WO2013128959A1 - 無線通信システム、基地局および通信制御方法 - Google Patents

無線通信システム、基地局および通信制御方法 Download PDF

Info

Publication number
WO2013128959A1
WO2013128959A1 PCT/JP2013/050527 JP2013050527W WO2013128959A1 WO 2013128959 A1 WO2013128959 A1 WO 2013128959A1 JP 2013050527 W JP2013050527 W JP 2013050527W WO 2013128959 A1 WO2013128959 A1 WO 2013128959A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
received power
path loss
user apparatus
target uplink
Prior art date
Application number
PCT/JP2013/050527
Other languages
English (en)
French (fr)
Inventor
彰人 森本
信彦 三木
大祐 西川
石井 啓之
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to US14/380,597 priority Critical patent/US20150045084A1/en
Publication of WO2013128959A1 publication Critical patent/WO2013128959A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/343TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading taking into account loading or congestion level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Definitions

  • the present invention relates to a wireless communication system, a base station, and a communication control method.
  • Heterogeneous Network HetNet
  • a configuration in which a connection destination base station is selected based on downlink reception power in a user apparatus is common.
  • a base station with a large downlink transmission power for example, a macro base station
  • a base station with a small downlink transmission power for example, a pico base station
  • connection destination base station of the device It is easy to be selected as a connection destination base station of the device.
  • a base station cell for example, a macro cell
  • a base station cell for example, a pico cell
  • Patent Literature 1 selects a connection destination base station according to downlink reception power in a user apparatus, there is a possibility that uplink transmission power from the user apparatus to the base station is not appropriately set.
  • uplink communication since a user apparatus having a predetermined transmission capability can transmit an uplink signal to a plurality of types of base stations, a base station with a small path loss (propagation loss) from the user apparatus (for example, located closer to the base station) Base station) is suitable as a connection destination base station for uplink communication.
  • a base station with a larger path loss may be selected as the connection destination.
  • the uplink transmission power from the user apparatus is larger than when a base station with a smaller path loss is selected as the connection destination base station. Therefore, the interference power from the user apparatus becomes larger. As a result, the throughput of the entire system may be reduced.
  • the present invention provides a radio communication system and a base capable of appropriately controlling uplink transmission power from a user apparatus in a radio communication system including a plurality of types of radio base stations having different transmission powers (transmission capabilities).
  • An object is to provide a station and a communication control method.
  • a radio communication system includes a plurality of base stations including a first base station forming a first cell and a second base station forming a second cell having a smaller area than the first cell,
  • a user apparatus capable of performing wireless communication by transmitting and receiving radio waves to and from each of the base stations, and the second received power from the second base station in the user apparatus is increased.
  • a downlink reception power correction unit that corrects the downlink reception power using a cell range extension offset value corresponding to a base station, the downlink reception power from the first base station, and the corrected after the cell range extension offset value Based on downlink reception power from the second base station, a connection destination selection unit that selects a connection destination base station of the user apparatus, and a target uplink reception characteristic that calculates a target uplink reception characteristic from the user apparatus in the base station
  • a parameter setting unit that sets a parameter for calculating a target uplink reception characteristic in the second base station according to the cell range extension offset value corresponding to the second base station, and
  • a transmission power control unit configured to control the uplink transmission power of the user apparatus so that the uplink reception characteristic from the user apparatus approaches the target uplink reception characteristic.
  • the “uplink reception characteristic” is a value related to reception of uplink communication, and is a concept that includes uplink reception power and uplink reception quality.
  • the parameter is set according to the cell range extension offset value, and the uplink transmission power of the user apparatus is controlled according to the target uplink reception characteristic calculated based on the set parameter. Therefore, transmission power control can be more appropriately performed compared to a configuration in which uplink transmission power of the user apparatus is controlled regardless of the cell range extension offset value.
  • the wireless communication system includes a path loss calculation unit that calculates a path loss between the base station and the user apparatus
  • the parameter setting unit includes the reference uplink received power and the path loss, which are parameters for calculating a target uplink received power in the second base station according to the cell range extension offset value corresponding to the second base station. At least one of the correction coefficients is set, and the transmission power control unit controls the uplink transmission power of the user apparatus so that the uplink reception power from the user apparatus in the base station approaches the target uplink reception power .
  • the user equipment located in the vicinity of the cell boundary The difference between the target uplink received power at the first base station and the target uplink received power at the second base station from the user apparatus located in the vicinity of the cell boundary becomes smaller. Therefore, the difference in uplink transmission power from the user apparatus to each base station (first base station, second base station) is also reduced. Therefore, interference caused by the user apparatus can be suppressed as compared with the configuration in which the target uplink received power is set regardless of the cell range extension offset value.
  • the wireless communication system includes a path loss calculation unit that calculates a path loss between the base station and the user apparatus, and an interference versus thermal noise calculation unit that calculates interference versus thermal noise in the base station.
  • TUSINR is the target uplink received quality
  • P 0 the reference uplink received power
  • the path loss correction coefficient
  • PL the path loss
  • the uplink transmission power from the user apparatus is controlled based on the target uplink reception quality. Therefore, compared with the configuration in which the uplink transmission power from the user apparatus is controlled based on the target uplink reception power, the uplink transmission power control in which the interference received by the base station and the noise in the base station are also considered can be realized.
  • the second base station notifies the first base station of the interference-to-thermal noise calculated by the interference-to-thermal noise calculation unit of the second base station.
  • the parameter setting unit of the first base station is notified from the interference to thermal noise calculated by the interference to thermal noise calculation unit of the first base station and from the interference to thermal noise notification unit of the second base station.
  • at least one of the reference uplink received power and the path loss correction coefficient of the first base station and at least one of the reference uplink received power and the path loss correction coefficient of the second base station based on the received interference versus thermal noise. Either of the reference uplink received power and the path loss correction coefficient in the second base station set by the parameter setting unit of the first base station.
  • One or, and a parameter notification unit configured to notify the second base station.
  • the parameters of the first base station and the second base station are based on both the interference-to-thermal noise acquired by the first base station and the interference-to-thermal noise notified from the second base station. Therefore, the uplink transmission power control based on the parameters is more appropriately executed.
  • the parameter setting unit reduces the reference uplink received power at the second base station to be smaller than the reference uplink received power at the first base station as the cell range extension offset value is smaller. Set. According to the above configuration, the difference in target uplink received power at the cell boundary can be further reduced.
  • the parameter setting unit sets the path loss correction coefficient in the second base station to be smaller than the path loss correction coefficient in the first base station as the cell range extension offset value is smaller. According to the above configuration, the difference in target uplink received power at the cell boundary can be further reduced.
  • the parameter setting unit reduces the reference uplink received power at the second base station to be smaller than the reference uplink received power at the first base station as the cell range extension offset value is smaller.
  • the path loss correction coefficient in the second base station is set smaller than the path loss correction coefficient in the first base station. According to the above configuration, the difference in target uplink received power at the cell boundary can be further reduced.
  • a base station includes a plurality of base stations including a first base station that forms a first cell and a second base station that forms a second cell having a smaller area than the first cell,
  • a first base station in a wireless communication system comprising a user apparatus capable of performing wireless communication by transmitting and receiving radio waves to and from each of the base stations, wherein the user apparatus is a downlink from the second base station.
  • a downlink received power correction unit that corrects the downlink received power using a cell range extended offset value corresponding to the second base station so as to increase the received power; a downlink received power from the own station; and the cell range
  • a connection destination selection unit that selects a connection destination base station of the user apparatus based on downlink received power from the second base station after correction by an extended offset value, and target uplink reception from the user apparatus in the base station
  • Characteristic A target uplink reception characteristic calculation unit for calculating, and a parameter setting unit for setting a parameter for calculating the target uplink reception characteristic in the second base station according to the cell range extended offset value corresponding to the second base station
  • a parameter notification unit for notifying the second base station of the parameter set by the parameter setting unit, and the user apparatus so that the uplink reception characteristic from the user apparatus in the base station approaches the target uplink reception characteristic
  • a transmission power control unit for controlling the uplink transmission power of the transmission.
  • the base station includes a path loss calculation unit that calculates a path loss between the base station and the user apparatus, and the target uplink reception characteristic calculation unit includes the target uplink reception characteristic as the target uplink reception characteristic.
  • the parameter setting unit includes the reference uplink received power and the path loss, which are parameters for calculating a target uplink received power in the second base station according to the cell range extension offset value corresponding to the second base station. Set at least one of the correction factors,
  • the transmission power control unit controls uplink transmission power of the user apparatus so that uplink reception power from the user apparatus in the base station approaches the target uplink reception power.
  • the base station includes a path loss calculating unit that calculates a path loss between the base station and the user apparatus, and an interference to thermal noise calculating unit that calculates interference to thermal noise in the base station.
  • the parameter setting unit in a user apparatus in which the downlink received power from the own station and the downlink received power from the
  • the base station includes a receiving unit that receives interference and thermal noise of the second base station reported from the second base station
  • the parameter setting unit of the first base station includes: Based on the interference to thermal noise calculated by the interference to thermal noise calculation unit of the first base station and the interference to thermal noise notified from the interference to thermal noise notification unit of the second base station, At least one of the reference uplink received power and path loss correction coefficient of the base station and at least one of the reference uplink received power and path loss correction coefficient of the second base station are set, and the parameter notification unit The setting unit notifies the second base station of at least one of the reference uplink received power and the path loss correction coefficient in the second base station.
  • the communication control method of the present invention includes a plurality of base stations including a first base station that forms a first cell and a second base station that forms a second cell having a smaller area than the first cell,
  • a communication control method in a wireless communication system comprising: a user apparatus capable of performing wireless communication by transmitting / receiving radio waves to / from each of the plurality of base stations, wherein the user apparatus downloads from the second base station Correcting the downlink received power using a cell range extension offset value corresponding to the second base station so as to increase the received power, the downlink received power from the first base station, and the cell range extension Based on the downlink received power from the second base station corrected by the offset value, the connection destination base station of the user apparatus is selected, and the target uplink reception characteristic from the user apparatus in the base station is calculated.
  • the communication control method comprises calculating a path loss between the base station and the user apparatus, and calculating the target uplink reception characteristic, wherein the target uplink reception characteristic is:
  • the reference uplink received power that is a parameter for calculating a target uplink received power in the second base station according to the cell range extension offset value corresponding to the second base station, and When at least one of the path loss correction coefficients is set and the transmission power is controlled, the uplink transmission of the user apparatus so that the uplink reception power from the user apparatus in the base station approaches the target uplink reception power Power is controlled.
  • the communication control method calculates a path loss between the base station and the user apparatus, calculates interference versus thermal noise in the base station, and inputs in the base station. Obtaining a noise figure that is a ratio between signal quality and output signal quality, and calculating the target uplink reception characteristic, wherein the target uplink reception characteristic from the user apparatus in the base station is used as the target uplink reception characteristic.
  • TUSINR (P 0 ⁇ (1 ⁇ ) ⁇ PL) / (IoT + NF) (Where TUSINR is the target uplink received quality, P 0 is the reference uplink received power, ⁇ is the path loss correction coefficient, PL is the path loss, IoT is the interference versus thermal noise, NF Is the noise figure.)
  • the reference uplink reception that is a parameter for calculating the target uplink reception quality at the second base station so that the difference between the target uplink reception quality at the base station and the target uplink reception quality at the second base station becomes smaller
  • the uplink reception quality from the user apparatus in the base station approaches the target uplink reception quality of the user apparatus. Uplink transmission power is controlled.
  • FIG. 1 is a block diagram showing a wireless communication system according to a first embodiment of the present invention. It is a block diagram which shows the structure of the user apparatus which concerns on 1st Embodiment of this invention. It is a block diagram which shows the structure of the macro base station which concerns on 1st Embodiment of this invention. It is a block diagram which shows the structure of the pico base station which concerns on 1st Embodiment of this invention. It is a figure which shows the mode of the downlink communication in the heterogeneous network which concerns on 1st Embodiment of this invention. It is a figure which shows the mode of the uplink communication in the said heterogeneous network. It is a figure which shows the mode of downlink communication, and the mode of uplink communication collectively.
  • FIG. It is a figure which shows the change of the range of the picocell before and behind correction
  • FIG. It is a figure which shows control of target uplink received power according to the change of a path loss. It is a figure which shows the problem of control of the said target uplink received power in the said heterogeneous network. It is a figure which shows control of the reference
  • FIG. 1 is a block diagram of a wireless communication system 1 according to the first embodiment.
  • the radio communication system 1 includes a macro base station (macro eNodeB (evolved Node B)) 100, a pico base station (pico eNodeB) 200, and a user apparatus 300.
  • Each communication element (the macro base station 100, the pico base station 200, the user apparatus 300, etc.) in the radio communication system 1 performs radio communication according to a predetermined radio access technology (Radio Access Technology), for example, LTE (Long Term Evolution).
  • a mode in which the wireless communication system 1 operates in accordance with LTE will be described as an example, but this is not intended to limit the technical scope of the present invention.
  • the present invention can be applied to other radio access technologies with necessary design changes.
  • the macro base station 100 and the pico base station 200 are connected to each other by wire or wireless.
  • the macro base station 100 forms a macro cell Cm around it
  • the pico base station 200 forms a pico cell Cp around it.
  • the pico cell Cp is a cell C formed in the macro cell Cm formed by the macro base station 100 connected to the pico base station 200 that forms the pico cell Cp.
  • a plurality of pico cells Cp can be formed.
  • Each base station can wirelessly communicate with a user apparatus (User Equipment, UE) 300 located in the cell C of the base station itself.
  • the user apparatus 300 can wirelessly communicate with a base station (macro base station 100, pico base station 200) corresponding to the cell C (macro cell Cm, pico cell Cp) in which the user apparatus 300 is located. .
