WO2013129217A1 - Electric vehicle - Google Patents

Electric vehicle Download PDF

Info

Publication number
WO2013129217A1
WO2013129217A1 PCT/JP2013/054281 JP2013054281W WO2013129217A1 WO 2013129217 A1 WO2013129217 A1 WO 2013129217A1 JP 2013054281 W JP2013054281 W JP 2013054281W WO 2013129217 A1 WO2013129217 A1 WO 2013129217A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
temperature
control device
external power
electric vehicle
Prior art date
Application number
PCT/JP2013/054281
Other languages
French (fr)
Japanese (ja)
Inventor
山本 直樹
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013129217A1 publication Critical patent/WO2013129217A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to an electric vehicle.
  • Patent Document 1 discloses a heat retention device that retains a battery mounted on an electric vehicle at an optimum temperature.
  • the heater for heating the battery is configured to operate by receiving power supply from the battery or a commercial power source.
  • the heat retaining device can heat the battery with a heater and maintain the battery at an appropriate temperature.
  • the present invention has been made in view of such circumstances, and an object thereof is to effectively suppress deterioration and damage of a battery that occurs in a predetermined temperature environment.
  • the present invention provides an electric vehicle having a battery capable of charging power supplied from an external power source and an electric load supplied with power from the external power source or the battery.
  • the control device controls the battery, the external power source, and the electric load to be electrically disconnected when a predetermined temperature condition is satisfied.
  • the present invention it is possible to control the battery, the external power source, and the electric load in a state where they are electrically cut off under the necessary temperature conditions. Therefore, since the battery can be electrically shut off in a temperature environment in which deterioration or damage is a concern due to charging / discharging of the battery, charging / discharging of the battery can be suppressed. Thereby, deterioration and damage of a battery can be suppressed effectively.
  • Explanatory drawing which shows the structure of an electric vehicle typically Flow chart showing the procedure for limiting the charging / discharging of the battery accompanying temperature control Explanatory drawing which shows transition of the temperature of a battery, and the state of a battery relay and a temperature control relay Explanatory drawing which shows transition of the temperature of a battery, and the state of a battery relay and a temperature control relay Explanatory diagram schematically showing time-series changes in system voltage and power consumption
  • FIG. 1 is an explanatory diagram schematically showing the configuration of the electric vehicle 1 according to the present embodiment.
  • the electric vehicle 1 is a vehicle (for example, an automobile) that travels using electricity as a drive source.
  • the electric vehicle 1 is mainly composed of a battery 10, a motor 20, an inverter 21, and a vehicle control device 40.
  • the battery 10 is a secondary battery capable of charging and discharging electric power.
  • the battery 10 is composed of, for example, an assembled battery in which a plurality of modules 11 each composed of a single cell or a plurality of cells are connected in series, and a lithium ion battery or the like can be used as each cell.
  • the battery 10 is connected to the input side of the inverter 21 via a pair of battery lines Lb corresponding to the positive electrode and the negative electrode, and the DC power stored in the battery 10 is converted into AC power by the inverter 21. It is supplied to the motor 20.
  • the battery 10 includes a temperature sensor 12, a temperature adjustment device 13, and a battery control device 14.
  • the temperature sensor 12 is a sensor that detects the temperature state of the battery 10.
  • the temperature sensor 12 directly detects the temperature of the battery 10, but is estimated from a parameter (for example, information indicating an ambient environment such as an outside air temperature) that is related to the temperature state of the battery 10.
  • the temperature state of the battery 10 may be detected indirectly (temperature detection means).
  • this temperature sensor 12 can detect the temperature state of each module 11 independently, when the battery 10 consists of assembled batteries.
  • the temperature control device 13 adjusts the temperature of the battery 10.
  • the temperature adjustment device 13 is configured by a heater that heats the battery 10 for the purpose of description assuming a low-temperature environment.
  • the temperature control device 13 is connected to the battery line Lb via a power supply line, and when operated by being supplied with predetermined power, heats the battery 10 by its own heat generation. Through the operation of the temperature control device 13, the battery 10 is kept at a predetermined temperature or temperature range.
  • the temperature control apparatus 13 in this embodiment is provided with the heater which heats the battery 10, you may further provide the cooling device which cools the battery 10. FIG.
  • the battery control device 14 monitors the voltage of the battery 10 and calculates the suppliable power of the battery 10. Further, the battery control device 14 reads the temperature information detected by the temperature sensor 12 and controls the open / close state of the battery relay 15 and the temperature control relay 16.
  • the battery relay 15 is provided in the battery line Lb, connects the battery line Lb in the closed state (on state), and cuts off the battery line Lb in the open state (off state).
  • the battery relay 15 is configured to electrically connect or disconnect the battery 10 from the temperature control device 13, an electric auxiliary device including a high-voltage auxiliary device 22 and a low-voltage auxiliary device 24 described later, and an external power source. From the viewpoint, the battery line Lb is disposed closer to the battery 10 than the connection position with the electrical load.
  • the temperature control relay 16 is provided on a power supply line extending from the battery line Lb to the temperature control device 13, and connects the power supply line in the closed state (on state) and cuts off the power supply line in the open state (off state). To do.
  • the temperature control relay 16 can supply power to the temperature control device 13 or cut off the power supply.
  • the motor 20 is mainly composed of a rotor (movable element) and a stator (stator). For example, a plurality of phase windings (for example, three-phase windings) that are star-connected around a neutral point. This is a permanent magnet synchronous motor wound around a stator.
  • the motor 20 generates power by rotating the rotor by the supplied AC power, and drives the drive wheels (not shown) included in the electric vehicle 1 by transmitting this power.
  • the inverter 21 converts DC power from the battery 10 into AC power, and supplies the converted AC power to the motor 20. Specifically, the input side of the inverter 21 is connected to the battery line Lb, and the output side is connected to each phase winding of the motor 20.
  • the high-voltage auxiliary machine 22 is connected to the battery line Lb, and the low-voltage auxiliary machine 24 is connected via the DC / DC converter 23.
  • the high-voltage auxiliary machine 22 include a compressor constituting a vehicle air conditioner.
  • the weak electric system auxiliary machine 24 include a 12V lead-acid battery, a headlight, a taillight, a wiper, a meter device, a navigation system, a room light, various computers including the vehicle control device 40, and the like.
  • the DC / DC converter 23 steps down the input voltage from the battery line Lb and outputs it to the weak electric system auxiliary machine 24.
  • the electric vehicle 1 includes charging ports 30 and 32 for charging the battery 10 with an external power source.
  • the first charging port 30 is a charging port that can be connected to an external charging device 50 as one form of the external power supply, and is connected to the battery line Lb via the charging line Lc1.
  • the external charging device 50 is a device for charging the battery 10 from the outside of the electric vehicle 1, and for example, a quick charger can be used.
  • This quick charger is one of the facilities established as an infrastructure for charging the battery of the electric vehicle 1, and has, for example, a performance that can output a DC power having a maximum output of 50 kW with a 200-volt three-phase AC input. I have.
  • the external charging device 50 is configured to be connectable to the first charging port 30 by a connector 51 attached to the tip of a cable extending from the main body. This external charging device 50 can communicate with the electric vehicle 1 by connecting the connector 51 to the first charging port 30. When the supply power or the supply current is requested from the electric vehicle 1 through such communication, the outside-vehicle charging device 50 controls the output power or the output current according to the request. In this way, by connecting the external charging device 50 and the electric vehicle 1, the electric power supplied from the external charging device 50 is supplied to the electric vehicle 1, whereby the battery 10 can be charged. .
  • the charging line Lc1 extending from the first charging port 30 to the battery line Lb is provided with a disconnecting relay 31 for connecting and disconnecting the charging line Lc1 according to its own open / closed state from the viewpoint of safety. Yes.
  • the second charging port 32 is a charging port to which a commercial power source 60 as one form of an external power source can be connected.
  • the second charging port 32 is connected to the battery line Lb via a charging line Lc2 that is different from the above-described external charging device 50. It is connected.
  • the commercial power source 60 includes an insertion port 61 for connecting a plug, and a plug 66 attached to one end of the charging cable 65 can be connected to the insertion port 61.
  • the insertion slot 61 and the plug 66 may be integrally configured, and the charging cable 65 may be directly connected to the commercial power source 60.
  • the charging cable 65 is configured such that a connector 67 attached to the other end can be connected to the second charging port 32.
  • the charging cable 65 includes a control box 68 in the middle of the cable.
  • the control box 68 can communicate with the electric vehicle 1 by connecting the plug 66 to the insertion port 61 and connecting the connector 67 to the second charging port 32.
  • the control box 68 detects a leakage during charging and interrupts the wiring, or transmits a current capacity signal indicating the current capacity of the charging cable 65 to the electric vehicle 1.
  • the commercial power source 60 and the electric vehicle 1 via the charging cable 65 the electric power supplied from the commercial power source 60 is supplied to the electric vehicle 1 side, thereby charging the battery 10. can do.
  • the charging line Lc2 extending from the second charging port 32 to the battery line Lb is provided with a power supply device 33 that controls the power input from the commercial power supply 60 to the electric vehicle 1.
  • the external charging device 50 and the electric vehicle 1 are connected.
  • the power supply device 33 communicates with the external charging device 50, and the charging power is determined from the supplyable power of the battery 10 managed by the battery control device 14, the electric power that can be supplied by the external charging device 50, and the like. Then, the vehicle outside charging device 50 supplies DC power to the electric vehicle 1 based on the determined charging power.
  • the commercial power source 60 and the electric vehicle 1 are connected via the charging cable 65.
  • the power supply device 33 recognizes the current capacity of the charging cable 65 based on the current capacity signal output from the control box 68, and controls the input current from the commercial power supply 60 within the range of the current capacity.
  • the power supply device 33 converts AC power output from the second charging port 32 into DC power, boosts the voltage, and outputs the boosted voltage to the electric vehicle 1 side.
  • the power output from the power supply device 33 is controlled in real time by the vehicle control device 40.
  • the vehicle control device 40 determines the output power of the battery 10 that can be supplied by the battery control device 14, the outputable power that can be output by the power supply device 33, and the high-voltage auxiliary machine 22. This is determined by the power consumption and the auxiliary machine power consumption consumed by the low-voltage auxiliary machine 24 via the DC / DC converter 23.
  • the charging lines Lc1 and Lc2 are connected to the battery line Lb, there is a connection point connected to the electric load in the current path between the battery 10 and the external power source. Therefore, the electric power supplied from the external power source is not limited to the battery 10, but also via the electric load, that is, the temperature control device 13, the inverter 21 connected to the battery line Lb, the high voltage auxiliary device 22, and the DC / DC converter 23 It can also be supplied to the weak electric system auxiliary machine 24.
  • the vehicle control device 40 is a device that controls the electric vehicle 1 in an integrated manner.
  • the vehicle control device 40 is configured to be communicable with the power supply device 33, and can control the power output from the power supply device 33.
  • the vehicle control device 40 is configured to be communicable with the battery control device 14, and reads temperature information (temperature state of the battery 10) detected by the temperature sensor 12 through the battery control device 14 or a battery relay. 15 and the on / off state of the temperature control relay 16 can be controlled. Further, the vehicle control device 40 controls the inverter 21, the high electric system auxiliary machine 22, the DC / DC converter 23, and the weak electric system auxiliary machine 24.
  • the vehicle control device 40 performs temperature control control of the battery 10, that is, control for maintaining the temperature state of the battery 10 in a desired range. Such control is performed by the vehicle control device 40 switching the on / off state of the temperature control relay 16 to supply power to the temperature control device 13 or to stop it.
  • the vehicle control device 40 switches the on / off state of the battery relay 15 and controls the external power source, the electrical load, and the battery 10 to be in a state of being electrically disconnected or connected.
  • the charging / discharging of the battery 10 is limited. Specifically, the vehicle control device 40 controls the external power source, the electrical load, and the battery 10 to be electrically disconnected when a predetermined temperature condition is satisfied, thereby charging the battery 10. Limit discharge.
  • FIG. 2 is a flowchart showing a procedure for limiting charging / discharging of the battery 10 accompanying temperature control.
  • the control procedure shown in this flowchart is suitable in a scene where the frozen battery 10 is thawed in the electric vehicle 1 left in a low temperature environment. During the period in which the electric vehicle 1 is left unattended, the battery relay 15 and the temperature control relay 16 are set to the off state because the system is stopped.
  • FIG. 3 is an explanatory diagram showing the transition of the temperature Tbc of the battery 10 and the states of the battery relay 15 and the temperature control relay 16.
  • Tcc is the freezing start temperature of the electrolyte solution of the battery 10.
  • Thr is an operating range of the temperature control device 13 in the temperature control of the battery 10, and the temperature control device 13 is operated when the lower limit value is reached, and the operation of the temperature control device 13 is stopped when the upper limit value is reached.
  • step S10 the commercial power supply 60 and the electric vehicle 1 are connected by the charging cable 65, or the external vehicle charging device 50 and the electric vehicle 1 are connected, whereby the electric vehicle 1 including the vehicle control device 40 is connected.
  • the system starts up.
  • step S11 the vehicle control device 40 determines whether or not the first temperature condition is established for the temperature state of the battery 10.
  • the first temperature condition is established when the temperature state of the battery 10 is at a limit temperature that limits charging / discharging of the battery 10. That is, the vehicle control device 40 determines whether or not the temperature state of the battery 10 is at the limit temperature based on the temperature information detected by the temperature sensor 12.
  • the optimum temperature range of the limit temperature is set in advance through experiments and simulations from the viewpoint of suppressing deterioration and damage of the battery 10 in a low temperature environment.
  • the limit temperature can be set to a range equal to or lower than the freezing start temperature of the electrolyte solution of the battery 10.
  • the battery 10 is composed of a plurality of modules 11, there is a possibility that temperature variations occur in the individual modules 11 due to the mounting layout or the like. Therefore, it is preferable to perform the above-described determination after detecting the temperature of each module 11 and recognizing the minimum temperature and the maximum temperature.
  • step S11 If an affirmative determination is made in step S11, that is, if the temperature state of the battery 10 is at the limit temperature, the process proceeds to step S12 described later.
  • step S11 if a negative determination is made in step S11, that is, if the temperature state of the battery 10 does not exist at the limit temperature, this flow is exited and normal battery temperature control is performed.
  • the vehicle control device 40 when it is determined that the temperature state of the battery 10 does not require charging / discharging restrictions and the temperature control of the battery 10 is necessary, the vehicle control device 40 includes the temperature control relay 16 and the battery relay. 15 are controlled to be turned on. Thereby, electric power is supplied from the external power supply or the battery 10 to the temperature adjustment device 13, and the battery 10 is heated by the temperature adjustment device 13.
  • the vehicle control device 40 connects the battery relay 15 and externally The battery 10 is charged from the power source, or the battery 10 is discharged to an electric load or a load device outside the vehicle.
  • step S12 the vehicle control device 40 starts temperature control of the battery 10.
  • step S ⁇ b> 13 the vehicle control device 40 controls the temperature control relay 16 to be in an ON state to prepare for power supply to the temperature control device 13.
  • the battery relay 15 is held in an off state in order to control the battery 10 separately from the electric load including the external power source and the temperature control device 13.
  • step S14 the vehicle control device 40 controls the power supply device 33 to supply power from the external power source to the temperature control device 13 and other electric auxiliary devices.
  • step S15 the vehicle control device 40 determines whether or not the second temperature condition is established for the temperature state of the battery 10.
  • This second temperature condition determines whether or not the temperature state of the battery 10 has reached the upper limit value of the operating range of the temperature control device 13 in the temperature control.
  • the second temperature condition only needs to be determined that the temperature state of the battery 10 has recovered from the above-described limit temperature to a temperature range in which the charge / discharge limitation of the battery 10 is unnecessary.
  • An arbitrary temperature can be set up to the upper limit value of the operating range of the temperature control device 13.
  • step S15 If an affirmative determination is made in step S15, that is, if the temperature of the battery 10 has reached the upper limit of the temperature range of the temperature control, the process proceeds to step S16. On the other hand, if a negative determination is made in step S15, that is, if the temperature of the battery 10 has not reached the upper limit value of the temperature range of the temperature control, the process returns to step S14 again. Therefore, the power supply to the temperature control device 13 is continued by this loop until the temperature of the battery 10 reaches the upper limit value of the temperature range of the temperature control.
  • step S ⁇ b> 17 the vehicle control device 40 stops supplying power to the temperature control device 13.
  • step S18 the vehicle control device 40 controls the temperature control relay 16 to the off state. And the vehicle control apparatus 40 complete
  • the electric vehicle 1 includes the battery 10 that can be charged with the power supplied from the external power source, and the electric load that is supplied with the power from the external power source or the battery 10.
  • the vehicle control apparatus 40 is controlling to the state which interrupted
  • the electric load includes the temperature adjustment device 13 that adjusts the temperature of the battery 10, and the vehicle control device 40 further supplies the temperature adjustment device 13 from an external power source when a predetermined temperature condition is satisfied. Electric power is supplied to operate the temperature control device 13.
  • the battery when the battery is at a very low temperature, the movement of ions deteriorates due to freezing of the electrolyte in the battery, and the electrical resistance value increases significantly.
  • the battery voltage significantly increases (overcharge) or decreases (overdischarge).
  • the battery is significantly deteriorated or damaged.
  • the temperature control apparatus is operated using the power of the battery or the external power source, the battery is deteriorated or damaged.
  • the battery temperature will recover until such a problem is resolved. There is a problem that it takes a long time.
  • the temperature control device 13 is operated by an external power source, but the battery 10 is electrically disconnected, so that power fluctuations occur in the temperature control device 13 and other electric auxiliary machines. Moreover, the overcharge and overdischarge of the battery 10 accompanying the said electric power fluctuation
  • the electric vehicle 1 has a current on the battery 10 side of a connection point that leads to an electric load in a current path (charge lines Lc1, Lc2, and battery line Lb) between the battery 10 and an external power source.
  • a battery relay 15 for connecting or blocking the path is arranged. Further, the vehicle control device 40 interrupts the current path by the battery relay 15 when a predetermined temperature condition is established.
  • the battery 10 can be electrically disconnected from the external power source and the electrical load by the battery relay 15. Thereby, deterioration and damage of the battery 10 can be effectively suppressed.
  • the vehicle control device 40 determines whether a predetermined temperature condition is satisfied when the temperature state of the battery 10 is at a limit temperature that limits charging / discharging of the battery 10.
  • a predetermined temperature condition that restricts charging / discharging of the battery 10 is established by referring to ambient information such as the outside air temperature without directly monitoring the temperature of the battery 10. It may be determined whether or not.
  • the vehicle control device 40 monitor the voltage of the system including the battery line Lb as needed, and feedback control the output power of the power supply device 33.
  • the temperature control apparatus 13 may perform temperature control in a high temperature environment by the temperature control apparatus 13 containing a cooling device (this is the same also in embodiment mentioned later).
  • the temperature adjustment device 13 is operated using the power of the battery 10 or an external power source when the battery 10 is at an excessive temperature, the heat generated by charging / discharging exceeds the allowable temperature of the battery itself, The battery 10 is significantly deteriorated or damaged.
  • the temperature limit for limiting charging / discharging of the battery 10 is set to a temperature range for limiting charging / discharging of the battery 10 in a low temperature environment and a temperature range for limiting charging / discharging of the battery 10 in a high temperature environment. It becomes.
  • FIG. 4 is an explanatory diagram showing the transition of the temperature Tbc of the battery 10 and the states of the battery relay 15 and the temperature control relay 16.
  • the procedure from when the electric vehicle 1 is connected to the external power supply until the temperature control of the battery 10 is started is the same as that of the first embodiment.
  • the vehicle control device 40 sets the battery relay 15 to an ON state and activates the temperature control device 13. continue.
  • the vehicle control device 40 controls the temperature control device 13 by controlling the battery 10 to be in an electrically connected state with the external power source and the electric load. Continue to operate.
  • the battery 10 When performing the temperature control in the off state of the battery relay 15, the battery 10 as a buffer that absorbs voltage fluctuation is electrically disconnected. Therefore, the voltage fluctuation of the system accompanying the fluctuation of the power consumption of the temperature control device 13 and other electric auxiliary machines becomes large. As a result, the temperature control of the battery 10 is normally performed in a voltage range sufficiently lower than the withstand voltage limit of the system, so that the power supplied to the temperature control device 13 is reduced, and the temperature control of the battery 10 is increased. Time may be required.
  • the battery relay 15 is switched to the ON state and temperature control is performed, so that the voltage fluctuation is reduced by being absorbed by the battery 10. Therefore, compared with the case where the battery relay 15 is in an OFF state, the system voltage can be relatively increased, and the power supplied to the temperature control device 13 can be increased. As a result, the temperature of the battery 10 can be adjusted in a shorter time. In addition, the battery 10 can be charged while adjusting the temperature of the battery 10.
  • the power supply device 33 it is preferable that the battery relay 15 is controlled to be in an on state in a state where the system voltage is regulated near the voltage of the battery 10 by output control. Thereby, a drop between the system voltage and the voltage of the battery 10 is reduced, and the occurrence of an inrush current generated in the system can be suppressed. As a result, the system voltage can exceed its withstand voltage limit or an excessive inrush current to the battery 10 can be suppressed, so that temperature control can be performed safely.
  • the battery relay 15 is controlled to be turned on, the power supply from the external power source to the temperature control device 13 is temporarily stopped, and the battery relay 15 is controlled to be turned on, and then the temperature control device 13 is controlled. You may supply electric power to. Thereby, the inrush current which generate
  • FIG. 5 is an explanatory diagram schematically showing time-series changes in the system voltage Vstm and power consumption.
  • Vtg is the control target voltage
  • Vup is the withstand voltage limit of the system.
  • Ps is power supplied from an external power source
  • Ph is power consumption of the temperature control device 13
  • Pd is power consumption of other auxiliary machines (DC / DC converter 23).
  • the temperature adjustment device 13 in order to shorten the time required to adjust the temperature of the battery 10, it is desirable to operate the temperature adjustment device 13 with as high a voltage as possible. In order to operate the temperature control device 13 at a high voltage, it is necessary to suppress the voltage fluctuation of the system. Therefore, in the present embodiment, by arranging the voltage sensor 34 on the external power supply side with respect to the battery relay 15, the vehicle control device 40 monitors the fluctuation of the system voltage Vstm, and the power is adjusted so that this becomes a constant voltage. The power supplied from the supply device 33 is controlled.
  • the power supply device 33 directly reads voltage information from the voltage sensor 34 and feeds back this information to output control of the power supply device 33.
  • the responsiveness is improved, and for example, even when the temperature control device 13 is shut off for some reason, it is possible to quickly reduce the supplied power Ps.
  • the temperature control can be controlled at a high voltage without causing the system voltage Vstm to reach an overvoltage. Thereby, shortening of temperature control time can be aimed at.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

