JP2011182585A - Charge control device and vehicle loading the same - Google Patents

Charge control device and vehicle loading the same Download PDF

Info

Publication number
JP2011182585A
JP2011182585A JP2010045773A JP2010045773A JP2011182585A JP 2011182585 A JP2011182585 A JP 2011182585A JP 2010045773 A JP2010045773 A JP 2010045773A JP 2010045773 A JP2010045773 A JP 2010045773A JP 2011182585 A JP2011182585 A JP 2011182585A
Authority
JP
Japan
Prior art keywords
power
time
charging
charge
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010045773A
Other languages
Japanese (ja)
Other versions
JP5480670B2 (en
Inventor
Minoru Ueno
穣 上野
Daiji Maruyama
大司 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010045773A priority Critical patent/JP5480670B2/en
Publication of JP2011182585A publication Critical patent/JP2011182585A/en
Application granted granted Critical
Publication of JP5480670B2 publication Critical patent/JP5480670B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/64Optimising energy costs, e.g. responding to electricity rates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charge control device, capable of reducing a total charging cost in consideration of power consumption requiring for putting in advance an energy storage unit in a state ready for charging. <P>SOLUTION: A charge control ECU17 computes a temperature-change time t<SB>2</SB>required for cooling or heating a battery by a cooler 13 or a heater 14 in consideration of a battery temperature. The charge control ECU computes a first power required for charge at a time when the charging time t<SB>1</SB>of the battery 2 is secured for a time from a charge-commenceable time to a vehicle starting time and a second power required for cooling or heating the battery 2 at the temperature-change time t<SB>2</SB>while using the time obtained by adding the temperature-change time t<SB>2</SB>to a present time as the charge-commenceable time. The cooler 13 or the heater 14 is controlled so that the total of electric rates converting the first power and the second power on the basis of an electric rate system having differences by time zones is minimized, and charging the battery 2 is carried out from an external power supply X. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、車両に搭載され、かつ、外部電源からの供給電力によって充電可能な蓄電手段の蓄電状態を制御する充電制御装置および充電制御装置が搭載された車両に関する。   The present invention relates to a charge control device that controls a power storage state of power storage means that is mounted on a vehicle and that can be charged by power supplied from an external power source, and a vehicle on which the charge control device is mounted.

従来、蓄電手段を備える車両において、該蓄電手段を外部充電する充電制御装置では、必要充電量Qを、複数種類の電力源(深夜電力、昼間電力、太陽光発電装置により発電された電力)のうち、電力単価が安い電力によって最も多く充電できるように、充電開始時刻から出発予定時刻までの期間を利用して、バッテリの充電を行う(下記特許文献1 段落[0036],[0042]参照)。   Conventionally, in a vehicle equipped with power storage means, in a charge control device that externally charges the power storage means, the required charge amount Q is obtained from a plurality of types of power sources (midnight power, daytime power, power generated by a solar power generator). Among them, the battery is charged using the period from the charging start time to the scheduled departure time so that the power can be charged the most with the cheap power (see paragraphs [0036] and [0042] in Patent Document 1 below). .

特開2009−148121号公報JP 2009-148121 A

しかしながら、従来の充電制御装置では、必要充電量Qを電力単価が安い電力(例えば深夜電力)で優先的に充電するものであり、予めバッテリを蓄電可能な状態とするのに電力が消費される場合に、かかる消費電力が考慮されていないという問題があった。   However, in the conventional charge control device, the required charge amount Q is preferentially charged with power with a low power unit price (for example, late-night power), and power is consumed to make the battery chargeable in advance. In some cases, such power consumption is not taken into consideration.

以上の事情に鑑みて、本発明は、蓄電手段を予め充電可能な状態とするのに要する消費電力を考慮したトータル充電コストの低減を図ることができる充電制御装置および充電制御装置が搭載された車両を提供することを目的とする。   In view of the above circumstances, the present invention is equipped with a charge control device and a charge control device capable of reducing the total charge cost in consideration of the power consumption required to precharge the power storage means. The object is to provide a vehicle.

第1発明の充電制御装置は、車両に搭載され、かつ、外部電源からの供給電力によって充電可能な蓄電手段の蓄電状態を制御する充電制御装置であって、
前記蓄電手段の蓄電状態に鑑みて、該蓄電手段を充電するのに要する充電時間を算出する充電時間算出手段と、
前記蓄電手段の状態に鑑みて、該蓄電手段を充電準備手段により充電に適した状態にするために要する充電準備時間を加算した時刻を現在時刻に加えた時刻を充電開始可能時刻として、該充電開始可能時刻から前記車両の出発時間までの間で前記充電時間を確保した場合の充電に要する第1電力を算出する第1算出手段と、
前記充電準備時間に前記蓄電手段を充電可能な状態にするために要する第2電力を算出する第2算出手段とを備え、
前記充電準備手段の運転態様および前記蓄電手段の充電開始時刻の複数の組み合わせのうち、前記第1電力と前記第2電力とを時間帯により高低差のある電気料金体系に基づいて換算した電気料金の合計が最小となる一の当該組み合わせにしたがって、前記充電準備手段を制御すると共に、前記外部電源から前記蓄電手段への充電を実行することを特徴とする。
A charge control device according to a first aspect of the present invention is a charge control device that is mounted on a vehicle and controls a storage state of a storage unit that can be charged by power supplied from an external power source,
In view of the power storage state of the power storage means, a charge time calculation means for calculating a charge time required to charge the power storage means;
In view of the state of the power storage means, the time obtained by adding the time obtained by adding the charge preparation time required to make the power storage means suitable for charging by the charge preparation means to the current time is defined as the charge startable time. First calculating means for calculating first power required for charging when the charging time is secured between a startable time and a departure time of the vehicle;
Second calculating means for calculating second power required to make the power storage means chargeable during the charge preparation time;
An electric charge obtained by converting the first electric power and the second electric power based on an electric charge system having a difference in height according to a time zone, among a plurality of combinations of the operation mode of the charging preparation means and the charging start time of the power storage means. The charging preparation means is controlled in accordance with the one combination that minimizes the total of the above, and charging from the external power source to the power storage means is executed.

第1発明の充電制御装置によれば、充電準備手段の運転態様および蓄電手段の充電開始時刻の複数の組み合わせのうち、蓄電手段の充電に要する第1電力と、蓄電手段を充電可能な状態に調節するのに要する第2電力とが、時間帯により高低差のある電気料金体系に基づいて電気料金に換算され、かかる電気料金の合計が最小となる一の当該組み合わせにしたがって、充電準備手段の制御と、外部電源から蓄電手段への充電とが実行される。このように、第2電力を電気料金に換算して考慮することで、蓄電手段を予め蓄電可能な状態とするのに電力が消費されることを考慮しないために結果としてトータル充電コストが高くなることを回避することができ、トータル充電コストの低減を図ることができる。   According to the charge control device of the first aspect of the present invention, the first power required for charging the power storage means and the power storage means in a state in which the power storage means can be charged among a plurality of combinations of the operation mode of the charge preparation means and the charging start time of the power storage means. The second electric power required for adjustment is converted into an electric charge based on an electric charge system having a difference in height depending on the time zone, and according to the one combination that minimizes the total of the electric charge, the charging preparation means Control and charging from the external power source to the power storage means are executed. Thus, by considering the second electric power converted into an electric charge, the total charging cost is increased as a result because it does not take into account that electric power is consumed to make the electric storage means in a state where electric power can be stored in advance. This can be avoided and the total charge cost can be reduced.

第2発明の充電制御装置は、第1発明において、
前記充電準備手段は、前記蓄電手段の温度を調節する温度調節手段であって、
前記蓄電手段の温度を計測する温度センサの検出温度が前記蓄電手段の充電に適した温度範囲外である場合に、前記温度調節手段により該蓄電手段を充電に適した温度にするために要する温度変化時間を前記充電準備時間として算出し、
現時刻に前記温度変化時間を加算した時刻を前記充電開始可能時刻として、該充電開始可能時刻から前記車両の出発時間までの間で前記充電時間を確保した場合の充電に要する第1電力と、前記温度変化時間における前記蓄電手段の温度調節に要する第2電力とを算出することを特徴とする。
The charge control device of the second invention is the first invention,
The charging preparation means is a temperature adjusting means for adjusting the temperature of the power storage means,
The temperature required to bring the power storage means to a temperature suitable for charging by the temperature adjusting means when the temperature detected by the temperature sensor for measuring the temperature of the power storage means is outside the temperature range suitable for charging the power storage means. Calculate the change time as the charge preparation time,
A time obtained by adding the temperature change time to the current time as the charge startable time, the first power required for charging when the charge time is secured between the charge startable time and the departure time of the vehicle; The second electric power required for adjusting the temperature of the power storage means during the temperature change time is calculated.

第2発明の充電制御装置によれば、温度調節手段の運転態様および蓄電手段の充電開始時刻の複数の組み合わせのうち、充電開始可能時刻から次回の出発時刻までの間で蓄電手段の充電に要する第1電力と、蓄電手段の温度調節に要する第2電力とが、時間帯により高低差のある電気料金体系に基づいて電気料金に換算され、かかる電気料金の合計が最小となる一の当該組み合わせにしたがって、温度調節手段の制御と、外部電源から蓄電手段への充電とが実行される。このように、第2電力を電気料金に換算して考慮することで、蓄電手段を予め充電に適した温度に調節するのに電力が消費されることを考慮しないために結果としてトータル充電コストが高くなることを回避することができ、トータル充電コストの低減を図ることができる。   According to the charging control device of the second invention, among the plurality of combinations of the operation mode of the temperature adjusting means and the charging start time of the power storage means, it is necessary to charge the power storage means between the charge startable time and the next departure time. The first electric power and the second electric power required for adjusting the temperature of the power storage means are converted into electric charges based on an electric charge system having a difference in height depending on the time of day, and the combination in which the total of the electric charges is minimized Accordingly, the control of the temperature adjusting means and the charging from the external power source to the power storage means are executed. Thus, by considering the second electric power converted into an electric charge, it is not considered that electric power is consumed to adjust the power storage means to a temperature suitable for charging in advance. It is possible to avoid the increase, and the total charge cost can be reduced.

第3発明の充電制御装置は、第2発明において、
前記温度調節手段の運転態様が、該温度調節手段を作動しない自然冷却の場合には、自然冷却に要する時間を前記温度変化時間として算出することを特徴とする。
The charge control device of the third invention is the second invention,
When the operation mode of the temperature adjusting means is natural cooling that does not operate the temperature adjusting means, the time required for natural cooling is calculated as the temperature change time.

第3発明の充電制御装置によれば、蓄電手段の温度調節方法の一態様として、第2電力が不要な自然冷却が採用され得る。また、自然冷却時間を温度変化時間とすることで、充電開始可能時刻を算出することができる。さらに、この場合の第2電力を0として、充電開始可能時刻以降の時間帯から蓄電手段の充電に要する第1電力を前記料金体系に基づいて電気料金に換算することができる。これにより、温度調節手段に依らない自然冷却方法を含めて、トータルの電気料金が最小となるものを選定することができ、蓄電手段を予め充電に適した温度に調節するのに要する消費電力や時間を考慮してトータル充電コストの低減を図ることができる。   According to the charge control device of the third aspect of the invention, natural cooling that does not require the second electric power can be employed as one aspect of the temperature control method for the power storage means. Moreover, the charging startable time can be calculated by setting the natural cooling time as the temperature change time. Furthermore, the second electric power in this case is set to 0, and the first electric power required for charging the power storage means can be converted into an electric charge based on the charge system from a time zone after the charging start possible time. As a result, it is possible to select the one that minimizes the total electricity bill, including a natural cooling method that does not depend on the temperature control means, and the power consumption required to adjust the power storage means to a temperature suitable for charging in advance. The total charge cost can be reduced in consideration of time.

第4発明の充電制御装置は、第3発明において、
前記自然冷却を行った後に前記蓄電手段の充電を実行する場合の前記第1電力を前記電気料金体系に基づいて換算した電気料金と、前記温度調節手段により前記蓄電手段を充電に適した温度に調節した後に該蓄電手段の充電を実行する場合の前記第1電力および前記第2電力を前記電気料金体系に基づいて換算した電気料金とを比較し、電気料金が最小となる場合にしたがって、前記温度調節手段を制御すると共に、前記外部電源から前記蓄電手段への充電を実行することを特徴とする。
A charge control device of a fourth invention is the third invention,
An electric charge obtained by converting the first electric power when the electric storage means is charged after the natural cooling is performed based on the electric charge system and a temperature suitable for charging the electric storage means by the temperature adjusting means. The first power and the second power when the power storage means is charged after the adjustment is compared with the electric charge converted based on the electric charge system, and according to the case where the electric charge is minimized, The temperature adjusting means is controlled, and charging from the external power source to the power storage means is executed.

第4発明の充電制御装置によれば、自然冷却を行った場合には、第2電力に相当する電気料金が不要となる反面、充電開始可能時刻が遅くなり、電気料金が低額の時間帯で充電時間のすべてを確保することが困難な場合も生じ得る。そのため、自然冷却を行った場合の電気料金と、温度調節手段により蓄電手段を充電に適した温度にして充電開始可能時刻を早めた場合の電気料金とを比較することで、トータルの電気料金が最小となるものを選定して、トータル充電コストの低減を図ることができる。   According to the charging control device of the fourth aspect of the invention, when natural cooling is performed, the electricity charge corresponding to the second electric power is not necessary, but the chargeable start time is delayed and the electricity charge is low in a time zone where the electricity charge is low. It may be difficult to ensure all of the charging time. Therefore, the total electricity charge can be obtained by comparing the electricity charge when natural cooling is performed with the electricity charge when the temperature adjustment means is set to a temperature suitable for charging and the charge start time is advanced. The minimum charge can be selected to reduce the total charge cost.

第5発明の充電制御装置は、第2〜第4発明のいずれかにおいて、
前記温度調節手段は、前記外部電源接続手段を介して接続された前記外部電源から直接供給される電力により作動されることを特徴とする。
The charge control device of the fifth invention is any one of the second to fourth inventions,
The temperature adjusting means is actuated by electric power directly supplied from the external power supply connected via the external power supply connecting means.

第5発明の充電制御装置によれば、外部電源から供給される電力により、直接、温度調節手段を作動させることで、蓄電手段から電力を供給した場合にその充放電から生じる電力損失を回避して、温度調節手段により蓄電手段を温度調節する場合のトータル充電コストの低減を図ることができる。   According to the charge control device of the fifth aspect of the invention, the power loss caused by the charge / discharge when the power is supplied from the power storage means by directly operating the temperature adjusting means by the power supplied from the external power source is avoided. Thus, the total charging cost can be reduced when the temperature of the power storage unit is adjusted by the temperature adjusting unit.

第6発明の充電制御装置は、第2〜第5発明のいずれかにおいて、
前記温度調節手段は、前記蓄電手段から供給される電力により作動され、
前記温度調節手段への電力供給による前記蓄電手段の残容量の低下分である前記第2電力を該蓄電手段の充電と併せて前記外部電源から前記蓄電手段に供給し、該第2電力を前記料金体系に基づいて電気料金に換算することを特徴とする。
A charge control device according to a sixth aspect of the present invention, according to any one of the second to fifth aspects,
The temperature adjusting means is operated by electric power supplied from the power storage means,
Supplying the second power, which is a decrease in the remaining capacity of the power storage means due to power supply to the temperature adjusting means, from the external power source to the power storage means together with charging of the power storage means, and supplying the second power to the power storage means It is characterized by converting to electricity charges based on the charge system.

第6発明の充電制御装置によれば、蓄電手段から温度調節手段に供給された電力で蓄電手段の温度調節を行い、温度調節を行うことにより低下した蓄電手段の残容量を事後的に外部電源から蓄電手段へ供給する。これにより、温度調節手段による温度調節を行うタイミングと、温度調節に要する電気料金の換算タイミングとのバリエーションを広げることができ、かかるバリエーションの中から電気料金が最小となるものを選定して、トータル充電コストの低減を図ることができる。   According to the charging control device of the sixth aspect of the invention, the temperature of the power storage means is adjusted with the electric power supplied from the power storage means to the temperature adjustment means, and the remaining capacity of the power storage means that has decreased due to the temperature adjustment is subsequently converted to an external power source. To the power storage means. As a result, it is possible to broaden the variation of the timing of temperature adjustment by the temperature adjustment means and the conversion timing of the electricity charge required for temperature adjustment. It is possible to reduce the charging cost.

第7発明の充電制御装置は、第6発明において、
前記温度調節手段により予め前記蓄電手段の温度を調節する必要がある場合に、
前記蓄電手段から前記温度調節手段に電力を供給して該蓄電手段を充電に適した温度に調節した後に、該温度調節手段への電力供給による該蓄電手段の残容量の低下分である前記第2電力を該蓄電手段の充電と併せて前記外部電源から該蓄電手段に供給する場合の前記第1電力および前記第2電力を前記電気料金体系に基づいて換算した電気料金と、前記外部電源から前記温度調節手段に電力を供給して前記蓄電手段を充電に適した温度に調節した後に、該蓄電手段の充電を実行する場合の前記第1電力および前記第2電力を前記電気料金体系に基づいて換算した電気料金とを比較し、電気料金が最小となる場合にしたがって、前記温度調節手段への電力供給と前記外部電源から前記蓄電手段への充電とを実行することを特徴とする。
The charge control device of the seventh invention is the sixth invention,
When it is necessary to adjust the temperature of the power storage means in advance by the temperature adjusting means,
After the electric power is supplied from the electric storage means to the temperature adjusting means and the electric storage means is adjusted to a temperature suitable for charging, the remaining capacity of the electric storage means is reduced by the electric power supplied to the temperature adjusting means. When the two electric power is supplied to the electric storage means from the external power source together with the charging of the electric storage means, the first electric power and the second electric power converted based on the electric charge system, and the external electric power source Based on the electricity bill system, the first power and the second power when charging the power storage means after supplying power to the temperature adjusting means and adjusting the power storage means to a temperature suitable for charging. Then, according to the case where the electricity rate is minimized, the power supply to the temperature adjusting unit and the charging to the power storage unit from the external power source are executed according to the case where the electricity rate is minimized.

第7発明の充電制御装置によれば、蓄電手段から温度調節手段に供給した電力で予め蓄電手段の温度調節を行う場合には、蓄電手段の充放電損失が生じ得る反面、温度変化時間に比して温度調節に要する第2電力を外部電源から蓄電手段に供給するのに要する時間が非常に短いことから、外部電源からの電力の供給を受ける時間を短縮することができ、電気料金が低額な時間帯に蓄電手段への電力の供給(充電を含む)を集中的に行うことができる。そこで、蓄電手段から供給した電力で蓄電手段の温度調節を行う場合の電気料金と、外部電源から直接供給された電力で蓄電手段の温度調節を行う場合の電気料金とを比較することで、真にトータルの電気料金が最小となるものを選定して、トータル充電コストの低減を図ることができる。   According to the charge control device of the seventh aspect of the invention, when the temperature of the power storage means is adjusted in advance with the electric power supplied from the power storage means to the temperature adjustment means, charging / discharging loss of the power storage means may occur, but compared with the temperature change time. Since the time required to supply the second power required for temperature control from the external power source to the power storage means is very short, the time for receiving the power supply from the external power source can be shortened, and the electricity charge is low. It is possible to intensively supply power (including charging) to the power storage means in an appropriate time zone. Therefore, comparing the electricity charge when adjusting the temperature of the electricity storage means with the power supplied from the electricity storage means and the electricity charge when adjusting the temperature of the electricity storage means with the power supplied directly from the external power source It is possible to reduce the total charging cost by selecting the one with the minimum total electricity bill.

第8発明の車両は、第1〜第7発明のいずれかの充電制御装置と、前記蓄電手段とを備えることを特徴とする。   A vehicle according to an eighth aspect includes the charge control device according to any one of the first to seventh aspects, and the power storage means.

第8発明の車両によれば、充電制御装置が車両に搭載されることで、当該車両の使用または不使用時の環境変化等により蓄電手段を充電に適した状態とする必要がある場合にも、充電準備手段の運転態様および蓄電手段の充電開始時刻の複数の組み合わせのうち、電気料金の合計が最小となる一の当該組み合わせにしたがって、充電準備手段の制御と、外部電源から蓄電手段への充電とが実行される。これにより、蓄電手段を予め蓄電可能な状態とするのに電力が消費されることを考慮しないために結果としてトータル充電コストが高くなることを回避することができ、トータル充電コストの低減を図ることができる。   According to the vehicle of the eighth aspect of the invention, when the charging control device is mounted on the vehicle, the power storage means needs to be in a state suitable for charging due to an environmental change or the like when the vehicle is used or not used. Of the plurality of combinations of the operation mode of the charge preparation means and the charging start time of the power storage means, the control of the charge preparation means and the external power supply Charging is performed. As a result, it is possible to avoid an increase in the total charge cost as a result of not considering that power is consumed in order to make the power storage unit ready to store power, and to reduce the total charge cost. Can do.

第1実施形態の電源システムが搭載された車両の全体構成図。1 is an overall configuration diagram of a vehicle on which a power supply system according to a first embodiment is mounted. 図1の充電制御ECUによる処理内容を示すフローチャート。The flowchart which shows the processing content by charge control ECU of FIG. 冷却時間や加熱時間を推定する方法を示す説明図。Explanatory drawing which shows the method of estimating cooling time and heating time. 充電時間を推定する方法を示す説明図。Explanatory drawing which shows the method of estimating charging time. 充電コストから自然冷却が選定される場合の説明図。Explanatory drawing when natural cooling is selected from charging cost. 充電コストから冷却手段による冷却が選定される場合の説明図。Explanatory drawing when the cooling by a cooling means is selected from charging cost. 自然冷却が選定される時間領域と、冷却手段による冷却が選定される時間領域との一例を示す図。The figure which shows an example of the time area | region where natural cooling is selected, and the time area | region where the cooling by a cooling means is selected. 第2実施形態の電源システムが搭載された車両の全体構成図。The whole block diagram of the vehicle carrying the power supply system of 2nd Embodiment. 第2実施形態の充電システムにおける充電コストの最小化の様子を示す説明図。Explanatory drawing which shows the mode of the minimization of the charging cost in the charging system of 2nd Embodiment. 第1実施形態の電源システムの変更例を示す車両の全体構成図。The whole block diagram of the vehicle which shows the example of a change of the power supply system of 1st Embodiment.

[第1実施形態]
図1に示すように、本実施の形態の電源システムは、例えば、ハイブリッド車両(本発明の車両に相当する)に搭載されるものである。
[First embodiment]
As shown in FIG. 1, the power supply system of this Embodiment is mounted in a hybrid vehicle (equivalent to the vehicle of this invention), for example.

ハイブリッド車両は、四輪駆動車であり、内燃機関であるエンジン1と、バッテリ2(本発明の蓄電手段に相当する)から供給される電力によって回転する第1モータ3および第2モータ4(いずれも本発明の電動機に相当する)と、これらのエンジン1、第1モータ3、第2モータ4等を集中的に管理および制御するメインECU5(Electric Control Unit)とを有する。メインECU5は、RAM(Random Access Memory)、ROM(Read Only Memory)、CPU(Central Processing Unit)、入出力インターフェース、タイマ等からなるマイクロコンピュータ(図示せず)であり、ROMに記録されたプログラムおよびデータに従って処理を行う。   The hybrid vehicle is a four-wheel drive vehicle, and is a first motor 3 and a second motor 4 that are rotated by electric power supplied from an engine 1 that is an internal combustion engine and a battery 2 (corresponding to power storage means of the present invention). Also corresponds to the electric motor of the present invention) and a main ECU 5 (Electric Control Unit) that centrally manages and controls the engine 1, the first motor 3, the second motor 4, and the like. The main ECU 5 is a microcomputer (not shown) including a RAM (Random Access Memory), a ROM (Read Only Memory), a CPU (Central Processing Unit), an input / output interface, a timer, and the like. Process according to the data.