  • the macro base station 100 Since the macro base station 100 has higher radio transmission capability (maximum transmission power, average transmission power, etc.) than the pico base station 200, it can communicate with the user apparatus 300 located farther away. Therefore, the macro cell Cm has a larger area than the pico cell Cp. For example, the macro cell Cm has a radius of several hundred meters to several tens of kilometers, and the pico cell Cp has a radius of several meters to several tens of meters.
  • the macro base station 100 and the pico base station 200 in the radio communication system 1 are heterogeneous in which a plurality of types of radio base stations having different transmission powers (transmission capabilities) are installed in multiple layers.
  • Configure the Genius network Heterogeneous Network, HetNet) (3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for E-UTRA TR 36.814 V9.0.0 (2010-03); see Section 9A, Heterogeneous Deployments).
  • each base station the macro base station 100 and the pico base station 200
  • the user apparatus 300 is arbitrary.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • FIG. 2 is a block diagram illustrating a configuration of the user device 300 according to the first embodiment.
  • the user device 300 includes a wireless communication unit 310 and a control unit 330. Note that illustration of an output device that outputs audio / video, an input device that receives an instruction from a user, and the like is omitted for convenience.
  • the wireless communication unit 310 is an element for performing wireless communication with each base station (the macro base station 100 and the pico base station 200).
  • the wireless communication unit 310 receives transmission / reception antennas and downlink wireless signals from the base stations and converts them into electrical signals.
  • a reception circuit that converts and supplies the signal to the control unit 330 and a transmission circuit that converts an electrical signal such as an audio signal supplied from the control unit 330 into an uplink radio signal and transmits the signal.
  • the control unit 330 includes a received power measuring unit 332, a received power reporting unit 334, and a communication control unit 336 as elements.
  • the received power measuring unit 332 measures the downlink received radio signal DRP1 received from the macro base station 100 and the downlink received radio signal DRP2 received from the pico base station 200, and supplies the measured signal to the received power reporting unit 334.
  • the reception power reporting unit 334 reports the supplied reception power DRP1 and reception power DRP2 to the base station that is wirelessly connected via the wireless communication unit 310.
  • the communication control unit 336 selects a connection destination base station based on the connection destination base station information TeNB received from the base station that is wirelessly connected, and performs wireless communication.
  • control unit 330 and the received power measurement unit 332, the received power report unit 334, and the communication control unit 336 included in the control unit 330 are stored in a storage unit (not illustrated) by a CPU (Central Processing Unit) (not illustrated) in the user apparatus 300.
  • CPU Central Processing Unit
  • FIG. 3 is a block diagram showing a configuration of the macro base station 100 according to the first embodiment.
  • the macro base station 100 includes a wireless communication unit 110, a network communication unit 120, and a control unit 130.
  • the wireless communication unit 110 is an element for performing wireless communication with the user apparatus 300, and includes a transmission / reception antenna, a receiving circuit that receives an uplink wireless signal from the user apparatus 300 and converts it into an electrical signal, And a transmission circuit that converts an electrical signal such as a supplied audio signal into a downlink radio signal and transmits the signal.
  • the network communication unit 120 is an element for performing communication with other base stations (the macro base station 100 and the pico base station 200), and transmits and receives electrical signals to and from other base stations.
  • the macro base station 100 performs communication with other base stations by radio
  • the radio communication unit 110 also serves as the network communication unit 120 is possible.
  • the control unit 130 includes an offset value setting unit 132, a reception power correction unit 134, a reception power reception unit 136, a connection destination selection unit 138, a path loss calculation unit 140, a parameter setting unit 142, a parameter notification unit 144, and a target uplink reception characteristic calculation unit. 146 and a transmission power control unit 148.
  • the above-described elements included in the control unit 130 and the control unit 130 are realized by a CPU (not shown) in the macro base station 100 executing a computer program stored in a storage unit (not shown) and functioning according to the computer program. Functional block. Details of the operation of the control unit 130 will be described later.
  • FIG. 4 is a block diagram showing a configuration of the pico base station 200 according to the first embodiment.
  • the pico base station 200 includes a wireless communication unit 210, a network communication unit 220, and a control unit 230.
  • the wireless communication unit 210 is an element for performing wireless communication with the user apparatus 300, and includes a transmission / reception antenna, a reception circuit that receives an uplink wireless signal from the user apparatus 300 and converts it into an electrical signal, And a transmission circuit that converts an electrical signal such as a supplied audio signal into a downlink radio signal and transmits the signal.
  • the network communication unit 220 is an element for executing communication with the macro base station 100 to which the pico base station 200 is connected, and transmits and receives electrical signals to and from the macro base station 100.
  • the pico base station 200 communicates with the macro base station 100 by radio, it is understood that a configuration in which the radio communication unit 210 also serves as the network communication unit 220 is possible.
  • the pico base station 200 can receive the downlink radio signal transmitted by the macro base station 100 and transfer it to the user apparatus 300, and can receive the uplink radio signal transmitted by the user apparatus 300 and transfer it to the macro base station 100.
  • the control unit 230 includes a reception power reception unit 232, a reception power notification unit 234, a connection destination selection unit 236, a path loss calculation unit 242, a parameter reception unit 246, a target uplink reception characteristic calculation unit 248, and a transmission power control unit 250.
  • the above-described elements included in the control unit 230 and the control unit 230 are realized by a CPU (not shown) in the pico base station 200 executing a computer program stored in a storage unit (not shown) and functioning according to the computer program. Functional block. Details of the operation of the control unit 230 will be described later.
  • the position of the macro base station 100 is referred to as a position Lm
  • the position of the pico base station 200 is referred to as a position Lp
  • the position of the user apparatus 300 is referred to as a position Lu.
  • FIG. 5 is a diagram showing a situation of downlink communication in a heterogeneous network.
  • User apparatus 300 receives radio waves (downlink radio signals) from each base station (macro base station 100, pico base station 200).
  • the horizontal axis represents the position of each device (macro base station 100, pico base station 200, user device 300), and the vertical axis represents the received power (downlink received power) of the downlink radio signal transmitted from the base station in the user device 300.
  • DRP is shown logarithmically.
  • FIG. 5 shows downlink received power DRP1 from macro base station 100 and downlink received power DRP2 from pico base station 200.
  • the downlink received power DRP (DRP1, DRP2) decreases as the distance from the base station (macro base station 100, pico base station 200) increases.
  • a position where the downlink received power DRP1 from the macro base station 100 and the downlink received power DRP2 from the pico base station 200 coincide with each other is defined as a position L1.
  • the downlink transmission power (transmission capability) of the macro base station 100 exceeds the downlink transmission power (transmission capability) of the pico base station 200 by a difference ⁇ .
  • the downlink received power DRP1 from the macro base station 100 at the position Lm exceeds the downlink received power DRP2 from the pico base station 200 at the position Lp by a difference ⁇ . Therefore, the radius (Lm to L1) of the macro cell Cm (the range in which the downlink reception power DRP1 from the macro base station 100 exceeds the downlink reception power DRP2 from the pico base station 200) is the pico cell Cp (downlink reception from the pico base station 200).
  • the power DRP2 exceeds the radius (Lp to L1) of the range in which the downlink received power DRP1 from the macro base station 100 exceeds.
  • the macro base station 100 is selected as the connection destination of the user apparatus 300 located in the macro cell Cm, and is located in the pico cell Cp.
  • the pico base station 200 is selected as the connection destination of the user apparatus 300.
  • FIG. 6 is a diagram illustrating a state of uplink communication in a heterogeneous network.
  • User apparatus 300 transmits radio waves to each base station (macro base station 100, pico base station 200).
  • the horizontal axis indicates the position of each device as in FIG.
  • the vertical axis represents the reciprocal iPL of the path loss PL from each base station to the user apparatus 300 as a logarithm.
  • FIG. 6 shows the reciprocal iPL m of the path loss PL m from the macro base station 100 to the user apparatus 300 and the reciprocal iPL p of the path loss PL p from the pico base station 200 to the user apparatus 300.
  • the reciprocal iPL of the path loss PL is calculated from the base station. The smaller the distance (line-of-sight distance), the smaller.
  • the reciprocal iPL of the path loss PL from the base station to the user apparatus 300 can also be regarded as a path loss from the user apparatus 300 to the base station.
  • a position where the reciprocal iPL m of the path loss PL m from the macro base station 100 to the user apparatus 300 matches the reciprocal iPL p of the path loss PL p from the pico base station 200 to the user apparatus 300 is defined as a position L2.
  • uplink communication in a heterogeneous network since transmission from one user apparatus 300 having a predetermined transmission capability to a plurality of base stations is considered, it is necessary to consider a difference in transmission power (transmission capability) as in downlink communication There is no. That is, when considering only uplink communication, it is understood that it is preferable that the connection destination base station is selected according to the short line-of-sight distance from the user apparatus 300 (that is, the path loss from the user apparatus 300 is small). Is done.
  • FIG. 7 is a diagram illustrating both the downlink communication state of FIG. 5 and the uplink communication state of FIG.
  • the user device 300 in FIG. 7 is located at a position Lu within the range RG1.
  • the downlink received power DRP1 from the macro base station 100 exceeds the downlink received power DRP2 from the pico base station 200, and therefore the macro base station 100 is connected to the user apparatus 300 for downlink communication. It will be appreciated that it is appropriate to be selected as a base station.
  • the reciprocal iPL p of the path loss PL p from the pico base station 200 exceeds the reciprocal iPL m of the path loss PL m from the macro base station 100 (that is, the position Lu is greater than the macro base station 100. It is understood that it is appropriate for uplink communication if the pico base station 200 is selected as the connection destination base station of the user apparatus 300.
  • connection destination of the user apparatus 300 when the user apparatus 300 is located in the region RG1 of FIG. 7, appropriate connection destination base stations differ between uplink communication and downlink communication. Therefore, in the configuration in which the connection destination of the user apparatus 300 is selected based on the downlink reception power DRP, a connection destination that is not appropriate for uplink communication may be selected. More specifically, the user apparatus 300 located in the region RG1 is connected to the macro base station 100 even though the distance from the macro base station 100 is larger than the distance from the pico base station 200. There is a problem that a large interference is given to the pico base station 200.
  • the correction of the downlink received power DRP will be described with reference to FIG. 8 and FIG.
  • the transmission power of the macro base station 100 is larger than the transmission power of the pico base station 200, there is a high possibility that the macro base station 100 is selected as the connection destination of the user apparatus 300.
  • the connection destination of the user apparatus 300 is concentrated on the macro base station 100, traffic concentration may occur and the throughput of the entire system may be reduced. Therefore, correction is made to increase the downlink received power DRP2 from the pico base station 200, and the range of the pico cell Cp is artificially expanded (cell range expansion, Cell Range Expansion), so that more user apparatuses 300 can be connected to the pico base. It is preferable to connect to the station 200.
  • FIG. 8 is a diagram showing a change in the range of the pico cell Cp before and after correction of the downlink received power DRP.
  • the pico cell Cp formed by the pico base station 200 (not shown) arranged at the position Lp is the position Lu where the user apparatus 300 is located. Not included.
  • the pico cell Cp includes the position Lu where the user apparatus 300 is located.
  • FIG. 9 is a diagram showing details of correction of downlink received power DRP2 from the pico base station 200.
  • the user apparatus 300 receives radio waves from each of the macro base station 100 and the pico base station 200.
  • the downlink received power DRP attenuates as the distance from each base station increases.
  • the received power DRP1 from the macro base station 100 matches the downlink received power DRP2 from the pico base station 200 at the position L1.
  • the downlink received power DRP2 from the pico base station 200 is corrected by the offset value OV, so the received power DRP1 from the macro base station 100 and the corrected pico base station
  • the received power DRP2A from 200 coincides at a position L3 closer to the macro base station 100 than the position L1.
  • the radius of the pico cell Cp is expanded from the position Lp to the position L1 to the position Lp to the position L3 by the correction using the offset value OV.
  • the received power measurement unit 332 of the user apparatus 300 measures the downlink received power DRP1 from the macro base station 100 and the downlink received power DRP2 from the pico base station 200.
  • the received power report unit 334 of the user apparatus 300 reports the downlink received power DRP1 and the downlink received power DRP2 to the base stations (macro base station 100 and pico base station 200) that are wirelessly connected via the radio communication unit 310.
  • reception power reception section 232 of pico base station 200 receives each reception power DRP via radio communication section 210.
  • the received power notification unit 234 notifies the macro base station 100 of each received power DRP via the network communication unit 220.
  • the reception power correction unit 134 of the macro base station 100 that has received the downlink reception power DRP2 from the pico base station 200 in the user apparatus 300 uses the offset value OV supplied from the offset value setting unit 132 to calculate the downlink reception power DRP2. to correct.
  • the downlink received power DRP2 becomes the corrected downlink received power DRP2A in which the power is increased by the offset value OV.
  • the offset value setting unit 132 can set the offset value OV for each pico base station 200 according to the traffic amount in the network, the radio environment of the pico base station 200, and the like.
  • the connection destination selection unit 138 of the macro base station 100 receives the downlink received power DRP1 from the macro base station 100 supplied from the received power reception unit 136 and the corrected pico base station 200 supplied from the received power correction unit 134. Based on the downlink received power DRP2A, the connection destination base station of the user apparatus 300 is selected.
  • the connection destination base station information TeNB indicating the selected base station is notified to the user apparatus 300 via the radio communication unit 110 or the network communication unit 120 (and thus the pico base station 200).
  • the communication control unit 336 of the user apparatus 300 selects a connection destination base station based on the notified connection destination base station information TeNB. Since the size of the pico cell Cp is increased by the above cell range expansion, more user apparatuses 300 are connected to the pico base station 200.
  • the cell range expansion described above is a configuration for correcting the downlink reception power DRP from the pico base station 200 in the connection destination cell selection based on the downlink reception power DRP.
  • the user apparatus 300 that is closer to the pico base station 200 than the macro base station 100 but is connected to the macro base station 100 (more specifically, located in the region RG1 in FIG. 7).
  • User device 300 that is connected to the pico base station 200 becomes easier. That is, it is understood that the above cell range extension is effective not only in downlink communication but also in uplink communication.
  • the path loss PL from the base station increases
  • the uplink transmission power of the user apparatus 300 also increases.
  • the uplink transmission power from the user apparatus 300 is increased in accordance with the increase of the path loss PL
  • there is interference caused by the user apparatus 300 located far from the base station for example, the user apparatus 300 located at the cell edge.
  • the throughput is increased and the throughput of the entire cell is lowered.
  • the target uplink received power TURP in the base station (macro base station 100, pico base station 200) in accordance with an increase in path loss PL.
  • the horizontal axis (logarithmic notation) indicates the path loss PL from the base station in the user apparatus 300
  • the vertical axis (logarithmic notation) indicates the target uplink received power TURP in the base station.
  • 1
  • the origin O is a point where the path loss PL from the base station is 0, that is, the position (Lp, Lm) of the base station (macro base station 100, pico base station 200).
  • the setting of the path loss correction coefficient ⁇ and the reference uplink received power P 0 will be described later.
  • the target uplink received power TURP decreases as the path loss PL increases (that is, as the user apparatus 300 moves away from the base station). For example, since the user equipment 300b located at the cell edge has a larger path loss PL than the user equipment 300a located near the base station, the target uplink received power TURP for the user apparatus 300b is equal to the target uplink received power TURP for the user apparatus 300a. Is set lower. According to the above configuration, an increase in uplink transmission power of the user apparatus 300 due to an increase in path loss PL can be suppressed.
  • FIG. 11 is a diagram illustrating the target uplink received power TURP p in the pico base station 200 and the target uplink received power TURP m in the macro base station 100, which are calculated by the control in FIG.
  • the pico base station 200 is located at the position Lp
  • the macro base station 100 is located at the position Lm.
  • a boundary between the pico cell Cp and the macro cell Cm is defined as a cell boundary B.
  • the user apparatus 300 is located in the vicinity of the cell boundary B.
  • the path loss PL m from the macro base station 100 is relatively large (the macro base station 100 is more user equipment 300 than the pico base station 200).
  • the target uplink received power TURP m is also kept relatively low. Therefore, since the uplink transmission power of the user apparatus 300 is kept relatively low, the interference that other base stations (pico base station 200) suffer from the user apparatus 300 is also relatively small.
  • the path loss PL p from the pico base station 200 is relatively small (the user apparatus is smaller than the macro base station 100 in the user apparatus 300). Therefore, the target uplink received power TURP p is relatively high. Therefore, since the uplink transmission power of the user apparatus 300 is also relatively high, the interference that other base stations (macro base station 100) suffer from the user apparatus 300 is also relatively large.
  • the path loss PL p from the pico base station 200 and the path loss PL m from the macro base station 100 are significantly different. Therefore, when the control of FIG. Accordingly, the transmission power of the user apparatus 300 is significantly different.
  • the path loss PL p and the path loss PL m at the cell boundary B do not substantially change, but according to the cell range expansion described with reference to FIGS. 8 and 9, the offset value OV Since the cell boundary B changes due to the correction of the downlink received power DRP2 from the pico base station 200 using, the path loss PL p and the path loss PL m at the cell boundary B also change. Specifically, the cell boundary B1 when the offset value OV is low is closer to the pico base station 200 (for example, FIG. 12), and the cell boundary B2 when the offset value OV is high is closer to the macro base station 100 (for example, , FIG. 13).
  • the reference uplink received power P 0 that is a parameter for calculating the target uplink received power TURP in the pico base station 200 is set to the offset value OV used for cell range expansion. Set (change) accordingly. This will be described below with reference to FIGS. 12 and 13. 12 and 13, it is assumed that user apparatus 300 is wirelessly connected to pico base station 200.
  • FIG. 12 shows a case where the offset value OV is relatively low.
  • the parameter setting unit 142 of the macro base station 100 sets the reference uplink received power P 0_p according to the offset value OV supplied from the offset value setting unit 132.
  • the parameter setting unit 142 sets larger the difference (P 0_m -P 0_p) the reference uplink received power P 0_M the reference uplink received power P 0_P and the macro base station 100 in the pico base station 200.
  • FIG. 13 shows a case where the offset value OV is relatively high.
  • the parameter setting unit 142 sets smaller the difference (P 0_m -P 0_p) the reference uplink received power P 0_M the reference uplink received power P 0_P and the macro base station 100 in the pico base station 200.
  • the parameter setting unit 142 As described above, the parameter setting unit 142, as an offset value OV is small, the reference uplink received power P 0_P in pico base station 200 is set smaller than the reference uplink received power P 0_M in the macro base station 100.
  • the set reference uplink received power P 0 — p is supplied to the parameter notification unit 144.
  • the path loss correction coefficient ⁇ set not based on the offset value OV is supplied to the parameter notification unit 144.
  • Parameter notifying section 144 notifies parameters (reference uplink received power P 0 — p and path loss correction coefficient ⁇ ) to parameter receiving section 246 of pico base station 200 via network communication section 120.
  • the transmission power control unit 250 of the pico base station 200 causes the uplink reception power from the user apparatus 300 to approach the target uplink reception power TURP p .
  • the uplink transmission power of the user apparatus 300 is controlled. For example, when the uplink reception power from the user apparatus 300 is less than the target uplink reception power TURP p , the user apparatus 300 is instructed to increase the transmission power, and the uplink reception power from the user apparatus 300 is the target uplink reception power TURP. When p is exceeded, the user apparatus 300 is instructed to reduce transmission power.
  • reference uplink received power P 0 — p is such that target uplink received power TURP p at pico base station 200 matches target uplink received power TURP m at macro base station 100. More preferably, it is set.
  • the reference uplink received power P 0 of the pico base station 200 is set according to the offset value OV used for cell range expansion, the user equipment 300 located in the vicinity of the cell boundary B
  • the difference between the target uplink received power TURP m at the macro base station 100 and the target uplink received power TURP p at the pico base station 200 from the user apparatus 300 located in the vicinity of the cell boundary B becomes smaller. Therefore, the difference of the uplink transmission power from the user apparatus 300 to each base station (macro base station 100, pico base station 200) is also smaller. Therefore, compared to a configuration in which the target uplink received power TURP is set regardless of the offset value OV, interference caused by the user apparatus 300 can be suppressed.
  • the path loss correction coefficient ⁇ which is a parameter for calculating the target uplink received power TURP in the pico base station 200, is set (changed) according to the offset value OV used for cell range expansion.
  • FIG. 14 shows a case where the offset value OV is relatively low.
  • the parameter setting unit 142 of the macro base station 100 sets the path loss correction coefficient ⁇ according to the offset value OV supplied from the offset value setting unit 132.
  • the parameter setting unit 142 sets the path loss correction coefficient ⁇ p in the pico base station 200 to be relatively small (that is, the gradient ⁇ (1 ⁇ p ) is relatively large).
  • FIG. 15 shows a case where the offset value OV is relatively high.
  • the parameter setting unit 142 sets the path loss correction coefficient ⁇ p in the pico base station 200 to be relatively large (that is, the slope ⁇ (1 ⁇ p ) is relatively small).
  • the parameter setting unit 142 makes the path loss correction coefficient ⁇ p in the pico base station 200 smaller than the path loss correction coefficient ⁇ m in the macro base station 100 (that is, the inclination ⁇ () as the offset value OV is smaller. 1- ⁇ p ) is set larger).
  • the set path loss correction coefficient ⁇ p is supplied to the parameter notification unit 144.
  • the reference uplink received power P 0 set not based on the offset value OV is supplied to the parameter notification unit 144.
  • Parameter notifying section 144 notifies parameters (reference uplink received power P 0 and path loss correction coefficient ⁇ p ) to parameter receiving section 246 of pico base station 200 via network communication section 120.
  • path loss correction coefficient ⁇ p is set such that target uplink received power TURP p at pico base station 200 matches target uplink received power TURP m at macro base station 100. More preferably.
  • the path loss correction coefficient ⁇ of the pico base station 200 is set according to the offset value OV used for cell range expansion, the macro base from the user apparatus 300 located in the vicinity of the cell boundary B
  • the difference between the target uplink received power TURP m at the station 100 and the target uplink received power TURP p at the pico base station 200 from the user apparatus 300 located in the vicinity of the cell boundary B becomes smaller. Therefore, the difference of the uplink transmission power from the user apparatus 300 to each base station (macro base station 100, pico base station 200) is also smaller. Therefore, compared to a configuration in which the target uplink received power TURP is set regardless of the offset value OV, interference caused by the user apparatus 300 can be suppressed.
  • FIG. 16 is a block diagram illustrating a configuration of the macro base station 100 according to the third embodiment.
  • the macro base station 100 of the third embodiment further includes a storage unit 150 that stores the noise figure NF m of the macro base station 100, the noise figure NF p of the pico base station 200, and the like.
  • the noise figure NF is a ratio of input signal quality (for example, input signal to noise ratio) and output signal quality (output signal to noise ratio) at the base station.
  • the noise figure NF m of the macro base station 100 is lower than the noise figure NF p of the pico base station 200. That is, the macro base station 100 is less susceptible to noise than the pico base station 200.
  • control unit 130 of the macro base station 100 performs noise from the storage unit 150 and the interference-to-thermal noise calculation unit 139 that calculates interference over thermal IoT m in the macro base station 100.
  • a noise figure acquisition unit 141 that acquires the index NF is further provided.
  • the interference versus thermal noise IoT is calculated by the following equation (3).
  • I is interference received by the base station (interference from the user apparatus 300 connected to another base station), and N is thermal noise of the base station.
  • An average value of the interference-to-thermal noise IoT over a predetermined period may be adopted as the interference-to-thermal noise IoT.
  • IoT (I + N) / N (3)
  • FIG. 17 is a block diagram showing a configuration of the pico base station 200 according to the third embodiment.
  • the third control unit 230 of the pico base station 200 of the embodiment notifies interference to thermal noise calculation unit 238 to calculate the interference-to-thermal noise IoT p in the pico base station 200, interference to thermal noise IoT p to the macro base station 100 And a path loss notification unit 244 that notifies the macro base station 100 of the path loss PL p .
  • the calculation formula of interference versus thermal noise IoT p is the same as described above.
  • the interference-to-thermal noise IoT p of the pico base station 200 exceeds the interference-to-thermal noise IoT m of the macro base station 100. This is because the user apparatus 300 located in the vicinity of the pico base station 200 and connected to the macro base station 100 has a large interference with the pico base station 200.
  • the offset value OV is high (when the range of the pico cell Cp is wide)
  • the interference-to-thermal noise IoT m of the macro base station 100 exceeds the interference-to-thermal noise IoT p of the pico base station 200.
  • the interference-to-thermal noise IoT is a value corresponding to the offset value OV.
  • the parameter setting unit 142 of the macro base station 100 includes, for the macro base station 100, the interference to thermal noise IoT m supplied from the interference to thermal noise calculation unit 139, the path loss PL m supplied from the path loss calculation unit 140, the noise Based on the noise figure NF m supplied from the exponent acquisition unit 141, the provisional target uplink reception quality TUSINR m of the macro base station 100 is calculated.
  • provisional target uplink reception quality TUSINR p of pico base station 200 is calculated.
  • the target uplink reception quality TUSINR is calculated by the following equation (4).
  • a value currently in use or a predetermined default value may be used as the reference uplink received power P 0 and the path loss correction coefficient ⁇ for calculating the provisional target uplink reception quality TUSINR.
  • TUSINR (P 0 ⁇ (1 ⁇ ) ⁇ PL) / (IoT + NF) (4)
  • the parameter setting unit 142 sets the reference uplink received power P 0 so that the provisional target uplink reception quality TUSINR p approaches the provisional target uplink reception quality TUSINR m (that is, the difference between the two becomes small). At least one of the path loss correction coefficient ⁇ is set. For example, when the relationship of TUSINR p > TUSINR m is satisfied, the parameter setting unit 142 reduces the tentative target uplink reception quality TUSINR p , and the parameter setting unit 142 corrects the reference uplink reception power P 0 and the path loss correction of the pico base station 200. It is set so that at least one of the coefficients ⁇ is lowered. Note that the parameter setting unit 142 may be set to increase the provisional target uplink reception quality TUSINR m .
  • the parameter setting unit 142 includes at least one of the reference uplink received power P 0 and the path loss correction coefficient ⁇ so that the difference between the target uplink received quality TUSINR p and the target uplink received quality TUSINR m is less than the threshold Th.
  • the parameter setting section 142 sets at least one of reference uplink received power P 0 and path loss correction coefficient ⁇ such that target uplink received quality TUSINR p matches target uplink received quality TUSINR m.
  • a parameter that is not set based on the target uplink reception quality TUSINR may be set to a value currently in use or a predetermined default value.
  • the set parameters (reference uplink received power P 0 and path loss correction coefficient ⁇ ) are supplied to the parameter notification unit 144.
  • the parameter for the macro base station 100 is notified from the parameter notification unit 144 to the target uplink reception characteristic calculation unit 146, and used for calculation of the target uplink reception quality TUSINR m in the macro base station 100.
  • the parameters for the pico base station 200 are notified to the pico base station 200 (parameter receiving unit 246) via the network communication unit 120, and are supplied from the parameter receiving unit 246 to the target uplink reception characteristic calculating unit 248 to be transmitted to the pico base station. 200 is used to calculate the target uplink reception quality TUSINR p at 200.
  • the target uplink reception quality TUSINR is calculated based on the above equation (4).
  • the uplink transmission power from the user apparatus 300 is controlled based on the target uplink reception quality TUSINR. Therefore, compared with the configuration in which the uplink transmission power from the user apparatus 300 is controlled based on the target uplink reception power TURP, the uplink transmission power control that takes into account the interference received by the base station and the noise in the base station is realized. obtain.
  • Modification 1 It is possible to combine the setting of the reference uplink received power P 0 according to the first embodiment and the setting of the path loss correction coefficient ⁇ according to the second embodiment. That is, as illustrated in FIG. 18, the parameter setting unit 142 changes the reference uplink received power P 0_p in the pico base station 200 to the reference uplink received power P 0_m (that is, the change in the macro base station 100 as the offset value OV is smaller).
  • the path loss correction coefficient ⁇ p in the pico base station 200 is set to be smaller than the previous reference uplink received power P 0 ) and the path loss correction coefficient ⁇ m in the macro base station 100 (that is, the path loss correction coefficient ⁇ ). It can be set small.
  • Modification 2 In the above embodiment, information (offset value OV, path loss PL, interference vs. thermal noise IoT, etc.) is collected in parameter setting section 142 of macro base station 100, and parameters (reference uplink received power P 0 , path loss correction coefficient ⁇ ) are collected. However, information may be aggregated in the pico base station 200 and parameters may be calculated. When the parameter is calculated in the pico base station 200, the parameter for the macro base station 100 is notified to the macro base station 100 via the network communication unit 220 of the pico base station 200.
  • the pico base station 200 is exemplified as a base station having a transmission capability lower than that of the macro base station 100.
  • a micro base station, a nano base station, a femto base station, a remote radio head, or the like has a transmission capability. It may be adopted as a low base station.
  • a combination of a plurality of base stations having different transmission capabilities (for example, a combination of a macro base station, a pico base station, and a femto base station) may be employed as an element of the wireless communication system 1.
  • the macro base station 100 selects the connection destination of the user device 300 based on the downlink received power DRP reported from the user device 300, but the connection destination selection unit May be provided in the pico base station 200 or may be provided in the user apparatus 300.
  • the reception power correction unit The same applies to the reception power correction unit. That is, the selection of the connection destination base station of the present invention is performed based on the downlink reception power DRP1 from the macro base station 100 and the downlink reception power DRP2 from the corrected pico base station 200.
  • the location where the correction by the offset value OV and the selection of the connection destination base station are performed is arbitrary.
  • the user apparatus 300 is an arbitrary apparatus capable of wireless communication with each base station (the macro base station 100 and the pico base station 200).
  • the user apparatus 300 may be a mobile phone terminal such as a feature phone or a smartphone, a desktop personal computer, a notebook personal computer, a UMPC (Ultra-Mobile Personal Computer), or a portable game machine. Other wireless terminals may be used.
  • Each function executed by the CPU in each element (the macro base station 100, the pico base station 200, and the user apparatus 300) in the wireless communication system 1 may be executed by hardware instead of the CPU.
  • FPGA programmable logic device
  • DSP field programmable gate array
  • DSP digital signal processor
  • Received power notification unit, 236 ... Connection destination selection unit, 238 ... Interference vs thermal noise calculation unit, 240 ... Interference vs thermal noise notification unit, 242 ... path loss calculation unit, 244 ... path loss notification unit, 246 ... parameter reception unit, 248 ... reception characteristic calculation unit, 250 ... transmission power control unit, 300 ... user device, 310 ... wireless communication unit, 330 ... ... control unit, 332 ... received power measuring unit, 334 ... received power reporting unit, 336 ... communication control unit, ⁇ ( ⁇ m , ⁇ p ) ... path loss correction coefficient, B (B1, B2) ... cell boundaries, C (Cm, Cp) >
  • DRP DRP
  • DRP1 down reception power
  • IoT IoT m, IoT p
  • NF NF m, NF p
  • P 0 (P 0_m, P 0_p) a reference uplink received power
  • PL (PL m, PL p ) > Pass loss
  • TURP TURP m, TURP p
  • TeNB connection destination base station information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 第2基地局からの下り受信電力が、セル範囲拡張オフセット値を用いて増加するように補正される。下り受信電力に基づいてユーザ装置の接続先基地局が選択される。第2基地局に対応するセル範囲拡張オフセット値に応じて、第2基地局における目標上り受信特性を算定するためのパラメータが設定される。パラメータに基づいてユーザ装置からの目標上り受信特性が算定される。ユーザ装置からの上り受信特性が目標上り受信特性に近付くように、ユーザ装置の上り送信電力が制御される。

Description

無線通信システム、基地局および通信制御方法
 本発明は、無線通信システム、基地局および通信制御方法に関する。
 近年、下り送信電力(下り送信能力)が相異なる複数種の基地局(マクロ基地局、ピコ基地局、フェムト基地局、リモートラジオヘッド(Remote Radio Head)等)を重層的に設置したヘテロジーニアスネットワーク(Heterogeneous Network,HetNet)が提案されている(例えば、特許文献1)。ヘテロジーニアスネットワークにおいては、ユーザ装置における下り受信電力に基づいて接続先基地局を選択する構成が一般的である。以上の構成では、下り送信電力の大きい基地局(例えば、マクロ基地局)の方が、下り送信電力の小さい基地局(例えば、ピコ基地局)と比較して、セルサーチまたはハンドオーバの際にユーザ装置の接続先基地局として選択されやすい。換言すると、下り送信電力の小さい基地局のセル(例えば、ピコセル)のカバレッジに比べて、下り送信電力の大きい基地局のセル(例えば、マクロセル)のカバレッジが広い傾向にある。
特開2011-124732号公報
 ユーザ装置における下り受信電力に応じて接続先基地局を選択する特許文献1の技術では、ユーザ装置から基地局に対する上り送信電力が適切に設定されない可能性がある。上りリンク通信においては、所定の送信能力を有するユーザ装置が複数種の基地局に上りリンク信号を送信し得るから、ユーザ装置からのパスロス(伝搬損失)が小さい基地局(例えば、より近くに位置する基地局)が上りリンク通信の接続先基地局として適切である。しかしながら、ユーザ装置における下り受信電力に応じて接続先基地局が選択されると、パスロスがより大きい基地局が接続先として選択される可能性がある。パスロスがより大きい基地局が接続先基地局として選択された場合には、パスロスがより小さい基地局が接続先基地局として選択された場合と比較して、ユーザ装置からの上り送信電力をより大きくする必要があるから、そのユーザ装置からの干渉電力もより大きくなる。結果として、システム全体のスループットが低下する可能性がある。
 以上の事情に鑑み、本発明は、送信電力(送信能力)が相異なる複数種の無線基地局を含む無線通信システムにおいて、ユーザ装置からの上り送信電力を適切に制御可能な無線通信システム、基地局および通信制御方法を提供することを目的とする。
 本発明に係る無線通信システムは、第1セルを形成する第1基地局と、前記第1セルよりも面積が小さい第2セルを形成する第2基地局とを含む複数の基地局と、複数の前記基地局の各々との間で電波を送受信して無線通信を実行可能なユーザ装置とを備え、前記ユーザ装置における前記第2基地局からの下り受信電力を増加させるように、当該第2基地局に対応するセル範囲拡張オフセット値を用いて前記下り受信電力を補正する下り受信電力補正部と、前記第1基地局からの下り受信電力と、前記セル範囲拡張オフセット値による補正後の前記第2基地局からの下り受信電力とに基づいて、前記ユーザ装置の接続先基地局を選択する接続先選択部と、前記基地局におけるユーザ装置からの目標上り受信特性を算定する目標上り受信特性算定部と、前記第2基地局に対応する前記セル範囲拡張オフセット値に応じて、当該第2基地局における目標上り受信特性を算定するためのパラメータを設定するパラメータ設定部と、前記基地局におけるユーザ装置からの上り受信特性が前記目標上り受信特性に近付くように、当該ユーザ装置の上り送信電力を制御する送信電力制御部とを備える。
 本明細書において、「上り受信特性」とは、上りリンク通信の受信に関する値であり、上り受信電力と上り受信品質とを包摂する概念である。
 以上の構成によれば、セル範囲拡張オフセット値に応じてパラメータが設定され、設定されたパラメータに基づいて算定された目標上り受信特性に応じてユーザ装置の上り送信電力が制御される。したがって、セル範囲拡張オフセット値に関わらずユーザ装置の上り送信電力が制御される構成と比較して、送信電力制御がより適切に実行され得る。
 本発明の好適な態様において、無線通信システムは、前記基地局と前記ユーザ装置との間のパスロスを算定するパスロス算定部を備え、前記目標上り受信特性算定部は、前記目標上り受信特性として、前記基地局におけるユーザ装置からの目標上り受信電力を以下の式に基づいて算定し、
 TURP=P-(1-α)・PL
(ここで、TURPは前記目標上り受信電力であり、Pは基準上り受信電力であり、αはパスロス補正係数であり、PLは前記パスロスである。)
 前記パラメータ設定部は、前記第2基地局に対応する前記セル範囲拡張オフセット値に応じて、当該第2基地局における目標上り受信電力を算定するためのパラメータである前記基準上り受信電力および前記パスロス補正係数の少なくともいずれか一方を設定し、前記送信電力制御部は、前記基地局におけるユーザ装置からの上り受信電力が前記目標上り受信電力に近付くように、当該ユーザ装置の上り送信電力を制御する。
 以上の構成によれば、セル範囲拡張オフセット値に応じて、第2基地局の基準上り受信電力およびパスロス補正係数の少なくともいずれか一方が設定されるので、セル境界の近傍に位置するユーザ装置からの第1基地局における目標上り受信電力と、セル境界の近傍に位置するユーザ装置からの第2基地局における目標上り受信電力との差分がより小さくなる。そのため、ユーザ装置からの各基地局(第1基地局、第2基地局)に対する上り送信電力の差分もより小さくなる。したがって、セル範囲拡張オフセット値に関わらず目標上り受信電力が設定される構成と比較して、ユーザ装置が引き起こす干渉が抑制され得る。
 本発明の好適な態様において、無線通信システムは、前記基地局と前記ユーザ装置との間のパスロスを算定するパスロス算定部と、前記基地局における干渉対熱雑音を算定する干渉対熱雑音算定部と、前記基地局における入力信号品質と出力信号品質との比である雑音指数を取得する雑音指数取得部とを備え、前記目標上り受信特性算定部は、前記目標上り受信特性として、前記基地局におけるユーザ装置からの目標上り受信品質を以下の式に基づいて算定し、
 TUSINR=(P-(1-α)・PL)/(IoT+NF)
(ここで、TUSINRは前記目標上り受信品質であり、Pは基準上り受信電力であり、αはパスロス補正係数であり、PLは前記パスロスであり、IoTは前記干渉対熱雑音であり、NFは前記雑音指数である。)
 前記パラメータ設定部は、前記第1基地局からの下り受信電力と、前記セル範囲拡張オフセット値による補正後の前記第2基地局からの下り受信電力とが等しいユーザ装置において、当該第1基地局における目標上り受信品質と当該第2基地局における目標上り受信品質との差分がより小さくなるように、当該第2基地局における目標上り受信品質を算定するためのパラメータである前記基準上り受信電力および前記パスロス補正係数の少なくともいずれか一方を設定し、前記送信電力制御部は、前記基地局におけるユーザ装置からの上り受信品質が前記目標上り受信品質に近付くように、当該ユーザ装置の上り送信電力を制御する。
 以上の構成によれば、目標上り受信品質に基づいてユーザ装置からの上り送信電力が制御される。したがって、目標上り受信電力に基づいてユーザ装置からの上り送信電力が制御される構成と比較して、基地局が受ける干渉および基地局における雑音もが考慮された上り送信電力制御が実現され得る。
 本発明の好適な態様において、前記第2基地局は、当該第2基地局の前記干渉対熱雑音算定部が算定した干渉対熱雑音を前記第1基地局に通知する干渉対熱雑音通知部を備え、前記第1基地局の前記パラメータ設定部は、当該第1基地局の前記干渉対熱雑音算定部が算定した干渉対熱雑音と前記第2基地局の干渉対熱雑音通知部から通知された干渉対熱雑音とに基づいて、当該第1基地局の前記基準上り受信電力およびパスロス補正係数の少なくともいずれか一方並びに当該第2基地局の前記基準上り受信電力およびパスロス補正係数の少なくともいずれか一方を設定し、前記第1基地局は、当該第1基地局の前記パラメータ設定部が設定した、当該第2基地局における前記基準上り受信電力および前記パスロス補正係数の少なくともいずれか一方を、当該第2基地局に通知するパラメータ通知部とを備える。
 以上の構成によれば、第1基地局で取得された干渉対熱雑音と第2基地局から通知された干渉対熱雑音との双方に基づいて、第1基地局および第2基地局のパラメータが設定されるので、パラメータに基づく上り送信電力の制御がより適切に実行される。
 本発明の好適な態様において、前記パラメータ設定部は、前記セル範囲拡張オフセット値が小さい程、前記第2基地局における基準上り受信電力を、前記第1基地局における基準上り受信電力よりもより小さく設定する。
 以上の構成によれば、セル境界における目標上り受信電力の差分がより低減され得る。
 本発明の好適な態様において、前記パラメータ設定部は、前記セル範囲拡張オフセット値が小さい程、前記第2基地局におけるパスロス補正係数を、前記第1基地局におけるパスロス補正係数よりもより小さく設定する。
 以上の構成によれば、セル境界における目標上り受信電力の差分がより低減され得る。
 本発明の好適な態様において、前記パラメータ設定部は、前記セル範囲拡張オフセット値が小さい程、前記第2基地局における基準上り受信電力を、前記第1基地局における基準上り受信電力よりもより小さく設定し、かつ、前記第2基地局におけるパスロス補正係数を、前記第1基地局におけるパスロス補正係数よりもより小さく設定する。
 以上の構成によれば、セル境界における目標上り受信電力の差分がより低減され得る。
 また、本発明の基地局は、第1セルを形成する第1基地局と、前記第1セルよりも面積が小さい第2セルを形成する第2基地局とを含む複数の基地局と、複数の前記基地局の各々との間で電波を送受信して無線通信を実行可能なユーザ装置とを備える無線通信システムにおける第1基地局であって、前記ユーザ装置における前記第2基地局からの下り受信電力を増加させるように、当該第2基地局に対応するセル範囲拡張オフセット値を用いて前記下り受信電力を補正する下り受信電力補正部と、自局からの下り受信電力と、前記セル範囲拡張オフセット値による補正後の前記第2基地局からの下り受信電力とに基づいて、前記ユーザ装置の接続先基地局を選択する接続先選択部と、前記基地局におけるユーザ装置からの目標上り受信特性を算定する目標上り受信特性算定部と、前記第2基地局に対応する前記セル範囲拡張オフセット値に応じて、当該第2基地局における目標上り受信特性を算定するためのパラメータを設定するパラメータ設定部と、前記パラメータ設定部が設定した前記パラメータを前記第2基地局に通知するパラメータ通知部と、前記基地局におけるユーザ装置からの上り受信特性が前記目標上り受信特性に近付くように、当該ユーザ装置の上り送信電力を制御する送信電力制御部とを備える。
 本発明の好適な態様において、基地局は、前記基地局と前記ユーザ装置との間のパスロスを算定するパスロス算定部を備え、前記目標上り受信特性算定部は、前記目標上り受信特性として、前記基地局におけるユーザ装置からの目標上り受信電力を以下の式に基づいて算定し、
 TURP=P-(1-α)・PL
(ここで、TURPは前記目標上り受信電力であり、Pは基準上り受信電力であり、αはパスロス補正係数であり、PLは前記パスロスである。)
 前記パラメータ設定部は、前記第2基地局に対応する前記セル範囲拡張オフセット値に応じて、当該第2基地局における目標上り受信電力を算定するためのパラメータである前記基準上り受信電力および前記パスロス補正係数の少なくともいずれか一方を設定し、
 前記送信電力制御部は、前記基地局におけるユーザ装置からの上り受信電力が前記目標上り受信電力に近付くように、当該ユーザ装置の上り送信電力を制御する。
 本発明の好適な態様において、基地局は、前記基地局と前記ユーザ装置との間のパスロスを算定するパスロス算定部と、前記基地局における干渉対熱雑音を算定する干渉対熱雑音算定部と、前記基地局における入力信号品質と出力信号品質との比である雑音指数を取得する雑音指数取得部とを備え、前記目標上り受信特性算定部は、前記目標上り受信特性として、前記基地局におけるユーザ装置からの目標上り受信品質を以下の式に基づいて算定し、
 TUSINR=(P-(1-α)・PL)/(IoT+NF)
(ここで、TUSINRは前記目標上り受信品質であり、Pは基準上り受信電力であり、αはパスロス補正係数であり、PLは前記パスロスであり、IoTは前記干渉対熱雑音であり、NFは前記雑音指数である。)
 前記パラメータ設定部は、前記自局からの下り受信電力と、前記セル範囲拡張オフセット値による補正後の前記第2基地局からの下り受信電力とが等しいユーザ装置において、前記自局における目標上り受信品質と当該第2基地局における目標上り受信品質との差分がより小さくなるように、当該第2基地局における目標上り受信品質を算定するためのパラメータである前記基準上り受信電力および前記パスロス補正係数の少なくともいずれか一方を設定し、前記送信電力制御部は、前記基地局におけるユーザ装置からの上り受信品質が前記目標上り受信品質に近付くように、当該ユーザ装置の上り送信電力を制御する。
 本発明の好適な態様において、基地局は、前記第2基地局から報告された当該第2基地局の干渉対熱雑音を受信する受信部を備え、前記第1基地局の前記パラメータ設定部は、当該第1基地局の前記干渉対熱雑音算定部が算定した干渉対熱雑音と前記第2基地局の干渉対熱雑音通知部から通知された干渉対熱雑音とに基づいて、当該第1基地局の前記基準上り受信電力およびパスロス補正係数の少なくともいずれか一方並びに当該第2基地局の前記基準上り受信電力およびパスロス補正係数の少なくともいずれか一方を設定し、前記パラメータ通知部は、前記パラメータ設定部が設定した、当該第2基地局における前記基準上り受信電力および前記パスロス補正係数の少なくともいずれか一方を、当該第2基地局に通知する。
 また、本発明の通信制御方法は、第1セルを形成する第1基地局と、前記第1セルよりも面積が小さい第2セルを形成する第2基地局とを含む複数の基地局と、複数の前記基地局の各々との間で電波を送受信して無線通信を実行可能なユーザ装置とを備える無線通信システムにおける通信制御方法であって、前記ユーザ装置における前記第2基地局からの下り受信電力を増加させるように、当該第2基地局に対応するセル範囲拡張オフセット値を用いて前記下り受信電力を補正することと、前記第1基地局からの下り受信電力と、前記セル範囲拡張オフセット値による補正後の前記第2基地局からの下り受信電力とに基づいて、前記ユーザ装置の接続先基地局を選択することと、前記基地局におけるユーザ装置からの目標上り受信特性を算定することと、前記第2基地局に対応する前記セル範囲拡張オフセット値に応じて、当該第2基地局における目標上り受信特性を算定するためのパラメータを設定することと、前記基地局におけるユーザ装置からの上り受信特性が前記目標上り受信特性に近付くように、当該ユーザ装置の上り送信電力を制御することとを備える。
 本発明の好適な態様において、通信制御方法は、前記基地局と前記ユーザ装置との間のパスロスを算定することを備え、前記目標上り受信特性を算定することにおいて、前記目標上り受信特性として、前記基地局におけるユーザ装置からの目標上り受信電力が以下の式に基づいて算定され、
 TURP=P-(1-α)・PL
(ここで、TURPは前記目標上り受信電力であり、Pは基準上り受信電力であり、αはパスロス補正係数であり、PLは前記パスロスである。)
 前記パラメータを設定することにおいて、前記第2基地局に対応する前記セル範囲拡張オフセット値に応じて、当該第2基地局における目標上り受信電力を算定するためのパラメータである前記基準上り受信電力および前記パスロス補正係数の少なくともいずれか一方が設定され、前記送信電力を制御することにおいて、前記基地局におけるユーザ装置からの上り受信電力が前記目標上り受信電力に近付くように、当該ユーザ装置の上り送信電力が制御される。
 本発明の好適な態様において、通信制御方法は、前記基地局と前記ユーザ装置との間のパスロスを算定することと、前記基地局における干渉対熱雑音を算定することと、前記基地局における入力信号品質と出力信号品質との比である雑音指数を取得することとを備え、前記目標上り受信特性を算定することにおいて、前記目標上り受信特性として、前記基地局におけるユーザ装置からの目標上り受信品質を以下の式に基づいて算定し、
 TUSINR=(P-(1-α)・PL)/(IoT+NF)
(ここで、TUSINRは前記目標上り受信品質であり、Pは基準上り受信電力であり、αはパスロス補正係数であり、PLは前記パスロスであり、IoTは前記干渉対熱雑音であり、NFは前記雑音指数である。)
 前記パラメータを設定することにおいて、前記第1基地局からの下り受信電力と、前記セル範囲拡張オフセット値による補正後の前記第2基地局からの下り受信電力とが等しいユーザ装置において、当該第1基地局における目標上り受信品質と当該第2基地局における目標上り受信品質との差分がより小さくなるように、当該第2基地局における目標上り受信品質を算定するためのパラメータである前記基準上り受信電力および前記パスロス補正係数の少なくともいずれか一方が設定され、前記送信電力を制御することにおいて、前記基地局におけるユーザ装置からの上り受信品質が前記目標上り受信品質に近付くように、当該ユーザ装置の上り送信電力が制御される。
本発明の第1実施形態に係る無線通信システムを示すブロック図である。 本発明の第1実施形態に係るユーザ装置の構成を示すブロック図である。 本発明の第1実施形態に係るマクロ基地局の構成を示すブロック図である。 本発明の第1実施形態に係るピコ基地局の構成を示すブロック図である。 本発明の第1実施形態に係るヘテロジーニアスネットワークにおける下りリンク通信の様子を示す図である。 前記ヘテロジーニアスネットワークにおける上りリンク通信の様子を示す図である。 下りリンク通信の様子と上りリンク通信の様子とを併せて示す図である。 下り受信電力の補正前後におけるピコセルの範囲の変化を示す図である。 ピコ基地局200からの下り受信電力の補正の詳細を示す図である。 パスロスの変化に応じて目標上り受信電力の制御を示す図である。 前記ヘテロジーニアスネットワークにおける前記目標上り受信電力の制御の問題点を示す図である。 オフセット値が低い場合の基準上り受信電力の制御を示す図である。 オフセット値が高い場合の基準上り受信電力の制御を示す図である。 オフセット値が低い場合のパスロス補正係数の制御を示す図である。 オフセット値が高い場合のパスロス補正係数の制御を示す図である。 本発明の第3実施形態に係るマクロ基地局の構成を示すブロック図である。 本発明の第3実施形態に係るピコ基地局の構成を示すブロック図である。 本発明の変形例に係る基準上り受信電力およびパスロス補正係数の制御を示す図である。
<第1実施形態>
 図1は、第1実施形態に係る無線通信システム1のブロック図である。無線通信システム1は、マクロ基地局(マクロeNodeB(evolved Node B))100と、ピコ基地局(ピコeNodeB)200と、ユーザ装置300とを備える。無線通信システム1内の各通信要素(マクロ基地局100、ピコ基地局200、ユーザ装置300等)は所定の無線アクセス技術(Radio Access Technology)、例えばLTE(Long Term Evolution)に従って無線通信を行う。本実施形態では、無線通信システム1がLTEに従って動作する形態を例示して説明するが、本発明の技術的範囲を限定する趣旨ではない。本発明は、必要な設計上の変更を施した上で、他の無線アクセス技術にも適用可能である。
 マクロ基地局100とピコ基地局200とは有線または無線にて相互に接続される。マクロ基地局100はその周囲にマクロセルCmを形成し、ピコ基地局200はその周囲にピコセルCpを形成する。ピコセルCpは、そのピコセルCpを形成するピコ基地局200に接続されたマクロ基地局100が形成するマクロセルCm内に形成されるセルCである。1つのマクロセルCm内には、複数のピコセルCpが形成され得る。
 各基地局(マクロ基地局100,ピコ基地局200)は、その基地局自身のセルCに在圏するユーザ装置(User Equipment,UE)300と無線通信が可能である。逆に言うと、ユーザ装置300は、ユーザ装置300自身が在圏するセルC(マクロセルCm,ピコセルCp)に対応する基地局(マクロ基地局100,ピコ基地局200)と無線通信が可能である。
 マクロ基地局100はピコ基地局200と比較して無線送信能力(最大送信電力,平均送信電力等)が高いので、より遠くに位置するユーザ装置300と無線通信可能である。したがって、マクロセルCmはピコセルCpよりも面積が大きい。例えば、マクロセルCmは半径数百メートルから数十キロメートル程度の大きさであり、ピコセルCpは半径数メートルから数十メートル程度の大きさである。
 以上の説明から理解されるように、無線通信システム1内のマクロ基地局100およびピコ基地局200は、送信電力(送信能力)が相異なる複数種の無線基地局が重層的に設置されたヘテロジーニアスネットワーク(Heterogeneous Network,HetNet)を構成する(3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for E-UTRA physical layer aspects (Release 9); 3GPP TR 36.814 V9.0.0 (2010-03); Section 9A, Heterogeneous Deploymentsを参照のこと)。
 なお、各基地局(マクロ基地局100,ピコ基地局200)とユーザ装置300との間の無線通信の方式は任意である。例えば、下りリンク通信ではOFDMA(Orthogonal Frequency Division Multiple Access)が採用され得、上りリンク通信ではSC-FDMA(Single-Carrier Frequency Division Multiple Access)が採用され得る。
 図2は、第1実施形態に係るユーザ装置300の構成を示すブロック図である。ユーザ装置300は無線通信部310と制御部330とを備える。なお、音声・映像等を出力する出力装置およびユーザからの指示を受け付ける入力装置等の図示は、便宜的に省略されている。
 無線通信部310は、各基地局(マクロ基地局100,ピコ基地局200)と無線通信を実行するための要素であり、送受信アンテナと、基地局からの下り無線信号を受信して電気信号に変換し制御部330に供給する受信回路と、制御部330から供給された音声信号等の電気信号を上り無線信号に変換して送信する送信回路とを含む。
 制御部330は、受信電力測定部332、受信電力報告部334、および通信制御部336を要素として内包する。受信電力測定部332は、マクロ基地局100から受信した下り無線信号の受信電力DRP1と、ピコ基地局200から受信した下り無線信号の受信電力DRP2とを測定して受信電力報告部334に供給する。受信電力報告部334は、供給された受信電力DRP1および受信電力DRP2を、無線通信部310を介して無線接続中の基地局に報告する。通信制御部336は、無線接続中の基地局から受信した接続先基地局情報TeNBに基づいて接続先基地局を選択し、無線通信を実行する。
 制御部330ならびに制御部330が内包する受信電力測定部332、受信電力報告部334、および通信制御部336は、ユーザ装置300内の図示しないCPU(Central Processing Unit)が、図示しない記憶部に記憶されたコンピュータプログラムを実行し、そのコンピュータプログラムに従って機能することで実現される機能ブロックである。
 図3は、第1実施形態に係るマクロ基地局100の構成を示すブロック図である。マクロ基地局100は、無線通信部110とネットワーク通信部120と制御部130とを備える。
 無線通信部110は、ユーザ装置300と無線通信を実行するための要素であり、送受信アンテナと、ユーザ装置300からの上り無線信号を受信して電気信号に変換する受信回路と、制御部130から供給された音声信号等の電気信号を下り無線信号に変換して送信する送信回路とを含む。
 ネットワーク通信部120は、他の基地局(マクロ基地局100,ピコ基地局200)と通信を実行するための要素であり、他の基地局との間で電気信号を送受信する。マクロ基地局100が他の基地局と無線にて通信を実行する場合は、無線通信部110がネットワーク通信部120を兼ねる構成も可能であると理解される。
 制御部130は、オフセット値設定部132、受信電力補正部134、受信電力受信部136、接続先選択部138、パスロス算定部140、パラメータ設定部142、パラメータ通知部144、目標上り受信特性算定部146、および送信電力制御部148を備える。制御部130および制御部130が備える以上の各要素は、マクロ基地局100内の図示しないCPUが、図示しない記憶部に記憶されたコンピュータプログラムを実行し、そのコンピュータプログラムに従って機能することにより実現される機能ブロックである。制御部130の動作の詳細は後述される。
 図4は、第1実施形態に係るピコ基地局200の構成を示すブロック図である。ピコ基地局200は、無線通信部210とネットワーク通信部220と制御部230とを備える。
 無線通信部210は、ユーザ装置300と無線通信を実行するための要素であり、送受信アンテナと、ユーザ装置300からの上り無線信号を受信して電気信号に変換する受信回路と、制御部230から供給された音声信号等の電気信号を下り無線信号に変換して送信する送信回路とを含む。
 ネットワーク通信部220は、そのピコ基地局200が接続されるマクロ基地局100と通信を実行するための要素であり、マクロ基地局100との間で電気信号を送受信する。ピコ基地局200がマクロ基地局100と無線にて通信する場合には、無線通信部210がネットワーク通信部220を兼ねる構成も可能であると理解される。
 なお、ピコ基地局200は、マクロ基地局100が送信した下り無線信号を受信してユーザ装置300に転送でき、ユーザ装置300が送信した上り無線信号を受信してマクロ基地局100に転送できる。
 制御部230は、受信電力受信部232、受信電力通知部234、接続先選択部236、パスロス算定部242、パラメータ受信部246、目標上り受信特性算定部248、および送信電力制御部250を備える。制御部230および制御部230が備える以上の各要素は、ピコ基地局200内の図示しないCPUが、図示しない記憶部に記憶されたコンピュータプログラムを実行し、そのコンピュータプログラムに従って機能することにより実現される機能ブロックである。制御部230の動作の詳細は後述される。
 ヘテロジーニアスネットワークにおける上りリンク通信および下りリンク通信について、図5から図7を参照して説明する。各図において、マクロ基地局100の位置を位置Lm、ピコ基地局200の位置を位置Lp、ユーザ装置300の位置を位置Luと称する。
 図5は、ヘテロジーニアスネットワークにおける下りリンク通信の様子を示す図である。ユーザ装置300は各基地局(マクロ基地局100,ピコ基地局200)から電波(下り無線信号)を受信する。横軸は、各装置(マクロ基地局100、ピコ基地局200、ユーザ装置300)の位置を示し、縦軸は、基地局から送信された下り無線信号のユーザ装置300における受信電力(下り受信電力DRP)を対数で示す。図5には、マクロ基地局100からの下り受信電力DRP1と、ピコ基地局200からの下り受信電力DRP2とが示される。無線信号(電波)は伝搬距離が大きくなるほど減衰するから、下り受信電力DRP(DRP1,DRP2)は、基地局(マクロ基地局100、ピコ基地局200)からの距離が大きくなるほど低下する。以下、マクロ基地局100からの下り受信電力DRP1とピコ基地局200からの下り受信電力DRP2とが一致する位置を位置L1とする。
 マクロ基地局100の下り送信電力(送信能力)は、ピコ基地局200の下り送信電力(送信能力)を差分Δだけ上回る。換言すると、位置Lmにおけるマクロ基地局100からの下り受信電力DRP1は、位置Lpにおけるピコ基地局200からの下り受信電力DRP2を差分Δだけ上回る。そのため、マクロセルCm(マクロ基地局100からの下り受信電力DRP1がピコ基地局200からの下り受信電力DRP2を上回る範囲)の半径(Lm~L1)は、ピコセルCp(ピコ基地局200からの下り受信電力DRP2がマクロ基地局100からの下り受信電力DRP1を上回る範囲)の半径(Lp~L1)を上回る。前述のように、受信電力DRPに基づいたセル選択(接続先基地局の選択)によれば、マクロセルCmに位置するユーザ装置300の接続先としてマクロ基地局100が選択され、ピコセルCpに位置するユーザ装置300の接続先としてピコ基地局200が選択される。
 図6は、ヘテロジーニアスネットワークにおける上りリンク通信の様子を示す図である。ユーザ装置300は各基地局(マクロ基地局100,ピコ基地局200)に対して電波を送信する。横軸は、図5と同様に各装置の位置を示す。縦軸は、各基地局からユーザ装置300へのパスロスPLの逆数iPLを対数で示す。図6には、マクロ基地局100からユーザ装置300へのパスロスPLの逆数iPLと、ピコ基地局200からユーザ装置300へのパスロスPLの逆数iPLとが示される。基地局からユーザ装置300へのパスロスPLは、基地局(マクロ基地局100,ピコ基地局200)からの距離(見通し距離)が大きくなるほど大きくなるから、パスロスPLの逆数iPLは、基地局からの距離(見通し距離)が大きくなるほど小さくなる。なお、基地局からユーザ装置300へのパスロスPLの逆数iPLは、ユーザ装置300から基地局へのパスロスと捉えることも可能である。以下、マクロ基地局100からユーザ装置300へのパスロスPLの逆数iPLと、ピコ基地局200からユーザ装置300へのパスロスPLの逆数iPLとが一致する位置を位置L2とする。
 ヘテロジーニアスネットワークにおける上りリンク通信に関しては、所定の送信能力を有する1つのユーザ装置300から複数の基地局に対する送信を考えるから、下りリンク通信のように送信電力(送信能力)の差異を考慮する必要は無い。すなわち、上りリンク通信のみについて考える場合には、ユーザ装置300からの見通し距離が近い(すなわち、ユーザ装置300からのパスロスが小さい)に応じて接続先基地局が選択されると好適であると理解される。
 図7は、図5の下りリンク通信の様子と図6の上りリンク通信の様子とを併せて示す図である。図7のユーザ装置300は、範囲RG1内の位置Luに位置する。範囲RG1(位置Lu)においてはマクロ基地局100からの下り受信電力DRP1がピコ基地局200からの下り受信電力DRP2を上回るから、下りリンク通信については、マクロ基地局100がユーザ装置300の接続先基地局として選択されると適切であると理解される。他方、範囲RG1(位置Lu)においてはピコ基地局200からのパスロスPLの逆数iPLがマクロ基地局100からのパスロスPLの逆数iPLを上回る(すなわち、位置Luはマクロ基地局100よりもピコ基地局200に近い)から、上りリンク通信については、ピコ基地局200がユーザ装置300の接続先基地局として選択されると適切であると理解される。
 以上の説明から理解されるように、ユーザ装置300が図7の領域RG1内に位置する場合には、上りリンク通信と下りリンク通信とで適切な接続先基地局が相違する。そのため、下り受信電力DRPに基づいてユーザ装置300の接続先を選択する構成では、上りリンク通信に関して適切で無い接続先が選択される可能性がある。より具体的には、領域RG1内に位置するユーザ装置300は、マクロ基地局100からの距離がピコ基地局200からの距離と比較して大きいにも関わらずマクロ基地局100に接続されるから、ピコ基地局200に対して大きな干渉を与えるという問題がある。
 図8および図9を参照して、下り受信電力DRPの補正について説明する。前述のように、ヘテロジーニアスネットワークにおいては、マクロ基地局100の送信電力がピコ基地局200の送信電力よりも大きいから、ユーザ装置300の接続先としてマクロ基地局100が選択される可能性が高い。しかし、ユーザ装置300の接続先がマクロ基地局100に集中すると、トラヒックの集中が発生してシステム全体のスループットが低下する可能性がある。そこで、ピコ基地局200からの下り受信電力DRP2を上昇させるように補正して、ピコセルCpの範囲を擬似的に拡張し(セル範囲拡張、Cell Range Expansion)、より多くのユーザ装置300をピコ基地局200に接続させると好適である。
 図8は、下り受信電力DRPの補正前後におけるピコセルCpの範囲の変化を示す図である。ピコ基地局200からの下り受信電力DRP2の補正前において(図8(A))、位置Lpに配置された不図示のピコ基地局200が形成するピコセルCpは、ユーザ装置300の位置する位置Luを含まない。一方、ピコ基地局200からの下り受信電力DRP2の補正後において(図8(B))、ピコセルCpはユーザ装置300の位置する位置Luを含む。
 図9は、ピコ基地局200からの下り受信電力DRP2の補正の詳細を示す図である。前述と同様に、ユーザ装置300はマクロ基地局100およびピコ基地局200の各々から電波を受信する。下り受信電力DRPは各基地局から遠ざかるほど減衰する。図5および図7と同様、位置L1においてマクロ基地局100からの受信電力DRP1とピコ基地局200からの下り受信電力DRP2とが一致する。本実施形態の補正によれば、オフセット値OVによりピコ基地局200からの下り受信電力DRP2が増加するように補正されるので、マクロ基地局100からの受信電力DRP1と、補正後のピコ基地局200からの受信電力DRP2Aとが、位置L1よりもマクロ基地局100に近い位置L3において一致するようになる。換言すると、オフセット値OVを用いた補正により、ピコセルCpの半径が位置Lp~位置L1から位置Lp~位置L3まで拡張する。
 具体的な補正の動作を以下に説明する。ユーザ装置300の受信電力測定部332は、マクロ基地局100からの下り受信電力DRP1およびピコ基地局200からの下り受信電力DRP2を測定する。ユーザ装置300の受信電力報告部334は、無線通信部310を介して、無線接続中の基地局(マクロ基地局100,ピコ基地局200)に下り受信電力DRP1および下り受信電力DRP2を報告する。
 ユーザ装置300がピコ基地局200に下り受信電力DRP1および下り受信電力DRP2を報告する場合には、ピコ基地局200の受信電力受信部232が無線通信部210を介して各受信電力DRPを受信し、受信電力通知部234がネットワーク通信部220を介してマクロ基地局100へ各受信電力DRPを通知する。
 ユーザ装置300におけるピコ基地局200からの下り受信電力DRP2を受信したマクロ基地局100の受信電力補正部134は、オフセット値設定部132から供給されたオフセット値OVを用いて、下り受信電力DRP2を補正する。以上の補正の結果、下り受信電力DRP2は、オフセット値OVだけ電力が増加した補正後の下り受信電力DRP2Aとなる。なお、オフセット値設定部132は、ネットワーク内のトラフィック量、ピコ基地局200の無線環境等に応じて、ピコ基地局200ごとにオフセット値OVを設定することが可能である。
 マクロ基地局100の接続先選択部138は、受信電力受信部136から供給されるマクロ基地局100からの下り受信電力DRP1と、受信電力補正部134から供給される補正後のピコ基地局200からの下り受信電力DRP2Aとに基づいて、ユーザ装置300の接続先基地局を選択する。選択された基地局を示す接続先基地局情報TeNBは、無線通信部110またはネットワーク通信部120(ひいてはピコ基地局200)を介してユーザ装置300に通知される。ユーザ装置300の通信制御部336は、通知された接続先基地局情報TeNBに基づいて接続先基地局を選択する。
 以上のセル範囲拡張によりピコセルCpのサイズが増大するので、より多くのユーザ装置300がピコ基地局200に接続されることとなる。
 以上に説明したセル範囲拡張は、下り受信電力DRPに基づく接続先セル選択において、ピコ基地局200からの下り受信電力DRPを補正する構成である。しかしながら、ピコセルCpの範囲が拡張すると、マクロ基地局100よりもピコ基地局200に近いがマクロ基地局100に接続されてしまうユーザ装置300(より具体的には、図7の領域RG1内に位置するユーザ装置300)が、ピコ基地局200に接続され易くなる。すなわち、以上のセル範囲拡張は、下りリンク通信だけではなく、上りリンク通信においても有効であると理解される。
 一般的に、上りリンク通信に関しては、ユーザ装置300が基地局から離れるほど(すなわち、基地局からのパスロスPLが増大するほど)、基地局における所定の目標上り受信電力を実現するのに必要なユーザ装置300の上り送信電力も大きくなる。しかしながら、パスロスPLの増大に応じてユーザ装置300からの上り送信電力を増加させる構成では、基地局から遠くに位置するユーザ装置300(例えば、セル端に位置するユーザ装置300)が生じさせる干渉が増大し、ひいてはセル全体のスループットが低下するという問題がある。
 そこで、図10に示すように、パスロスPLの増大に応じて基地局(マクロ基地局100,ピコ基地局200)における目標上り受信電力TURPを低減させると好適である。図10において、横軸(対数表記)は、ユーザ装置300における基地局からのパスロスPLを示し、縦軸(対数表記)は、基地局における目標上り受信電力TURPを示す。
 目標上り受信電力TURPは、図10において、傾きが-(1-α)(αは0以上1以下の実数)で切片がPの、パスロスPLを変数とした関数(TURP=P-(1-α)・PL)として表現される。α=1の場合は、パスロスPLに応じた目標上り受信電力TURPの制御が実行されない(常にTURP=Pとなる)。原点Oは、基地局からのパスロスPLが0である点、すなわち基地局(マクロ基地局100,ピコ基地局200)の位置(Lp,Lm)である。なお、パスロス補正係数αおよび基準上り受信電力Pの設定については後述される。
 以上の関数は傾きが負であるから、パスロスPLが増大するほど(すなわち、ユーザ装置300が基地局から離れるほど)目標上り受信電力TURPが低減する。例えば、セル端に位置するユーザ装置300bは、基地局近傍に位置するユーザ装置300aと比較してパスロスPLが大きいので、ユーザ装置300bに対する目標上り受信電力TURPがユーザ装置300aに対する目標上り受信電力TURPよりも低く設定される。以上の構成によれば、パスロスPLの増大によるユーザ装置300の上り送信電力の増加が抑制され得る。
 図10を参照して以上に説明した目標上り受信電力TURPの制御(ひいては、ユーザ装置300の上り送信電力の制御)をヘテロジーニアスネットワークに適用すると、図11に示すような問題が生じ得る。図11は、図10の制御により各々算定される、ピコ基地局200における目標上り受信電力TURPと、マクロ基地局100における目標上り受信電力TURPとを示す図である。図11では、位置Lpにピコ基地局200が位置すると共に、位置Lmにマクロ基地局100が位置する。
 ピコセルCpとマクロセルCmとの境界をセル境界Bとする。ユーザ装置300がセル境界Bの近傍に位置すると想定する。セル境界Bの近傍のユーザ装置300がマクロ基地局100に無線接続する場合には、マクロ基地局100からのパスロスPLが比較的大きい(マクロ基地局100がピコ基地局200よりもユーザ装置300から遠い)から、目標上り受信電力TURPも比較的低く維持される。したがって、そのユーザ装置300の上り送信電力が比較的低く維持されるから、他の基地局(ピコ基地局200)がそのユーザ装置300から被る干渉も比較的小さい。
 他方、セル境界Bの近傍のユーザ装置300がピコ基地局200に接続する場合には、ピコ基地局200からのパスロスPLが比較的小さい(ピコ基地局200がマクロ基地局100よりもユーザ装置300に近い)から、目標上り受信電力TURPは比較的高くなってしまう。したがって、そのユーザ装置300の上り送信電力も比較的高くなってしまうから、他の基地局(マクロ基地局100)がそのユーザ装置300から被る干渉も比較的大きい。
 すなわち、セル境界Bにおいては、ピコ基地局200からのパスロスPLとマクロ基地局100からのパスロスPLとが顕著に相違するため、図10の制御を適用した場合には、接続先基地局に応じてユーザ装置300の送信電力が顕著に相違する。
 セル境界Bが固定されている場合には、セル境界BにおけるパスロスPLおよびパスロスPLはほぼ変化しないが、図8および図9を参照して説明したセル範囲拡張によれば、オフセット値OVを用いたピコ基地局200からの下り受信電力DRP2の補正によりセル境界Bが変化するので、セル境界BにおけるパスロスPLおよびパスロスPLも変化する。具体的には、オフセット値OVが低い場合のセル境界B1はよりピコ基地局200に近く(例えば、図12)、オフセット値OVが高い場合のセル境界B2はよりマクロ基地局100に近い(例えば、図13)。そのため、オフセット値OVが低い場合にはセル境界B1におけるパスロスPLとパスロスPLとの差が大きく、オフセット値OVが高い場合にはセル境界B1におけるパスロスPLとパスロスPLとの差が小さい。
 以上の事情を考慮して、本実施形態においては、ピコ基地局200における目標上り受信電力TURPを算定するためのパラメータである基準上り受信電力Pを、セル範囲拡張に用いられるオフセット値OVに応じて設定する(変化させる)。以下に、図12および図13を参照して説明する。図12および図13においては、ユーザ装置300がピコ基地局200に無線接続していると想定する。
 図12は、オフセット値OVが相対的に低い場合を示す。マクロ基地局100のパラメータ設定部142は、オフセット値設定部132から供給されたオフセット値OVに応じて基準上り受信電力P0_pを設定する。前述のように、図12では、オフセット値OVが相対的に低くセル境界B1がピコ基地局200により近いので、セル境界B1におけるパスロスPLとパスロスPLとの差も大きい。そこで、パラメータ設定部142は、ピコ基地局200における基準上り受信電力P0_pとマクロ基地局100における基準上り受信電力P0_mとの差分(P0_m-P0_p)をより大きく設定する。
 一方、図13は、オフセット値OVが相対的に高い場合を示す。図13では、図12と対照的に、セル境界B2がマクロ基地局100により近いので、セル境界B2におけるパスロスPLとパスロスPLとの差も小さい。そこで、パラメータ設定部142は、ピコ基地局200における基準上り受信電力P0_pとマクロ基地局100における基準上り受信電力P0_mとの差分(P0_m-P0_p)をより小さく設定する。
 以上のように、パラメータ設定部142は、オフセット値OVが小さい程、ピコ基地局200における基準上り受信電力P0_pを、マクロ基地局100における基準上り受信電力P0_mよりもより小さく設定する。設定された基準上り受信電力P0_pはパラメータ通知部144に供給される。また、オフセット値OVに基づかずに設定されたパスロス補正係数αが、パラメータ通知部144に供給される。パラメータ通知部144は、ネットワーク通信部120を介して、ピコ基地局200のパラメータ受信部246にパラメータ(基準上り受信電力P0_pおよびパスロス補正係数α)を通知する。
 ピコ基地局200の目標上り受信特性算定部248は、ピコ基地局200におけるユーザ装置300からの目標上り受信電力TURPを算定する。具体的には、パスロス算定部242が算定したピコ基地局200とユーザ装置300との間のパスロスPL、並びにパラメータ受信部246から供給された基準上り受信電力P0_pおよびパスロス補正係数αを用いて、以下の式(1)に基づいて目標上り受信電力TURPを算定する。
 TURP=P0_p-(1-α)・PL  …… 式(1)
 ピコ基地局200の送信電力制御部250は、目標上り受信特性算定部248から供給された目標上り受信電力TURPに基づいて、ユーザ装置300からの上り受信電力が目標上り受信電力TURPに近付くようにユーザ装置300の上り送信電力を制御する。例えば、ユーザ装置300からの上り受信電力が目標上り受信電力TURPに満たない場合はそのユーザ装置300に送信電力を上げるように指示し、ユーザ装置300からの上り受信電力が目標上り受信電力TURPを超過する場合はそのユーザ装置300に送信電力を下げるように指示する。
 なお、セル境界B上に位置するユーザ装置300について、ピコ基地局200における目標上り受信電力TURPとマクロ基地局100における目標上り受信電力TURPとが一致するように基準上り受信電力P0_pが設定されるとより好適である。
 以上の構成によれば、セル範囲拡張に用いられるオフセット値OVに応じて、ピコ基地局200の基準上り受信電力Pが設定されるので、セル境界Bの近傍に位置するユーザ装置300からのマクロ基地局100における目標上り受信電力TURPと、セル境界Bの近傍に位置するユーザ装置300からのピコ基地局200における目標上り受信電力TURPとの差分がより小さくなる。そのため、ユーザ装置300からの各基地局(マクロ基地局100,ピコ基地局200)に対する上り送信電力の差分もより小さくなる。したがって、オフセット値OVに関わらず目標上り受信電力TURPが設定される構成と比較して、ユーザ装置300が引き起こす干渉が抑制され得る。
<第2実施形態>
 本発明の第2実施形態を以下に説明する。以下に例示する各実施形態において、作用、機能が第1実施形態と同等である要素については、以上の説明で参照した符号を流用して各々の説明を適宜に省略する。
 第2実施形態では、ピコ基地局200における目標上り受信電力TURPを算定するためのパラメータであるパスロス補正係数αを、セル範囲拡張に用いられるオフセット値OVに応じて設定する(変化させる)。以下に、図14および図15を参照して説明する。図14および図15においては、ユーザ装置300がピコ基地局200に無線接続していると想定する。
 図14は、オフセット値OVが相対的に低い場合を示す。マクロ基地局100のパラメータ設定部142は、オフセット値設定部132から供給されたオフセット値OVに応じてパスロス補正係数αを設定する。図14では、オフセット値OVが相対的に低くセル境界B1がピコ基地局200により近いので、セル境界B1におけるパスロスPLとパスロスPLとの差も大きい。そこで、パラメータ設定部142は、ピコ基地局200におけるパスロス補正係数αを比較的小さく(すなわち、傾き-(1-α)を比較的大きく)設定する。
 一方、図15は、オフセット値OVが相対的に高い場合を示す。図15では、図14と対照的に、セル境界B2がマクロ基地局100により近いので、セル境界B2におけるパスロスPLとパスロスPLとの差も小さい。そこで、パラメータ設定部142は、ピコ基地局200におけるパスロス補正係数αを比較的大きく(すなわち、傾き-(1-α)を比較的小さく)設定する。
 以上のように、パラメータ設定部142は、オフセット値OVが小さい程、ピコ基地局200におけるパスロス補正係数αを、マクロ基地局100におけるパスロス補正係数αよりもより小さく(すなわち、傾き-(1-α)をより大きく)設定する。設定されたパスロス補正係数αはパラメータ通知部144に供給される。また、オフセット値OVに基づかずに設定された基準上り受信電力Pが、パラメータ通知部144に供給される。パラメータ通知部144は、ネットワーク通信部120を介して、ピコ基地局200のパラメータ受信部246にパラメータ(基準上り受信電力Pおよびパスロス補正係数α)を通知する。
 ピコ基地局200の目標上り受信特性算定部248は、ピコ基地局200におけるユーザ装置300からの目標上り受信電力TURPを算定する。具体的には、パスロス算定部242が算定したピコ基地局200とユーザ装置300との間のパスロスPL、並びにパラメータ受信部246から供給された基準上り受信電力Pおよびパスロス補正係数αを用いて、以下の式(2)に基づいて目標上り受信電力TURPを算定する。
 TURP=P-(1-α)・PL  …… 式(2)
 なお、セル境界B上に位置するユーザ装置300について、ピコ基地局200における目標上り受信電力TURPとマクロ基地局100における目標上り受信電力TURPとが一致するようにパスロス補正係数αが設定されるとより好適である。
 以上の構成によれば、セル範囲拡張に用いられるオフセット値OVに応じて、ピコ基地局200のパスロス補正係数αが設定されるので、セル境界Bの近傍に位置するユーザ装置300からのマクロ基地局100における目標上り受信電力TURPと、セル境界Bの近傍に位置するユーザ装置300からのピコ基地局200における目標上り受信電力TURPとの差分がより小さくなる。そのため、ユーザ装置300からの各基地局(マクロ基地局100,ピコ基地局200)に対する上り送信電力の差分もより小さくなる。したがって、オフセット値OVに関わらず目標上り受信電力TURPが設定される構成と比較して、ユーザ装置300が引き起こす干渉が抑制され得る。
<第3実施形態>
 図16は、第3実施形態に係るマクロ基地局100の構成を示すブロック図である。第3実施形態のマクロ基地局100は、マクロ基地局100の雑音指数NFおよびピコ基地局200の雑音指数NF等を記憶する記憶部150を更に備える。雑音指数NFは、基地局における入力信号品質(例えば、入力信号対雑音比)と出力信号品質(出力信号対雑音比)との比である。一般的に、マクロ基地局100の雑音指数NFは、ピコ基地局200の雑音指数NFを下回る。すなわち、ピコ基地局200に比べてマクロ基地局100の方が雑音が生じにくい。
 また、第3実施形態のマクロ基地局100の制御部130は、マクロ基地局100における干渉対熱雑音(Interference over Thermal)IoTを算定する干渉対熱雑音算定部139、および記憶部150から雑音指数NFを取得する雑音指数取得部141を更に備える。干渉対熱雑音IoTは、以下の式(3)により計算される。式(3)において、Iはその基地局が受ける干渉(他の基地局に接続するユーザ装置300からの干渉)であり、Nはその基地局の熱雑音である。所定期間にわたる干渉対熱雑音IoTの平均値が、干渉対熱雑音IoTとして採用されてもよい。
 IoT=(I+N)/N  …… 式(3)
 図17は、第3実施形態に係るピコ基地局200の構成を示すブロック図である。第3実施形態のピコ基地局200の制御部230は、ピコ基地局200における干渉対熱雑音IoTを算定する干渉対熱雑音算定部238、干渉対熱雑音IoTをマクロ基地局100に通知する干渉対熱雑音通知部240、およびパスロスPLをマクロ基地局100に通知するパスロス通知部244を更に備える。干渉対熱雑音IoTの計算式は前述と同様である。
 オフセット値OVが低い場合(ピコセルCpの範囲が狭い場合)、ピコ基地局200の干渉対熱雑音IoTはマクロ基地局100の干渉対熱雑音IoTを上回る。ピコ基地局200の近傍に位置しマクロ基地局100に接続するユーザ装置300が、ピコ基地局200に与える干渉が大きいからである。他方、オフセット値OVが高い場合(ピコセルCpの範囲が広い場合)、マクロ基地局100の干渉対熱雑音IoTはピコ基地局200の干渉対熱雑音IoTを上回る。マクロ基地局100の近傍に位置しピコ基地局200に接続するユーザ装置300が、マクロ基地局100に与える干渉が大きいからである。以上から理解されるように、干渉対熱雑音IoTはオフセット値OVに応じた値である。
 第1実施形態(図12,図13)および第2実施形態(図14,図15)と同様に、セル境界Bの近傍にユーザ装置300が位置すると想定する。
 マクロ基地局100のパラメータ設定部142は、マクロ基地局100について、干渉対熱雑音算定部139から供給される干渉対熱雑音IoTと、パスロス算定部140から供給されるパスロスPLと、雑音指数取得部141から供給される雑音指数NFとに基づいて、マクロ基地局100の暫定的な目標上り受信品質TUSINRを算定する。また、ピコ基地局200において、干渉対熱雑音通知部240から供給される干渉対熱雑音IoTと、パスロス通知部244から供給されるパスロスPLと、雑音指数取得部141から供給される雑音指数NFとに基づいて、ピコ基地局200の暫定的な目標上り受信品質TUSINRを算定する。目標上り受信品質TUSINRは、以下の式(4)によって算出される。暫定的な目標上り受信品質TUSINRを算定するための基準上り受信電力Pおよびパスロス補正係数αには、現在使用中の値または所定のデフォルト値が用いられ得る。
 TUSINR=(P-(1-α)・PL)/(IoT+NF)  …… 式(4)
 次いで、パラメータ設定部142は、暫定的な目標上り受信品質TUSINRを暫定的な目標上り受信品質TUSINRに近付けるように(すなわち、両者の差分が小さくなるように)、基準上り受信電力Pおよびパスロス補正係数αの少なくともいずれか一方を設定する。例えば、TUSINR>TUSINRという関係が成立する場合には、暫定的な目標上り受信品質TUSINRを低下させるため、パラメータ設定部142は、ピコ基地局200の基準上り受信電力Pおよびパスロス補正係数αの少なくともいずれか一方を低下させるように設定する。なお、パラメータ設定部142が暫定的な目標上り受信品質TUSINRを上昇させるように設定することも可能である。
 好適には、パラメータ設定部142は、目標上り受信品質TUSINRと目標上り受信品質TUSINRとの差分が閾値Th未満となるように、基準上り受信電力Pおよびパスロス補正係数αの少なくともいずれか一方を設定する。より好適には、パラメータ設定部142は、目標上り受信品質TUSINRと目標上り受信品質TUSINRとが一致するように、基準上り受信電力Pおよびパスロス補正係数αの少なくともいずれか一方を設定する。目標上り受信品質TUSINRに基づいて設定されなかったパラメータには、現在使用中の値または所定のデフォルト値が設定され得る。
 設定されたパラメータ(基準上り受信電力Pおよびパスロス補正係数α)はパラメータ通知部144に供給される。マクロ基地局100についてのパラメータは、パラメータ通知部144から目標上り受信特性算定部146に通知され、マクロ基地局100における目標上り受信品質TUSINRの算定に用いられる。ピコ基地局200についてのパラメータは、ネットワーク通信部120を介してピコ基地局200(パラメータ受信部246)に通知され、パラメータ受信部246から目標上り受信特性算定部248に供給されて、ピコ基地局200における目標上り受信品質TUSINRの算定に用いられる。目標上り受信品質TUSINRは、前述の式(4)に基づいて算定される。
 以上の構成によれば、目標上り受信品質TUSINRに基づいてユーザ装置300からの上り送信電力が制御される。したがって、目標上り受信電力TURPに基づいてユーザ装置300からの上り送信電力が制御される構成と比較して、基地局が受ける干渉および基地局における雑音もが考慮された上り送信電力制御が実現され得る。
<変形例>
 以上の実施の形態は多様に変形される。具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様は相互に矛盾しない限り適宜に併合され得る。
(1)変形例1
 第1実施形態による基準上り受信電力Pの設定および第2実施形態によるパスロス補正係数αの設定を組み合わせることが可能である。すなわち、図18に示すように、パラメータ設定部142が、オフセット値OVが小さい程、ピコ基地局200における基準上り受信電力P0_pを、マクロ基地局100における基準上り受信電力P0_m(すなわち、変更前の基準上り受信電力P)よりもより小さく設定し、かつ、ピコ基地局200におけるパスロス補正係数αを、マクロ基地局100におけるパスロス補正係数α(すなわち、パスロス補正係数α)よりも小さく設定することが可能である。
(2)変形例2
 以上の実施形態では、マクロ基地局100のパラメータ設定部142に情報(オフセット値OV、パスロスPL、干渉対熱雑音IoT等)が集約されてパラメータ(基準上り受信電力P、パスロス補正係数α)が算定されるが、ピコ基地局200に情報が集約されてパラメータが算定されてもよい。ピコ基地局200においてパラメータが算定される場合には、マクロ基地局100についてのパラメータはピコ基地局200のネットワーク通信部220を介してマクロ基地局100に通知される。
(3)変形例3
 以上の実施の形態では、マクロ基地局100よりも送信能力の低い基地局としてピコ基地局200が例示されるが、マイクロ基地局、ナノ基地局、フェムト基地局、リモートラジオヘッド等が送信能力の低い基地局として採用されてもよい。特に、無線通信システム1の要素として、相異なる送信能力を有する複数の基地局の組合せ(例えば、マクロ基地局、ピコ基地局、およびフェムト基地局の組合せ)が採用されてもよい。
(4)変形例4
 以上の実施の形態では、ユーザ装置300から報告された下り受信電力DRPに基づいて、マクロ基地局100(接続先選択部138)がそのユーザ装置300の接続先を選択するが、接続先選択部は、ピコ基地局200に設けられてもよいし、ユーザ装置300に設けられてもよい。受信電力補正部についても同様である。すなわち、本発明の接続先基地局の選択は、マクロ基地局100からの下り受信電力DRP1と、補正されたピコ基地局200からの下り受信電力DRP2とに基づいて接続先選択が実行されることによって特徴付けられ、オフセット値OVによる補正及び接続先基地局の選択が実行される箇所は任意である。
(5)変形例5
 ユーザ装置300は、各基地局(マクロ基地局100,ピコ基地局200)と無線通信が可能な任意の装置である。ユーザ装置300は、例えばフィーチャーフォンまたはスマートフォン等の携帯電話端末でもよく、デスクトップ型パーソナルコンピュータでもよく、ノート型パーソナルコンピュータでもよく、UMPC(Ultra-Mobile Personal Computer)でもよく、携帯用ゲーム機でもよく、その他の無線端末でもよい。
(6)変形例6
 無線通信システム1内の各要素(マクロ基地局100、ピコ基地局200、ユーザ装置300)においてCPUが実行する各機能は、CPUの代わりに、ハードウェアで実行してもよいし、例えばFPGA(Field Programmable Gate Array)、DSP(Digital Signal Processor)等のプログラマブルロジックデバイスで実行してもよい。
 1……無線通信システム、100……マクロ基地局、110……無線通信部、120……ネットワーク通信部、130……制御部、132……オフセット値設定部、134……受信電力補正部、136……受信電力受信部、138……接続先選択部、139……干渉対熱雑音算定部、140……パスロス算定部、141……雑音指数取得部、142……パラメータ設定部、144……パラメータ通知部、146……受信特性算定部、148……送信電力制御部、150……記憶部、200……ピコ基地局、210……無線通信部、220……ネットワーク通信部、230……制御部、232……受信電力受信部、234……受信電力通知部、236……接続先選択部、238……干渉対熱雑音算定部、240……干渉対熱雑音通知部、242……パスロス算定部、244……パスロス通知部、246……パラメータ受信部、248……受信特性算定部、250……送信電力制御部、300……ユーザ装置、310……無線通信部、330……制御部、332……受信電力測定部、334……受信電力報告部、336……通信制御部、α(α,α)……パスロス補正係数、B(B1,B2)……セル境界、C(Cm,Cp)……セル、DRP(DRP1,DRP2,DRP2A)……下り受信電力、IoT(IoT,IoT)……干渉対熱雑音、L(L1~L3,Lm,Lp,Lu)……位置、NF(NF,NF)……雑音指数、OV……オフセット値、P(P0_m,P0_p)……基準上り受信電力、PL(PL,PL)……パスロス、RG1……範囲、TURP(TURP,TURP)……目標上り受信電力、TUSINR(TUSINR,TUSINR)……目標上り受信品質、TeNB……接続先基地局情報。
 

Claims (14)

  1.  第1セルを形成する第1基地局と、前記第1セルよりも面積が小さい第2セルを形成する第2基地局とを含む複数の基地局と、
     複数の前記基地局の各々との間で電波を送受信して無線通信を実行可能なユーザ装置と
     を備え、
     前記ユーザ装置における前記第2基地局からの下り受信電力を増加させるように、当該第2基地局に対応するセル範囲拡張オフセット値を用いて前記下り受信電力を補正する下り受信電力補正部と、
     前記第1基地局からの下り受信電力と、前記セル範囲拡張オフセット値による補正後の前記第2基地局からの下り受信電力とに基づいて、前記ユーザ装置の接続先基地局を選択する接続先選択部と、
     前記基地局におけるユーザ装置からの目標上り受信特性を算定する目標上り受信特性算定部と、
     前記第2基地局に対応する前記セル範囲拡張オフセット値に応じて、当該第2基地局における目標上り受信特性を算定するためのパラメータを設定するパラメータ設定部と、
     前記基地局におけるユーザ装置からの上り受信特性が前記目標上り受信特性に近付くように、当該ユーザ装置の上り送信電力を制御する送信電力制御部と
     を備える無線通信システム。
  2.  前記基地局と前記ユーザ装置との間のパスロスを算定するパスロス算定部を備え、
     前記目標上り受信特性算定部は、前記目標上り受信特性として、前記基地局におけるユーザ装置からの目標上り受信電力を以下の式に基づいて算定し、
     TURP=P-(1-α)・PL
    (ここで、TURPは前記目標上り受信電力であり、Pは基準上り受信電力であり、αはパスロス補正係数であり、PLは前記パスロスである。)
     前記パラメータ設定部は、前記第2基地局に対応する前記セル範囲拡張オフセット値に応じて、当該第2基地局における目標上り受信電力を算定するためのパラメータである前記基準上り受信電力および前記パスロス補正係数の少なくともいずれか一方を設定し、
     前記送信電力制御部は、前記基地局におけるユーザ装置からの上り受信電力が前記目標上り受信電力に近付くように、当該ユーザ装置の上り送信電力を制御する
     請求項1に記載の無線通信システム。
  3.  前記基地局と前記ユーザ装置との間のパスロスを算定するパスロス算定部と、
     前記基地局における干渉対熱雑音を算定する干渉対熱雑音算定部と、
     前記基地局における入力信号品質と出力信号品質との比である雑音指数を取得する雑音指数取得部とを備え、
     前記目標上り受信特性算定部は、前記目標上り受信特性として、前記基地局におけるユーザ装置からの目標上り受信品質を以下の式に基づいて算定し、
     TUSINR=(P-(1-α)・PL)/(IoT+NF)
    (ここで、TUSINRは前記目標上り受信品質であり、Pは基準上り受信電力であり、αはパスロス補正係数であり、PLは前記パスロスであり、IoTは前記干渉対熱雑音であり、NFは前記雑音指数である。)
     前記パラメータ設定部は、前記第1基地局からの下り受信電力と、前記セル範囲拡張オフセット値による補正後の前記第2基地局からの下り受信電力とが等しいユーザ装置において、当該第1基地局における目標上り受信品質と当該第2基地局における目標上り受信品質との差分がより小さくなるように、当該第2基地局における目標上り受信品質を算定するためのパラメータである前記基準上り受信電力および前記パスロス補正係数の少なくともいずれか一方を設定し、
     前記送信電力制御部は、前記基地局におけるユーザ装置からの上り受信品質が前記目標上り受信品質に近付くように、当該ユーザ装置の上り送信電力を制御する
     請求項1に記載の無線通信システム。
  4.  前記第2基地局は、当該第2基地局の前記干渉対熱雑音算定部が算定した干渉対熱雑音を前記第1基地局に通知する干渉対熱雑音通知部を備え、
     前記第1基地局の前記パラメータ設定部は、当該第1基地局の前記干渉対熱雑音算定部が算定した干渉対熱雑音と前記第2基地局の干渉対熱雑音通知部から通知された干渉対熱雑音とに基づいて、当該第1基地局の前記基準上り受信電力およびパスロス補正係数の少なくともいずれか一方並びに当該第2基地局の前記基準上り受信電力およびパスロス補正係数の少なくともいずれか一方を設定し、
     前記第1基地局は、
     当該第1基地局の前記パラメータ設定部が設定した、当該第2基地局における前記基準上り受信電力および前記パスロス補正係数の少なくともいずれか一方を、当該第2基地局に通知するパラメータ通知部とを備える
     請求項3に記載の無線通信システム。
  5.  前記パラメータ設定部は、前記セル範囲拡張オフセット値が小さい程、前記第2基地局における基準上り受信電力を、前記第1基地局における基準上り受信電力よりもより小さく設定する
     請求項2に記載の無線通信システム。
  6.  前記パラメータ設定部は、前記セル範囲拡張オフセット値が小さい程、前記第2基地局におけるパスロス補正係数を、前記第1基地局におけるパスロス補正係数よりもより小さく設定する
     請求項2に記載の無線通信システム。
  7.  前記パラメータ設定部は、前記セル範囲拡張オフセット値が小さい程、前記第2基地局における基準上り受信電力を、前記第1基地局における基準上り受信電力よりもより小さく設定し、かつ、前記第2基地局におけるパスロス補正係数を、前記第1基地局におけるパスロス補正係数よりもより小さく設定する
     請求項2記載の無線通信システム。
  8.  第1セルを形成する第1基地局と、前記第1セルよりも面積が小さい第2セルを形成する第2基地局とを含む複数の基地局と、
     複数の前記基地局の各々との間で電波を送受信して無線通信を実行可能なユーザ装置と
     を備える無線通信システムにおける第1基地局であって、
     前記ユーザ装置における前記第2基地局からの下り受信電力を増加させるように、当該第2基地局に対応するセル範囲拡張オフセット値を用いて前記下り受信電力を補正する下り受信電力補正部と、
     自局からの下り受信電力と、前記セル範囲拡張オフセット値による補正後の前記第2基地局からの下り受信電力とに基づいて、前記ユーザ装置の接続先基地局を選択する接続先選択部と、
     前記基地局におけるユーザ装置からの目標上り受信特性を算定する目標上り受信特性算定部と、
     前記第2基地局に対応する前記セル範囲拡張オフセット値に応じて、当該第2基地局における目標上り受信特性を算定するためのパラメータを設定するパラメータ設定部と、
     前記パラメータ設定部が設定した前記パラメータを前記第2基地局に通知するパラメータ通知部と、
     前記基地局におけるユーザ装置からの上り受信特性が前記目標上り受信特性に近付くように、当該ユーザ装置の上り送信電力を制御する送信電力制御部と
     を備える基地局。
  9.  前記基地局と前記ユーザ装置との間のパスロスを算定するパスロス算定部を備え、
     前記目標上り受信特性算定部は、前記目標上り受信特性として、前記基地局におけるユーザ装置からの目標上り受信電力を以下の式に基づいて算定し、
     TURP=P-(1-α)・PL
    (ここで、TURPは前記目標上り受信電力であり、Pは基準上り受信電力であり、αはパスロス補正係数であり、PLは前記パスロスである。)
     前記パラメータ設定部は、前記第2基地局に対応する前記セル範囲拡張オフセット値に応じて、当該第2基地局における目標上り受信電力を算定するためのパラメータである前記基準上り受信電力および前記パスロス補正係数の少なくともいずれか一方を設定し、
     前記送信電力制御部は、前記基地局におけるユーザ装置からの上り受信電力が前記目標上り受信電力に近付くように、当該ユーザ装置の上り送信電力を制御する
     請求項8に記載の基地局。
  10.  前記基地局と前記ユーザ装置との間のパスロスを算定するパスロス算定部と、
     前記基地局における干渉対熱雑音を算定する干渉対熱雑音算定部と、
     前記基地局における入力信号品質と出力信号品質との比である雑音指数を取得する雑音指数取得部とを備え、
     前記目標上り受信特性算定部は、前記目標上り受信特性として、前記基地局におけるユーザ装置からの目標上り受信品質を以下の式に基づいて算定し、
     TUSINR=(P-(1-α)・PL)/(IoT+NF)
    (ここで、TUSINRは前記目標上り受信品質であり、Pは基準上り受信電力であり、αはパスロス補正係数であり、PLは前記パスロスであり、IoTは前記干渉対熱雑音であり、NFは前記雑音指数である。)
     前記パラメータ設定部は、前記自局からの下り受信電力と、前記セル範囲拡張オフセット値による補正後の前記第2基地局からの下り受信電力とが等しいユーザ装置において、前記自局における目標上り受信品質と当該第2基地局における目標上り受信品質との差分がより小さくなるように、当該第2基地局における目標上り受信品質を算定するためのパラメータである前記基準上り受信電力および前記パスロス補正係数の少なくともいずれか一方を設定し、
     前記送信電力制御部は、前記基地局におけるユーザ装置からの上り受信品質が前記目標上り受信品質に近付くように、当該ユーザ装置の上り送信電力を制御する
     請求項8に記載の基地局。
  11.  前記第2基地局から報告された当該第2基地局の干渉対熱雑音を受信する受信部を備え、
     前記第1基地局の前記パラメータ設定部は、当該第1基地局の前記干渉対熱雑音算定部が算定した干渉対熱雑音と前記第2基地局の干渉対熱雑音通知部から通知された干渉対熱雑音とに基づいて、当該第1基地局の前記基準上り受信電力およびパスロス補正係数の少なくともいずれか一方並びに当該第2基地局の前記基準上り受信電力およびパスロス補正係数の少なくともいずれか一方を設定し、
     前記パラメータ通知部は、前記パラメータ設定部が設定した、当該第2基地局における前記基準上り受信電力および前記パスロス補正係数の少なくともいずれか一方を、当該第2基地局に通知する
     請求項10に記載の基地局。
  12.  第1セルを形成する第1基地局と、前記第1セルよりも面積が小さい第2セルを形成する第2基地局とを含む複数の基地局と、
     複数の前記基地局の各々との間で電波を送受信して無線通信を実行可能なユーザ装置と
     を備える無線通信システムにおける通信制御方法であって、
     前記ユーザ装置における前記第2基地局からの下り受信電力を増加させるように、当該第2基地局に対応するセル範囲拡張オフセット値を用いて前記下り受信電力を補正することと、
     前記第1基地局からの下り受信電力と、前記セル範囲拡張オフセット値による補正後の前記第2基地局からの下り受信電力とに基づいて、前記ユーザ装置の接続先基地局を選択することと、
     前記基地局におけるユーザ装置からの目標上り受信特性を算定することと、
     前記第2基地局に対応する前記セル範囲拡張オフセット値に応じて、当該第2基地局における目標上り受信特性を算定するためのパラメータを設定することと、
     前記基地局におけるユーザ装置からの上り受信特性が前記目標上り受信特性に近付くように、当該ユーザ装置の上り送信電力を制御することと
     を備える通信制御方法。
  13.  前記基地局と前記ユーザ装置との間のパスロスを算定することを備え、
     前記目標上り受信特性を算定することにおいて、前記目標上り受信特性として、前記基地局におけるユーザ装置からの目標上り受信電力が以下の式に基づいて算定され、
     TURP=P-(1-α)・PL
    (ここで、TURPは前記目標上り受信電力であり、Pは基準上り受信電力であり、αはパスロス補正係数であり、PLは前記パスロスである。)
     前記パラメータを設定することにおいて、前記第2基地局に対応する前記セル範囲拡張オフセット値に応じて、当該第2基地局における目標上り受信電力を算定するためのパラメータである前記基準上り受信電力および前記パスロス補正係数の少なくともいずれか一方が設定され、
     前記送信電力を制御することにおいて、前記基地局におけるユーザ装置からの上り受信電力が前記目標上り受信電力に近付くように、当該ユーザ装置の上り送信電力が制御される
     請求項12に記載の通信制御方法。
  14.  前記基地局と前記ユーザ装置との間のパスロスを算定することと、
     前記基地局における干渉対熱雑音を算定することと、
     前記基地局における入力信号品質と出力信号品質との比である雑音指数を取得することとを備え、
     前記目標上り受信特性を算定することにおいて、前記目標上り受信特性として、前記基地局におけるユーザ装置からの目標上り受信品質を以下の式に基づいて算定し、
     TUSINR=(P-(1-α)・PL)/(IoT+NF)
    (ここで、TUSINRは前記目標上り受信品質であり、Pは基準上り受信電力であり、αはパスロス補正係数であり、PLは前記パスロスであり、IoTは前記干渉対熱雑音であり、NFは前記雑音指数である。)
     前記パラメータを設定することにおいて、前記第1基地局からの下り受信電力と、前記セル範囲拡張オフセット値による補正後の前記第2基地局からの下り受信電力とが等しいユーザ装置において、当該第1基地局における目標上り受信品質と当該第2基地局における目標上り受信品質との差分がより小さくなるように、当該第2基地局における目標上り受信品質を算定するためのパラメータである前記基準上り受信電力および前記パスロス補正係数の少なくともいずれか一方が設定され、
     前記送信電力を制御することにおいて、前記基地局におけるユーザ装置からの上り受信品質が前記目標上り受信品質に近付くように、当該ユーザ装置の上り送信電力が制御される
     請求項12に記載の通信制御方法。
     
PCT/JP2013/050527 2012-03-01 2013-01-15 無線通信システム、基地局および通信制御方法 WO2013128959A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/380,597 US20150045084A1 (en) 2012-03-01 2013-01-15 Radio communication system, base station, and communication control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012045617A JP5645859B2 (ja) 2012-03-01 2012-03-01 無線通信システム、基地局および通信制御方法
JP2012-045617 2012-03-01

Publications (1)

Publication Number Publication Date
WO2013128959A1 true WO2013128959A1 (ja) 2013-09-06

Family

ID=49082169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050527 WO2013128959A1 (ja) 2012-03-01 2013-01-15 無線通信システム、基地局および通信制御方法

Country Status (3)

Country Link
US (1) US20150045084A1 (ja)
JP (1) JP5645859B2 (ja)
WO (1) WO2013128959A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109660935A (zh) * 2018-11-27 2019-04-19 南通先进通信技术研究院有限公司 一种基站侧阵列天线系统的干扰定位方法
WO2021109023A1 (zh) * 2019-12-04 2021-06-10 华为技术有限公司 功率控制方法和装置
US11218972B2 (en) 2017-03-14 2022-01-04 Fujitsu Limited Controlling power based on calculated transmission power to candidates for communication

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9414320B2 (en) * 2007-12-03 2016-08-09 Nec Corporation Radio communication system, communication control method, radio station, and recording medium
WO2015051837A1 (en) * 2013-10-09 2015-04-16 Telefonaktiebolaget L M Ericsson (Publ) Sounding reference signal based small cell activity control
US20160295472A1 (en) * 2013-11-06 2016-10-06 Telefonaktiebolaget Lm Ericsson (Publ) Optimizing cre configuration
EP3606270B1 (en) * 2017-04-04 2022-04-27 LG Electronics Inc. Method and device for transmitting and receiving data of terminal in wireless communication system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124732A (ja) 2009-12-09 2011-06-23 Kyocera Corp 無線通信システム、大出力基地局、小出力基地局及び通信制御方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124732A (ja) 2009-12-09 2011-06-23 Kyocera Corp 無線通信システム、大出力基地局、小出力基地局及び通信制御方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3GPP TR 36.814 V9.0.0, March 2010 (2010-03-01)
ALCATEL-LUCENT SHANGHAI BELL: "Discussion on Fractional Power Control Enhancement for UL CoMP", R1-120501, 3GPP, 6 February 2012 (2012-02-06) *
INTEL CORPORATION: "Discussion of Uplink Open Loop Power Control Algorithm in Heterogeneous Networks", R1-113666, 3GPP, 14 November 2011 (2011-11-14) *
NTT DOCOMO: "Uplink transmission power control scheme in HetNet scenario", R1-114078, 3GPP, 14 November 2011 (2011-11-14) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11218972B2 (en) 2017-03-14 2022-01-04 Fujitsu Limited Controlling power based on calculated transmission power to candidates for communication
CN109660935A (zh) * 2018-11-27 2019-04-19 南通先进通信技术研究院有限公司 一种基站侧阵列天线系统的干扰定位方法
CN109660935B (zh) * 2018-11-27 2020-12-18 南通先进通信技术研究院有限公司 一种基站侧阵列天线系统的干扰定位方法
WO2021109023A1 (zh) * 2019-12-04 2021-06-10 华为技术有限公司 功率控制方法和装置

Also Published As

Publication number Publication date
JP2013183276A (ja) 2013-09-12
US20150045084A1 (en) 2015-02-12
JP5645859B2 (ja) 2014-12-24

Similar Documents

Publication Publication Date Title
US20230029758A1 (en) Power control method and apparatus
JP5645859B2 (ja) 無線通信システム、基地局および通信制御方法
JP5554306B2 (ja) 無線通信システム、無線基地局、移動通信端末、および通信制御方法
US20180098289A1 (en) Beam management for interference mitigation for wireless networks
EP2556704B1 (en) Method and arrangement in a wireless network for determining an uplink received power target value
EP4032221A1 (en) Beam alignment verification for wireless networks
WO2018095305A1 (zh) 一种波束训练方法及装置
JP2010219970A (ja) 無線パラメータ制御装置および制御方法ならびに制御システム
JP5855377B2 (ja) 無線通信システム、無線基地局および通信制御方法
JP7128820B2 (ja) 端末及び通信方法
JP5444298B2 (ja) 無線通信システム、無線基地局および通信制御方法
JP2013110664A (ja) 無線通信システム、移動局、基地局、および通信制御方法
JP5767530B2 (ja) 無線通信システムおよび通信制御方法
JP6156936B2 (ja) 無線通信システム及び無線通信方法
JP6442182B2 (ja) 無線通信ネットワークおよび大電力無線基地局
KR101714580B1 (ko) 간섭인지 기반의 d2d 통신 시스템 및 그 전력 제어 방법
WO2024115941A1 (en) Transmit spectral shaping for reducing distortion in a receiver
CN115087032A (zh) 终端操作、配置方法、装置、终端及网络侧设备
JP2018014566A (ja) 基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754664

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14380597

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013754664

Country of ref document: EP