An electric vehicle (1) has a battery (10) capable of recharging from power supplied by an external power source, and an electric load supplied by power from the external power source or the battery (10). In addition, when a prescribed temperature condition is met, a vehicle-control device (40) controls so as to effectively suppress deterioration of and damage to the battery (10), by electrically disconnecting the battery (10) from the external power source and the electric load.

Description

電動車両Electric vehicle
 本発明は、電動車両に関する。 The present invention relates to an electric vehicle.
 近年、電気を動力源とする電気自動車、内燃機関と電気との組み合わせを動力源とするハイブリッドカーなどの電動車両が注目を集めており、これらの電動車両には電気エネルギーを貯える二次電池としてのバッテリが搭載されている。例えば、特許文献1には、電気自動車に搭載されたバッテリを最適温度に保温する保温装置が開示されている。この保温装置において、バッテリを加温するためのヒータは、バッテリや、商用電源からの電力供給を受けることで作動するように構成されている。また、保温装置は、電気自動車を駐車しているときに、ヒータによりバッテリを加温して当該バッテリを適正温度に維持することができる。 In recent years, electric vehicles such as electric cars that use electricity as a power source and hybrid cars that use a combination of an internal combustion engine and electricity as a power source have attracted attention. These electric vehicles are used as secondary batteries for storing electric energy. The battery is installed. For example, Patent Document 1 discloses a heat retention device that retains a battery mounted on an electric vehicle at an optimum temperature. In this heat retaining device, the heater for heating the battery is configured to operate by receiving power supply from the battery or a commercial power source. In addition, when the electric vehicle is parked, the heat retaining device can heat the battery with a heater and maintain the battery at an appropriate temperature.
特開平8-22845号公報JP-A-8-22845
 しかしながら、低温環境又は高温環境においてバッテリの充放電がなされると、当該充放電にともないバッテリが劣化したり損傷したりするという問題がある。 However, when the battery is charged / discharged in a low temperature environment or a high temperature environment, there is a problem that the battery deteriorates or is damaged due to the charge / discharge.
 本発明はかかる事情に鑑みてなされたものであり、その目的は、所定の温度環境下において発生するバッテリの劣化や損傷を効果的に抑制することである。 The present invention has been made in view of such circumstances, and an object thereof is to effectively suppress deterioration and damage of a battery that occurs in a predetermined temperature environment.
 かかる課題を解決するために、本発明は、外部電源から供給される電力を充電可能なバッテリと、外部電源又はバッテリから電力が供給される電気負荷とを有する電動車両を提供する。この電動車両において、制御装置は、所定の温度条件が成立した場合に、バッテリと、外部電源及び電気負荷とを電気的に遮断した状態に制御する。 In order to solve this problem, the present invention provides an electric vehicle having a battery capable of charging power supplied from an external power source and an electric load supplied with power from the external power source or the battery. In this electric vehicle, the control device controls the battery, the external power source, and the electric load to be electrically disconnected when a predetermined temperature condition is satisfied.
 本発明によれば、必要とする温度条件において、バッテリと、外部電源及び電気負荷とを電気的に遮断した状態に制御することができる。そのため、バッテリの充放電により劣化や損傷が懸念されるような温度環境においてバッテリを電気的に遮断することができるので、バッテリの充放電を抑制することができる。これにより、バッテリの劣化や損傷を効果的に抑制することができる。 According to the present invention, it is possible to control the battery, the external power source, and the electric load in a state where they are electrically cut off under the necessary temperature conditions. Therefore, since the battery can be electrically shut off in a temperature environment in which deterioration or damage is a concern due to charging / discharging of the battery, charging / discharging of the battery can be suppressed. Thereby, deterioration and damage of a battery can be suppressed effectively.
電動車両の構成を模式的に示す説明図Explanatory drawing which shows the structure of an electric vehicle typically 温調制御に伴うバッテリの充放電制限の手順を示すフローチャートFlow chart showing the procedure for limiting the charging / discharging of the battery accompanying temperature control バッテリの温度の推移とバッテリリレー及び温調リレーの状態とを示す説明図Explanatory drawing which shows transition of the temperature of a battery, and the state of a battery relay and a temperature control relay バッテリの温度の推移とバッテリリレー及び温調リレーの状態とを示す説明図Explanatory drawing which shows transition of the temperature of a battery, and the state of a battery relay and a temperature control relay システムの電圧と消費電力との時系列的な変化を模式的に示す説明図Explanatory diagram schematically showing time-series changes in system voltage and power consumption
(第1の実施形態)
 図1は、本実施形態に係る電動車両1の構成を模式的に示す説明図である。この電動車両1は、電気を駆動源として走行する車両(例えば自動車)である。この電動車両1は、バッテリ10、モータ20、インバータ21及び車両制御装置40を主体に構成されている。
(First embodiment)
FIG. 1 is an explanatory diagram schematically showing the configuration of the electric vehicle 1 according to the present embodiment. The electric vehicle 1 is a vehicle (for example, an automobile) that travels using electricity as a drive source. The electric vehicle 1 is mainly composed of a battery 10, a motor 20, an inverter 21, and a vehicle control device 40.
 バッテリ10は、電力を充電したり放電したりすることが可能な二次電池である。バッテリ10は、例えば、単一のセル又は複数のセルからなるモジュール11を複数個直列に接続した組電池で構成されており、個々のセルとしては、リチウムイオン電池等を用いることができる。バッテリ10は、正極及び負極に対応した一対のバッテリラインLbを介してインバータ21の入力側に接続されており、バッテリ10に貯えられた直流電力は、インバータ21により交流電力に変換された上でモータ20に供給される。 The battery 10 is a secondary battery capable of charging and discharging electric power. The battery 10 is composed of, for example, an assembled battery in which a plurality of modules 11 each composed of a single cell or a plurality of cells are connected in series, and a lithium ion battery or the like can be used as each cell. The battery 10 is connected to the input side of the inverter 21 via a pair of battery lines Lb corresponding to the positive electrode and the negative electrode, and the DC power stored in the battery 10 is converted into AC power by the inverter 21. It is supplied to the motor 20.
 バッテリ10には、温度センサ12、温調装置13及びバッテリ制御装置14が備えられている。 The battery 10 includes a temperature sensor 12, a temperature adjustment device 13, and a battery control device 14.
 温度センサ12は、バッテリ10の温度状態を検出するセンサである。この温度センサ12は、バッテリ10の温度を直接的に検出するものであるが、バッテリ10の温度状態と関連性を有するパラメータ(例えば外気温などといった周囲環境を示す情報)から推定するといったように、バッテリ10の温度状態を間接的に検出してもよい(温度検出手段)。また、この温度センサ12は、バッテリ10が組電池からなる場合には、個々のモジュール11の温度状態を独立して検出することができることが好ましい。 The temperature sensor 12 is a sensor that detects the temperature state of the battery 10. The temperature sensor 12 directly detects the temperature of the battery 10, but is estimated from a parameter (for example, information indicating an ambient environment such as an outside air temperature) that is related to the temperature state of the battery 10. The temperature state of the battery 10 may be detected indirectly (temperature detection means). Moreover, it is preferable that this temperature sensor 12 can detect the temperature state of each module 11 independently, when the battery 10 consists of assembled batteries.
 温調装置13は、バッテリ10の温度調節を行うものである。本実施形態では、低温環境を前提として説明を行う関係上、温調装置13は、バッテリ10を加熱するヒータで構成されている。温調装置13は、給電ラインを介してバッテリラインLbと接続されており、所定の電力が供給されることにより作動すると、自己の発熱によりバッテリ10を加熱する。この温調装置13の作動を通じて、バッテリ10が所定の温度或いは温度範囲に保温される。なお、本実施形態における温調装置13は、バッテリ10を加熱するヒータを備えるものであるが、バッテリ10を冷却する冷却装置をさらに備えても良い。 The temperature control device 13 adjusts the temperature of the battery 10. In the present embodiment, the temperature adjustment device 13 is configured by a heater that heats the battery 10 for the purpose of description assuming a low-temperature environment. The temperature control device 13 is connected to the battery line Lb via a power supply line, and when operated by being supplied with predetermined power, heats the battery 10 by its own heat generation. Through the operation of the temperature control device 13, the battery 10 is kept at a predetermined temperature or temperature range. In addition, although the temperature control apparatus 13 in this embodiment is provided with the heater which heats the battery 10, you may further provide the cooling device which cools the battery 10. FIG.
 バッテリ制御装置14は、バッテリ10の電圧を監視したり、バッテリ10の供給可能電力を演算したりする。また、バッテリ制御装置14は、温度センサ12により検出された温度情報を読み込んだり、バッテリリレー15及び温調リレー16の開閉状態を制御したりする。 The battery control device 14 monitors the voltage of the battery 10 and calculates the suppliable power of the battery 10. Further, the battery control device 14 reads the temperature information detected by the temperature sensor 12 and controls the open / close state of the battery relay 15 and the temperature control relay 16.
 バッテリリレー15は、バッテリラインLbに設けられており、閉状態(オン状態)においてバッテリラインLbを接続し、開状態(オフ状態)においてバッテリラインLbを遮断する。このバッテリリレー15は、温調装置13、後述する強電系補機22や弱電系補機24を含む電気補機及び外部電源と、バッテリ10とを電気的に接続又は遮断しえるようにとの観点から、バッテリラインLbにおける電気負荷との接続位置よりもバッテリ10側に配置されている。 The battery relay 15 is provided in the battery line Lb, connects the battery line Lb in the closed state (on state), and cuts off the battery line Lb in the open state (off state). The battery relay 15 is configured to electrically connect or disconnect the battery 10 from the temperature control device 13, an electric auxiliary device including a high-voltage auxiliary device 22 and a low-voltage auxiliary device 24 described later, and an external power source. From the viewpoint, the battery line Lb is disposed closer to the battery 10 than the connection position with the electrical load.
 温調リレー16は、バッテリラインLbから温調装置13へと至る給電ライン上に設けられており、閉状態(オン状態)において給電ラインを接続し、開状態(オフ状態)において給電ラインを遮断する。この温調リレー16により、温調装置13に電力を供給したり、その電力供給を遮断することができる。 The temperature control relay 16 is provided on a power supply line extending from the battery line Lb to the temperature control device 13, and connects the power supply line in the closed state (on state) and cuts off the power supply line in the open state (off state). To do. The temperature control relay 16 can supply power to the temperature control device 13 or cut off the power supply.
 モータ20は、ロータ(可動子)とステータ(固定子)とを主体に構成されており、例えば、中性点を中心に星形結線された複数の相巻線(例えば3相巻線)がステータにそれぞれ巻回された永久磁石同期電動機である。モータ20は、供給された交流電力によりロータが回転することで動力を発生し、この動力を伝達することで電動車両1が備える駆動輪(図示せず)を駆動する。 The motor 20 is mainly composed of a rotor (movable element) and a stator (stator). For example, a plurality of phase windings (for example, three-phase windings) that are star-connected around a neutral point. This is a permanent magnet synchronous motor wound around a stator. The motor 20 generates power by rotating the rotor by the supplied AC power, and drives the drive wheels (not shown) included in the electric vehicle 1 by transmitting this power.
 インバータ21は、バッテリ10からの直流電力を交流電力に変換し、この変換した交流電力をモータ20へ供給する。具体的には、インバータ21の入力側は、バッテリラインLbと接続されており、その出力側は、モータ20の各相巻線に接続されている。 The inverter 21 converts DC power from the battery 10 into AC power, and supplies the converted AC power to the motor 20. Specifically, the input side of the inverter 21 is connected to the battery line Lb, and the output side is connected to each phase winding of the motor 20.
 また、電動車両1において、バッテリラインLbには強電系補機22が接続されるとともに、DC/DCコンバータ23を介して弱電系補機24が接続される。強電系補機22としては、車両用空調装置を構成するコンプレッサなどが挙げられる。また、弱電系補機24は、12Vの鉛蓄電池、ヘッドライト、テールライト、ワイパー、メーター装置、ナビゲーションシステム、室内灯や、車両制御装置40を含む各種のコンピュータなどが挙げられる。DC/DCコンバータ23は、バッテリラインLbからの入力電圧を降圧して弱電系補機24に出力する。 In the electric vehicle 1, the high-voltage auxiliary machine 22 is connected to the battery line Lb, and the low-voltage auxiliary machine 24 is connected via the DC / DC converter 23. Examples of the high-voltage auxiliary machine 22 include a compressor constituting a vehicle air conditioner. Examples of the weak electric system auxiliary machine 24 include a 12V lead-acid battery, a headlight, a taillight, a wiper, a meter device, a navigation system, a room light, various computers including the vehicle control device 40, and the like. The DC / DC converter 23 steps down the input voltage from the battery line Lb and outputs it to the weak electric system auxiliary machine 24.
 この電動車両1は、外部電源によりバッテリ10を充電するために充電ポート30,32を備えている。 The electric vehicle 1 includes charging ports 30 and 32 for charging the battery 10 with an external power source.
 第1の充電ポート30は、外部電源の一形態としての車外充電装置50と接続可能な充電ポートであり、充電ラインLc1を介してバッテリラインLbに接続されている。車外充電装置50は、電動車両1の外部からバッテリ10を充電するための装置であり、例えば急速充電器を用いることができる。この急速充電器は、電動車両1のバッテリ充電用のインフラとして整備された設備の一つであり、例えば、200ボルトの3相交流を入力として最大出力50kWの直流電力を出力する程度の性能を備えている。 The first charging port 30 is a charging port that can be connected to an external charging device 50 as one form of the external power supply, and is connected to the battery line Lb via the charging line Lc1. The external charging device 50 is a device for charging the battery 10 from the outside of the electric vehicle 1, and for example, a quick charger can be used. This quick charger is one of the facilities established as an infrastructure for charging the battery of the electric vehicle 1, and has, for example, a performance that can output a DC power having a maximum output of 50 kW with a 200-volt three-phase AC input. I have.
 車外充電装置50は本体から延在するケーブルの先端に取り付けられたコネクタ51により第1の充電ポート30と接続可能に構成されている。この車外充電装置50は、コネクタ51が第1の充電ポート30に接続されることにより、電動車両1との間で通信を行うことができる。車外充電装置50は、係る通信を通じて電動車両1から供給電力又は供給電流が要求されると、これに応じて出力電力又は出力電流を制御する。このように、車外充電装置50と電動車両1とを接続することにより、車外充電装置50から供給される電力が電動車両1側へと供給されて、これにより、バッテリ10を充電することができる。 The external charging device 50 is configured to be connectable to the first charging port 30 by a connector 51 attached to the tip of a cable extending from the main body. This external charging device 50 can communicate with the electric vehicle 1 by connecting the connector 51 to the first charging port 30. When the supply power or the supply current is requested from the electric vehicle 1 through such communication, the outside-vehicle charging device 50 controls the output power or the output current according to the request. In this way, by connecting the external charging device 50 and the electric vehicle 1, the electric power supplied from the external charging device 50 is supplied to the electric vehicle 1, whereby the battery 10 can be charged. .
 なお、第1の充電ポート30からバッテリラインLbへと至る充電ラインLc1には、安全上の観点から、自己の開閉状態に応じて充電ラインLc1の接続及び遮断を行う遮断リレー31が設けられている。 The charging line Lc1 extending from the first charging port 30 to the battery line Lb is provided with a disconnecting relay 31 for connecting and disconnecting the charging line Lc1 according to its own open / closed state from the viewpoint of safety. Yes.
 一方、第2の充電ポート32は、外部電源の一形態としての商用電源60を接続可能な充電ポートであり、前述の車外充電装置50とは別系統の充電ラインLc2を介してバッテリラインLbに接続されている。商用電源60はプラグを接続するための差し込み口61を備えており、この差し込み口61には、充電ケーブル65の一方の端部に取り付けられたプラグ66を接続することができる。なお、商用電源60の仕様によっては、差し込み口61とプラグ66とが一体に構成されて、充電ケーブル65が商用電源60に直接的に繋がっていることもある。 On the other hand, the second charging port 32 is a charging port to which a commercial power source 60 as one form of an external power source can be connected. The second charging port 32 is connected to the battery line Lb via a charging line Lc2 that is different from the above-described external charging device 50. It is connected. The commercial power source 60 includes an insertion port 61 for connecting a plug, and a plug 66 attached to one end of the charging cable 65 can be connected to the insertion port 61. Depending on the specifications of the commercial power source 60, the insertion slot 61 and the plug 66 may be integrally configured, and the charging cable 65 may be directly connected to the commercial power source 60.
 充電ケーブル65は、その他方の端部に取り付けられたコネクタ67が第2の充電ポート32に接続可能に構成されている。また、充電ケーブル65は、そのケーブルの途中にコントロールボックス68を備えている。コントロールボックス68は、プラグ66が差し込み口61に接続され、コネクタ67が第2の充電ポート32に接続されることにより、電動車両1との間で通信を行うことができる。また、コントロールボックス68は、充電中の漏電を検知して配線を遮断したり、その充電ケーブル65の電流容量を示す電流容量信号を電動車両1に送信したりする。このように、充電ケーブル65を介して商用電源60と電動車両1とを接続することにより、商用電源60から供給される電力が電動車両1側へと供給されて、これにより、バッテリ10を充電することができる。 The charging cable 65 is configured such that a connector 67 attached to the other end can be connected to the second charging port 32. The charging cable 65 includes a control box 68 in the middle of the cable. The control box 68 can communicate with the electric vehicle 1 by connecting the plug 66 to the insertion port 61 and connecting the connector 67 to the second charging port 32. In addition, the control box 68 detects a leakage during charging and interrupts the wiring, or transmits a current capacity signal indicating the current capacity of the charging cable 65 to the electric vehicle 1. Thus, by connecting the commercial power source 60 and the electric vehicle 1 via the charging cable 65, the electric power supplied from the commercial power source 60 is supplied to the electric vehicle 1 side, thereby charging the battery 10. can do.
 第2の充電ポート32からバッテリラインLbへと至る充電ラインLc2には、商用電源60から電動車両1に入力される電力を制御する電力供給装置33が設けられている。 The charging line Lc2 extending from the second charging port 32 to the battery line Lb is provided with a power supply device 33 that controls the power input from the commercial power supply 60 to the electric vehicle 1.
 車外充電装置50を用いた電力供給では、車外充電装置50と電動車両1とが接続される。電力供給装置33が車外充電装置50と通信を行い、バッテリ制御装置14が管理するバッテリ10の供給可能電力と、車外充電装置50が供給可能な電力などから、充電電力を決定する。そして、車外充電装置50は、決定された充電電力に基づき、電動車両1に直流電力を供給する。 In the power supply using the external charging device 50, the external charging device 50 and the electric vehicle 1 are connected. The power supply device 33 communicates with the external charging device 50, and the charging power is determined from the supplyable power of the battery 10 managed by the battery control device 14, the electric power that can be supplied by the external charging device 50, and the like. Then, the vehicle outside charging device 50 supplies DC power to the electric vehicle 1 based on the determined charging power.
 一方、商用電源60を用いた電力供給では、充電ケーブル65を介して商用電源60と電動車両1とが接続される。電力供給装置33は、コントロールボックス68が出力する電流容量信号に基づいて充電ケーブル65の電流容量を認識した上で、その電流容量の範囲内で商用電源60からの入力電流を制御する。電力供給装置33は、第2の充電ポート32から出力される交流電力を直流電力に変換するとともにその電圧を昇圧した上で電動車両1側へと出力する。この電力供給装置33が出力する電力は、車両制御装置40によってリアルタイムに制御される。具体的には、車両制御装置40は、当該出力電力を、バッテリ制御装置14が管理するバッテリ10の供給可能電力と、電力供給装置33が出力可能な出力可能電力と、強電系補機22の消費電力と、DC/DCコンバータ23を介して弱電系補機24が消費する補機消費電力とにより決定する。 On the other hand, in the power supply using the commercial power source 60, the commercial power source 60 and the electric vehicle 1 are connected via the charging cable 65. The power supply device 33 recognizes the current capacity of the charging cable 65 based on the current capacity signal output from the control box 68, and controls the input current from the commercial power supply 60 within the range of the current capacity. The power supply device 33 converts AC power output from the second charging port 32 into DC power, boosts the voltage, and outputs the boosted voltage to the electric vehicle 1 side. The power output from the power supply device 33 is controlled in real time by the vehicle control device 40. Specifically, the vehicle control device 40 determines the output power of the battery 10 that can be supplied by the battery control device 14, the outputable power that can be output by the power supply device 33, and the high-voltage auxiliary machine 22. This is determined by the power consumption and the auxiliary machine power consumption consumed by the low-voltage auxiliary machine 24 via the DC / DC converter 23.
 なお、充電ラインLc1,Lc2がバッテリラインLbに接続されている関係上、バッテリ10と外部電源との間の電流経路において電気負荷へと繋がる接続点が存在する。そのため、外部電源から供給される電力は、バッテリ10のみならず、電気負荷、すなわち、温調装置13、バッテリラインLbに接続するインバータ21、強電系補機22、DC/DCコンバータ23を介して弱電系補機24へも供給し得る。 Note that, since the charging lines Lc1 and Lc2 are connected to the battery line Lb, there is a connection point connected to the electric load in the current path between the battery 10 and the external power source. Therefore, the electric power supplied from the external power source is not limited to the battery 10, but also via the electric load, that is, the temperature control device 13, the inverter 21 connected to the battery line Lb, the high voltage auxiliary device 22, and the DC / DC converter 23 It can also be supplied to the weak electric system auxiliary machine 24.
 車両制御装置40は、電動車両1を統合的に制御する装置である。この車両制御装置40は、電力供給装置33と通信可能に構成されており、電力供給装置33が出力する電力を制御することができる。また、車両制御装置40は、バッテリ制御装置14と通信可能に構成されており、このバッテリ制御装置14を通じて、温度センサ12により検出された温度情報(バッテリ10の温度状態)を読み込んだり、バッテリリレー15及び温調リレー16のオンオフ状態を制御したりすることができる。また、車両制御装置40は、インバータ21、強電系補機22、DC/DCコンバータ23及び弱電系補機24を制御したりする。 The vehicle control device 40 is a device that controls the electric vehicle 1 in an integrated manner. The vehicle control device 40 is configured to be communicable with the power supply device 33, and can control the power output from the power supply device 33. The vehicle control device 40 is configured to be communicable with the battery control device 14, and reads temperature information (temperature state of the battery 10) detected by the temperature sensor 12 through the battery control device 14 or a battery relay. 15 and the on / off state of the temperature control relay 16 can be controlled. Further, the vehicle control device 40 controls the inverter 21, the high electric system auxiliary machine 22, the DC / DC converter 23, and the weak electric system auxiliary machine 24.
 また、車両制御装置40は、バッテリ10の温調制御、すなわち、バッテリ10の温度状態を所望の範囲に保持するための制御を行う。かかる制御は、車両制御装置40が、温調リレー16のオンオフ状態を切り換え、温調装置13に電力を供給したりそれを停止したりすることにより、行われる。 Further, the vehicle control device 40 performs temperature control control of the battery 10, that is, control for maintaining the temperature state of the battery 10 in a desired range. Such control is performed by the vehicle control device 40 switching the on / off state of the temperature control relay 16 to supply power to the temperature control device 13 or to stop it.
 さらに、本実施形態との関係において、車両制御装置40は、バッテリリレー15のオンオフ状態を切り換え、外部電源及び電気負荷とバッテリ10とを電気的に遮断した状態又は接続した状態に制御することで、バッテリ10に対する充放電の制限を行う。具体的には、車両制御装置40は、所定の温度条件が成立した場合には、外部電源及び電気負荷と、バッテリ10とを電気的に遮断した状態に制御し、これにより、バッテリ10に対する充放電を制限する。 Further, in relation to the present embodiment, the vehicle control device 40 switches the on / off state of the battery relay 15 and controls the external power source, the electrical load, and the battery 10 to be in a state of being electrically disconnected or connected. The charging / discharging of the battery 10 is limited. Specifically, the vehicle control device 40 controls the external power source, the electrical load, and the battery 10 to be electrically disconnected when a predetermined temperature condition is satisfied, thereby charging the battery 10. Limit discharge.
 図2は、温調制御に伴うバッテリ10の充放電制限の手順を示すフローチャートである。本フローチャートに示す制御手順は、低温環境に放置された電動車両1において凍結したバッテリ10を解凍するといったシーンにおいて好適である。なお、電動車両1が放置されている期間は、システムが停止しているためバッテリリレー15及び温調リレー16はオフ状態に設定されている。ここで、図3は、バッテリ10の温度Tbcの推移と、バッテリリレー15及び温調リレー16の状態とを示す説明図である。同図において、Tccはバッテリ10の電解液の凍結開始温度である。また、Thrはバッテリ10の温調制御における温調装置13の作動範囲であり、その下限値を下回ると温調装置13が作動され、その上限値に到達すると温調装置13の作動が停止される。 FIG. 2 is a flowchart showing a procedure for limiting charging / discharging of the battery 10 accompanying temperature control. The control procedure shown in this flowchart is suitable in a scene where the frozen battery 10 is thawed in the electric vehicle 1 left in a low temperature environment. During the period in which the electric vehicle 1 is left unattended, the battery relay 15 and the temperature control relay 16 are set to the off state because the system is stopped. Here, FIG. 3 is an explanatory diagram showing the transition of the temperature Tbc of the battery 10 and the states of the battery relay 15 and the temperature control relay 16. In the figure, Tcc is the freezing start temperature of the electrolyte solution of the battery 10. Further, Thr is an operating range of the temperature control device 13 in the temperature control of the battery 10, and the temperature control device 13 is operated when the lower limit value is reached, and the operation of the temperature control device 13 is stopped when the upper limit value is reached. The
 まず、ステップS10において、充電ケーブル65により商用電源60と電動車両1とが接続される、又は、車外充電装置50と電動車両1とが接続されることにより、車両制御装置40を含む電動車両1のシステムが起動する。 First, in step S10, the commercial power supply 60 and the electric vehicle 1 are connected by the charging cable 65, or the external vehicle charging device 50 and the electric vehicle 1 are connected, whereby the electric vehicle 1 including the vehicle control device 40 is connected. The system starts up.
 ステップS11において、車両制御装置40は、バッテリ10の温度状態について第1温度条件が成立しているか否かを判断する。この第1温度条件は、バッテリ10の温度状態が、当該バッテリ10の充放電を制限する制限温度に存する場合に成立する。すなわち、車両制御装置40は、温度センサ12により検出された温度情報に基づいて、バッテリ10の温度状態が当該制限温度に存するか否かを判断する。かかる制限温度は、低温環境におけるバッテリ10の劣化や損傷を抑制する観点から、実験やシミュレーションを通じてその最適な温度範囲が予め設定されている。例えば、この制限温度としては、バッテリ10の電解液の凍結開始温度以下の範囲とすることができる。 In step S11, the vehicle control device 40 determines whether or not the first temperature condition is established for the temperature state of the battery 10. The first temperature condition is established when the temperature state of the battery 10 is at a limit temperature that limits charging / discharging of the battery 10. That is, the vehicle control device 40 determines whether or not the temperature state of the battery 10 is at the limit temperature based on the temperature information detected by the temperature sensor 12. The optimum temperature range of the limit temperature is set in advance through experiments and simulations from the viewpoint of suppressing deterioration and damage of the battery 10 in a low temperature environment. For example, the limit temperature can be set to a range equal to or lower than the freezing start temperature of the electrolyte solution of the battery 10.
 なお、バッテリ10が、複数のモジュール11から構成されている場合には、搭載レイアウトなどによって個々のモジュール11に温度ばらつきが発生する虞がある。そのため、個々のモジュール11の温度を検出し、その最低温度と最高温度とを認識した上で、上述の判断を行うことが好ましい。 When the battery 10 is composed of a plurality of modules 11, there is a possibility that temperature variations occur in the individual modules 11 due to the mounting layout or the like. Therefore, it is preferable to perform the above-described determination after detecting the temperature of each module 11 and recognizing the minimum temperature and the maximum temperature.
 このステップS11において肯定判定された場合、すなわち、バッテリ10の温度状態が制限温度に存する場合には、後述するステップS12に進む。 If an affirmative determination is made in step S11, that is, if the temperature state of the battery 10 is at the limit temperature, the process proceeds to step S12 described later.
 一方、ステップS11において否定判定された場合、すなわち、バッテリ10の温度状態が制限温度に存しない場合には、本フローを抜けて、通常のバッテリ温調制御を行う。 On the other hand, if a negative determination is made in step S11, that is, if the temperature state of the battery 10 does not exist at the limit temperature, this flow is exited and normal battery temperature control is performed.
 具体的には、バッテリ10の温度状態が充放電の制限を不要とする状態でありかつバッテリ10の温調制御が必要と判断された場合、車両制御装置40は、温調リレー16とバッテリリレー15とをそれぞれオン状態に制御する。これにより、外部電源又はバッテリ10から温調装置13に電力が供給され、温調装置13によりバッテリ10の加熱が行われる。一方、バッテリ10の温度状態が充放電可能の制限を不要とする状態でありかつバッテリ10の温調制御が不必要と判断された場合、車両制御装置40は、バッテリリレー15を接続し、外部電源からバッテリ10に充電を行ったり、バッテリ10から電気負荷又は車外の負荷装置に対して放電を行ったりする。 Specifically, when it is determined that the temperature state of the battery 10 does not require charging / discharging restrictions and the temperature control of the battery 10 is necessary, the vehicle control device 40 includes the temperature control relay 16 and the battery relay. 15 are controlled to be turned on. Thereby, electric power is supplied from the external power supply or the battery 10 to the temperature adjustment device 13, and the battery 10 is heated by the temperature adjustment device 13. On the other hand, when it is determined that the temperature state of the battery 10 does not require the restriction that charging / discharging is possible and the temperature control of the battery 10 is unnecessary, the vehicle control device 40 connects the battery relay 15 and externally The battery 10 is charged from the power source, or the battery 10 is discharged to an electric load or a load device outside the vehicle.
 ステップS12において、車両制御装置40は、バッテリ10の温調制御を開始する。 In step S12, the vehicle control device 40 starts temperature control of the battery 10.
 まず、ステップS13において、車両制御装置40は、温調リレー16をオン状態に制御にして、温調装置13への電力供給に備える。この場合、バッテリ10を、外部電源及び温調装置13を含む電気負荷と切り離して制御を行うべく、バッテリリレー15はオフ状態のままで保持される。 First, in step S <b> 13, the vehicle control device 40 controls the temperature control relay 16 to be in an ON state to prepare for power supply to the temperature control device 13. In this case, the battery relay 15 is held in an off state in order to control the battery 10 separately from the electric load including the external power source and the temperature control device 13.
 ステップS14において、車両制御装置40は、電力供給装置33を制御することにより、外部電源から温調装置13及び他の電気補機へと電力を供給する。 In step S14, the vehicle control device 40 controls the power supply device 33 to supply power from the external power source to the temperature control device 13 and other electric auxiliary devices.
 ステップS15において、車両制御装置40は、バッテリ10の温度状態について第2温度条件が成立しているか否かを判断する。この第2温度条件は、バッテリ10の温度状態が、温調制御における温調装置13の作動範囲の上限値に到達したか否かを判断する。なお、この第2温度条件は、バッテリ10の温度状態が前述の制限温度から、バッテリ10の充放電の制限が不要な温度範囲へと回復したことが判断できればよく、かかる制限温度の上限値から温調装置13の作動範囲の上限値までの間において、任意の温度を設定することができる。 In step S15, the vehicle control device 40 determines whether or not the second temperature condition is established for the temperature state of the battery 10. This second temperature condition determines whether or not the temperature state of the battery 10 has reached the upper limit value of the operating range of the temperature control device 13 in the temperature control. The second temperature condition only needs to be determined that the temperature state of the battery 10 has recovered from the above-described limit temperature to a temperature range in which the charge / discharge limitation of the battery 10 is unnecessary. An arbitrary temperature can be set up to the upper limit value of the operating range of the temperature control device 13.
 このステップS15において肯定判定された場合、すなわち、バッテリ10の温度が温調制御の温度範囲の上限値に到達した場合には、ステップS16に進む。一方、ステップS15において否定判定された場合、すなわち、バッテリ10の温度が温調制御の温度範囲の上限値に到達していない場合には、再度ステップS14の処理に戻る。したがって、かかるループにより、バッテリ10の温度が温調制御の温度範囲の上限値に到達するまで、温調装置13に対する電力供給が継続されることとなる。 If an affirmative determination is made in step S15, that is, if the temperature of the battery 10 has reached the upper limit of the temperature range of the temperature control, the process proceeds to step S16. On the other hand, if a negative determination is made in step S15, that is, if the temperature of the battery 10 has not reached the upper limit value of the temperature range of the temperature control, the process returns to step S14 again. Therefore, the power supply to the temperature control device 13 is continued by this loop until the temperature of the battery 10 reaches the upper limit value of the temperature range of the temperature control.
 ステップS17において、車両制御装置40は、温調装置13への供給電力を停止する。 In step S <b> 17, the vehicle control device 40 stops supplying power to the temperature control device 13.
 ステップS18において、車両制御装置40は、温調リレー16をオフ状態に制御する。そして、車両制御装置40は、システムを停止した上で、本ルーチンを終了する。 In step S18, the vehicle control device 40 controls the temperature control relay 16 to the off state. And the vehicle control apparatus 40 complete | finishes this routine, after stopping a system.
 このように本実施形態において、電動車両1は、外部電源から供給される電力を充電可能なバッテリ10と、外部電源又はバッテリ10から電力が供給される電気負荷とを有している。そして、車両制御装置40は、所定の温度条件が成立した場合に、バッテリ10と、外部電源及び記電気負荷とを電気的に遮断した状態に制御している。 As described above, in the present embodiment, the electric vehicle 1 includes the battery 10 that can be charged with the power supplied from the external power source, and the electric load that is supplied with the power from the external power source or the battery 10. And the vehicle control apparatus 40 is controlling to the state which interrupted | blocked the battery 10, the external power supply, and the electrical load electrically, when predetermined temperature conditions are satisfied.
 係る構成によれば、必要とする温度条件において、バッテリ10と、外部電源及び記電気負荷とを電気的に遮断した状態に制御することができる。そのため、バッテリ10の充放電により劣化や損傷が懸念されるような温度環境においてバッテリ10を電気的に遮断することができるので、バッテリ10の充放電を抑制することができる。これにより、バッテリ10の劣化や損傷を効果的に抑制することができる。 According to this configuration, it is possible to control the battery 10, the external power supply, and the electrical load so as to be electrically cut off under the necessary temperature conditions. Therefore, since the battery 10 can be electrically shut off in a temperature environment in which deterioration or damage is a concern due to charging / discharging of the battery 10, charging / discharging of the battery 10 can be suppressed. Thereby, deterioration and damage of the battery 10 can be effectively suppressed.
 また、本実施形態において、電気負荷は、バッテリ10の温度調節を行う温調装置13を含み、車両制御装置40は、所定の温度条件が成立した場合、さらに、外部電源から温調装置13に電力を供給してこの温調装置13を作動させている。 In the present embodiment, the electric load includes the temperature adjustment device 13 that adjusts the temperature of the battery 10, and the vehicle control device 40 further supplies the temperature adjustment device 13 from an external power source when a predetermined temperature condition is satisfied. Electric power is supplied to operate the temperature control device 13.
 例えば、バッテリが極低温になると、バッテリ内部の電解液が凍結するなどしてイオンの動きが悪化し、電気抵抗値が大幅に上昇する。このとき、バッテリの温度を回復させるための温調装置やその他の電気補機の負荷変動などでバッテリにおいて充放電電流が発生すると、バッテリ電圧が大幅に上昇(過充電)又は低下(過放電)し、バッテリが著しく劣化又は損傷してしまう。このため、バッテリや外部電源の電力を使用して温調装置を作動すると、バッテリの劣化や損傷に繋がってしまう。一方、バッテリの温度を調整するために、電動車両を放置して温調装置を使わずに自然に回復させた場合には、そのような不具合が解消されるまでにバッテリ温度が回復するまでに長くの時間を要してしまうという問題がある。 For example, when the battery is at a very low temperature, the movement of ions deteriorates due to freezing of the electrolyte in the battery, and the electrical resistance value increases significantly. At this time, if a charge / discharge current is generated in the battery due to a load control of a temperature control device or other electric auxiliary device for recovering the temperature of the battery, the battery voltage significantly increases (overcharge) or decreases (overdischarge). As a result, the battery is significantly deteriorated or damaged. For this reason, if the temperature control apparatus is operated using the power of the battery or the external power source, the battery is deteriorated or damaged. On the other hand, in order to adjust the temperature of the battery, if the electric vehicle is left and recovered naturally without using the temperature control device, the battery temperature will recover until such a problem is resolved. There is a problem that it takes a long time.
 この点本実施形態によれば、外部電源により温調装置13を作動させるものの、バッテリ10が電気的に遮断されているため、温調装置13やその他の電気補機に電力変動が発生しても、当該電力変動に伴うバッテリ10の過充電や過放電を抑制することができる。また、外部電源により温調装置13を作動させることができるので、短時間でバッテリ10を所望の温度へ温調できる。 In this regard, according to the present embodiment, the temperature control device 13 is operated by an external power source, but the battery 10 is electrically disconnected, so that power fluctuations occur in the temperature control device 13 and other electric auxiliary machines. Moreover, the overcharge and overdischarge of the battery 10 accompanying the said electric power fluctuation | variation can be suppressed. Moreover, since the temperature control apparatus 13 can be operated with an external power supply, the temperature of the battery 10 can be adjusted to a desired temperature in a short time.
 また、本実施形態において、電動車両1は、バッテリ10と外部電源との間の電流経路(充電ラインLc1,Lc2及びバッテリラインLb)において電気負荷へと繋がる接続点よりもバッテリ10側に、電流経路を接続又は遮断するバッテリリレー15が配置される。また、車両制御装置40は、所定の温度条件が成立した場合、バッテリリレー15により電流経路を遮断する。 Further, in the present embodiment, the electric vehicle 1 has a current on the battery 10 side of a connection point that leads to an electric load in a current path (charge lines Lc1, Lc2, and battery line Lb) between the battery 10 and an external power source. A battery relay 15 for connecting or blocking the path is arranged. Further, the vehicle control device 40 interrupts the current path by the battery relay 15 when a predetermined temperature condition is established.
 かかる構成によれば、バッテリリレー15により、バッテリ10と、外部電源及び記電気負荷とを電気的に遮断することができる。これにより、バッテリ10の劣化や損傷を効果的に抑制することができる。 According to such a configuration, the battery 10 can be electrically disconnected from the external power source and the electrical load by the battery relay 15. Thereby, deterioration and damage of the battery 10 can be effectively suppressed.
 また、本実施形態において、車両制御装置40は、バッテリ10の温度状態がバッテリ10の充放電を制限する制限温度に存する場合に、所定の温度条件の成立を判断する。 In the present embodiment, the vehicle control device 40 determines whether a predetermined temperature condition is satisfied when the temperature state of the battery 10 is at a limit temperature that limits charging / discharging of the battery 10.
 かかる構成によれば、バッテリ10の温度を通じて、バッテリ10の充放電を制限する制限温度に存するか否かを判断することができる。これにより、バッテリ10の遮断を適切に実行することができるので、結果として、バッテリ10の劣化や損傷を効果的に抑制することができる。もっとも、本発明によれば、バッテリ10の温度を直接的に監視せずに、外気温といった周囲の情報などを参照し、バッテリ10の充放電を制限するような所定の温度条件が成立するか否かを判断してもよい。 According to such a configuration, it is possible to determine whether or not the temperature is limited to limit charging / discharging of the battery 10 through the temperature of the battery 10. Thereby, since the interruption | blocking of the battery 10 can be performed appropriately, the deterioration and damage of the battery 10 can be suppressed effectively as a result. However, according to the present invention, whether or not a predetermined temperature condition that restricts charging / discharging of the battery 10 is established by referring to ambient information such as the outside air temperature without directly monitoring the temperature of the battery 10. It may be determined whether or not.
 バッテリ10を遮断した状態で外部電源から電力を供給する場合、温調装置13を含む電気負荷の消費電力以上に電力を供給してしまうと、システム電圧が過大になり、フェールに落ちたりシステムに異常をきたしたりする可能性がある。そこで、車両制御装置40は、バッテリラインLbを含むシステムの電圧を随時モニタリングし、電力供給装置33の出力電力をフィードバック制御することが望ましい。 When power is supplied from an external power source with the battery 10 shut off, if power is supplied in excess of the power consumption of the electrical load including the temperature control device 13, the system voltage becomes excessive and the system may fail or fail. It may cause abnormalities. Therefore, it is desirable that the vehicle control device 40 monitor the voltage of the system including the battery line Lb as needed, and feedback control the output power of the power supply device 33.
 なお、本実施形態では、低温環境を前提として説明を行ったが、冷却装置を含む温調装置13により、高温環境において温調制御を行ってもよい(後述する実施形態においても同様)。例えば、バッテリ10が過大温度になっているときに、バッテリ10や外部電源の電力を使用して温調装置13を作動すると、充放電に伴う発熱で、バッテリ自身の許容温度を超えてしまい、バッテリ10が著しく劣化又は損傷してしまう。この場合、バッテリ10の充放電を制限する制限温度は、低温環境においてバッテリ10の充放電を制限する温度範囲と、高温環境においてバッテリ10の充放電を制限する温度範囲とがそれぞれ設定されることとなる。 In addition, although this embodiment demonstrated on the assumption of a low temperature environment, you may perform temperature control in a high temperature environment by the temperature control apparatus 13 containing a cooling device (this is the same also in embodiment mentioned later). For example, when the temperature adjustment device 13 is operated using the power of the battery 10 or an external power source when the battery 10 is at an excessive temperature, the heat generated by charging / discharging exceeds the allowable temperature of the battery itself, The battery 10 is significantly deteriorated or damaged. In this case, the temperature limit for limiting charging / discharging of the battery 10 is set to a temperature range for limiting charging / discharging of the battery 10 in a low temperature environment and a temperature range for limiting charging / discharging of the battery 10 in a high temperature environment. It becomes.
(第2の実施形態)
 以下、第2の実施形態にかかる、温調制御に伴うバッテリ10の充放電制限について説明する。図4は、バッテリ10の温度Tbcの推移と、バッテリリレー15及び温調リレー16の状態とを示す説明図である。この第2の実施形態において、電動車両1が外部電源と接続されてからバッテリ10の温調制御を開始するまでの手順については、第1の実施形態と同様である。つぎに、車両制御装置40は、バッテリ10の温調制御中に、バッテリ10の電解液の凍結開始温度よりも上昇した場合、バッテリリレー15をオン状態に設定し、温調装置13の作動を継続する。換言すれば、車両制御装置40は、バッテリ10の温度状態が制限温度から回復した場合には、バッテリ10と外部電源及び電気負荷とを電気的に接続した状態に制御して、温調装置13の作動を継続する。
(Second Embodiment)
Hereinafter, charging / discharging limitation of the battery 10 associated with temperature control according to the second embodiment will be described. FIG. 4 is an explanatory diagram showing the transition of the temperature Tbc of the battery 10 and the states of the battery relay 15 and the temperature control relay 16. In the second embodiment, the procedure from when the electric vehicle 1 is connected to the external power supply until the temperature control of the battery 10 is started is the same as that of the first embodiment. Next, when the temperature of the battery 10 rises during the temperature control of the battery 10, the vehicle control device 40 sets the battery relay 15 to an ON state and activates the temperature control device 13. continue. In other words, when the temperature state of the battery 10 recovers from the limit temperature, the vehicle control device 40 controls the temperature control device 13 by controlling the battery 10 to be in an electrically connected state with the external power source and the electric load. Continue to operate.
 バッテリリレー15のオフ状態において温調制御を行う場合、電圧変動を吸収するバッファとしてのバッテリ10が電気的に切り離されている。そのため、温調装置13やその他の電気補機の消費電力の変動に伴うシステムの電圧変動が大きくなる。これにより、通常は、システムの耐電圧限界に対して十分に低い電圧領域でバッテリ10の温調制御を実施するため、温調装置13への供給電力が小さくなり、バッテリ10の温調に多くの時間を要することがある。 When performing the temperature control in the off state of the battery relay 15, the battery 10 as a buffer that absorbs voltage fluctuation is electrically disconnected. Therefore, the voltage fluctuation of the system accompanying the fluctuation of the power consumption of the temperature control device 13 and other electric auxiliary machines becomes large. As a result, the temperature control of the battery 10 is normally performed in a voltage range sufficiently lower than the withstand voltage limit of the system, so that the power supplied to the temperature control device 13 is reduced, and the temperature control of the battery 10 is increased. Time may be required.
 これに対し、バッテリ10の充放電の制限温度から回復した後に、バッテリリレー15をオン状態に切り換えて温調制御を行うことで、バッテリ10に吸収されることで電圧変動が小さくなる。そのため、バッテリリレー15がオフ状態の場合と比べて、システムの電圧を相対的に上げることが可能となり、温調装置13への供給電力を増やすことができる。この結果、より短い時間でバッテリ10の調温を行うことができる。また、バッテリ10の温調を行いながら、バッテリ10の充電を併せて行うことができる。 On the other hand, after recovering from the charging / discharging limit temperature of the battery 10, the battery relay 15 is switched to the ON state and temperature control is performed, so that the voltage fluctuation is reduced by being absorbed by the battery 10. Therefore, compared with the case where the battery relay 15 is in an OFF state, the system voltage can be relatively increased, and the power supplied to the temperature control device 13 can be increased. As a result, the temperature of the battery 10 can be adjusted in a shorter time. In addition, the battery 10 can be charged while adjusting the temperature of the battery 10.
 なお、第2の実施形態において、バッテリリレー15に対して外部電源側に電圧センサ34を配置し、車両制御装置40は、バッテリリレー15をオン状態に制御する場合には、電力供給装置33の出力制御により、システム電圧をバッテリ10の電圧近傍に調圧した状態で、バッテリリレー15をオン状態に制御することが好ましい。これにより、システム電圧とバッテリ10の電圧との落差が小さくなり、システムに発生する突入電流の発生を抑制することができる。その結果、システムの電圧がその耐電圧限界を超えたり、バッテリ10への過大な突入電流を抑制したりできるので、安全に温調制御を行うことができる。 In the second embodiment, when the voltage sensor 34 is arranged on the external power supply side with respect to the battery relay 15 and the vehicle control device 40 controls the battery relay 15 to be in the ON state, the power supply device 33 It is preferable that the battery relay 15 is controlled to be in an on state in a state where the system voltage is regulated near the voltage of the battery 10 by output control. Thereby, a drop between the system voltage and the voltage of the battery 10 is reduced, and the occurrence of an inrush current generated in the system can be suppressed. As a result, the system voltage can exceed its withstand voltage limit or an excessive inrush current to the battery 10 can be suppressed, so that temperature control can be performed safely.
 また、これとは別に、バッテリリレー15をオン状態に制御する前に、外部電源から温調装置13への電力供給を一旦停止させ、バッテリリレー15をオン状態に制御してから温調装置13に電力を供給してもよい。これにより、通常の充電制御と同様、システムに発生する突入電流を抑制することができ、安全に温調制御を行うことができる。 Separately from this, before the battery relay 15 is controlled to be turned on, the power supply from the external power source to the temperature control device 13 is temporarily stopped, and the battery relay 15 is controlled to be turned on, and then the temperature control device 13 is controlled. You may supply electric power to. Thereby, the inrush current which generate | occur | produces in a system can be suppressed similarly to normal charge control, and temperature control can be performed safely.
(第3の実施形態)
 以下、第3の実施形態にかかる、温調制御に伴うバッテリ10の充放電制限について説明する。図5は、システムの電圧Vstmと消費電力との時系列的な変化を模式的に示す説明図である。同図において、Vtgは制御目標電圧、Vupはシステムの耐電圧限界である。また、Psは外部電源から供給する供給電力、Phは温調装置13の消費電力、Pdはその他の補機(DC/DCコンバータ23)の消費電力である。
(Third embodiment)
Hereinafter, charging / discharging limitation of the battery 10 associated with temperature control according to the third embodiment will be described. FIG. 5 is an explanatory diagram schematically showing time-series changes in the system voltage Vstm and power consumption. In the figure, Vtg is the control target voltage and Vup is the withstand voltage limit of the system. Ps is power supplied from an external power source, Ph is power consumption of the temperature control device 13, and Pd is power consumption of other auxiliary machines (DC / DC converter 23).
 第2の実施形態に示すように、バッテリ10を電気的に切り離した状態で温調制御を行う場合、温調装置13や他の電気補機の消費電力の変動に伴いシステムの電圧Vstmの変
動が大きくなる。そのため、システムの耐電圧限界Vupに対して十分に低い電圧領域で温調制御を行う必要が生じる。
As shown in the second embodiment, when temperature control is performed with the battery 10 electrically disconnected, fluctuations in the system voltage Vstm accompanying fluctuations in the power consumption of the temperature control device 13 and other electric auxiliary machines Becomes larger. For this reason, it is necessary to perform temperature control in a voltage region that is sufficiently lower than the withstand voltage limit Vup of the system.
 一方で、バッテリ10の温度調節に要する時間を短縮するためには、なるべく高い電圧で温調装置13を作動させることが望ましい。温調装置13を高い電圧で作動させるためには、システムの電圧変動を抑える必要がある。そこで、本実施形態では、バッテリリレー15に対して外部電源側に電圧センサ34を配置することで、車両制御装置40は、システムの電圧Vstmの変動をモニタリングし、これが一定電圧になるように電力供給装置
33からの供給電力を制御する。
On the other hand, in order to shorten the time required to adjust the temperature of the battery 10, it is desirable to operate the temperature adjustment device 13 with as high a voltage as possible. In order to operate the temperature control device 13 at a high voltage, it is necessary to suppress the voltage fluctuation of the system. Therefore, in the present embodiment, by arranging the voltage sensor 34 on the external power supply side with respect to the battery relay 15, the vehicle control device 40 monitors the fluctuation of the system voltage Vstm, and the power is adjusted so that this becomes a constant voltage. The power supplied from the supply device 33 is controlled.
 これにより、システムの電圧変動を安定的に抑えることが可能となるため、システムの電圧Vstmが過大となったり、過少となったりすることなく、温調制御を行うことが可能
となる。
As a result, voltage fluctuations in the system can be stably suppressed, so that temperature control can be performed without causing the system voltage Vstm to be excessive or insufficient.
 なお、望ましくは、電力供給装置33が電圧センサ34による電圧情報を直接読み取り、この情報を電力供給装置33の出力制御にフィードバックする回路を組むことが好ましい。これにより、応答性が上がり、例えば、温調装置13が何らかの理由で遮断されたときでも、迅速に供給電力Psを落とすことが可能となる。この結果、システムの電圧Vstmが過電圧に至ることなく高い電圧で温調制御を制御することが可能となる。これにより
、温調時間の短縮を図ることができる。
Desirably, it is preferable to construct a circuit in which the power supply device 33 directly reads voltage information from the voltage sensor 34 and feeds back this information to output control of the power supply device 33. Thereby, the responsiveness is improved, and for example, even when the temperature control device 13 is shut off for some reason, it is possible to quickly reduce the supplied power Ps. As a result, the temperature control can be controlled at a high voltage without causing the system voltage Vstm to reach an overvoltage. Thereby, shortening of temperature control time can be aimed at.
 以上、本発明の実施形態に係る電動車両について説明したが、本発明は上述した実施形態に限定されることなく、その発明の範囲内において種々の変形が可能であることはいうまでもない。 As mentioned above, although the electric vehicle which concerns on embodiment of this invention was demonstrated, it cannot be overemphasized that a various deformation | transformation is possible within the scope of the invention, without this invention being limited to embodiment mentioned above.

Claims (9)

  1.  外部電源から供給される電力を充電可能なバッテリと、
     前記外部電源又は前記バッテリから電力が供給される電気負荷と、
     所定の温度条件が成立した場合に、前記バッテリと前記外部電源及び前記電気負荷とを電気的に遮断した状態に制御する制御装置と、
    を有する電動車両。
    A battery capable of charging power supplied from an external power source;
    An electrical load to which power is supplied from the external power source or the battery;
    A control device that controls the battery, the external power source, and the electrical load to be electrically disconnected when a predetermined temperature condition is satisfied;
    An electric vehicle.
  2.  前記電気負荷は、前記バッテリの温度調節を行う温調装置を含み、
     前記制御装置は、前記所定の温度条件が成立した場合、さらに、前記外部電源から前記温調装置に電力を供給して当該温調装置を作動させる請求項1に記載された電動車両。
    The electrical load includes a temperature control device that adjusts the temperature of the battery,
    2. The electric vehicle according to claim 1, wherein, when the predetermined temperature condition is satisfied, the control device further supplies power from the external power source to the temperature adjustment device to operate the temperature adjustment device.
  3.  前記バッテリと前記外部電源との間の電流経路において前記電気負荷へと繋がる接続点よりも前記バッテリ側に配置されて、前記電流経路を接続又は遮断するバッテリリレーをさらに有し、
     前記制御装置は、前記所定の温度条件が成立した場合、前記バッテリリレーにより前記電流経路を遮断する請求項2に記載された電動車両。
    The battery further includes a battery relay that is disposed on the battery side of a connection point connected to the electric load in a current path between the battery and the external power source, and connects or disconnects the current path.
    The electric vehicle according to claim 2, wherein the control device cuts off the current path by the battery relay when the predetermined temperature condition is satisfied.
  4.  前記バッテリの温度状態を検出する温度検出手段をさらに有し、
     前記制御装置は、前記バッテリの温度状態が当該バッテリの充放電を制限する制限温度に存する場合に、前記所定の温度条件の成立を判断する請求項2又は3に記載された電動車両。
    Temperature detecting means for detecting the temperature state of the battery;
    4. The electric vehicle according to claim 2, wherein the control device determines that the predetermined temperature condition is satisfied when the temperature state of the battery is at a limit temperature that limits charging / discharging of the battery. 5.
  5.  前記制御装置は、前記バッテリの温度状態が前記制限温度から回復した場合には、前記バッテリと前記外部電源及び前記電気負荷とを電気的に接続した状態に制御して、前記温調装置の作動を継続する請求項4に記載された電動車両。 When the temperature state of the battery recovers from the limit temperature, the control device controls the battery, the external power source, and the electric load to be electrically connected to operate the temperature control device. The electric vehicle according to claim 4 which continues.
  6.  前記電流経路において前記バッテリリレーよりも前記外部電源側に配置されており、前記電流経路に印加される電圧を検出する電圧検出手段をさらに有し、
     前記制御装置は、前記電流経路に印加される電圧を所定電圧に制御した状態で、前記バッテリと前記外部電源及び前記電気負荷とを電気的に接続した状態に制御する請求項5に記載された電動車両。
    In the current path, it is arranged on the external power supply side with respect to the battery relay, further comprising a voltage detection means for detecting a voltage applied to the current path,
    The said control apparatus was controlled to the state which electrically connected the said battery, the said external power supply, and the said electric load in the state which controlled the voltage applied to the said current path to predetermined voltage. Electric vehicle.
  7.  前記制御装置は、前記所定電圧を前記バッテリの電圧とする請求項6に記載された電動車両。 The electric vehicle according to claim 6, wherein the control device uses the predetermined voltage as a voltage of the battery.
  8.  前記制御装置は、前記バッテリの温度状態が前記制限温度から回復した場合には、前記外部電源から前記温調装置への電力供給を一旦停止させ、前記バッテリと前記外部電源及び前記電気負荷とを電気的に接続した状態に制御してから前記温調装置に電力を供給する請求項4に記載された電動車両。 When the temperature state of the battery recovers from the limit temperature, the control device temporarily stops power supply from the external power source to the temperature control device, and connects the battery, the external power source, and the electric load. The electric vehicle according to claim 4, wherein electric power is supplied to the temperature control device after controlling to an electrically connected state.
  9.  前記電流経路において前記バッテリリレーよりも前記外部電源側に配置されており、前記電流経路に印加される電圧を検出する電圧検出手段をさらに有し、
     前記制御装置は、前記電流経路に印加される電圧の変動を抑制するように前記外部電源からの供給電力を制御する請求項3に記載された電動車両。
    In the current path, it is arranged on the external power supply side with respect to the battery relay, further comprising a voltage detection means for detecting a voltage applied to the current path,
    The electric vehicle according to claim 3, wherein the control device controls electric power supplied from the external power supply so as to suppress a variation in voltage applied to the current path.
PCT/JP2013/054281 2012-03-01 2013-02-21 Electric vehicle WO2013129217A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-045365 2012-03-01
JP2012045365A JP2013183523A (en) 2012-03-01 2012-03-01 Electric vehicle

Publications (1)

Publication Number Publication Date
WO2013129217A1 true WO2013129217A1 (en) 2013-09-06

Family

ID=49082417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054281 WO2013129217A1 (en) 2012-03-01 2013-02-21 Electric vehicle

Country Status (2)

Country Link
JP (1) JP2013183523A (en)
WO (1) WO2013129217A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3342623A3 (en) * 2016-12-30 2018-11-21 Textron Innovations Inc. Charging a lithium batery on a utility vehicle
US10654372B2 (en) 2018-10-18 2020-05-19 Textron Innovations Inc. Controlling power to a utility vehicle
JP2021035790A (en) * 2019-08-30 2021-03-04 本田技研工業株式会社 Vehicle control device and vehicle
US11865927B2 (en) 2016-12-30 2024-01-09 Textron Innovations Inc. Controlling electrical access to a lithium battery on a utility vehicle

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6229539B2 (en) * 2014-02-27 2017-11-15 三菱自動車工業株式会社 Vehicle battery control device
KR101638105B1 (en) * 2014-12-23 2016-07-08 포스코에너지 주식회사 Module for high temperature operated secondary battery
JP6332121B2 (en) * 2015-04-14 2018-05-30 トヨタ自動車株式会社 Battery temperature riser
JP6468169B2 (en) * 2015-11-27 2019-02-13 トヨタ自動車株式会社 Battery charging system
JP6308232B2 (en) 2016-02-26 2018-04-11 トヨタ自動車株式会社 Secondary battery system
JP6493344B2 (en) * 2016-09-12 2019-04-03 トヨタ自動車株式会社 Automobile
CN107947252B (en) * 2016-10-12 2020-09-22 Oppo广东移动通信有限公司 Terminal and equipment
JP6952127B2 (en) 2017-04-07 2021-10-20 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless charging device, device to be charged and its control method
DK3462565T3 (en) 2017-04-13 2021-04-26 Guangdong Oppo Mobile Telecommunications Corp Ltd DEVICE TO BE CHARGED AND CHARGING PROCEDURE
JP2020179707A (en) * 2019-04-23 2020-11-05 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular control system
WO2024116338A1 (en) * 2022-11-30 2024-06-06 株式会社Subaru Vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773906A (en) * 1993-09-06 1995-03-17 Kojima Press Co Ltd Charging device for electric automobile
JPH11187577A (en) * 1997-10-13 1999-07-09 Toyota Motor Corp Charge/discharge controller for secondary battery
JP2007259584A (en) * 2006-03-23 2007-10-04 Toyota Motor Corp Power supply system for vehicle
JP2010518567A (en) * 2007-02-06 2010-05-27 バッツキャップ Power battery module, battery, module charging method, and automobile having battery
JP2011010508A (en) * 2009-06-29 2011-01-13 Toyota Motor Corp Electric power supply system
JP2011182585A (en) * 2010-03-02 2011-09-15 Honda Motor Co Ltd Charge control device and vehicle loading the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773906A (en) * 1993-09-06 1995-03-17 Kojima Press Co Ltd Charging device for electric automobile
JPH11187577A (en) * 1997-10-13 1999-07-09 Toyota Motor Corp Charge/discharge controller for secondary battery
JP2007259584A (en) * 2006-03-23 2007-10-04 Toyota Motor Corp Power supply system for vehicle
JP2010518567A (en) * 2007-02-06 2010-05-27 バッツキャップ Power battery module, battery, module charging method, and automobile having battery
JP2011010508A (en) * 2009-06-29 2011-01-13 Toyota Motor Corp Electric power supply system
JP2011182585A (en) * 2010-03-02 2011-09-15 Honda Motor Co Ltd Charge control device and vehicle loading the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3342623A3 (en) * 2016-12-30 2018-11-21 Textron Innovations Inc. Charging a lithium batery on a utility vehicle
US10195953B2 (en) 2016-12-30 2019-02-05 Textron Innovations Inc. Charging a lithium battery on a utility vehicle
US11865927B2 (en) 2016-12-30 2024-01-09 Textron Innovations Inc. Controlling electrical access to a lithium battery on a utility vehicle
US10654372B2 (en) 2018-10-18 2020-05-19 Textron Innovations Inc. Controlling power to a utility vehicle
US11267352B2 (en) 2018-10-18 2022-03-08 Textron Innovations Inc. Controlling power to a utility vehicle
JP2021035790A (en) * 2019-08-30 2021-03-04 本田技研工業株式会社 Vehicle control device and vehicle
JP7137540B2 (en) 2019-08-30 2022-09-14 本田技研工業株式会社 Vehicle control device and vehicle

Also Published As

Publication number Publication date
JP2013183523A (en) 2013-09-12

Similar Documents

Publication Publication Date Title
WO2013129217A1 (en) Electric vehicle
US10369900B1 (en) Onboard DC charging circuit using traction drive components
CN108016311B (en) High-voltage system of new energy automobile and control method thereof
CN103192729B (en) Elec. vehicle
KR101456400B1 (en) Battery charging control device
JP5736860B2 (en) Battery charge control device
KR20120012661A (en) Apparatus for battery control and method for battery control for electrical vehicles
US20160268820A1 (en) Charging and discharging system and vehicle used therein
JP2013066365A (en) Vehicle driving device, vehicle charging system, and automobile
EP3232049B1 (en) Automobile starting control system and automobile
KR101755732B1 (en) System and method for charging battery of vehicle
CN104661856A (en) Coupling store device for a motor vehicle
JP2012085519A (en) Ac current control of on-vehicle battery charger
WO2020001265A1 (en) External charging method and device for vehicle
WO2015071712A1 (en) Charging and discharging system with connector lock
JP2016152067A (en) Power storage system
CN112677781A (en) Hybrid power supply system based on fuel cell and energy storage battery and automobile
JP2016213975A (en) Electric vehicle
CN104659854A (en) Charge method and system of vehicle-mounted battery and vehicle with charge system
KR20190100261A (en) Methods and systems for the management of rechargeable electric or hybrid vehicles
JPWO2017191818A1 (en) Power supply
KR20170105214A (en) Electric vehicle charger system
CN105736211A (en) Ignition control system of automobile and automobile
JP6402687B2 (en) Vehicle battery system
JP7430978B2 (en) Power supply system and its control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13754608

Country of ref document: EP

Kind code of ref document: A1