WO2013128964A1 - Method for producing resin molded body - Google Patents

Method for producing resin molded body Download PDF

Info

Publication number
WO2013128964A1
WO2013128964A1 PCT/JP2013/050698 JP2013050698W WO2013128964A1 WO 2013128964 A1 WO2013128964 A1 WO 2013128964A1 JP 2013050698 W JP2013050698 W JP 2013050698W WO 2013128964 A1 WO2013128964 A1 WO 2013128964A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclic olefin
olefin resin
molded body
resin composition
die
Prior art date
Application number
PCT/JP2013/050698
Other languages
French (fr)
Japanese (ja)
Inventor
敏雄 中根
克裕 西村
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Publication of WO2013128964A1 publication Critical patent/WO2013128964A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • B29C48/865Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films

Definitions

  • This invention relates to the manufacturing method of the resin molding which uses a cyclic olefin resin composition as a raw material.
  • the cyclic olefin resin is a resin having a cyclic olefin skeleton in the main chain, and has high transparency, low birefringence, high heat distortion temperature, light weight, dimensional stability, low water absorption, hydrolysis resistance, and chemical resistance. It is a resin with many features such as low dielectric constant, low dielectric loss, and no environmental load substances. For this reason, cyclic olefin resins are used in a wide variety of fields where these characteristics are required.
  • a sag (a material in which the raw material resin adheres to the lip part) is generated at the lip part of the die at the tip of the extruder.
  • a method for preventing the main body from being generated during molding is required.
  • Patent Document 1 discloses that adjusting the temperature of the discharge port of the die to 200 ° C. or more and 255 ° C. or less makes it difficult to generate a sag.
  • Patent Document 2 discloses a technique that uses a fatty acid metal salt in order to suppress the occurrence of scouring.
  • a cyclic olefin resin composition containing a cyclic olefin resin and another thermoplastic resin By the way, when molding a cyclic olefin resin composition containing a cyclic olefin resin and another thermoplastic resin, the above-mentioned problem of the main chain is particularly likely to occur.
  • a cyclic olefin resin composition containing a cyclic olefin resin and a linear low density polyethylene is used in various applications such as a heat-shrinkable film. Occurrence problems occur.
  • the present invention has been made in order to solve the above problems, and the purpose thereof is a case where a cyclic olefin resin composition containing a cyclic olefin resin and a linear low density polyethylene is used as a raw material.
  • An object of the present invention is to provide a technique capable of suppressing the problem that the sticking of the lip portion of the die during molding is prevented.
  • the present invention provides the following.
  • the resin temperature when the cyclic olefin resin composition is discharged from the lip portion of the die is adjusted to the glass transition point (Tg) of the cyclic olefin resin + 100 ° C. to Tg + 160 ° C.
  • Tg glass transition point
  • the present invention even when a cyclic olefin resin composition containing a cyclic olefin resin and a linear low-density polyethylene is used as a raw material, the occurrence of scum adhering to the lip portion of the die can be suppressed.
  • a cyclic olefin resin (A) containing an ⁇ -olefin as a copolymerization component and a linear low density polyethylene (B) are used as a raw material.
  • a cyclic olefin resin composition containing 5 ppm to 60 mass% and 5 ppm to 2000 ppm of the fatty acid metal salt (C) is used as a raw material.
  • dye is glass transition point (Tg) +100 degreeC or more of cyclic olefin resin. It adjusts in the range below Tg + 160 degreeC.
  • the cyclic olefin resin composition used as a raw material in the method for producing a resin molded body includes a cyclic olefin resin (A), a linear low-density polyethylene (B), and a fatty acid metal salt (C).
  • the cyclic olefin resin is not particularly limited as long as it contains a cyclic olefin component as a copolymerization component and is a polyolefin resin containing a cyclic olefin component in the main chain.
  • examples thereof include addition polymers of cyclic olefins or hydrogenated products thereof, addition copolymers of cyclic olefins and ⁇ -olefins or hydrogenated products thereof.
  • the cyclic olefin resin includes those obtained by grafting and / or copolymerizing the above polymer with an unsaturated compound having a hydrophilic group.
  • Examples of the polar group include a carboxyl group, an acid anhydride group, an epoxy group, an amino group, an amide group, an ester group, a hydroxyl group, a sulfo group, a phosphono group, and a phosphino group.
  • Examples of the saturated compound include (meth) acrylic acid, maleic acid, maleic anhydride, itaconic anhydride, glycidyl (meth) acrylate, alkyl (meth) acrylate (carbon number 1 to 10) ester, alkyl maleate (carbon number 1 -10) Esters, (meth) acrylamides, 2-hydroxyethyl (meth) acrylates, and the like.
  • the cyclic olefin resin is preferably an addition copolymer of a cyclic olefin and an ⁇ -olefin or a hydrogenated product thereof.
  • cyclic olefin resin containing a cyclic olefin component as a copolymerization component a commercially available resin can also be used.
  • Commercially available cyclic olefin resins include, for example, TOPAS (registered trademark) (Topas Advanced Polymers), Apel (registered trademark) (manufactured by Mitsui Chemicals), Zeonex (registered trademark) (manufactured by Nippon Zeon), and Zeonore. (Registered trademark) (manufactured by Zeon Corporation), Arton (registered trademark) (manufactured by JSR Corporation), and the like.
  • Particularly preferable examples of the addition copolymer of cyclic olefin and ⁇ -olefin include: [1] an ⁇ -olefin component having 2 to 20 carbon atoms; and [2] a cyclic olefin component represented by the following general formula (I): Can be mentioned.
  • R 1 to R 12 may be the same or different and are each selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group; R 9 and R 10 , R 11 and R 12 may be integrated to form a divalent hydrocarbon group, R 9 or R 10 and R 11 or R 12 may form a ring with each other.
  • N represents 0 or a positive integer; When n is 2 or more, R 5 to R 8 may be the same or different in each repeating unit.
  • the ⁇ -olefin component having 2 to 20 carbon atoms will be described.
  • the ⁇ -olefin having 2 to 20 carbon atoms is not particularly limited.
  • these ⁇ -olefin components may be used alone or in combination of two or more. Of these, ethylene is most preferably used alone.
  • R 1 to R 12 in the general formula (I) may be the same or different and are selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group.
  • R 1 to R 8 include, for example, a hydrogen atom; a halogen atom such as fluorine, chlorine and bromine; a lower alkyl group such as a methyl group, an ethyl group, a propyl group and a butyl group. May be different from each other, may be partially different, or all may be the same.
  • R 9 to R 12 include, for example, hydrogen atom; halogen atom such as fluorine, chlorine, bromine; methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, hexyl group, stearyl.
  • Alkyl group such as cyclohexyl group; cycloalkyl group such as cyclohexyl group; substituted or unsubstituted aromatic hydrocarbon group such as phenyl group, tolyl group, ethylphenyl group, isopropylphenyl group, naphthyl group, anthryl group; benzyl group, phenethyl And an aralkyl group in which an aryl group is substituted with an alkyl group, and the like. These may be different from each other, may be partially different, or all may be the same.
  • R 9 and R 10 or R 11 and R 12 are integrated to form a divalent hydrocarbon group
  • alkylidene groups such as an ethylidene group, a propylidene group, and an isopropylidene group. Can be mentioned.
  • the formed ring may be monocyclic or polycyclic, or may be a polycyclic ring having a bridge.
  • a ring having a double bond, or a ring composed of a combination of these rings may be used.
  • these rings may have a substituent such as a methyl group.
  • cyclic olefin component represented by the general formula (I) include those similar to those described in JP-A-2007-302722.
  • cyclic olefin components may be used singly or in combination of two or more.
  • a method for polymerizing an ⁇ -olefin component having 2 to 20 carbon atoms and a [2] cyclic olefin component represented by formula (I) and a method for hydrogenating the obtained polymer are particularly limited. Instead, it can be carried out according to known methods. Random copolymerization or block copolymerization may be used, but random copolymerization is preferred.
  • the polymerization catalyst used is not particularly limited, and a cyclic olefin resin can be obtained by a known method using a conventionally known catalyst such as a Ziegler-Natta, metathesis, or metallocene catalyst.
  • the cyclic olefin resin is necessary as long as the object of the present invention is not impaired, in addition to the above [1] ⁇ -olefin component having 2 to 20 carbon atoms and [2] the cyclic olefin component represented by the general formula (I). Depending on the case, it may contain other copolymerizable unsaturated monomer components.
  • the unsaturated monomer that may be optionally copolymerized is not particularly limited, and examples thereof include hydrocarbon monomers containing two or more carbon-carbon double bonds in one molecule. Can be mentioned. Specific examples of the hydrocarbon monomer having two or more carbon-carbon double bonds in one molecule include those similar to those described in JP-A-2007-302722.
  • the glass transition point (Tg) of the cyclic olefin resin (A) is preferably 120 ° C. or lower, more preferably 30 ° C. to 80 ° C.
  • the content of the cyclic olefin resin (A) in the cyclic olefin resin composition is 40% by mass to 95% by mass. More preferably, it is 50% by mass to 80% by mass. However, the above range varies somewhat depending on the cyclic olefin resin used. Moreover, you may adjust content of cyclic olefin resin (A) suitably according to the use of the resin molding manufactured.
  • the melt tension of the cyclic olefin resin is preferably 10 mN or more and 70 mN or less.
  • the melt tension is 10 mN or more, it is preferable because unevenness of the thickness of the resin molded body is less likely to occur.
  • the melt tension is 70 mN or less, it is easy to suppress the occurrence of scum and the surface of the resin molded body is less likely to be rough. Is preferable.
  • a more preferable range of the melt tension is 25 mN or more and 50 mN or less.
  • the main component (50% by mass or more when the total cyclic olefin resin is 100% by mass) is the main component of the cyclic olefin resin having a melt tension in the above range. Is preferred.
  • the melt tension is a value measured at 190 ° C. and a winding speed of 15 m / min.
  • the linear low density polyethylene (B) is not particularly limited, and a conventionally known one can be used. Examples thereof include linear low density polyethylene polymerized using a metallocene catalyst and linear low density polyethylene synthesized using a Ziegler-Natta catalyst. In the present invention, linear low density polyethylene polymerized using a metallocene catalyst is preferred. This is because the compatibility with the cyclic olefin resin (A) produced using the metallocene catalyst is high.
  • the content of the linear low density polyethylene (B) in the cyclic olefin resin composition is 5% by mass or more and 60% by mass or less. Compared with the case where the cyclic olefin resin is molded, the content of the component (B) is 5% by mass or more, so that it is very likely to occur. According to the production method of the present invention, (B) Even if the content of the component is 5% by mass or more, it is possible to suppress the problem of the occurrence of scouring.
  • content of (B) component is 60 mass% or less, since content of cyclic olefin resin (A) in a resin composition can be made into a fixed level or more, the property of cyclic olefin resin tends to appear in a resin composition. . Moreover, it is preferable that content of (B) component is 20 to 50 mass%.
  • the melt tension of the linear low density polyethylene (B) is preferably 40 mN or less. If the melt tension of the component (B) is in the above range, the moldability is improved, such as the thickness of the resin molded body is stabilized due to the difference between the melt tension of the component (B) and the melt tension of the cyclic olefin resin composition described later. improves. More preferably, the melt tension of the component (B) is 30 mN or less. However, from the standpoint of maintaining good thickness stability and gloss, the melt tension is preferably a certain amount. For this reason, it is preferable that the melt tension of (B) component is 5 mN or more.
  • the melt flow rate (MFR) of the linear low density polyethylene (B) is preferably 0.5 g / 10 min or more and 10 g / 10 min or less.
  • MFR melt flow rate
  • the other components in the cyclic olefin resin composition and the component (B) are easily kneaded, the dispersion of the component (B) is improved, and a homogeneous blend polymer is obtained. It is preferable because it tends to be a resin molded body having a good surface condition.
  • the melt viscosity when the viscosity is 10 g / 10 min or less, the melt viscosity does not become too low, and the resin composition film discharged from the die can be constantly cast, and the film having a constant thickness and width can be wound.
  • the fatty acid metal salt (C) is not particularly limited, and the fatty acid constituting the component (C) may be a saturated fatty acid or an unsaturated fatty acid. Also, those in which some hydrogen atoms are substituted with a substituent such as a hydroxyl group can be used.
  • fatty acids include monovalent or divalent fatty acids having 10 or more carbon atoms, such as monovalent saturated fatty acids having 10 or more carbon atoms [capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, stearic acid.
  • C10-34 saturated fatty acids such as arachidic acid, behenic acid and montanic acid
  • monovalent unsaturated fatty acids having 10 or more carbon atoms [C10-34 such as oleic acid, linoleic acid, linolenic acid, arachidonic acid, erucic acid, etc.
  • Unsaturated fatty acids and the like divalent fatty acids having 10 or more carbon atoms (dibasic fatty acids) [divalent C10-30 saturated fatty acids such as sebacic acid, dodecanedioic acid, tetradecanedioic acid, and tapsia acid, decenedioic acid, And divalent C10-30 unsaturated fatty acids such as dodecenedioic acid].
  • the metal constituting the fatty acid metal salt is preferably an alkaline earth metal, and examples thereof include calcium, magnesium, barium, and strontium. Moreover, zinc is also preferable as a metal constituting the metal salt.
  • the content of the (C) fatty acid metal salt in the cyclic olefin resin composition is 5 ppm or more and 2000 ppm or less.
  • the content of the component (C) being 5 ppm or more contributes to the suppression of the occurrence of scouring.
  • the content of the component (C) is 2000 ppm or less, the problem that the resin molded body is colored due to the large content of the component (C) and the problem that gas is generated during molding of the resin molded body are less likely to occur.
  • More preferable content of the component (C) is 10 ppm or more and 500 ppm or less.
  • the unit of the content of the component (C) is ppm by mass, and the mass when the total of the content (mass) of the component (A) and the content (mass) of the component (B) is 100% by mass. ppm.
  • cyclic olefin resin composition Although the essential components contained in the cyclic olefin resin composition have been described above, other components may be contained in the cyclic olefin resin composition as long as the effects of the present invention are not impaired. Examples of other components include other resins, inorganic fillers, nucleating agents, pigments, antioxidants, stabilizers, plasticizers, lubricants, mold release agents, and the like.
  • the production method of the cyclic olefin resin composition as a raw material is not particularly limited, but the cyclic olefin resin composition can be produced by mixing the above components.
  • the mixing method is not particularly limited, and it may be pre-compounded using an extruder or the like in advance, or each component may be dry blended and fed into an extruder or the like.
  • the cyclic olefin resin (A) and the linear low density polyethylene (B) may be pre-compounded to produce a cyclic olefin resin composition, and the fatty acid metal salt (C) powder may be externally added thereto.
  • the present invention uses the cyclic olefin resin composition produced as described above as a raw material.
  • the physical properties of the cyclic olefin resin composition are as follows.
  • the melt tension of the cyclic olefin resin composition measured by the method described later is preferably 10 mN or more, and more preferably 10 mN or more and 60 mN or less.
  • the melt tension is 10 mN or more, the effect of stabilizing the thickness of the molded body is high, and an extremely high quality resin molded body can be obtained.
  • the melt tension of the resin composition is 60 mN or less, the molten resin composition that has exited the die is less likely to expand (die swell), and as a result, deposits (meani) remain on the periphery of the die. It becomes difficult.
  • the melt flow rate of the cyclic olefin resin composition at 190 ° C. and a load of 2.16 kg, measured by a method according to JIS K7210, is preferably 0.1 g / 10 min or more and 15 g / 10 min or less. More preferably, it is 0.5 g / 10 min or more and 8 g / 10 min or less. If it is 0.1 g / 10 min or more, it is preferable because the fluidity is high and it is easy to mold, and if it is 15 g / 10 min or less, extrusion molding is facilitated.
  • the resin temperature when the cyclic olefin resin composition is discharged from the die using an extruder equipped with a die is set to the glass transition point (Tg) of the cyclic olefin resin (A) + 100 ° C. or more and Tg + 160. Adjust to the range below °C. Even when a plurality of types of cyclic olefin resins (A) are included, in the resin composition of the present invention, the Tg derived from the cyclic olefin resin is obtained at one point, and therefore the resin temperature is adjusted based on the Tg. .
  • the resin temperature when the cyclic olefin resin composition is discharged from the lip portion of the die refers to an actual measurement value of the temperature of the resin composition when discharged from the lip portion of the die. When this measured value is in the above range, it is possible to suppress the adherence of the sealant to the lip portion of the die.
  • the resin temperature can be adjusted by controlling the heat applied to the resin composition during extrusion molding.
  • the resin temperature can be adjusted by adjusting the cylinder temperature, die temperature, and screw rotation speed of the extruder. Specifically, the resin temperature tends to increase as the cylinder temperature or the die temperature increases. Moreover, the resin temperature tends to increase as the screw rotation speed increases.
  • the cylinder temperature, die temperature, and screw rotation speed for adjusting the resin temperature in the range of Tg + 100 ° C. or more and Tg + 160 ° C. or less vary depending on the content ratio of the components contained in the cyclic olefin resin composition.
  • the temperature (feed side) is preferably 230 ° C. or higher and 350 ° C. or lower
  • the cylinder temperature (die side) is preferably 150 ° C. or higher and 250 ° C. or lower
  • the die temperature is preferably 150 ° C. or higher and 220 ° C. or lower.
  • the melt tension of the resin composition is set to a relatively high value.
  • “High speed” in the case of “trying to take up a resin molded body such as a film or fiber at high speed” means that the take-up speed is in the range of 5 m / min to 50 m / min (particularly 20 m / min to 50 m / min). Range).
  • Cyclic olefin resin A
  • “9506F-04” Topicas Advanced Polymers, glass transition point 65 ° C., melt tension 26.2 mN
  • 8007F-04 Topicas Advanced Polymers, glass transition point 78 ° C, melt tension 34.0mN
  • “6013F-04” Topicas Advanced Polymers, glass transition point 135 ° C.
  • Linear low density polyethylene B
  • “SP2320” manufactured by Prime Polymer, MFR measured by the method described later is 1.9 g / 10 min, melt tension is 27.6 mN
  • “SP1520” manufactured by Prime Polymer, MFR measured by the method described later is 2.0 g / 10 min, melt tension is 6.7 mN
  • Fatty acid metal salt C
  • the melt tension was obtained by using a Capillograph 1B (piston diameter 10 mm) manufactured by Toyo Seiki, using an orifice with an inner diameter of 1 mm and a length of 20 mm, and the molten polymer discharged from the orifice under the conditions of an extrusion speed of 190 ° C. and 10 mm / min.
  • the tension (mN) applied to the fiber when it was taken up into a fiber at / min was measured. The measurement results are shown in Table 1.
  • the cyclic olefin resin composition for melt extrusion of the obtained Examples and Comparative Examples was formed into a strip-shaped sheet having a thickness of 200 ⁇ m by a 30 mm ⁇ twin screw extruder having a slit die of 30 mm ⁇ 1 mm under the molding conditions shown in Table 1. Continuous molding.
  • the die lip discharge resin temperature in the following molding conditions was measured by dripping the molten resin from the slit die with the cooling roll retracted, and contacting the thermocouple thermometer with the resin.
  • FIG. Fig.1 (a) is a figure which shows a mode that a film is extruded.
  • FIG.1 (b) is a figure which shows typically a mode that die adhesion amount is evaluated.
  • the lip part of the die 2.5 hours after the start of extrusion is observed from below, and the ratio of the resin composition to the entire length from one end of the lip part to the other end (the ratio of the adherence) Expressed as a percentage.
  • the ratio of the total length of the resin composition attached to the total length was used as a criterion for evaluation.
  • 2A is Example 1
  • (b) is Example 2
  • (c) is Comparative Example 1
  • (d) is Example 3
  • e) Comparative Example 2
  • (f) is Example. 4.
  • Example 4 150 ⁇ m, 75 ⁇ m, and 50 ⁇ m thick sheets were continuously formed by a sheet molding machine having a 40 mm ⁇ single-screw extruder and a 420 mm wide T-die. Molding was performed under the following molding conditions.
  • Molding condition Extruder cylinder temperature: 200 ° C Die temperature: 180 ° C Air gap: 100mm Chill roll temperature: 60 ° C Die lip discharge resin measured temperature: 205 ° C

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

In order to prevent the problem of die build-up adhering to the lip of a die during molding even when a cyclic olefin resin composition, which contains a cyclic olefin resin and a linear low-density polyethylene, is used as a raw material, the cyclic olefin resin composition is formed into a resin molded body after adjusting the resin heat to a range of 100°C to 160°C above the glass transition point (Tg) of the cyclic olefin resin when the cyclic olefin resin composition is ejected from lip of the die by using an extruder provided with a die. Said cyclic olefin resin composition contains a cyclic olefin resin (A) containing an α-olefin, a linear low-density polyethylene (B) and a fatty acid metal salt (C), as copolymer components. The content of the cyclic olefin resin (A) is 40 mass% to 95 mass%; the content of the linear low-density polyethylene (B) is 5 mass% to 60 mass%; and the content of the fatty acid metal salt (C) is 5 ppm to 2000 ppm.

Description

樹脂成形体の製造方法Manufacturing method of resin molding
 本発明は、環状オレフィン樹脂組成物を原料として用いる樹脂成形体の製造方法に関する。 This invention relates to the manufacturing method of the resin molding which uses a cyclic olefin resin composition as a raw material.
 環状オレフィン樹脂は、主鎖に環状オレフィンの骨格を有する樹脂であり、高透明性、低複屈折性、高熱変形温度、軽量性、寸法安定性、低吸水性、耐加水分解性、耐薬品性、低誘電率、低誘電損失、環境負荷物質を含まない等、多くの特徴をもつ樹脂である。このため、環状オレフィン樹脂は、これらの特徴が必要とされる多種多様な分野に用いられている。 The cyclic olefin resin is a resin having a cyclic olefin skeleton in the main chain, and has high transparency, low birefringence, high heat distortion temperature, light weight, dimensional stability, low water absorption, hydrolysis resistance, and chemical resistance. It is a resin with many features such as low dielectric constant, low dielectric loss, and no environmental load substances. For this reason, cyclic olefin resins are used in a wide variety of fields where these characteristics are required.
 上記の通り、環状オレフィン樹脂は様々な分野で用いられるため、環状オレフィン樹脂の成形に押出機が使用される場合も多い。しかし、環状オレフィン樹脂を成形機に投入して樹脂成形体の製造を行うと、押出機の先端のダイのリップ部にメヤニ(原料である樹脂が上記リップ部に付着したもの)が発生する。このメヤニは、成形中に脱落して成形体に混入する等の問題を生じさせるため、成形中にメヤニを発生させないための方法が求められる。 As described above, since the cyclic olefin resin is used in various fields, an extruder is often used for molding the cyclic olefin resin. However, when a cyclic olefin resin is introduced into a molding machine to produce a resin molded body, a sag (a material in which the raw material resin adheres to the lip part) is generated at the lip part of the die at the tip of the extruder. In order to cause such a problem that the main body falls off during molding and is mixed into the molded body, a method for preventing the main body from being generated during molding is required.
 例えば、特許文献1には、ダイの吐出口の温度を200℃以上255℃以下に調整することで、メヤニが発生し難くなることが開示されている。また、特許文献2には、メヤニの発生を抑えるために、脂肪酸金属塩を使用する技術が開示されている。 For example, Patent Document 1 discloses that adjusting the temperature of the discharge port of the die to 200 ° C. or more and 255 ° C. or less makes it difficult to generate a sag. Patent Document 2 discloses a technique that uses a fatty acid metal salt in order to suppress the occurrence of scouring.
特開2010-12696号公報JP 2010-12696 A 特開平09-255824号公報JP 09-255824 A
 ところで、環状オレフィン樹脂と他の熱可塑性樹脂とを含む環状オレフィン樹脂組成物を成形する場合には、上記のメヤニの問題が特に生じやすい。例えば、環状オレフィン樹脂と直鎖状低密度ポリエチレンとを含む環状オレフィン樹脂組成物は、熱収縮性フィルム等の様々な用途に使用されるが、この環状オレフィン樹脂組成物を成形する場合にもメヤニ発生の問題が生じる。 By the way, when molding a cyclic olefin resin composition containing a cyclic olefin resin and another thermoplastic resin, the above-mentioned problem of the main chain is particularly likely to occur. For example, a cyclic olefin resin composition containing a cyclic olefin resin and a linear low density polyethylene is used in various applications such as a heat-shrinkable film. Occurrence problems occur.
 上記のような環状オレフィン樹脂組成物を原料として用いる場合には、従来から知られている解決方法では、メヤニの発生を充分に抑えることができない。 In the case where the above cyclic olefin resin composition is used as a raw material, the generation of the mains cannot be sufficiently suppressed by a conventionally known solution.
 本発明は、以上の課題を解決するためになされたものであり、その目的は、環状オレフィン樹脂と直鎖状低密度ポリエチレンとを含む環状オレフィン樹脂組成物を原料として用いる場合であっても、成形時にダイのリップ部にメヤニが付着する問題を抑えることができる技術を提供することにある。 The present invention has been made in order to solve the above problems, and the purpose thereof is a case where a cyclic olefin resin composition containing a cyclic olefin resin and a linear low density polyethylene is used as a raw material. An object of the present invention is to provide a technique capable of suppressing the problem that the sticking of the lip portion of the die during molding is prevented.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、ダイのリップ部から環状オレフィン樹脂組成物が吐出する時の樹脂温度が、メヤニの発生に影響を与えることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のものを提供する。 The inventors of the present invention have made extensive studies to solve the above problems. As a result, the present inventors have found that the resin temperature at the time when the cyclic olefin resin composition is discharged from the lip portion of the die has an influence on the generation of the scouring and has completed the present invention. More specifically, the present invention provides the following.
 (1) 樹脂成形体製造時にダイのリップ部に付着物が付着することを抑える樹脂成形体の製造方法であって、共重合成分としてα-オレフィンを含む環状オレフィン樹脂(A)と、直鎖状低密度ポリエチレン(B)と、脂肪酸金属塩(C)と、を含み、前記環状オレフィン樹脂(A)の含有量が40質量%以上95質量%以下であり、前記直鎖状低密度ポリエチレン(B)の含有量が5質量%以上60質量%以下であり、前記脂肪酸金属塩(C)の含有量が5ppm以上2000ppm以下である環状オレフィン樹脂組成物を、ダイを備えた押出機を用いて、ダイのリップ部から前記環状オレフィン樹脂組成物が吐出する時の樹脂温度を、環状オレフィン樹脂のガラス転移点(Tg)+100℃以上Tg+160℃以下の範囲に調整して樹脂成形体に成形する樹脂成形体の製造方法。 (1) A method for producing a resin molded product that suppresses adhesion of deposits to the lip portion of the die during the production of the resin molded product, and a cyclic olefin resin (A) containing α-olefin as a copolymerization component and a linear chain A low-density polyethylene (B) and a fatty acid metal salt (C), wherein the content of the cyclic olefin resin (A) is 40% by mass to 95% by mass, and the linear low-density polyethylene ( A cyclic olefin resin composition having a content of B) of 5% by mass to 60% by mass and a content of the fatty acid metal salt (C) of 5 ppm to 2000 ppm by using an extruder equipped with a die. The resin temperature when the cyclic olefin resin composition is discharged from the lip portion of the die is adjusted to the glass transition point (Tg) of the cyclic olefin resin + 100 ° C. to Tg + 160 ° C. Method for producing a resin molded article for molding into lipid moldings.
 (2) 190℃で、巻取速度を15m/分にして測定した前記環状オレフィン樹脂組成物のメルトテンションが、10mN以上であり、190℃、2.16kg荷重における前記環状オレフィン樹脂組成物のメルトフローレートが、0.1g/10分以上15g/10分以下である(1)記載の樹脂成形体の製造方法。 (2) The melt tension of the cyclic olefin resin composition measured at 190 ° C. with a winding speed of 15 m / min is 10 mN or more, and the melt of the cyclic olefin resin composition at 190 ° C. and a load of 2.16 kg. The method for producing a resin molded article according to (1), wherein the flow rate is 0.1 g / 10 min or more and 15 g / 10 min or less.
 (3) 樹脂成形体の引き取り速度は5m/分以上50m/分以下である(1)又は(2)に記載の樹脂成形体の製造方法。 (3) The method for producing a resin molded body according to (1) or (2), wherein the take-up speed of the resin molded body is 5 m / min or more and 50 m / min or less.
 (4) 前記直鎖状低密度ポリエチレン(B)が、メタロセン触媒を用いて重合してなる直鎖状低密度ポリエチレンである(1)から(3)のいずれかに記載の樹脂成形体の製造方法。 (4) Production of the resin molded product according to any one of (1) to (3), wherein the linear low-density polyethylene (B) is a linear low-density polyethylene obtained by polymerization using a metallocene catalyst. Method.
 (5) 前記脂肪酸金属塩(C)は、ステアリン酸カルシウムである(1)から(4)のいずれかに記載の樹脂成形体の製造方法。 (5) The method for producing a resin molded body according to any one of (1) to (4), wherein the fatty acid metal salt (C) is calcium stearate.
 本発明によれば、環状オレフィン樹脂と直鎖状低密度ポリエチレンとを含む環状オレフィン樹脂組成物を原料として用いる場合であっても、ダイのリップ部に付着するメヤニの発生を抑えることができる。 According to the present invention, even when a cyclic olefin resin composition containing a cyclic olefin resin and a linear low-density polyethylene is used as a raw material, the occurrence of scum adhering to the lip portion of the die can be suppressed.
ダイ付着物量の評価方法を模式的に示す図である。It is a figure which shows typically the evaluation method of die adhesion amount. 実施例及び比較例におけるメヤニの付着量を示す図である。It is a figure which shows the adhesion amount of the scent in an Example and a comparative example.
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.
<樹脂成形体の製造方法>
 本発明の樹脂成形体の製造方法においては、原料として、共重合成分としてα-オレフィンを含む環状オレフィン樹脂(A)を40質量%以上95質量%以下、直鎖状低密度ポリエチレン(B)を5質量%以上60質量%以下、脂肪酸金属塩(C)を5ppm以上2000ppm以下含む環状オレフィン樹脂組成物を用いる。
<Production method of resin molding>
In the method for producing a resin molded body of the present invention, as a raw material, 40% by mass to 95% by mass of a cyclic olefin resin (A) containing an α-olefin as a copolymerization component and a linear low density polyethylene (B) are used. A cyclic olefin resin composition containing 5 ppm to 60 mass% and 5 ppm to 2000 ppm of the fatty acid metal salt (C) is used.
 また、本発明の樹脂成形体の製造方法においては、製造条件として、ダイのリップ部から環状オレフィン樹脂組成物が吐出する時の樹脂温度を、環状オレフィン樹脂のガラス転移点(Tg)+100℃以上Tg+160℃以下の範囲に調整する。 Moreover, in the manufacturing method of the resin molding of this invention, as manufacturing conditions, the resin temperature when a cyclic olefin resin composition discharges from the lip | rip part of die | dye is glass transition point (Tg) +100 degreeC or more of cyclic olefin resin. It adjusts in the range below Tg + 160 degreeC.
 以下、本発明の樹脂成形体の製造方法について、原料、製造条件の順でそれぞれ説明する。 Hereinafter, the method for producing the resin molded body of the present invention will be described in the order of raw materials and production conditions.
[環状オレフィン樹脂組成物]
 樹脂成形体の製造方法で原料として用いる環状オレフィン樹脂組成物は、環状オレフィン樹脂(A)と直鎖状低密度ポリエチレン(B)と脂肪酸金属塩(C)とを含む。
[Cyclic olefin resin composition]
The cyclic olefin resin composition used as a raw material in the method for producing a resin molded body includes a cyclic olefin resin (A), a linear low-density polyethylene (B), and a fatty acid metal salt (C).
 環状オレフィン樹脂は、環状オレフィン成分を共重合成分として含むものであり、環状オレフィン成分を主鎖に含むポリオレフィン樹脂であれば、特に限定されるものではない。例えば、環状オレフィンの付加重合体又はその水素添加物、環状オレフィンとα-オレフィンの付加共重合体又はその水素添加物等を挙げることができる。 The cyclic olefin resin is not particularly limited as long as it contains a cyclic olefin component as a copolymerization component and is a polyolefin resin containing a cyclic olefin component in the main chain. Examples thereof include addition polymers of cyclic olefins or hydrogenated products thereof, addition copolymers of cyclic olefins and α-olefins or hydrogenated products thereof.
 また、環状オレフィン樹脂としては、上記重合体に、さらに親水基を有する不飽和化合物をグラフト及び/又は共重合したもの、を含む。 The cyclic olefin resin includes those obtained by grafting and / or copolymerizing the above polymer with an unsaturated compound having a hydrophilic group.
 極性基としては、例えば、カルボキシル基、酸無水物基、エポキシ基、アミノ基、アミド基、エステル基、ヒドロキシル基、スルホ基、ホスホノ基、ホスフィノ基等をあげることができ、極性基を有する不飽和化合物としては、(メタ)アクリル酸、マレイン酸、無水マレイン酸、無水イタコン酸、グリシジル(メタ)アクリレート、(メタ)アクリル酸アルキル(炭素数1~10)エステル、マレイン酸アルキル(炭素数1~10)エステル、(メタ)アクリルアミド、(メタ)アクリル酸-2-ヒドロキシエチル等を挙げることができる。 Examples of the polar group include a carboxyl group, an acid anhydride group, an epoxy group, an amino group, an amide group, an ester group, a hydroxyl group, a sulfo group, a phosphono group, and a phosphino group. Examples of the saturated compound include (meth) acrylic acid, maleic acid, maleic anhydride, itaconic anhydride, glycidyl (meth) acrylate, alkyl (meth) acrylate (carbon number 1 to 10) ester, alkyl maleate (carbon number 1 -10) Esters, (meth) acrylamides, 2-hydroxyethyl (meth) acrylates, and the like.
 環状オレフィン樹脂としては、環状オレフィンとα-オレフィンとの付加共重合体又はその水素添加物が好ましい。 The cyclic olefin resin is preferably an addition copolymer of a cyclic olefin and an α-olefin or a hydrogenated product thereof.
 また、環状オレフィン成分を共重合成分として含む環状オレフィン樹脂としては、市販の樹脂を用いることも可能である。市販されている環状オレフィン樹脂としては、例えば、TOPAS(登録商標)(Topas Advanced Polymers社製)、アペル(登録商標)(三井化学社製)、ゼオネックス(登録商標)(日本ゼオン社製)、ゼオノア(登録商標)(日本ゼオン社製)、アートン(登録商標)(JSR社製)等を挙げることができる。 Further, as the cyclic olefin resin containing a cyclic olefin component as a copolymerization component, a commercially available resin can also be used. Commercially available cyclic olefin resins include, for example, TOPAS (registered trademark) (Topas Advanced Polymers), Apel (registered trademark) (manufactured by Mitsui Chemicals), Zeonex (registered trademark) (manufactured by Nippon Zeon), and Zeonore. (Registered trademark) (manufactured by Zeon Corporation), Arton (registered trademark) (manufactured by JSR Corporation), and the like.
 環状オレフィンとα-オレフィンの付加共重合体として、特に好ましい例としては、〔1〕炭素数2~20のα-オレフィン成分と、〔2〕下記一般式(I)で示される環状オレフィン成分と、を含む共重合体を挙げることができる。
Figure JPOXMLDOC01-appb-C000001
(式中、R~R12は、それぞれ同一でも異なっていてもよく、水素原子、ハロゲン原子、及び、炭化水素基からなる群より選ばれるものであり、
 RとR10、R11とR12は、一体化して2価の炭化水素基を形成してもよく、
 R又はR10と、R11又はR12とは、互いに環を形成していてもよい。
 また、nは、0又は正の整数を示し、
 nが2以上の場合には、R~Rは、それぞれの繰り返し単位の中で、それぞれ同一でも異なっていてもよい。)
Particularly preferable examples of the addition copolymer of cyclic olefin and α-olefin include: [1] an α-olefin component having 2 to 20 carbon atoms; and [2] a cyclic olefin component represented by the following general formula (I): Can be mentioned.
Figure JPOXMLDOC01-appb-C000001
(Wherein R 1 to R 12 may be the same or different and are each selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group;
R 9 and R 10 , R 11 and R 12 may be integrated to form a divalent hydrocarbon group,
R 9 or R 10 and R 11 or R 12 may form a ring with each other.
N represents 0 or a positive integer;
When n is 2 or more, R 5 to R 8 may be the same or different in each repeating unit. )
 〔1〕炭素数2~20のα-オレフィン成分について説明する。炭素数2~20のα-オレフィンは、特に限定されるものではない。例えば、特開2007-302722と同様のものを挙げることができる。また、これらのα-オレフィン成分は、1種単独でも2種以上を同時に使用してもよい。これらの中では、エチレンの単独使用が最も好ましい。 [1] The α-olefin component having 2 to 20 carbon atoms will be described. The α-olefin having 2 to 20 carbon atoms is not particularly limited. For example, the same ones as in JP2007-302722 can be mentioned. These α-olefin components may be used alone or in combination of two or more. Of these, ethylene is most preferably used alone.
 〔2〕一般式(I)で示される環状オレフィン成分について説明する。一般式(I)におけるR~R12は、それぞれ同一でも異なっていてもよく、水素原子、ハロゲン原子、及び、炭化水素基からなる群より選ばれるものである。 [2] The cyclic olefin component represented by the general formula (I) will be described. R 1 to R 12 in the general formula (I) may be the same or different and are selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group.
 R~Rの具体例としては、例えば、水素原子;フッ素、塩素、臭素等のハロゲン原子;メチル基、エチル基、プロピル基、ブチル基等の低級アルキル基等を挙げることができ、これらはそれぞれ異なっていてもよく、部分的に異なっていてもよく、また、全部が同一であってもよい。 Specific examples of R 1 to R 8 include, for example, a hydrogen atom; a halogen atom such as fluorine, chlorine and bromine; a lower alkyl group such as a methyl group, an ethyl group, a propyl group and a butyl group. May be different from each other, may be partially different, or all may be the same.
 また、R~R12の具体例としては、例えば、水素原子;フッ素、塩素、臭素等のハロゲン原子;メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ヘキシル基、ステアリル基等のアルキル基;シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、エチルフェニル基、イソプロピルフェニル基、ナフチル基、アントリル基等の置換又は無置換の芳香族炭化水素基;ベンジル基、フェネチル基、その他アルキル基にアリール基が置換したアラルキル基等を挙げることができ、これらはそれぞれ異なっていてもよく、部分的に異なっていてもよく、また、全部が同一であってもよい。 Specific examples of R 9 to R 12 include, for example, hydrogen atom; halogen atom such as fluorine, chlorine, bromine; methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, hexyl group, stearyl. Alkyl group such as cyclohexyl group; cycloalkyl group such as cyclohexyl group; substituted or unsubstituted aromatic hydrocarbon group such as phenyl group, tolyl group, ethylphenyl group, isopropylphenyl group, naphthyl group, anthryl group; benzyl group, phenethyl And an aralkyl group in which an aryl group is substituted with an alkyl group, and the like. These may be different from each other, may be partially different, or all may be the same.
 RとR10、又はR11とR12とが一体化して2価の炭化水素基を形成する場合の具体例としては、例えば、エチリデン基、プロピリデン基、イソプロピリデン基等のアルキリデン基等を挙げることができる。 Specific examples of the case where R 9 and R 10 or R 11 and R 12 are integrated to form a divalent hydrocarbon group include, for example, alkylidene groups such as an ethylidene group, a propylidene group, and an isopropylidene group. Can be mentioned.
 R又はR10と、R11又はR12とが、互いに環を形成する場合には、形成される環は単環でも多環であってもよく、架橋を有する多環であってもよく、二重結合を有する環であってもよく、またこれらの環の組み合わせからなる環であってもよい。また、これらの環はメチル基等の置換基を有していてもよい。 When R 9 or R 10 and R 11 or R 12 form a ring with each other, the formed ring may be monocyclic or polycyclic, or may be a polycyclic ring having a bridge. , A ring having a double bond, or a ring composed of a combination of these rings may be used. Moreover, these rings may have a substituent such as a methyl group.
 一般式(I)で示される環状オレフィン成分の具体例としては、特開2007-302722と同様のものを挙げることができる。 Specific examples of the cyclic olefin component represented by the general formula (I) include those similar to those described in JP-A-2007-302722.
 これらの環状オレフィン成分は、1種単独でも、また2種以上を組み合わせて使用してもよい。これらの中では、ビシクロ[2.2.1]ヘプタ-2-エン(慣用名:ノルボルネン)を単独使用することが好ましい。 These cyclic olefin components may be used singly or in combination of two or more. Among these, it is preferable to use bicyclo [2.2.1] hept-2-ene (common name: norbornene) alone.
 〔1〕炭素数2~20のα-オレフィン成分と〔2〕一般式(I)で表される環状オレフィン成分との重合方法及び得られた重合体の水素添加方法は、特に限定されるものではなく、公知の方法に従って行うことができる。ランダム共重合であっても、ブロック共重合であってもよいが、ランダム共重合であることが好ましい。 [1] A method for polymerizing an α-olefin component having 2 to 20 carbon atoms and a [2] cyclic olefin component represented by formula (I) and a method for hydrogenating the obtained polymer are particularly limited. Instead, it can be carried out according to known methods. Random copolymerization or block copolymerization may be used, but random copolymerization is preferred.
 また、用いられる重合触媒についても特に限定されるものではなく、チーグラー・ナッタ系、メタセシス系、メタロセン系触媒等の従来周知の触媒を用いて周知の方法により環状オレフィン樹脂を得ることができる。 The polymerization catalyst used is not particularly limited, and a cyclic olefin resin can be obtained by a known method using a conventionally known catalyst such as a Ziegler-Natta, metathesis, or metallocene catalyst.
 次いで、その他共重合成分について簡単に説明する。環状オレフィン樹脂は、上記の〔1〕炭素数2~20のα-オレフィン成分と、〔2〕一般式(I)で示される環状オレフィン成分以外に、本発明の目的を損なわない範囲で、必要に応じて他の共重合可能な不飽和単量体成分を含有していてもよい。 Next, the other copolymer components will be briefly described. The cyclic olefin resin is necessary as long as the object of the present invention is not impaired, in addition to the above [1] α-olefin component having 2 to 20 carbon atoms and [2] the cyclic olefin component represented by the general formula (I). Depending on the case, it may contain other copolymerizable unsaturated monomer components.
 任意に共重合されていてもよい不飽和単量体としては、特に限定されるものではないが、例えば、炭素-炭素二重結合を1分子内に2個以上含む炭化水素系単量体等を挙げることができる。炭素-炭素二重結合を1分子内に2個以上含む炭化水素系単量体の具体例としては、特開2007-302722と同様のものを挙げることができる。 The unsaturated monomer that may be optionally copolymerized is not particularly limited, and examples thereof include hydrocarbon monomers containing two or more carbon-carbon double bonds in one molecule. Can be mentioned. Specific examples of the hydrocarbon monomer having two or more carbon-carbon double bonds in one molecule include those similar to those described in JP-A-2007-302722.
 環状オレフィン樹脂(A)のガラス転移点(Tg)は120℃以下であることが好ましく、より好ましくは30℃から80℃である。なお、ガラス転移点(Tg)は、DSC法(JIS K7121記載の方法)によって昇温速度10℃/分の条件で測定した値を採用する。120℃以下であれば、環状オレフィンに由来する繰り返し単位の含有量が少なくなるため、粘度特性が向上しやすい。 The glass transition point (Tg) of the cyclic olefin resin (A) is preferably 120 ° C. or lower, more preferably 30 ° C. to 80 ° C. In addition, the glass transition point (Tg) employ | adopts the value measured on DSC method (method of JIS K7121 description) on temperature rise rate 10 degree-C / min conditions. If it is 120 degrees C or less, since the content of the repeating unit derived from a cyclic olefin will decrease, a viscosity characteristic will be easy to improve.
 環状オレフィン樹脂組成物中の環状オレフィン樹脂(A)の含有量は、40質量%から95質量%である。より好ましくは、50質量%から80質量%である。ただし、上記範囲は、用いる環状オレフィン樹脂によって多少変動する。また、製造される樹脂成形体の用途によって、適宜、環状オレフィン樹脂(A)の含有量を調整してもよい。 The content of the cyclic olefin resin (A) in the cyclic olefin resin composition is 40% by mass to 95% by mass. More preferably, it is 50% by mass to 80% by mass. However, the above range varies somewhat depending on the cyclic olefin resin used. Moreover, you may adjust content of cyclic olefin resin (A) suitably according to the use of the resin molding manufactured.
 環状オレフィン樹脂のメルトテンションは10mN以上70mN以下であることが好ましい。メルトテンションが10mN以上であれば樹脂成形体の厚薄ムラが発生しにくくなるために好ましく、70mN以下であるとメヤニ発生を抑えることが容易となり、また樹脂成形体の表面荒れが発生しにくいという理由で好ましい。より好ましいメルトテンションの範囲は25mN以上50mN以下である。また、2種類以上の環状オレフィン樹脂を含有する場合には、メルトテンションが上記範囲にある環状オレフィン樹脂を主成分(環状オレフィン樹脂全体を100質量%としたときの50質量%以上)とすることが好ましい。なお、メルトテンションは190℃、巻き取り速度15m/分の条件で測定された値を採用する。 The melt tension of the cyclic olefin resin is preferably 10 mN or more and 70 mN or less. When the melt tension is 10 mN or more, it is preferable because unevenness of the thickness of the resin molded body is less likely to occur. When the melt tension is 70 mN or less, it is easy to suppress the occurrence of scum and the surface of the resin molded body is less likely to be rough. Is preferable. A more preferable range of the melt tension is 25 mN or more and 50 mN or less. When two or more kinds of cyclic olefin resins are contained, the main component (50% by mass or more when the total cyclic olefin resin is 100% by mass) is the main component of the cyclic olefin resin having a melt tension in the above range. Is preferred. The melt tension is a value measured at 190 ° C. and a winding speed of 15 m / min.
 直鎖状低密度ポリエチレン(B)は、特に限定されず従来公知のものを使用することができる。例えばメタロセン触媒を用いて重合された直鎖状低密度ポリエチレン、チーグラー・ナッタ触媒を用いて合成された直鎖状低密度ポリエチレン等が挙げられる。本発明においては、メタロセン触媒を用いて重合された直鎖状低密度ポリエチレンが好ましい。メタロセン触媒を用いて製造された環状オレフィン樹脂(A)との相溶性が高いからである。 The linear low density polyethylene (B) is not particularly limited, and a conventionally known one can be used. Examples thereof include linear low density polyethylene polymerized using a metallocene catalyst and linear low density polyethylene synthesized using a Ziegler-Natta catalyst. In the present invention, linear low density polyethylene polymerized using a metallocene catalyst is preferred. This is because the compatibility with the cyclic olefin resin (A) produced using the metallocene catalyst is high.
 環状オレフィン樹脂組成物中の直鎖状低密度ポリエチレン(B)の含有量は、5質量%以上60質量%以下である。(B)成分の含有量が5質量%以上であると、環状オレフィン樹脂を成形する場合と比較して、メヤニが非常に発生しやすくなるが、本発明の製造方法によれば、(B)成分の含有量が5質量%以上であってもメヤニ発生の問題を抑えることができる。(B)成分の含有量が60質量%以下であれば、樹脂組成物中の環状オレフィン樹脂(A)の含有量を一定水準以上にできるため、環状オレフィン樹脂の性質が樹脂組成物に表れやすい。また、(B)成分の含有量は20質量%以上50質量%以下であることが好ましい。 The content of the linear low density polyethylene (B) in the cyclic olefin resin composition is 5% by mass or more and 60% by mass or less. Compared with the case where the cyclic olefin resin is molded, the content of the component (B) is 5% by mass or more, so that it is very likely to occur. According to the production method of the present invention, (B) Even if the content of the component is 5% by mass or more, it is possible to suppress the problem of the occurrence of scouring. If content of (B) component is 60 mass% or less, since content of cyclic olefin resin (A) in a resin composition can be made into a fixed level or more, the property of cyclic olefin resin tends to appear in a resin composition. . Moreover, it is preferable that content of (B) component is 20 to 50 mass%.
 直鎖状低密度ポリエチレン(B)のメルトテンションは、40mN以下であることが好ましい。(B)成分のメルトテンションが上記範囲にあれば、(B)成分のメルトテンションと後述する環状オレフィン樹脂組成物のメルトテンションとの差によって、樹脂成形体の厚みが安定する等、成形性が向上する。より好ましい(B)成分のメルトテンションは、30mN以下である。ただし、厚み安定性や光沢を良好に維持するという観点から、メルトテンションは、ある程度の大きさであることが好ましい。このため、(B)成分のメルトテンションは、5mN以上であることが好ましい。 The melt tension of the linear low density polyethylene (B) is preferably 40 mN or less. If the melt tension of the component (B) is in the above range, the moldability is improved, such as the thickness of the resin molded body is stabilized due to the difference between the melt tension of the component (B) and the melt tension of the cyclic olefin resin composition described later. improves. More preferably, the melt tension of the component (B) is 30 mN or less. However, from the standpoint of maintaining good thickness stability and gloss, the melt tension is preferably a certain amount. For this reason, it is preferable that the melt tension of (B) component is 5 mN or more.
 直鎖状低密度ポリエチレン(B)のメルトフローレート(MFR)は、0.5g/10分以上10g/10分以下であることが好ましい。0.5g/10分以上の場合には、環状オレフィン樹脂組成物中の他の成分と(B)成分とを混練しやすくなり、(B)成分の分散が良くなり、均質なブレンドポリマーが得られ、表面状態の良い樹脂成形体になる傾向があるため好ましい。また、10g/10分以下である場合には溶融粘性が低くなりすぎず、ダイから吐出される樹脂組成物の皮膜の定常的流延が可能となり、一定厚み・一定幅皮膜の巻き取りが可能となり、また、成形体の強度、その他物性が向上し規定値を達成できる傾向にあるため好ましい。 The melt flow rate (MFR) of the linear low density polyethylene (B) is preferably 0.5 g / 10 min or more and 10 g / 10 min or less. In the case of 0.5 g / 10 min or more, the other components in the cyclic olefin resin composition and the component (B) are easily kneaded, the dispersion of the component (B) is improved, and a homogeneous blend polymer is obtained. It is preferable because it tends to be a resin molded body having a good surface condition. In addition, when the viscosity is 10 g / 10 min or less, the melt viscosity does not become too low, and the resin composition film discharged from the die can be constantly cast, and the film having a constant thickness and width can be wound. In addition, it is preferable because the strength and other physical properties of the molded body tend to be improved and the specified value can be achieved.
 脂肪酸金属塩(C)は特に限定されず、(C)成分を構成する脂肪酸は、飽和脂肪酸であってもよく、不飽和脂肪酸であってもよい。また、一部の水素原子がヒドロキシル基等の置換基で置換されたものも使用できる。このような脂肪酸としては、炭素数10以上の1価又は2価の脂肪酸、例えば、炭素数10以上の1価の飽和脂肪酸[カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ステアリン酸、アラキン酸、ベヘン酸、モンタン酸等のC10-34飽和脂肪酸等]、炭素数10以上の1価の不飽和脂肪酸[オレイン酸、リノール酸、リノレン酸、アラキドン酸、エルカ酸等のC10-34不飽和脂肪酸等]、炭素数10以上の2価の脂肪酸(二塩基性脂肪酸)[セバシン酸、ドデカン二酸、テトラデカン二酸、タプシア酸等の2価のC10-30飽和脂肪酸、デセン二酸、ドデセン二酸等の2価のC10-30不飽和脂肪酸等]が例示できる。 The fatty acid metal salt (C) is not particularly limited, and the fatty acid constituting the component (C) may be a saturated fatty acid or an unsaturated fatty acid. Also, those in which some hydrogen atoms are substituted with a substituent such as a hydroxyl group can be used. Examples of such fatty acids include monovalent or divalent fatty acids having 10 or more carbon atoms, such as monovalent saturated fatty acids having 10 or more carbon atoms [capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, stearic acid. C10-34 saturated fatty acids such as arachidic acid, behenic acid and montanic acid], monovalent unsaturated fatty acids having 10 or more carbon atoms [C10-34 such as oleic acid, linoleic acid, linolenic acid, arachidonic acid, erucic acid, etc. Unsaturated fatty acids and the like], divalent fatty acids having 10 or more carbon atoms (dibasic fatty acids) [divalent C10-30 saturated fatty acids such as sebacic acid, dodecanedioic acid, tetradecanedioic acid, and tapsia acid, decenedioic acid, And divalent C10-30 unsaturated fatty acids such as dodecenedioic acid].
 (C)脂肪酸金属塩を構成する金属としては、アルカリ土類金属が好ましく、例えば、カルシウム、マグネシウム、バリウム、ストロンチウムが挙げられる。また、金属塩を構成する金属として、亜鉛も好ましい。 (C) The metal constituting the fatty acid metal salt is preferably an alkaline earth metal, and examples thereof include calcium, magnesium, barium, and strontium. Moreover, zinc is also preferable as a metal constituting the metal salt.
 環状オレフィン樹脂組成物中の(C)脂肪酸金属塩の含有量は、5ppm以上2000ppm以下である。(C)成分の含有量が5ppm以上であることは、メヤニ発生を抑制することに寄与する。(C)成分の含有量が2000ppm以下であれば、(C)成分の含有量が多いことにより樹脂成形体が着色する問題、樹脂成形体の成形中にガスが発生する問題が生じにくい。より好ましい(C)成分の含有量は、10ppm以上500ppm以下である。なお、(C)成分の含有量の単位は質量ppmであり、(A)成分の含有量(質量)と(B)成分の含有量(質量)との合計を100質量%としたときの質量ppmである。 The content of the (C) fatty acid metal salt in the cyclic olefin resin composition is 5 ppm or more and 2000 ppm or less. The content of the component (C) being 5 ppm or more contributes to the suppression of the occurrence of scouring. When the content of the component (C) is 2000 ppm or less, the problem that the resin molded body is colored due to the large content of the component (C) and the problem that gas is generated during molding of the resin molded body are less likely to occur. More preferable content of the component (C) is 10 ppm or more and 500 ppm or less. The unit of the content of the component (C) is ppm by mass, and the mass when the total of the content (mass) of the component (A) and the content (mass) of the component (B) is 100% by mass. ppm.
 以上、環状オレフィン樹脂組成物に含まれる必須成分について説明したが、環状オレフィン樹脂組成物には、本発明の効果を害さない範囲で、その他の成分が含まれていてもよい。その他の成分としては、例えば、その他の樹脂、無機充填剤、核剤、顔料、酸化防止剤、安定剤、可塑剤、滑剤、離型剤等が挙げられる。 Although the essential components contained in the cyclic olefin resin composition have been described above, other components may be contained in the cyclic olefin resin composition as long as the effects of the present invention are not impaired. Examples of other components include other resins, inorganic fillers, nucleating agents, pigments, antioxidants, stabilizers, plasticizers, lubricants, mold release agents, and the like.
 また、原料となる環状オレフィン樹脂組成物の製造方法は特に限定されないが、上記成分を混合することで環状オレフィン樹脂組成物を製造できる。混合方法としては、特に限定されず、あらかじめ押出機等を用いてプレコンパウンドしても、各成分をドライブレンドして押出機等に投入してもよい。また、環状オレフィン樹脂(A)と直鎖状低密度ポリエチレン(B)とをプレコンパウンドし環状オレフィン樹脂組成物を作製し、これに脂肪酸金属塩(C)粉末を外添してもよい。 Further, the production method of the cyclic olefin resin composition as a raw material is not particularly limited, but the cyclic olefin resin composition can be produced by mixing the above components. The mixing method is not particularly limited, and it may be pre-compounded using an extruder or the like in advance, or each component may be dry blended and fed into an extruder or the like. Alternatively, the cyclic olefin resin (A) and the linear low density polyethylene (B) may be pre-compounded to produce a cyclic olefin resin composition, and the fatty acid metal salt (C) powder may be externally added thereto.
 本発明は、上記のようにして製造された環状オレフィン樹脂組成物を原料として用いる。環状オレフィン樹脂組成物の物性は以下の通りである。 The present invention uses the cyclic olefin resin composition produced as described above as a raw material. The physical properties of the cyclic olefin resin composition are as follows.
 後述する方法で測定した環状オレフィン樹脂組成物のメルトテンションは、10mN以上であることが好ましく、10mN以上かつ60mN以下であることがより好ましい。メルトテンションが10mN以上であれば、成形体の厚み安定等の効果が高く、極めて高い品質の樹脂成形体を得ることができる。樹脂組成物のメルトテンションが60mN以下であると、ダイを出た溶融状態の樹脂組成物が膨張する傾向(ダイスウェル)が強くなりにくく、結果として、ダイ周辺部に付着物(メヤニ)を残しにくくなる。 The melt tension of the cyclic olefin resin composition measured by the method described later is preferably 10 mN or more, and more preferably 10 mN or more and 60 mN or less. When the melt tension is 10 mN or more, the effect of stabilizing the thickness of the molded body is high, and an extremely high quality resin molded body can be obtained. When the melt tension of the resin composition is 60 mN or less, the molten resin composition that has exited the die is less likely to expand (die swell), and as a result, deposits (meani) remain on the periphery of the die. It becomes difficult.
 JIS K7210に準拠する方法で測定した190℃、2.16kg荷重における環状オレフィン樹脂組成物のメルトフローレートは、0.1g/10分以上15g/10分以下であることが好ましい。より好ましくは0.5g/10分以上8g/10分以下である。0.1g/10分以上であれば、流動性が高く成形しやすいので好ましく、15g/10分以下であると押出成形が容易になり好ましい。 The melt flow rate of the cyclic olefin resin composition at 190 ° C. and a load of 2.16 kg, measured by a method according to JIS K7210, is preferably 0.1 g / 10 min or more and 15 g / 10 min or less. More preferably, it is 0.5 g / 10 min or more and 8 g / 10 min or less. If it is 0.1 g / 10 min or more, it is preferable because the fluidity is high and it is easy to mold, and if it is 15 g / 10 min or less, extrusion molding is facilitated.
[樹脂成形体の製造条件]
 本発明の製造方法では、ダイを備えた押出機を用いて、ダイから環状オレフィン樹脂組成物が吐出する時の樹脂温度を、環状オレフィン樹脂(A)のガラス転移点(Tg)+100℃以上Tg+160℃以下の範囲に調整する。なお、環状オレフィン樹脂(A)を複数種類含む場合でも、本発明の樹脂組成物においては、環状オレフィン樹脂由来のTgは1点で求められるので、そのTgをもとにして樹脂温度を調整する。
[Production conditions for resin moldings]
In the production method of the present invention, the resin temperature when the cyclic olefin resin composition is discharged from the die using an extruder equipped with a die is set to the glass transition point (Tg) of the cyclic olefin resin (A) + 100 ° C. or more and Tg + 160. Adjust to the range below ℃. Even when a plurality of types of cyclic olefin resins (A) are included, in the resin composition of the present invention, the Tg derived from the cyclic olefin resin is obtained at one point, and therefore the resin temperature is adjusted based on the Tg. .
 「ダイのリップ部から環状オレフィン樹脂組成物が吐出する時の樹脂温度」とは、ダイのリップ部から吐出したときの樹脂組成物の温度の実測値を指す。この実測値が上記範囲にあることで、ダイのリップ部にメヤニが付着することを抑えることができる。 “The resin temperature when the cyclic olefin resin composition is discharged from the lip portion of the die” refers to an actual measurement value of the temperature of the resin composition when discharged from the lip portion of the die. When this measured value is in the above range, it is possible to suppress the adherence of the sealant to the lip portion of the die.
 上記樹脂温度は、押出し成形時に樹脂組成物にかかる熱を制御することで調整することができる。例えば、押出機のシリンダ温度、ダイ温度、スクリュー回転数を調整することで、上記樹脂温度を調整できる。具体的には、シリンダ温度やダイ温度が高いほど樹脂温度は高くなる傾向にある。また、スクリュー回転数が速いほど樹脂温度は高くなる傾向にある。 The resin temperature can be adjusted by controlling the heat applied to the resin composition during extrusion molding. For example, the resin temperature can be adjusted by adjusting the cylinder temperature, die temperature, and screw rotation speed of the extruder. Specifically, the resin temperature tends to increase as the cylinder temperature or the die temperature increases. Moreover, the resin temperature tends to increase as the screw rotation speed increases.
 上記樹脂温度を、Tg+100℃以上Tg+160℃以下の範囲に調整するための、シリンダ温度やダイ温度やスクリュー回転数は、環状オレフィン樹脂組成物に含まれる成分の含有割合等によって異なるが、例えば、シリンダ温度(フィード側)は230℃以上350℃以下、シリンダ温度(ダイ側)は150℃以上250℃以下、ダイ温度は150℃以上220℃以下であることが好ましい。 The cylinder temperature, die temperature, and screw rotation speed for adjusting the resin temperature in the range of Tg + 100 ° C. or more and Tg + 160 ° C. or less vary depending on the content ratio of the components contained in the cyclic olefin resin composition. The temperature (feed side) is preferably 230 ° C. or higher and 350 ° C. or lower, the cylinder temperature (die side) is preferably 150 ° C. or higher and 250 ° C. or lower, and the die temperature is preferably 150 ° C. or higher and 220 ° C. or lower.
 一般に、高速でフィルムや繊維等の樹脂成形体を引き取ろうとすると、「ドローレゾナンス」と呼ばれるフィルムの引取り方向に発生する規則的な厚み変動が生じることが知られている。ドローレゾナンスが発生するとフィルム等の樹脂成形体に厚薄ムラが発生したり、繊維の太さが不安定になったりする不具合が生じてしまう。ドローレゾナンスの発生を抑制するためには、樹脂組成物のメルトテンションが高いことが求められる。ところが、従来の樹脂組成物の場合、メルトテンションが高すぎると、ダイを出た溶融状態の樹脂組成物が膨張する傾向(ダイスウェル)が強くなり、メヤニが発生しやすくなってしまう。本発明によれば、環状オレフィン樹脂組成物が特定の成分を特定の割合で含み、上記樹脂温度が特定の範囲に調整されているため、樹脂組成物のメルトテンションを比較的高い値に設定しても、メヤニがダイのリップ部に付着する問題が発生することを抑えることができる。その結果、長時間連続して押出し成形することが可能である。なお、「高速でフィルムや繊維等の樹脂成形体を引き取ろうとする」場合の「高速」とは、引き取り速度が5m/分以上50m/分以下の範囲(特に20m/分以上50m/分以下の範囲)であることをいう。 Generally, it is known that when a resin molded body such as a film or fiber is taken up at a high speed, a regular thickness variation called “draw resonance” occurs in the take-up direction of the film. When draw resonance occurs, problems such as unevenness in the thickness of a resin molded body such as a film or instability in fiber thickness may occur. In order to suppress the occurrence of draw resonance, it is required that the resin composition has a high melt tension. However, in the case of a conventional resin composition, if the melt tension is too high, the molten resin composition that has exited the die has a strong tendency to expand (die swell), and it tends to generate a sag. According to the present invention, since the cyclic olefin resin composition contains a specific component in a specific ratio and the resin temperature is adjusted to a specific range, the melt tension of the resin composition is set to a relatively high value. However, it is possible to suppress the occurrence of the problem that the mains adhere to the lip portion of the die. As a result, it is possible to perform extrusion molding continuously for a long time. “High speed” in the case of “trying to take up a resin molded body such as a film or fiber at high speed” means that the take-up speed is in the range of 5 m / min to 50 m / min (particularly 20 m / min to 50 m / min). Range).
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, although an example and a comparative example are shown and the present invention is explained concretely, the present invention is not limited to these examples.
<材料>
 環状オレフィン樹脂(A)
「9506F-04」(Topas Advanced Polymers製、ガラス転移点65℃、メルトテンションが26.2mN)
「8007F-04」(Topas Advanced Polymers製、ガラス転移点78℃、メルトテンションが34.0mN)
「6013F-04」(Topas Advanced Polymers製、ガラス転移点135℃)
 直鎖状低密度ポリエチレン(B)
「SP2320」(プライムポリマー製、後述する方法で測定したMFRが1.9g/10min、メルトテンションが27.6mN)
「SP1520」(プライムポリマー製、後述する方法で測定したMFRが2.0g/10min、メルトテンションが6.7mN)
 脂肪酸金属塩(C)
ステアリン酸カルシウム
 マスターバッチ
上記の9506F-04を99.7質量%、ステアリン酸カルシウムを0.3質量%含むマスターバッチ
<Material>
Cyclic olefin resin (A)
“9506F-04” (Topas Advanced Polymers, glass transition point 65 ° C., melt tension 26.2 mN)
"8007F-04" (Topas Advanced Polymers, glass transition point 78 ° C, melt tension 34.0mN)
“6013F-04” (Topas Advanced Polymers, glass transition point 135 ° C.)
Linear low density polyethylene (B)
“SP2320” (manufactured by Prime Polymer, MFR measured by the method described later is 1.9 g / 10 min, melt tension is 27.6 mN)
“SP1520” (manufactured by Prime Polymer, MFR measured by the method described later is 2.0 g / 10 min, melt tension is 6.7 mN)
Fatty acid metal salt (C)
Calcium stearate master batch Master batch containing 99.7% by mass of the above 9506F-04 and 0.3% by mass of calcium stearate
<環状オレフィン樹脂組成物の製造>
 表1に示す材料と割合(単位は質量部、(C)成分のみppm)で、二軸押出機(日本製鋼所社製 TEX30)を用いてシリンダ温度250℃にて溶融混練し、実施例及び比較例の溶融押出用環状オレフィン樹脂組成物ペレットを得た。なお、環状オレフィン樹脂(A)のガラス転移点を表1に記載したが、2種類の環状オレフィン樹脂を含む例に関するガラス転移点は、表1に記載の2種類の環状オレフィン樹脂を表1に記載の割合で含むサンプルを用いて、上述の方法(DSC法(JIS K7121記載の方法)、昇温速度10℃/分の条件)で測定して得られた値である。
<Manufacture of cyclic olefin resin composition>
The materials and ratios shown in Table 1 (units are parts by mass, ppm of component (C) only) were melt-kneaded at a cylinder temperature of 250 ° C. using a twin-screw extruder (TEX30 manufactured by Nippon Steel Works), Examples and A cyclic olefin resin composition pellet for melt extrusion of a comparative example was obtained. In addition, although the glass transition point of cyclic olefin resin (A) was described in Table 1, the glass transition point regarding the example containing two types of cyclic olefin resins is two types of cyclic olefin resins described in Table 1 in Table 1. It is the value obtained by measuring by the above-mentioned method (DSC method (method described in JIS K7121), temperature rising rate of 10 ° C./min) using the sample included at the stated ratio.
<MFRの評価>
 MFRはJIS K7210に従い、190℃の温度で2.16kgfの荷重をかけて測定した。測定結果を表1に示した。
<Evaluation of MFR>
MFR was measured according to JIS K7210 at a temperature of 190 ° C. with a load of 2.16 kgf. The measurement results are shown in Table 1.
<メルトテンション(溶融張力)>
 溶融張力は東洋精機製キャピログラフ1B(ピストン径10mm)により、内径1mm、長さ20mmのオリフィスを用いて、190℃ 10mm/minの押出速度の条件でオリフィスから排出した溶融ポリマーを、巻取速度 15m/minで繊維状に引き取った際の繊維にかかる張力(mN)を測定した。測定結果を表1に示した。
<Melt tension>
The melt tension was obtained by using a Capillograph 1B (piston diameter 10 mm) manufactured by Toyo Seiki, using an orifice with an inner diameter of 1 mm and a length of 20 mm, and the molten polymer discharged from the orifice under the conditions of an extrusion speed of 190 ° C. and 10 mm / min. The tension (mN) applied to the fiber when it was taken up into a fiber at / min was measured. The measurement results are shown in Table 1.
<フィルムの成形>
 得られた実施例及び比較例の溶融押出用環状オレフィン樹脂組成物を、30mm×1mmのスリットダイを有する30mmφ二軸押出機によって、200μm厚の短冊状のシートに、表1に示す成形条件で連続成形した。なお、下記成形条件におけるダイリップ吐出樹脂温度は、冷却ロールを退避させた状態でスリットダイから溶融樹脂を垂れ流し、熱電対温度計を樹脂に接触させて測定した。
<Film forming>
The cyclic olefin resin composition for melt extrusion of the obtained Examples and Comparative Examples was formed into a strip-shaped sheet having a thickness of 200 μm by a 30 mmφ twin screw extruder having a slit die of 30 mm × 1 mm under the molding conditions shown in Table 1. Continuous molding. In addition, the die lip discharge resin temperature in the following molding conditions was measured by dripping the molten resin from the slit die with the cooling roll retracted, and contacting the thermocouple thermometer with the resin.
[ダイ付着物量]
 ダイ付着物量の評価方法について図1を用いて説明する。図1(a)はフィルムが押し出される様子を模式的に示す図である。図1(b)はダイ付着物量を評価する様子を模式的に示す図である。押出開始から2.5時間後のダイのリップ部を下方から観察し、リップ部の一端から他端までの長さである全長における、樹脂組成物が付着した割合(メヤニが付着した割合)をパーセントで表した。実施例1~4及び比較例1~2については、上記全長と、樹脂組成物が付着した長さとの関係を図2に示した。上記全長に対して、樹脂組成物が付着した長さの合計が占める割合を評価の基準とした。なお、図2(a)が実施例1、(b)が実施例2、(c)が比較例1、(d)が実施例3、(e)が比較例2、(f)が実施例4である。
[Die deposit amount]
A method for evaluating the die deposit amount will be described with reference to FIG. Fig.1 (a) is a figure which shows a mode that a film is extruded. FIG.1 (b) is a figure which shows typically a mode that die adhesion amount is evaluated. The lip part of the die 2.5 hours after the start of extrusion is observed from below, and the ratio of the resin composition to the entire length from one end of the lip part to the other end (the ratio of the adherence) Expressed as a percentage. For Examples 1 to 4 and Comparative Examples 1 and 2, the relationship between the total length and the length to which the resin composition adhered is shown in FIG. The ratio of the total length of the resin composition attached to the total length was used as a criterion for evaluation. 2A is Example 1, (b) is Example 2, (c) is Comparative Example 1, (d) is Example 3, (e) is Comparative Example 2, and (f) is Example. 4.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示す通り、ダイのリップ部から環状オレフィン樹脂組成物が吐出する時の樹脂温度を特定の範囲に調整することで、メヤニの発生を抑えられることが確認された。 As shown in Table 1, it was confirmed that the occurrence of scouring can be suppressed by adjusting the resin temperature when the cyclic olefin resin composition is discharged from the lip portion of the die to a specific range.
 また、実施例4の材料を用いて、40mmφ単軸押出機と420mm幅のT-ダイを有するシート成形機によって、150μm、75μm、50μm厚のシートを連続的に製膜した。成形は下記の成形条件で行った。
[成形条件]
押出機シリンダ温度:200℃
ダイ温度:180℃
エアギャップ:100mm
チルロール温度:60℃
ダイリップ吐出樹脂実測温度:205℃
引き取り速度と膜厚:150μm厚のシートの場合は5m/min、75μm厚のシートの場合は8m/min、50μm厚のシートの場合は12m/min
In addition, using the material of Example 4, 150 μm, 75 μm, and 50 μm thick sheets were continuously formed by a sheet molding machine having a 40 mmφ single-screw extruder and a 420 mm wide T-die. Molding was performed under the following molding conditions.
[Molding condition]
Extruder cylinder temperature: 200 ° C
Die temperature: 180 ° C
Air gap: 100mm
Chill roll temperature: 60 ° C
Die lip discharge resin measured temperature: 205 ° C
Take-up speed and film thickness: 5 m / min for a 150 μm thick sheet, 8 m / min for a 75 μm thick sheet, 12 m / min for a 50 μm thick sheet
 8時間連続で押出成形を行ったが、メヤニは発生しなかった。長時間押出し成形を行っても本発明の効果を奏することが確認された。また、成形体のサイズによらず本発明の効果を奏することが確認された。
 