また、ハイブリッド車両は、第1モータ3および第2モータ4の電力制御を行うPDU(Power Drive Unit)6と、エンジン1および第1モータ3によって駆動される前輪7と、第2モータ4によって駆動される後輪8とを有する。   Further, the hybrid vehicle is driven by a PDU (Power Drive Unit) 6 that controls electric power of the first motor 3 and the second motor 4, front wheels 7 that are driven by the engine 1 and the first motor 3, and the second motor 4. And a rear wheel 8 to be operated.

エンジン1と第1モータ3は、共通の駆動軸に接続されており、ギア機構およびディファレンシャルギア等(いずれも図示省略)を介して前輪7を駆動する。第2モータ4は、同様にギア機構およびディファレンシャルギア等(いずれも図示省略)を介して後輪8を駆動する。   The engine 1 and the first motor 3 are connected to a common drive shaft, and drive the front wheels 7 via a gear mechanism, a differential gear, and the like (both not shown). Similarly, the second motor 4 drives the rear wheel 8 via a gear mechanism, a differential gear, and the like (both not shown).

第1モータ3および第2モータ4は、PDU6の制御下に発電機としても機能する。すなわち、第1モータ3は、エンジン1または前輪7から駆動力を受けて発電を行い、バッテリ2に充電することができ、第2モータ4は、後輪8から駆動力を受けて発電を行いバッテリ2に充電することができる。   The first motor 3 and the second motor 4 also function as a generator under the control of the PDU 6. That is, the first motor 3 can generate power by receiving driving force from the engine 1 or the front wheel 7 and can charge the battery 2, and the second motor 4 can generate power by receiving driving force from the rear wheel 8. The battery 2 can be charged.

次に、かかるハイブリット車両における搭載される電源システムの構成について説明する。   Next, the structure of the power supply system mounted in this hybrid vehicle is demonstrated.

電源システムは、少なくとも前記バッテリ2のほか、バッテリ2の充電状態を検出するSOC検出手段11と、バッテリ2の温度を検出する温度センサ12と、バッテリ2の冷却を行う冷却手段13(本発明の温度調節手段に相当する)と、バッテリ2の加熱を行う加熱手段14(本発明の温度調節手段に相当する)と、バッテリ2、冷却手段13および加熱手段14を外部電源Xと接続するためのコネクタ15と、時間管理手段16と、温度検出手段12等の検出値に基づいて、外部電源Xからバッテリ2への充電を制御する充電制御ECU17(本発明の充電制御装置に相当する)とを備える。   In addition to the battery 2, the power supply system includes at least the SOC detection means 11 that detects the state of charge of the battery 2, the temperature sensor 12 that detects the temperature of the battery 2, and the cooling means 13 that cools the battery 2 (in the present invention). A temperature adjusting means), a heating means 14 for heating the battery 2 (corresponding to a temperature adjusting means of the present invention), a battery 2, a cooling means 13 and a heating means 14 for connecting to an external power source X. A charge control ECU 17 (corresponding to the charge control device of the present invention) that controls charging of the battery 2 from the external power source X based on the detected value of the connector 15, the time management means 16, the temperature detection means 12, etc. Prepare.

本電源システムに搭載されるバッテリ2としては、例えば、リチウムイオンバッテリであり、出力電圧は約300V〜500Vの範囲で変動する。   The battery 2 mounted in the power supply system is, for example, a lithium ion battery, and the output voltage varies in the range of about 300V to 500V.

SOC検出手段11は、バッテリ2の出力電圧及び出力電流とからバッテリ2の開路電圧を推定し、推定した開路電圧と充電量であるSOC(State of Charge)との関係を規定したマップやデータテーブル(以下、マップ等という)を参照して、バッテリ2のSOCを推定する。   The SOC detection means 11 estimates the open circuit voltage of the battery 2 from the output voltage and output current of the battery 2, and a map or data table that defines the relationship between the estimated open circuit voltage and the SOC (State of Charge) that is the amount of charge. (Hereinafter referred to as a map or the like), the SOC of the battery 2 is estimated.

温度センサ12は、所定の処理周期でバッテリ2の温度を計測し、その計測値を充電制御ECU17へ出力する。   The temperature sensor 12 measures the temperature of the battery 2 at a predetermined processing cycle, and outputs the measured value to the charge control ECU 17.

冷却手段13は、例えば、バッテリ2を冷却するための冷却ファンであって、充電制御ECU17からの制御信号により制御される。同様に、加熱手段14は、例えば、バッテリ2を加熱するように該バッテリ2に設けられた電熱線等であって、充電制御ECU17からの制御信号により制御される。また、冷却手段13および加熱手段14は、コネクタ15を介して外部電源Xから供給される電力により作動するが、冷却手段13および加熱手段14とコネクタ15の間には、商用交流電源を直流定格電圧に変換するためのAC/DCコンバータ18が設けられている。   The cooling unit 13 is, for example, a cooling fan for cooling the battery 2 and is controlled by a control signal from the charge control ECU 17. Similarly, the heating means 14 is, for example, a heating wire provided in the battery 2 so as to heat the battery 2 and is controlled by a control signal from the charge control ECU 17. The cooling means 13 and the heating means 14 are operated by electric power supplied from the external power source X via the connector 15, but a commercial AC power source is connected to the DC rating between the cooling means 13 and the heating means 14 and the connector 15. An AC / DC converter 18 for converting the voltage is provided.

コネクタ15は、外部電源XのソケットYに挿入されるコンセントである。なお、コネクタ15およびソケットYには、必要に応じて、外部電源Xと充電制御ECU17との間で通信を行うPLCモデム等が設けられて、充電時の車両の認証等が行われる。   The connector 15 is an outlet inserted into the socket Y of the external power supply X. Note that the connector 15 and the socket Y are provided with a PLC modem or the like that performs communication between the external power source X and the charging control ECU 17 as necessary, and authentication of the vehicle at the time of charging is performed.

時間管理手段16は、日時を管理するクロックである。なお、時間管理手段16は、充電制御ECU17の内部に構成されてもよい。   The time management means 16 is a clock for managing date and time. The time management unit 16 may be configured inside the charge control ECU 17.

充電制御ECU17は、少なくとも、SOC検出手段11から出力されたバッテリ2のSOC推定値、温度センサ12から出力されたバッテリ2の計測温度および、時間管理手段16から出力される現在時刻に基づいて、外部電源Xからバッテリ2への充電を制御すると共に、充電の前処理(準備)として、冷却手段13および加熱手段14を作動させる必要がある場合に、冷却手段13および加熱手段14の作動を制御する。   The charge control ECU 17 is based on at least the estimated SOC value of the battery 2 output from the SOC detection means 11, the measured temperature of the battery 2 output from the temperature sensor 12, and the current time output from the time management means 16. Controls the charging of the battery 2 from the external power source X, and controls the operation of the cooling means 13 and the heating means 14 when it is necessary to operate the cooling means 13 and the heating means 14 as preprocessing (preparation) of charging. To do.

より具体的に、充電制御ECU17は、第1算出手段17Aと第2算出手段17Bを備える。第1算出手段は、外部電源Xから電力を供給してバッテリ2を充電するために要する第1電力を算出する。一方、第2算出手段17Bは、冷却手段13または加熱手段14を作動させる必要がある場合には、冷却手段13または加熱手段14を作動させるために要する第2電力を算出する。そして、充電制御ECU17は、冷却手段13または加熱手段14の運転態様およびバッテリ2の充電開始時刻の複数の組み合わせのうち、第1電力と前記第2電力とを時間帯により高低差のある電気料金体系に基づいて換算した電気料金の合計が最小となる一の当該組み合わせにしたがって、冷却手段13または加熱手段14の作動を制御すると共に、外部電源Xからバッテリ2への充電を実行する。   More specifically, the charge control ECU 17 includes first calculation means 17A and second calculation means 17B. The first calculation means calculates the first power required to supply power from the external power source X and charge the battery 2. On the other hand, when it is necessary to operate the cooling unit 13 or the heating unit 14, the second calculation unit 17 </ b> B calculates the second power required to operate the cooling unit 13 or the heating unit 14. Then, the charge control ECU 17 sets the first electric power and the second electric power among the plurality of combinations of the operation mode of the cooling means 13 or the heating means 14 and the charging start time of the battery 2 with the difference in height depending on the time zone. The operation of the cooling unit 13 or the heating unit 14 is controlled according to the one combination that minimizes the total electricity bill converted based on the system, and the battery 2 is charged from the external power source X.

なお、補足すると、「冷却手段13または加熱手段14の運転態様」には、これらの作動のタイミング(開始から終了までの時間)のほか、これらを作動させない自然冷却や自然加熱を含むものである。   Supplementally, the “operation mode of the cooling means 13 or the heating means 14” includes not only the timing of these operations (the time from the start to the end) but also natural cooling and natural heating that do not operate them.

次に、図2に示すフローチャートを参照して、充電制御ECU17による処理内容を説明する。   Next, the processing content by the charge control ECU 17 will be described with reference to the flowchart shown in FIG.

まず、充電制御ECU17は、当該車両が停止状態であり、且つ、IG−OFFされているか否かを判定し(図2/STEP1)、車両が停止してIG−OFF状態の場合には(図2/STEP1でYES)、コネクタ15が外部電源XのコンセントYに接続されているか否かを判定する(図2/STEP2)。   First, the charging control ECU 17 determines whether or not the vehicle is in a stopped state and is IG-OFF (FIG. 2 / STEP 1), and when the vehicle is stopped and is in an IG-OFF state (FIG. 2 / YES in STEP 1), it is determined whether or not the connector 15 is connected to the outlet Y of the external power source X (FIG. 2 / STEP 2).

次いで、コネクタ15がコンセントYに接続された外部電源Xからの電力供給が可能な状態となると(図2/STEP2でYES)、充電制御ECU17は、充電コスト算出のための第1〜第3処理を並行して実行する。一方、車両が停止してIG−OFFされていない場合(図2/STEP1でNO)やコネクタ15が接続されていない場合(図2/STEP2でNO)には、STEP1へリターンして車両の停止等を再度判定する。   Next, when the connector 15 is in a state where power can be supplied from the external power source X connected to the outlet Y (YES in STEP 2 in FIG. 2), the charging control ECU 17 performs first to third processing for calculating charging costs. Are executed in parallel. On the other hand, when the vehicle is stopped and not IG-OFF (NO in FIG. 2 / STEP1) or when the connector 15 is not connected (NO in FIG. 2 / STEP2), the process returns to STEP1 to stop the vehicle. Etc. are determined again.

次に、充電コスト算出のための第1処理について説明する。   Next, the first process for calculating the charging cost will be described.

かかる第1処理で、充電制御ECU17は、時間管理手段16から現在の時刻を取得する(図2/STEP11)。   In the first process, the charging control ECU 17 acquires the current time from the time management unit 16 (FIG. 2 / STEP 11).

次いで、充電制御ECU17は、現在時刻から深夜電力時間帯(本実施形態では、23:00〜翌朝7:00)が開始するまでの時間を算出する(図2/STEP12)。   Next, the charging control ECU 17 calculates the time from the current time until the start of the midnight power time zone (in the present embodiment, 23: 00 to the next morning 7:00) (FIG. 2 / STEP 12).

次に、第2処理について説明する。   Next, the second process will be described.

かかる第2処理で、充電制御ECU17は、まず、温度センサ12からバッテリ2の計測温度Tを取得する(図2/STEP21)。   In the second process, the charging control ECU 17 first acquires the measured temperature T of the battery 2 from the temperature sensor 12 (FIG. 2 / STEP 21).

次いで、充電制御ECU17は、取得したバッテリ2の計測温度Tが、バッテリ2の充電に適した温度範囲(Ta≦T≦Tb)となっているか否かを判定する(図2/STEP22)。   Next, the charging control ECU 17 determines whether or not the acquired measured temperature T of the battery 2 is within a temperature range (Ta ≦ T ≦ Tb) suitable for charging the battery 2 (FIG. 2 / STEP 22).

ここで、バッテリ2の充電に適した温度範囲は、下限閾値温度Taと上限閾値温度Tbにより定まる温度範囲である。下限閾値温度Taは、低温下では充電時に印加可能な最大電流が小さくなることから、これを防止するために設定される温度(例えば10[℃])である。一方、上限閾値温度Tbは、バッテリ2の耐熱性等を考慮して設定される温度(例えば60[℃])である。   Here, the temperature range suitable for charging the battery 2 is a temperature range determined by the lower threshold temperature Ta and the upper threshold temperature Tb. The lower limit threshold temperature Ta is a temperature (for example, 10 [° C.]) set to prevent this because the maximum current that can be applied during charging is low at low temperatures. On the other hand, the upper threshold temperature Tb is a temperature (for example, 60 [° C.]) set in consideration of the heat resistance of the battery 2 and the like.

なお、上限閾値温度Tbについて、補足をすると、バッテリ2の充電は、通常、発熱反応となるため、定格の上限温度で充電を開始すると、直ぐにバッテリ2が上限温度を上回ってしまうことに鑑みて、定格の上限温度から一定温度低い温度を、ここでの上限閾値温度Tbとしている。   In addition, when supplementing the upper limit threshold temperature Tb, since charging of the battery 2 is usually an exothermic reaction, the battery 2 immediately exceeds the upper limit temperature when charging is started at the rated upper limit temperature. The temperature lower than the rated upper limit temperature by a certain temperature is set as the upper limit threshold temperature Tb here.

そして、充電制御ECU17は、バッテリ2の計測温度Tが充電に適した温度範囲である場合には(図2/STEP22でYES)、この第2処理を終了し、バッテリ2の計測温度Tが充電に適した温度範囲外である場合には(図2/STEP22でNO)、バッテリ2の計測温度が上限閾値温度Tbより大きいか否かを判定する(図2/STEP23)。   When the measured temperature T of the battery 2 is within the temperature range suitable for charging (YES in FIG. 2 / STEP 22), the charging control ECU 17 ends the second process, and the measured temperature T of the battery 2 is charged. If it is outside the temperature range suitable for (NO in FIG. 2 / STEP22), it is determined whether or not the measured temperature of the battery 2 is higher than the upper threshold temperature Tb (FIG. 2 / STEP23).

そして、充電制御ECU17は、バッテリ2の計測温度Tが上限閾値温度Tbより大きい場合には(図2/STEP23でYES)、バッテリ2の温度が上限閾値温度Tbになるまでの冷却時間を推定してこの第2処理を終了する(図2/STEP24)。   When the measured temperature T of the battery 2 is higher than the upper threshold temperature Tb (YES in FIG. 2 / STEP 23), the charging control ECU 17 estimates the cooling time until the temperature of the battery 2 reaches the upper threshold temperature Tb. The second process is finished (FIG. 2 / STEP 24).

一方、充電制御ECU17は、バッテリ2の計測温度Tが上限閾値温度Tbより大きくない場合には(図2/STEP23でNO)、バッテリ2の温度が下限閾値温度Taを下回るものとして、バッテリ2の温度が下限閾値温度Taになるまでの加熱時間を推定してこの第2処理を終了する(図2/STEP25)。   On the other hand, when the measured temperature T of the battery 2 is not higher than the upper limit threshold temperature Tb (NO in FIG. 2 / STEP 23), the charging control ECU 17 assumes that the temperature of the battery 2 is lower than the lower limit threshold temperature Ta. The heating time until the temperature reaches the lower limit threshold temperature Ta is estimated, and the second process is terminated (FIG. 2 / STEP 25).

なお、充電制御ECU17による冷却時間および加熱時間の推定方法(図2/STEP24およびSTEP25)についての詳細は後述する。   The details of the method for estimating the cooling time and the heating time by the charge control ECU 17 (FIG. 2 / STEP 24 and STEP 25) will be described later.

次に、第3処理について説明する。   Next, the third process will be described.

かかる第3処理で、充電制御ECU17は、まず、SOC検出手段11からバッテリ2のSOCを取得する(図2/STEP31)。   In the third process, the charging control ECU 17 first acquires the SOC of the battery 2 from the SOC detection means 11 (FIG. 2 / STEP 31).

次いで、充電制御ECU17は、取得したバッテリ2のSOCから、バッテリ2のSOCがフル充電となるまでに要する時間(充電時間)を推定する(図2/STEP32)。   Next, the charging control ECU 17 estimates the time (charging time) required until the SOC of the battery 2 is fully charged from the obtained SOC of the battery 2 (FIG. 2 / STEP 32).

なお、充電制御ECU17による充電時間の推定方法についての詳細は後述する。   Details of the charging time estimation method by the charging control ECU 17 will be described later.

以上の第1〜第3処理が終了すると、充電制御ECU17は、冷却手段13または加熱手段14の運転態様およびバッテリ2の充電開始時刻の複数の組み合わせについて、それぞれ充電コストを算出する(図2/STEP40)。   When the first to third processes are completed, the charging control ECU 17 calculates the charging cost for each of a plurality of combinations of the operation mode of the cooling unit 13 or the heating unit 14 and the charging start time of the battery 2 (FIG. 2 / (STEP 40).

ここで、冷却手段13または加熱手段14の運転態様は、後述する図5の(I)では、深夜電力時間帯の開始時刻である23:00から冷却手段13を時間t21作動させることが該当し、(II)では、現在時刻である19:00から時間t22の間、冷却手段13を作動させない自然冷却が該当する。また、バッテリの充電開始時刻は、(I)では、深夜電力時間帯の開始時刻である23:00から時間t21経過した時刻であり、(II)では、現在時刻から時間t22経過した時刻である。 Here, the operation mode of the cooling means 13 or the heating means 14, in (I) of FIG. 5 to be described later, corresponding be time t 21 actuating the cooling means 13 23:00 is the start time of the midnight power time zone In (II), natural cooling that does not activate the cooling means 13 corresponds to the time t 22 from the current time 19:00. The charging start time of the battery, the (I), a starting time and time when the time t 21 elapses 23:00 is the midnight power time zone, (II) At the time chosen time t 22 elapses from the current time It is.

同様に、後述する図6において、冷却手段13または加熱手段14の運転態様は、(III)では、現在時刻である1:00から時間t21冷却手段13を作動させることが該当し、(IV)では、現在時刻である1:00から時間t22の間、冷却手段13を作動させない自然冷却が該当する。また、バッテリの充電開始時刻は、(III)では、現在時刻である1:00から時間t21経過した時刻であり、(IV)では、現在時刻である1:00から時間t22経過した時刻である。 Similarly, in FIG. 6 to be described later, the operation mode of the cooling means 13 or the heating means 14 corresponds to operating the time t 21 cooling means 13 from 1:00 which is the current time in (III), and (IV in), between 1:00 is the current time in the time t 22, natural cooling is applicable to not activate the cooling means 13. In (III), the charging start time of the battery is a time when the time t 21 has elapsed from the current time 1:00, and in (IV), the time when the time t 22 has elapsed from the current time 1:00. It is.

次いで、充電制御ECU17は、複数の組み合わせのうちで、算出した充電コストが最小となるものを充電方法として選定して(図2/STEP50)、一連の処理を終了する。   Next, the charging control ECU 17 selects a charging method that minimizes the calculated charging cost from among a plurality of combinations (FIG. 2 / STEP 50), and ends the series of processes.

なお、充電制御ECU17が、冷却手段13または加熱手段14の運転態様およびバッテリ2の充電開始時刻の複数の組み合わせについて充電コストを算出し、そのうちから充電コストが最小となるものを選定する処理(図2/STEP40、50)についての詳細は後述する。   The charging control ECU 17 calculates the charging cost for a plurality of combinations of the operation mode of the cooling means 13 or the heating means 14 and the charging start time of the battery 2, and selects the one that minimizes the charging cost (see FIG. Details of 2 / STEP 40, 50) will be described later.

次に、図3を参照して、説明を後回しにした、充電制御ECU17による冷却時間や加熱時間の推定方法について説明する。   Next, a method for estimating the cooling time and the heating time by the charge control ECU 17 will be described with reference to FIG.

充電制御ECU17には、(1)バッテリ2の計測温度と、冷却手段13による冷却時間に応じたバッテリの冷却温度との関係を規定した冷却曲線やテーブル等と、(2)バッテリ2の計測温度と、冷却手段13を用いない自然冷却による自然冷却時間に応じたバッテリの冷却温度との関係を規定した冷却曲線やテーブル等と、(3)バッテリ2の計測温度と、加熱手段13による加熱時間に応じたバッテリの加熱温度との関係を規定した加熱曲線やテーブル等とが図示しない内部メモリ等に格納されている。   The charge control ECU 17 includes (1) a cooling curve, a table, and the like that define the relationship between the measured temperature of the battery 2 and the cooling temperature of the battery according to the cooling time by the cooling means 13, and (2) the measured temperature of the battery 2. And a cooling curve, a table, etc. that define the relationship between the cooling temperature of the battery according to the natural cooling time by natural cooling without using the cooling means 13, and (3) the measured temperature of the battery 2 and the heating time by the heating means 13 A heating curve, a table and the like that define the relationship with the heating temperature of the battery according to the above are stored in an internal memory (not shown).

そして、充電制御ECU17は、STEP21で取得したバッテリ計測温度Tに鑑みて、バッテリ計測温度Tが上限閾値温度Tbを上回る場合には、(1)バッテリ計測温度Tが冷却手段13による冷却で上限閾値温度Tbとなるまでの冷却時間t21と、(2)バッテリ計測温度Tが自然冷却で上限閾値温度Tbとなるまでの自然冷却時間t22とを、それぞれ前記冷却曲線やテーブル等に基づいて推定する(図2/STEP24)。 Then, in view of the battery measurement temperature T acquired in STEP 21, the charging control ECU 17 (1) the battery measurement temperature T is cooled by the cooling means 13 and is the upper limit threshold when the battery measurement temperature T exceeds the upper limit threshold temperature Tb. and cooling time t 21 until the temperature Tb, (2) a natural cooling time t 22 to the battery measured temperature T is the upper limit threshold temperature Tb in natural cooling, estimated on the basis of each of the cooling curve or table or the like (FIG. 2 / STEP 24).

本実施形態では、充電制御ECU17は、冷却曲線または自然冷却曲線上で、STEP21で取得したバッテリ計測温度T(IG−OFF時)となる点を時刻0として、冷却曲線と上限閾値温度Tbとの交点を冷却時間t21とし、自然冷却曲線と上限閾値温度Tbとの交点を冷却時間t22として推定する。 In the present embodiment, the charging control ECU 17 sets the point at which the battery measurement temperature T (in IG-OFF) acquired in STEP 21 on the cooling curve or the natural cooling curve is time 0 as the time between the cooling curve and the upper threshold temperature Tb. the intersection and cooling time t 21, estimates the intersection of the natural cooling curve and the upper threshold temperature Tb as the cooling time t 22.

一方、バッテリ計測温度Tが下限閾値温度Taを下回る場合には、(3)バッテリ計測温度Tが加熱手段14による加熱で下限閾値温度Taとなるまでの加熱時間t23を前記加熱曲線やテーブル等に基づいて推定する(図2/STEP25)。 On the other hand, the battery if the measured temperature T is below the lower threshold temperature Ta is (3) the battery measured temperature T is heating means 14 lower threshold temperature Ta and heating time until t 23 of the heating curve or table or the like by heating with (STEP 25 in FIG. 2).

本実施形態では、充電制御ECU17は、加熱曲線上で、STEP21で取得したバッテリ計測温度T(IG−OFF時)となる点を時刻0として、加熱曲線と下限閾値温度Taとの交点を加熱時間t23として推定する。 In the present embodiment, the charging control ECU 17 sets the point at which the battery measured temperature T (in IG-OFF) acquired in STEP 21 on the heating curve is time 0, and the intersection of the heating curve and the lower threshold temperature Ta is the heating time. It estimated as t 23.

次に、図4を参照して、説明を後回しにした、充電制御ECU17による充電時間の推定方法について説明する。   Next, with reference to FIG. 4, a charging time estimation method by the charging control ECU 17 will be described later.

充電制御ECU17は、現在のバッテリ2のSOCと、外部電源Xから電力の供給を受けた時間に応じたバッテリ2のSOCとの関係を規定したSOC曲線やテーブル等を備える。本実施形態では、充電制御ECU17は、SOC曲線上で、STEP31で取得したSOC(IG−OFF時)となる点を時刻0として、SOC曲線とフル充電時のSOCとの交点を充電時間tとして推定する。 The charging control ECU 17 includes an SOC curve, a table, and the like that define the relationship between the current SOC of the battery 2 and the SOC of the battery 2 according to the time when power is supplied from the external power source X. In the present embodiment, the charging control ECU 17 sets the point on the SOC curve that becomes the SOC (in IG-OFF) acquired in STEP 31 as time 0, and sets the intersection of the SOC curve and the SOC at the time of full charging as the charging time t 1. Estimate as

次に、図5および図6を参照して、説明を後回しにした、充電制御ECU17が、冷却手段13または加熱手段14の運転態様およびバッテリ2の充電開始時刻の複数の組み合わせについて充電コストを算出し、そのうちから充電コストが最小となるものを選定する処理(図2/STEP40、50)について説明する。   Next, referring to FIG. 5 and FIG. 6, the charging control ECU 17, which has been described later, calculates the charging cost for a plurality of combinations of the operation mode of the cooling unit 13 or the heating unit 14 and the charging start time of the battery 2. And the process (FIG. 2 / STEP40, 50) which selects the thing from which charging cost becomes the minimum among them is demonstrated.

この処理で、充電制御ECU17は、STEP11で取得した現在時刻に、STEP24またはSTEP25で取得した冷却時間・自然冷却時間または加熱時間を加算した時刻を充電開始時間として、充電開始可能時刻から車両の出発時間までの間でSTEP32の充電時間を確保した場合の充電に要する第1電力と、加熱または冷却に要する第2電力とを、時間帯により高低差のある電気料金体系に基づいて換算した電気料金の合計を充電コストとして算出し(図2/STEP40)、かかる充電コストが最小となるものを選定する(図2/STEP50)。   In this process, the charging control ECU 17 starts the vehicle from the charging startable time using the charging start time as the time obtained by adding the cooling time / natural cooling time or heating time acquired in STEP24 or STEP25 to the current time acquired in STEP11. Electricity rate converted from the first power required for charging when the charging time of STEP32 is secured up to the time and the second power required for heating or cooling based on an electricity rate system having a difference in height depending on the time zone Is calculated as the charging cost (FIG. 2 / STEP 40), and the one that minimizes the charging cost is selected (FIG. 2 / STEP 50).

例えば、図5を参照して、バッテリ2を冷却しなければならない場合に(図2/STEP23でYES)、充電コストが最小となるものとして自然冷却が選定される場合について説明する。   For example, with reference to FIG. 5, a description will be given of a case where natural cooling is selected as the one that minimizes the charging cost when the battery 2 must be cooled (YES in FIG. 2 / STEP 23).

図5の場合には、(I)冷却手段13を作動させる場合の充電コストが最小となるのは、深夜電力時間帯となった後に、外部電源Xから供給された深夜電力により冷却手段13を冷却時間t21だけ作動させた後に、外部電源Xからバッテリ2に深夜電力を供給して充電を充電時間t実行する場合である。これに対して、(II)冷却手段13を作動させない自然冷却の場合には、現在時刻から自然冷却時間t22だけバッテリ2を自然冷却した後に、外部電源Xから供給された深夜電力を供給して充電を充電時間t実行する場合である。これら、(I)と(II)とを比較すると、(II)のほうが、冷却手段13を作動させない分(第2電力が不要となり)、充電コストが最小となり、(II)が選定される。 In the case of FIG. 5, (I) the charging cost when operating the cooling means 13 is minimized when the cooling means 13 is turned on by the midnight power supplied from the external power source X after the midnight power time zone. after actuated by cooling time t 21, the case where supplying midnight power from an external power source X to the battery 2 charging time t 1 executes the charge. In contrast, in the case of natural cooling without actuating the (II) cooling means 13, after naturally cooling the natural cooling time t 22 by the battery 2 from the current time, and supplies the midnight electric power supplied from an external power source X In this case, charging is performed for the charging time t 1 . Comparing (I) and (II), charging cost is minimized in (II) because the cooling means 13 is not operated (second power is not required), and (II) is selected.

より正確には、冷却手段13による冷却を行う(I)の場合の充電コストC(I)は、深夜電力時間帯における単位時間当りの電気料金をA[円/kw・h]とすると、
C(I)=A・t21+A・t
となる。
More precisely, the charging cost C (I) in the case of (I) in which cooling is performed by the cooling means 13 is A [yen / kw · h] when the electricity rate per unit time in the midnight power time zone is
C (I) = A · t 21 + A · t 1
It becomes.

一方、冷却手段13を用いない自然冷却の(II)の場合の充電コストC(II)は、
C(II)=A・t
となる。そのため、C(I)とC(II)を比較すると、自然冷却による(II)のほうが、A・t21だけ、充電コストを低く抑えることができるため、充電制御ECU17は、自然冷却による(II)の態様を選定する。
On the other hand, the charging cost C (II) in the case of natural cooling (II) without using the cooling means 13 is
C (II) = A · t 1
It becomes. Therefore, when C (I) and C (II) are compared, the charge control ECU 17 can reduce the charging cost by A · t 21 by the natural cooling (II). ) Is selected.

なお、図5の(I)について補足をすると、現在時刻が19:00である場合には、現在時刻に冷却手段13による冷却時間t1(例えば10分)を加算した充電開始可能時刻(例えば、19:10)以降で、STEP32の充電時間t1を確保すればよいため、バッテリ2の充電に要する第1電力の電気料金は、深夜電力時間帯の充電であればいずれも最小値となる。一方、冷却手段13を作動するのに要する第2電力は、外部電源Xから供給されるため、深夜電力時間帯であれば第2電力の電気料金は最小となり、深夜電力時間帯以外に冷却を行った場合には、第2電力の電気料金はこれよりも大きくなる。そこで、図5の(I)には、冷却手段13を作動させる場合の充電コストが最小となるものとして、深夜電力時間帯に冷却手段13による冷却と、バッテリ2の充電を行った場合を例示した。   When supplementing (I) in FIG. 5, if the current time is 19:00, the charging startable time (for example, the time when the cooling means 13 adds the cooling time t1 (for example, 10 minutes) to the current time (for example, 19:10) and thereafter, since it is sufficient to secure the charging time t1 of STEP 32, the electricity charge of the first power required for charging the battery 2 is the minimum value in the case of charging in the midnight power time zone. On the other hand, since the second electric power required to operate the cooling means 13 is supplied from the external power source X, the electricity charge of the second electric power is minimized during the midnight power hours, and cooling is performed outside the midnight power hours. If done, the electricity bill for the second power is higher than this. Therefore, (I) of FIG. 5 exemplifies a case where cooling by the cooling unit 13 and charging of the battery 2 are performed in the midnight power time period, assuming that the charging cost when the cooling unit 13 is operated is minimized. did.

次に、図6を参照して、バッテリ2を冷却しなければならない場合に(図2/STEP23でYES)、充電コストが最小となるものとして冷却手段13による冷却が選定される場合について説明する。   Next, with reference to FIG. 6, a description will be given of a case where the cooling by the cooling means 13 is selected as the one that minimizes the charging cost when the battery 2 must be cooled (YES in FIG. 2 / STEP 23). .

まず、(III)に示すように、冷却手段13を作動させる場合に、トータル充電コストは、既に深夜電力時間帯となっているため、直ぐに外部電源Xから供給された深夜電力により冷却手段13を冷却時間t21だけ作動させた後に、外部電源Xからバッテリ2に深夜電力を供給して充電を充電時間t1実行する場合に最小となる。これに対して、(IV)に示すように、冷却手段13を作動させない自然冷却の場合に、現在時刻から自然冷却時間t22だけバッテリ2を自然冷却した後に、外部電源Xから供給された深夜電力を供給して充電を充電時間t実行する。これら、(III)と(IV)とを比較すると、(IV)では、自然冷却により深夜電力時間帯の第2電力の電気料金が不要である反面、深夜電力時間帯を超えて(翌朝7:00を超えて)バッテリ2の充電が実行されるため、(III)が、充電コストが最小のものとして選定される。 First, as shown in (III), when the cooling means 13 is operated, the total charging cost is already in the midnight power time zone, so the cooling means 13 is immediately turned on by the midnight power supplied from the external power source X. after actuated by cooling time t 21, the minimum in the case of charging time t1 executes charging by supplying midnight power from an external power source X to the battery 2. In contrast, as shown in (IV), in the case of natural cooling without actuating the cooling means 13, after naturally cooling the natural cooling time t 22 by the battery 2 from the current time, midnight supplied from the external power source X supplies power to the charging time t 1 executes the charge. Comparing these (III) and (IV), in (IV), the electricity charge of the second power in the midnight power time zone is unnecessary due to natural cooling, but it exceeds the midnight power time zone (next morning 7: Since charging of the battery 2 is executed (beyond 00), (III) is selected as the one with the lowest charging cost.

より正確には、冷却手段13による冷却を行う(III)の場合の充電コストC(III)は、深夜電力時間帯における単位時間当りの電気料金をA[円/kw・h]とすると、
C(I)=A・t21+A・t
となる。
More precisely, the charging cost C (III) in the case of (III) in which cooling is performed by the cooling means 13 is A [yen / kw · h] when the electricity rate per unit time in the midnight power time zone is
C (I) = A · t 21 + A · t 1
It becomes.

一方、冷却手段13を用いない自然冷却の(IV)の場合の充電コストC(IV)は、深夜電力以外の昼時間帯における単位時間当りの電気料金をB[円/kw・h]とすると、
C(IV)=A・(t−tout)+B・tout
となる。そのため、C(I)とC(II)を比較すると、A・t21と、(B−A)・toutとの大小間関係により、充電コストの高低が相違する。
On the other hand, the charge cost C (IV) in the case of natural cooling (IV) without using the cooling means 13 is that the electricity rate per unit time in the daytime period other than midnight power is B [yen / kw · h]. ,
C (IV) = A · (t 1 −t out ) + B · t out
It becomes. Therefore, when C (I) and C (II) are compared, the charging cost differs depending on the size relationship between A · t 21 and (B−A) · t out .

ここで、昼時間帯の電気料金が、深夜電力の電気料金の約3倍であることを考慮してB=3Aとすると、C(I)とC(II)の関係は、t21と、2toutとの大小関係により定まるが、温度変化時間t21は、短時間(例えば10分程度)であるため、t21<<2・toutから、強制冷却による(III)のほうが、充電コストを低く抑えることができるため、充電制御ECU17は、強制冷却による(III)の態様を選定する。 Here, considering that the electricity bill for daytime is about three times the electricity bill for midnight power, and B = 3A, the relationship between C (I) and C (II) is t 21 , Although determined by the magnitude relationship between 2t out, t21 temperature change time are the short (e.g., about 10 minutes), from t 21 << 2 · t out, better by forced cooling (III), the charging cost Since it can be kept low, the charging control ECU 17 selects the mode (III) by forced cooling.

図7は、以上を踏まえて、現在時刻(IG−OFF)との関係で、冷却手段13による強制冷却が充電コストに鑑みて有利な時間領域と、自然冷却が充電コストに鑑みて有利な時間領域を示したものである。なお、かかる時間領域は、バッテリ2の計測温度や冷却時間、さらに、バッテリ2のSOCや充電時間t1により相違するものであるが、大まかには、図7に示すような関係となる。   In view of the above, FIG. 7 shows a time region in which forced cooling by the cooling means 13 is advantageous in view of the charging cost and a time in which natural cooling is advantageous in view of the charging cost in relation to the current time (IG-OFF). It shows the area. This time region differs depending on the measured temperature and cooling time of the battery 2, and also the SOC and charging time t1 of the battery 2, but roughly has a relationship as shown in FIG.

図7では、深夜電力時間帯の開始前で、深夜電力の開始までにある程度の時間がある場合には、自然冷却を選定する場合が有利である。一方、深夜電力時間帯となった後は、深夜電力時間帯で充電時間t1を最大限確保する観点から、冷却手段13による冷却方法を採用する場合が有利となる。   In FIG. 7, when there is a certain amount of time before the start of midnight power before the start of the midnight power time zone, it is advantageous to select natural cooling. On the other hand, after the midnight power time zone is reached, it is advantageous to employ the cooling method by the cooling means 13 from the viewpoint of ensuring the maximum charging time t1 in the midnight power time zone.

以上が、充電制御ECU17による処理内容であり、本実施形態の充電制御ECU17によれば、充電開始可能時刻から次回の出発時刻までの間でバッテリ2の充電に要する第1電力と、蓄電手段の温度調節に要する第2電力とが、時間帯により高低差のある電気料金体系に基づいて電気料金に換算され、かかる電気料金の合計が最小となるように、冷却手段13や加熱手段14が制御されると共に、外部電源Xからバッテリ2への充電が実行される。このように、第2電力を電気料金に換算して考慮することで、バッテリ2を充電に先立って予め充電に適した温度に調節するのに電力が消費されることを考慮しないために結果としてトータル充電コストが高くなることを回避することができ、トータル充電コストの低減を図ることができる。   The above is the contents of processing by the charge control ECU 17. According to the charge control ECU 17 of the present embodiment, the first power required for charging the battery 2 from the charge startable time to the next departure time, and the storage means The cooling means 13 and the heating means 14 are controlled so that the second electric power required for temperature adjustment is converted into an electric charge based on an electric charge system having a height difference depending on the time zone, and the total of the electric charge is minimized. At the same time, the battery 2 is charged from the external power source X. Thus, by considering the second electric power converted into an electric charge, the result is that the electric power is consumed to adjust the battery 2 to a temperature suitable for charging in advance of charging. An increase in the total charge cost can be avoided, and the total charge cost can be reduced.

[第2実施形態]
次に、図8を参照して、本実施形態の電源システムの変更例について説明する。尚、本実施形態は、冷却手段13および加熱手段14へバッテリ2から電力を供給する構成のみが前記実施形態と相違するものであるので、前記実施形態と同一の構成要素については前記実施形態と同一の参照符号を用いて説明を省略する。
[Second Embodiment]
Next, a modified example of the power supply system of this embodiment will be described with reference to FIG. Note that this embodiment is different from the above embodiment only in the configuration for supplying power from the battery 2 to the cooling means 13 and the heating means 14, and therefore the same components as in the above embodiment are the same as those in the above embodiment. The description is abbreviate | omitted using the same referential mark.

本実施形態の電源システムでは、バッテリ2と、冷却手段13および加熱手段14とがDC/DCコンバータ19を介して接続されている。   In the power supply system of this embodiment, the battery 2, the cooling means 13 and the heating means 14 are connected via a DC / DC converter 19.

本実施形態の電源システムによれば、充電制御ECU17は、バッテリ2から電力を供給することにより、冷却手段13または加熱手段14を作動させて、バッテリ2を加熱または冷却し、これによるバッテリ2のSOCの低下を、バッテリ2の充電を併せて補充する方法を(図2のSTEP40,50で)選定することができる。   According to the power supply system of the present embodiment, the charging control ECU 17 supplies power from the battery 2 to operate the cooling means 13 or the heating means 14 to heat or cool the battery 2, thereby A method of replenishing the decrease in the SOC together with the charging of the battery 2 (at STEPs 40 and 50 in FIG. 2) can be selected.

例えば、図9に示すように、電気料金が低額となる時間帯が短い場合には、予めバッテリ2から冷却手段13または加熱手段14に電力を供給してバッテリを冷却または加熱しておき、電気料金が低額となる時間帯に、バッテリ2の充電と加熱または冷却に要したSOCの消費電力を補充とを実行することが有効な場合がある。   For example, as shown in FIG. 9, when the time period when the electricity rate is low is short, power is supplied from the battery 2 to the cooling unit 13 or the heating unit 14 in advance to cool or heat the battery. It may be effective to recharge the battery 2 and replenish the power consumption of the SOC required for heating or cooling during a time period when the charge is low.

具体的には、電気料金が低額となる深夜電気料金の時間帯が3:00〜6:00である場合に、充電制御ECU17は、(I)´〜(IV)´の中から、最も電気料金が最小となるものを選定することができる。   Specifically, when the time zone of the late-night electricity rate at which the electricity rate is low is from 3:00 to 6:00, the charging control ECU 17 selects the most electricity from (I) ′ to (IV) ′. You can select the one with the lowest charge.

(I)´の場合は、IG−OFFした現在時刻(2:40)から直ぐに、外部電源Xから供給される電力によりバッテリ2の冷却(加熱)を時間t21行い、深夜電力時間帯の3:00からバッテリ2の充電を時間t1行う。 For (I) ', immediately from the IG-OFF current time (2:40), the cooling of the battery 2 with electric power supplied from an external power source X (heating) time t 21 performs, 3 of midnight power time zone From 0:00, the battery 2 is charged for time t1.

(II)´の場合は、IG−OFFした現在時刻(2:40)から直ぐに、バッテリ2から供給される電力によりバッテリ2の冷却(加熱)を時間t21行い、深夜電力時間帯の3:00からバッテリ2の充電を時間t行うと共に、バッテリ2の充電の終了後に冷却(加熱)に要した電力を外部電源Xからバッテリ2に時間t´供給する。 For (II) ', IG-OFF current time (2:40) immediately from the electric power supplied from the battery 2 of the battery 2 cooling (heating) time t 21 performs, the midnight power time zone 3: The battery 2 is charged from 00 at time t 1 , and the power required for cooling (heating) is supplied from the external power supply X to the battery 2 after time t 2 ′.

(III)´の場合は、深夜電力時間帯(3:00〜)に、外部電源Xから供給される電力によりバッテリ2の冷却(加熱)を時間t21行い、続けて、バッテリ2の充電を時間t行う。ただし、この場合、バッテリ2の充電時間tは、深夜電力時間帯で確保することができず、時間tout´だけ昼時間にまたがってしまう。 For (III) ', midnight power time zone: in (3 00), cooling (heating) time t 21 performs the battery 2 with electric power supplied from an external power supply X, followed by the charging of the battery 2 perform time t 1. However, in this case, the charging time t 1 of the battery 2, it can not be ensured in the midnight power time zone, resulting in over the time t out 'only noon time.

(IV)´の場合は、深夜電力時間帯(3:00〜)に、バッテリ2から供給される電力によりバッテリ2の冷却(加熱)を時間t21行い、バッテリ2の充電を時間t行うと共に、バッテリ2の充電の終了後に冷却(加熱)に要した電力を外部電源Xからバッテリ2に時間t´供給する。ただし、この場合、バッテリ2の充電時間tは、深夜電力時間帯で確保することができず、時間tout´だけ昼時間にまたがってしまうと共に、時間t´も昼時間となってしまう。 (IV) in the case of 'midnight power time zone (3: 00), the cooling of the battery 2 with electric power supplied from the battery 2 (heating) time t 21 performs, performs time t 1 the charging of the battery 2 At the same time, the power required for cooling (heating) after the charging of the battery 2 is completed is supplied from the external power source X to the battery 2 for a time t 2 ′. However, in this case, the charging time t 1 of the battery 2, can not be ensured in the midnight power time zone, 'with the result across the only noon time, time t 2' time t out would also become a noon time .

(I)´〜(IV)´の場合、まず、(II)´と比較して電気料金が最小とならない(IV)´が除外されると共に、バッテリ2の充電時間tを、深夜電力時間帯で確保することができない(III)´も除外される。 In the case of (I) ′ to (IV) ′, first, (IV) ′, which does not minimize the electricity charge compared to (II) ′, is excluded, and the charging time t 1 of the battery 2 is changed to the midnight power time. Also excluded is (III) ′ which cannot be secured with a belt.

そして、(I)´と(II)´のうちで、バッテリ2の充電に要する第1電力および、バッテリ2の冷却(加熱)に要する第2電力を電気料金に換算したトータル充電コストが最小となるものを選定する。このため、バッテリ2の充放電損失が加味しても、第1電力および第2電力をすべて深夜電力時間帯で外部電力Xから供給される(II)´の場合が、トータル充電コストが最小となる場合として選定される。   Among (I) ′ and (II) ′, the total charging cost obtained by converting the first electric power required for charging the battery 2 and the second electric power required for cooling (heating) the battery 2 into an electric charge is minimum. To choose. For this reason, even when charging / discharging loss of the battery 2 is taken into account, the total charge cost is minimum in the case of (II) ′ in which the first power and the second power are all supplied from the external power X in the midnight power time zone. Selected as the case.

より正確には、冷却手段13による冷却を行う(I)´〜(IV)´の場合の充電コストを、深夜電力時間帯における単位時間当りの電気料金をA[円/kw・h]、深夜電力以外の昼時間帯における単位時間当りの電気料金をB[円/kw・h]として算出すると、
C(I)´=B・t21+A・t
C(II)´=A・t+A・t´
C(III)´=A・t21+A・(t−tout´)+B・tout´
C(IV)´=A・(t−tout´)+B・(tout´+t´)
となる。これを、昼時間帯の電気料金が、深夜電力の電気料金の約3倍であることを考慮し、B=3Aとして整理すると、
C(I)´=3A・t21+A・t
=A(3t21+t
C(II)´=A・t+A・t´
=A(t+t´)
C(III)´=A・t21+A・(t−tout´)+3A・tout´
=A(t21+t+2tout´)
C(IV)´=A・(t−tout´)+3A・(tout´+t´)
=A・(t+2tout´+3t´)
となる。そのため、C(II)´とC(IV)´を比較すると、まず、C(IV)´は最小とならないことから除外される。
More precisely, the charging cost in the case of (I) ′ to (IV) ′ in which cooling by the cooling means 13 is performed, the electricity rate per unit time in the midnight power time zone is A [yen / kw · h], midnight When the electricity rate per unit time in daytime other than electricity is calculated as B [yen / kw · h],
C (I) ′ = B · t 21 + A · t 1
C (II) ′ = A · t 1 + A · t 2
C (III) ′ = A · t 21 + A · (t 1 −t out ′) + B · t out
C (IV) ′ = A · (t 1 −t out ′) + B · (t out ′ + t 2 ′)
It becomes. Taking this into consideration that the electricity bill for daytime is about three times the electricity bill for late-night power, B = 3A,
C (I) ′ = 3 A · t 21 + A · t 1
= A (3t 21 + t 1 )
C (II) ′ = A · t 1 + A · t 2
= A (t 1 + t 2 ′)
C (III) ′ = A · t 21 + A · (t 1 −t out ′) + 3A · t out
= A (t 21 + t 1 + 2t out ′)
C (IV) ′ = A · (t 1 −t out ′) + 3A · (t out ′ + t 2 ′)
= A · (t 1 + 2t out '+ 3t 2 ')
It becomes. Therefore, when C (II) ′ and C (IV) ′ are compared, first, C (IV) ′ is excluded because it is not minimized.

また、第2電力自体は、すべて共通であることを考慮すると、A・t21≒A・t´から、C(II)´とC(IV)´を比較すると、C(III)´はC(II)より2Atout´だけ大きく、最小とならないことから除外される。 Considering that the second power itself is all common, comparing C (II) ′ and C (IV) ′ from A · t 21 ≈A · t 2 ′, C (III) ′ is Excluded because it is larger than C (II) by 2 At out ′ and not minimized.

最後に、C(I)´とC(II)´を比較すると、3t21と、t´との大小間関係により、充電コストの高低が相違するが、冷却手段13による冷却時間に比して、これに要した電力をバッテリ2に供給する時間は非常に短く、3t21>>t´から、バッテリ2から電力を供給して冷却手段を作動させる(II)´のほうが、充電コストを低く抑えることができるため、充電制御ECUは、(II)´の態様を選定する。 Finally, when C (I) ′ and C (II) ′ are compared, the charging cost differs depending on the size relationship between 3t 21 and t 2 ′, but compared with the cooling time by the cooling means 13. Thus, the time required for supplying the electric power required for this to the battery 2 is very short, and from 3t 21 >> t 2 ', the electric power is supplied from the battery 2 and the cooling means is operated (II)'. Therefore, the charge control ECU selects the mode (II) ′.

このように、冷却時間(加熱時間)に比して、これに要する第2電力を外部電源からバッテリ2に供給するのに要する時間は非常に短いことから、バッテリ2から供給する電力でバッテリ2を冷却(加熱)し、かかる冷却(加熱)で消費したバッテリ2の第2電力をその充電として補うことで、外部電源Xからの電力の供給を受ける時間を短縮することができ、電気料金が低額な時間帯にバッテリ2への電力の供給(充電を含む)を集中的に行うことができ、トータル充電コストの低減を図ることができる。   Thus, since the time required to supply the second power required for this from the external power source to the battery 2 is very short compared to the cooling time (heating time), the battery 2 is supplied with the power supplied from the battery 2. By substituting the second power of the battery 2 consumed by the cooling (heating) as the charge, the time for receiving the power supply from the external power source X can be shortened, It is possible to concentrate power supply (including charging) to the battery 2 in a low time zone, and to reduce the total charging cost.

なお、前記第1および第2実施形態において、冷却手段13による冷却は、冷却ファンを所定回転数とする1パターンについて説明したが、これに限定されるものではなく、冷却ファンの回転数が異なる複数の冷却パターンの中から、前記第1および第2電力を電気料金に換算した値が最小となる場合が選定されるようにしてもよい。同様に、加熱手段14による加熱は、電熱線に一定電流を流す1パターンについて説明したが、これに限定されるものではなく、電熱線に流れる電流値が異なる複数の加熱パターンの中から、前記第1および第2電力を電気料金に換算した値が最小となる場合が選定されるようにしてもよい。   In the first and second embodiments, the cooling by the cooling means 13 has been described for one pattern in which the cooling fan has a predetermined number of revolutions. However, the present invention is not limited to this, and the number of revolutions of the cooling fan is different. You may make it select the case where the value which converted the said 1st and 2nd electric power into the electricity bill becomes the minimum from several cooling patterns. Similarly, the heating by the heating means 14 has been described for one pattern in which a constant current is passed through the heating wire, but the present invention is not limited to this, and a plurality of heating patterns having different current values flowing through the heating wire can be used. A case where the value obtained by converting the first and second electric powers into the electricity charge is minimized may be selected.

また、前記第1および第2実施形態では、図3に示した冷却曲線、自然冷却曲線および加熱曲線は、車両の外気温に拘らず一定であるとしたが、これに限定されるものではなく、外気温を計測する外気温センサを設け、これにより計測した外気温に応じて、これらの曲線の勾配を変更するようにしてもよい。   In the first and second embodiments, the cooling curve, the natural cooling curve, and the heating curve shown in FIG. 3 are constant regardless of the outside air temperature of the vehicle. However, the present invention is not limited to this. Alternatively, an outside air temperature sensor for measuring the outside air temperature may be provided, and the slopes of these curves may be changed according to the outside air temperature measured thereby.

さらに、前記第1および第2実施形態では、冷却手段13による強制冷却の場合と、冷却手段13を用いない自然冷却とを比較したが、加熱の場合についても、自然加熱を考慮してもよい。例えば、車両が室内温度の高いガレージに移動した場合等に自然加熱を考慮することにより、トータル充電コストの低減を図ることができる適切な充電が実行され得る。   Furthermore, in the said 1st and 2nd embodiment, although the case of forced cooling by the cooling means 13 and the natural cooling which does not use the cooling means 13 were compared, natural heating may be considered also about the case of heating. . For example, when the vehicle moves to a garage having a high indoor temperature, appropriate charging that can reduce the total charging cost can be performed by considering natural heating.

また、前記第1および第2実施形態では、電源システムが搭載される車両として、第1モータ3および第2モータ4を備える車両(e4WD)を例に説明したが、当該電源システムが搭載される車両はこれに限定されるものでなく、バッテリ2(蓄電手段)から供給された電力により車両を推進させるものであれば、シリーズ型ハイブリッド車両やパラレル型ハイブリッド車両のほか、蓄電手段を備える燃料電池車両や電気自動車等であってもよい。   In the first and second embodiments, the vehicle (e4WD) including the first motor 3 and the second motor 4 is described as an example of the vehicle on which the power supply system is mounted. However, the power supply system is mounted. The vehicle is not limited to this, and as long as the vehicle is propelled by the electric power supplied from the battery 2 (power storage means), in addition to the series hybrid vehicle and the parallel hybrid vehicle, the fuel cell including the power storage means It may be a vehicle or an electric vehicle.

さらに、前記第1および第2実施形態では、冷却手段13または加熱手段14を本発明の充電準備手段として、バッテリ2の温度調節を行う場合について説明したが、これに限定されるものではなく、充電準備手段としては、バッテリ2の放電等のように温度調節以外の処理を行うものであってもよい。この場合、温度調節以外の処理に要する電力を前記第2電力として、第1および第2電力を電気料金に換算した値が最小となる場合が選定され、トータル充電コストの低減を図ることができる。   Furthermore, in the said 1st and 2nd embodiment, although the cooling means 13 or the heating means 14 was demonstrated as the charge preparation means of this invention, and the case where temperature control of the battery 2 was performed, it is not limited to this, As the charging preparation means, processing other than temperature adjustment such as discharging of the battery 2 may be performed. In this case, the power required for processing other than temperature control is set as the second power, and the case where the value obtained by converting the first and second power into the electric charge is minimized is selected, and the total charging cost can be reduced. .

また、前記第1実施形態において、図7には、STEP40の結果として、冷却手段13による冷却が充電コストの観点から有利となる場合と、自然冷却が充電コストの観点から有利となる場合とを示したが、逆に、図7のマップに基づいて、充電制御ECU17は、冷却手段13による冷却と自然冷却とを選定するようにしてもよい。   In the first embodiment, FIG. 7 shows a case where cooling by the cooling means 13 is advantageous from the viewpoint of charging cost and a case where natural cooling is advantageous from the viewpoint of charging cost as a result of STEP 40. Although shown, conversely, based on the map of FIG. 7, the charging control ECU 17 may select cooling by the cooling means 13 and natural cooling.

さらに、前記第1実施形態において、図10に示すように、冷却手段13および加熱手段14に供給する電力を、前記コネクタ15とは別系統としてもよい。この場合、冷却手段13および加熱手段14の温度を測定する温度センサ21を別途設けて、これら冷却手段13および加熱手段14の温度を温度調節装置23を介して制御することができ、温度調節装置23、冷却手段13および加熱手段14をコネクタ24から供給される電力で作動させることができる。これにより、バッテリ2への充電と切り離して、バッテリ2の冷却および加熱を独立に行うことができる。   Furthermore, in the first embodiment, as shown in FIG. 10, the power supplied to the cooling means 13 and the heating means 14 may be a system separate from the connector 15. In this case, a temperature sensor 21 for measuring the temperatures of the cooling means 13 and the heating means 14 is separately provided, and the temperatures of the cooling means 13 and the heating means 14 can be controlled via the temperature adjusting device 23. 23, the cooling means 13 and the heating means 14 can be operated by the electric power supplied from the connector 24. Thereby, cooling and heating of the battery 2 can be performed independently from the charging of the battery 2.

2…バッテリ(蓄電手段)、3…第1モータ(電動機)、4…第2モータ(電動機)、11…SOC検出手段、12…温度センサ、13…冷却手段(温度調節手段)、14…加熱手段(温度調節手段)、15…コネクタ(外部電源接続手段)、17…充電制御ECU(充電制御装置)、17A…第1算出手段、17B…第2算出手段、X…外部電源。   DESCRIPTION OF SYMBOLS 2 ... Battery (electric storage means), 3 ... 1st motor (electric motor), 4 ... 2nd motor (electric motor), 11 ... SOC detection means, 12 ... Temperature sensor, 13 ... Cooling means (temperature adjustment means), 14 ... Heating Means (temperature adjusting means), 15... Connector (external power connection means), 17... Charge control ECU (charge control device), 17 A... First calculation means, 17 B.

Claims (8)

車両に搭載され、かつ、外部電源からの供給電力によって充電可能な蓄電手段の蓄電状態を制御する充電制御装置であって、
前記蓄電手段の蓄電状態に鑑みて、該蓄電手段を充電するのに要する充電時間を算出する充電時間算出手段と、
前記蓄電手段の状態に鑑みて、該蓄電手段を充電準備手段により充電に適した状態にするために要する充電準備時間を加算した時刻を現在時刻に加えた時刻を充電開始可能時刻として、該充電開始可能時刻から前記車両の出発時間までの間で前記充電時間を確保した場合の充電に要する第1電力を算出する第1算出手段と、
前記充電準備時間に前記蓄電手段を充電可能な状態にするために要する第2電力を算出する第2算出手段とを備え、
前記充電準備手段の運転態様および前記蓄電手段の充電開始時刻の複数の組み合わせのうち、前記第1電力と前記第2電力とを時間帯により高低差のある電気料金体系に基づいて換算した電気料金の合計が最小となる一の当該組み合わせにしたがって、前記充電準備手段を制御すると共に、前記外部電源から前記蓄電手段への充電を実行することを特徴とする充電制御装置。
A charge control device that controls a storage state of a storage unit that is mounted on a vehicle and that can be charged by power supplied from an external power source,
In view of the power storage state of the power storage means, a charge time calculation means for calculating a charge time required to charge the power storage means;
In view of the state of the power storage means, the time obtained by adding the time obtained by adding the charge preparation time required to make the power storage means suitable for charging by the charge preparation means to the current time is defined as the charge startable time. First calculating means for calculating first power required for charging when the charging time is secured between a startable time and a departure time of the vehicle;
Second calculating means for calculating second power required to make the power storage means chargeable during the charge preparation time;
An electric charge obtained by converting the first electric power and the second electric power based on an electric charge system having a difference in height according to a time zone, among a plurality of combinations of the operation mode of the charging preparation means and the charging start time of the power storage means. A charge control device that controls the charge preparation means according to the one combination that minimizes the sum of the power and performs charging from the external power source to the power storage means.
請求項1記載の充電制御装置において、
前記充電準備手段は、前記蓄電手段の温度を調節する温度調節手段であって、
前記蓄電手段の温度を計測する温度センサの検出温度が前記蓄電手段の充電に適した温度範囲外である場合に、前記温度調節手段により該蓄電手段を充電に適した温度にするために要する温度変化時間を前記充電準備時間として算出し、
現時刻に前記温度変化時間を加算した時刻を前記充電開始可能時刻として、該充電開始可能時刻から前記車両の出発時間までの間で前記充電時間を確保した場合の充電に要する第1電力と、前記温度変化時間における前記蓄電手段の温度調節に要する第2電力とを算出することを特徴とする充電制御装置。
The charging control device according to claim 1,
The charging preparation means is a temperature adjusting means for adjusting the temperature of the power storage means,
The temperature required to bring the power storage means to a temperature suitable for charging by the temperature adjusting means when the temperature detected by the temperature sensor for measuring the temperature of the power storage means is outside the temperature range suitable for charging the power storage means. Calculate the change time as the charge preparation time,
A time obtained by adding the temperature change time to the current time as the charge startable time, the first power required for charging when the charge time is secured between the charge startable time and the departure time of the vehicle; A charge control device that calculates second electric power required for temperature adjustment of the power storage means during the temperature change time.
請求項2記載の充電制御装置において、
前記温度調節手段の運転態様が、該温度調節手段を作動しない自然冷却の場合には、自然冷却に要する時間を前記温度変化時間として算出することを特徴とする充電制御装置。
The charge control device according to claim 2,
When the operation mode of the temperature adjusting means is natural cooling in which the temperature adjusting means is not operated, a time required for natural cooling is calculated as the temperature change time.
請求項3記載の充電制御装置において、
前記自然冷却を行った後に前記蓄電手段の充電を実行する場合の前記第1電力を前記電気料金体系に基づいて換算した電気料金と、前記温度調節手段により前記蓄電手段を充電に適した温度に調節した後に該蓄電手段の充電を実行する場合の前記第1電力および前記第2電力を前記電気料金体系に基づいて換算した電気料金とを比較し、電気料金が最小となる場合にしたがって、前記温度調節手段を制御すると共に、前記外部電源から前記蓄電手段への充電を実行することを特徴とする充電制御装置。
In the charging control device according to claim 3,
An electric charge obtained by converting the first electric power when the electric storage means is charged after the natural cooling is performed based on the electric charge system and a temperature suitable for charging the electric storage means by the temperature adjusting means. The first power and the second power when the power storage means is charged after the adjustment is compared with the electric charge converted based on the electric charge system, and according to the case where the electric charge is minimized, A charge control device that controls the temperature adjusting means and performs charging from the external power source to the power storage means.
請求項2乃至4記載のうちいずれか1項記載の充電制御装置において、
前記温度調節手段は、前記外部電源接続手段を介して接続された前記外部電源から直接供給される電力により作動されることを特徴とする充電制御装置。
In the charge control device according to any one of claims 2 to 4,
The charging control apparatus according to claim 1, wherein the temperature adjusting unit is operated by electric power directly supplied from the external power source connected via the external power source connecting unit.
請求項2乃至5のうちいずれか1項記載の充電制御装置において、
前記温度調節手段は、前記蓄電手段から供給される電力により作動され、
前記温度調節手段への電力供給による前記蓄電手段の残容量の低下分である前記第2電力を該蓄電手段の充電と併せて前記外部電源から前記蓄電手段に供給し、該第2電力を前記料金体系に基づいて電気料金に換算することを特徴とする充電制御装置。
The charge control device according to any one of claims 2 to 5,
The temperature adjusting means is operated by electric power supplied from the power storage means,
Supplying the second power, which is a decrease in the remaining capacity of the power storage means due to power supply to the temperature adjusting means, from the external power source to the power storage means together with charging of the power storage means, and supplying the second power to the power storage means A charge control device characterized by converting into an electricity charge based on a charge system.
請求項6記載の充電制御装置において、
前記温度調節手段により予め前記蓄電手段の温度を調節する必要がある場合に、
前記蓄電手段から前記温度調節手段に電力を供給して該蓄電手段を充電に適した温度に調節した後に、該温度調節手段への電力供給による該蓄電手段の残容量の低下分である第2電力を該蓄電手段の充電と併せて前記外部電源から該蓄電手段に供給する場合の前記第1電力および前記第2電力を前記電気料金体系に基づいて換算した電気料金と、前記外部電源から前記温度調節手段に電力を供給して前記蓄電手段を充電に適した温度に調節した後に、該蓄電手段の充電を実行する場合の前記第1電力および前記第2電力を前記電気料金体系に基づいて換算した電気料金とを比較し、電気料金が最小となる場合にしたがって、前記温度調節手段への電力を供給と前記外部電源から前記蓄電手段への充電とを実行することを特徴とする充電制御装置。
The charging control device according to claim 6,
When it is necessary to adjust the temperature of the power storage means in advance by the temperature adjusting means,
A second amount of decrease in the remaining capacity of the power storage unit due to power supply to the temperature control unit after power is supplied from the power storage unit to the temperature control unit to adjust the power storage unit to a temperature suitable for charging. When the electric power is supplied to the electric storage means from the external power source together with the charging of the electric storage means, the first electric power and the second electric power converted based on the electric charge system, and the external electric power source After supplying electric power to the temperature adjusting means and adjusting the electric storage means to a temperature suitable for charging, the first electric power and the second electric power when the electric storage means is charged based on the electric charge system Charge control characterized by comparing the converted electricity charge and performing power supply to the temperature adjusting means and charging to the power storage means from the external power source according to a case where the electricity charge is minimized Dress .
請求項1乃至7のうちいずれか1項記載の充電制御装置と、
前記蓄電手段と
を備えることを特徴とする車両。
The charge control device according to any one of claims 1 to 7,
A vehicle comprising the power storage means.
JP2010045773A 2010-03-02 2010-03-02 Charge control device and vehicle equipped with charge control device Expired - Fee Related JP5480670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010045773A JP5480670B2 (en) 2010-03-02 2010-03-02 Charge control device and vehicle equipped with charge control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010045773A JP5480670B2 (en) 2010-03-02 2010-03-02 Charge control device and vehicle equipped with charge control device

Publications (2)

Publication Number Publication Date
JP2011182585A true JP2011182585A (en) 2011-09-15
JP5480670B2 JP5480670B2 (en) 2014-04-23

Family

ID=44693504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010045773A Expired - Fee Related JP5480670B2 (en) 2010-03-02 2010-03-02 Charge control device and vehicle equipped with charge control device

Country Status (1)

Country Link
JP (1) JP5480670B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013097967A1 (en) * 2011-12-27 2013-07-04 Robert Bosch Gmbh Method for controlling the temperature of at least one battery element, battery and motor vehicle with such a battery
WO2013129217A1 (en) * 2012-03-01 2013-09-06 日産自動車株式会社 Electric vehicle
JP2015011886A (en) * 2013-06-28 2015-01-19 トヨタ自動車株式会社 Automobile
JP2015043662A (en) * 2013-08-26 2015-03-05 トヨタ自動車株式会社 Power storage system
JP2015095985A (en) * 2013-11-13 2015-05-18 トヨタ自動車株式会社 Vehicular power storage system
JP2015525446A (en) * 2012-06-04 2015-09-03 ヴァレオ セキュリテ アビタクル Apparatus and method for maintaining a battery at operating temperature
KR20150105651A (en) * 2013-03-21 2015-09-17 도요타 지도샤(주) Vehicle
JP2016063577A (en) * 2014-09-16 2016-04-25 トヨタ自動車株式会社 Control device for electric vehicle
JP2016092862A (en) * 2014-10-29 2016-05-23 京セラ株式会社 Power storage device and control method for power storage device
JP2016153277A (en) * 2015-02-20 2016-08-25 三菱自動車工業株式会社 Vehicle controller
JP2019523967A (en) * 2016-05-31 2019-08-29 ボルボトラックコーポレーション Battery pack thermal adjustment method and system
CN112124150A (en) * 2019-06-25 2020-12-25 丰田自动车株式会社 Cooling device for vehicle
CN112895976A (en) * 2021-02-01 2021-06-04 重庆峘能电动车科技有限公司 Battery cell early warning protection method and system
CN113745704A (en) * 2020-05-29 2021-12-03 比亚迪股份有限公司 Battery heating method, device and system
WO2023149400A1 (en) * 2022-02-01 2023-08-10 いすゞ自動車株式会社 Charging control device, vehicle, and charging control method
JP7392750B2 (en) 2022-03-22 2023-12-06 いすゞ自動車株式会社 Heating time calculation device
CN117465297A (en) * 2023-12-14 2024-01-30 嘉丰盛精密电子科技(孝感)有限公司 Intelligent cooling system based on electric automobile

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118652A (en) * 2007-11-07 2009-05-28 Chugoku Electric Power Co Inc:The Charging system for electric vehicle
JP2009254097A (en) * 2008-04-04 2009-10-29 Toyota Motor Corp Charging system and charging control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118652A (en) * 2007-11-07 2009-05-28 Chugoku Electric Power Co Inc:The Charging system for electric vehicle
JP2009254097A (en) * 2008-04-04 2009-10-29 Toyota Motor Corp Charging system and charging control method

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013097967A1 (en) * 2011-12-27 2013-07-04 Robert Bosch Gmbh Method for controlling the temperature of at least one battery element, battery and motor vehicle with such a battery
US9431849B2 (en) 2011-12-27 2016-08-30 Robert Bosch Gmbh Method for controlling the temperature of at least one battery element, battery and motor vehicle with such a battery
WO2013129217A1 (en) * 2012-03-01 2013-09-06 日産自動車株式会社 Electric vehicle
JP2015525446A (en) * 2012-06-04 2015-09-03 ヴァレオ セキュリテ アビタクル Apparatus and method for maintaining a battery at operating temperature
KR20150105651A (en) * 2013-03-21 2015-09-17 도요타 지도샤(주) Vehicle
KR102016057B1 (en) 2013-03-21 2019-08-29 도요타 지도샤(주) Vehicle
JP2015011886A (en) * 2013-06-28 2015-01-19 トヨタ自動車株式会社 Automobile
US10144297B2 (en) 2013-08-26 2018-12-04 Toyota Jidosha Kabushiki Kaisha Electrical storage system
WO2015028865A3 (en) * 2013-08-26 2015-07-23 Toyota Jidosha Kabushiki Kaisha Electrical storage system
JP2015043662A (en) * 2013-08-26 2015-03-05 トヨタ自動車株式会社 Power storage system
JP2015095985A (en) * 2013-11-13 2015-05-18 トヨタ自動車株式会社 Vehicular power storage system
JP2016063577A (en) * 2014-09-16 2016-04-25 トヨタ自動車株式会社 Control device for electric vehicle
JP2016092862A (en) * 2014-10-29 2016-05-23 京セラ株式会社 Power storage device and control method for power storage device
JP2016153277A (en) * 2015-02-20 2016-08-25 三菱自動車工業株式会社 Vehicle controller
JP2019523967A (en) * 2016-05-31 2019-08-29 ボルボトラックコーポレーション Battery pack thermal adjustment method and system
JP2021005927A (en) * 2019-06-25 2021-01-14 トヨタ自動車株式会社 Cooling device of vehicle
CN112124150A (en) * 2019-06-25 2020-12-25 丰田自动车株式会社 Cooling device for vehicle
US11518273B2 (en) 2019-06-25 2022-12-06 Toyota Jidosha Kabushiki Kaisha Cooling device for vehicle
JP7222321B2 (en) 2019-06-25 2023-02-15 トヨタ自動車株式会社 vehicle cooling system
CN112124150B (en) * 2019-06-25 2023-10-27 丰田自动车株式会社 Cooling device for vehicle
CN113745704A (en) * 2020-05-29 2021-12-03 比亚迪股份有限公司 Battery heating method, device and system
CN113745704B (en) * 2020-05-29 2023-06-13 比亚迪股份有限公司 Battery heating method, device and system
CN112895976A (en) * 2021-02-01 2021-06-04 重庆峘能电动车科技有限公司 Battery cell early warning protection method and system
CN112895976B (en) * 2021-02-01 2022-06-24 重庆峘能电动车科技有限公司 Battery cell early warning protection method and system
WO2023149400A1 (en) * 2022-02-01 2023-08-10 いすゞ自動車株式会社 Charging control device, vehicle, and charging control method
JP7392750B2 (en) 2022-03-22 2023-12-06 いすゞ自動車株式会社 Heating time calculation device
CN117465297A (en) * 2023-12-14 2024-01-30 嘉丰盛精密电子科技(孝感)有限公司 Intelligent cooling system based on electric automobile

Also Published As

Publication number Publication date
JP5480670B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5480670B2 (en) Charge control device and vehicle equipped with charge control device
JP6488398B2 (en) Heating control device
US8655524B2 (en) Power supply system, vehicle provided with the same and control method of power supply system
US8395355B2 (en) Power supply system and vehicle with the system
JP6634453B2 (en) Power consumption control device
JP3415740B2 (en) Battery charger
JP5045529B2 (en) Charging system and charging control method
JP6050198B2 (en) Power storage system
JP5213180B2 (en) Control apparatus and control method
US9013138B2 (en) Charging apparatus for electric storage device, vehicle equipped with the charging apparatus, and method of controlling the charging apparatus
JP5931892B2 (en) Charging method of power supply battery for driving motor of automobile vehicle
JP5434229B2 (en) Charge control device
JP6024546B2 (en) Power storage system
JP2012075282A (en) Charging control device
JP2008117565A (en) Power supply system and vehicle having the same
JP2009042176A (en) Electromotive vehicle
KR20190073151A (en) Method and system for battery charge
JP2018061332A (en) On-vehicle battery charging system
CN112440825A (en) Method for charging a vehicle battery of a motor vehicle
JP2018061337A (en) On-vehicle battery charging system
JP2015047972A (en) Vehicle
CN111422101A (en) Battery charging system and control device for battery charging system
WO2019220560A1 (en) Power consumption control device
JP2013226007A (en) Vehicle and control method of the same
JP2019154167A (en) Charging system of electric vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140214

R150 Certificate of patent or registration of utility model

Ref document number: 5480670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees