WO2013128928A1 - Surface-coated aluminum-containing galvanized steel sheet and method for producing same - Google Patents

Surface-coated aluminum-containing galvanized steel sheet and method for producing same Download PDF

Info

Publication number
WO2013128928A1
WO2013128928A1 PCT/JP2013/001203 JP2013001203W WO2013128928A1 WO 2013128928 A1 WO2013128928 A1 WO 2013128928A1 JP 2013001203 W JP2013001203 W JP 2013001203W WO 2013128928 A1 WO2013128928 A1 WO 2013128928A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
steel sheet
plated steel
range
water
Prior art date
Application number
PCT/JP2013/001203
Other languages
French (fr)
Japanese (ja)
Inventor
信樹 白垣
智和 杉谷
広行 及川
米谷 悟
金井 洋
信之 下田
一郎 大浦
菊池 仁志
Original Assignee
日鉄住金鋼板株式会社
新日鐵住金株式会社
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄住金鋼板株式会社, 新日鐵住金株式会社, 日本パーカライジング株式会社 filed Critical 日鉄住金鋼板株式会社
Priority to JP2013530486A priority Critical patent/JP5514369B2/en
Priority to US14/381,203 priority patent/US9133346B2/en
Priority to MX2014010216A priority patent/MX344444B/en
Priority to EP13755785.6A priority patent/EP2821223B1/en
Priority to AU2013227872A priority patent/AU2013227872B2/en
Priority to KR1020147026987A priority patent/KR101508570B1/en
Priority to ES13755785.6T priority patent/ES2652258T3/en
Priority to CN201380011550.7A priority patent/CN104144782B/en
Publication of WO2013128928A1 publication Critical patent/WO2013128928A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • C09D133/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/024Emulsion paints including aerosols characterised by the additives
    • C09D5/028Pigments; Filters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/62Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/66Treatment of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2350/00Pretreatment of the substrate
    • B05D2350/60Adding a layer before coating
    • B05D2350/65Adding a layer before coating metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • B05D7/16Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies using synthetic lacquers or varnishes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/51One specific pretreatment, e.g. phosphatation, chromatation, in combination with one specific coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12542More than one such component
    • Y10T428/12549Adjacent to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • Y10T428/12569Synthetic resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • Y10T428/12979Containing more than 10% nonferrous elements [e.g., high alloy, stainless]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/27Web or sheet containing structurally defined element or component, the element or component having a specified weight per unit area [e.g., gms/sq cm, lbs/sq ft, etc.]

Definitions

  • the present invention relates to a surface-coated aluminum-containing zinc-based plated steel sheet having corrosion resistance, chemical resistance, blackening resistance, and formability, and a method for producing the same.
  • plating has been performed for a long time.
  • a typical composition of the plated layer in such a plated steel sheet for example, an alloy containing 1 to 75 mass% of aluminum, most of the zinc is zinc, and further contains a trace amount of a third component such as Si, Mg, and Ce—La. It is done.
  • the corrosion resistance of the conventional plated steel sheet is excellent, it means that it takes a long time to generate red rust due to the corrosion of the base iron. White rust and blackening occur, and the beautiful appearance of the plated steel sheet is impaired.
  • the surface of the plated layer tends to discolor over time due to the influence of acid rain.
  • Patent Document 1 molten Zn—Al alloy plating layer containing Al: 1.0 to 10%, Mg: 0.2 to 1.0%, Ni: 0.005 to 0.1% is disclosed.
  • a surface-treated plated steel sheet is mentioned.
  • the corrosion resistance, blackening resistance, paint adhesion, and plating appearance are excellent.
  • the present invention has been made in view of the above-mentioned reasons, and its object is to provide a surface-coated aluminum-containing zinc-based plated steel sheet that is excellent in corrosion resistance, acid resistance, and blackening resistance, and that does not contain chromium, and a method for producing the same. It is to provide.
  • the surface-coated aluminum-containing zinc-based plated steel sheet according to the first aspect of the present invention contains a water-dispersible resin (A), a cobalt compound (B), and water, and is in the range of pH 7.5 to 10
  • a surface treatment agent is applied to a plated steel sheet and dried to form a composite film containing the water-dispersible resin (A) and the cobalt compound (B), and the water-dispersible resin in the composite film
  • the composition ratio of (A) is 90% or more by mass ratio, and the dry film mass of the composite film per one side of the plated steel sheet is in the range of 0.5 to 3.5 g / m 2.
  • the dry film mass of the composite film per one side of the plated steel sheet is in the range of 0.5 to 3.5 g / m 2 ” means that the first surface and the second surface on the opposite side are the second surface. This means that the dry film mass of the composite film on at least the first surface of the plated steel sheet having a surface is in the range of 0.5 to 3.5 g / m 2 . That is, the dry film mass of the composite film on the first surface, or the dry film mass of the composite film on each of the first surface and the second surface is 0.5 to 3.5 g / it is within the range of m 2.
  • the corrosion resistance, blackening resistance, acid resistance, and molding processability of the surface-coated aluminum-containing zinc-based plated steel sheet are all improved, and chromium is not required to be contained in the composite film.
  • the environmentally and industrially useful value of the plated steel sheet is extremely high.
  • the mass ratio of cobalt atoms constituting the cobalt compound (B) to the water-dispersible resin (A) is 1/100 to 1/10000.
  • the blackening resistance and forming processability of the surface-coated aluminum-containing zinc-based plated steel sheet are further improved.
  • the cobalt compound (B) is cobalt sulfate, cobalt hydrochloride, and cobalt nitrate. At least one cobalt salt selected from
  • the blackening resistance of the surface-coated aluminum-containing zinc-based plated steel sheet is further improved.
  • the water-dispersible resin (A) is derived from a polyester polyol in the molecule.
  • Polyester polyurethane resin (aI) having a structural unit, polymerized units derived from (meth) acrylic acid ester having an alicyclic structure or glycidyl group, polymerized units derived from ⁇ , ⁇ -ethylenically unsaturated carboxylic acid, and fat
  • Acrylic resin (aII) comprising a polymer having polymer units derived from (meth) acrylic acid ester having no ring structure and glycidyl group Among them, at least one is contained.
  • the surface-coated aluminum-containing zinc-based plated steel sheet according to the fifth aspect of the present invention contains the basic zirconium compound (C), the cobalt compound (D), and water in any one of the first to fourth aspects. Then, an undercoat containing the basic zirconium compound (C) and the cobalt compound (D) is formed by applying an aqueous surface conditioner having a pH in the range of 7.5 to 10 to the plated steel sheet. The composite coating is formed on the base coating, and the dry coating amount of the base coating per side of the plated steel plate is in the range of 0.05 to 0.8 g / m 2.
  • the Zr mass equivalent adhesion amount of the undercoat per one side of the steel sheet is in the range of 5 to 400 mg / m 2
  • the Co mass equivalent adhesion amount of the undercoat per one side of the plated steel sheet is 1 to 20 mg / m It is within the range of m 2.
  • the Zr mass conversion adhesion amount is the adhesion amount of Zr atoms contained in the undercoat
  • the Co mass conversion adhesion amount is the adhesion amount of Co atoms contained in the undercoat.
  • the blackening resistance and corrosion resistance of the surface-coated aluminum-containing zinc-based plated steel sheet are further improved.
  • the plated steel sheet contains zinc and aluminum, or zinc and A plating layer containing aluminum and magnesium, wherein the aluminum content in the plating layer is in the range of 1 to 75% by mass, and the magnesium content in the plating layer exceeds 0% by mass to 6.0% by mass Within the following range.
  • the plating layer contains Ni and 0% by mass within a range of more than 0% by mass and 1% by mass or less. 1 or more types are contained among Cr within the range of 1 mass% or less exceeding. In addition, these ratios are ratios with respect to the whole plating layer.
  • the plating layer contains Ca in a range of more than 0% and 0.5% by mass or less. Sr in the range of more than 0% to 0.5% by mass, Y in the range of more than 0% to 0.5% by mass, La in the range of more than 0% to 0.5% by mass or less And 1 or more types are contained among Ce in the range of 0.5 mass% or less exceeding 0%. In addition, these ratios are ratios with respect to the whole plating layer.
  • the plating layer contains 0 Si relative to Al in the plating layer. Within the range of 1 to 10% by mass.
  • the method for producing a surface-coated aluminum-containing zinc-based plated steel sheet comprises a water-dispersible resin (A), a cobalt compound (B), and water, and has a pH in the range of 7.5 to 10.
  • Prepared an aqueous surface treatment agent and a plated steel sheet The aqueous surface treatment agent is applied to the plated steel sheet and dried to contain the water-dispersible resin (A) and the cobalt compound (B), and the constituent ratio of the water-dispersible resin (A) is mass.
  • a composite film having a ratio of 90% or more is formed such that the dry film mass of the composite film per one side of the plated steel sheet is in the range of 0.5 to 3.5 g / m 2. To do.
  • the method for producing a surface-coated aluminum-containing zinc-based plated steel sheet according to an eleventh aspect of the present invention in the tenth aspect, contains a basic zirconium compound (C), a cobalt compound (D), and water, and has a pH of 7.
  • a basic zirconium compound (C) a cobalt compound (D)
  • water a basic zirconium compound
  • D cobalt compound
  • the undercoat containing the basic zirconium compound (C) and the cobalt compound (D) is applied to the plated steel sheet by applying the aqueous surface conditioner to the plated steel sheet, and the undercoat per one side of the plated steel sheet.
  • the amount of the dried film is in the range of 0.05 to 0.8 g / m 2
  • the Zr mass conversion adhesion amount of the base film per one side of the plated steel sheet is in the range of 5 to 400 mg / m 2
  • the undercoating film is formed such that the coating weight in terms of Co mass per one side of the plated steel sheet is in the range of 1 to 20 mg / m 2
  • the composite film is formed on the undercoating film.
  • a surface-coated aluminum-containing zinc-based plated steel sheet having excellent corrosion resistance, chemical resistance, blackening resistance, and formability can be obtained by performing a treatment without using chromium.
  • a surface-coated aluminum-containing zinc-based plated steel sheet (hereinafter referred to as a coated steel sheet) according to this embodiment includes a plated steel sheet and a composite coating laminated on the plated steel sheet.
  • the composite coating may be in direct contact with the plated steel plate, or another layer may be interposed between the plated steel plate and the composite coating. As an example of another layer, there is an undercoat described later.
  • the plated steel sheet includes a steel sheet and a plating layer formed on the steel sheet.
  • the plating layer is formed by a hot dipping process or the like.
  • the plating layer preferably contains zinc and aluminum as constituent elements, or further contains magnesium.
  • the surface of the plating layer is covered with a thin oxide film formed in the aluminum phase in the plating layer, and this oxide film exhibits a protective action, so that the corrosion resistance of the surface of the plating layer in particular is improved.
  • zinc suppresses edge creep particularly at the cut end face of the coated plated steel sheet due to sacrificial anticorrosive action. For this reason, especially high corrosion resistance is provided to a covering plating steel plate.
  • the plating layer further contains magnesium, which is a base metal rather than zinc, both the protective action due to aluminum of the plating layer and the sacrificial anticorrosive action due to zinc are strengthened, and the corrosion resistance of the coated plated steel sheet is further increased. improves.
  • the content of aluminum in the plating layer is not particularly limited, but is preferably in the range of 1 to 75% by mass, and more preferably 5 to 65% by mass. In particular, this proportion is preferably in the range of 5 to 15% by mass.
  • this ratio is 5 to 15% by mass, the protective effect due to aluminum works mainly in the sacrificial anticorrosive effect due to zinc in the plating layer, so that the corrosion resistance of the coated plated steel sheet is particularly improved. It is also preferable that this ratio is in the range of 45 to 65% by mass. In this case, the corrosion resistance of the coated plated steel sheet is particularly improved by the sacrificial anticorrosive effect due to zinc acting mainly on the protective effect due to aluminum in the plating layer.
  • the content ratio of magnesium in the plating layer is not particularly limited, but is preferably in the range of more than 0% by mass to 6.0% by mass, particularly in the range of 0.1 to 5.0% by mass. Preferably there is.
  • the plating layer may further contain one or more elements selected from Si, Ni, Ce, Cr, Fe, Ca, Sr, rare earth, and the like as constituent elements.
  • the plating layer contains one or more elements selected from Ni, Cr, and Y; alkaline earth elements such as Ca and Sr; and rare earth elements such as La and Ce, the protective action caused by aluminum in the plating layer And the sacrificial anticorrosive action due to zinc are strengthened together, the corrosion resistance of the coated plated steel sheet is further improved.
  • the plating layer preferably contains one or more of Ni and Cr.
  • Ni it is preferable that the ratio of Ni in a plating layer is in the range of more than 0 mass% and 1 mass% or less. More preferably, this ratio is in the range of 0.01 to 0.5 mass%.
  • Cr it is preferable that the ratio of Cr in a plating layer is in the range of more than 0 mass% and 1 mass% or less. More preferably, this ratio is in the range of 0.01 to 0.5 mass%. In these cases, the corrosion resistance of the coated plated steel sheet is particularly improved.
  • the plating layer contains one or more of Ca, Sr, Y, La and Ce.
  • the proportion of Ca in the plating layer is preferably in the range of more than 0% and 0.5% by mass or less. More preferably, this ratio is in the range of 0.001 to 0.1% by mass.
  • the ratio of Sr in the plating layer is preferably in the range of more than 0% and 0.5% by mass or less. More preferably, this ratio is in the range of 0.001 to 0.1% by mass.
  • the proportion of Y in the plating layer is preferably in the range of more than 0% and 0.5% by mass or less.
  • this ratio is in the range of 0.001 to 0.1% by mass.
  • a plating layer contains La
  • the ratio of La in a plating layer is in the range of 0.5 mass% or less exceeding 0%. More preferably, this ratio is in the range of 0.001 to 0.1% by mass.
  • the plating layer contains Ce
  • the proportion of Ce in the plating layer is preferably in the range of more than 0% and 0.5% by mass or less. More preferably, this ratio is in the range of 0.001 to 0.1% by mass. In these cases, the corrosion resistance of the coated plated steel sheet is particularly improved, and the effect of suppressing defects on the surface of the plated layer is expected.
  • the mechanical workability of the coated plated steel sheet is improved. This is because Si suppresses the growth of the alloy layer at the interface between the plating layer and the steel sheet, thereby maintaining proper adhesion between the plating layer and the steel sheet and improving workability. Furthermore, it is expected that the corrosion resistance of the coated plated steel sheet is further improved by forming an alloy with magnesium.
  • the ratio of Si to Al in the plating layer is preferably in the range of 0.1 to 10% by mass. In this case, the mechanical workability of the coated plated steel sheet and the corrosion resistance of the machined portion are further improved.
  • the Si content is more preferably in the range of 1 to 5% by mass.
  • the plating layer may contain elements inevitably mixed other than those described above.
  • the composite film contains a water-dispersible resin (A) and a cobalt compound (B).
  • This composite film is formed by applying an aqueous surface treatment agent to a plated steel sheet and drying it.
  • This metal-based surface treatment agent contains a water-dispersible resin (A), a cobalt compound (B), and water, and has a pH in the range of 7.5 to 10.
  • the water dispersible resin (A) will be described in more detail.
  • the presence form of the resin in water is roughly classified into two types, water-soluble and water-dispersible. Among them, in this embodiment, a water dispersible resin is used.
  • a water-dispersible resin is a resin that forms an emulsion or a dispersion by being dispersed in a particulate form in water.
  • the water-dispersible resin (A) in this embodiment is dispersed in the form of particles in an aqueous surface treatment agent to form an emulsion or a dispersion.
  • the water-dispersible resin (A) is stably present in a dispersed state in the aqueous surface treatment agent. This is considered to be because the particles of the water-dispersible resin (A) are ion-dispersed due to the orientation of carboxyl groups on the surface of the particles of the water-dispersible resin (A), and thus are anionic and ion-dispersed. .
  • the water dispersible resin (A) preferably contains at least one of the following polyester polyurethane resin (aI) and acrylic resin (aII).
  • Polyester polyurethane resin (aI) having a structural unit derived from polyester polyol in the molecule.
  • An acrylic resin (aII) comprising a polymer comprising polymerized units derived from an acrylate ester.
  • the polyester polyurethane resin (aI) will be described.
  • Examples of the raw material for the polyester polyurethane resin (aI) include diisocyanate or polyisocyanate having two or more isocyanate groups, diol or polyol, diamine or polyamine, and an acid component.
  • the polyester polyurethane resin (aI) is obtained by a general synthesis method, and the synthesis method is not particularly limited. In the production of the polyester polyurethane resin (aI), a polyester polyol is first produced, and then the polyester polyurethane resin (aI) is produced from a raw material containing the polyester polyol.
  • the polyester polyurethane resin (aI) In order to make the polyester polyurethane resin (aI) aqueous, it is preferable to copolymerize dimethylol alkyl acid when the polyester polyol and hydrogenated isocyanate are polymerized. In this case, the polyester polyurethane resin (aI) becomes aqueous (water-dispersed) by self-emulsification.
  • the polyester polyurethane resin (aI) is made water-based by such a technique, since the emulsifier is not used at the time of making water-based, excellent water resistance is imparted to the composite film, and thus the corrosion resistance and acid resistance of the coated plated steel sheet are improved. It leads to.
  • an emulsifier may be used as long as the storage stability of the aqueous surface treatment agent is maintained and the other performance is not deteriorated.
  • polyester polyol examples include polyesters obtained by a dehydration condensation reaction between a glycol component and an acid component such as a polyvalent carboxylic acid, a hydroxycarboxylic acid, or an ester-forming derivative thereof.
  • the polyester polyol may be a polyester obtained by a ring-opening polymerization reaction of a cyclic ester compound such as ⁇ -caprolactone.
  • the polyester polyol may be a copolymer of these polyesters.
  • glycol component examples include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, and 1,6-hexane.
  • Examples thereof include diol, 1,4-cyclohexanedimethanol, bisphenol A, hydrogenated bisphenol A, hydroquinone, and alkylene oxide adducts thereof.
  • Examples of the acid component include succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, maleic anhydride, fumaric acid, 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, terephthalic acid, Isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p
  • Examples include '-dicarboxylic acids, anhydrides of these dicarboxylic acids, ester-forming derivatives of these dicarboxylic acids, p-hydroxybenzoic acid, and p- (2-hydroxyethoxy) benzoic acid.
  • Isocyanates include aliphatic, alicyclic or aromatic polyisocyanates.
  • Specific examples of the isocyanate include tetramethylene diisocyanate, hexamethylene diisocyanate, lysine diisocyanate ester, hydrogenated xylylene diisocyanate, 1,4-cyclohexylene diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, and 2,4′-dicyclohexylmethane diisocyanate.
  • Isophorone diisocyanate 3,3′-dimethoxy-4,4′-biphenylene diisocyanate, 1,5-naphthalene diisocyanate, 1,5-tetrahydronaphthalene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, phenylene diisocyanate, xylylene Isocyanates, and include tetramethylxylylene diisocyanate.
  • tetramethylene diisocyanate hexamethylene diisocyanate, lysine diisocyanate ester, hydrogenated xylylene diisocyanate, 1,4-cyclohexylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 2,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate
  • aliphatic or alicyclic polyisocyanate compounds such as In this case, not only acid resistance and corrosion resistance of the composite film, but also blackening resistance (including yellowing) is improved.
  • the polyester polyurethane resin (aI) may be mixed with an organic solvent in order to improve the stability during resin synthesis and the film-forming property during low-temperature drying.
  • organic solvent include N-methyl-2-pyrrolidone, diethylene glycol monobutyl ether, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate and the like.
  • acrylic resin (aII) improves the slip resistance and weather resistance of the coated plated steel sheet.
  • Acrylic resin (aII) is made from (meth) acrylic acid ester having an alicyclic structure or glycidyl group, ⁇ , ⁇ -ethylenically unsaturated carboxylic acid, and (meth) acrylic acid ester having no alicyclic structure and glycidyl group Is synthesized.
  • (meth) acrylic acid esters having an alicyclic structure or a glycidyl group include bornyl acrylate, isobornyl acrylate, bornyl methacrylate, isobornyl methacrylate, ( Examples include 1-adamantyl (meth) acrylate, 2-methyl-2-adamantyl (meth) acrylate, cyclooctyl (meth) acrylate, cyclodecyl (meth) acrylate, and cyclododecyl (meth) acrylate.
  • Examples of the (meth) acrylic acid ester having a glycidyl group include glycidyl (meth) acrylate.
  • Examples of the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid include acrylic acid, methacrylic acid, maleic acid, itaconic acid and the like.
  • (Meth) acrylic acid ester without alicyclic structure and glycidyl group includes methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, (meth) acrylic acid Butyl, isobutyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, (meth ) 2-ethylhexyl acrylate, 2-hydroxyethyl (meth) acrylate, decyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, cyclohexyl (meth) acrylate, acrylonitrile and the like.
  • the method for synthesizing the acrylic resin (aII) is not particularly limited, and examples thereof include a radical polymerization method using an emulsifier and a peroxide.
  • the emulsifier include anionic active agents such as polyoxyethylene alkyl sodium salt and sodium alkylbenzene sulfonate, nonionic active agents such as polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl ester and sorbitan alkyl ester, and hydrophobic groups.
  • One or more selected from reactive emulsifiers having a functional group capable of radical polymerization are used.
  • the acrylic resin (aII) may be silane-modified using a silane coupling agent.
  • the type of silane coupling agent and the amount of modification are not particularly limited.
  • Specific examples of the silane coupling agent include vinyltrichlorosilane, vinyltris (2-methoxyethoxysilane), vinyltriethoxysilane, vinyltrimethoxysilane, 3- (methacryloyloxypropyl) trimethoxysilane, 2- (3,4 -Epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, N- (2-aminoethyl) 3- Aminopropyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, 3-amin
  • the coated plated steel sheet exhibits excellent blackening resistance.
  • the water-dispersible resin (A) preferably contains both the polyester polyurethane resin (aI) and the acrylic resin (aII) in order to further improve the blackening resistance of the coated plated steel sheet in a severe environment. .
  • the ratio of the polyester polyurethane resin (aI) and the acrylic resin (aII) in the water-dispersible resin (A) is not particularly limited, but the ratio of the mass of the polyester polyurethane resin (aI) to the mass of the acrylic resin (aII) (mass Ratio) is preferably in the range of 69/31 to 40/60, more preferably in the range of 60/40 to 45/55, and even more preferably in the range of 55/45 to 50/50. When this mass ratio is 69/31 or less, good acid resistance of the composite coating is maintained. When this mass ratio is 40/60 or more, good corrosion resistance, acid resistance, and moldability of the composite coating are maintained.
  • the water-dispersed resin (A) may be mixed with an emulsifier for improving the water-dispersibility of the water-dispersed resin (A) as long as the effects of the present invention are not impaired.
  • cobalt compound (B) Details of the cobalt compound (B) will be described. Specific examples of the cobalt compound (B) include cobalt nitrate (II), cobalt sulfate (II), cobalt acetate (II), cobalt oxalate (II), cobalt nitrate (II), cobalt acetate (II), and oxalic acid. Examples include cobalt (III), cobalt (IV) chloride, cobalt (III) oxide, and cobalt (IV) oxide. The cobalt compound (B) preferably contains at least one cobalt salt selected from cobalt sulfate, cobalt hydrochloride, and cobalt nitrate.
  • the cobalt compound (B) preferably contains at least one of cobalt nitrate (II), cobalt sulfate (II), and cobalt chloride (II). Furthermore, it is even more preferable that the cobalt compound (B) contains cobalt (II) nitrate.
  • the composition ratio of the water-dispersible resin (A) in the composite film is 90% or more in terms of mass ratio, thereby giving the composite film good corrosion resistance, acid resistance, and molding processability, and an aqueous surface treatment. Good storage stability is imparted to the agent.
  • the constituent ratio of the water dispersible resin (A) is more preferably 95% or more, and even more preferably 98% or more.
  • the composite film necessarily contains the cobalt compound (B), but from the viewpoint of economy, it is preferable that the amount of the cobalt compound (B) is as small as possible.
  • the cobalt compound (B) When the cobalt compound (B) is used in this way, the cobalt compound (B) is uniformly dispersed in the composite film formed from the aqueous surface treatment agent. Part of this cobalt compound (B) modifies the surface of the plating layer by reaction with the surface of the plating layer, thereby improving the blackening resistance of the coated plated steel sheet. Another part of the cobalt compound (B) dispersed in the composite film diffuses into the composite film under a high-temperature and high-humidity atmosphere, thereby suppressing the phenomenon that the surface of the plating layer is discolored. Thereby, practically, the blackening resistance of the coated plated steel sheet is maintained for a long time.
  • the cobalt compound (B) exerts an action of protecting the surface of the plating layer and suppressing the discoloration.
  • the presence of the cobalt compound (B) between the mold and the plating layer makes it difficult to cause damage such as galling to the plating layer.
  • the surface layer becomes difficult to discolor black.
  • the ratio of the cobalt compound (B) to the water-dispersible resin (A) is not particularly limited, but the mass ratio of cobalt atoms constituting the cobalt compound (B) to the water-dispersible resin (A) is 1/100 to It is preferable to be within the range of 1/10000. This ratio is more preferably in the range of 1/500 to 1/5000. When this ratio is 1/100 or less, good storage stability of the aqueous surface treatment agent is maintained. When this ratio becomes larger than 1/100, the performance improvement due to the use of the cobalt compound (B) is saturated, which is economically undesirable. When this ratio is 1 / 10,000 or more, blackening resistance, acid resistance, and resistance to deformation during molding are particularly improved, and excellent effects are exhibited even when the plated steel sheet has a plating layer with a high aluminum content. Is done.
  • the aqueous surface treatment agent may further contain a plasticizer.
  • the plasticizer include 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, diethylene glycol monobutyl ether acetate, ethylene glycol monobutyl ether acetate, and benzyl alcohol.
  • the content of the plasticizer in the aqueous surface treatment agent is preferably in the range of 15 to 30% by mass, and in the range of 20 to 25% by mass with respect to the solid content mass of the water-dispersible resin (A). More preferably. When the content is 15% by mass or more, the effect of adding a plasticizer is sufficiently exhibited. As a result, good film-forming properties are imparted to the aqueous surface treatment agent, and the composite coating has good corrosion resistance and acid resistance. Maintained. When this content is 30% by mass or less, good storage stability of the aqueous surface treatment agent is maintained.
  • the aqueous surface treatment agent pH is in the range of 7.5 to 10. If the pH is less than 7.5, the storage stability of the aqueous surface treatment agent tends to decrease. If the pH exceeds 10, the passive layer on the plated steel sheet surface is destroyed, and the performance of the plated layer itself Will drop significantly.
  • An aqueous surface treatment agent is applied onto the surface of the plated steel sheet, and the aqueous surface treatment agent is further dried to form a composite film.
  • Examples of the application method of the aqueous surface treatment agent include a roll coating method, a spray method, a dipping method, a shower ringer method, and an air knife method.
  • the method for drying the aqueous surface treatment agent may be natural drying or forced drying using a heating apparatus such as an electric furnace, a hot air furnace, an induction heating furnace or the like.
  • the ultimate temperature of the plated steel sheet when the aqueous surface treatment agent is dried is preferably in the range of 60 to 180 ° C, more preferably in the range of 80 to 150 ° C, and in the range of 100 to 150 ° C. If it is in, it is more preferable.
  • the dry film mass of the composite film on the plated steel sheet is in the range of 0.5 to 3.5 g / m 2 .
  • This dry film mass is the dry film mass per one side of the plated steel sheet. That is, the dry film mass of the composite film on at least the first surface of the plated steel sheet having the first surface and the second surface opposite to the first surface is in the range of 0.5 to 3.5 g / m 2 . It is. That is, the dry film mass of the composite film on the first surface, or the dry film mass of the composite film on each of the first surface and the second surface is in the range of 0.5 to 3.5 g / m 2 . It is.
  • the dry film mass is less than 0.5 g / m 2 , the effect of forming the composite film cannot be sufficiently obtained, and excellent corrosion resistance, acid resistance, and moldability cannot be imparted to the coated plated steel sheet. If the dry film mass is greater than 3.5 g / m 2 , a long drying time is required to prevent film formation defects. If the dry film mass is greater than 3.5 g / m 2 , the performance improvement will be saturated, resulting in productivity and economic loss.
  • the plated steel sheet Before the composite coating is formed on the plated steel sheet, the plated steel sheet may be washed in advance to remove oil and contaminants adhering to the surface of the plated steel sheet and clean the surface of the plated layer.
  • the cleaning agent used for cleaning include well-known cleaning agents in which inorganic components such as acidic components and alkaline components, chelating agents, surfactants and the like are blended.
  • the pH of the cleaning agent may be either alkaline or acidic as long as the performance of the coated plated steel sheet is not impaired.
  • Co may be precipitated on the plated steel sheet by bringing the aqueous surface conditioner containing a cobalt compound and adjusted to an acidic pH into contact with the surface of the plated steel sheet. .
  • the pH of the aqueous surface conditioner may be adjusted to be alkaline.
  • a treatment method using an aqueous surface conditioner either immersion or spray treatment can be applied.
  • the amount of Co deposited on the plated steel sheet is preferably in the range of 0.5 to 15 mg / m 2 . That is, it is preferable that the coating amount in terms of Co mass per one side of the plated steel sheet of the base film formed from the aqueous surface conditioner is in the range of 0.5 to 15 mg / m 2 .
  • cobalt compound (B) contained in a composite film can be used suitably.
  • known acid components such as sulfuric acid, hydrochloric acid and nitric acid, and known base components such as ammonia and sodium hydroxide can be used. Since the pH of the aqueous metal surface treatment agent used for forming the composite film laminated on the base film is close to the alkali (pH 7.5 to 10), the pH of the aqueous surface conditioner is also more alkaline than the acidic range. From the viewpoint of an industrial process, it is preferable.
  • the pH of the aqueous surface conditioner is more preferably in the range of 7.5 to 10 which is the same as the aqueous metal surface treatment agent for the composite film.
  • a base film is formed on the plated steel sheet from a basic zirconium compound (C), a cobalt compound (D), and an alkaline aqueous surface conditioner containing water.
  • a composite film may be formed.
  • the undercoat contains a basic zirconium compound (C) and a cobalt compound (D).
  • the blackening resistance of the coated plated steel sheet is maintained for a longer period.
  • the base film contains the basic zirconium compound (C) in addition to the cobalt compound (D), not only the blackening resistance but also the corrosion resistance of the coated plated steel sheet can be maintained for a long time. The reason is considered as follows.
  • the undercoat contains the basic zirconium compound (C)
  • the undercoat becomes dense, and thus the corrosion resistance of the coated plated steel sheet is improved.
  • the aqueous surface conditioner contacts and reacts with the surface of the plating layer, whereby the cobalt compound (D) is plated with the base coating in the matrix composed of the basic zirconium compound (C) in the base coating. Presumably present (segregation) at a high concentration near the interface with the layer. Therefore, even under an environmental atmosphere where blackening is likely to occur originally, the cobalt compound (D) is not consumed at once, and the blackening resistance of the coated plated steel sheet is continuously exhibited over a long period of time. it is conceivable that.
  • the aqueous surface conditioner is alkaline as is the case with the aqueous surface treatment agent used to form the composite film.
  • the plating layer contains magnesium, this magnesium is easily dissolved in an acidic solution.
  • the aqueous surface conditioner is alkaline, magnesium in the plating layer is difficult to dissolve in the aqueous surface treatment agent. For this reason, it becomes difficult to damage a plating layer, the characteristic of a plating layer is fully exhibited, and also the characteristic of this plating layer and the characteristic of a base film can express synergistically.
  • the pH of the aqueous surface conditioner is in the range of 7.5 to 10 like the pH of the aqueous surface treatment agent. This is particularly advantageous in terms of process. Furthermore, when the pH of the aqueous surface conditioner is in the range of 7.5 to 10, the storage stability of the aqueous surface conditioner and the liquid stability during processing are improved.
  • known acid components such as sulfuric acid, hydrochloric acid and nitric acid, and known base components such as ammonia, amines and sodium hydroxide can be used.
  • the basic zirconium compound (C) is a kind selected from, for example, basic zirconium, basic zirconyl, basic zirconyl salt, basic zirconium carbonate, basic zirconyl carbonate, basic zirconium carbonate salt, and basic zirconyl carbonate salt
  • the above compounds can be contained.
  • the salt include ammonium salt, sodium, potassium, lithium alkali metal salt, amine salt and the like.
  • the basic zirconium compound (C) comprises zirconyl ammonium carbonate [(NH 4 ) 2 ZrO (CO 3 ) 2 ], potassium zirconyl carbonate [K 2 ZrO (CO 3 ) 2 ], zirconyl sodium carbonate [ Na 2 Zr (CO 3 ) 2 ], zirconium carbonate ⁇ (NH 4 ) 2 [Zr (CO 3 ) 2 (OH) 2 ⁇ , potassium zirconium carbonate ⁇ K 2 [Zr (CO 3 ) 2 (OH) 2 ⁇ And one or more selected from zirconium carbonate sodium ⁇ Na 2 [Zr (CO 3 ) 2 (OH) 2 ⁇ .
  • the basic zirconium compound (C) is composed of zirconyl ammonium carbonate [(NH 4 ) 2 ZrO (CO 3 ) 2 ] and ammonium zirconium carbonate ⁇ (NH 4 ) 2 [Zr (CO 3 ) 2 (OH) 2 ⁇ . It is preferable to contain at least one.
  • cobalt compound (D) Details of the cobalt compound (D) will be described. Specific examples of the cobalt compound (D) include cobalt nitrate (II), cobalt sulfate (II), cobalt acetate (II), cobalt oxalate (II), cobalt nitrate (II), cobalt acetate (II), and oxalic acid. Examples include cobalt (III), cobalt (IV) chloride, cobalt (III) oxide, and cobalt (IV) oxide. The cobalt compound (D) can contain one or more selected from these compounds.
  • the cobalt compound (D) preferably contains at least one cobalt salt selected from cobalt sulfate, cobalt hydrochloride, and cobalt nitrate. That is, the cobalt compound (B) preferably contains at least one of cobalt nitrate (II), cobalt sulfate (II), and cobalt chloride (II). It is even more preferable that the cobalt compound (D) contains cobalt (II) nitrate.
  • a basic zirconium compound (C), a cobalt compound (D), and water are mixed, and if necessary, at least one of an acid component and a base component for pH adjustment is blended, so that an aqueous surface conditioning agent is added. Is prepared.
  • the amount of the basic zirconium compound (C) and the cobalt compound (D) in the aqueous surface conditioner is appropriately adjusted according to the applicability of the aqueous surface conditioner, the zirconium content and the cobalt content desired for the undercoat. Is done.
  • An undercoat is formed by applying an aqueous surface conditioner to the plating layer.
  • an aqueous surface conditioner to the plating layer.
  • the base film is formed by washing with water after the aqueous surface conditioner contacts the plating layer by dipping, spraying, or the like.
  • the temperature of the aqueous surface conditioner applied to the plating layer is preferably within the range of 10 to 80 ° C.
  • the aqueous surface conditioner should be washed with water after the aqueous surface conditioner contacts the plating layer by roll coating, spraying, dipping, shower ringer method, air knife method, curtain flow method, etc.
  • the undercoat is formed by drying completely.
  • the temperature of the aqueous surface conditioner applied to the plating layer is preferably in the range of 10 to 150 ° C., more preferably in the range of 30 to 100 ° C.
  • the dry film amount of the base film per side of the plated steel sheet is preferably in the range of 0.05 to 0.8 g / m 2 .
  • the amount of the dry film is 0.05 g / m 2 or more, the blackening resistance and corrosion resistance improving action by the base film is remarkably exhibited.
  • the amount of the dry film is 0.8 g / m 2 or less, the base film is particularly densified, so that the effect of improving blackening resistance and corrosion resistance is remarkably exhibited.
  • the Zr mass conversion adhesion amount of the undercoat per one side of the plated steel sheet is in the range of 5 to 400 mg / m 2 . In this case, the effect of improving blackening resistance and corrosion resistance is remarkably exhibited.
  • the Co mass equivalent adhesion amount of the undercoat per one side of the plated steel sheet is preferably in the range of 1 to 20 mg / m 2 . In this case, the effect of improving blackening resistance and corrosion resistance is remarkably exhibited.
  • Aqueous surface treatment agent (3-1) Water dispersible resin (A)
  • the urethane resin (aI) and acrylic resin (aII) shown in Table 2 were obtained by the synthesis method shown below.
  • (Urethane resin (aI1)) 100 parts by mass of a polyester polyol having a number average molecular weight of 2000 synthesized from 1,6-hexanediol, neopentyl glycol and adipic acid, 5 parts by mass of 2,2-dimethyl-1,3-propanediol, and 2,2-dimethylol
  • propionic acid 100 parts by mass of 2,4-dicyclohexylmethane diisocyanate and 100 parts by mass of N-methyl-2-pyrrolidone into the reaction vessel and reacting them, a free isocyanate group with respect to the nonvolatile content
  • a urethane prepolymer having a content of 5% by mass was obtained.
  • composition Blended in composition (mass%) and reacted for several hours at 80 to 85 ° C. using ammonium persulfate as a polymerization catalyst, then pH adjustment and concentration adjustment with ammonia water and deionized water, solid content concentration 40% Water dispersible acrylic To obtain the fat.
  • aqueous surface treating agent (Examples 1-41 and Comparative Examples 1-5) Surface treatment with a solid content concentration of 30% by blending water-dispersible resin (A), cobalt compound (B), and deionized water, and adjusting the pH by adding ammonia or ammonium nitrate as required. An agent (aqueous surface treatment agent) was obtained.
  • Tables 6 and 7 below show the types of the water-dispersible resin (A) and the cobalt compound (B) used in each example and comparative example, the blending ratio thereof, and the pH of the aqueous surface treatment agent.
  • “(aI) / (aII)” represents the mass ratio of the acrylic resin (aI) to the urethane resin (aII), and “Co / (a) mass ratio” represents the water dispersion.
  • the mass ratio of the cobalt atoms constituting the cobalt compound (B) to the water-soluble resin (A) is shown, and “(A) / ((A) + (B)) (mass%)” represents the water-dispersible resin (A ) And the cobalt compound (B), the mass percentage of the water-dispersible resin (A) with respect to the total amount is shown.
  • aqueous surface treating agent (Comparative Example 5) 25 parts by mass of a titanium-containing aqueous liquid prepared by the method shown below, 54.6 parts by mass of a water-dispersible acrylic resin prepared by the method shown below, 0.4 parts by mass of cobalt nitrate, and 20 parts by mass of ammonium zircon fluoride An aqueous surface treating agent was obtained by blending.
  • Tianium-containing aqueous solution A mixture of 10 parts by mass of tetraiso-propoxytitanium and 10 parts by mass of iso-propanol was dropped into a mixture of 30 parts by mass of hydrogen peroxide 10 parts by mass and deionized water 100 parts by mass at 20 ° C. over 1 hour. did. Thereafter, aging was carried out at 25 ° C. for 2 hours to obtain a yellow transparent slightly viscous titanium-containing aqueous liquid.
  • the reducing agent aqueous solution was 5% by mass (4. oxidizer aqueous solution obtained by dissolving 5 parts by mass of perbutyl H (t-butylhydroxyperoxide, active ingredient 69% by mass) in 83.5 parts by mass of deionized water. 43 parts by mass) and 2.5 parts by mass of sodium formaldehyde sulfoxylate were dissolved in 83.5 parts by mass of deionized water.
  • the mixture was further heated to 60 ° C. and then kept at this temperature.
  • the remaining pre-emulsion was added dropwise over 1.5 hours, the remaining oxidizing agent aqueous solution for 3.5 hours, and the remaining reducing agent aqueous solution over 3.5 hours. While the dropping of the oxidizing agent aqueous solution and the reducing agent aqueous solution is continued, after one hour has elapsed since the dropping of the first-stage pre-emulsion was completed, the monomer mixture No. 1 having the following composition was used. 2 (second stage) was added dropwise over 1 hour.
  • the liquid mixture is maintained at a temperature of 60 ° C. for 1 hour, and then the temperature of the liquid mixture is lowered to 40 ° C. or lower.
  • An antiseptic Naippon Enviro Chemicals Co., Ltd., product name Suraoff EX 0.35 parts by mass and 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate 83.5 parts by mass were added.
  • a water dispersible acrylic resin having a pH of 8.0 and a nonvolatile content (solid content) of 31% by mass was obtained.
  • composition of monomer mixture No. 1 Deionized water: 166.5 parts by mass. Aqualon RN-50: 6.6 parts by mass. Aqualon RN-2025: 53 parts by mass. Styrene: 35 parts by mass. Methyl methacrylate: 163.5 parts by mass. 2-ethylhexyl acrylate: 105 parts by mass. 2-hydroxyethyl methacrylate: 5 parts by mass. Methacrylic acid: 3 parts by mass. Acrylonitrile: 38.5 parts by mass. Tasha lead decanethiol: 1 part by mass.
  • composition of monomer mixture No. 2 Styrene 15 parts by mass.
  • Methyl methacrylate 84.5 parts by mass.
  • 2-ethylhexyl acrylate 22.5 parts by mass.
  • 2-hydroxyethyl methacrylate 4.25 parts by mass.
  • Methacrylic acid 6 parts by mass.
  • Acrylonitrile 15 parts by mass.
  • ⁇ -methacryloxypropyltrimethoxysilane 2.75 parts by mass.
  • Aqueous surface conditioner (4-2) Basic zirconium compound (C) As the basic zirconium compound (C), (c1) to (c3) shown in Table 8 below were used.
  • Cobalt compound (D) As the cobalt compound (D), (d1) to (d4) shown in Table 9 below were used.
  • aqueous surface conditioner (Examples 33 to 41) A basic zirconium compound (C), a cobalt compound (D), and deionized water were blended, and an aqueous surface conditioner was obtained by adjusting the pH by adding ammonia or ammonium nitrate as necessary. Table 10 below shows the types of the basic zirconium compound (C), the types of the cobalt compound (D), and the pH of the aqueous surface conditioner used for obtaining the aqueous surface conditioner.
  • an aqueous surface conditioner was applied to the plated steel sheet with a bar coater before the treatment using the above-described aqueous surface treatment agent. Subsequently, the plated steel sheet was dried by heating in a 200 ° C. atmosphere so as to reach the ultimate plate temperature (PMT) shown in Table 12. As a result, an undercoat film having a dry film mass shown in Table 12 was formed. Thereafter, a composite film was formed on the base film using an aqueous surface treatment agent under the above conditions.
  • PMT ultimate plate temperature
  • Color measurement based on the L * a * b * color system was performed for each of the coated steel sheet before treatment and the coated steel sheet after treatment.
  • the color tone measurement was performed using a spectrocolorimeter (model number SC-T45) manufactured by Suga Test Instruments Co., Ltd.
  • blackening resistance was evaluated as follows. In this test, if the evaluation is 3 to 5, it is judged that the coated steel sheet has excellent blackening resistance in practical use. 5; ⁇ E is less than 2. 4: ⁇ E is 2 or more and less than 5. 3: ⁇ E is 5 or more and less than 10. 2: ⁇ E is 10 or more and less than 15. 1: ⁇ E is 15 or more.
  • the coated plated steel sheet was excellent in corrosion resistance, acid resistance, blackening resistance and molding processability, and the storage stability of the aqueous surface treatment agent was also excellent. It was a thing.
  • both the base film and the composite film were formed on the coated plated steel sheet, and the corrosion resistance and blackening resistance of the coated plated steel sheet were further improved.
  • the use of the surface-coated aluminum-containing zinc-based plated steel sheet according to the present invention is not limited, but can be used in the fields of building material products, home appliances, automobile members, and the like. In particular, it is preferably applied to building material products that are used outdoors for a long time.

Abstract

This surface-coated aluminum-containing galvanized steel sheet is obtained by forming a composite coating film that contains a water-dispersible resin (A) and a cobalt compound (B) by applying an aqueous surface treatment agent, which contains the water-dispersible resin (A), the cobalt compound (B) and water and has a pH within the range of 7.5-10, to a plated steel sheet and drying the agent thereon. The constituent ratio by mass of the water-dispersible resin (A) in the composite coating film is 90% or more. The dry mass of the composite coating film per one surface of the plated steel sheet is within the range of 0.5-3.5 g/m2.

Description

表面被覆アルミニウム含有亜鉛系めっき鋼板及びその製造方法Surface-coated aluminum-containing zinc-based plated steel sheet and method for producing the same
 本発明は、耐食性、耐薬品性、耐黒変性、成形加工性を兼ね備える表面被覆アルミニウム含有亜鉛系めっき鋼板及びその製造方法に関する。 The present invention relates to a surface-coated aluminum-containing zinc-based plated steel sheet having corrosion resistance, chemical resistance, blackening resistance, and formability, and a method for producing the same.
 鋼板の長期耐食性を向上させる等の目的のため、めっきを施すことは古くからおこなわれている。このようなめっき鋼板におけるめっき層の代表的な組成としては、例えばアルミニウムが1~75質量%、残りの大半が亜鉛、更にSi、Mg、Ce-Laなど第三成分を微量含有する合金が挙げられる。 For the purpose of improving the long-term corrosion resistance of steel sheets, plating has been performed for a long time. As a typical composition of the plated layer in such a plated steel sheet, for example, an alloy containing 1 to 75 mass% of aluminum, most of the zinc is zinc, and further contains a trace amount of a third component such as Si, Mg, and Ce—La. It is done.
 しかし、従来のめっき鋼板の耐食性が優れているといっても、それは地鉄の腐食による赤錆の発生までの時間が長いということであって、何らかの被覆処理をめっき表面に施さなければ短時間で白錆や黒変が発生し、めっき鋼板の美しい外観が損なわれてしまう。特に、めっき鋼板が建築部材に適用されると、近年では酸性雨の影響により、経時的にめっき層の表面が変色しやすくなってしまう。 However, even though the corrosion resistance of the conventional plated steel sheet is excellent, it means that it takes a long time to generate red rust due to the corrosion of the base iron. White rust and blackening occur, and the beautiful appearance of the plated steel sheet is impaired. In particular, when a plated steel sheet is applied to a building member, in recent years, the surface of the plated layer tends to discolor over time due to the influence of acid rain.
 そこで従来、めっき鋼板の耐黒変性を抑制するための表面処理に関する技術が提案されている。とりわけ、表面処理薬剤については6価クロムを使用しない、クロムフリーに関する技術が多く利用され、その技術が多く開示されてきている。 Therefore, conventionally, techniques relating to surface treatment for suppressing blackening resistance of the plated steel sheet have been proposed. In particular, for surface treatment chemicals, many technologies relating to chromium-free that do not use hexavalent chromium have been used, and many such technologies have been disclosed.
 例えば特許文献1では、Al:1.0~10%、Mg:0.2~1.0%、Ni:0.005~0.1%を含有する溶融Zn-Al合金めっき層を有する溶融Zn-Al系合金めっき鋼板の表面に、特定のチタン含有水溶液と、ニッケル化合物又は/及びコバルト化合物、弗素含有化合物と、水性有機樹脂を所定の割合で含有する処理組成物による皮膜を形成したクロムフリー表面処理めっき鋼板が挙げられている。ここでは、耐食性、耐黒変性、塗装密着性、めっき外観性に関して優れると記されている。 For example, in Patent Document 1, molten Zn—Al alloy plating layer containing Al: 1.0 to 10%, Mg: 0.2 to 1.0%, Ni: 0.005 to 0.1% is disclosed. -A chromium-free coating on the surface of an Al-based alloy-plated steel sheet with a specific titanium-containing aqueous solution, a nickel compound or / and a cobalt compound, a fluorine-containing compound, and a treatment composition containing an aqueous organic resin in a predetermined ratio A surface-treated plated steel sheet is mentioned. Here, it is described that the corrosion resistance, blackening resistance, paint adhesion, and plating appearance are excellent.
 しかし、特許文献1に開示されている技術であっても、最近の環境事情を考慮すると、耐食性、耐黒変性、耐酸性、成型加工性等の性能は、実用上不足しており、満足する技術が得られていないのが現状である。 However, even with the technology disclosed in Patent Document 1, in view of recent environmental circumstances, performances such as corrosion resistance, blackening resistance, acid resistance, and molding processability are practically insufficient and satisfactory. Currently, no technology is available.
日本国特許公開公報特開2009-132952号Japanese Patent Publication No. 2009-132952
 本発明は上記事由に鑑みてなされたものであり、その目的とするところは、耐食性、耐酸性、耐黒変性に優れ、且つクロムを含有しない表面被覆アルミニウム含有亜鉛系めっき鋼板及びその製造方法を提供することにある。 The present invention has been made in view of the above-mentioned reasons, and its object is to provide a surface-coated aluminum-containing zinc-based plated steel sheet that is excellent in corrosion resistance, acid resistance, and blackening resistance, and that does not contain chromium, and a method for producing the same. It is to provide.
 本発明の第1の態様に係る表面被覆アルミニウム含有亜鉛系めっき鋼板は、水分散性樹脂(A)、コバルト化合物(B)、及び水を含有し、pH7.5~10の範囲内である水系表面処理剤を、めっき鋼板に塗布し乾燥することにより、前記水分散性樹脂(A)及び前記コバルト化合物(B)を含有する複合皮膜を形成して成り、前記複合皮膜における前記水分散性樹脂(A)の構成比率が質量比で90%以上であり、前記めっき鋼板の片面当たりの前記複合皮膜の乾燥皮膜質量が、0.5~3.5g/m2の範囲内であることを特徴とする。 The surface-coated aluminum-containing zinc-based plated steel sheet according to the first aspect of the present invention contains a water-dispersible resin (A), a cobalt compound (B), and water, and is in the range of pH 7.5 to 10 A surface treatment agent is applied to a plated steel sheet and dried to form a composite film containing the water-dispersible resin (A) and the cobalt compound (B), and the water-dispersible resin in the composite film The composition ratio of (A) is 90% or more by mass ratio, and the dry film mass of the composite film per one side of the plated steel sheet is in the range of 0.5 to 3.5 g / m 2. And
 尚、「前記めっき鋼板の片面当たりの前記複合皮膜の乾燥皮膜質量が、0.5~3.5g/m2の範囲内である」とは、第一の面とその反対側の第二の面とを有する前記めっき鋼板の、少なくとも第一の面での前記複合皮膜の乾燥皮膜質量が、0.5~3.5g/m2の範囲内であることを意味する。つまり、前記第一の面での前記複合皮膜の乾燥皮膜質量、又は前記第一の面及び前記第二の面の各々での前記複合皮膜の乾燥皮膜質量が、0.5~3.5g/m2の範囲内である。 “The dry film mass of the composite film per one side of the plated steel sheet is in the range of 0.5 to 3.5 g / m 2 ” means that the first surface and the second surface on the opposite side are the second surface. This means that the dry film mass of the composite film on at least the first surface of the plated steel sheet having a surface is in the range of 0.5 to 3.5 g / m 2 . That is, the dry film mass of the composite film on the first surface, or the dry film mass of the composite film on each of the first surface and the second surface is 0.5 to 3.5 g / it is within the range of m 2.
 このため、表面被覆アルミニウム含有亜鉛系めっき鋼板の耐食性、耐黒変性、耐酸性、成型加工性がいずれも向上し、さらに複合皮膜中にクロムが含有させる必要がないため、この表面被覆アルミニウム含有亜鉛系めっき鋼板の環境的、産業的な利用価値は極めて大きい。 For this reason, the corrosion resistance, blackening resistance, acid resistance, and molding processability of the surface-coated aluminum-containing zinc-based plated steel sheet are all improved, and chromium is not required to be contained in the composite film. The environmentally and industrially useful value of the plated steel sheet is extremely high.
 本発明の第2の態様に係る表面被覆アルミニウム含有亜鉛系めっき鋼板では、第1の態様において、前記水分散性樹脂(A)に対する、前記コバルト化合物(B)を構成するコバルト原子の質量割合が、1/100~1/10000の範囲内である。 In the surface-coated aluminum-containing zinc-based plated steel sheet according to the second aspect of the present invention, in the first aspect, the mass ratio of cobalt atoms constituting the cobalt compound (B) to the water-dispersible resin (A) is 1/100 to 1/10000.
 この場合、表面被覆アルミニウム含有亜鉛系めっき鋼板の耐黒変性と成型加工性が更に向上する。 In this case, the blackening resistance and forming processability of the surface-coated aluminum-containing zinc-based plated steel sheet are further improved.
 本発明の第3の態様に係る表面被覆アルミニウム含有亜鉛系めっき鋼板では、第1又は第2の態様において、前記コバルト化合物(B)が、コバルトの硫酸塩、コバルトの塩酸塩、及びコバルトの硝酸塩から選ばれる少なくとも一種のコバルト塩を含む。 In the surface-coated aluminum-containing zinc-based plated steel sheet according to the third aspect of the present invention, in the first or second aspect, the cobalt compound (B) is cobalt sulfate, cobalt hydrochloride, and cobalt nitrate. At least one cobalt salt selected from
 この場合、表面被覆アルミニウム含有亜鉛系めっき鋼板の耐黒変性が更に向上する。 In this case, the blackening resistance of the surface-coated aluminum-containing zinc-based plated steel sheet is further improved.
 本発明の第4の態様に係る表面被覆アルミニウム含有亜鉛系めっき鋼板では、第1乃至第3のいずれか一の態様において、前記水分散性樹脂(A)が、分子中にポリエステルポリオールに由来する構造単位を備えるポリエステルポリウレタン樹脂(aI)、並びに
脂環構造またはグリシジル基を備える(メタ)アクリル酸エステルに由来する重合単位、α,β-エチレン性不飽和カルボン酸に由来する重合単位、及び脂環構造及びグリシジル基無しの(メタ)アクリル酸エステルに由来する重合単位を備える重合体から成るアクリル樹脂(aII)
のうち、少なくとも一方を含有する。
In the surface-coated aluminum-containing zinc-based plated steel sheet according to the fourth aspect of the present invention, in any one of the first to third aspects, the water-dispersible resin (A) is derived from a polyester polyol in the molecule. Polyester polyurethane resin (aI) having a structural unit, polymerized units derived from (meth) acrylic acid ester having an alicyclic structure or glycidyl group, polymerized units derived from α, β-ethylenically unsaturated carboxylic acid, and fat Acrylic resin (aII) comprising a polymer having polymer units derived from (meth) acrylic acid ester having no ring structure and glycidyl group
Among them, at least one is contained.
 この場合、表面被覆アルミニウム含有亜鉛系めっき鋼板の成型加工性と耐食性とが更に向上する。 In this case, the moldability and corrosion resistance of the surface-coated aluminum-containing zinc-based plated steel sheet are further improved.
 本発明の第5の態様に係る表面被覆アルミニウム含有亜鉛系めっき鋼板では、第1乃至第4のいずれか一の態様において、塩基性ジルコニウム化合物(C)、コバルト化合物(D)、及び水を含有し、pH7.5~10の範囲内である水系表面調整剤を、めっき鋼板に塗布することにより、前記塩基性ジルコニウム化合物(C)と前記コバルト化合物(D)とを含有する下地皮膜を形成し、この下地皮膜上に前記複合皮膜を形成して成り、前記めっき鋼板の片面当たりの前記下地皮膜の乾燥皮膜量が、0.05~0.8g/m2の範囲内であり、前記めっき鋼板の片面当たりの前記下地皮膜のZr質量換算付着量が、5~400mg/m2の範囲内であり、前記めっき鋼板の片面当たりの前記下地皮膜のCo質量換算付着量が、1~20mg/m2の範囲内である。尚、Zr質量換算付着量とは、下地皮膜に含まれるZr原子の付着量であり、Co質量換算付着量とは、下地皮膜に含まれるCo原子の付着量である。 The surface-coated aluminum-containing zinc-based plated steel sheet according to the fifth aspect of the present invention contains the basic zirconium compound (C), the cobalt compound (D), and water in any one of the first to fourth aspects. Then, an undercoat containing the basic zirconium compound (C) and the cobalt compound (D) is formed by applying an aqueous surface conditioner having a pH in the range of 7.5 to 10 to the plated steel sheet. The composite coating is formed on the base coating, and the dry coating amount of the base coating per side of the plated steel plate is in the range of 0.05 to 0.8 g / m 2. The Zr mass equivalent adhesion amount of the undercoat per one side of the steel sheet is in the range of 5 to 400 mg / m 2 , and the Co mass equivalent adhesion amount of the undercoat per one side of the plated steel sheet is 1 to 20 mg / m It is within the range of m 2. The Zr mass conversion adhesion amount is the adhesion amount of Zr atoms contained in the undercoat, and the Co mass conversion adhesion amount is the adhesion amount of Co atoms contained in the undercoat.
 この場合、表面被覆アルミニウム含有亜鉛系めっき鋼板の耐黒変性と耐食性が更に向上する。 In this case, the blackening resistance and corrosion resistance of the surface-coated aluminum-containing zinc-based plated steel sheet are further improved.
 本発明の第6の態様に係るに係る表面被覆アルミニウム含有亜鉛系めっき鋼板では、第1乃至第5のいずれか一の態様において、前記めっき鋼板が、亜鉛とアルミニウムとを含有し、或いは亜鉛とアルミニウムとマグネシウムとを含有するめっき層を備え、前記めっき層中のアルミニウム含有量が1~75質量%の範囲内、前記めっき層中のマグネシウム含有量が0質量%を超えて6.0質量%以下の範囲内にある。 In the surface-coated aluminum-containing zinc-based plated steel sheet according to the sixth aspect of the present invention, in any one of the first to fifth aspects, the plated steel sheet contains zinc and aluminum, or zinc and A plating layer containing aluminum and magnesium, wherein the aluminum content in the plating layer is in the range of 1 to 75% by mass, and the magnesium content in the plating layer exceeds 0% by mass to 6.0% by mass Within the following range.
 この場合、表面被覆アルミニウム含有亜鉛系めっき鋼板の耐食性が更に向上する。 In this case, the corrosion resistance of the surface-coated aluminum-containing zinc-based plated steel sheet is further improved.
 本発明の第7の態様に係る表面被覆アルミニウム含有亜鉛系めっき鋼板では、第6の態様において、前記めっき層が、0質量%を超えて1質量%以下の範囲内のNi及び0質量%を超えて1質量%以下の範囲内のCrのうち、1種類以上を含有する。尚、これらの割合は、めっき層全体に対する割合である。 In the surface-coated aluminum-containing zinc-based plated steel sheet according to the seventh aspect of the present invention, in the sixth aspect, the plating layer contains Ni and 0% by mass within a range of more than 0% by mass and 1% by mass or less. 1 or more types are contained among Cr within the range of 1 mass% or less exceeding. In addition, these ratios are ratios with respect to the whole plating layer.
 この場合、表面被覆アルミニウム含有亜鉛系めっき鋼板の耐食性が、更に向上する。 In this case, the corrosion resistance of the surface-coated aluminum-containing zinc-based plated steel sheet is further improved.
 本発明の第8の態様に係る表面被覆アルミニウム含有亜鉛系めっき鋼板では、第6又は第7の態様において、前記めっき層が、0%を超えて0.5質量%以下の範囲内のCa、0%を超えて0.5質量%以下の範囲内のSr、0%を超えて0.5質量%以下の範囲内のY、0%を超えて0.5質量%以下の範囲内のLa及び0%を超えて0.5質量%以下の範囲内のCeのうち、1種類以上を含有する。尚、これらの割合は、めっき層全体に対する割合である。 In the surface-coated aluminum-containing zinc-based plated steel sheet according to the eighth aspect of the present invention, in the sixth or seventh aspect, the plating layer contains Ca in a range of more than 0% and 0.5% by mass or less. Sr in the range of more than 0% to 0.5% by mass, Y in the range of more than 0% to 0.5% by mass, La in the range of more than 0% to 0.5% by mass or less And 1 or more types are contained among Ce in the range of 0.5 mass% or less exceeding 0%. In addition, these ratios are ratios with respect to the whole plating layer.
 この場合、表面被覆アルミニウム含有亜鉛系めっき鋼板の耐食性の向上もしくは、表面の生じる欠陥の抑制効果が、期待できる。 In this case, an improvement in the corrosion resistance of the surface-coated aluminum-containing zinc-based plated steel sheet or an effect of suppressing defects generated on the surface can be expected.
 本発明の第9の態様に係る表面被覆アルミニウム含有亜鉛系めっき鋼板では、第6乃至第8のいずれか一の態様において、前記めっき層が、Siを、前記めっき層中のAlに対して0.1~10質量%の範囲内で含む。 In the surface-coated aluminum-containing zinc-based plated steel sheet according to the ninth aspect of the present invention, in any one of the sixth to eighth aspects, the plating layer contains 0 Si relative to Al in the plating layer. Within the range of 1 to 10% by mass.
 この場合、表面被覆アルミニウム含有亜鉛系めっき鋼板の機械的加工性及び機械的加工された部分の耐食性が、更に向上する。 In this case, the mechanical workability of the surface-coated aluminum-containing zinc-based plated steel sheet and the corrosion resistance of the machined portion are further improved.
 本発明の第10の態様に係る表面被覆アルミニウム含有亜鉛系めっき鋼板の製造方法は、水分散性樹脂(A)、コバルト化合物(B)、及び水を含有し、pH7.5~10の範囲内である水系表面処理剤と、めっき鋼板とを準備し、
前記水系表面処理剤を、前記めっき鋼板に塗布し乾燥することにより、前記水分散性樹脂(A)及び前記コバルト化合物(B)を含有し、前記水分散性樹脂(A)の構成比率が質量比で90%以上である複合皮膜を、前記めっき鋼板の片面当たりの前記複合皮膜の乾燥皮膜質量が、0.5~3.5g/m2の範囲内となるように形成することを特徴とする。
The method for producing a surface-coated aluminum-containing zinc-based plated steel sheet according to the tenth aspect of the present invention comprises a water-dispersible resin (A), a cobalt compound (B), and water, and has a pH in the range of 7.5 to 10. Prepared an aqueous surface treatment agent and a plated steel sheet,
The aqueous surface treatment agent is applied to the plated steel sheet and dried to contain the water-dispersible resin (A) and the cobalt compound (B), and the constituent ratio of the water-dispersible resin (A) is mass. A composite film having a ratio of 90% or more is formed such that the dry film mass of the composite film per one side of the plated steel sheet is in the range of 0.5 to 3.5 g / m 2. To do.
 本発明の第11の態様に係る表面被覆アルミニウム含有亜鉛系めっき鋼板の製造方法は、第10の態様において、塩基性ジルコニウム化合物(C)、コバルト化合物(D)、及び水を含有し、pH7.5~10の範囲内である水系表面調整剤を準備し、
前記水系表面調整剤を前記めっき鋼板に塗布し乾燥することにより、前記塩基性ジルコニウム化合物(C)と前記コバルト化合物(D)とを含有する下地皮膜を、前記めっき鋼板の片面当たりの前記下地皮膜の乾燥皮膜量が、0.05~0.8g/m2の範囲内となり、前記めっき鋼板の片面当たりの前記下地皮膜のZr質量換算付着量が、5~400mg/m2の範囲内となり、前記めっき鋼板の片面当たりの前記下地皮膜のCo質量換算付着量が、1~20mg/m2の範囲内となるように形成し、前記下地皮膜上に前記複合皮膜を形成することを特徴とする。
The method for producing a surface-coated aluminum-containing zinc-based plated steel sheet according to an eleventh aspect of the present invention, in the tenth aspect, contains a basic zirconium compound (C), a cobalt compound (D), and water, and has a pH of 7. Prepare an aqueous surface conditioner within the range of 5-10,
The undercoat containing the basic zirconium compound (C) and the cobalt compound (D) is applied to the plated steel sheet by applying the aqueous surface conditioner to the plated steel sheet, and the undercoat per one side of the plated steel sheet. The amount of the dried film is in the range of 0.05 to 0.8 g / m 2 , and the Zr mass conversion adhesion amount of the base film per one side of the plated steel sheet is in the range of 5 to 400 mg / m 2 , The undercoating film is formed such that the coating weight in terms of Co mass per one side of the plated steel sheet is in the range of 1 to 20 mg / m 2 , and the composite film is formed on the undercoating film. .
 本発明によれば、クロムを使用しない処理が施されることで、耐食性、耐薬品性、耐黒変性、成形加工性が非常に優れた表面被覆アルミニウム含有亜鉛系めっき鋼板が得られる。 According to the present invention, a surface-coated aluminum-containing zinc-based plated steel sheet having excellent corrosion resistance, chemical resistance, blackening resistance, and formability can be obtained by performing a treatment without using chromium.
 本実施形態に係る表面被覆アルミニウム含有亜鉛系めっき鋼板(以下、被覆めっき鋼板という)は、めっき鋼板と、このめっき鋼板に積層されている複合皮膜とを備える。尚、複合皮膜は、めっき鋼板上に直接接していてもよく、めっき鋼板と複合皮膜との間に別の層が介在していてもよい。別の層の例として、後述する下地皮膜が挙げられる。 A surface-coated aluminum-containing zinc-based plated steel sheet (hereinafter referred to as a coated steel sheet) according to this embodiment includes a plated steel sheet and a composite coating laminated on the plated steel sheet. The composite coating may be in direct contact with the plated steel plate, or another layer may be interposed between the plated steel plate and the composite coating. As an example of another layer, there is an undercoat described later.
 めっき鋼板は、鋼板と、この鋼板上に形成されているめっき層とを備える。めっき層は、溶融めっき処理等により形成される。 The plated steel sheet includes a steel sheet and a plating layer formed on the steel sheet. The plating layer is formed by a hot dipping process or the like.
 めっき層は、構成元素として、亜鉛及びアルミニウムを含有し、或いは更にマグネシウムを含有することが好ましい。めっき層が亜鉛及びアルミニウムを含有すると、めっき層中のアルミニウム相に生じる薄い酸化皮膜によってめっき層表面が覆われ、この酸化皮膜が保護作用を発揮することで、特にめっき層の表面の耐食性が向上する。更に、亜鉛によって、犠牲防食作用により特に被覆めっき鋼板の切断端面におけるエッジクリープが抑制される。このため、被覆めっき鋼板に特に高い耐食性が付与される。更に、めっき層が、亜鉛よりも卑な金属であるマグネシウムを更に含有すると、めっき層のアルミニウムに起因する保護作用と亜鉛に起因する犠牲防食作用とが共に強化され、被覆めっき鋼板の耐食性が更に向上する。 The plating layer preferably contains zinc and aluminum as constituent elements, or further contains magnesium. When the plating layer contains zinc and aluminum, the surface of the plating layer is covered with a thin oxide film formed in the aluminum phase in the plating layer, and this oxide film exhibits a protective action, so that the corrosion resistance of the surface of the plating layer in particular is improved. To do. Further, zinc suppresses edge creep particularly at the cut end face of the coated plated steel sheet due to sacrificial anticorrosive action. For this reason, especially high corrosion resistance is provided to a covering plating steel plate. Furthermore, when the plating layer further contains magnesium, which is a base metal rather than zinc, both the protective action due to aluminum of the plating layer and the sacrificial anticorrosive action due to zinc are strengthened, and the corrosion resistance of the coated plated steel sheet is further increased. improves.
 めっき層中のアルミニウムの含有割合は、特に制限されないが、1~75質量%の範囲内であることが好ましく、5~65質量%であればより好ましい。特にこの割合が、5~15質量%の範囲内であることが好ましい。この場合、アルミニウムが5質量%以上であることで、めっき層形成時にアルミニウムが最初に凝固するため、アルミニウム酸化皮膜による保護作用が発揮されやすくなる。更にこの割合が5~15質量%であると、めっき層中で亜鉛に起因する犠牲防食効果を主体としてアルミニウムに起因する保護作用も働くことで、被覆めっき鋼板の耐食性が特に向上する。この割合が45~65質量%の範囲内であることも好ましい。この場合、めっき層中でアルミニウムに起因する保護作用を主体として亜鉛に起因する犠牲防食効果も働くことで、被覆めっき鋼板の耐食性が特に向上する。 The content of aluminum in the plating layer is not particularly limited, but is preferably in the range of 1 to 75% by mass, and more preferably 5 to 65% by mass. In particular, this proportion is preferably in the range of 5 to 15% by mass. In this case, when the aluminum content is 5% by mass or more, since the aluminum solidifies first when the plating layer is formed, the protective action by the aluminum oxide film is easily exhibited. Further, when this ratio is 5 to 15% by mass, the protective effect due to aluminum works mainly in the sacrificial anticorrosive effect due to zinc in the plating layer, so that the corrosion resistance of the coated plated steel sheet is particularly improved. It is also preferable that this ratio is in the range of 45 to 65% by mass. In this case, the corrosion resistance of the coated plated steel sheet is particularly improved by the sacrificial anticorrosive effect due to zinc acting mainly on the protective effect due to aluminum in the plating layer.
 めっき層中のマグネシウムの含有割合は、特に制限されないが、0質量%を超えて6.0質量%以下の範囲内であることが好ましく、特に0.1~5.0質量%の範囲内であることが好ましい。 The content ratio of magnesium in the plating layer is not particularly limited, but is preferably in the range of more than 0% by mass to 6.0% by mass, particularly in the range of 0.1 to 5.0% by mass. Preferably there is.
 また、めっき層は、構成元素として、更にSi、Ni、Ce、Cr、Fe、Ca、Sr、希土類等から選ばれる一種以上の元素を含有してもよい。 The plating layer may further contain one or more elements selected from Si, Ni, Ce, Cr, Fe, Ca, Sr, rare earth, and the like as constituent elements.
 めっき層が、Ni、Cr、及びY;Ca、Srなどのアルカリ土類元素;並びにLa、Ceなどの希土類から選ばれる、一種以上の元素を含有する場合、めっき層のアルミニウムに起因する保護作用と亜鉛に起因する犠牲防食作用とが共に強化されることで、被覆めっき鋼板の耐食性が更に向上する。 When the plating layer contains one or more elements selected from Ni, Cr, and Y; alkaline earth elements such as Ca and Sr; and rare earth elements such as La and Ce, the protective action caused by aluminum in the plating layer And the sacrificial anticorrosive action due to zinc are strengthened together, the corrosion resistance of the coated plated steel sheet is further improved.
 特に、めっき層が、NiとCrのうち、1種以上を含有することが好ましい。めっき層がNiを含有する場合、めっき層中のNiの割合は、0質量%を超えて1質量%以下の範囲内であることが好ましい。この割合が0.01~0.5質量%の範囲内であれば、更に好ましい。めっき層がCrを含有する場合、めっき層中のCrの割合は、0質量%を超えて1質量%以下の範囲内であることが好ましい。この割合が0.01~0.5質量%の範囲内であれば、更に好ましい。これらの場合、被覆めっき鋼板の耐食性が、特に向上する。 In particular, the plating layer preferably contains one or more of Ni and Cr. When a plating layer contains Ni, it is preferable that the ratio of Ni in a plating layer is in the range of more than 0 mass% and 1 mass% or less. More preferably, this ratio is in the range of 0.01 to 0.5 mass%. When a plating layer contains Cr, it is preferable that the ratio of Cr in a plating layer is in the range of more than 0 mass% and 1 mass% or less. More preferably, this ratio is in the range of 0.01 to 0.5 mass%. In these cases, the corrosion resistance of the coated plated steel sheet is particularly improved.
 めっき層が、Ca、Sr、Y、La及びCeのうち、1種類以上を含有することも、好ましい。めっき層がCaを含有する場合、めっき層中のCaの割合は、0%を超えて0.5質量%以下の範囲内であることが好ましい。この割合が0.001~0.1質量%の範囲内であれば、更に好ましい。めっき層がSrを含有する場合、めっき層中のSrの割合は、0%を超えて0.5質量%以下の範囲内であることが好ましい。この割合が0.001~0.1質量%の範囲内であれば、更に好ましい。めっき層がYを含有する場合、めっき層中のYの割合は、0%を超えて0.5質量%以下の範囲内であることが好ましい。この割合が0.001~0.1質量%の範囲内であれば、更に好ましい。めっき層がLaを含有する場合、めっき層中のLaの割合は、0%を超えて0.5質量%以下の範囲内であることが好ましい。この割合が0.001~0.1質量%の範囲内であれば、更に好ましい。めっき層がCeを含有する場合、めっき層中のCeの割合は、0%を超えて0.5質量%以下の範囲内であることが好ましい。この割合が0.001~0.1質量%の範囲内であれば、更に好ましい。これらの場合、被覆めっき鋼板の耐食性が特に向上すると共に、めっき層の表面における欠陥の抑制効果が、期待される。 It is also preferable that the plating layer contains one or more of Ca, Sr, Y, La and Ce. When the plating layer contains Ca, the proportion of Ca in the plating layer is preferably in the range of more than 0% and 0.5% by mass or less. More preferably, this ratio is in the range of 0.001 to 0.1% by mass. When the plating layer contains Sr, the ratio of Sr in the plating layer is preferably in the range of more than 0% and 0.5% by mass or less. More preferably, this ratio is in the range of 0.001 to 0.1% by mass. When the plating layer contains Y, the proportion of Y in the plating layer is preferably in the range of more than 0% and 0.5% by mass or less. More preferably, this ratio is in the range of 0.001 to 0.1% by mass. When a plating layer contains La, it is preferable that the ratio of La in a plating layer is in the range of 0.5 mass% or less exceeding 0%. More preferably, this ratio is in the range of 0.001 to 0.1% by mass. When the plating layer contains Ce, the proportion of Ce in the plating layer is preferably in the range of more than 0% and 0.5% by mass or less. More preferably, this ratio is in the range of 0.001 to 0.1% by mass. In these cases, the corrosion resistance of the coated plated steel sheet is particularly improved, and the effect of suppressing defects on the surface of the plated layer is expected.
 めっき層が、Siを含有する場合、被覆めっき鋼板の機械的加工性が向上する。これは、Siがめっき層と鋼板との界面における合金層の成長を抑制することで、めっき層と鋼板との適正な密着性を維持すると共に加工性を向上するためである。更に、Siがマグネシウムと合金を形成することで、被覆めっき鋼板の耐食性が更に向上することも、期待される。めっき層が、Siを含有する場合、Siの、めっき層中のAlに対する割合が、0.1~10質量%の範囲内であることが好ましい。この場合、被覆めっき鋼板の機械的加工性及び機械的加工された部分の耐食性が、更に向上する。このSiの割合が1~5質量%の範囲であれば、更に好ましい。 When the plating layer contains Si, the mechanical workability of the coated plated steel sheet is improved. This is because Si suppresses the growth of the alloy layer at the interface between the plating layer and the steel sheet, thereby maintaining proper adhesion between the plating layer and the steel sheet and improving workability. Furthermore, it is expected that the corrosion resistance of the coated plated steel sheet is further improved by forming an alloy with magnesium. When the plating layer contains Si, the ratio of Si to Al in the plating layer is preferably in the range of 0.1 to 10% by mass. In this case, the mechanical workability of the coated plated steel sheet and the corrosion resistance of the machined portion are further improved. The Si content is more preferably in the range of 1 to 5% by mass.
 勿論、めっき層中には、前記以外の不可避的に混入する元素が含有されてもよい。 Of course, the plating layer may contain elements inevitably mixed other than those described above.
 複合皮膜は、水分散性樹脂(A)とコバルト化合物(B)とを含有する。この複合皮膜は、水系表面処理剤をめっき鋼板に塗布し、乾燥することにより、形成される。この金属系表面処理剤は、水分散性樹脂(A)、コバルト化合物(B)、及び水を含有し、そのpHが7.5~10の範囲内である。 The composite film contains a water-dispersible resin (A) and a cobalt compound (B). This composite film is formed by applying an aqueous surface treatment agent to a plated steel sheet and drying it. This metal-based surface treatment agent contains a water-dispersible resin (A), a cobalt compound (B), and water, and has a pH in the range of 7.5 to 10.
 水分散性樹脂(A)について、更に詳しく説明する。水中における樹脂の存在形態としては、水溶性と水分散性の2種類に大別される。そのうち、本実施形態では、水分散性の樹脂が用いられる。水分散性の樹脂とは、水中で粒子状の形態で分散することで、エマルション又はディスパーションを形成する樹脂である。 The water dispersible resin (A) will be described in more detail. The presence form of the resin in water is roughly classified into two types, water-soluble and water-dispersible. Among them, in this embodiment, a water dispersible resin is used. A water-dispersible resin is a resin that forms an emulsion or a dispersion by being dispersed in a particulate form in water.
 本実施形態における水分散性樹脂(A)は、水系表面処理剤中で粒子状の形態で分散して、エマルション又はディスパーションを形成する。本実施形態では、水系表面処理剤中にコバルト化合物(B)が存在するにもかかわらず、水系表面処理剤中で水分散性樹脂(A)が分散した状態で安定して存在する。これは、水分散性樹脂(A)の粒子の表面にカルボキシル基が配向することでこの水分散性樹脂(A)の粒子がイオン分散し、そのためアニオン性でイオン分散するためであると考えられる。 The water-dispersible resin (A) in this embodiment is dispersed in the form of particles in an aqueous surface treatment agent to form an emulsion or a dispersion. In this embodiment, despite the presence of the cobalt compound (B) in the aqueous surface treatment agent, the water-dispersible resin (A) is stably present in a dispersed state in the aqueous surface treatment agent. This is considered to be because the particles of the water-dispersible resin (A) are ion-dispersed due to the orientation of carboxyl groups on the surface of the particles of the water-dispersible resin (A), and thus are anionic and ion-dispersed. .
 水分散性樹脂(A)は、次に示すポリエステルポリウレタン樹脂(aI)とアクリル樹脂(aII)とのうち、少なくとも一方を含有することが好ましい。 The water dispersible resin (A) preferably contains at least one of the following polyester polyurethane resin (aI) and acrylic resin (aII).
 分子中にポリエステルポリオールに由来する構造単位を備えるポリエステルポリウレタン樹脂(aI)。 Polyester polyurethane resin (aI) having a structural unit derived from polyester polyol in the molecule.
 脂環構造またはグリシジル基を備える(メタ)アクリル酸エステルに由来する重合単位、α,β-エチレン性不飽和カルボン酸に由来する重合単位、及び脂環構造及びグリシジル基を有さない(メタ)アクリル酸エステルに由来する重合単位を備える重合体から成るアクリル樹脂(aII)。 ポリエステルポリウレタン樹脂(aI)について説明する。ポリエステルポリウレタン樹脂(aI)の原料としては、イソシアネート基を2個以上
備えるジイソシアネート又はポリイソシアネート、ジオール又はポリオール、ジアミン又はポリアミン、酸成分等が、挙げられる。ポリエステルポリウレタン樹脂(aI)は、一般的な合成方法により得られ、その合成方法は特に限定されない。ポリエステルポリウレタン樹脂(aI)の製造時には、まずポリエステルポリオールが製造され、続いてこのポリエステルポリオールを含む原料からポリエステルポリウレタン樹脂(aI)が製造される。
Polymer unit derived from (meth) acrylic acid ester having alicyclic structure or glycidyl group, polymer unit derived from α, β-ethylenically unsaturated carboxylic acid, and having no alicyclic structure and glycidyl group (meth) An acrylic resin (aII) comprising a polymer comprising polymerized units derived from an acrylate ester. The polyester polyurethane resin (aI) will be described. Examples of the raw material for the polyester polyurethane resin (aI) include diisocyanate or polyisocyanate having two or more isocyanate groups, diol or polyol, diamine or polyamine, and an acid component. The polyester polyurethane resin (aI) is obtained by a general synthesis method, and the synthesis method is not particularly limited. In the production of the polyester polyurethane resin (aI), a polyester polyol is first produced, and then the polyester polyurethane resin (aI) is produced from a raw material containing the polyester polyol.
 ポリエステルポリウレタン樹脂(aI)を水系化するためには、ポリエステルポリオールと水添型イソシアネートを重合させる際に、ジメチロールアルキル酸も共重合させることが好ましい。この場合、自己乳化によりポリエステルポリウレタン樹脂(aI)が水性化(水分散)する。このような手法によりポリエステルポリウレタン樹脂(aI)を水系化すると、水系化の際に乳化剤を使用しないため、複合皮膜に優れた耐水性が付与され、このため被覆めっき鋼板の耐食性及び耐酸性の向上に繋がる。但し、水系表面処理剤の良好な貯蔵安定性が維持され、且つ他の性能も低下しない程度の量であれば、乳化剤が用いられてもよい。 In order to make the polyester polyurethane resin (aI) aqueous, it is preferable to copolymerize dimethylol alkyl acid when the polyester polyol and hydrogenated isocyanate are polymerized. In this case, the polyester polyurethane resin (aI) becomes aqueous (water-dispersed) by self-emulsification. When the polyester polyurethane resin (aI) is made water-based by such a technique, since the emulsifier is not used at the time of making water-based, excellent water resistance is imparted to the composite film, and thus the corrosion resistance and acid resistance of the coated plated steel sheet are improved. It leads to. However, an emulsifier may be used as long as the storage stability of the aqueous surface treatment agent is maintained and the other performance is not deteriorated.
 ポリエステルポリオールとしては、例えばグリコール成分と、多価カルボン酸、ヒドロキシカルボン酸、これらのエステル形成誘導体などの酸成分との、脱水縮合反応によって得られるポリエステルが挙げられる。ポリエステルポリオールは、ε-カプロラクトン等の環状エステル化合物の開環重合反応によって得られるポリエステルであってもよい。ポリエステルポリオールは、これらのポリエステルの共重合体であってもよい。 Examples of the polyester polyol include polyesters obtained by a dehydration condensation reaction between a glycol component and an acid component such as a polyvalent carboxylic acid, a hydroxycarboxylic acid, or an ester-forming derivative thereof. The polyester polyol may be a polyester obtained by a ring-opening polymerization reaction of a cyclic ester compound such as ε-caprolactone. The polyester polyol may be a copolymer of these polyesters.
 グリコール成分としては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ブチルエチルプロパンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール(分子量300~6,000)、ジプロピレングリコール、トリプロピレングリコール、ビスヒドロキシエトキシベンゼン、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、ビスフェノールA、水素添加ビスフェノールA、ハイドロキノン、及びこれらのアルキレンオキシド付加体が挙げられる。 Examples of the glycol component include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, and 1,6-hexane. Diol, neopentyl glycol, butyl ethyl propane diol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol (molecular weight 300 to 6,000), dipropylene glycol, tripropylene glycol, bishydroxyethoxybenzene, 1,4-cyclohexane Examples thereof include diol, 1,4-cyclohexanedimethanol, bisphenol A, hydrogenated bisphenol A, hydroquinone, and alkylene oxide adducts thereof.
 酸成分としては、例えば、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、無水マレイン酸、フマル酸、1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p´-ジカルボン酸、これらのジカルボン酸の無水物、これらのジカルボン酸のエステル形成性誘導体、p-ヒドロキシ安息香酸、及びp-(2-ヒドロキシエトキシ)安息香酸が、挙げられる。 Examples of the acid component include succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, maleic anhydride, fumaric acid, 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, terephthalic acid, Isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p Examples include '-dicarboxylic acids, anhydrides of these dicarboxylic acids, ester-forming derivatives of these dicarboxylic acids, p-hydroxybenzoic acid, and p- (2-hydroxyethoxy) benzoic acid.
 イソシアネートとしては、脂肪族、脂環式もしくは芳香族ポリイソシアネートが挙げられる。イソシアネートの具体例としては、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、リジンジイソシアネートエステル、水添キシリレンジイソシアネート、1,4-シクロヘキシレンジイソシアネート、4,4´-ジシクロヘキシルメタンジイソシアネート、2,4´-ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、3,3´-ジメトキシ-4,4´-ビフェニレンジイソシアネート、1,5-ナフタレンジイソシアネート、1,5-テトラヒドロナフタレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4´-ジフェニルメタンジイソシアネート、2,4´-ジフェニルメタンジイソシアネート、フェニレンジイソシアネート、キシリレンジイソシアネート、及びテトラメチルキシリレンジイソシアネートが挙げられる。これらの中でも、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、リジンジイソシアネートエステル、水添キシリレンジイソシアネート、1,4-シクロヘキシレンジイソシアネート、4,4´-ジシクロヘキシルメタンジイソシアネート、2,4´-ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート等の脂肪族又は脂環式ポリイソシアネート化合物が用いられることが好ましい。この場合、複合皮膜の耐酸性及び耐食性だけではなく、耐黒変性(黄変含む)も向上する。 Isocyanates include aliphatic, alicyclic or aromatic polyisocyanates. Specific examples of the isocyanate include tetramethylene diisocyanate, hexamethylene diisocyanate, lysine diisocyanate ester, hydrogenated xylylene diisocyanate, 1,4-cyclohexylene diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, and 2,4′-dicyclohexylmethane diisocyanate. , Isophorone diisocyanate, 3,3′-dimethoxy-4,4′-biphenylene diisocyanate, 1,5-naphthalene diisocyanate, 1,5-tetrahydronaphthalene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, phenylene diisocyanate, xylylene Isocyanates, and include tetramethylxylylene diisocyanate. Among these, tetramethylene diisocyanate, hexamethylene diisocyanate, lysine diisocyanate ester, hydrogenated xylylene diisocyanate, 1,4-cyclohexylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 2,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate It is preferable to use aliphatic or alicyclic polyisocyanate compounds such as In this case, not only acid resistance and corrosion resistance of the composite film, but also blackening resistance (including yellowing) is improved.
 ポリエステルポリウレタン樹脂(aI)は、樹脂合成時の安定性、低温乾燥時の造膜性を高めるために、有機溶剤と混合されていてもよい。有機溶剤としては、N-メチル-2-ピロリドン、ジエチレングリコールモノブチルエーテル、2,2,4-トリメチル-1,3ペンタンジオールモノイソブチレートなどが挙げられる。 The polyester polyurethane resin (aI) may be mixed with an organic solvent in order to improve the stability during resin synthesis and the film-forming property during low-temperature drying. Examples of the organic solvent include N-methyl-2-pyrrolidone, diethylene glycol monobutyl ether, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate and the like.
 次に、アクリル樹脂(aII)について説明する。本実施形態では、アクリル樹脂(aII)が用いられることで、被覆めっき鋼板の耐滑り性、及び耐候性が向上する。 Next, the acrylic resin (aII) will be described. In the present embodiment, the use of acrylic resin (aII) improves the slip resistance and weather resistance of the coated plated steel sheet.
 アクリル樹脂(aII)は、脂環構造またはグリシジル基を備える(メタ)アクリル酸エステル、α,β-エチレン性不飽和カルボン酸、及び脂環構造及びグリシジル基無しの(メタ)アクリル酸エステルを原料として、合成される。 Acrylic resin (aII) is made from (meth) acrylic acid ester having an alicyclic structure or glycidyl group, α, β-ethylenically unsaturated carboxylic acid, and (meth) acrylic acid ester having no alicyclic structure and glycidyl group Is synthesized.
 脂環構造またはグリシジル基を備える(メタ)アクリル酸エステルのうち、脂環構造を備える(メタ)アクリル酸エステルとしては、ボルニルアクリレート、イソボルニルアクリレート、ボルニルメタクリレート、イソボルニルメタクリレート、(メタ)アクリル酸1-アダマンチル、(メタ)アクリル酸2-メチル-2-アダマンチル、シクロオクチル(メタ)アクリレート、シクロデシル(メタ)アクリレート、シクロドデシル(メタ)アクリレート等が挙げられる。グリシジル基を備える(メタ)アクリル酸エステルとしては、(メタ)アクリル酸グリシジル等が挙げられる。 Among (meth) acrylic acid esters having an alicyclic structure or a glycidyl group, (meth) acrylic acid esters having an alicyclic structure include bornyl acrylate, isobornyl acrylate, bornyl methacrylate, isobornyl methacrylate, ( Examples include 1-adamantyl (meth) acrylate, 2-methyl-2-adamantyl (meth) acrylate, cyclooctyl (meth) acrylate, cyclodecyl (meth) acrylate, and cyclododecyl (meth) acrylate. Examples of the (meth) acrylic acid ester having a glycidyl group include glycidyl (meth) acrylate.
 α,β-エチレン性不飽和カルボン酸としては、アクリル酸、メタクリル酸、マレイン酸、イタコン酸等が、挙げられる。 Examples of the α, β-ethylenically unsaturated carboxylic acid include acrylic acid, methacrylic acid, maleic acid, itaconic acid and the like.
 脂環構造及びグリシジル基無しの(メタ)アクリル酸エステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸デシル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸シクロヘキシル、アクリルニトリル等が挙げられる。 (Meth) acrylic acid ester without alicyclic structure and glycidyl group includes methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, (meth) acrylic acid Butyl, isobutyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, (meth ) 2-ethylhexyl acrylate, 2-hydroxyethyl (meth) acrylate, decyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, cyclohexyl (meth) acrylate, acrylonitrile and the like.
 アクリル樹脂(aII)の合成方法としては、特に限定されないが、例えば乳化剤と過酸化物等を用いるラジカル重合法が挙げられる。乳化剤としては、例えばポリオキシエチレンアルキルナトリウム塩、アルキルベンゼンスルホン酸ナトリウム塩等のアニオン性活性剤、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルエステル、ソルビタンアルキルエステル等のノニオン性活性剤、並びに疎水基にラジカル重合可能な官能基を備える反応性乳化剤から選択される、一種又は二種以上が、用いられる。 The method for synthesizing the acrylic resin (aII) is not particularly limited, and examples thereof include a radical polymerization method using an emulsifier and a peroxide. Examples of the emulsifier include anionic active agents such as polyoxyethylene alkyl sodium salt and sodium alkylbenzene sulfonate, nonionic active agents such as polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl ester and sorbitan alkyl ester, and hydrophobic groups. One or more selected from reactive emulsifiers having a functional group capable of radical polymerization are used.
 アクリル樹脂(aII)は、シランカップリング剤を用いてシラン変性されていてもよい。この場合のシランカップリング剤の種類、変性量については特に限定されない。シランカップリング剤の具体例としては、ビニルトリクロロシラン、ビニルトリス(2-メトキシエトキシシラン)、ビニルトリエトキシシラン、ビニルトリメトキシシラン、3-(メタクリロイルオキシプロピル)トリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、及びウレイドプロピルトリエトキシシランが挙げられる。 The acrylic resin (aII) may be silane-modified using a silane coupling agent. In this case, the type of silane coupling agent and the amount of modification are not particularly limited. Specific examples of the silane coupling agent include vinyltrichlorosilane, vinyltris (2-methoxyethoxysilane), vinyltriethoxysilane, vinyltrimethoxysilane, 3- (methacryloyloxypropyl) trimethoxysilane, 2- (3,4 -Epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, N- (2-aminoethyl) 3- Aminopropyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysila , 3-mercaptopropyltrimethoxysilane, 3-chloropropyl trimethoxy silane, and ureidopropyltriethoxysilane and the like.
 水分散性樹脂(A)がポリエステルポリウレタン樹脂(aI)のみを含有する場合と、アクリル樹脂(aII)のみを含有する場合の、いずれにおいても、被覆めっき鋼板は優れた耐黒変性を発揮する。但し、厳しい環境下において被覆めっき鋼板の耐黒変性をより一層向上させるためには、水分散性樹脂(A)はポリエステルポリウレタン樹脂(aI)とアクリル樹脂(aII)とを共に含有することが好ましい。水分散性樹脂(A)中のポリエステルポリウレタン樹脂(aI)とアクリル樹脂(aII)の割合は、特に限定されないが、ポリエステルポリウレタン樹脂(aI)の質量/アクリル樹脂(aII)の質量の比(質量比)が69/31~40/60の範囲内であることが好ましく、60/40~45/55の範囲内がより好ましく、55/45~50/50の範囲内がより一層好ましい。この質量比が69/31以下であると、複合被膜の良好な耐酸性が維持される。この質量比が40/60以上であると、複合被膜の良好な耐食性、耐酸性、及び成形加工性が維持される。 In both cases where the water-dispersible resin (A) contains only the polyester polyurethane resin (aI) and only the acrylic resin (aII), the coated plated steel sheet exhibits excellent blackening resistance. However, the water-dispersible resin (A) preferably contains both the polyester polyurethane resin (aI) and the acrylic resin (aII) in order to further improve the blackening resistance of the coated plated steel sheet in a severe environment. . The ratio of the polyester polyurethane resin (aI) and the acrylic resin (aII) in the water-dispersible resin (A) is not particularly limited, but the ratio of the mass of the polyester polyurethane resin (aI) to the mass of the acrylic resin (aII) (mass Ratio) is preferably in the range of 69/31 to 40/60, more preferably in the range of 60/40 to 45/55, and even more preferably in the range of 55/45 to 50/50. When this mass ratio is 69/31 or less, good acid resistance of the composite coating is maintained. When this mass ratio is 40/60 or more, good corrosion resistance, acid resistance, and moldability of the composite coating are maintained.
 水分散樹脂(A)は、本発明の効果が損なわれない範囲内で、水分散樹脂(A)の水分散性を向上するための乳化剤と混合されていてもよい。 The water-dispersed resin (A) may be mixed with an emulsifier for improving the water-dispersibility of the water-dispersed resin (A) as long as the effects of the present invention are not impaired.
 コバルト化合物(B)の詳細について説明する。コバルト化合物(B)の具体例としては、硝酸コバルト(II)、硫酸コバルト(II)、酢酸コバルト(II)、シュウ酸コバルト(II)、硝酸コバルト(II)、酢酸コバルト(II)、シュウ酸コバルト(III)、塩化コバルト(IV)、酸化コバルト(III)、酸化コバルト(IV)等が挙げられる。コバルト化合物(B)は、特にコバルトの硫酸塩、コバルトの塩酸塩、及びコバルトの硝酸塩から選ばれる少なくとも一種のコバルト塩を含むことが好ましい。すなわち、コバルト化合物(B)は、硝酸コバルト(II)、硫酸コバルト(II)、塩化コバルト(II)のうち少なくとも一種を含むことが好ましい。更に、コバルト化合物(B)が硝酸コバルト(II)を含むことが、より一層好ましい。 Details of the cobalt compound (B) will be described. Specific examples of the cobalt compound (B) include cobalt nitrate (II), cobalt sulfate (II), cobalt acetate (II), cobalt oxalate (II), cobalt nitrate (II), cobalt acetate (II), and oxalic acid. Examples include cobalt (III), cobalt (IV) chloride, cobalt (III) oxide, and cobalt (IV) oxide. The cobalt compound (B) preferably contains at least one cobalt salt selected from cobalt sulfate, cobalt hydrochloride, and cobalt nitrate. That is, the cobalt compound (B) preferably contains at least one of cobalt nitrate (II), cobalt sulfate (II), and cobalt chloride (II). Furthermore, it is even more preferable that the cobalt compound (B) contains cobalt (II) nitrate.
 複合皮膜における水分散性樹脂(A)の構成比率は、質量比で90%以上であり、これにより、複合皮膜に良好な耐食性、耐酸性、及び成型加工性が付与されると共に、水系表面処理剤に良好な貯蔵安定性が付与される。この水分散性樹脂(A)の構成比率は、95%以上であれば更に好ましく、98%以上であればより一層好ましい。複合皮膜はコバルト化合物(B)を必ず含有するが、経済性の観点からは、コバルト化合物(B)の量ができるだけ少ない方が好ましい。 The composition ratio of the water-dispersible resin (A) in the composite film is 90% or more in terms of mass ratio, thereby giving the composite film good corrosion resistance, acid resistance, and molding processability, and an aqueous surface treatment. Good storage stability is imparted to the agent. The constituent ratio of the water dispersible resin (A) is more preferably 95% or more, and even more preferably 98% or more. The composite film necessarily contains the cobalt compound (B), but from the viewpoint of economy, it is preferable that the amount of the cobalt compound (B) is as small as possible.
 このようにコバルト化合物(B)が使用されると、水系表面処理剤から形成される複合皮膜内にコバルト化合物(B)が均一に分散する。このコバルト化合物(B)の一部は、めっき層の表面との反応によってめっき層の表面を改質し、これにより被覆めっき鋼板の耐黒変性が向上する。複合皮膜内に分散しているコバルト化合物(B)の別の一部は、高温多湿な雰囲気下で複合皮膜内に拡散することで、めっき層の表面が変色する現象を抑制する。これにより実用的には長期に渡り被覆めっき鋼板の耐黒変性が維持される。酸性の液体が複合皮膜を介してめっき層の表面に到達しても、コバルト化合物(B)が、めっき層の表面を保護してその変色を抑制する作用を発揮する。被覆めっき鋼板に成型加工が施される場合は、金型とめっき層との間にコバルト化合物(B)が存在することで、めっき層にかじり(galling)などの損傷が生じにくくなるため、めっき層表層が黒変色しにくくなる。 When the cobalt compound (B) is used in this way, the cobalt compound (B) is uniformly dispersed in the composite film formed from the aqueous surface treatment agent. Part of this cobalt compound (B) modifies the surface of the plating layer by reaction with the surface of the plating layer, thereby improving the blackening resistance of the coated plated steel sheet. Another part of the cobalt compound (B) dispersed in the composite film diffuses into the composite film under a high-temperature and high-humidity atmosphere, thereby suppressing the phenomenon that the surface of the plating layer is discolored. Thereby, practically, the blackening resistance of the coated plated steel sheet is maintained for a long time. Even if the acidic liquid reaches the surface of the plating layer via the composite film, the cobalt compound (B) exerts an action of protecting the surface of the plating layer and suppressing the discoloration. When the coated plated steel sheet is molded, the presence of the cobalt compound (B) between the mold and the plating layer makes it difficult to cause damage such as galling to the plating layer. The surface layer becomes difficult to discolor black.
 水分散性樹脂(A)に対するコバルト化合物(B)の割合は、特に制限されないが、水分散性樹脂(A)に対する、コバルト化合物(B)を構成するコバルト原子の質量割合が、1/100~1/10000の範囲内であることが好ましい。この割合は、更に1/500~1/5000の範囲内であることがより好ましい。この割合が1/100以下であると水系表面処理剤の良好な貯蔵安定性が維持される。この割合が1/100より大きくなると、コバルト化合物(B)を使用することによる性能の向上が飽和して、経済的に好ましくない。この割合が1/10000以上であることで、耐黒変性、耐酸性、及び成型加工時の耐変性が特に向上し、めっき鋼板がアルミニウム含有率の高いめっき層を備える場合でも優れた効果が発揮される。 The ratio of the cobalt compound (B) to the water-dispersible resin (A) is not particularly limited, but the mass ratio of cobalt atoms constituting the cobalt compound (B) to the water-dispersible resin (A) is 1/100 to It is preferable to be within the range of 1/10000. This ratio is more preferably in the range of 1/500 to 1/5000. When this ratio is 1/100 or less, good storage stability of the aqueous surface treatment agent is maintained. When this ratio becomes larger than 1/100, the performance improvement due to the use of the cobalt compound (B) is saturated, which is economically undesirable. When this ratio is 1 / 10,000 or more, blackening resistance, acid resistance, and resistance to deformation during molding are particularly improved, and excellent effects are exhibited even when the plated steel sheet has a plating layer with a high aluminum content. Is done.
 水系表面処理剤は、更に可塑剤を含有してもよい。可塑剤としては、2,2,4-トリメチル-1,3ペンタンジオールモノイソブチレート、ジエチレングリコールモノブチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、及びベンジルアルコールが挙げられる。 The aqueous surface treatment agent may further contain a plasticizer. Examples of the plasticizer include 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, diethylene glycol monobutyl ether acetate, ethylene glycol monobutyl ether acetate, and benzyl alcohol.
 水系表面処理剤中の可塑剤の含有量は、水分散性樹脂(A)の固形分質量に対して15~30質量%の範囲内であることが好ましく、20~25質量%の範囲内であればより好ましい。この含有量が15質量%以上であると、可塑剤の添加効果が充分に発現し、その結果、水系表面処理剤に良好な造膜性が付与され、複合被膜の良好な耐食性、耐酸性が維持される。この含有量が30質量%以下であると、水系表面処理剤の良好な貯蔵安定性が維持される。 The content of the plasticizer in the aqueous surface treatment agent is preferably in the range of 15 to 30% by mass, and in the range of 20 to 25% by mass with respect to the solid content mass of the water-dispersible resin (A). More preferably. When the content is 15% by mass or more, the effect of adding a plasticizer is sufficiently exhibited. As a result, good film-forming properties are imparted to the aqueous surface treatment agent, and the composite coating has good corrosion resistance and acid resistance. Maintained. When this content is 30% by mass or less, good storage stability of the aqueous surface treatment agent is maintained.
 上記の通り、水系表面処理剤pHは、7.5~10の範囲内である。pHが7.5未満であると水系表面処理剤の貯蔵安定性が低下する傾向にあり、pHが10を超えると、めっき鋼板表面の不動態層が破壊されてしまい、めっき層そのものが持つ性能が大幅に低下してしまう。 As described above, the aqueous surface treatment agent pH is in the range of 7.5 to 10. If the pH is less than 7.5, the storage stability of the aqueous surface treatment agent tends to decrease. If the pH exceeds 10, the passive layer on the plated steel sheet surface is destroyed, and the performance of the plated layer itself Will drop significantly.
 水系表面処理剤がめっき鋼板の表面上に塗布され、更にこの水系表面処理剤が乾燥されることで、複合皮膜が形成される。水系表面処理剤の塗布方法としては、ロールコート法、スプレー法、浸漬法、シャワーリンガー法、及びエアーナイフ法が挙げられる。水系表面処理剤を乾燥する方法は、自然乾燥であっても、電気炉、熱風炉、誘導加熱炉などの加熱装置を用いて強制的に乾燥する方法でもよい。 An aqueous surface treatment agent is applied onto the surface of the plated steel sheet, and the aqueous surface treatment agent is further dried to form a composite film. Examples of the application method of the aqueous surface treatment agent include a roll coating method, a spray method, a dipping method, a shower ringer method, and an air knife method. The method for drying the aqueous surface treatment agent may be natural drying or forced drying using a heating apparatus such as an electric furnace, a hot air furnace, an induction heating furnace or the like.
 水系表面処理剤が乾燥される際のめっき鋼板の到達板温は、60~180℃の範囲内であることが好ましく、80~150℃の範囲内であればより好ましく、100~150℃の範囲内であれば更に好ましい。 The ultimate temperature of the plated steel sheet when the aqueous surface treatment agent is dried is preferably in the range of 60 to 180 ° C, more preferably in the range of 80 to 150 ° C, and in the range of 100 to 150 ° C. If it is in, it is more preferable.
 めっき鋼板上の複合皮膜の乾燥皮膜質量は、0.5~3.5g/m2の範囲内である。この乾燥皮膜質量は、めっき鋼板の片面当たりの乾燥皮膜質量である。つまり、第一の面とその反対側の第二の面とを有するめっき鋼板の、少なくとも第一の面での複合皮膜の乾燥皮膜質量が、0.5~3.5g/m2の範囲内である。つまり、第一の面での複合皮膜の乾燥皮膜質量、又は第一の面及び第二の面の各々での複合皮膜の乾燥皮膜質量が、0.5~3.5g/m2の範囲内である。この乾燥皮膜質量が0.5g/m2未満であると、複合皮膜を形成することによる効果が充分に得られず、被覆めっき鋼板に優れた耐食性、耐酸性、成型加工性が付与されなくなる。この乾燥皮膜質量が3.5g/m2より大きいと、造膜不良を防止するために長時間の乾燥時間が必要となってしまう。乾燥皮膜質量が3.5g/m2より大きいと、性能の向上が飽和してしまい、このため生産性及び経済的損失をもたらすことになる。 The dry film mass of the composite film on the plated steel sheet is in the range of 0.5 to 3.5 g / m 2 . This dry film mass is the dry film mass per one side of the plated steel sheet. That is, the dry film mass of the composite film on at least the first surface of the plated steel sheet having the first surface and the second surface opposite to the first surface is in the range of 0.5 to 3.5 g / m 2 . It is. That is, the dry film mass of the composite film on the first surface, or the dry film mass of the composite film on each of the first surface and the second surface is in the range of 0.5 to 3.5 g / m 2 . It is. If the dry film mass is less than 0.5 g / m 2 , the effect of forming the composite film cannot be sufficiently obtained, and excellent corrosion resistance, acid resistance, and moldability cannot be imparted to the coated plated steel sheet. If the dry film mass is greater than 3.5 g / m 2 , a long drying time is required to prevent film formation defects. If the dry film mass is greater than 3.5 g / m 2 , the performance improvement will be saturated, resulting in productivity and economic loss.
 めっき鋼板上に複合皮膜が形成される前に、このめっき鋼板の表面上に付着する油や汚染物質を除去してめっき層の表面を清浄化するために、予めめっき鋼板が洗浄されてもよい。洗浄に使用される洗浄剤としては、酸性成分やアルカリ性成分などの無機成分、キレート剤、界面活性剤等が配合された周知の洗浄剤が挙げられる。洗浄剤のpHは、被覆めっき鋼板の性能が損なわれなければ、アルカリ性、酸性のいずれでも構わない。 Before the composite coating is formed on the plated steel sheet, the plated steel sheet may be washed in advance to remove oil and contaminants adhering to the surface of the plated steel sheet and clean the surface of the plated layer. . Examples of the cleaning agent used for cleaning include well-known cleaning agents in which inorganic components such as acidic components and alkaline components, chelating agents, surfactants and the like are blended. The pH of the cleaning agent may be either alkaline or acidic as long as the performance of the coated plated steel sheet is not impaired.
 複合皮膜が形成される前に、コバルト化合物を含有し、且つ、pHが酸性に調整された水系表面調整剤をめっき鋼板の表面と接触させることで、めっき鋼板上にCoを析出させてもよい。この水系表面調整剤のpHは、アルカリ性に調整されてもよい。水系表面調整剤を用いる処理方法としては、浸漬、スプレー処理のいずれも適用できる。この表面処理により、めっき鋼板上のCo付着量は、0.5~15mg/m2の範囲内であることが好ましい。つまり、水系表面調整剤から形成される下地皮膜の、めっき鋼板の片面当たりのCo質量換算付着量が、0.5~15mg/m2の範囲内であることが好ましい。このような範囲内でCoを析出させるための処理温度、処理時間に関しては特に制限はない。この表面処理に使用されるコバルト化合物の種類としては、複合皮膜に含有されるコバルト化合物(B)として挙げたものが適宜使用できる。水系表面調整剤のpH調整には、硫酸、塩酸、硝酸など公知の酸成分、アンモニアや水酸化ナトリウムなど公知の塩基成分が使用できる。下地皮膜に積層させる複合皮膜の形成に用いる水系金属表面処理剤のpHはアルカリ寄り(pH7.5~10)であるため、水系表面調整剤のpHも、酸性域よりもアルカリ性域である方が、工業的なプロセスの観点において好ましい。特に、水系表面調整剤のpHは、複合皮膜用の水系金属表面処理剤と同じ7.5~10の範囲内にすることがより好ましい。このような表面処理を施すことによって、被覆めっき鋼板の耐黒変性が更に長期間維持される。 Before the composite film is formed, Co may be precipitated on the plated steel sheet by bringing the aqueous surface conditioner containing a cobalt compound and adjusted to an acidic pH into contact with the surface of the plated steel sheet. . The pH of the aqueous surface conditioner may be adjusted to be alkaline. As a treatment method using an aqueous surface conditioner, either immersion or spray treatment can be applied. By this surface treatment, the amount of Co deposited on the plated steel sheet is preferably in the range of 0.5 to 15 mg / m 2 . That is, it is preferable that the coating amount in terms of Co mass per one side of the plated steel sheet of the base film formed from the aqueous surface conditioner is in the range of 0.5 to 15 mg / m 2 . There are no particular restrictions on the processing temperature and processing time for precipitating Co within such a range. As a kind of cobalt compound used for this surface treatment, what was mentioned as a cobalt compound (B) contained in a composite film can be used suitably. For adjusting the pH of the aqueous surface conditioner, known acid components such as sulfuric acid, hydrochloric acid and nitric acid, and known base components such as ammonia and sodium hydroxide can be used. Since the pH of the aqueous metal surface treatment agent used for forming the composite film laminated on the base film is close to the alkali (pH 7.5 to 10), the pH of the aqueous surface conditioner is also more alkaline than the acidic range. From the viewpoint of an industrial process, it is preferable. In particular, the pH of the aqueous surface conditioner is more preferably in the range of 7.5 to 10 which is the same as the aqueous metal surface treatment agent for the composite film. By applying such a surface treatment, the blackening resistance of the coated plated steel sheet is maintained for a longer period of time.
 複合皮膜が形成される前に、めっき鋼板上に、塩基性ジルコニウム化合物(C)、コバルト化合物(D)、及び水を含有するアルカリ性の水系表面調整剤から下地皮膜が形成され、この下地皮膜上に複合皮膜が形成されてもよい。下地皮膜は、塩基性ジルコニウム化合物(C)及びコバルト化合物(D)を含有する。この場合、被覆めっき鋼板の耐黒変性が更に長期間維持される。更に、下地皮膜が、コバルト化合物(D)に加えて塩基性ジルコニウム化合物(C)を含有することで、被覆めっき鋼板の耐黒変性のみならず、耐食性も、より一層、長期に渡って維持される。その理由は、次の通りであると考えられる。 Before the composite film is formed, a base film is formed on the plated steel sheet from a basic zirconium compound (C), a cobalt compound (D), and an alkaline aqueous surface conditioner containing water. A composite film may be formed. The undercoat contains a basic zirconium compound (C) and a cobalt compound (D). In this case, the blackening resistance of the coated plated steel sheet is maintained for a longer period. Furthermore, since the base film contains the basic zirconium compound (C) in addition to the cobalt compound (D), not only the blackening resistance but also the corrosion resistance of the coated plated steel sheet can be maintained for a long time. The The reason is considered as follows.
 下地皮膜が塩基性ジルコニウム化合物(C)を含有することで、下地皮膜が緻密化し、このため、被覆めっき鋼板の耐食性が向上すると考えられる。更には、水系表面調整剤がめっき層の表面に接触して反応することで、下地皮膜内の塩基性ジルコニウム化合物(C)で構成されるマトリックス中において、コバルト化合物(D)が下地皮膜とめっき層との界面付近に高濃度で存在(偏析)すると考えられる。そのため、本来ならば黒変が生じやすい環境雰囲気下であっても、コバルト化合物(D)が一気に消費されることがなくなり、被覆めっき鋼板の耐黒変性が長期に亘って持続的に発揮されると、考えられる。 It is considered that when the undercoat contains the basic zirconium compound (C), the undercoat becomes dense, and thus the corrosion resistance of the coated plated steel sheet is improved. Further, the aqueous surface conditioner contacts and reacts with the surface of the plating layer, whereby the cobalt compound (D) is plated with the base coating in the matrix composed of the basic zirconium compound (C) in the base coating. Presumably present (segregation) at a high concentration near the interface with the layer. Therefore, even under an environmental atmosphere where blackening is likely to occur originally, the cobalt compound (D) is not consumed at once, and the blackening resistance of the coated plated steel sheet is continuously exhibited over a long period of time. it is conceivable that.
 更に、水系表面調整剤が、複合皮膜を形成するために使用される水系表面処理剤と同様にアルカリ性であることで、プロセス上、有利である。更に、めっき層がマグネシウムを含有する場合、このマグネシウムは酸性溶液に溶解しやすいが、水系表面調整剤がアルカリ性であれば、めっき層中のマグネシウムが水系表面処理剤に溶解しにくくなる。このため、めっき層が損傷しにくくなって、めっき層の特性が充分に発揮され、更にこのめっき層の特性と下地皮膜の特性とが相乗的に発現することができる。 Furthermore, it is advantageous in terms of the process that the aqueous surface conditioner is alkaline as is the case with the aqueous surface treatment agent used to form the composite film. Further, when the plating layer contains magnesium, this magnesium is easily dissolved in an acidic solution. However, if the aqueous surface conditioner is alkaline, magnesium in the plating layer is difficult to dissolve in the aqueous surface treatment agent. For this reason, it becomes difficult to damage a plating layer, the characteristic of a plating layer is fully exhibited, and also the characteristic of this plating layer and the characteristic of a base film can express synergistically.
 水系表面調整剤のpHが、水系表面処理剤のpHと同様に7.5~10の範囲内であれば、特に好ましい。この場合、プロセス上、特に有利である。更に、水系表面調整剤のpHが7.5~10の範囲内であれば、水系表面調整剤の貯蔵安定性及び処理時の液安定性が向上する。水系表面調整剤のpH調整には、硫酸、塩酸、硝酸など公知の酸成分、アンモニア、アミン類、水酸化ナトリウムなど公知の塩基成分が使用できる。 It is particularly preferable that the pH of the aqueous surface conditioner is in the range of 7.5 to 10 like the pH of the aqueous surface treatment agent. This is particularly advantageous in terms of process. Furthermore, when the pH of the aqueous surface conditioner is in the range of 7.5 to 10, the storage stability of the aqueous surface conditioner and the liquid stability during processing are improved. For adjusting the pH of the aqueous surface conditioner, known acid components such as sulfuric acid, hydrochloric acid and nitric acid, and known base components such as ammonia, amines and sodium hydroxide can be used.
 塩基性ジルコニウム化合物(C)の詳細について説明する。塩基性ジルコニウム化合物(C)は、例えば塩基性ジルコニウム、塩基性ジルコニル、塩基性ジルコニル塩、塩基性炭酸ジルコニウム、塩基性炭酸ジルコニル、塩基性炭酸ジルコニウム塩、及び塩基性炭酸ジルコニル塩から選択される一種以上の化合物を含有することができる。塩の種類としては、アンモニウム塩、ナトリム、カリウム、リチウムのアルカリ金属塩、アミン塩などが挙げられる。更に具体的には、塩基性ジルコニウム化合物(C)は、炭酸ジルコニルアンモニウム[(NH42ZrO(CO32]、炭酸ジルコニルカリウム[K2ZrO(CO32]、炭酸ジルコニルナトリム[Na2Zr(CO32]、炭酸ジルコニウムアンモニウム{(NH42[Zr(CO32(OH)2}、炭酸ジルコニウムカリウム{K2[Zr(CO32(OH)2}、及び炭酸ジルコニウムナトリム{Na2[Zr(CO32(OH)2}から選択される一種以上を含有することができる。特に塩基性ジルコニウム化合物(C)が、炭酸ジルコニルアンモニウム[(NH42ZrO(CO32]及び炭酸ジルコニウムアンモニウム{(NH42[Zr(CO32(OH)2}のうち少なくとも一方を含有することが好ましい。 Details of the basic zirconium compound (C) will be described. The basic zirconium compound (C) is a kind selected from, for example, basic zirconium, basic zirconyl, basic zirconyl salt, basic zirconium carbonate, basic zirconyl carbonate, basic zirconium carbonate salt, and basic zirconyl carbonate salt The above compounds can be contained. Examples of the salt include ammonium salt, sodium, potassium, lithium alkali metal salt, amine salt and the like. More specifically, the basic zirconium compound (C) comprises zirconyl ammonium carbonate [(NH 4 ) 2 ZrO (CO 3 ) 2 ], potassium zirconyl carbonate [K 2 ZrO (CO 3 ) 2 ], zirconyl sodium carbonate [ Na 2 Zr (CO 3 ) 2 ], zirconium carbonate {(NH 4 ) 2 [Zr (CO 3 ) 2 (OH) 2 }, potassium zirconium carbonate {K 2 [Zr (CO 3 ) 2 (OH) 2 } And one or more selected from zirconium carbonate sodium {Na 2 [Zr (CO 3 ) 2 (OH) 2 }. In particular, the basic zirconium compound (C) is composed of zirconyl ammonium carbonate [(NH 4 ) 2 ZrO (CO 3 ) 2 ] and ammonium zirconium carbonate {(NH 4 ) 2 [Zr (CO 3 ) 2 (OH) 2 }. It is preferable to contain at least one.
 コバルト化合物(D)の詳細について説明する。コバルト化合物(D)の具体例としては、硝酸コバルト(II)、硫酸コバルト(II)、酢酸コバルト(II)、シュウ酸コバルト(II)、硝酸コバルト(II)、酢酸コバルト(II)、シュウ酸コバルト(III)、塩化コバルト(IV)、酸化コバルト(III)、及び酸化コバルト(IV)が挙げられる。コバルト化合物(D)は、これらの化合物から選択される一種以上を含有することができる。コバルト化合物(D)は、特にコバルトの硫酸塩、コバルトの塩酸塩、及びコバルトの硝酸塩から選ばれる少なくとも一種のコバルト塩を含有することが好ましい。すなわち、コバルト化合物(B)は、硝酸コバルト(II)、硫酸コバルト(II)、及び塩化コバルト(II)のうち少なくとも一種を含有することが好ましい。コバルト化合物(D)が硝酸コバルト(II)を含有すれば、より一層好ましい。 Details of the cobalt compound (D) will be described. Specific examples of the cobalt compound (D) include cobalt nitrate (II), cobalt sulfate (II), cobalt acetate (II), cobalt oxalate (II), cobalt nitrate (II), cobalt acetate (II), and oxalic acid. Examples include cobalt (III), cobalt (IV) chloride, cobalt (III) oxide, and cobalt (IV) oxide. The cobalt compound (D) can contain one or more selected from these compounds. The cobalt compound (D) preferably contains at least one cobalt salt selected from cobalt sulfate, cobalt hydrochloride, and cobalt nitrate. That is, the cobalt compound (B) preferably contains at least one of cobalt nitrate (II), cobalt sulfate (II), and cobalt chloride (II). It is even more preferable that the cobalt compound (D) contains cobalt (II) nitrate.
 塩基性ジルコニウム化合物(C)、コバルト化合物(D)、及び水が混合され、更に必要に応じてpH調整のための酸成分と塩基成分のうち少なくとも一方が配合されることで、水系表面調整剤が調製される。水系表面調整剤中の塩基性ジルコニウム化合物(C)及びコバルト化合物(D)の量は、水系表面調整剤の塗布性、下地皮膜に望まれるジルコニウム含有量及びコバルト含有量等に応じて、適宜調整される。 A basic zirconium compound (C), a cobalt compound (D), and water are mixed, and if necessary, at least one of an acid component and a base component for pH adjustment is blended, so that an aqueous surface conditioning agent is added. Is prepared. The amount of the basic zirconium compound (C) and the cobalt compound (D) in the aqueous surface conditioner is appropriately adjusted according to the applicability of the aqueous surface conditioner, the zirconium content and the cobalt content desired for the undercoat. Is done.
 水系表面調整剤がめっき層に塗布されることで、下地皮膜が形成される。その具体的な方法として、反応型処理と、塗布型処理の、いずれが採用されてもよい。反応型処理では、浸漬、スプレー法等によって水系表面調整剤がめっき層に接触した後で水洗されることで、下地皮膜が形成される。この場合の、めっき層に塗布される水系表面調整剤の温度は、10~80℃の範囲内であることが好ましい。塗布型処理では、ロールコート法、スプレー法、浸漬法、シャワーリンガー法、エアーナイフ法、カーテンフロー法などによって水系表面調整剤がめっき層に接触した後に、この水系表面調整剤が水洗されることなく乾燥されることで、下地皮膜が形成される。この場合の、めっき層に塗布される水系表面調整剤の温度は、10~150℃の範囲であることが好ましく、30~100℃の範囲内であれば、より好ましい。下地皮膜の量を多くして本発明の効果をより高めるためには、塗布型処理が採用されることが好ましい。 An undercoat is formed by applying an aqueous surface conditioner to the plating layer. As a specific method, either a reactive process or a coating process may be employed. In the reactive treatment, the base film is formed by washing with water after the aqueous surface conditioner contacts the plating layer by dipping, spraying, or the like. In this case, the temperature of the aqueous surface conditioner applied to the plating layer is preferably within the range of 10 to 80 ° C. In the coating type treatment, the aqueous surface conditioner should be washed with water after the aqueous surface conditioner contacts the plating layer by roll coating, spraying, dipping, shower ringer method, air knife method, curtain flow method, etc. The undercoat is formed by drying completely. In this case, the temperature of the aqueous surface conditioner applied to the plating layer is preferably in the range of 10 to 150 ° C., more preferably in the range of 30 to 100 ° C. In order to increase the amount of the undercoat and enhance the effect of the present invention, it is preferable to employ a coating type treatment.
 めっき鋼板の片面当たりの下地皮膜の乾燥皮膜量は、0.05~0.8g/m2の範囲内であることが好ましい。この乾燥皮膜量が0.05g/m2以上であれば、下地皮膜による耐黒変性及び耐食性の向上作用が、著しく発揮される。この乾燥皮膜量が0.8g/m2以下であれば、下地皮膜が特に緻密化することで、耐黒変性及び耐食性の向上作用が、著しく発揮される。 The dry film amount of the base film per side of the plated steel sheet is preferably in the range of 0.05 to 0.8 g / m 2 . When the amount of the dry film is 0.05 g / m 2 or more, the blackening resistance and corrosion resistance improving action by the base film is remarkably exhibited. When the amount of the dry film is 0.8 g / m 2 or less, the base film is particularly densified, so that the effect of improving blackening resistance and corrosion resistance is remarkably exhibited.
 めっき鋼板の片面当たりの下地皮膜のZr質量換算付着量は、5~400mg/m2の範囲内であることが、好ましい。この場合、耐黒変性及び耐食性の向上作用が、著しく発揮される。めっき鋼板の片面当たりの下地皮膜のCo質量換算付着量は、1~20mg/m2の範囲内であることが、好ましい。この場合、耐黒変性及び耐食性の向上作用が、著しく発揮される。 It is preferable that the Zr mass conversion adhesion amount of the undercoat per one side of the plated steel sheet is in the range of 5 to 400 mg / m 2 . In this case, the effect of improving blackening resistance and corrosion resistance is remarkably exhibited. The Co mass equivalent adhesion amount of the undercoat per one side of the plated steel sheet is preferably in the range of 1 to 20 mg / m 2 . In this case, the effect of improving blackening resistance and corrosion resistance is remarkably exhibited.
 更に、上記の乾燥皮膜量、Zr質量換算付着量、及びCo質量換算付着量が、全て好ましい範囲内にある場合には、複合皮膜と下地皮膜との二層構造による効果が、特に著しく発揮されうる。 Furthermore, when the above-mentioned dry film amount, Zr mass conversion adhesion amount, and Co mass conversion adhesion amount are all within the preferred ranges, the effect of the two-layer structure of the composite film and the base film is particularly exhibited. sell.
 以下、本発明を実施例によって具体的に説明する。 Hereinafter, the present invention will be specifically described by way of examples.
 (1)供試材
 No.1~6の、6種類のめっき鋼板を用意した。各めっき鋼板におけるめっき層の組成を、下記表1に示す。この表中の数値は、めっき層全体に対するめっき層中の元素の割合を、質量百分率(質量%)で示している。但し、表中の(Si/Al)の欄の数値に限っては、めっき層中のAlに対するめっき層中のSiの割合を、質量百分率(質量%)で示している。
(1) Specimen No. Six types of plated steel sheets 1-6 were prepared. The composition of the plating layer in each plated steel sheet is shown in Table 1 below. The numerical value in this table | surface has shown the ratio of the element in a plating layer with respect to the whole plating layer by the mass percentage (mass%). However, only for the numerical value in the column of (Si / Al) in the table, the ratio of Si in the plating layer to Al in the plating layer is indicated by mass percentage (mass%).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (2)前処理(脱脂処理)
 めっき鋼板の表面をアルカリ脱脂することで、めっき鋼板の表面を清浄化した。アルカリ脱脂にあたっては、シリケート系アルカリ脱脂剤(日本パーカライジング株式会社製、品名パルクリーンN364S)を、濃度2%、温度60℃に調整し、これをめっき鋼板の表面の表面に向けて10秒間スプレー噴射した。続いて、めっき鋼板の表面を水道水で洗浄した後に、このめっき鋼板を水切りロールで絞り、更にめっき鋼板を50℃で30秒間加熱乾燥した。
(2) Pretreatment (degreasing treatment)
The surface of the plated steel sheet was cleaned by alkaline degreasing. In alkaline degreasing, a silicate alkaline degreasing agent (manufactured by Nippon Parkerizing Co., Ltd., product name Pulclean N364S) is adjusted to a concentration of 2% and a temperature of 60 ° C., and sprayed for 10 seconds toward the surface of the plated steel sheet. did. Subsequently, after the surface of the plated steel sheet was washed with tap water, the plated steel sheet was squeezed with a draining roll, and the plated steel sheet was further heated and dried at 50 ° C. for 30 seconds.
 (3)水系表面処理剤
 (3-1)水分散性樹脂(A)
 表2に示すウレタン樹脂(aI)及びアクリル樹脂(aII)を、以下に示す合成方法により得た。
(3) Aqueous surface treatment agent (3-1) Water dispersible resin (A)
The urethane resin (aI) and acrylic resin (aII) shown in Table 2 were obtained by the synthesis method shown below.
 (ウレタン樹脂(aI1))
 1,6-ヘキサンジオールとネオペンチルグリコールとアジピン酸から合成された数平均分子量2000のポリエステルポリオール100質量部、2,2-ジメチル-1,3-プロパンジオール5質量部、2,2-ジメチロールプロピオン酸20質量部、2,4-ジシクロヘキシルメタンジイソシアネート100質量部、及びN-メチル-2-ピロリドン100質量部を、反応容器内に加え、これらを反応させることにより、不揮発分に対する遊離のイソシアネート基含有量が5質量%であるウレタンプレポリマーを得た。
(Urethane resin (aI1))
100 parts by mass of a polyester polyol having a number average molecular weight of 2000 synthesized from 1,6-hexanediol, neopentyl glycol and adipic acid, 5 parts by mass of 2,2-dimethyl-1,3-propanediol, and 2,2-dimethylol By adding 20 parts by mass of propionic acid, 100 parts by mass of 2,4-dicyclohexylmethane diisocyanate and 100 parts by mass of N-methyl-2-pyrrolidone into the reaction vessel and reacting them, a free isocyanate group with respect to the nonvolatile content A urethane prepolymer having a content of 5% by mass was obtained.
 次に、別の容器内にエチレンジアミン16質量部、トリエチルアミン10質量部、及びイオン交換水500質量部を加え、これらをホモミキサーで攪拌しながら、更にウレタンプレポリマーを加えて乳化分散させた。これにより、不揮発分35質量%の水分散性ウレタン樹脂(aI1)を得た。 Next, 16 parts by mass of ethylenediamine, 10 parts by mass of triethylamine, and 500 parts by mass of ion-exchanged water were added to another container, and while stirring with a homomixer, a urethane prepolymer was further added and emulsified and dispersed. As a result, a water-dispersible urethane resin (aI1) having a nonvolatile content of 35% by mass was obtained.
 (ウレタン樹脂(aI2))
 1,6-ヘキサンジオールとネオペンチルグリコールとアジピン酸とから合成された数平均分子量2000のポリエステルポリオール100質量部、2,2-ジメチル-1,3-プロパンジオール5質量部、2,2-ジメチロールプロピオン酸20質量部、4,4-ジシクロヘキシルメタンジイソシアネート100質量部、及びN-メチル-2-ピロリドン100質量部を、反応容器内に加え、これらを反応させることで、不揮発分に対する遊離のイソシアネート基含有量が5質量%であるウレタンプレポリマーを得た。
(Urethane resin (aI2))
100 parts by mass of a polyester polyol having a number average molecular weight of 2000 synthesized from 1,6-hexanediol, neopentyl glycol and adipic acid, 5 parts by mass of 2,2-dimethyl-1,3-propanediol, 20 parts by mass of methylol propionic acid, 100 parts by mass of 4,4-dicyclohexylmethane diisocyanate, and 100 parts by mass of N-methyl-2-pyrrolidone were added to the reaction vessel, and these were allowed to react to give free isocyanate to the non-volatile content. A urethane prepolymer having a group content of 5% by mass was obtained.
 次に、別の容器内にエチレンジアミン16質量部、トリエチルアミン10質量部、及びイオン交換水500質量部に加え、これらをホモミキサーで攪拌しながら、更にウレタンプレポリマーを加えて乳化分散させた。これにより、不揮発分35質量%の水分散性ウレタン樹脂(aI2)を得た。 Next, 16 parts by mass of ethylenediamine, 10 parts by mass of triethylamine, and 500 parts by mass of ion-exchanged water were added to another container, and while stirring with a homomixer, a urethane prepolymer was further added and emulsified and dispersed. As a result, a water-dispersible urethane resin (aI2) having a nonvolatile content of 35% by mass was obtained.
 (ウレタン樹脂(aI3))
 1,6-ヘキサンジオールとアジピン酸から合成された数平均分子量2000のポリエステルポリオール100質量部、2,2-ジメチル-1,3-プロパンジオール5質量部、2,2-ジメチロールプロピオン酸20質量部、4,4-ジシクロヘキシルメタンジイソシアネート100質量部、及びN-メチル-2-ピロリドン100質量部を反応容器内に加え、これらを反応させることで、不揮発分に対する遊離のイソシアネート基含有量が5質量%であるウレタンプレポリマーを得た。
(Urethane resin (aI3))
100 parts by mass of a polyester polyol having a number average molecular weight of 2000 synthesized from 1,6-hexanediol and adipic acid, 5 parts by mass of 2,2-dimethyl-1,3-propanediol, and 20 parts by mass of 2,2-dimethylolpropionic acid Part, 4,4-dicyclohexylmethane diisocyanate 100 parts by weight, and N-methyl-2-pyrrolidone 100 parts by weight are added to the reaction vessel and reacted to give a free isocyanate group content of 5 parts by weight based on the nonvolatile content. % Urethane prepolymer was obtained.
 次に、別の容器内にエチレンジアミン16質量部、トリエチルアミン10質量部、及びイオン交換水500質量部を加え、これらをホモミキサーで攪拌しながら、更にウレタンプレポリマーを加えて乳化分散させた。これにより、不揮発分35質量%の水分散性ウレタン樹脂(aI3)を得た。 Next, 16 parts by mass of ethylenediamine, 10 parts by mass of triethylamine, and 500 parts by mass of ion-exchanged water were added to another container, and while stirring with a homomixer, a urethane prepolymer was further added and emulsified and dispersed. As a result, a water-dispersible urethane resin (aI3) having a nonvolatile content of 35% by mass was obtained.
 (ウレタン樹脂(aI4))
 1,6-ヘキサンジオールとネオペンチルグリコールとアジピン酸とから合成された数平均分子量2000のポリエステルポリオール100質量部、2,2-ジメチル-1,3-プロパンジオール5質量部、2,2-ジメチロールプロピオン酸20質量部、ヘキサメチレンジイソシアネート100質量部、及びN-メチル-2-ピロリドン100質量部を反応容器内に加え、これらを反応させることにより、不揮発分に対する遊離のイソシアネート基含有量が5質量%であるウレタンプレポリマーを得た。
(Urethane resin (aI4))
100 parts by mass of a polyester polyol having a number average molecular weight of 2000 synthesized from 1,6-hexanediol, neopentyl glycol and adipic acid, 5 parts by mass of 2,2-dimethyl-1,3-propanediol, By adding 20 parts by mass of methylolpropionic acid, 100 parts by mass of hexamethylene diisocyanate and 100 parts by mass of N-methyl-2-pyrrolidone in the reaction vessel and reacting them, the content of free isocyanate groups with respect to the nonvolatile content is 5 A urethane prepolymer having a mass% was obtained.
 次に、別の容器内にエチレンジアミン16質量部、トリエチルアミン10質量部、及びイオン交換水500質量部を加え、これらをホモミキサーで攪拌しながら、更にウレタンプレポリマーを加えることで乳化分散させた。これにより、不揮発分35質量%の水分散性ウレタン樹脂(aI4)を得た。 Next, 16 parts by mass of ethylenediamine, 10 parts by mass of triethylamine, and 500 parts by mass of ion-exchanged water were added to another container, and these were emulsified and dispersed by adding a urethane prepolymer while stirring them with a homomixer. As a result, a water-dispersible urethane resin (aI4) having a nonvolatile content of 35% by mass was obtained.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (アクリル樹脂(aII1)~(aII11))
 脱イオン水及びポリオキシエチレンオクチルフェニルエーテル混合液に、アクリル酸、メタクリル酸、イソボルニルアクリレート、イソボルニルメタクリレート、メタクリル酸1-アダマンチル、メタクリル酸2-メチル-2-アダマンチル、グリシジルアクリレート、グリシジルメタクリレート、メタクリル酸メチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸t-ブチル、アクリル酸2-エチルヘキシル、メタクリル酸2-ヒドロキシエチル、メタクリル酸3-ヒドロキシプロピルを、表3及び表4に示す組成(質量%)で配合し、重合触媒として過硫酸アンモニウムを用いて80~85℃で数時間反応させた後、アンモニア水及び脱イオン水にてpH調整、濃度調整を行い、固形分濃度40%の水分散性アクリル樹脂を得た。
(Acrylic resins (aII1) to (aII11))
In deionized water and polyoxyethylene octylphenyl ether mixture, acrylic acid, methacrylic acid, isobornyl acrylate, isobornyl methacrylate, 1-adamantyl methacrylate, 2-methyl-2-adamantyl methacrylate, glycidyl acrylate, glycidyl Tables 3 and 4 show methacrylate, methyl methacrylate, propyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl methacrylate, and 3-hydroxypropyl methacrylate. Blended in composition (mass%) and reacted for several hours at 80 to 85 ° C. using ammonium persulfate as a polymerization catalyst, then pH adjustment and concentration adjustment with ammonia water and deionized water, solid content concentration 40% Water dispersible acrylic To obtain the fat.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (3-2)コバルト化合物(B)
 コバルト化合物(B)として、下記表5に示す(b1)~(b4)を用いた。
(3-2) Cobalt compound (B)
As the cobalt compound (B), (b1) to (b4) shown in Table 5 below were used.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (3-3)水系表面処理剤の調製(実施例1~41、比較例1~5)
 水分散性樹脂(A)、コバルト化合物(B)、及び脱イオン水を配合し、更に必要に応じてアンモニア若しくは硝酸アンモニウムを加えることでpHを調整することで、固形分濃度が30%の表面処理剤(水系表面処理剤)を得た。
(3-3) Preparation of aqueous surface treating agent (Examples 1-41 and Comparative Examples 1-5)
Surface treatment with a solid content concentration of 30% by blending water-dispersible resin (A), cobalt compound (B), and deionized water, and adjusting the pH by adding ammonia or ammonium nitrate as required. An agent (aqueous surface treatment agent) was obtained.
 各実施例及び比較例において用いた水分散性樹脂(A)及びコバルト化合物(B)の種類、これらの配合割合、水系表面処理剤のpHを、下記表6及び表7に示す。尚、表6及び表7において、“(aI)/(aII)”は、ウレタン樹脂(aII)に対するアクリル樹脂(aI)の質量割合を示し、“Co/(a)質量比”は、水分散性樹脂(A)に対する、コバルト化合物(B)を構成するコバルト原子の質量割合を示し、“(A)/((A)+(B))(質量%)”は、水分散性樹脂(A)とコバルト化合物(B)との合計量に対する水分散性樹脂(A)の質量百分率を示す。 Tables 6 and 7 below show the types of the water-dispersible resin (A) and the cobalt compound (B) used in each example and comparative example, the blending ratio thereof, and the pH of the aqueous surface treatment agent. In Tables 6 and 7, “(aI) / (aII)” represents the mass ratio of the acrylic resin (aI) to the urethane resin (aII), and “Co / (a) mass ratio” represents the water dispersion. The mass ratio of the cobalt atoms constituting the cobalt compound (B) to the water-soluble resin (A) is shown, and “(A) / ((A) + (B)) (mass%)” represents the water-dispersible resin (A ) And the cobalt compound (B), the mass percentage of the water-dispersible resin (A) with respect to the total amount is shown.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 (3-4)水系表面処理剤の調製(比較例5)
 下記に示す方法で調製されたチタン含有水性液25質量部、下記に示す方法で調製された水分散性アクリル樹脂54.6質量部、硝酸コバルト0.4質量部、及びジルコンフッ化アンモニウム20質量部を配合することで、水系表面処理剤を得た。
(3-4) Preparation of aqueous surface treating agent (Comparative Example 5)
25 parts by mass of a titanium-containing aqueous liquid prepared by the method shown below, 54.6 parts by mass of a water-dispersible acrylic resin prepared by the method shown below, 0.4 parts by mass of cobalt nitrate, and 20 parts by mass of ammonium zircon fluoride An aqueous surface treating agent was obtained by blending.
 (チタン含有水性液)
 テトラiso-プロポキシチタン10質量部とiso-プロパノール10質量部の混合物を30質量%過酸化水素水10質量部と脱イオン水100質量部の混合物中に20℃で1時間かけて撹拌しながら滴下した。その後25℃で2時間熟成し、黄色透明の少し粘性のあるチタン含有水性液を得た。
(Titanium-containing aqueous solution)
A mixture of 10 parts by mass of tetraiso-propoxytitanium and 10 parts by mass of iso-propanol was dropped into a mixture of 30 parts by mass of hydrogen peroxide 10 parts by mass and deionized water 100 parts by mass at 20 ° C. over 1 hour. did. Thereafter, aging was carried out at 25 ° C. for 2 hours to obtain a yellow transparent slightly viscous titanium-containing aqueous liquid.
 (水分散性アクリル樹脂)
 還流冷却器、撹拌器、温度計、滴下ロートを装備した容量2リットルの4つ口フラスコに、脱イオン水665質量部、アクアロンRN-50(第一工業製薬株式会社製、ノニオン系乳化剤、固形分60質量%)9質量部、アクアロンRN-2025(第一工業製薬株式会社製、ノニオン系乳化剤、固形分25質量%)87質量部、並びに下記組成のモノマー混合液No.1(1段目)を強制乳化してなるプレエルションの5質量%(28.9質量部)を加え、得られた混合液を窒素置換後昇温した。
(Water-dispersible acrylic resin)
In a 2-liter four-necked flask equipped with a reflux condenser, stirrer, thermometer, and dropping funnel, 665 parts by mass of deionized water, Aqualon RN-50 (Daiichi Kogyo Seiyaku Co., Ltd., nonionic emulsifier, solid 60 parts by weight) 9 parts by weight, Aqualon RN-2025 (Daiichi Kogyo Seiyaku Co., Ltd., nonionic emulsifier, solid content 25% by weight) 87 parts by weight, and monomer mixture No. 5% by mass (28.9 parts by mass) of pre-election obtained by forcibly emulsifying No. 1 (first stage) was added, and the resulting mixture was heated after nitrogen substitution.
 混合液の温度が55℃以上に達したら、この混合液に、還元剤水溶液の5質量%(4.3質量部)を添加した。尚、還元剤水溶液は、パーブチルH(t-ブチルハイドロキシパーオキサイド、有効成分69質量%)5質量部を脱イオン水83.5質量部に溶解させてなる酸化剤水溶液の5質量%(4.43質量部)及びナトリウムホルムアルデヒドスルホキシレート2.5質量部を脱イオン水83.5質量部に溶解させることで調製した。 When the temperature of the mixed solution reached 55 ° C. or higher, 5% by mass (4.3 parts by mass) of the reducing agent aqueous solution was added to the mixed solution. The reducing agent aqueous solution was 5% by mass (4. oxidizer aqueous solution obtained by dissolving 5 parts by mass of perbutyl H (t-butylhydroxyperoxide, active ingredient 69% by mass) in 83.5 parts by mass of deionized water. 43 parts by mass) and 2.5 parts by mass of sodium formaldehyde sulfoxylate were dissolved in 83.5 parts by mass of deionized water.
 続いて、この混合液を更に60℃まで昇温してから、この温度に保持した。 Subsequently, the mixture was further heated to 60 ° C. and then kept at this temperature.
 還元剤水溶液を添加してから15分したら、残りのプレエマルションを1.5時間、残りの酸化剤水溶液を3.5時間、残りの還元剤水溶液を3.5時間かけて、滴下した。酸化剤水溶液と還元剤水溶液の滴下を続けている間、1段目プレエマルションの滴下を終了してから1時間経過してから、下記組成のモノマー混合液No.2(2段目)を1時間かけて滴下した。 15 minutes after adding the reducing agent aqueous solution, the remaining pre-emulsion was added dropwise over 1.5 hours, the remaining oxidizing agent aqueous solution for 3.5 hours, and the remaining reducing agent aqueous solution over 3.5 hours. While the dropping of the oxidizing agent aqueous solution and the reducing agent aqueous solution is continued, after one hour has elapsed since the dropping of the first-stage pre-emulsion was completed, the monomer mixture No. 1 having the following composition was used. 2 (second stage) was added dropwise over 1 hour.
 全ての液の滴下終了時から、混合液を60℃の温度に1時間保持し、続いて混合液の温度を40℃以下まで下げてから、混合液に25%アンモニア水3.35質量部、防腐剤(日本エンバイロケミカルズ株式会社製、品名スラオフEX)0.35質量部、及び2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート83.5質量部を添加した。これにより、pH8.0、不揮発分(固形分)31質量%の、水分散性アクリル樹脂を得た。 From the end of dropping of all the liquids, the liquid mixture is maintained at a temperature of 60 ° C. for 1 hour, and then the temperature of the liquid mixture is lowered to 40 ° C. or lower. An antiseptic (Nippon Enviro Chemicals Co., Ltd., product name Suraoff EX) 0.35 parts by mass and 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate 83.5 parts by mass were added. As a result, a water dispersible acrylic resin having a pH of 8.0 and a nonvolatile content (solid content) of 31% by mass was obtained.
 (モノマー混合液No.1の組成)
脱イオン水:166.5質量部。
アクアロンRN-50:6.6質量部。
アクアロンRN-2025:53質量部。
スチレン:35質量部。
メチルメタクリレート:163.5質量部。
2-エチルヘキシルアクリレート:105質量部。
2-ヒドロキシエチルメタクリレート:5質量部。
メタクリル酸:3質量部。
アクリロニトリル:38.5質量部。
ターシャリードデカンチオール:1質量部。
(Composition of monomer mixture No. 1)
Deionized water: 166.5 parts by mass.
Aqualon RN-50: 6.6 parts by mass.
Aqualon RN-2025: 53 parts by mass.
Styrene: 35 parts by mass.
Methyl methacrylate: 163.5 parts by mass.
2-ethylhexyl acrylate: 105 parts by mass.
2-hydroxyethyl methacrylate: 5 parts by mass.
Methacrylic acid: 3 parts by mass.
Acrylonitrile: 38.5 parts by mass.
Tasha lead decanethiol: 1 part by mass.
 (モノマー混合液No.2の組成)
スチレン:15質量部。
メチルメタクリレート:84.5質量部。
2-エチルヘキシルアクリレート:22.5質量部。
2-ヒドロキシエチルメタクリレート:4.25質量部。
メタクリル酸:6質量部。
アクリロニトリル:15質量部。
γ-メタクリロキシプロピルトリメトキシシラン:2.75質量部。
(Composition of monomer mixture No. 2)
Styrene: 15 parts by mass.
Methyl methacrylate: 84.5 parts by mass.
2-ethylhexyl acrylate: 22.5 parts by mass.
2-hydroxyethyl methacrylate: 4.25 parts by mass.
Methacrylic acid: 6 parts by mass.
Acrylonitrile: 15 parts by mass.
γ-methacryloxypropyltrimethoxysilane: 2.75 parts by mass.
 (4)水系表面調整剤
 (4-2)塩基性ジルコニウム化合物(C)
 塩基性ジルコニウム化合物(C)として、下記表8に示す(c1)~(c3)を用いた。
(4) Aqueous surface conditioner (4-2) Basic zirconium compound (C)
As the basic zirconium compound (C), (c1) to (c3) shown in Table 8 below were used.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 (4-1)コバルト化合物(D)
 コバルト化合物(D)として、下記表9に示す(d1)~(d4)を用いた。
(4-1) Cobalt compound (D)
As the cobalt compound (D), (d1) to (d4) shown in Table 9 below were used.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 (4-3)水系表面調整剤の調製(実施例33~41)
 塩基性ジルコニウム化合物(C)、コバルト化合物(D)、及び脱イオン水を配合し、更に必要に応じてアンモニア若しくは硝酸アンモニウムを加えることでpHを調整することで、水系表面調整剤を得た。水系表面調整剤を得るために用いた塩基性ジルコニウム化合物(C)の種類、コバルト化合物(D)の種類、及び水系表面調整剤のpHを、下記表10に示す。
(4-3) Preparation of aqueous surface conditioner (Examples 33 to 41)
A basic zirconium compound (C), a cobalt compound (D), and deionized water were blended, and an aqueous surface conditioner was obtained by adjusting the pH by adding ammonia or ammonium nitrate as necessary. Table 10 below shows the types of the basic zirconium compound (C), the types of the cobalt compound (D), and the pH of the aqueous surface conditioner used for obtaining the aqueous surface conditioner.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 (5)被覆めっき鋼板の作製
 各実施例及び比較例で得られた水系表面処理剤を、表11及び表12に示すめっき鋼板にバーコーターで塗布した。このとき、水系表面処理剤の付着量を、バーコータ-の種類によってコントロールした。続いて、このめっき鋼板を280℃の雰囲気中で表11及び表12に示す到達板温(PMT)となるように加熱することで乾燥した。これにより、表11及び表12に示す乾燥皮膜質量の皮膜を形成した。これにより被覆めっき鋼板を得た。
(5) Production of coated plated steel sheet The aqueous surface treating agent obtained in each Example and Comparative Example was applied to the plated steel sheets shown in Tables 11 and 12 with a bar coater. At this time, the adhesion amount of the aqueous surface treatment agent was controlled by the type of the bar coater. Subsequently, this plated steel sheet was dried by heating to reach the ultimate plate temperature (PMT) shown in Table 11 and Table 12 in an atmosphere of 280 ° C. Thereby, the film | membrane of the dry film | membrane mass shown in Table 11 and Table 12 was formed. As a result, a coated plated steel sheet was obtained.
 但し、実施例33~41では、上記の水系表面処理剤を用いる処理の前に、めっき鋼板に水系表面調整剤を、バーコーターで塗布した。続いて、めっき鋼板を200℃の雰囲気中で、表12に示す到達板温(PMT)となるように加熱することで乾燥した。これにより、表12に示す乾燥皮膜質量の下地皮膜を形成した。その後、上記の条件で、水系表面処理剤を用いて、下地皮膜上に複合皮膜を形成した。 However, in Examples 33 to 41, an aqueous surface conditioner was applied to the plated steel sheet with a bar coater before the treatment using the above-described aqueous surface treatment agent. Subsequently, the plated steel sheet was dried by heating in a 200 ° C. atmosphere so as to reach the ultimate plate temperature (PMT) shown in Table 12. As a result, an undercoat film having a dry film mass shown in Table 12 was formed. Thereafter, a composite film was formed on the base film using an aqueous surface treatment agent under the above conditions.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 (6)評価試験
 (6-1)耐食性評価(1)
 被覆めっき鋼板に対し、塩水噴霧試験法(JIS-Z-2371)に基づいて、塩水噴霧を120時間実施した。続いて、被覆めっき鋼板における白錆発生面積を目視により確認し、下記評価基準にて評価した。尚、本試験において、評価が3~5であれば、被覆めっき鋼板が実用上優れた耐食性を有すると判断できる。
5;白錆発生面積1%未満
4;白錆発生面積率1%以上3%未満。
3;白錆発生面積率3%以上10%未満。
2;白錆発生面積率10%以上30%未満。
1;白錆発生面積率30%以上。
(6) Evaluation test (6-1) Corrosion resistance evaluation (1)
Based on the salt spray test method (JIS-Z-2371), salt spray was applied to the coated steel sheet for 120 hours. Then, the white rust generation | occurrence | production area in a coating plating steel plate was confirmed visually, and the following evaluation criteria evaluated. In this test, if the evaluation is 3 to 5, it can be judged that the coated steel sheet has practically excellent corrosion resistance.
5; White rust generation area less than 1% 4;
3: White rust generation area ratio of 3% or more and less than 10%.
2: White rust generation area ratio of 10% or more and less than 30%.
1: White rust generation area ratio is 30% or more.
 (6-2)耐食性評価(2)
 上記「耐食性評価(1)」において、塩水噴霧の時間を240時間実施した。それ以外は、「耐食性評価(1)」と同じ条件で、評価を行った。尚、本試験において、評価が3~5であれば、被覆めっき鋼板が実用上優れた長期耐食性を有すると判断される。
(6-2) Corrosion resistance evaluation (2)
In the above “corrosion resistance evaluation (1)”, the salt spraying time was 240 hours. Other than that, it evaluated on the same conditions as "corrosion resistance evaluation (1)." In this test, if the evaluation is 3 to 5, it is judged that the coated steel sheet has practically excellent long-term corrosion resistance.
 (6-3)耐酸性評価
 被覆めっき鋼板を、1%濃度の硫酸水溶液に25℃で5時間浸漬し、続いて脱イオン水にて水洗してから、ドライヤーで乾燥した。この処理後の被覆めっき鋼板における黒色や茶色への変色が発生した面積率を目視により確認し、下記評価基準にて評価した。
4;変色発生面積率3%未満。
3;変色発生面積率3%以上10%未満。
2;変色発生面積率10%以上30%未満。
1;変色発生面積率30%以上。
(6-3) Evaluation of acid resistance The coated plated steel sheet was immersed in a 1% strength aqueous sulfuric acid solution at 25 ° C. for 5 hours, washed with deionized water, and then dried with a drier. The area ratio in which discoloration to black or brown in the coated steel sheet after this treatment occurred was confirmed by visual observation and evaluated according to the following evaluation criteria.
4: Color change occurrence area ratio is less than 3%.
3: Color change occurrence area ratio of 3% or more and less than 10%.
2: Color change occurrence area ratio of 10% or more and less than 30%.
1: Discoloration area ratio is 30% or more.
 (6-4)耐黒変性評価(1)
 150mm×70mmの寸法の被覆めっき鋼板を重ね合わせ、50℃、相対湿度98%の恒温恒湿雰囲気下に7日間曝露した。
(6-4) Blackening resistance evaluation (1)
The coated plated steel sheets having dimensions of 150 mm × 70 mm were superposed and exposed for 7 days in a constant temperature and humidity atmosphere at 50 ° C. and a relative humidity of 98%.
 処理前の被覆めっき鋼板と、処理後の被覆めっき鋼板の各々について、L***表色系(JISZ8729)に基づく色調測定をおこなった。色調測定は、スガ試験機株式会社製の分光測色計(型番SC-T45)を使用しておこなった。 Color measurement based on the L * a * b * color system (JISZ8729) was performed for each of the coated steel sheet before treatment and the coated steel sheet after treatment. The color tone measurement was performed using a spectrocolorimeter (model number SC-T45) manufactured by Suga Test Instruments Co., Ltd.
 この結果に基づき、処理前後の被覆めっき鋼板間の色差を、JISZ8730に従って、次の式により算出した。 Based on this result, the color difference between the coated steel sheets before and after the treatment was calculated according to JISZ8730 by the following formula.
  ΔE={(ΔL*2+(Δa*2+(Δb*21/2
  ΔL*=L1*-L2*、Δa*=a1*-a2*、Δb*=b1*-b2*
 尚、ΔEは処理前の被覆めっき鋼板と処理後の被覆めっき鋼板との間の色差であり、L1*、a1*、及びb1*はそれぞれ処理前の被覆めっき鋼板のL*、a*、及びb*の測定値であり、L2*、a2*、及びb2*はそれぞれ処理後の被覆めっき鋼板板のL*、a*、及びb*の測定値である。
ΔE = {(ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 } 1/2
ΔL * = L1 * -L2 *, Δa * = a1 * -a2 *, Δb * = b1 * -b2 *
ΔE is the color difference between the coated steel sheet before treatment and the coated steel sheet after treatment, and L1 * , a1 * , and b1 * are L * , a * , and b * is a measured value, and L2 * , a2 * , and b2 * are measured values of L * , a * , and b * of the coated steel sheet after the treatment, respectively.
 この結果に基づき、耐黒変性を次のように評価した。尚、本試験において、評価が3~5であれば、被覆めっき鋼板が実用上優れた耐黒変性を有すると判断される。
5;ΔEが2未満。
4:ΔEが2以上5未満。
3:ΔEが5以上10未満。
2:ΔEが10以上15未満。
1:ΔEが15以上。
Based on this result, blackening resistance was evaluated as follows. In this test, if the evaluation is 3 to 5, it is judged that the coated steel sheet has excellent blackening resistance in practical use.
5; ΔE is less than 2.
4: ΔE is 2 or more and less than 5.
3: ΔE is 5 or more and less than 10.
2: ΔE is 10 or more and less than 15.
1: ΔE is 15 or more.
 (6-5)耐黒変性評価(2)
 上記「耐黒変性評価(1)」において、被覆めっき鋼板の恒温恒湿雰囲気下での曝露日数を、14日間に変更した。それ以外は、「耐黒変性評価(1)」と同じ条件で、評価を行った。尚、本試験において、評価が3~5であれば、被覆めっき鋼板が実用上優れた長期耐黒変性を有すると判断される。
(6-5) Blackening resistance evaluation (2)
In the above “blackening resistance evaluation (1)”, the number of exposure days of the coated plated steel sheet in a constant temperature and humidity atmosphere was changed to 14 days. Other than that, it evaluated on the same conditions as "black-proofing evaluation (1)." In this test, if the evaluation is 3 to 5, it is judged that the coated steel sheet has practically excellent long-term black resistance.
 (6-6)成型加工性評価
 被覆めっき鋼板の表面に、先端が5mmRのビードを200kgf(1961N)で押し付け、この状態で被覆めっき鋼板を上方へ引き抜く試験を実施した。この試験後の被覆めっき鋼板における黒色への変色が発生した面積率を目視により確認し、下記評価基準にて評価した。尚、本試験において、評価が3~4であれば、被覆めっき鋼板が実用上優れた成型加工性を有すると判断できる。
4;変化なし。
3;変色発生面積率3%未満。
2;変色発生面積率3%以上30%未満。
1;変色発生面積率30%以上。
(6-6) Evaluation of forming processability A test was performed in which a bead having a tip of 5 mmR was pressed against the surface of the coated plated steel sheet with 200 kgf (1961 N), and the coated plated steel sheet was pulled upward in this state. The area ratio at which discoloration to black in the coated plated steel sheet after this test occurred was confirmed visually and evaluated according to the following evaluation criteria. In this test, if the evaluation is 3 to 4, it can be determined that the coated steel sheet has excellent formability in practical use.
4: No change.
3: Discoloration area ratio is less than 3%.
2: Color change occurrence area ratio of 3% or more and less than 30%.
1: Discoloration area ratio is 30% or more.
 (6-7)成型加工後の耐黒変性評価
 成型加工性評価における成型加工が施された被覆めっき鋼板について、耐黒変性を評価した。試験方法および判定基準は、上記「(6-4)耐黒変性評価(1)」と同じである。
(6-7) Evaluation of blackening resistance after forming process The coated plated steel sheet subjected to the forming process in the evaluation of forming processability was evaluated for blackening resistance. The test method and criteria are the same as in the above “(6-4) Blackening resistance evaluation (1)”.
 (6-8)貯蔵安定性
 各実施例及び比較例で得られた水系表面処理剤を40℃の恒温装置中に1ヶ月間静置してから、この水系表面処理剤の粘度を確認し、下記評価基準にて評価した。尚、本試験において、評価が3であれば、被覆めっき鋼板を得るために用いられる水系表面処理剤の貯蔵安定性が実用上問題ないと判断できる。
3;水系表面処理剤に殆ど粘度変化がみられない。
2;水系表面処理剤が増粘した。
1;水系表面処理剤がゲル化した。
(6-8) Storage stability The aqueous surface treatment agent obtained in each Example and Comparative Example was allowed to stand in a thermostatic apparatus at 40 ° C. for 1 month, and then the viscosity of the aqueous surface treatment agent was confirmed. Evaluation was performed according to the following evaluation criteria. In addition, in this test, if evaluation is 3, it can be judged that the storage stability of the water-based surface treating agent used for obtaining the coated plated steel sheet is practically no problem.
3: Almost no change in viscosity is observed in the aqueous surface treatment agent.
2: The aqueous surface treatment agent was thickened.
1: The aqueous surface treatment agent gelled.
 以上の評価結果を表13,14に示す。 The above evaluation results are shown in Tables 13 and 14.
 表13,14の評価結果から分かるように、実施例1~41では、被覆めっき鋼板の耐食性、耐酸性、耐黒変性、成型加工性に優れ、また水系表面処理剤の貯蔵安定性も優れたものであった。 As can be seen from the evaluation results in Tables 13 and 14, in Examples 1 to 41, the coated plated steel sheet was excellent in corrosion resistance, acid resistance, blackening resistance and molding processability, and the storage stability of the aqueous surface treatment agent was also excellent. It was a thing.
 このうち、実施例33~41では、被覆めっき鋼板に下地皮膜と複合皮膜が共に形成されることで、被覆めっき鋼板の耐食性、耐黒変性が更に優れるものであった。 Among these, in Examples 33 to 41, both the base film and the composite film were formed on the coated plated steel sheet, and the corrosion resistance and blackening resistance of the coated plated steel sheet were further improved.
 一方、比較例1~5では、耐食性、耐酸性、耐黒変性および成型加工性の全ての性能を満足する被覆めっき鋼板は得られなかった。 On the other hand, in Comparative Examples 1 to 5, a coated steel sheet satisfying all the performances of corrosion resistance, acid resistance, blackening resistance and moldability could not be obtained.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 本発明に係る表面被覆アルミニウム含有亜鉛系めっき鋼板の用途は限定的ではないが、例えば建材製品、家電製品、自動車部材などの分野で使用され得る。特に、屋外で長期間使用される建材製品に適用されることが好ましい。 The use of the surface-coated aluminum-containing zinc-based plated steel sheet according to the present invention is not limited, but can be used in the fields of building material products, home appliances, automobile members, and the like. In particular, it is preferably applied to building material products that are used outdoors for a long time.

Claims (11)

  1. 水分散性樹脂(A)、コバルト化合物(B)、及び水を含有し、pH7.5~10の範囲内である水系表面処理剤を、めっき鋼板に塗布し乾燥することにより、前記水分散性樹脂(A)及び前記コバルト化合物(B)を含有する複合皮膜を形成して成り、前記複合皮膜における前記水分散性樹脂(A)の構成比率が質量比で90%以上であり、前記めっき鋼板の片面当たりの前記複合皮膜の乾燥皮膜質量が0.5~3.5g/m2の範囲内であることを特徴とする表面被覆アルミニウム含有亜鉛系めっき鋼板。 A water-based surface treatment agent containing a water-dispersible resin (A), a cobalt compound (B), and water and having a pH in the range of 7.5 to 10 is applied to a plated steel sheet and dried, whereby the water-dispersible resin is treated. Forming a composite film containing the resin (A) and the cobalt compound (B), wherein the composition ratio of the water-dispersible resin (A) in the composite film is 90% or more by mass, and the plated steel sheet A surface-coated aluminum-containing zinc-based plated steel sheet, wherein the dry film mass of the composite film per one side of is in the range of 0.5 to 3.5 g / m 2 .
  2. 前記水分散性樹脂(A)に対する、前記コバルト化合物(B)を構成するコバルト原子の質量割合が、1/100~1/10000の範囲内であることを特徴とする請求項1に記載の表面被覆アルミニウム含有亜鉛系めっき鋼板。 The surface according to claim 1, wherein a mass ratio of cobalt atoms constituting the cobalt compound (B) to the water-dispersible resin (A) is in a range of 1/100 to 1/10000. Coated aluminum-containing zinc-based plated steel sheet.
  3. 前記コバルト化合物(B)が、コバルトの硫酸塩、コバルトの塩酸塩、及びコバルトの硝酸塩から選ばれる少なくとも一種のコバルト塩を含むことを特徴とする請求項1又は2に記載の表面被覆アルミニウム含有亜鉛系めっき鋼板。 The surface-coated aluminum-containing zinc according to claim 1 or 2, wherein the cobalt compound (B) contains at least one cobalt salt selected from cobalt sulfate, cobalt hydrochloride, and cobalt nitrate. Plated steel sheet.
  4. 前記水分散性樹脂(A)が、
    分子中にポリエステルポリオールに由来する構造単位を備えるポリエステルポリウレタン樹脂(aI)、並びに
    脂環構造またはグリシジル基を備える(メタ)アクリル酸エステルに由来する重合単位、α,β-エチレン性不飽和カルボン酸に由来する重合単位、及び脂環構造及びグリシジル基無しの(メタ)アクリル酸エステルに由来する重合単位を備える重合体から成るアクリル樹脂(aII)
    のうち、少なくとも一方を含有することを特徴とする請求項1乃至3のいずれか一項に記載の表面被覆アルミニウム含有亜鉛系めっき鋼板。
    The water dispersible resin (A) is
    Polyester polyurethane resin (aI) having a structural unit derived from polyester polyol in the molecule, and a polymerized unit derived from (meth) acrylic acid ester having an alicyclic structure or glycidyl group, α, β-ethylenically unsaturated carboxylic acid Acrylic resin (aII) comprising a polymer comprising a polymer unit derived from (1) and a polymer unit derived from a (meth) acrylic acid ester having no alicyclic structure and glycidyl group
    4. The surface-coated aluminum-containing zinc-based plated steel sheet according to claim 1, wherein at least one of them is contained.
  5. 塩基性ジルコニウム化合物(C)、コバルト化合物(D)、及び水を含有し、pH7.5~10の範囲内である水系表面調整剤を、前記めっき鋼板に塗布することにより、前記塩基性ジルコニウム化合物(C)と前記コバルト化合物(D)とを含有する下地皮膜を形成し、この下地皮膜上に前記複合皮膜を形成して成り、前記めっき鋼板の片面当たりの前記下地皮膜の乾燥皮膜量が、0.05~0.8g/m2の範囲内であり、前記めっき鋼板の片面当たりの前記下地皮膜のZr質量換算付着量が、5~400mg/m2の範囲内であり、前記めっき鋼板の片面当たりの前記下地皮膜のCo質量換算付着量が、1~20mg/m2の範囲内であることを特徴とする請求項1乃至4のいずれか一項に記載の表面被覆アルミニウム含有亜鉛系めっき鋼板。 A basic zirconium compound (C), a cobalt compound (D), and a water-based surface conditioner containing water and having a pH in the range of 7.5 to 10 are applied to the plated steel sheet, thereby the basic zirconium compound. (C) and forming a base film containing the cobalt compound (D), and forming the composite film on the base film, the dry film amount of the base film per one side of the plated steel sheet, The Zr mass conversion adhesion amount of the undercoat per one side of the plated steel sheet is in the range of 5 to 400 mg / m 2 , and is in the range of 0.05 to 0.8 g / m 2 . Co mass conversion attached amount of the primer film per one surface, the surface-coated aluminum-containing zinc-plated according to any one of claims 1 to 4, characterized in that in the range of 1 ~ 20 mg / m 2 Plate.
  6. 前記めっき鋼板が、亜鉛とアルミニウムとを含有し或いは亜鉛とアルミニウムとマグネシウムとを含有するめっき層を備え、前記めっき層中のアルミニウム含有量が1~75質量%の範囲内、前記めっき層中のマグネシウム含有量が0質量%を超えて6.0質量%以下の範囲内にある請求項1乃至5のいずれか一項に記載の表面被覆アルミニウム含有亜鉛系めっき鋼板。 The plated steel sheet includes a plating layer containing zinc and aluminum or containing zinc, aluminum and magnesium, and the aluminum content in the plating layer is in the range of 1 to 75% by mass. The surface-coated aluminum-containing zinc-based plated steel sheet according to any one of claims 1 to 5, wherein the magnesium content is in the range of more than 0% by mass and 6.0% by mass or less.
  7. 前記めっき層が、0質量%を超えて1質量%以下の範囲内のNi及び0質量%を超えて1質量%以下の範囲内のCrのうち、1種類以上を含有することを特徴とする請求項6記載の表面被覆アルミニウム含有亜鉛系めっき鋼板。 The plating layer contains one or more of Ni in a range exceeding 0% by mass and 1% by mass or less and Cr in a range exceeding 0% by mass and 1% by mass or less. The surface-coated aluminum-containing zinc-based plated steel sheet according to claim 6.
  8. 前記めっき層が、0%を超えて0.5質量%以下の範囲内のCa、0%を超えて0.5質量%以下の範囲内のSr、0%を超えて0.5質量%以下の範囲内のY、0%を超えて0.5質量%以下の範囲内のLa及び0%を超えて0.5質量%以下の範囲内のCeのうち、1種類以上を含有することを特徴とする請求項6又は7に記載の表面被覆アルミニウム含有亜鉛系めっき鋼板。 The plating layer is more than 0% to 0.5% by mass in Ca, 0% to more than 0.5% by mass Sr, more than 0% to 0.5% by mass or less. 1 or more of Y within the range of 0, La within the range of 0.5% by mass or less exceeding 0% and Ce within the range of 0.5% by mass or more exceeding 0%. The surface-coated aluminum-containing zinc-based plated steel sheet according to claim 6 or 7, characterized in that
  9. 前記めっき層が、Siを、前記めっき層中のAlに対して0.1~10質量%の範囲内で含有することを特徴とする請求項6乃至8いずれかに一項に記載の表面被覆アルミニウム含有亜鉛系めっき鋼板。 The surface coating according to any one of claims 6 to 8, wherein the plating layer contains Si in a range of 0.1 to 10 mass% with respect to Al in the plating layer. Aluminum-containing galvanized steel sheet.
  10. 水分散性樹脂(A)、コバルト化合物(B)、及び水を含有し、pH7.5~10の範囲内である水系表面処理剤と、めっき鋼板とを準備し、
    前記水系表面処理剤を、前記めっき鋼板に塗布し乾燥することにより、前記水分散性樹脂(A)及び前記コバルト化合物(B)を含有し、前記水分散性樹脂(A)の構成比率が質量比で90%以上である複合皮膜を、前記めっき鋼板の片面当たりの前記複合皮膜の乾燥皮膜質量が、0.5~3.5g/m2の範囲内となるように形成することを特徴とする表面被覆アルミニウム含有亜鉛系めっき鋼板の製造方法。
    A water-based surface treatment agent containing a water-dispersible resin (A), a cobalt compound (B), and water and having a pH in the range of 7.5 to 10 and a plated steel sheet are prepared.
    The aqueous surface treatment agent is applied to the plated steel sheet and dried to contain the water-dispersible resin (A) and the cobalt compound (B), and the constituent ratio of the water-dispersible resin (A) is mass. A composite film having a ratio of 90% or more is formed such that the dry film mass of the composite film per one side of the plated steel sheet is in the range of 0.5 to 3.5 g / m 2. A method for producing a surface-coated aluminum-containing zinc-based plated steel sheet.
  11. 塩基性ジルコニウム化合物(C)、コバルト化合物(D)、及び水を含有し、pH7.5~10の範囲内である水系表面調整剤を準備し、
    前記水系表面調整剤を前記めっき鋼板に塗布することにより、前記塩基性ジルコニウム化合物(C)と前記コバルト化合物(D)とを含有する下地皮膜を、前記めっき鋼板の片面当たりの前記下地皮膜の乾燥皮膜量が、0.05~0.8g/m2の範囲内となり、前記めっき鋼板の片面当たりの前記下地皮膜のZr質量換算付着量が、5~400mg/m2の範囲内となり、前記めっき鋼板の片面当たりの前記下地皮膜のCo質量換算付着量が、1~20mg/m2の範囲内となるように形成し、前記下地皮膜上に前記複合皮膜を形成することを特徴とする請求項10に記載の表面被覆アルミニウム含有亜鉛系めっき鋼板の製造方法。
    An aqueous surface conditioner containing a basic zirconium compound (C), a cobalt compound (D), and water and having a pH in the range of 7.5 to 10 is prepared.
    By applying the aqueous surface conditioner to the plated steel sheet, the base film containing the basic zirconium compound (C) and the cobalt compound (D) is dried on the base film per one side of the plated steel sheet. The coating amount is in the range of 0.05 to 0.8 g / m 2 , and the Zr mass conversion adhesion amount of the base coating per side of the plated steel sheet is in the range of 5 to 400 mg / m 2 , The composite coating is formed on the undercoating by forming the undercoating in terms of Co mass per one side of the steel sheet in a range of 1 to 20 mg / m 2. 10. The method for producing a surface-coated aluminum-containing zinc-based plated steel sheet according to 10.
PCT/JP2013/001203 2012-02-28 2013-02-28 Surface-coated aluminum-containing galvanized steel sheet and method for producing same WO2013128928A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2013530486A JP5514369B2 (en) 2012-02-28 2013-02-28 Surface-coated aluminum-containing zinc-based plated steel sheet and method for producing the same
US14/381,203 US9133346B2 (en) 2012-02-28 2013-02-28 Surface-coated aluminum and zinc plated steel sheet and method of preparing same
MX2014010216A MX344444B (en) 2012-02-28 2013-02-28 Surface-coated aluminum-containing galvanized steel sheet and method for producing same.
EP13755785.6A EP2821223B1 (en) 2012-02-28 2013-02-28 Surface-coated aluminum and zinc plated steel sheet and method of preparing same
AU2013227872A AU2013227872B2 (en) 2012-02-28 2013-02-28 Surface-coated aluminum-containing galvanized steel sheet and method for producing same
KR1020147026987A KR101508570B1 (en) 2012-02-28 2013-02-28 Surface-coated aluminum and zinc plate4d steel sheet and method for producing same
ES13755785.6T ES2652258T3 (en) 2012-02-28 2013-02-28 Aluminized and galvanized surface coated steel sheet and its preparation procedure
CN201380011550.7A CN104144782B (en) 2012-02-28 2013-02-28 The steel plate of surface coating type plating aluminum and zinc and manufacture method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-042026 2012-02-28
JP2012042026 2012-02-28

Publications (1)

Publication Number Publication Date
WO2013128928A1 true WO2013128928A1 (en) 2013-09-06

Family

ID=49082139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001203 WO2013128928A1 (en) 2012-02-28 2013-02-28 Surface-coated aluminum-containing galvanized steel sheet and method for producing same

Country Status (11)

Country Link
US (1) US9133346B2 (en)
EP (1) EP2821223B1 (en)
JP (1) JP5514369B2 (en)
KR (1) KR101508570B1 (en)
CN (1) CN104144782B (en)
AU (1) AU2013227872B2 (en)
ES (1) ES2652258T3 (en)
MX (1) MX344444B (en)
MY (1) MY153896A (en)
TW (1) TWI482880B (en)
WO (1) WO2013128928A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104109855A (en) * 2014-06-19 2014-10-22 锐展(铜陵)科技有限公司 Heat insulation aluminum alloy surface treating agent
EP2963152A1 (en) * 2013-02-28 2016-01-06 Nippon Steel & Sumikin Coated Sheet Corporation Steel sheet plated with aluminum-containing zinc and process for producing same
WO2016171281A1 (en) * 2015-04-24 2016-10-27 日本パーカライジング株式会社 Surface treatment agent for metal material and metal material
JP2017067483A (en) * 2015-09-28 2017-04-06 新日鐵住金株式会社 Method for evaluating rusty layer of weathering steel

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105331966B (en) 2015-11-30 2018-04-27 宝山钢铁股份有限公司 A kind of Chrome-free surface treatment tin plate, its production method and surface conditioning agent
MX2018007963A (en) * 2016-03-09 2018-11-09 Nippon Steel & Sumitomo Metal Corp Surface-treated steel sheet and process for producing surface-treated steel sheet.
KR20210068627A (en) * 2016-09-05 2021-06-09 제이에프이 스틸 가부시키가이샤 HOT-DIP Al-Zn ALLOY COATED STEEL SHEET
KR102402639B1 (en) 2017-11-24 2022-05-26 삼성전자주식회사 Electronic device and method for communicating thereof
KR102453007B1 (en) * 2020-12-18 2022-10-12 주식회사 포스코 Composite plated steel sheet having excellent corrosion resistance after forming, and method for manufacturing the same
CN113801358B (en) * 2021-10-19 2022-09-20 华南理工大学 Preparation method of aluminum-plastic composite film based on light click UV curing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941193A (en) * 1995-07-28 1997-02-10 Kawasaki Steel Corp Chromated galvanized steel sheet excellent in lubricity and corrosion resistance and its production
JP2001335960A (en) * 2000-05-23 2001-12-07 Yuken Industry Co Ltd Method for improving weather resistance of galvanized plating
JP2007162098A (en) * 2005-12-15 2007-06-28 Nippon Parkerizing Co Ltd Metal surface-treating aqueous agent, surface treatment method and surface treated metallic material
JP2007270302A (en) * 2006-03-31 2007-10-18 Kobe Steel Ltd Surface treated metallic plate excellent in corrosion resistance and surface characteristic
JP2009132952A (en) 2007-11-29 2009-06-18 Jfe Steel Corp SURFACE-TREATED, HOT-DIP Zn-Al-BASED ALLOY PLATED STEEL SHEET

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100292447B1 (en) 1991-08-30 2001-06-01 웨인 씨. 제쉬크 Method of forming protective modified coating on metal substrate surface
JPH061193A (en) * 1992-06-23 1994-01-11 Nippon Seiko Kk Air bag device
TW200504243A (en) * 2003-07-08 2005-02-01 Nippon Paint Co Ltd Inorganic-organic composite-treated zinc-plated steel sheet
JP4470874B2 (en) 2005-11-30 2010-06-02 Jfeスチール株式会社 Surface-treated galvanized steel sheet
TW200809006A (en) * 2006-04-20 2008-02-16 Nippon Steel Corp Zinc-plated steel material coated with composite film excellent in corrosion resistance, unsusceptibility to blackening, coating adhesion, and alkali resistance
JP5498634B2 (en) 2012-06-08 2014-05-21 日本パーカライジング株式会社 Water-based metal surface treatment agent, surface treatment method and surface treatment metal material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941193A (en) * 1995-07-28 1997-02-10 Kawasaki Steel Corp Chromated galvanized steel sheet excellent in lubricity and corrosion resistance and its production
JP2001335960A (en) * 2000-05-23 2001-12-07 Yuken Industry Co Ltd Method for improving weather resistance of galvanized plating
JP2007162098A (en) * 2005-12-15 2007-06-28 Nippon Parkerizing Co Ltd Metal surface-treating aqueous agent, surface treatment method and surface treated metallic material
JP2007270302A (en) * 2006-03-31 2007-10-18 Kobe Steel Ltd Surface treated metallic plate excellent in corrosion resistance and surface characteristic
JP2009132952A (en) 2007-11-29 2009-06-18 Jfe Steel Corp SURFACE-TREATED, HOT-DIP Zn-Al-BASED ALLOY PLATED STEEL SHEET

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2963152A1 (en) * 2013-02-28 2016-01-06 Nippon Steel & Sumikin Coated Sheet Corporation Steel sheet plated with aluminum-containing zinc and process for producing same
EP2963152A4 (en) * 2013-02-28 2017-05-10 Nippon Steel & Sumikin Coated Sheet Corporation Steel sheet plated with aluminum-containing zinc and process for producing same
US10053753B2 (en) 2013-02-28 2018-08-21 Nippon Steel & Sumikin Coated Sheet Corporation Aluminum-zinc plated steel sheet and method for producing the same
CN104109855A (en) * 2014-06-19 2014-10-22 锐展(铜陵)科技有限公司 Heat insulation aluminum alloy surface treating agent
WO2016171281A1 (en) * 2015-04-24 2016-10-27 日本パーカライジング株式会社 Surface treatment agent for metal material and metal material
JP2017067483A (en) * 2015-09-28 2017-04-06 新日鐵住金株式会社 Method for evaluating rusty layer of weathering steel

Also Published As

Publication number Publication date
MX344444B (en) 2016-12-15
EP2821223A1 (en) 2015-01-07
US20150044498A1 (en) 2015-02-12
EP2821223A4 (en) 2015-08-12
US9133346B2 (en) 2015-09-15
EP2821223B1 (en) 2017-09-13
TWI482880B (en) 2015-05-01
TW201348514A (en) 2013-12-01
JP5514369B2 (en) 2014-06-04
CN104144782B (en) 2015-10-21
MX2014010216A (en) 2015-06-02
AU2013227872B2 (en) 2014-10-16
KR101508570B1 (en) 2015-04-07
JPWO2013128928A1 (en) 2015-07-30
CN104144782A (en) 2014-11-12
MY153896A (en) 2015-04-08
ES2652258T3 (en) 2018-02-01
KR20140124865A (en) 2014-10-27

Similar Documents

Publication Publication Date Title
JP5514369B2 (en) Surface-coated aluminum-containing zinc-based plated steel sheet and method for producing the same
JP4607969B2 (en) Surface treatment agent for metal material, surface treatment method and surface treatment metal material
JP5546097B2 (en) Surface treatment metal material and metal surface treatment agent
JP3865693B2 (en) Aqueous resin composition for treatment of aluminum-zinc alloy plated steel sheet, coating method, and aluminum-zinc alloy plated steel sheet
JP6080670B2 (en) Ground treatment composition for coated steel sheet, plated steel sheet subjected to ground treatment and method for producing the same, painted steel sheet and method for producing the same
JP5509078B2 (en) Water-based metal surface treatment agent and surface-treated metal material
CN102625818B (en) Composition for adhesive layer formation for use for steel sheet having surface treated with multiple layers
JP2007162098A (en) Metal surface-treating aqueous agent, surface treatment method and surface treated metallic material
JP6509604B2 (en) Painted galvanized steel sheet
JP2014055319A (en) Aqueous metal surface treatment
JP5418479B2 (en) Painted galvanized steel sheet
JP6072569B2 (en) Surface coated aluminum-containing galvanized steel sheet
JP5498634B2 (en) Water-based metal surface treatment agent, surface treatment method and surface treatment metal material
CN107849696B (en) Aqueous treatment agent, galvanized steel material or galvanized alloy steel material, and coated galvanized steel material or coated galvanized alloy steel material
TWI743280B (en) Surface treatment agent for zinc-based plated steel sheet
JP5418478B2 (en) Painted galvanized steel sheet
JP4796410B2 (en) Surface coated aluminum-zinc alloy plated steel sheet
JP4223374B2 (en) Metal surface treatment agent
JP2020019152A (en) Coated metal plate
JP7417473B2 (en) Coated plated steel plate
JP2005133172A (en) Surface-treated metal plate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013530486

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755785

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/010216

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14381203

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013227872

Country of ref document: AU

REEP Request for entry into the european phase

Ref document number: 2013755785

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013755785

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147026987

Country of ref document: KR

Kind code of ref document: A