JP6493344B2 - Automobile - Google Patents

Automobile Download PDF

Info

Publication number
JP6493344B2
JP6493344B2 JP2016177722A JP2016177722A JP6493344B2 JP 6493344 B2 JP6493344 B2 JP 6493344B2 JP 2016177722 A JP2016177722 A JP 2016177722A JP 2016177722 A JP2016177722 A JP 2016177722A JP 6493344 B2 JP6493344 B2 JP 6493344B2
Authority
JP
Japan
Prior art keywords
temperature
battery
control
predetermined
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016177722A
Other languages
Japanese (ja)
Other versions
JP2018046607A (en
Inventor
英寛 野村
英寛 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016177722A priority Critical patent/JP6493344B2/en
Priority to CN201710800186.2A priority patent/CN107813712B/en
Priority to EP17189989.1A priority patent/EP3293034B1/en
Priority to US15/697,586 priority patent/US10406933B2/en
Priority to KR1020170114301A priority patent/KR102011285B1/en
Publication of JP2018046607A publication Critical patent/JP2018046607A/en
Application granted granted Critical
Publication of JP6493344B2 publication Critical patent/JP6493344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/53Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells in combination with an external power supply, e.g. from overhead contact lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Combustion & Propulsion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、自動車に関する。   The present invention relates to an automobile.

従来、この種の自動車としては、走行用のモータに電力を供給するバッテリと、外部電源からの電力を用いてバッテリを充電する充電器と、バッテリが接続された電力ラインに接続されると共にバッテリを加温する加温手段と、を備えるものが提案されている(例えば、特許文献1参照)。この自動車では、バッテリの充電中にバッテリ温度が加温目標温度未満のときには加温手段を駆動してバッテリ温度を上昇させる。また、バッテリのSOCが電流制限SOC以上で且つバッテリ温度が加温目標温度未満のときには、充電器からバッテリに供給する充電電流を所定電流以下とする制限充電を行なう。これにより、バッテリの充電完了間際になってもバッテリ温度が加温目標温度に達しないときには、充電電流を絞って充電時間を延長することにより、バッテリの充電完了時にバッテリ温度が加温目標温度に達するようにしている。   Conventionally, this type of automobile includes a battery that supplies power to a motor for traveling, a charger that charges the battery using power from an external power source, and a battery connected to a power line to which the battery is connected. Has been proposed (see, for example, Patent Document 1). In this automobile, when the battery temperature is lower than the heating target temperature during charging of the battery, the heating means is driven to increase the battery temperature. Further, when the battery SOC is equal to or higher than the current limit SOC and the battery temperature is lower than the heating target temperature, limit charging is performed such that the charging current supplied from the charger to the battery is equal to or lower than a predetermined current. As a result, if the battery temperature does not reach the target heating temperature even when the battery is almost fully charged, the charging time is reduced to extend the charging time, so that the battery temperature reaches the target heating temperature when the battery is fully charged. To reach.

特開2015−220956号公報Japanese Patent Laying-Open No. 2015-220956

上述の自動車では、バッテリ温度が加温目標温度未満のときには、外気温が低いなど加温手段を駆動してもバッテリ温度が上昇しにくいときでも、加温手段を駆動することになる。この場合、加温手段の駆動によってバッテリが十分に昇温されないことから、加温手段の駆動(電力消費)が無駄なものとなる可能性がある。   In the above-described automobile, when the battery temperature is lower than the heating target temperature, the heating means is driven even if the battery temperature is difficult to rise even if the heating means is driven, such as when the outside air temperature is low. In this case, since the battery is not sufficiently heated by driving the heating means, the driving (power consumption) of the heating means may be wasted.

本発明の自動車は、外部電源からの電力を用いてバッテリを充電する際の、バッテリの昇温装置の余分な電力消費を抑制することを主目的とする。   The main object of the automobile of the present invention is to suppress excessive power consumption of the battery temperature raising device when the battery is charged using electric power from an external power source.

本発明の自動車は、上述の主目的を達成するために以下の手段を採った。   The automobile of the present invention has taken the following means in order to achieve the main object described above.

本発明の自動車は、
走行用のモータに電力を供給するバッテリと、
外部電源からの電力を用いて前記バッテリを充電する外部充電が可能な充電器と、
前記バッテリが接続された電力ラインに接続されると共に前記バッテリを昇温する昇温装置と、
前記充電器と前記昇温装置とを制御する制御装置と、
を備える自動車であって、
前記制御装置は、前記外部充電が行なわれるように前記充電器を制御する充電制御の実行時において、前記バッテリの温度が第1所定温度よりも低い第2所定温度未満の場合には、前記バッテリが昇温されるように前記昇温装置を制御する昇温制御を実行し、前記バッテリの温度が前記第2所定温度以上の場合には、前記昇温制御を実行しない、
ことを要旨とする。
The automobile of the present invention
A battery for supplying power to the motor for traveling;
A charger capable of external charging that charges the battery using power from an external power source; and
A temperature raising device connected to the power line to which the battery is connected and raising the temperature of the battery;
A control device for controlling the charger and the temperature raising device;
A car equipped with
When the temperature of the battery is lower than a second predetermined temperature lower than a first predetermined temperature during execution of charging control for controlling the charger so that the external charging is performed, the control device When the temperature of the battery is equal to or higher than the second predetermined temperature, the temperature increase control is not performed.
This is the gist.

この本発明の自動車では、外部電源からの電力を用いてバッテリを充電する外部充電が行なわれるように充電器を制御する充電制御の実行時において、バッテリの温度が第1所定温度よりも低い第2所定温度未満の場合には、バッテリが昇温されるように昇温装置を制御する昇温制御を実行し、バッテリの温度が第2所定温度以上の場合には、昇温制御を実行しない。したがって、バッテリの温度が第2所定温度未満の場合には、外部充電制御および昇温制御を実行することにより、バッテリを昇温しつつ外部充電を行なうことができる。また、バッテリの温度が第2所定温度以上の場合には、昇温制御を実行せずに外部充電制御を実行することにより、バッテリの温度が第1所定温度未満の場合に(第2所定温度以上でも)昇温制御を実行するものに比して、外気温が低いなど昇温制御を実行してもバッテリの温度が上昇しにくい場合に、バッテリの昇温装置の余分な電力消費を抑制することができる。また、バッテリの温度が第1所定温度以上に至るまで昇温制御の実行を継続して外部充電を終了しないものに比して、外部充電の終了までの時間が長くなるのを抑制することができる。   In the vehicle according to the present invention, the temperature of the battery is lower than the first predetermined temperature at the time of executing the charging control for controlling the charger so that the external charging for charging the battery using the electric power from the external power source is performed. 2 When the temperature is lower than the predetermined temperature, the temperature raising control is performed to control the temperature raising device so that the battery is heated. When the temperature of the battery is equal to or higher than the second predetermined temperature, the temperature raising control is not executed. . Therefore, when the temperature of the battery is lower than the second predetermined temperature, the external charging can be performed while the temperature of the battery is raised by executing the external charging control and the temperature raising control. Further, when the battery temperature is equal to or higher than the second predetermined temperature, the external charge control is executed without executing the temperature increase control, so that the battery temperature is lower than the first predetermined temperature (the second predetermined temperature). (Even above) When the temperature of the battery is difficult to rise even if the temperature rise control is executed, such as when the outside temperature is low, compared to the one that executes the temperature rise control, the excessive power consumption of the battery temperature riser is suppressed. can do. Further, it is possible to prevent the time until the end of the external charging from becoming longer than that in which the temperature increase control is continued until the temperature of the battery reaches the first predetermined temperature or more and the external charging is not terminated. it can.

こうした本発明の自動車において、前記制御装置は、前記充電制御の実行時において、前記外部充電の開始時の前記バッテリの温度である開始時温度が前記第2所定温度以上の場合には、前記バッテリの温度が前記第1所定温度未満のときに前記昇温制御を実行し、前記開始時温度が前記第2所定温度未満の場合には、前記バッテリの温度が前記第2所定温度未満のときに前記昇温制御を実行する、ものとしてもよい。こうすれば、昇温制御を実行するバッテリの温度範囲を、開始時温度と第2所定温度との大小関係に応じて変更することができる。   In the automobile according to the present invention, when the charging control is executed, when the start temperature, which is the temperature of the battery at the start of the external charging, is equal to or higher than the second predetermined temperature, the control device The temperature rise control is executed when the temperature of the battery is lower than the first predetermined temperature, and when the temperature at the start is lower than the second predetermined temperature, the temperature of the battery is lower than the second predetermined temperature. The temperature raising control may be executed. If it carries out like this, the temperature range of the battery which performs temperature rising control can be changed according to the magnitude relationship of temperature at the time of start, and 2nd predetermined temperature.

また、本発明の自動車において、前記制御装置は、前記バッテリの温度が前記第2所定温度未満の場合には、前記充電制御として、前記バッテリの蓄電割合と電圧と充放電電流量とのうちの何れかに基づいて前記充電器を間欠駆動する、ものとしてもよい。こうすれば、バッテリを充放電させながらバッテリを昇温することができる。また、充電器を継続駆動するものに比して、充電器を駆動する際の充電器の出力(バッテリの充電電力)を大きくしてよいから、充電器の効率を良好なものとすることができる。   In the automobile of the present invention, when the temperature of the battery is lower than the second predetermined temperature, the control device includes, as the charge control, among the storage ratio, voltage, and charge / discharge current amount of the battery. The charger may be intermittently driven based on any one of them. If it carries out like this, a battery can be heated up, charging / discharging a battery. Further, since the output of the charger (battery charging power) when driving the charger may be increased as compared with the case of continuously driving the charger, the efficiency of the charger may be improved. it can.

さらに、本発明の自動車において、前記第2所定温度は、前記バッテリの電解液の凍結温度である、ものとしてもよい。この場合、上述のように、バッテリの温度が第2所定温度未満の場合に昇温制御を実行することにより、バッテリの電解液の凍結の防止や解消を図ることができる。ここで、「凍結温度」は、電解液が凍結する可能性のある温度範囲の上限を意味する。   Furthermore, in the automobile of the present invention, the second predetermined temperature may be a freezing temperature of the electrolyte solution of the battery. In this case, as described above, the temperature rise control is executed when the temperature of the battery is lower than the second predetermined temperature, thereby preventing or eliminating freezing of the battery electrolyte. Here, “freezing temperature” means the upper limit of the temperature range in which the electrolytic solution may freeze.

本発明の自動車において、前記制御装置は、前記外部充電の開始時の前記バッテリの温度である開始時温度が前記第2所定温度以上の場合には、前記充電制御として、まず、前記バッテリの充電電力が第1所定電力で一定となるように前記充電器を制御する第1定電力制御を実行し、前記第1定電力制御の実行中に前記バッテリの蓄電割合または電圧が第1閾値以上に至った第1条件が成立すると、前記バッテリの充電電力が前記第1所定電力よりも小さい第2所定電力で一定となるように前記充電器を制御する第2定電力制御を実行し、前記第2定電力制御の実行中に前記バッテリの蓄電割合または電圧が前記第1閾値よりも大きい第2閾値以上に至った第2条件が成立すると前記充電制御を終了し、前記開始時温度が前記第2所定温度未満の場合には、前記充電制御として、まず、前記第1定電力制御を実行し、前記第1条件が成立すると、前記第1条件が成立したときの前記バッテリの温度である所定時温度が前記第2所定温度以上のときには前記第2定電力制御を実行して前記第2条件が成立すると前記充電制御を終了し、前記所定時温度が前記第2所定温度未満のときには前記バッテリの温度が前記第2所定温度以上に至った後に前記第2定電力制御を実行して前記第2条件が成立すると前記充電制御を終了する、ものとしてもよい。したがって、開始時温度が第2所定温度以上の場合には、第1定電力制御,第2定電力制御を順に実行することにより、外部充電を行なうことができる。また、開始時温度が第2所定温未満の場合には、第1定電力制御を実行した後に、所定時温度が第2所定温度以上のときに第2定電力制御を実行することにより、バッテリの温度を第2所定温度以上に昇温しつつ外部充電を行なうことができる。   In the automobile of the present invention, when the start temperature, which is the temperature of the battery at the start of the external charging, is equal to or higher than the second predetermined temperature, the control device first charges the battery as the charge control. The first constant power control is performed to control the charger so that the power becomes constant at the first predetermined power, and the storage ratio or voltage of the battery is equal to or higher than the first threshold during the execution of the first constant power control. When the reached first condition is satisfied, a second constant power control is performed to control the charger so that the charging power of the battery becomes constant at a second predetermined power smaller than the first predetermined power, When the second condition in which the storage ratio or voltage of the battery reaches a second threshold value greater than or equal to the first threshold value is satisfied during execution of the two constant power control, the charging control is terminated, and the starting temperature is 2 Predetermined temperature not yet In this case, as the charging control, first, the first constant power control is executed, and when the first condition is satisfied, the temperature at a predetermined time that is the temperature of the battery when the first condition is satisfied is When the second constant power control is executed when the second predetermined temperature is exceeded and the second condition is satisfied, the charging control is terminated, and when the predetermined temperature is lower than the second predetermined temperature, the temperature of the battery is The charge control may be terminated when the second constant power control is executed after the second predetermined temperature is reached and the second condition is satisfied. Therefore, when the starting temperature is equal to or higher than the second predetermined temperature, external charging can be performed by sequentially executing the first constant power control and the second constant power control. In addition, when the starting temperature is lower than the second predetermined temperature, the second constant power control is executed when the predetermined temperature is equal to or higher than the second predetermined temperature after the first constant power control is executed. It is possible to perform external charging while raising the temperature to a second predetermined temperature or higher.

開始時温度と第2所定温度との大小関係に応じた充電制御を実行する態様の本発明の自動車において、前記制御装置は、前記開始時温度と前記第2所定温度との大小関係に拘わらずに、前記第1定電力制御の実行中には前記バッテリの温度が前記第1所定温度未満のときに前記昇温制御を実行し、前記第1条件が成立した後には前記バッテリの温度が前記第2所定温度未満のときに前記昇温制御を実行する、ものとしてもよい。こうすれば、第1条件が成立した後において、バッテリの温度が第1所定温度未満のときに(第2所定温度以上でも)昇温制御を実行するものに比して、外気温が低いなど昇温制御を実行してもバッテリの温度が上昇しにくいときに、バッテリの昇温装置の余分な電力消費を抑制することができる。また、バッテリの温度が第1所定温度以上に至るまで昇温制御の実行を継続して外部充電を終了しないものに比して、外部充電の終了までの時間が長くなるのを抑制することができる。   In the automobile of the present invention that performs charge control according to the magnitude relationship between the starting temperature and the second predetermined temperature, the control device is independent of the magnitude relationship between the starting temperature and the second predetermined temperature. In addition, during the execution of the first constant power control, the temperature raising control is executed when the temperature of the battery is lower than the first predetermined temperature, and after the first condition is satisfied, the temperature of the battery is The temperature increase control may be executed when the temperature is lower than the second predetermined temperature. In this case, after the first condition is satisfied, the outside air temperature is lower than that in which the temperature raising control is executed when the temperature of the battery is lower than the first predetermined temperature (even if it is equal to or higher than the second predetermined temperature). When the temperature of the battery is difficult to rise even when the temperature raising control is executed, it is possible to suppress excessive power consumption of the battery temperature raising device. Further, it is possible to prevent the time until the end of the external charging from becoming longer than that in which the temperature increase control is continued until the temperature of the battery reaches the first predetermined temperature or more and the external charging is not terminated. it can.

この場合、前記制御装置は、前記所定時温度が前記第2所定温度未満の場合には、前記バッテリの温度が前記第2所定温度以上に至るまで、前記充電制御として、前記バッテリの蓄電割合と電圧と充放電電流量とのうちの何れかに基づいて前記充電器を間欠駆動する、ものとしてもよい。こうすれば、バッテリの温度が第2所定温度以上に至るまで、バッテリを充放電させながらバッテリを昇温することができる。また、充電器を継続駆動するものに比して、充電器を駆動する際の充電器の出力(バッテリの充電電力)を大きくしてよいから、充電器の効率を良好なものとすることができる。   In this case, when the predetermined temperature is lower than the second predetermined temperature, the control device performs the charge control until the battery temperature reaches the second predetermined temperature or more as the charge control. The charger may be intermittently driven based on either the voltage or the charge / discharge current amount. If it carries out like this, a battery can be heated up, charging / discharging a battery until the temperature of a battery reaches more than 2nd predetermined temperature. Further, since the output of the charger (battery charging power) when driving the charger may be increased as compared with the case of continuously driving the charger, the efficiency of the charger may be improved. it can.

開始時温度と第2所定温度との大小関係に応じた充電制御を実行する態様の本発明の自動車において、前記制御装置は、前記第1定電力制御の実行後で且つ前記第2定電力制御の実行前に、前記バッテリの電圧が所定電圧で一定となるように前記充電器を制御する定電圧制御を実行する、ものとしてもよい。一般に、定電圧制御の実行により、バッテリの充電電流が徐々に小さくなり、バッテリの充電電力が徐々に小さくなる。したがって、こうした制御により、第1定電力制御から第2定電力制御に移行する際に、バッテリの充電電力を滑らかに変化させることができる。   In the vehicle of the present invention in which the charging control according to the magnitude relationship between the starting temperature and the second predetermined temperature is executed, the control device is configured to execute the second constant power control after the execution of the first constant power control. Before the execution of the above, constant voltage control for controlling the charger so that the voltage of the battery becomes constant at a predetermined voltage may be executed. In general, by executing constant voltage control, the charging current of the battery gradually decreases, and the charging power of the battery gradually decreases. Therefore, by such control, the charging power of the battery can be changed smoothly when shifting from the first constant power control to the second constant power control.

電気自動車20の構成の概略を示す構成図である。1 is a configuration diagram showing an outline of the configuration of an electric vehicle 20. 処理ルーチンの一例を示すフローチャートである。It is a flowchart which shows an example of a processing routine. 通常時制御の一例を示すフローチャートである。It is a flowchart which shows an example of normal time control. 極低温時制御の一例を示すフローチャートである。It is a flowchart which shows an example of control at the time of cryogenic temperature. 極低温時制御の一例を示すフローチャートである。It is a flowchart which shows an example of control at the time of cryogenic temperature. 外部充電を行なう際の高電圧バッテリ36の電圧Vbや蓄電割合SOC、充電電力Pch,温度Tb,昇温制御の実行の有無の様子の一例を示す説明図である。It is explanatory drawing which shows an example of the mode of the presence or absence of execution of voltage Vb of the high voltage battery 36 at the time of external charging, electrical storage ratio SOC, charging power Pch, temperature Tb, and temperature rising control. ハイブリッド自動車120の構成の概略を示す構成図である。1 is a configuration diagram showing an outline of the configuration of a hybrid vehicle 120. FIG. ハイブリッド自動車220の構成の概略を示す構成図である。FIG. 3 is a configuration diagram showing an outline of the configuration of a hybrid vehicle 220.

次に、本発明を実施するための形態を実施例を用いて説明する。   Next, the form for implementing this invention is demonstrated using an Example.

図1は、本発明の一実施例としての電気自動車20の構成の概略を示す構成図である。実施例の電気自動車20は、図示するように、モータ32と、パワーコントロールユニット(以下、「PCU」という)34と、高電圧バッテリ36と、充電器40と、低電圧バッテリ50と、ヒータ52と、メインDC/DCコンバータ54と、サブDC/DCコンバータ56と、システムメインリレーSMRと、充電用リレーCHRと、電子制御ユニット60と、を備える。   FIG. 1 is a configuration diagram showing an outline of a configuration of an electric vehicle 20 as an embodiment of the present invention. As illustrated, the electric vehicle 20 of the embodiment includes a motor 32, a power control unit (hereinafter referred to as “PCU”) 34, a high voltage battery 36, a charger 40, a low voltage battery 50, and a heater 52. A main DC / DC converter 54, a sub DC / DC converter 56, a system main relay SMR, a charging relay CHR, and an electronic control unit 60.

モータ32は、例えば同期発電電動機として構成されており、駆動輪22a,22bにデファレンシャルギヤ24を介して連結された駆動軸26に接続されている。PCU34は、高電圧側電力ライン46に接続されると共にモータ32の駆動に用いられるインバータと、高電圧側電力ライン46に取り付けられた平滑用のコンデンサと、を備える。モータ32は、電子制御ユニット60によって、インバータの図示しない複数のスイッチング素子がスイッチング制御されることにより、回転駆動される。   The motor 32 is configured as, for example, a synchronous generator motor, and is connected to a drive shaft 26 that is coupled to the drive wheels 22 a and 22 b via a differential gear 24. The PCU 34 includes an inverter connected to the high voltage side power line 46 and used to drive the motor 32, and a smoothing capacitor attached to the high voltage side power line 46. The motor 32 is rotationally driven by switching control of a plurality of switching elements (not shown) of the inverter by the electronic control unit 60.

高電圧バッテリ36は、例えば定格電圧が200Vや250Vなどのリチウムイオン二次電池やニッケル水素二次電池として構成されており、上述したように、高電圧側電力ライン46を介してPCU34と接続されている。   The high voltage battery 36 is configured as, for example, a lithium ion secondary battery or nickel hydride secondary battery having a rated voltage of 200 V or 250 V, and is connected to the PCU 34 via the high voltage side power line 46 as described above. ing.

充電器40は、高電圧側電力ライン46に接続されており、自宅や充電ステーションなどの充電ポイントで、システムオフで、充電器40に接続された車両側コネクタ42が外部電源90に接続された電源側コネクタ92と接続されているときに、外部電源90からの電力を用いて高電圧バッテリ36を充電する外部充電を行なえるように構成されている。この充電器40は、電子制御ユニット60によって制御される。   The charger 40 is connected to the high-voltage power line 46, and the vehicle-side connector 42 connected to the charger 40 is connected to the external power supply 90 at a charging point such as a home or a charging station when the system is off. When connected to the power supply side connector 92, external charging for charging the high voltage battery 36 using electric power from the external power supply 90 can be performed. The charger 40 is controlled by the electronic control unit 60.

低電圧バッテリ50は、例えば定格電圧が12Vなどの鉛蓄電池として構成されており、低電圧側電力ライン48に接続されている。低電圧側電力ライン48には、高電圧バッテリ36の昇温用のヒータ52が接続されている。ヒータ52は、通電時に通電抵抗によって発熱する発熱部材52aを有し、発熱部材52aの一方の端子がスイッチ52bを介して低電圧側電力ライン48に接続されると共に他方の端子が接地されている。   The low voltage battery 50 is configured as a lead storage battery having a rated voltage of 12 V, for example, and is connected to the low voltage side power line 48. A heater 52 for heating the high voltage battery 36 is connected to the low voltage side power line 48. The heater 52 has a heat generating member 52a that generates heat by energization resistance when energized, and one terminal of the heat generating member 52a is connected to the low voltage side power line 48 via the switch 52b and the other terminal is grounded. .

メインDC/DCコンバータ54は、高電圧側電力ライン46と低電圧側電力ライン48とに接続されている。このメインDC/DCコンバータ54は、電子制御ユニット60によって制御されることにより、高電圧側電力ライン46の電力を電圧の降圧を伴って低電圧側電力ライン48に供給する。   The main DC / DC converter 54 is connected to the high voltage side power line 46 and the low voltage side power line 48. The main DC / DC converter 54 is controlled by the electronic control unit 60 to supply the power of the high voltage side power line 46 to the low voltage side power line 48 with voltage step-down.

サブDC/DCコンバータ56は、メインDC/DCコンバータ54よりも定格出力が小さいDC/DCコンバータとして構成されている。このサブDC/DCコンバータ56は、高電圧側電力ライン46におけるメインDC/DCコンバータ54よりも充電器40側と、低電圧側電力ライン48と、に接続されている。実施例では、サブDC/DCコンバータ56は、充電器40に内蔵されているものとした。このサブDC/DCコンバータ56は、電子制御ユニット60によって制御されることにより、高電圧側電力ライン46の電力を電圧の降圧を伴って低電圧側電力ライン48に供給する。   The sub DC / DC converter 56 is configured as a DC / DC converter having a smaller rated output than the main DC / DC converter 54. The sub DC / DC converter 56 is connected to the charger 40 side and the low voltage side power line 48 rather than the main DC / DC converter 54 in the high voltage side power line 46. In the embodiment, the sub DC / DC converter 56 is built in the charger 40. The sub DC / DC converter 56 is controlled by the electronic control unit 60 to supply the power of the high voltage side power line 46 to the low voltage side power line 48 with voltage step-down.

システムメインリレーSMRは、高電圧側電力ライン46における高電圧バッテリ36とPCU34やメインDC/DCコンバータ54との間に設けられており、電子制御ユニット60によってオンオフ制御されることにより、高電圧バッテリ36側とPCU34やメインDC/DCコンバータ54側との接続および接続の解除を行なう。   The system main relay SMR is provided between the high voltage battery 36 and the PCU 34 or the main DC / DC converter 54 in the high voltage side power line 46, and is turned on / off by the electronic control unit 60. Connection between 36 side and PCU 34 or main DC / DC converter 54 side and connection release are performed.

充電用リレーCHRは、高電圧側電力ライン46における高電圧バッテリ36と充電器40やサブDC/DCコンバータ56との間に設けられており、電子制御ユニット60によってオンオフ制御されることにより、高電圧バッテリ36側と充電器40やサブDC/DCコンバータ56側との接続および接続の解除を行なう。   The charging relay CHR is provided between the high voltage battery 36 and the charger 40 and the sub DC / DC converter 56 in the high voltage side power line 46, and is turned on and off by the electronic control unit 60. The connection between the voltage battery 36 side and the charger 40 or the sub DC / DC converter 56 side and the connection release are performed.

電子制御ユニット60は、図示しないがCPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROM,データを一時的に記憶するRAM,入出力ポートなどを備える。   Although not shown, the electronic control unit 60 is configured as a microprocessor centered on a CPU, and includes a ROM that stores a processing program, a RAM that temporarily stores data, an input / output port, and the like in addition to the CPU.

電子制御ユニット60には、各種センサからの信号が入力ポートを介して入力されている。電子制御ユニット60に入力される信号としては、例えば、モータ32の回転子の回転位置を検出する回転位置センサからのモータ32の回転子の回転位置や、高電圧バッテリ36の端子間に取り付けられた電圧センサ36aからの高電圧バッテリ36の電圧Vb,高電圧バッテリ36の出力端子に取り付けられた電流センサ36bからの高電圧バッテリ36の電流Ib(高電圧バッテリ36を充電するときが正の値),高電圧バッテリ36に取り付けられた温度センサ36cからの高電圧バッテリ36の温度Tbを挙げることができる。また、車両側コネクタ42に取り付けられると共に車両側コネクタ42と電源側コネクタ92との接続を検出する接続検出センサ43からの接続検出信号も挙げることができる。さらに、イグニッションスイッチからのイグニッション信号,シフトポジションセンサからのシフトポジションSP,アクセルペダルポジションセンサからのアクセル開度,ブレーキペダルポジションセンサからのブレーキペダルポジション,車速センサからの車速も挙げることができる。   Signals from various sensors are input to the electronic control unit 60 via input ports. The signal input to the electronic control unit 60 is, for example, attached to the rotational position of the rotor of the motor 32 from a rotational position sensor that detects the rotational position of the rotor of the motor 32 or between the terminals of the high voltage battery 36. The voltage Vb of the high voltage battery 36 from the voltage sensor 36a, the current Ib of the high voltage battery 36 from the current sensor 36b attached to the output terminal of the high voltage battery 36 (a positive value when charging the high voltage battery 36) ), The temperature Tb of the high voltage battery 36 from the temperature sensor 36c attached to the high voltage battery 36. Moreover, the connection detection signal from the connection detection sensor 43 which is attached to the vehicle side connector 42 and detects the connection between the vehicle side connector 42 and the power source side connector 92 can also be mentioned. Furthermore, the ignition signal from the ignition switch, the shift position SP from the shift position sensor, the accelerator opening from the accelerator pedal position sensor, the brake pedal position from the brake pedal position sensor, and the vehicle speed from the vehicle speed sensor can also be mentioned.

電子制御ユニット60からは、各種制御信号が出力ポートを介して出力されている。電子制御ユニット60から出力される信号としては、例えば、PCU34(インバータ)への制御信号や充電器40への制御信号,ヒータ52(スイッチ52b)への制御信号,メインDC/DCコンバータ54への制御信号,サブDC/DCコンバータ56への制御信号,システムメインリレーSMRへの制御信号,充電用リレーCHRへの制御信号を挙げることができる。   Various control signals are output from the electronic control unit 60 through an output port. Examples of signals output from the electronic control unit 60 include a control signal to the PCU 34 (inverter), a control signal to the charger 40, a control signal to the heater 52 (switch 52b), and a signal to the main DC / DC converter 54. Examples include a control signal, a control signal to the sub DC / DC converter 56, a control signal to the system main relay SMR, and a control signal to the charging relay CHR.

電子制御ユニット60は、電流センサ36bからの高電圧バッテリ36の電流Ibの積算値に基づいて高電圧バッテリ36の蓄電割合SOCを演算している。また、電子制御ユニット60は、外部充電の際には、電圧センサ36aからの高電圧バッテリ36の電圧Vbと電流センサ36bからの高電圧バッテリ36の電流Ibとの積として高電圧バッテリ36の充電電力Pchを演算している。   The electronic control unit 60 calculates the storage ratio SOC of the high voltage battery 36 based on the integrated value of the current Ib of the high voltage battery 36 from the current sensor 36b. Further, the electronic control unit 60 charges the high voltage battery 36 as the product of the voltage Vb of the high voltage battery 36 from the voltage sensor 36a and the current Ib of the high voltage battery 36 from the current sensor 36b during external charging. The power Pch is calculated.

こうして構成された実施例の電気自動車20では、電子制御ユニット60は、自宅や充電ステーションなどの充電ポイントで駐車しているときに、システムオフで、車両側コネクタ42と電源側コネクタ92とが接続されると(接続検出センサ43により両者の接続が検出されると)、充電用リレーCHRをオンとして、外部電源90からの電力を用いて高電圧バッテリ36を充電する外部充電を行なう。   In the electric vehicle 20 of the embodiment thus configured, the electronic control unit 60 is connected to the vehicle-side connector 42 and the power-side connector 92 when the system is off when the vehicle is parked at a charging point such as a home or a charging station. When the connection is detected (when the connection detection sensor 43 detects the connection between the two), the charging relay CHR is turned on, and external charging for charging the high voltage battery 36 using the power from the external power supply 90 is performed.

次に、こうして構成された実施例の電気自動車20の動作、特に、外部充電の際の動作について説明する。図2は、実施例の電子制御ユニット60により実行される処理ルーチンの一例を示すフローチャートである。このルーチンは、外部充電の開始時(充電用リレーCHRをオンとしたとき)に実行される。   Next, the operation of the electric vehicle 20 of the embodiment configured as described above, particularly the operation at the time of external charging will be described. FIG. 2 is a flowchart illustrating an example of a processing routine executed by the electronic control unit 60 of the embodiment. This routine is executed at the start of external charging (when charging relay CHR is turned on).

図2の処理ルーチンが実行されると、電子制御ユニット60は、高電圧バッテリ36の開始時温度Tbstを入力する(ステップS100)。ここで、高電圧バッテリ36の開始時温度Tbstは、外部充電の開始時に温度センサ36cにより検出された値を入力するものとした。   When the processing routine of FIG. 2 is executed, the electronic control unit 60 inputs the start temperature Tbst of the high voltage battery 36 (step S100). Here, as the start temperature Tbst of the high voltage battery 36, the value detected by the temperature sensor 36c at the start of external charging is input.

こうして高電圧バッテリ36の開始時温度Tbstを入力すると、入力した開始時温度Tbstを所定温度Tbnoよりも低い所定温度Tbloと比較する(ステップS110)。ここで、所定温度Tbno,Tbloは、高電圧バッテリ36の第1,第2の昇温目標温度であり、所定温度Tbnoは、例えば、6℃や8℃,10℃などを用いることができ、所定温度Tbloは、例えば、−17℃や−15℃,−13℃などを用いることができる。実施例では、所定温度Tbloは、高電圧バッテリ36の電解液の凍結温度(凍結する可能性のある温度範囲の上限)を用いるものとした。   When the start temperature Tbst of the high voltage battery 36 is thus input, the input start temperature Tbst is compared with a predetermined temperature Tblo lower than the predetermined temperature Tbno (step S110). Here, the predetermined temperatures Tbno and Tblo are the first and second temperature increase target temperatures of the high voltage battery 36, and the predetermined temperature Tbno can be 6 ° C, 8 ° C, 10 ° C, for example, As the predetermined temperature Tblo, for example, −17 ° C., −15 ° C., −13 ° C., or the like can be used. In the embodiment, as the predetermined temperature Tblo, the freezing temperature of the electrolytic solution of the high voltage battery 36 (the upper limit of the temperature range in which there is a possibility of freezing) is used.

高電圧バッテリ36の開始時温度Tbstが所定温度Tblo以上のときには、図3の通常時制御を実行して(ステップS120)、本ルーチンを終了し、高電圧バッテリ36の開始時温度Tbstが所定温度Tblo未満のときには、図4および図5の極低温時制御を実行して(ステップS130)、本ルーチンを終了する。図3の通常時制御や図4および図5の極低温時制御では、外部充電が行なわれるように充電器40を制御する充電制御を実行すると共に、必要に応じて、高電圧バッテリ36が昇温されるようにヒータ52を制御する昇温制御を実行する。以下、図3の通常時制御,図4および図5の極低温時制御の順に説明する。   When the starting temperature Tbst of the high voltage battery 36 is equal to or higher than the predetermined temperature Tblo, the normal time control of FIG. 3 is executed (step S120), this routine is terminated, and the starting temperature Tbst of the high voltage battery 36 is the predetermined temperature. When it is less than Tblo, the cryogenic temperature control of FIGS. 4 and 5 is executed (step S130), and this routine is terminated. In the normal time control of FIG. 3 and the cryogenic temperature control of FIGS. 4 and 5, charge control for controlling the charger 40 is performed so that external charging is performed, and the high voltage battery 36 is increased as necessary. Temperature rise control is performed to control the heater 52 so that the temperature is raised. Hereinafter, the normal time control in FIG. 3 and the cryogenic temperature control in FIGS. 4 and 5 will be described in this order.

図3の通常時制御では、電子制御ユニット60は、まず、高電圧バッテリ36の開始時温度Tbstを所定温度Tbnoと比較し(ステップS200)、高電圧バッテリ36の開始時温度Tbstが所定温度Tbno未満のときには、昇温制御の実行を開始し(ステップS202)、高電圧バッテリ36の開始時温度Tbstが所定温度Tbno以上のときには、昇温制御を実行しない。昇温制御では、ヒータ52のスイッチ52bをオンとして発熱部材52aを通電によって発熱させることにより高電圧バッテリ36を昇温する。なお、ヒータ52の消費電力は、低電圧バッテリ50からの電力や高電圧バッテリ36からメインDC/DCコンバータ54を介して低電圧側電力ライン48に供給される電力によって賄われる。このヒータ52の消費電力の絶対値は、後述の第1定電力制御の際の充電器40の出力電力の絶対値よりも小さい。   In the normal time control of FIG. 3, the electronic control unit 60 first compares the start temperature Tbst of the high voltage battery 36 with the predetermined temperature Tbno (step S200), and the start temperature Tbst of the high voltage battery 36 is the predetermined temperature Tbno. When the temperature is less than the predetermined temperature Tbst, the temperature increase control is started (step S202). When the start temperature Tbst of the high voltage battery 36 is equal to or higher than the predetermined temperature Tbno, the temperature increase control is not executed. In the temperature increase control, the switch 52b of the heater 52 is turned on to heat the heat generating member 52a by energization, whereby the temperature of the high voltage battery 36 is increased. The power consumption of the heater 52 is covered by power from the low voltage battery 50 or power supplied from the high voltage battery 36 to the low voltage side power line 48 via the main DC / DC converter 54. The absolute value of the power consumption of the heater 52 is smaller than the absolute value of the output power of the charger 40 in the first constant power control described later.

続いて、第1定電力制御を実行する(ステップS210)。第1定電力制御では、高電圧バッテリ36の充電電力Pchが所定電力Pch1で一定となるように充電器40を制御する。所定電力Pch1は、外部電源90の許容出力電力や高電圧バッテリ36の許容入力電力などに基づいて定められ、例えば、2.5kWや3.0kW,3.5kWなどを用いることができる。なお、第1定電力制御の実行により、高電圧バッテリ36の電圧Vb(蓄電割合SOC)が徐々に大きくなると共に高電圧バッテリ36の電流Ibが徐々に小さくなる。   Subsequently, the first constant power control is executed (step S210). In the first constant power control, the charger 40 is controlled such that the charging power Pch of the high voltage battery 36 is constant at the predetermined power Pch1. The predetermined power Pch1 is determined based on the allowable output power of the external power supply 90, the allowable input power of the high voltage battery 36, and the like, and for example, 2.5 kW, 3.0 kW, 3.5 kW, or the like can be used. By executing the first constant power control, the voltage Vb (storage ratio SOC) of the high voltage battery 36 gradually increases and the current Ib of the high voltage battery 36 gradually decreases.

続いて、電圧センサ36aからの高電圧バッテリ36の電圧Vbや温度センサ36cからの高電圧バッテリ36の温度Tbを入力し(ステップS212)、昇温制御の実行中で且つ高電圧バッテリ36の温度Tbが所定温度Tbno以上であるか否かを判定する(ステップS214)。そして、昇温制御の実行中で且つ高電圧バッテリ36の温度Tbが所定温度Tbno以上のときには、昇温制御の実行を終了し(ステップS216)、昇温制御の実行中でないときや昇温制御の実行中で且つ高電圧バッテリ36の温度Tbが所定温度Tbno未満のときには、ステップS216の処理を実行しない(昇温制御を実行していない状態または実行している状態を保持する)。   Subsequently, the voltage Vb of the high voltage battery 36 from the voltage sensor 36a and the temperature Tb of the high voltage battery 36 from the temperature sensor 36c are input (step S212). It is determined whether Tb is equal to or higher than a predetermined temperature Tbno (step S214). When the temperature increase control is being executed and the temperature Tb of the high voltage battery 36 is equal to or higher than the predetermined temperature Tbno, the temperature increase control is terminated (step S216). Is being executed and the temperature Tb of the high voltage battery 36 is lower than the predetermined temperature Tbno, the process of step S216 is not executed (the temperature increase control is not being executed or is being executed).

そして、高電圧バッテリ36の電圧Vbを所定電圧Vb1と比較し(ステップS218)、高電圧バッテリ36の電圧Vbが所定電圧Vb1未満のときには、ステップS210に戻る。ここで、所定電圧Vb1は、第1低電力制御の実行を終了するか否かを判定するのに用いられる閾値であり、例えば、第1定電力制御の実行による高電圧バッテリ36の満充電に相当する電圧Vbなどを用いることができる。   Then, the voltage Vb of the high voltage battery 36 is compared with the predetermined voltage Vb1 (step S218), and when the voltage Vb of the high voltage battery 36 is less than the predetermined voltage Vb1, the process returns to step S210. Here, the predetermined voltage Vb1 is a threshold value used to determine whether or not the execution of the first low power control is to be terminated. For example, the full voltage of the high voltage battery 36 by the execution of the first constant power control is used. A corresponding voltage Vb or the like can be used.

こうして高電圧バッテリ36の電圧Vbが所定電圧Vb1以上に至るまで第1定電力制御を実行し、ステップS218で高電圧バッテリ36の電圧Vbが所定電圧Vb1以上に至ると、昇温制御を実行中のときにはその実行を終了する(ステップS220,S222)。図3の通常時制御の実行時には、高電圧バッテリ36の開始時温度Tbstが所定温度Tblo以上であるから、第1定電力制御の実行中に高電圧バッテリ36の電圧Vbが所定電圧Vb1以上に至ったとき(第1定電力制御の実行を終了するとき)の高電圧バッテリ36の温度Tb(以下、「所定時温度Tbti」という)も所定温度Tblo以上であると考えられる。実施例では、第1定電力制御の実行中に高電圧バッテリ36の電圧Vbが所定電圧Vb1以上に至ると、高電圧バッテリ36の所定時温度Tbtiが所定温度Tbno未満でも、昇温制御を終了するのである。これにより、高電圧バッテリ36の温度Tbが所定温度Tbno以上に至るまで昇温制御を実行するものに比して、外気温が低いなど昇温制御を実行しても高電圧バッテリ36の温度Tbが上昇しにくいときに、ヒータ52の余分な電力消費を抑制することができる。また、高電圧バッテリ36の温度Tbが所定温度Tbno以上に至るまで昇温制御の実行を継続して外部充電を終了しないもの比して、外部充電の終了までの時間が長くなるのを抑制することができる。   Thus, the first constant power control is executed until the voltage Vb of the high voltage battery 36 reaches the predetermined voltage Vb1 or higher. When the voltage Vb of the high voltage battery 36 reaches the predetermined voltage Vb1 or higher in step S218, the temperature increase control is being executed. In this case, the execution ends (steps S220 and S222). When the normal time control of FIG. 3 is executed, the starting temperature Tbst of the high voltage battery 36 is equal to or higher than the predetermined temperature Tblo, so that the voltage Vb of the high voltage battery 36 becomes equal to or higher than the predetermined voltage Vb1 during the execution of the first constant power control. The temperature Tb of the high-voltage battery 36 (hereinafter referred to as “predetermined temperature Tbti”) when it reaches (when the execution of the first constant power control is finished) is also considered to be equal to or higher than the predetermined temperature Tblo. In the embodiment, when the voltage Vb of the high voltage battery 36 reaches the predetermined voltage Vb1 or more during execution of the first constant power control, the temperature increase control is terminated even if the predetermined temperature Tbti of the high voltage battery 36 is lower than the predetermined temperature Tbno. To do. As a result, the temperature Tb of the high voltage battery 36 can be increased even when the temperature increase control is performed such as when the outside temperature is low, as compared with the case where the temperature increase control is performed until the temperature Tb of the high voltage battery 36 reaches the predetermined temperature Tbno or higher. When it is difficult to rise, excessive power consumption of the heater 52 can be suppressed. Further, it is possible to prevent the time until the end of the external charging from becoming longer, as compared with the case where the temperature increase control is continued until the temperature Tb of the high voltage battery 36 reaches the predetermined temperature Tbno or more and the external charging is not terminated. be able to.

続いて、定電圧制御を実行する(ステップS230)。定電圧制御では、高電圧バッテリ36の電圧Vbが所定電圧Vb1で一定となるように充電器40を制御する。なお、定電圧制御の実行により、高電圧バッテリ36の電流Ibが徐々に小さくなり、高電圧バッテリ36の充電電力Pchが徐々に小さくなる。   Subsequently, constant voltage control is executed (step S230). In the constant voltage control, the charger 40 is controlled so that the voltage Vb of the high voltage battery 36 is constant at the predetermined voltage Vb1. By executing the constant voltage control, the current Ib of the high voltage battery 36 gradually decreases, and the charging power Pch of the high voltage battery 36 gradually decreases.

そして、電圧センサ36aからの高電圧バッテリ36の電圧Vbと電流センサ36bからの高電圧バッテリ36の電流Ibとの積として演算された高電圧バッテリ36の充電電力Pchを入力し(ステップS232)、入力した高電圧バッテリ36の充電電力Pchを所定電力Pch1よりも小さい所定電力Pch2と比較し(ステップS234)、高電圧バッテリ36の充電電力Pchが所定電力Pch2よりも大きいときには、ステップS230に戻る。ここで、所定電力Pch2は、例えば、600Wや650W,700Wなどを用いることができる。   Then, the charging power Pch of the high voltage battery 36 calculated as the product of the voltage Vb of the high voltage battery 36 from the voltage sensor 36a and the current Ib of the high voltage battery 36 from the current sensor 36b is input (step S232). The input charging power Pch of the high voltage battery 36 is compared with the predetermined power Pch2 smaller than the predetermined power Pch1 (step S234). When the charging power Pch of the high voltage battery 36 is larger than the predetermined power Pch2, the process returns to step S230. Here, for example, 600 W, 650 W, 700 W, or the like can be used as the predetermined power Pch2.

こうして高電圧バッテリ36の充電電力Pchが所定電力Pch2以下に至るまで定電圧制御を実行し、ステップS234で高電圧バッテリ36の充電電力Pchが所定電力Pch2以下に至ると、第2定電力制御を実行する(ステップS240)。第2定電力制御では、高電圧バッテリ36の充電電力Pchが所定電力Pch2で一定となるように充電器40を制御する。なお、第2定電力制御の実行により、高電圧バッテリ36の電圧Vb(蓄電割合SOC)が徐々に大きくなると共に高電圧バッテリ36の電流Ibが徐々に小さくなる。   Thus, the constant voltage control is executed until the charging power Pch of the high voltage battery 36 is equal to or lower than the predetermined power Pch2. When the charging power Pch of the high voltage battery 36 is equal to or lower than the predetermined power Pch2 in step S234, the second constant power control is performed. Execute (Step S240). In the second constant power control, the charger 40 is controlled such that the charging power Pch of the high voltage battery 36 is constant at the predetermined power Pch2. By executing the second constant power control, the voltage Vb (storage ratio SOC) of the high voltage battery 36 gradually increases and the current Ib of the high voltage battery 36 gradually decreases.

続いて、高電圧バッテリ36の電圧Vbを入力し(ステップS242)、入力した高電圧バッテリ36の電圧Vbを所定電圧Vb1よりも大きい所定電圧Vb2と比較し(ステップS244)、高電圧バッテリ36の電圧Vbが所定電圧Vb2未満のときには、ステップS240に戻る。ここで、所定電圧Vb2は、第2定電力制御の実行を終了して外部充電を終了するか否かを判定するのに用いられる閾値であり、例えば、第2定電力制御の実行による高電圧バッテリ36の満充電に相当する電圧Vbなどを用いることができる。   Subsequently, the voltage Vb of the high voltage battery 36 is input (step S242), and the input voltage Vb of the high voltage battery 36 is compared with a predetermined voltage Vb2 that is higher than the predetermined voltage Vb1 (step S244). When the voltage Vb is less than the predetermined voltage Vb2, the process returns to step S240. Here, the predetermined voltage Vb2 is a threshold value used to determine whether or not the second constant power control is finished and the external charging is finished. For example, the predetermined voltage Vb2 is a high voltage generated by the second constant power control. A voltage Vb corresponding to the full charge of the battery 36 can be used.

こうして高電圧バッテリ36の電圧Vbが所定電圧Vb2以上に至るまで第2定電力制御を実行し、ステップS244で高電圧バッテリ36の電圧Vbが所定電圧Vb2以上に至ると、外部充電が完了したと判定し、本ルーチンを終了する。通常時制御では、第1定電力制御の実行後で第2定電力制御の実行前に定電圧制御を実行するから、第1定電力制御から第2定電力制御に移行する際に、高電圧バッテリ36の充電電力Pchを滑らかに変化させることができる。   Thus, the second constant power control is executed until the voltage Vb of the high voltage battery 36 reaches the predetermined voltage Vb2 or more. When the voltage Vb of the high voltage battery 36 reaches the predetermined voltage Vb2 or more in step S244, the external charging is completed. This routine is terminated. In the normal time control, the constant voltage control is executed after the execution of the first constant power control and before the execution of the second constant power control. Therefore, when the first constant power control is shifted to the second constant power control, the high voltage is controlled. The charging power Pch of the battery 36 can be changed smoothly.

次に、図4および図5の極低温時制御について説明する。この極低温時制御は、高電圧バッテリ36の開始時温度Tbstが所定温度Tblo(<Tbno)未満のときに実行されるから、電子制御ユニット60は、まず、昇温制御の実行を開始する(ステップS300)。   Next, the cryogenic temperature control of FIGS. 4 and 5 will be described. Since the control at the extremely low temperature is executed when the start temperature Tbst of the high voltage battery 36 is lower than the predetermined temperature Tblo (<Tbno), the electronic control unit 60 first starts executing the temperature increase control ( Step S300).

続いて、図3の通常時制御のステップS210〜S218と同様に、第1定電力制御を実行し(ステップS310)、高電圧バッテリ36の電圧Vbや温度Tbを入力し(ステップS312)、昇温制御の実行を終了したり昇温制御を実行していない状態または実行している状態を保持したりし(ステップS314,S316)、高電圧バッテリ36の電圧Vbを所定電圧Vb1と比較する(ステップS318)。そして、高電圧バッテリ36の電圧Vbが所定電圧Vb1未満のときには、ステップS310に戻る。なお、いま、高電圧バッテリ36の開始時温度Tbstが所定温度Tblo未満のときを考えているから、第1定電力制御の実行中に高電圧バッテリ36の温度Tbが所定温度Tbloよりも高い所定温度Tbno以上に至る可能性は低いと考えられる。   Subsequently, the first constant power control is executed (step S310), and the voltage Vb and the temperature Tb of the high voltage battery 36 are input (step S312), as in steps S210 to S218 of the normal control in FIG. The execution of the temperature control is ended, the state where the temperature increase control is not executed or the state where it is executed is maintained (steps S314 and S316), and the voltage Vb of the high voltage battery 36 is compared with the predetermined voltage Vb1 ( Step S318). When the voltage Vb of the high voltage battery 36 is less than the predetermined voltage Vb1, the process returns to step S310. Note that now, since the start temperature Tbst of the high voltage battery 36 is considered to be lower than the predetermined temperature Tblo, the temperature Tb of the high voltage battery 36 is higher than the predetermined temperature Tblo during execution of the first constant power control. The possibility of reaching the temperature Tbno or higher is considered to be low.

こうして高電圧バッテリ36の電圧Vbが所定電圧Vb1以上に至るまで第1定電力制御を実行し、ステップS318で高電圧バッテリ36の電圧Vbが所定電圧Vb1以上に至ると、高電圧バッテリ36の温度Tbを入力し(ステップS320)、入力した高電圧バッテリ36の温度Tbを所定温度Tbloと比較する(ステップS322)。上述したように、第1定電力制御の実行中に高電圧バッテリ36の電圧Vbが所定電圧Vb1以上に至ったとき(第1定電力制御の実行を終了するとき)の高電圧バッテリ36の温度Tbを「所定時温度Tbti」という。   Thus, the first constant power control is executed until the voltage Vb of the high voltage battery 36 reaches the predetermined voltage Vb1 or higher. When the voltage Vb of the high voltage battery 36 reaches the predetermined voltage Vb1 or higher in step S318, the temperature of the high voltage battery 36 is increased. Tb is input (step S320), and the input temperature Tb of the high voltage battery 36 is compared with a predetermined temperature Tblo (step S322). As described above, the temperature of the high voltage battery 36 when the voltage Vb of the high voltage battery 36 reaches or exceeds the predetermined voltage Vb1 during the execution of the first constant power control (when the execution of the first constant power control is finished). Tb is referred to as “predetermined temperature Tbti”.

ステップS322で高電圧バッテリ36の温度Tb(所定時温度Tbti)が所定温度Tblo以上のときには、昇温制御を実行中のときにはその実行を終了する(ステップS350,S352)。これにより、高電圧バッテリ36の温度Tbが所定温度Tbno以上に至るまで昇温制御を実行するものに比して、外気温が低いなど昇温制御を実行しても高電圧バッテリ36の温度Tbが上昇しにくいときに、ヒータ52の余分な電力消費を抑制することができる。また、高電圧バッテリ36の温度Tbが所定温度Tbno以上に至るまで昇温制御の実行を継続して外部充電を終了しないもの比して、外部充電の終了までの時間が長くなるのを抑制することができる。   When the temperature Tb (predetermined temperature Tbti) of the high-voltage battery 36 is equal to or higher than the predetermined temperature Tblo in step S322, the execution is terminated when the temperature raising control is being executed (steps S350 and S352). As a result, the temperature Tb of the high voltage battery 36 can be increased even when the temperature increase control is performed such as when the outside temperature is low, as compared with the case where the temperature increase control is performed until the temperature Tb of the high voltage battery 36 reaches the predetermined temperature Tbno or higher. When it is difficult to rise, excessive power consumption of the heater 52 can be suppressed. Further, it is possible to prevent the time until the end of the external charging from becoming longer, as compared with the case where the temperature increase control is continued until the temperature Tb of the high voltage battery 36 reaches the predetermined temperature Tbno or more and the external charging is not terminated. be able to.

次に、図3の通常時制御のステップS230〜S234と同様に、定電圧制御を実行し(ステップS360)、高電圧バッテリ36の充電電力Pchを入力し(ステップS362)、高電圧バッテリ36の充電電力Pchを所定電力Pch2(<Pch1)と比較する(ステップS368)。そして、高電圧バッテリ36の充電電力Pchが所定電力Pch2よりも大きいときには、ステップS360に戻る。   Next, as in steps S230 to S234 of the normal control in FIG. 3, constant voltage control is executed (step S360), the charging power Pch of the high voltage battery 36 is input (step S362), and the high voltage battery 36 Charging power Pch is compared with predetermined power Pch2 (<Pch1) (step S368). When the charging power Pch of the high voltage battery 36 is larger than the predetermined power Pch2, the process returns to step S360.

こうして高電圧バッテリ36の充電電力Pchが所定電力Pch2以下に至るまで定電圧制御を実行し、ステップS368で高電圧バッテリ36の充電電力Pchが所定電力Pch2以下に至ると、図3の通常時制御のステップS240〜S244と同様に、第2定電力制御を実行し(ステップS370)、高電圧バッテリ36の電圧Vbを入力し(ステップS372)、高電圧バッテリ36の電圧Vbを所定電圧Vb2と比較する(ステップS378)。そして、高電圧バッテリ36の電圧Vbが所定電圧Vb2未満のときには、ステップS240に戻る。   Thus, the constant voltage control is executed until the charging power Pch of the high voltage battery 36 reaches the predetermined power Pch2 or less. When the charging power Pch of the high voltage battery 36 reaches the predetermined power Pch2 or less in step S368, the normal time control of FIG. As in steps S240 to S244, the second constant power control is executed (step S370), the voltage Vb of the high voltage battery 36 is input (step S372), and the voltage Vb of the high voltage battery 36 is compared with the predetermined voltage Vb2. (Step S378). When the voltage Vb of the high voltage battery 36 is less than the predetermined voltage Vb2, the process returns to step S240.

こうして高電圧バッテリ36の電圧Vbが所定電圧Vb2以上に至るまで第2定電力制御を実行し、ステップS378で高電圧バッテリ36の電圧Vbが所定電圧Vb2以上に至ると、外部充電が完了したと判定し、本ルーチンを終了する。極低温時制御でも、通常時制御と同様に、第1定電力制御の実行後で第2定電力制御の実行前に定電圧制御を実行するから、第1定電力制御から第2定電力制御に移行する際に、高電圧バッテリ36の充電電力Pchを滑らかに変化させることができる。   Thus, the second constant power control is executed until the voltage Vb of the high voltage battery 36 reaches the predetermined voltage Vb2 or higher. When the voltage Vb of the high voltage battery 36 reaches the predetermined voltage Vb2 or higher in step S378, the external charging is completed. This routine is terminated. Even in the control at the cryogenic temperature, the constant voltage control is executed after the execution of the first constant power control and before the execution of the second constant power control, as in the normal control. When shifting to, the charging power Pch of the high voltage battery 36 can be changed smoothly.

ステップS322で高電圧バッテリ36の温度Tb(所定時温度Tbti)が所定温度Tblo未満のときには、昇温制御の実行を継続すると共に、充電器40を間欠駆動し(ステップS330〜S346)、その後に、ステップS322で高電圧バッテリ36の温度Tbが所定温度Tblo以上に至ると、ステップS350以降の処理を実行する。即ち、高電圧バッテリ36の所定時温度Tbtiが所定温度Tblo未満のときには、高電圧バッテリ36の温度Tbが所定温度Tblo以上に至るまで昇温制御を実行するのである。これにより、高電圧バッテリ36の電解液の凍結の防止や解消を図ることができる。以下、充電器40の間欠駆動について説明する。   When the temperature Tb (predetermined temperature Tbti) of the high voltage battery 36 is lower than the predetermined temperature Tblo in step S322, the temperature increase control is continued and the charger 40 is intermittently driven (steps S330 to S346). When the temperature Tb of the high voltage battery 36 reaches or exceeds the predetermined temperature Tblo in step S322, the processing after step S350 is executed. That is, when the predetermined temperature Tbti of the high voltage battery 36 is lower than the predetermined temperature Tblo, the temperature increase control is executed until the temperature Tb of the high voltage battery 36 reaches the predetermined temperature Tblo or more. As a result, it is possible to prevent or eliminate freezing of the electrolyte solution of the high voltage battery 36. Hereinafter, intermittent driving of the charger 40 will be described.

充電器40を間欠駆動する際には、まず、初回(第1定電力制御の実行中に高電圧バッテリ36の電圧Vbが所定電圧Vb1以上に至った直後)であるか否かを判定する(ステップS330)。そして、初回であるときには、充電器40の駆動を中断(停止)し(ステップS342)、高電圧バッテリ36の電流Ib(高電圧バッテリ36を充電するときが正の値)の積算値としての電流量Isumを、値0にリセットした後に積算を開始する(ステップS344)。充電器40の駆動を中断すると、充電器40の出力が値0となる(充電器40からサブDC/DCコンバータ56を介して低電圧側電力ライン48に供給される電力も値0となる)から、ヒータ52の消費電力を賄うために、高電圧バッテリ36からメインDC/DCコンバータ54を介して低電圧側電力ライン48に電力が供給される。即ち、充電器40の駆動の中断の継続に従って、電流量Isumが負側に大きくなる。   When intermittently driving the charger 40, first, it is determined whether or not it is the first time (immediately after the voltage Vb of the high-voltage battery 36 reaches the predetermined voltage Vb1 or more during the execution of the first constant power control) ( Step S330). When it is the first time, the driving of the charger 40 is interrupted (stopped) (step S342), and the current as an integrated value of the current Ib of the high voltage battery 36 (a positive value when the high voltage battery 36 is charged). Integration is started after resetting the amount Isum to the value 0 (step S344). When driving of the charger 40 is interrupted, the output of the charger 40 becomes 0 (the power supplied from the charger 40 to the low voltage side power line 48 via the sub DC / DC converter 56 also becomes 0). Therefore, in order to cover the power consumption of the heater 52, power is supplied from the high voltage battery 36 to the low voltage side power line 48 via the main DC / DC converter 54. That is, the current amount Isum increases to the negative side as the driving of the charger 40 continues.

ステップS330で初回でないと判定されたときには、充電器40を駆動しているか否かを判定し(ステップS332)、充電器40を駆動していない(駆動を中断している)と判定されたときには、高電圧バッテリ36の電流量Isumを負の閾値Isumref1と比較する(ステップS334)。そして、高電圧バッテリ36の電流量Isumが閾値Isumref1よりも大きい(絶対値としては小さい)ときには、充電器40の状態を保持して(ステップS346)、ステップS320に戻る。この場合、充電器40の駆動の中断を継続することになる。一方、高電圧バッテリ36の電流量Isumが閾値Isumref1以下のときには、充電器40の駆動を再開し(ステップS336)、電流量Isumを、値0にリセットした後に積算を開始して(ステップS338)、ステップS320に戻る。充電器40を駆動する際には、例えば、上述の第1定電力制御と同様に行なうものとした。このように、閾値Isumref1は、充電器40の駆動の中断を継続するか駆動を再開するかを判定するのに用いられる閾値である。   When it is determined in step S330 that it is not the first time, it is determined whether or not the charger 40 is being driven (step S332), and when it is determined that the charger 40 is not being driven (the driving is interrupted). The current amount Isum of the high-voltage battery 36 is compared with the negative threshold value Isumref1 (step S334). When the current amount Isum of the high voltage battery 36 is larger than the threshold value Isumref1 (small in absolute value), the state of the charger 40 is maintained (step S346), and the process returns to step S320. In this case, the driving of the charger 40 is continuously interrupted. On the other hand, when the current amount Isum of the high voltage battery 36 is equal to or less than the threshold value Isumref1, the driving of the charger 40 is resumed (step S336), and the integration is started after the current amount Isum is reset to the value 0 (step S338). Return to step S320. When the charger 40 is driven, for example, the same operation as the first constant power control described above is performed. As described above, the threshold value Isumref1 is a threshold value used to determine whether to continue or stop driving the charger 40.

ステップS332で充電器40を駆動していると判定されたときには、高電圧バッテリ36の電流量Isumを正の閾値Isumref2と比較する(ステップS340)。そして、高電圧バッテリ36の電流量Isumが閾値Isumref2よりも小さいときには、充電器40の状態を保持して(ステップS346)、ステップS320に戻る。この場合、充電器40の駆動の中断を継続することになる。一方、高電圧バッテリ36の電流量Isumが閾値Isumref2以上のときには、充電器40の駆動を中断し(ステップS342)、電流量Isumを、値0にリセットした後に積算を開始して(ステップS344)、ステップS320に戻る。このように、閾値Isumref2は、充電器40の駆動を継続するか駆動を中断するかを判定するのに用いられる閾値である。なお、閾値Isumref2は、高電圧バッテリ36の過電圧や過充電を抑制するために、閾値Isumref1と絶対値が同一で符号を反転させた値を用いるものとした。   When it is determined in step S332 that the charger 40 is being driven, the current amount Isum of the high voltage battery 36 is compared with the positive threshold value Isumref2 (step S340). When the current amount Isum of the high voltage battery 36 is smaller than the threshold value Isumref2, the state of the charger 40 is maintained (step S346), and the process returns to step S320. In this case, the driving of the charger 40 is continuously interrupted. On the other hand, when the current amount Isum of the high voltage battery 36 is equal to or larger than the threshold value Isumref2, the driving of the charger 40 is interrupted (step S342), and the integration is started after the current amount Isum is reset to the value 0 (step S344). Return to step S320. As described above, the threshold value Isumref2 is a threshold value used to determine whether to continue or stop driving the charger 40. The threshold value Isumref2 is a value whose absolute value is the same as that of the threshold value Isumref1 and whose sign is inverted in order to suppress overvoltage and overcharge of the high voltage battery 36.

実施例では、このようにして充電器40を間欠駆動するのである。充電器40を間欠駆動することにより、充電器40を継続駆動するものに比して充電器40を駆動する際の出力を大きくすることができる。これにより、充電器40の効率を良好なものとすることができる。   In the embodiment, the charger 40 is intermittently driven in this manner. By driving the charger 40 intermittently, the output when driving the charger 40 can be increased as compared with the case where the charger 40 is continuously driven. Thereby, the efficiency of the charger 40 can be made favorable.

図6は、外部充電を行なう際の高電圧バッテリ36の電圧Vbや蓄電割合SOC、充電電力Pch,温度Tb,昇温制御の実行の有無の様子の一例を示す説明図である。図中、「ケースA」は、高電圧バッテリ36の開始時温度Tbstが所定温度Tblo以上のときの様子を示し、「ケースB」は、高電圧バッテリ36の開始時温度Tbstが所定温度Tblo未満で所定時温度Tbtiが所定温度Tblo以上のときの様子を示し、「ケースC」は、高電圧バッテリ36の開始時温度Tbstおよび所定時温度Tbtiが共に所定温度Tblo未満のときの様子を示す。ケースA,Bについては一点鎖線で示し、ケースCについては実線で示す。   FIG. 6 is an explanatory diagram showing an example of the voltage Vb of the high-voltage battery 36, the storage ratio SOC, the charging power Pch, the temperature Tb, and whether or not the temperature raising control is performed when external charging is performed. In the figure, “Case A” shows the state when the starting temperature Tbst of the high voltage battery 36 is equal to or higher than the predetermined temperature Tblo, and “Case B” shows that the starting temperature Tbst of the high voltage battery 36 is lower than the predetermined temperature Tblo. The case C shows the state when the predetermined temperature Tbti is equal to or higher than the predetermined temperature Tblo, and “Case C” shows the state when both the start temperature Tbst and the predetermined temperature Tbti of the high voltage battery 36 are lower than the predetermined temperature Tblo. Cases A and B are indicated by alternate long and short dash lines, and case C is indicated by a solid line.

ケースA,B,Cの何れでも、第1定電力制御を実行しているときにおいて(時刻t1〜t2)、高電圧バッテリ36の温度Tbが所定温度Tbno未満のときには、昇温制御を実行する。そして、ケースA,Bでは、時刻t2にバッテリ36の電圧Vbが所定電圧Vb1以上に至ったときに、高電圧バッテリ36の所定時温度Tbtiが所定温度Tblo以上であるから、昇温制御を終了し、定電圧制御,第2定電力制御を実行して外部充電を終了する。また、ケースCでは、時刻t2に高電圧バッテリ36の所定時温度Tbtiが所定温度Tblo未満であるから、充電器40を間欠駆動しながら昇温制御の実行を継続し、時刻t3に高電圧バッテリ36の温度Tbが所定温度Tblo以上に至ると、昇温制御を終了し、定電圧制御,第2定電力制御を実行して外部充電を終了する。これにより、ケースA,B,Cの何れでも、高電圧バッテリ36の温度Tbが所定温度Tbno以上に至るまで昇温制御を実行するものに比して、外気温が低いなど昇温制御を実行しても高電圧バッテリ36の温度Tbが上昇しにくいときに、ヒータ52の余分な電力消費を抑制することができる。また、高電圧バッテリ36の温度Tbが所定温度Tbno以上に至るまで昇温制御の実行を継続して外部充電を終了しないものに比して、外部充電の終了までの時間が長くなるのを抑制することができる。さらに、ケースCの場合、高電圧バッテリ36の温度Tbが所定温度Tblo以上に至るまで昇温制御を実行するから、高電圧バッテリ36の電解液の凍結の防止や解消を図ることができる。加えて、ケースCの場合、充電器40を間欠駆動することにより、充電器40を継続して駆動するものに比して充電器40の効率を良好なものとすることができる。   In any of cases A, B, and C, when the first constant power control is executed (time t1 to t2), the temperature increase control is executed when the temperature Tb of the high voltage battery 36 is lower than the predetermined temperature Tbno. . In cases A and B, when the voltage Vb of the battery 36 reaches or exceeds the predetermined voltage Vb1 at time t2, the temperature control is terminated because the predetermined temperature Tbti of the high voltage battery 36 is equal to or higher than the predetermined temperature Tblo. Then, the constant voltage control and the second constant power control are executed to finish the external charging. In case C, since the predetermined temperature Tbti of the high voltage battery 36 is lower than the predetermined temperature Tblo at time t2, the temperature increase control is continuously performed while the charger 40 is intermittently driven, and the high voltage battery is detected at time t3. When the temperature Tb of 36 reaches the predetermined temperature Tblo or more, the temperature rise control is terminated, the constant voltage control and the second constant power control are executed, and the external charging is terminated. As a result, in any of cases A, B, and C, the temperature rise control is executed such that the outside temperature is lower than that in which the temperature rise control is performed until the temperature Tb of the high voltage battery 36 reaches the predetermined temperature Tbno or higher. Even when the temperature Tb of the high-voltage battery 36 is difficult to rise, excessive power consumption of the heater 52 can be suppressed. Further, it is possible to prevent the time until the end of the external charging from becoming longer as compared with the case where the temperature increase control is continued until the temperature Tb of the high voltage battery 36 reaches the predetermined temperature Tbno or more and the external charging is not terminated. can do. Further, in the case C, the temperature rise control is executed until the temperature Tb of the high voltage battery 36 reaches a predetermined temperature Tblo or higher, so that the electrolytic solution of the high voltage battery 36 can be prevented from being frozen or eliminated. In addition, in the case C, the efficiency of the charger 40 can be improved by intermittently driving the charger 40 as compared with the case where the charger 40 is continuously driven.

以上説明した実施例の電気自動車20では、高電圧バッテリ36の開始時温度Tbstが所定温度Tblo(高電圧バッテリ36の電解液の凍結温度に基づいて定められる温度)未満での充電制御(極低温時制御)の実行時において、第1定電力制御の実行終了後(第1定電力制御の実行中に高電圧バッテリ36の電圧Vbが所定電圧Vb1以上に至った後)に、高電圧バッテリ36の温度Tbが所定温度Tblo未満のときには昇温制御を実行し、高電圧バッテリ36の温度Tbが所定温度Tblo以上のときには昇温制御を実行しない。したがって、第1定電力制御の実行終了後に高電圧バッテリ36の温度Tbが所定温度Tblo未満のときには、昇温制御を実行するから、高電圧バッテリ36を昇温して高電圧バッテリ36の電解液の凍結の防止や解消を図りつつ、外部充電を行なうことができる。また、第1定電力制御の実行終了後に高電圧バッテリ36の温度Tbが所定温度Tblo以上のときには、昇温制御を実行しないから、高電圧バッテリ36の温度Tbが所定温度Tbno未満のときに(所定温度Tblo以上でも)昇温制御を実行するものに比して、外気温が低いなど昇温制御を実行しても高電圧バッテリ36の温度Tbが上昇しにくいときに、ヒータ52の余分な電力消費を抑制することができる。また、高電圧バッテリ36の温度Tbが所定温度Tbno以上に至るまで昇温制御の実行を継続して外部充電を終了しないもの比して、外部充電の終了までの時間が長くなるのを抑制することができる。   In the electric vehicle 20 of the embodiment described above, charging control (extremely low temperature) when the start temperature Tbst of the high voltage battery 36 is lower than a predetermined temperature Tblo (temperature determined based on the freezing temperature of the electrolyte of the high voltage battery 36). When the first constant power control is executed (after the voltage Vb of the high voltage battery 36 reaches or exceeds the predetermined voltage Vb1 during the execution of the first constant power control), the high voltage battery 36 is When the temperature Tb is lower than the predetermined temperature Tblo, the temperature increase control is executed. When the temperature Tb of the high voltage battery 36 is equal to or higher than the predetermined temperature Tblo, the temperature increase control is not executed. Accordingly, when the temperature Tb of the high voltage battery 36 is lower than the predetermined temperature Tblo after the execution of the first constant power control, the temperature raising control is executed. Therefore, the temperature of the high voltage battery 36 is raised to increase the electrolyte of the high voltage battery 36. External charging can be performed while preventing or eliminating freezing. Further, when the temperature Tb of the high voltage battery 36 is equal to or higher than the predetermined temperature Tblo after the execution of the first constant power control, the temperature increase control is not executed, and therefore when the temperature Tb of the high voltage battery 36 is lower than the predetermined temperature Tbno ( When the temperature Tb of the high-voltage battery 36 is difficult to rise even if the temperature increase control is executed, such as when the outside air temperature is low, as compared with the case where the temperature increase control is executed (even if the temperature is higher than the predetermined temperature Tblo) Power consumption can be suppressed. Further, it is possible to prevent the time until the end of the external charging from becoming longer, as compared with the case where the temperature increase control is continued until the temperature Tb of the high voltage battery 36 reaches the predetermined temperature Tbno or more and the external charging is not terminated. be able to.

実施例の電気自動車20では、所定温度Tbloは、高電圧バッテリ36の電解液の凍結温度(凍結する可能性のある温度範囲の上限)を用いるものとしたが、所定温度Tbno未満の温度であれば、高電圧バッテリ36の電解液の凍結温度よりも若干高い温度を用いるものとしてもよい。   In the electric vehicle 20 of the embodiment, the predetermined temperature Tblo uses the freezing temperature of the electrolyte solution of the high-voltage battery 36 (the upper limit of the temperature range in which freezing is possible), but may be a temperature lower than the predetermined temperature Tbno. For example, a temperature slightly higher than the freezing temperature of the electrolytic solution of the high voltage battery 36 may be used.

実施例の電気自動車20では、高電圧バッテリ36の開始時温度Tbstと所定温度tbloとの大小関係に拘わらずに、第1定電力制御を、高電圧バッテリ36の電圧Vbが所定電圧Vb1以上に至るまで実行するものとしたが、高電圧バッテリ36の蓄電割合SOCが所定割合SOC1以上に至るまで実行するものとしてもよい。ここで、所定割合SOC1は、例えば、第1定電力制御の実行による高電圧バッテリ36の満充電に相当する蓄電割合SOCなどを用いることができる。   In the electric vehicle 20 of the embodiment, regardless of the magnitude relationship between the starting temperature Tbst of the high voltage battery 36 and the predetermined temperature tblo, the first constant power control is performed so that the voltage Vb of the high voltage battery 36 is equal to or higher than the predetermined voltage Vb1. However, it may be executed until the storage rate SOC of the high-voltage battery 36 reaches a predetermined rate SOC1 or more. Here, as the predetermined ratio SOC1, for example, a storage ratio SOC corresponding to full charge of the high voltage battery 36 by the execution of the first constant power control can be used.

実施例の電気自動車20では、高電圧バッテリ36の開始時温度Tbstと所定温度tbloとの大小関係に拘わらずに、第2定電力制御を、高電圧バッテリ36の電圧Vbが所定電圧Vb2以上に至るまで実行するものとしたが、高電圧バッテリ36の蓄電割合SOCが所定割合SOC2以上に至るまで実行するものとしてもよい。ここで、所定割合SOC2は、例えば、第2定電力制御の実行による高電圧バッテリ36の満充電に相当する蓄電割合SOCなどを用いることができる。   In the electric vehicle 20 of the embodiment, regardless of the magnitude relationship between the starting temperature Tbst of the high voltage battery 36 and the predetermined temperature tblo, the second constant power control is performed so that the voltage Vb of the high voltage battery 36 is equal to or higher than the predetermined voltage Vb2. However, it may be executed until the storage rate SOC of the high-voltage battery 36 reaches a predetermined rate SOC2 or more. Here, as the predetermined ratio SOC2, for example, a storage ratio SOC corresponding to full charge of the high voltage battery 36 by execution of the second constant power control can be used.

実施例の電気自動車20では、高電圧バッテリ36の開始時温度Tbstと所定温度Tbloとの大小関係に拘わらずに、第1定電力制御の実行中には、高電圧バッテリ36の温度Tbが所定温度Tbno未満のときに昇温制御を実行し、第1定電力制御の実行終了後(第1定電力制御の実行中に高電圧バッテリ36の電圧Vbが所定電圧Vb1以上に至った後)には、高電圧バッテリ36の温度Tbが所定温度Tblo未満のときに昇温制御を実行するものとした。しかし、高電圧バッテリ36の開始時温度Tbstが所定温度Tblo以上のときには、第1定電力制御の実行中か実行終了後かに拘わらずに、高電圧バッテリ36の温度Tbが所定温度Tbno未満のときに昇温制御を実行するものとしてもよい。また、高電圧バッテリ36の開始時温度Tbstが所定温度Tblo未満のときには、第1定電力制御の実行中か実行終了後かに拘わらずに、高電圧バッテリ36の温度Tbが所定温度Tblo未満のときに昇温制御を実行するものとしてもよい。   In the electric vehicle 20 according to the embodiment, the temperature Tb of the high voltage battery 36 is predetermined during execution of the first constant power control regardless of the magnitude relationship between the starting temperature Tbst of the high voltage battery 36 and the predetermined temperature Tblo. The temperature increase control is executed when the temperature is lower than Tbno, and after the execution of the first constant power control is finished (after the voltage Vb of the high voltage battery 36 reaches the predetermined voltage Vb1 or more during the execution of the first constant power control). The temperature increase control is executed when the temperature Tb of the high voltage battery 36 is lower than the predetermined temperature Tblo. However, when the starting temperature Tbst of the high voltage battery 36 is equal to or higher than the predetermined temperature Tblo, the temperature Tb of the high voltage battery 36 is less than the predetermined temperature Tbno regardless of whether the first constant power control is being executed or after the execution is completed. Sometimes, the temperature raising control may be executed. When the start temperature Tbst of the high voltage battery 36 is lower than the predetermined temperature Tblo, the temperature Tb of the high voltage battery 36 is lower than the predetermined temperature Tblo regardless of whether the first constant power control is being executed or after the execution is completed. Sometimes, the temperature raising control may be executed.

実施例の電気自動車20では、高電圧バッテリ36の所定時温度Tbtiが所定温度Tblo未満のときには、高電圧バッテリ36の電流量Isumに基づいて充電器40を間欠駆動するものとしたが、高電圧バッテリ36の蓄電割合SOCと電圧Vbとのうちの何れかに基づいて充電器40を間欠駆動するものとしてもよい。高電圧バッテリ36の蓄電割合SOCに基づいて充電器40を間欠駆動する場合、例えば、充電器40を駆動していない(駆動を中断している)ときには、高電圧バッテリ36の蓄電割合SOCが上述の所定割合SOC1よりもある程度小さい所定割合SOC3以下に至ったときに充電器40の駆動を再開し、充電器40を駆動しているときには、高電圧バッテリ36の蓄電割合SOCが所定割合SOC3よりも大きく且つ所定割合SOC1以下の所定割合SOC4以上に至ったときに充電器40の駆動を中断すればよい。高電圧バッテリ36の電圧Vbに基づいて充電器40を間欠駆動する場合、例えば、充電器40を駆動していないときには、高電圧バッテリ36の電圧Vbが所定電圧Vb1よりもある程度小さい所定電圧Vb3以下に至ったときに充電器40の駆動を再開し、充電器40を駆動しているときには、高電圧バッテリ36の電圧Vbが所定電圧Vb3よりも大きく且つ所定電圧Vb1以下の所定電圧Vb4以上に至ったときに充電器40の駆動を中断すればよい。   In the electric vehicle 20 of the embodiment, when the predetermined temperature Tbti of the high voltage battery 36 is lower than the predetermined temperature Tblo, the charger 40 is intermittently driven based on the current amount Isum of the high voltage battery 36. The charger 40 may be intermittently driven based on either the storage ratio SOC of the battery 36 or the voltage Vb. When the charger 40 is intermittently driven based on the storage rate SOC of the high-voltage battery 36, for example, when the charger 40 is not driven (driving is interrupted), the storage rate SOC of the high-voltage battery 36 is the above-described value. The driving of the charger 40 is resumed when the predetermined rate SOC3 is somewhat smaller than the predetermined rate SOC1, and when the charger 40 is being driven, the storage rate SOC of the high voltage battery 36 is higher than the predetermined rate SOC3. What is necessary is just to interrupt the drive of the charger 40, when it becomes large and reaches more than predetermined ratio SOC4 below predetermined ratio SOC1. When the charger 40 is intermittently driven based on the voltage Vb of the high-voltage battery 36, for example, when the charger 40 is not driven, the voltage Vb of the high-voltage battery 36 is lower than the predetermined voltage Vb3 that is somewhat smaller than the predetermined voltage Vb1. When the battery charger 40 is driven, the voltage Vb of the high voltage battery 36 reaches a predetermined voltage Vb4 that is greater than the predetermined voltage Vb3 and less than or equal to the predetermined voltage Vb1. The driving of the charger 40 may be interrupted.

実施例の電気自動車20では、高電圧バッテリ36の所定時温度Tbtiが所定温度Tblo未満のときには、高電圧バッテリ36の温度Tbが所定温度Tblo以上に至るまで、充電器40を間欠駆動するものとしたが、充電器40を継続駆動するものとしてもよい。なお、充電器40を継続駆動するときには、高電圧バッテリ36の過電圧や過充電を抑制するために、充電器40の出力電力の絶対値がヒータ52の消費電力の絶対値以下となるように充電器40を継続駆動する必要がある。   In the electric vehicle 20 of the embodiment, when the predetermined temperature Tbti of the high voltage battery 36 is lower than the predetermined temperature Tblo, the charger 40 is intermittently driven until the temperature Tb of the high voltage battery 36 reaches the predetermined temperature Tblo or more. However, the charger 40 may be continuously driven. When the charger 40 is continuously driven, charging is performed so that the absolute value of the output power of the charger 40 is equal to or less than the absolute value of the power consumption of the heater 52 in order to suppress overvoltage and overcharge of the high voltage battery 36. The device 40 needs to be continuously driven.

実施例の電気自動車20では、高電圧バッテリ36の開始時温度Tbstと所定温度tbloとの大小関係に拘わらずに、第1定電力制御の実行後で第2定電力制御の実行前に、定電圧制御を実行するものとしたが、この定電圧制御を実行しないものとしてもよい。   In the electric vehicle 20 of the embodiment, regardless of the magnitude relationship between the starting temperature Tbst of the high voltage battery 36 and the predetermined temperature tblo, the constant voltage control is performed after the first constant power control and before the second constant power control. Although the voltage control is executed, the constant voltage control may not be executed.

実施例の電気自動車20では、高電圧バッテリ36の開始時温度Tbstと所定温度tbloとの大小関係に拘わらずに、第1定電力制御,定電圧制御,第2定電力制御を順に実行するものとしたが、第1定電力制御だけを実行して定電圧制御や第2定電力制御を実行しないものとするなど、外部充電が行なわれるように充電器40を制御するものであれば如何なるものとしても構わない。この場合において、高電圧バッテリ36の開始時温度Tbstが所定温度Tblo以上のときには、高電圧バッテリ36の温度Tbが所定温度Tbno未満のときに昇温制御を実行し、高電圧バッテリ36の開始時温度Tbstが所定温度Tblo未満のときには、高電圧バッテリ36の温度Tbが所定温度Tblo未満のときに昇温制御を実行するものとしてもよい。また、この場合において、高電圧バッテリ36の温度Tbが所定温度Tblo未満のときには、高電圧バッテリ36の電流量Isumと蓄電割合SOCと電圧Vbとのうちの何れかに基づいて充電器40を間欠駆動するものとしてもよい。   In the electric vehicle 20 of the embodiment, the first constant power control, the constant voltage control, and the second constant power control are sequentially executed regardless of the magnitude relationship between the starting temperature Tbst of the high voltage battery 36 and the predetermined temperature tblo. However, as long as the charger 40 is controlled so that external charging is performed, such as executing only the first constant power control and not performing the constant voltage control or the second constant power control, any It does not matter. In this case, when the start temperature Tbst of the high voltage battery 36 is equal to or higher than the predetermined temperature Tblo, the temperature increase control is executed when the temperature Tb of the high voltage battery 36 is lower than the predetermined temperature Tbno, and the start time of the high voltage battery 36 is reached. When the temperature Tbst is lower than the predetermined temperature Tblo, the temperature increase control may be executed when the temperature Tb of the high voltage battery 36 is lower than the predetermined temperature Tblo. In this case, when the temperature Tb of the high voltage battery 36 is lower than the predetermined temperature Tblo, the charger 40 is intermittently set based on any of the current amount Isum, the storage rate SOC, and the voltage Vb of the high voltage battery 36. It may be driven.

実施例の電気自動車20では、車両側コネクタ42と電源側コネクタ92とが接続されているときに外部電源90からの電力を用いて高電圧バッテリ36を充電する充電器40を備えるものとした。しかし、この充電器40に加えてまたは代えて、外部電源90からの電力を非接触で受電して高電圧バッテリ36を充電する充電器を備えるものとしてもよい。   The electric vehicle 20 of the embodiment includes the charger 40 that charges the high-voltage battery 36 using the power from the external power source 90 when the vehicle-side connector 42 and the power-side connector 92 are connected. However, in addition to or instead of the charger 40, a charger that receives power from the external power supply 90 in a non-contact manner and charges the high-voltage battery 36 may be provided.

実施例では、走行用のモータ32を備える電気自動車20の構成としたが、走行用のモータに加えて走行用のエンジンも備えるハイブリッド自動車の構成としてもよい。例えば、図7のハイブリッド自動車120に示すように、駆動輪22a,22bに連結された駆動軸26にモータ32を接続するのに加えて、駆動軸26にプラネタリギヤ124を介してエンジン122およびモータ126を接続する構成としてもよい。また、図8のハイブリッド自動車220に示すように、駆動輪22a,22bに連結された駆動軸26に変速機230を介してモータ32を接続すると共に、モータ32の回転軸にクラッチ224を介してエンジン222を接続する構成としてもよい。   In the embodiment, the configuration of the electric vehicle 20 including the traveling motor 32 is adopted. However, a configuration of a hybrid vehicle including a traveling engine in addition to the traveling motor may be employed. For example, as shown in the hybrid vehicle 120 of FIG. 7, in addition to connecting the motor 32 to the drive shaft 26 coupled to the drive wheels 22a and 22b, the engine 122 and the motor 126 are connected to the drive shaft 26 via the planetary gear 124. It is good also as a structure which connects. Further, as shown in the hybrid vehicle 220 of FIG. 8, the motor 32 is connected to the drive shaft 26 connected to the drive wheels 22 a and 22 b via the transmission 230, and the rotation shaft of the motor 32 is connected to the rotation shaft via the clutch 224. The engine 222 may be connected.

実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、高電圧バッテリ36が「バッテリ」に相当し、充電器40が「充電器」に相当し、ヒータ52が「昇温装置」に相当し、電子制御ユニット60が「制御装置」に相当する。   The correspondence between the main elements of the embodiment and the main elements of the invention described in the column of means for solving the problems will be described. In the embodiment, the high voltage battery 36 corresponds to a “battery”, the charger 40 corresponds to a “charger”, the heater 52 corresponds to a “temperature raising device”, and the electronic control unit 60 corresponds to a “control device”. Equivalent to.

なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。   The correspondence between the main elements of the embodiment and the main elements of the invention described in the column of means for solving the problem is the same as that of the embodiment described in the column of means for solving the problem. Therefore, the elements of the invention described in the column of means for solving the problems are not limited. In other words, the interpretation of the invention described in the column of means for solving the problem should be made based on the description of the column, and the examples are those of the invention described in the column of means for solving the problem. It is only a specific example.

以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   As mentioned above, although the form for implementing this invention was demonstrated using the Example, this invention is not limited at all to such an Example, In the range which does not deviate from the summary of this invention, it is with various forms. Of course, it can be implemented.

本発明は、自動車の製造産業などに利用可能である。   The present invention can be used in the automobile manufacturing industry.

20 電気自動車、22a,22b 駆動輪、24 デファレンシャルギヤ、26 駆動軸、32,126 モータ、34 PCU、36 高電圧バッテリ、36a 電圧センサ、36b 電流センサ、36c 温度センサ、40 充電器、42 車両側コネクタ、43 接続検出センサ、46 高電圧側電力ライン、48 低電圧側電力ライン、50 低電圧バッテリ、52 ヒータ、52a 発熱部材、52b スイッチ、54 メインDC/DCコンバータ、56 サブDC/DCコンバータ、60 電子制御ユニット、90 外部電源、92 電源側コネクタ、120,220 ハイブリッド自動車、122,222 エンジン、124 プラネタリギヤ、224 クラッチ、230 変速機、CHR 充電用リレー、SMR システムメインリレー。  20 electric vehicle, 22a, 22b drive wheel, 24 differential gear, 26 drive shaft, 32, 126 motor, 34 PCU, 36 high voltage battery, 36a voltage sensor, 36b current sensor, 36c temperature sensor, 40 charger, 42 vehicle side Connector, 43 Connection detection sensor, 46 High voltage side power line, 48 Low voltage side power line, 50 Low voltage battery, 52 Heater, 52a Heating member, 52b Switch, 54 Main DC / DC converter, 56 Sub DC / DC converter, 60 Electronic control unit, 90 External power supply, 92 Power supply side connector, 120, 220 Hybrid vehicle, 122, 222 Engine, 124 Planetary gear, 224 Clutch, 230 Transmission, CHR charging relay, SMR system main relay.

Claims (4)

走行用のモータに電力を供給するバッテリと、
外部電源からの電力を用いて前記バッテリを充電する外部充電が可能な充電器と、
前記バッテリが接続された電力ラインに接続されると共に前記バッテリを昇温する昇温装置と、
前記充電器と前記昇温装置とを制御する制御装置と、
を備える自動車であって、
前記制御装置は、前記外部充電が行なわれるように前記充電器を制御する充電制御の実行時において、前記バッテリの温度が第1所定温度よりも低い第2所定温度未満の場合には、前記バッテリが昇温されるように前記昇温装置を制御する昇温制御を実行し、前記バッテリの温度が前記第2所定温度以上の場合には、前記昇温制御を実行せず、
前記第1所定温度は、前記バッテリの第1昇温目標温度であり、
前記第2所定温度は、前記バッテリの第2昇温目標温度で且つ前記バッテリの電解液の凍結温度であり、
前記制御装置は、
前記外部充電の開始時の前記バッテリの温度である開始時温度が前記第2所定温度以上の場合には、前記充電制御として、まず、前記バッテリの充電電力が第1所定電力で一定となるように前記充電器を制御する第1定電力制御を実行し、前記第1定電力制御の実行中に前記バッテリの蓄電割合または電圧が第1閾値以上に至った第1条件が成立すると、前記バッテリの充電電力が前記第1所定電力よりも小さい第2所定電力で一定となるように前記充電器を制御する第2定電力制御を実行し、前記第2定電力制御の実行中に前記バッテリの蓄電割合または電圧が前記第1閾値よりも大きい第2閾値以上に至った第2条件が成立すると前記充電制御を終了し、
前記開始時温度が前記第2所定温度未満の場合には、前記充電制御として、まず、前記第1定電力制御を実行し、前記第1条件が成立すると、前記第1条件が成立したときの前記バッテリの温度である所定時温度が前記第2所定温度以上のときには前記第2定電力制御を実行して前記第2条件が成立すると前記充電制御を終了し、前記所定時温度が前記第2所定温度未満のときには前記バッテリの温度が前記第2所定温度以上に至った後に前記第2定電力制御を実行して前記第2条件が成立すると前記充電制御を終了する、
自動車。
A battery for supplying power to the motor for traveling;
A charger capable of external charging that charges the battery using power from an external power source; and
A temperature raising device connected to the power line to which the battery is connected and raising the temperature of the battery;
A control device for controlling the charger and the temperature raising device;
A car equipped with
When the temperature of the battery is lower than a second predetermined temperature lower than a first predetermined temperature during execution of charging control for controlling the charger so that the external charging is performed, the control device When the temperature of the battery is equal to or higher than the second predetermined temperature, the temperature increase control is not performed .
The first predetermined temperature is a first temperature increase target temperature of the battery,
The second predetermined temperature is a second temperature increase target temperature of the battery and a freezing temperature of the electrolyte of the battery,
The controller is
When the starting temperature, which is the temperature of the battery at the start of the external charging, is equal to or higher than the second predetermined temperature, as the charging control, first, the charging power of the battery is made constant at the first predetermined power. The first constant power control for controlling the charger is performed, and when the first condition that the storage ratio or voltage of the battery reaches a first threshold value or more is satisfied during the execution of the first constant power control, the battery The second constant power control for controlling the charger is performed so that the charging power of the battery is constant at a second predetermined power smaller than the first predetermined power, and the battery is controlled during the execution of the second constant power control. When the second condition in which the storage ratio or voltage reaches a second threshold value greater than the first threshold value is satisfied, the charging control is terminated,
When the starting temperature is lower than the second predetermined temperature, as the charging control, first, the first constant power control is executed, and when the first condition is satisfied, the first condition is satisfied. When the predetermined temperature, which is the temperature of the battery, is equal to or higher than the second predetermined temperature, the second constant power control is executed, and when the second condition is satisfied, the charge control is terminated, and the predetermined temperature is the second temperature. When the temperature is lower than a predetermined temperature, the second constant power control is executed after the temperature of the battery reaches the second predetermined temperature or higher, and the charging control is terminated when the second condition is satisfied.
Automobile.
請求項記載の自動車であって、
前記制御装置は、前記開始時温度と前記第2所定温度との大小関係に拘わらずに、前記第1定電力制御の実行中には前記バッテリの温度が前記第1所定温度未満のときに前記昇温制御を実行し、前記第1条件が成立した後には前記バッテリの温度が前記第2所定温度未満のときに前記昇温制御を実行する、
自動車。
The automobile according to claim 1 ,
Regardless of the magnitude relationship between the starting temperature and the second predetermined temperature, the control device is configured to execute the first constant power control when the battery temperature is lower than the first predetermined temperature. Performing temperature rise control and executing the temperature rise control when the temperature of the battery is lower than the second predetermined temperature after the first condition is satisfied,
Automobile.
請求項記載の自動車であって、
前記制御装置は、前記所定時温度が前記第2所定温度未満の場合には、前記バッテリの温度が前記第2所定温度以上に至るまで、前記充電制御として、前記バッテリの蓄電割合と電圧と充放電電流量とのうちの何れかに基づいて前記充電器を間欠駆動する、
自動車。
The automobile according to claim 2 ,
When the temperature at the predetermined time is lower than the second predetermined temperature, the control device performs charge control until the battery temperature reaches the second predetermined temperature or more as the charge ratio and voltage and charge of the battery. Intermittently driving the charger based on any of the discharge current amount,
Automobile.
請求項1ないし3のいずれか1つの請求項に記載の自動車であって、
前記制御装置は、前記第1定電力制御の実行後で且つ前記第2定電力制御の実行前に、前記バッテリの電圧が所定電圧で一定となるように前記充電器を制御する定電圧制御を実行する、
自動車。



The automobile according to any one of claims 1 to 3 ,
The control device performs constant voltage control for controlling the charger so that the voltage of the battery becomes constant at a predetermined voltage after execution of the first constant power control and before execution of the second constant power control. Run,
Automobile.



JP2016177722A 2016-09-12 2016-09-12 Automobile Active JP6493344B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016177722A JP6493344B2 (en) 2016-09-12 2016-09-12 Automobile
CN201710800186.2A CN107813712B (en) 2016-09-12 2017-09-07 Vehicle with a steering wheel
EP17189989.1A EP3293034B1 (en) 2016-09-12 2017-09-07 Vehicle
US15/697,586 US10406933B2 (en) 2016-09-12 2017-09-07 Vehicle
KR1020170114301A KR102011285B1 (en) 2016-09-12 2017-09-07 Vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016177722A JP6493344B2 (en) 2016-09-12 2016-09-12 Automobile

Publications (2)

Publication Number Publication Date
JP2018046607A JP2018046607A (en) 2018-03-22
JP6493344B2 true JP6493344B2 (en) 2019-04-03

Family

ID=59846410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016177722A Active JP6493344B2 (en) 2016-09-12 2016-09-12 Automobile

Country Status (5)

Country Link
US (1) US10406933B2 (en)
EP (1) EP3293034B1 (en)
JP (1) JP6493344B2 (en)
KR (1) KR102011285B1 (en)
CN (1) CN107813712B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6288133B2 (en) * 2016-03-22 2018-03-07 トヨタ自動車株式会社 Automobile
WO2018161010A1 (en) 2017-03-03 2018-09-07 Gentherm Incorporated Dual voltage battery system for a vehicle
JP7003777B2 (en) * 2018-03-23 2022-01-21 トヨタ自動車株式会社 Hybrid vehicle control device
JP6974234B2 (en) * 2018-03-30 2021-12-01 本田技研工業株式会社 Vehicle power system
CN112563623A (en) * 2018-11-30 2021-03-26 宁德时代新能源科技股份有限公司 Battery heating system
US10604028B1 (en) * 2019-02-15 2020-03-31 Wisk Aero Llc Desired departure temperature for a battery in a vehicle
TWI691142B (en) * 2019-06-20 2020-04-11 廣達電腦股份有限公司 Smart battery device and charging method
CN114094234A (en) * 2021-10-26 2022-02-25 华人运通(江苏)技术有限公司 Battery heating control method, device, equipment and medium
CN114046319B (en) * 2021-11-11 2023-12-15 潍柴动力股份有限公司 AMT clutch position correction method and system
US11481010B1 (en) 2022-06-29 2022-10-25 8Me Nova, Llc Pre-cooling a battery energy storage system for charging or discharging
WO2024172050A1 (en) * 2023-02-14 2024-08-22 株式会社アイシン In-vehicle charging device and in-vehicle charging method
US20240270188A1 (en) * 2023-02-15 2024-08-15 GM Global Technology Operations LLC Startup methods in battery-less auxiliary low voltage bus

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002125326A (en) * 2000-10-12 2002-04-26 Honda Motor Co Ltd Battery charge control method
JP5122214B2 (en) * 2007-08-08 2013-01-16 パナソニック株式会社 Battery pack, charging device, and charging system
US8818598B2 (en) 2010-07-05 2014-08-26 Toyota Jidosha Kabushiki Kaisha Vehicle control device and vehicle control method
JP2012178899A (en) * 2011-02-25 2012-09-13 Nissan Motor Co Ltd Charger
JP5732930B2 (en) * 2011-03-11 2015-06-10 日産自動車株式会社 Battery charge control device
JP5699702B2 (en) * 2011-03-11 2015-04-15 日産自動車株式会社 Vehicle charging control device
JP5736860B2 (en) * 2011-03-11 2015-06-17 日産自動車株式会社 Battery charge control device
JP5760531B2 (en) * 2011-03-11 2015-08-12 日産自動車株式会社 Battery temperature control device
JP5668541B2 (en) * 2011-03-11 2015-02-12 日産自動車株式会社 Vehicle charging control device
JP5668542B2 (en) * 2011-03-11 2015-02-12 日産自動車株式会社 Vehicle charging control device
JP5821310B2 (en) * 2011-06-14 2015-11-24 三菱自動車工業株式会社 Vehicle warm-up control device
WO2013038492A1 (en) * 2011-09-13 2013-03-21 トヨタ自動車株式会社 Vehicle control device and control method
US8620506B2 (en) * 2011-12-21 2013-12-31 Ford Global Technologies, Llc Method and system for thermal management of a high voltage battery for a vehicle
JP2013183523A (en) * 2012-03-01 2013-09-12 Nissan Motor Co Ltd Electric vehicle
JP5660102B2 (en) 2012-10-16 2015-01-28 トヨタ自動車株式会社 Vehicle power supply
US9337680B2 (en) * 2013-03-12 2016-05-10 Ford Global Technologies, Llc Method and system for controlling an electric vehicle while charging
US9114794B2 (en) * 2013-03-13 2015-08-25 Ford Global Technologies, Llc Method and system for controlling an electric vehicle while charging
JP6149575B2 (en) * 2013-07-29 2017-06-21 三菱自動車工業株式会社 Vehicle warm-up control device
JP6024684B2 (en) * 2014-02-21 2016-11-16 トヨタ自動車株式会社 Power storage system
JP6229539B2 (en) * 2014-02-27 2017-11-15 三菱自動車工業株式会社 Vehicle battery control device
JP2015220956A (en) * 2014-05-21 2015-12-07 三菱自動車工業株式会社 Charger
JP6331697B2 (en) * 2014-05-28 2018-05-30 トヨタ自動車株式会社 Power storage system
CN105529508A (en) * 2014-06-30 2016-04-27 比亚迪股份有限公司 Battery heating system, battery device and electric vehicle
JP6176223B2 (en) * 2014-11-04 2017-08-09 トヨタ自動車株式会社 Battery system
JP6424596B2 (en) * 2014-12-02 2018-11-21 株式会社デンソー Vehicle charge control device
US10640004B2 (en) * 2016-01-29 2020-05-05 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for charging and warming vehicle components
JP6585525B2 (en) * 2016-03-08 2019-10-02 本田技研工業株式会社 Power system
JP6687895B2 (en) * 2016-06-17 2020-04-28 三菱自動車工業株式会社 Vehicle fuel cell warm-up device

Also Published As

Publication number Publication date
CN107813712B (en) 2020-05-05
US20180072183A1 (en) 2018-03-15
EP3293034A1 (en) 2018-03-14
US10406933B2 (en) 2019-09-10
KR102011285B1 (en) 2019-08-16
EP3293034B1 (en) 2021-03-31
KR20180029890A (en) 2018-03-21
JP2018046607A (en) 2018-03-22
CN107813712A (en) 2018-03-20

Similar Documents

Publication Publication Date Title
JP6493344B2 (en) Automobile
JP5206873B2 (en) Electric vehicle and method for setting total allowable discharge energy in electric vehicle
US10017059B2 (en) Vehicle
JP5245780B2 (en) vehicle
CN103963725A (en) Power source system for vehicle, vehicle, and vehicle control method
US20190232788A1 (en) Electrically driven vehicle
US9878625B2 (en) Vehicle including charger and electronic control unit configured to control the charger, and control method for controlling charger of vehicle
US10604159B2 (en) Display device
JP6376160B2 (en) Automobile
US10518649B2 (en) Motor vehicle
JP2017175712A (en) Automobile
JP5949365B2 (en) Power system
JP5885236B2 (en) Vehicle power supply
US20170305414A1 (en) Hybrid vehicle
JP5375344B2 (en) Power output device and electric vehicle
JP5299097B2 (en) Power supply device, control method therefor, power output device, and hybrid vehicle
JP2010269633A (en) Hybrid vehicle and method of controlling the same
JP5310231B2 (en) POWER OUTPUT DEVICE, ITS CONTROL METHOD, AND HYBRID VEHICLE
JP5402838B2 (en) Power supply device and vehicle
JP5310054B2 (en) Remaining capacity calculation device, vehicle equipped with the same, and remaining capacity calculation method
JP2010246344A (en) Power supply device, method of controlling the same, and vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R151 Written notification of patent or utility model registration

Ref document number: 6493344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151