Extrusion was carried out continuously for 8 hours, but no cracking occurred. It has been confirmed that the effects of the present invention can be obtained even if extrusion molding is performed for a long time. In addition, it was confirmed that the effects of the present invention were exhibited regardless of the size of the molded body.

Claims (5)

  1.  樹脂成形体の製造時にダイのリップ部に付着物が付着することを抑える樹脂成形体の製造方法であって、
     共重合成分としてα-オレフィンを含む環状オレフィン樹脂(A)と、
     直鎖状低密度ポリエチレン(B)と、
     脂肪酸金属塩(C)と、を含み、
     前記環状オレフィン樹脂(A)の含有量が40質量%以上95質量%以下であり、
     前記直鎖状低密度ポリエチレン(B)の含有量が5質量%以上60質量%以下であり、
     前記脂肪酸金属塩(C)の含有量が5ppm以上2000ppm以下である環状オレフィン樹脂組成物を、ダイを備えた押出機を用いて、ダイのリップ部から前記環状オレフィン樹脂組成物が吐出する時の樹脂温度を、環状オレフィン樹脂のガラス転移点(Tg)+100℃以上Tg+160℃以下の範囲に調整して樹脂成形体に成形する樹脂成形体の製造方法。
    A method for producing a resin molded body that suppresses adhesion of deposits to the lip portion of the die during the production of the resin molded body,
    A cyclic olefin resin (A) containing an α-olefin as a copolymerization component;
    Linear low density polyethylene (B);
    A fatty acid metal salt (C),
    Content of the said cyclic olefin resin (A) is 40 mass% or more and 95 mass% or less,
    The content of the linear low-density polyethylene (B) is 5% by mass or more and 60% by mass or less,
    The cyclic olefin resin composition having a content of the fatty acid metal salt (C) of 5 ppm or more and 2000 ppm or less, when the cyclic olefin resin composition is discharged from the lip portion of the die using an extruder equipped with a die. A method for producing a resin molded body, wherein the resin temperature is adjusted to a glass transition point (Tg) of a cyclic olefin resin + 100 ° C. or higher and Tg + 160 ° C. or lower to form a resin molded body.
  2.  190℃で、巻取速度を15m/分にして測定した前記環状オレフィン樹脂組成物のメルトテンションが、10mN以上であり、
     190℃、2.16kg荷重における前記環状オレフィン樹脂組成物のメルトフローレートが、0.1g/10分以上15g/10分以下である請求項1記載の樹脂成形体の製造方法。
    The melt tension of the cyclic olefin resin composition measured at 190 ° C. and a winding speed of 15 m / min is 10 mN or more,
    The method for producing a resin molded body according to claim 1, wherein a melt flow rate of the cyclic olefin resin composition at 190 ° C and a load of 2.16 kg is 0.1 g / 10 min or more and 15 g / 10 min or less.
  3.  樹脂成形体の引き取り速度は5m/分以上50m/分以下である請求項1又は2に記載の樹脂成形体の製造方法。 The method for producing a resin molded body according to claim 1 or 2, wherein the take-up speed of the resin molded body is 5 m / min or more and 50 m / min or less.
  4.  前記直鎖状低密度ポリエチレン(B)が、メタロセン触媒を用いて重合してなる直鎖状低密度ポリエチレンである請求項1から3のいずれかに記載の樹脂成形体の製造方法。 The method for producing a resin molded body according to any one of claims 1 to 3, wherein the linear low density polyethylene (B) is a linear low density polyethylene obtained by polymerization using a metallocene catalyst.
  5.  前記脂肪酸金属塩(C)は、ステアリン酸カルシウムである請求項1から4のいずれかに記載の樹脂成形体の製造方法。 The method for producing a resin molded body according to any one of claims 1 to 4, wherein the fatty acid metal salt (C) is calcium stearate.
PCT/JP2013/050698 2012-02-27 2013-01-16 Method for producing resin molded body WO2013128964A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-040680 2012-02-27
JP2012040680 2012-02-27

Publications (1)

Publication Number Publication Date
WO2013128964A1 true WO2013128964A1 (en) 2013-09-06

Family

ID=49082174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050698 WO2013128964A1 (en) 2012-02-27 2013-01-16 Method for producing resin molded body

Country Status (1)

Country Link
WO (1) WO2013128964A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046217B2 (en) * 1983-11-04 1992-02-05 Showa Densen Denran Kk
JP2004083818A (en) * 2002-08-29 2004-03-18 Nippon Zeon Co Ltd Heat-shrinkable film
WO2007132641A1 (en) * 2006-05-12 2007-11-22 Daicel Chemical Industries, Ltd. Cycloolefinic resin composition
JP2008179687A (en) * 2007-01-24 2008-08-07 Daicel Chem Ind Ltd Cyclic olefin-based resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046217B2 (en) * 1983-11-04 1992-02-05 Showa Densen Denran Kk
JP2004083818A (en) * 2002-08-29 2004-03-18 Nippon Zeon Co Ltd Heat-shrinkable film
WO2007132641A1 (en) * 2006-05-12 2007-11-22 Daicel Chemical Industries, Ltd. Cycloolefinic resin composition
JP2008179687A (en) * 2007-01-24 2008-08-07 Daicel Chem Ind Ltd Cyclic olefin-based resin composition

Similar Documents

Publication Publication Date Title
CN1170669C (en) Methods of stretching films and such films
WO2017169931A1 (en) Methacrylic resin composition and molded body
JP5049122B2 (en) Resin composition, film or sheet or laminate comprising resin composition
JP5386247B2 (en) Method for producing polyolefin resin film
JP5281497B2 (en) Polyolefin resin composition for melt extrusion and film using the same
JP5619378B2 (en) Cyclic olefin resin composition for melt extrusion and film using the same
WO2012067231A1 (en) Polypropylene resin composition for thin wall injection molding, molded article and container
WO2013128964A1 (en) Method for producing resin molded body
JP2017119741A (en) Resin and film
JP4814437B2 (en) Process for producing modified polyethylene resin, modified polyethylene resin and film thereof
US11466146B2 (en) Ethylene-based polymer, method of producing ethylene-based polymer, and film
JP5548376B2 (en) Resin film for transverse stretching containing 4-methylpentene-1 (co) polymer and method for producing the same
JP2010150328A (en) Polypropylene-based resin composition, and film comprised of the same
JP2010180318A (en) Pellet mixture, molded product and method for producing the molded product
JPH1171427A (en) Polyethylene-based resin for forming inflation film and inflation film using the same
KR101497637B1 (en) Process of producing molding, and molding
JP4992631B2 (en) Method for producing polypropylene resin film
JP2020132807A (en) Oriented polyester film
WO2011162098A1 (en) Method for producing molded article
JP6379739B2 (en) High rigidity multilayer film
WO2010032560A1 (en) Pellet mixture, molded body, and method for producing molded body
JP2013136792A (en) Method for manufacturing molding, and molding
JP7167486B2 (en) Polypropylene laminated film
JP2010144007A (en) Inflation film
JP2010116499A (en) Resin composition and heat-shrinkable film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13754593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP