1と同様の方法で吸湿性ポリマーを固着させ、目付330g/m、吸湿性ポリマーの固着率が12.5%、布帛の吸湿率が3.0%、吸湿性ポリマーの吸湿率が24.0%である実施例3の繊維構造体を得た。 Next, the knitted fabric is dyed in the same manner as in Example 1, and then the hygroscopic polymer is fixed in the same manner as in Example 1 to the fabric that has undergone raising with a raising machine, and the basis weight is 330 g / m 2 . A fiber structure of Example 3 was obtained in which the moisture absorption rate of the hygroscopic polymer was 12.5%, the moisture absorption rate of the fabric was 3.0%, and the moisture absorption rate of the hygroscopic polymer was 24.0%.
 この繊維構造体を製編方向に対して垂直方向に切断し、電子顕微鏡で観察した。図3はその電子顕微鏡写真(50倍)である。その観察結果によると、表層の繊維断面本数は220本、裏層の繊維断面本数は1380本であり、繊維断面本数比は6.27であった。さらに、編物の地組織に吸湿性ポリマーが固着していることが観察できた。 The fiber structure was cut in a direction perpendicular to the knitting direction and observed with an electron microscope. FIG. 3 is an electron micrograph (50 ×). According to the observation results, the number of fiber cross-sections in the surface layer was 220, the number of fiber cross-sections in the back layer was 1380, and the fiber cross-section ratio was 6.27. Furthermore, it was observed that the hygroscopic polymer was fixed on the knitted fabric.
 性能評価の結果を表1に示す。布帛の表面温度降下が2.3℃、着座時の涼しさが「非常に良好」、風合いが「非常に良好」、耐光堅牢度が4級であり、人が着座した時の快適性が非常に優れていた。 Table 1 shows the results of performance evaluation. The surface temperature drop of the fabric is 2.3 ° C, the coolness at the time of sitting is “very good”, the texture is “very good”, the light fastness is 4th grade, and the comfort when the person is seated is very good It was excellent.
 [実施例4]
 28ゲージのトリコット編機を用い、4枚の筬を用いてL1(地組織)、L3、L4に、参考例3の84dtex-48f(フィラメント)のポリエチレンテレフタレート延伸糸を用いた以外は実施例1と同様の条件で下記組織4の形態で生機を製編した。
[Example 4]
Example 1 except that a 28-gauge tricot knitting machine was used and 84 dtex-48f (filament) polyethylene terephthalate drawn yarn of Reference Example 3 was used for L1 (ground texture), L3, and L4 using four scissors. The knitting machine was knitted in the form of the following organization 4 under the same conditions as above.
 (組織4) (a群の組織)
L1:84dtex-48f(PET延伸糸)、1-2/1-0(糸通し:フルセット)
L2:84dtex-36f(PET仮撚加工糸)、3-4/1-0(糸通し:フルセット)
L3:84dtex-48f(PET延伸糸)、2-3/2-1 1-0/1-2(糸通し:糸入糸抜1本交互)
L4:84dtex-48f(PET延伸糸)、1-0/1-2 2-3/2-1(糸通し:糸入糸抜1本交互)
(Organization 4) (Organization of group a)
L1: 84 dtex-48f (PET drawn yarn), 1-2 / 1-0 (threading: full set)
L2: 84 dtex-36f (PET false twisted yarn), 3-4 / 1-0 (threading: full set)
L3: 84 dtex-48f (PET drawn yarn), 2-3 / 2-1 1-0 / 1-2 (threading: one thread inserted and one thread removed)
L4: 84 dtex-48f (PET drawn yarn), 1-0 / 1-2 2-3 / 2-1 (threading: one thread inserted and one thread removed)
 次いで、上記編物を実施例1と同様の方法で染色したのち吸湿性ポリマーを固着させ、目付318g/m、吸湿性ポリマーの固着率が7.0%、布帛の吸湿率が2.3%、吸湿性ポリマーの吸湿率が32.8%である実施例4の繊維構造体を得た。この繊維構造体を製編方向に対して垂直方向に切断し、電子顕微鏡で観察した。その観察結果によると、表層の繊維断面本数は245本、裏層の繊維断面本数は854本であり、繊維断面本数比は3.49であった。 Next, after dyeing the knitted fabric in the same manner as in Example 1, the hygroscopic polymer was fixed, the basis weight was 318 g / m 2 , the hygroscopic polymer fixing rate was 7.0%, and the fabric hygroscopic rate was 2.3%. Thus, a fiber structure of Example 4 in which the moisture absorption rate of the hygroscopic polymer was 32.8% was obtained. This fiber structure was cut in a direction perpendicular to the knitting direction and observed with an electron microscope. According to the observation results, the number of cross-sectional fibers in the surface layer was 245, the number of cross-sectional fibers in the back layer was 854, and the ratio of the number of fiber cross-sections was 3.49.
 性能評価の結果を表1に示す。布帛の表面温度降下が2.0℃、着座時の涼しさが「非常に良好」、風合いが「可」、耐光堅牢度が4級であり、人が着座した時の快適性が優れていた。 Table 1 shows the results of performance evaluation. The surface temperature drop of the fabric is 2.0 ° C., the coolness when sitting is “very good”, the texture is “good”, the light fastness is 4th grade, and the comfort when sitting is excellent .
 [実施例5]
 28ゲージのトリコット編機を用い、3枚の筬を用いてL1(地組織)、L2(地組織)に参考例3の84dtex-48f(フィラメント)のポリエチレンテレフタレート延伸糸を用いた以外は実施例3と同様の条件で下記組織5の形態で生機を製編した。
[Example 5]
Example using a 28-gauge tricot knitting machine, except that 84 dtex-48f (filament) polyethylene terephthalate drawn yarn of Reference Example 3 was used for L1 (ground texture) and L2 (ground texture) using three scissors. 3 was knitted in the form of the following organization 5 under the same conditions as in No. 3.
 (組織5) a群
L1:84dtex-48f(PET延伸糸)、2-3/1-0(糸通し:フルセット)
L2:84dtex-48f(PET延伸糸)、1-0/1-2(糸通し:フルセット)
L3:84dtex-36f(PET仮撚加工糸)、1-0/3-4(糸通し:フルセット)
(Tissue 5) Group a L1: 84 dtex-48f (PET drawn yarn), 2-3 / 1-0 (threading: full set)
L2: 84 dtex-48f (PET drawn yarn), 1-0 / 1-2 (threading: full set)
L3: 84 dtex-36f (PET false twisted yarn), 1-0 / 3-4 (threading: full set)
 次いで、上記編物を実施例1と同様の方法で染色し、その後、起毛機にて起毛加工を実施した布帛に実施例1と同様の方法で吸湿性ポリマーを固着させ、目付340g/m、吸湿性ポリマーの固着率が12.6%、布帛の吸湿率が2.9%、吸湿性ポリマーの吸湿率が23.0%である実施例5の繊維構造体を得た。この繊維構造体を製編方向に対して垂直方向に切断し、電子顕微鏡で観察した。その観察結果によると、表層の繊維断面本数は231本、裏層の繊維断面本数は1417本であり、繊維断面本数比は6.13であった。 Next, the knitted fabric is dyed in the same manner as in Example 1, and then the hygroscopic polymer is fixed in the same manner as in Example 1 to the fabric that has been raised with a raising machine, and the basis weight is 340 g / m 2 . A fiber structure of Example 5 was obtained in which the moisture absorption rate of the hygroscopic polymer was 12.6%, the moisture absorption rate of the fabric was 2.9%, and the moisture absorption rate of the hygroscopic polymer was 23.0%. This fiber structure was cut in a direction perpendicular to the knitting direction and observed with an electron microscope. According to the observation results, the number of fiber cross-sections in the surface layer was 231, the number of fiber cross-sections in the back layer was 1417, and the ratio of the number of fiber cross-sections was 6.13.
 性能評価の結果を表1に示す。布帛の表面温度降下が2.4℃、着座時の涼しさが「非常に良好」、風合いが「可」、耐光堅牢度が4級であり、人が着座した時の快適性が優れていた。 Table 1 shows the results of performance evaluation. The surface temperature drop of the fabric was 2.4 ° C., the coolness at the time of sitting was “very good”, the texture was “good”, the light fastness was 4th class, and the comfort when sitting by a person was excellent .
 〔実施例6〕
 28ゲージの両面丸編機を使用した。裏地(地組織)は84dtex-72f(フィラメント)のポリエチレンテレフタレート仮撚加工糸を供給し、表地は参考例2の84dtex-36f(フィラメント)のポリエチレンテレフタレート仮撚加工糸を供給し、表地を柄組織、裏地は平編組織とし、機上コースが38コース/2.54cmの生機を製編した。この編物の構造はb群に属する。
Example 6
A 28 gauge double-sided circular knitting machine was used. The lining (ground texture) is supplied with 84 dtex-72f (filament) polyethylene terephthalate false twisted yarn, the outer surface is supplied with 84 dtex-36f (filament) polyethylene terephthalate false twisted yarn of Reference Example 2, and the outer surface is patterned. The lining was a flat knitted structure, and a live machine with an on-machine course of 38 courses / 2.54 cm was knitted. The structure of this knitted fabric belongs to group b.
 次いで、上記編物を実施例1と同様の方法で染色したのち吸湿性ポリマーを固着させ、目付232g/m、吸湿性ポリマーの固着率が8.6%、布帛の吸湿率が2.0%、吸湿性ポリマーの吸湿率が23.2%である実施例6の繊維構造体を得た。この繊維構造体を製編方向に対して垂直方向に切断し、電子顕微鏡で観察した。その観察結果によると、表層の繊維断面本数は161本、裏層の繊維断面本数は322本であり、繊維断面本数比は2.00であった。 Next, after dyeing the knitted fabric in the same manner as in Example 1, the hygroscopic polymer was fixed, the basis weight was 232 g / m 2 , the hygroscopic polymer fixing rate was 8.6%, and the fabric hygroscopic rate was 2.0%. Thus, a fiber structure of Example 6 in which the moisture absorption rate of the hygroscopic polymer was 23.2% was obtained. This fiber structure was cut in a direction perpendicular to the knitting direction and observed with an electron microscope. According to the observation results, the number of fiber cross-sections in the surface layer was 161, the number of fiber cross-sections in the back layer was 322, and the ratio of fiber cross-section numbers was 2.00.
 性能評価の結果を表1に示す。布帛の表面温度降下が2.6℃、着座時の涼しさが「非常に良好」、風合いが「可」、耐光堅牢度が4級であり、人が着座した時の快適性が優れていた。 Table 1 shows the results of performance evaluation. The surface temperature drop of the fabric was 2.6 ° C., the coolness when sitting was “very good”, the texture was “good”, the light fastness was 4th grade, and the comfort when a person sat down was excellent .
 〔実施例7〕
167dtex-72f(フィラメント)のポリエチレンテレフタレート延伸糸を経糸と緯糸に用い、織密度が地組織及びパイルともに経糸は250cm/cm、緯糸は220本/cmの二重織物を製織した。
 得られた織物を実施例1と同条件で染色した後、剪毛機にてパイル長さを1.8mmとしたベルベット織物を作成した。その後、上記織物に実施例1と同様の方法で吸湿性ポリマーを固着させ、吸湿性ポリマーの固着率が10.5%、布帛の吸湿率が3.5%、吸湿性ポリマーの吸湿率が33.3%である実施例7の繊維構造体を得た。この織物の構造はc群に属する。
Example 7
A polyethylene terephthalate drawn yarn of 167 dtex-72f (filament) was used for warp and weft, and a double woven fabric having a weaving density of 250 cm / cm for warp and 220 weft / cm for both the ground structure and pile was woven.
The obtained woven fabric was dyed under the same conditions as in Example 1, and then a velvet woven fabric having a pile length of 1.8 mm was prepared with a shaving machine. Thereafter, the hygroscopic polymer was fixed to the woven fabric in the same manner as in Example 1, the hygroscopic polymer fixing rate was 10.5%, the fabric hygroscopic rate was 3.5%, and the hygroscopic polymer hygroscopic rate was 33. A fiber structure of Example 7 that was .3% was obtained. The structure of this fabric belongs to group c.
 この繊維構造体を製織方向に対して垂直方向に切断し、電子顕微鏡で観察した。その観察結果によると、表層の繊維断面本数は230本、裏層の繊維断面本数は980本であり、繊維断面本数比は4.26であった。 The fiber structure was cut in a direction perpendicular to the weaving direction and observed with an electron microscope. According to the observation results, the number of fiber cross-sections in the surface layer was 230, the number of fiber cross-sections in the back layer was 980, and the ratio of fiber cross-sections was 4.26.
 性能評価の結果を表1に示す。編物表面温度降下が2.3℃、着座時の涼しさが「非常に良好」、風合いが「非常に良好」、耐光堅牢度が4級であり、人が着座した時の快適性が優れていた。 Table 1 shows the results of performance evaluation. The surface temperature drop of the knitted fabric is 2.3 ° C, the coolness at the time of sitting is “very good”, the texture is “very good”, the light fastness is 4th grade, and the comfort when the person is seated is excellent It was.
 [比較例1]
 実施例6において表地と裏地の組織を変え、28ゲージの両面丸編機にて表地は84dtex-72f(フィラメント)のポリエチレンテレフタレート仮撚加工糸を供給し、裏地(地組織)は参考例2の84dtex-36f(フィラメント)のポリエチレンテレフタレート仮撚加工糸を供給し、表地は平編組織、裏地は柄組織とし、機上コースが38コース/2.54cmの生機を製編した。
[Comparative Example 1]
In Example 6, the structure of the outer material and the lining material was changed, and the outer surface was supplied with 84 dtex-72f (filament) polyethylene terephthalate false twisted yarn with a 28-gauge double-sided circular knitting machine. 84 dtex-36f (filament) polyethylene terephthalate false twisted yarn was supplied, the outer fabric was made into a flat knitted structure, the lining was made into a patterned structure, and a raw machine with an on-machine course of 38 courses / 2.54 cm was knitted.
 次いで、上記編物を実施例1と同様の方法で染色したのち吸湿性ポリマーを固着させ、目付232g/m、吸湿性ポリマーの固着率が8.6%、布帛の吸湿率が2.0%、吸湿性ポリマーの吸湿率が23.2%である比較例1の繊維構造体を得た。 Next, after dyeing the knitted fabric in the same manner as in Example 1, the hygroscopic polymer was fixed, the basis weight was 232 g / m 2 , the hygroscopic polymer fixing rate was 8.6%, and the fabric hygroscopic rate was 2.0%. A fiber structure of Comparative Example 1 having a hygroscopic polymer moisture absorption of 23.2% was obtained.
 この繊維構造体を製編方向に対して垂直方向に切断し、電子顕微鏡で観察した。図4はその電子顕微鏡写真(50倍)である。その観察結果によると、表層の繊維断面本数は319本、裏層の繊維断面本数は162本であり、裏層の繊維断面本数/表層の繊維断面本数(繊維断面本数比)は0.51であった。さらに、編物の地組織に吸湿性ポリマーが固着していることが観察できた。 The fiber structure was cut in a direction perpendicular to the knitting direction and observed with an electron microscope. FIG. 4 is an electron micrograph (50 ×). According to the observation results, the number of fiber cross sections of the surface layer is 319, the number of fiber cross sections of the back layer is 162, and the number of fiber cross sections of the back layer / the number of fiber cross sections of the surface layer (fiber cross section number ratio) is 0.51. there were. Furthermore, it was observed that the hygroscopic polymer was fixed on the knitted fabric.
 性能評価の結果を表1に示す。布帛の表面温度降下が0.5℃、着座時の涼しさが「劣る」、風合いが「可」、耐光堅牢度が4級であり、人が着座した時の快適性が劣っていた。 Table 1 shows the results of performance evaluation. The surface temperature drop of the fabric was 0.5 ° C., the coolness at the time of sitting was “inferior”, the texture was “possible”, the light fastness was grade 4, and the comfort when a person was seated was inferior.
 [比較例2]
 ウォータージェットルーム織機を用い、タテ糸とヨコ糸に、参考例2の167dtex-48f(フィラメント)のポリエチレンテレフタレート仮撚加工糸を供給し、織上密度がタテ128本/2.54cm、ヨコ81本/2.54cmであるツイル組織で製織した。
[Comparative Example 2]
Using a water jet loom, supply the 167 dtex-48f (filament) polyethylene terephthalate false twisted yarn of Reference Example 2 to the warp and weft yarns, and the density on the weave is vertical 128 / 2.54 cm, horizontal 81 / Weaving with a twill structure of 2.54 cm.
 次いで、上記織物を実施例1と同様の方法で染色したのち吸湿性ポリマーを固着させ、目付197g/m、吸湿性ポリマーの固着率が8.3%、布帛の吸湿率が1.9%、吸湿性ポリマーの吸湿率が22.8%である比較例2の繊維構造体を得た。 Next, after dyeing the woven fabric in the same manner as in Example 1, the hygroscopic polymer was fixed, the basis weight was 197 g / m 2 , the hygroscopic polymer fixing rate was 8.3%, and the fabric hygroscopic rate was 1.9%. Thus, a fiber structure of Comparative Example 2 in which the moisture absorption rate of the hygroscopic polymer was 22.8% was obtained.
 この繊維構造体を製織方向に対して垂直方向に切断し、電子顕微鏡で観察した。図5はその電子顕微鏡写真(150倍)である。その観察結果によると、表層の繊維断面本数は107本、裏層の繊維断面本数は133本であり、繊維断面本数比は1.24であった。また織物の地組織に吸湿性ポリマーが固着していた。 The fiber structure was cut in a direction perpendicular to the weaving direction and observed with an electron microscope. FIG. 5 is an electron micrograph (150 times). According to the observation results, the number of fiber cross-sections in the surface layer was 107, the number of fiber cross-sections in the back layer was 133, and the ratio of fiber cross-sections was 1.24. In addition, the hygroscopic polymer was fixed to the ground texture of the fabric.
 性能評価の結果を表1に示す。布帛の表面温度降下が1.3℃、着座時の涼しさが「劣る」、風合いが「可」、耐光堅牢度が4級であり、人が着座した時の快適性が劣っていた。 Table 1 shows the results of performance evaluation. The surface temperature drop of the fabric was 1.3 ° C., the coolness at the time of sitting was “inferior”, the texture was “good”, the light fastness was 4th grade, and the comfort when a person sat down was inferior.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (7)

  1.  布帛の繊維に吸湿性ポリマーが固着している繊維構造体であって、繊維構造体断面の中心線を境界として表面側である表層と裏面側である裏層の繊維密度が異なっていることを特徴とする繊維構造体。 It is a fiber structure in which a hygroscopic polymer is fixed to the fiber of the fabric, and the fiber density of the surface layer on the front side and the back layer on the back side are different from each other with the center line of the cross section of the fiber structure as a boundary. Characteristic fiber structure.
  2.  布帛が織物または編物の形態を有し、布帛の地組織が裏層側にあることを特徴とする請求項1に記載の繊維構造体。 2. The fiber structure according to claim 1, wherein the fabric has a form of woven fabric or knitted fabric, and the ground texture of the fabric is on the back layer side.
  3.  吸湿性ポリマーがアクリル酸アミド-2-プロパンスルホン酸ナトリウム、スチレンスルホン酸ナトリウム、イソプレンスルホン酸ナトリウム、アリルスルホン酸ナトリウム、メタリルスルホン酸ナトリウムから選ばれる1種以上のモノマーの重合体又はこれら1種以上のモノマーおよび前記以外のモノマーとの共重合体であることを特徴とする請求項1または2に記載の繊維構造体。 A polymer of one or more monomers selected from sodium acrylate-2-propanesulfonate, sodium styrenesulfonate, sodium isoprenesulfonate, sodium allylsulfonate, sodium methallylsulfonate, or one of these hygroscopic polymers The fiber structure according to claim 1 or 2, wherein the fiber structure is a copolymer of the above monomers and other monomers.
  4.  吸湿性ポリマーの布帛への固着率が4~20質量%であることを特徴とする請求項1ないし3のいずれかに記載の繊維構造体。 The fibrous structure according to any one of claims 1 to 3, wherein the moisture-absorbing polymer has a sticking rate of 4 to 20% by mass to the fabric.
  5.  請求項1ないし4のいずれかに記載の繊維構造体であって、繊維構造体を製織又は製編方向に対して垂直方向に切断して、断面の中心線を境界として表面側である表層と裏面側である裏層にそれぞれ含まれる繊維断面本数を算出したとき、裏層の繊維断面本数を表層の繊維断面本数で除した数値(繊維断面本数比)が2~10の範囲であることを特徴とする繊維構造体。 The fiber structure according to any one of claims 1 to 4, wherein the fiber structure is cut in a direction perpendicular to the weaving or knitting direction, and a surface layer on the surface side with the center line of the cross section as a boundary; When the number of fiber cross-sections included in the back layer on the back side is calculated, the value obtained by dividing the number of fiber cross-sections in the back layer by the number of fiber cross-sections in the surface layer (fiber cross-section number ratio) is in the range of 2 to 10. Characteristic fiber structure.
  6.  布帛の組織が以下のa~c群から選ばれるものであることを特徴とする請求項1ないし5のいずれかに記載の繊維構造体。
     a群:2枚以上の筬を有する編み機から製造された経編物であって、裏層となる組織が2針振り又は3針振り組織であるもの
     b群:両面編機で編成された緯編物であって表層となる組織が柄組織であるもの
     c群:地組織を有するパイル織物
    The fiber structure according to any one of claims 1 to 5, wherein the structure of the fabric is selected from the following groups a to c.
    Group a: warp knitted fabric manufactured from a knitting machine having two or more ridges, and the structure of the back layer is a two-needle or three-needle swing structure b group: a weft knitted fabric knitted by a double-sided knitting machine And the surface layer is a pattern structure c group: pile fabric having a ground structure
  7.  請求項1ないし6のいずれかに記載の繊維構造体を有する車両内装材。 Vehicle interior material having the fiber structure according to any one of claims 1 to 6.
PCT/JP2013/054834 2012-02-28 2013-02-26 Fiber structure WO2013129347A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013510153A JP6007898B2 (en) 2012-02-28 2013-02-26 Fiber structure
US14/380,573 US20150038035A1 (en) 2012-02-28 2013-02-26 Fiber structure
EP13755717.9A EP2821535A4 (en) 2012-02-28 2013-02-26 Fiber structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012040816 2012-02-28
JP2012-040816 2012-02-28

Publications (1)

Publication Number Publication Date
WO2013129347A1 true WO2013129347A1 (en) 2013-09-06

Family

ID=49082544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054834 WO2013129347A1 (en) 2012-02-28 2013-02-26 Fiber structure

Country Status (4)

Country Link
US (1) US20150038035A1 (en)
EP (1) EP2821535A4 (en)
JP (1) JP6007898B2 (en)
WO (1) WO2013129347A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2991460B1 (en) * 2014-08-29 2018-11-21 Nokia Technologies OY An apparatus and associated methods for deformable electronics

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088653A (en) * 2000-09-12 2002-03-27 Komatsu Seiren Co Ltd Fabric having moisture-absorbing exothermic property/ moisture-releasing cooling property
JP2002180308A (en) * 2000-09-29 2002-06-26 Toray Ind Inc Thermal insulating wear
JP2002212880A (en) * 2000-11-10 2002-07-31 Toray Ind Inc Highly moisture-absorbing and heat-retaining fiber structure
JP2002327316A (en) 2001-02-16 2002-11-15 Toray Ind Inc Sportswear
JP2003096672A (en) 2001-09-25 2003-04-03 Toyobo Co Ltd Interior material
JP2003278050A (en) * 2002-03-19 2003-10-02 Ventex Co Ltd Quick moisture-absorbing and drying woven or knitted fabric having waterproof function

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1300268A (en) * 1970-06-04 1972-12-20 Toray Industries A pile sheet material and a process of manufacturing the same
JPS63145457A (en) * 1986-12-03 1988-06-17 旭化成株式会社 Base cloth of pile cloth for interior
US5855125A (en) * 1995-07-26 1999-01-05 Malden Mills Industries, Inc. Method for constructing a double face fabric and fabric produced thereby
CN1159476C (en) * 1996-05-14 2004-07-28 钟纺株式会社 Spontaneously degradable fibers and goods made by using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088653A (en) * 2000-09-12 2002-03-27 Komatsu Seiren Co Ltd Fabric having moisture-absorbing exothermic property/ moisture-releasing cooling property
JP2002180308A (en) * 2000-09-29 2002-06-26 Toray Ind Inc Thermal insulating wear
JP2002212880A (en) * 2000-11-10 2002-07-31 Toray Ind Inc Highly moisture-absorbing and heat-retaining fiber structure
JP2002327316A (en) 2001-02-16 2002-11-15 Toray Ind Inc Sportswear
JP2003096672A (en) 2001-09-25 2003-04-03 Toyobo Co Ltd Interior material
JP2003278050A (en) * 2002-03-19 2003-10-02 Ventex Co Ltd Quick moisture-absorbing and drying woven or knitted fabric having waterproof function

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2821535A4

Also Published As

Publication number Publication date
JP6007898B2 (en) 2016-10-19
EP2821535A1 (en) 2015-01-07
EP2821535A4 (en) 2015-11-25
JPWO2013129347A1 (en) 2015-07-30
US20150038035A1 (en) 2015-02-05

Similar Documents

Publication Publication Date Title
JP5596886B1 (en) Fabrics and textile products
JP6577589B2 (en) Fabrics and textile products
TW593819B (en) Insulated knitted fabric
WO2018216572A1 (en) Multilayer structured fabric and fiber product
JP5612702B2 (en) Textiles and clothing
JP5584297B2 (en) Multilayered fabrics and textile products
JP2019127672A (en) Multilayer-structure woven knitted product and textile product
TWI830821B (en) Fabrics and fiber products
JP5599661B2 (en) Stretch coat knitted fabric
JP4967627B2 (en) Leather-like sheet and method for producing the same
JP5485561B2 (en) Fiber products
JP6689293B2 (en) Knitted fabrics and textile products
JP5180053B2 (en) Insulated knitted fabric
JP6007898B2 (en) Fiber structure
JP4567500B2 (en) Fabrics and textiles whose structure is three-dimensionally changed by water absorption
JP5770983B2 (en) Side fabrics and textiles
WO2018198846A1 (en) Fabric and fiber product
JP3197820U (en) Side
JP6227777B2 (en) Thin fabric with excellent comfort
JP2004124316A (en) Fabric excellent in wear comfortability
JP4110447B2 (en) Highly moisture-absorbing / releasing polyester fiber and fabric comprising the same
JP6469152B2 (en) Futon side
JP4214626B2 (en) Strong twisted fabric
JP2002309483A (en) Clothing for woman
JP2003082552A (en) High-shrinkage woven or knitted fabric of polyester

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013510153

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755717

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013755717

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14380573

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE