WO2013128912A1 - 薬液投与装置 - Google Patents

薬液投与装置 Download PDF

Info

Publication number
WO2013128912A1
WO2013128912A1 PCT/JP2013/001158 JP2013001158W WO2013128912A1 WO 2013128912 A1 WO2013128912 A1 WO 2013128912A1 JP 2013001158 W JP2013001158 W JP 2013001158W WO 2013128912 A1 WO2013128912 A1 WO 2013128912A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
activity
patient
insulin
user
Prior art date
Application number
PCT/JP2013/001158
Other languages
English (en)
French (fr)
Inventor
智則 望月
孝文 野村
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2013128912A1 publication Critical patent/WO2013128912A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • A61M5/1723Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4866Evaluating metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M2005/14208Pressure infusion, e.g. using pumps with a programmable infusion control system, characterised by the infusion program

Definitions

  • the present invention relates to a drug solution administration device, which is suitable for application when, for example, insulin is administered into the body.
  • type 1 diabetes is a chronic disease that requires treatment to inject an appropriate amount of insulin at an appropriate time.
  • manual administration using a syringe or manual administration using an injector has been performed.
  • an automatic drug solution administration system capable of programming the dose and administration time has been developed.
  • This system consists of an infusion pump, a dedicated infusion set, and a catheter.
  • a system in which a drug administration device is made portable is also used.
  • a small and lightweight infusion pump that is fixed to the body surface with a double-sided tape without using the infusion set.
  • a patch-type drug solution administration device has been introduced in which a catheter is directly inserted from the device (for example, see Patent Document 1).
  • the blood glucose level is lowered by administering insulin to the patient.
  • the blood glucose level may further decrease due to the exercise, which may cause a hypoglycemic state. is there.
  • the present invention has been made in consideration of the above points, and intends to propose a drug solution administration device that can prevent a hypoglycemia state.
  • the amount of activity of the user is measured based on a detection result of an acceleration sensor that detects a user's body movement. From the comparison between the measurement unit and the measured activity amount and the average activity amount of the user, a first determination is made as to whether or not the activity amount of the user is greater than the average activity amount with respect to the average activity amount.
  • an amount of insulin corresponding to a blood glucose level that decreases due to a user's activity is calculated and calculated
  • a second determination unit for determining whether or not the user may cause a hypoglycemic state based on the amount of insulin and the amount of insulin currently being administered.
  • the present invention it is possible to accurately determine whether or not a patient can cause a hypoglycemic state before the patient actually causes a hypoglycemic state, and thus the patient can be hypoglycemic. Therefore, it is possible to realize a chemical solution administration device that can prevent the occurrence of the above.
  • a drug solution administration system 1 is a portable drug solution administration device 2 that is held and used by being affixed to a user's skin, and a drug solution by wirelessly communicating with the drug solution administration device 2.
  • the controller 3 is configured to control the administration device 2.
  • the medicinal solution administration device 2 stores medicinal solution (that is, insulin) and administers medicinal solution into the body of the user in accordance with a control signal transmitted from the controller 3.
  • the drug solution administration device 2 includes a puncture unit 10, a drug solution delivery unit 11, a drug solution storage unit 12, a microcomputer 13, an operation unit 14, a display unit 15, a storage unit 16, a buzzer 17, and an acceleration sensor 18.
  • the blood glucose sensor 19, the battery 20, and the communication unit 21 are configured.
  • the microcomputer 13 is a computer including a CPU, a RAM, a ROM, and the like.
  • the CPU reads and executes a basic program stored in the ROM and executes the overall control, and the CPU is stored in the ROM.
  • Various processes are executed by reading various programs into the RAM and executing them.
  • the operation unit 14 includes a plurality of switches, for example, a supplementary event switch SW1, a mode switch SW2, a numerical value setting switch SW3, a bolus switch SW4, and an alarm release switch SW5.
  • a supplementary event switch SW1 for example, a supplementary event switch SW1, a mode switch SW2, a numerical value setting switch SW3, a bolus switch SW4, and an alarm release switch SW5.
  • the supplementary meal event switch SW1 is a switch for notifying the drug administration device 2 when the patient has a meal.
  • the mode switch SW2 is a switch for setting the mode to an alarm mode or a dose automatic control mode (the mode will be described later).
  • the numerical value setting switch SW3 is a switch for inputting numerical values such as a patient's age, sex, height, and weight.
  • the bolus switch SW4 is a switch for performing bolus administration.
  • the alarm cancel switch SW5 is a switch for canceling an alarm when the buzzer 17 sounds.
  • basal administration the continuous automatic administration of insulin at a specified drug dose and administration rate
  • bolus administration the additional administration of insulin at an arbitrary timing
  • the storage unit 16 is a nonvolatile memory, for example, and stores various data.
  • the acceleration sensor 18 is, for example, a triaxial acceleration sensor, and detects the magnitude of acceleration in the front-rear, left-right, and vertical directions (that is, body movement) that occurs when the patient is active, and supplies this to the microcomputer 13.
  • the blood glucose sensor 19 is a CGM (Continuous Glucose Monitoring) sensor that continuously measures fluctuations in the blood glucose level of the patient, and supplies the measured blood glucose level to the microcomputer 13.
  • the battery 20 supplies power to each unit.
  • the microcomputer 13 transmits and receives various signals to and from the controller 3 by communicating with the controller 3 via the communication unit 21.
  • the microcomputer 13 transmits a signal indicating the blood glucose level of the patient obtained from the blood glucose sensor 19 to the controller 3 via the communication unit 21, while controlling the administration of the drug solution according to the fluctuation of the blood glucose level of the patient.
  • the control signal is received from the controller 3 via the communication unit 21.
  • the microcomputer 13 controls the chemical solution delivery unit 11 so as to administer the chemical solution to the patient at the designated dosage and administration speed in response to the control signal.
  • the specified amount of drug solution (insulin) is administered from the drug solution storage unit 12 to the patient via the drug solution delivery unit 11 and the puncture unit 10 at the specified administration rate.
  • the microcomputer 13 transmits a signal indicating the operation status of each unit and a signal indicating the contents corresponding to the operation on the operation unit 14 to the controller 3 via the communication unit 21 as needed.
  • the microcomputer 13 displays the content corresponding to the operation on the operation unit 14 on the display unit 15 or executes a process corresponding to the content.
  • microcomputer 13 measures the amount of activity of the patient based on the patient's body movement obtained from the acceleration sensor 18.
  • EX the amount of activity expressed in units of EX defined by the Ministry of Health, Labor and Welfare.
  • the microcomputer 13 refers to data indicating the relationship between the average value of body movement per predetermined time and the amount of activity stored in the storage unit 16 in advance, for example.
  • the amount of activity of the patient is measured from the average value of the patient's body movement obtained from 18 per predetermined time.
  • the microcomputer 13 monitors the amount of activity of the patient by measuring the amount of activity at regular intervals (for example, 1 minute).
  • the microcomputer 13 compares the average activity amount of the patient stored in the storage unit 16 with the current activity amount (also referred to as monitoring activity amount) of the patient being monitored.
  • the average amount of activity represents an average amount of activity in daily life.
  • the microcomputer 13 compares the average activity amount with the monitoring activity amount to determine whether the patient's activity amount is greater than the average activity amount, that is, whether the patient is performing excessive exercise more intense than usual. judge.
  • hypoglycemic state may be caused.
  • the microcomputer 13 determines that the patient is exercising excessively, the microcomputer 13 determines that there is a possibility of causing a hypoglycemic state.
  • the microcomputer 13 controls the buzzer 17 to sound an alarm sound to notify the patient that there is a possibility of causing a hypoglycemia state.
  • the microcomputer 13 controls the drug solution delivery unit 11 to reduce the drug solution dose so that the patient does not cause a hypoglycemic state.
  • the drug solution administration device 2 monitors the amount of activity of the patient and determines that the patient is exercising excessively and may cause a hypoglycemic state from the amount of monitoring activity, the hypoglycemic state is determined. In order not to cause it, an alarm is sounded and the dose of the drug solution is reduced.
  • hypoglycemic state determination processing the procedure of processing for determining whether or not there is a possibility of causing a hypoglycemic state.
  • hypoglycemia determination process 3 and 4 show the procedure of the hypoglycemia state determination process. Note that this hypoglycemic state determination process is not executed at the time of bolus administration, but is executed only at the time of basal administration.
  • the medicinal solution administration device 2 performs initial setting of the patient's age, sex, height, weight, input of the insulin effect value, and mode setting.
  • a patient (a person other than the patient is also acceptable) is configured to perform the operation via the operation unit 14.
  • an insulin effect value is a value which shows the blood glucose level which falls by the insulin amount 1 unit.
  • the microcomputer 13 stores the input age, sex, height, weight, and insulin effect value of the patient as patient information in the storage unit 16 and indicates a set mode (alarm mode or automatic dose control mode). Information is stored in the storage unit 16.
  • the storage unit 16 stores in advance data on the average amount of activity statistically obtained for each age, sex, height, and weight, and the microcomputer 13 refers to this data to input patients.
  • the average activity amount of this patient is estimated from the age, sex, height, and weight of the patient, and this is stored in the storage unit 16.
  • the microcomputer 13 starts the hypoglycemia state determination processing procedure RT and proceeds to step SP1.
  • step SP1 the microcomputer 13 reads the average activity amount of the patient from the storage unit 16, and proceeds to step SP2.
  • step SP2 the microcomputer 13 monitors the amount of activity of the patient at regular intervals (eg, 1 minute) for a fixed time (eg, 15 minutes), and then proceeds to step SP3.
  • the microcomputer 13 stores a history of monitoring activity at regular intervals (1 minute) in the RAM.
  • step SP3 the microcomputer 13 determines whether or not the monitoring activity amount continues to be the average activity amount + ⁇ or more for a certain time (for example, 15 minutes) or more.
  • This ⁇ is set as a value that can be determined that the patient is exercising more intensely than usual, and is set to a constant value of, for example, average activity amount ⁇ 20%.
  • the patient's monitoring activity amount continues to be equal to or greater than the average activity amount + ⁇ for a certain time T or more, this indicates that the patient's monitoring activity amount is greater than the average activity amount. It can be determined that the patient is continuously exercising more intensely than usual. On the other hand, if the average activity amount + ⁇ or more does not continue for a certain time T or longer, it can be determined that the patient is not exercising continuously more intensely than usual.
  • the microcomputer 13 has a monitoring activity amount equal to or greater than the average activity amount + ⁇ for a certain time or more based on the monitoring activity amount for the certain time measured this time and the monitoring activity amount for the certain time previously measured. It is determined whether or not it continues to exist.
  • step SP3 if a negative result is obtained in this step SP3 because the monitoring activity amount of the patient does not continue to be greater than or equal to the average activity amount + ⁇ for a certain time or more, at this time, the microcomputer 13 proceeds to step SP4.
  • step SP4 the microcomputer 13 determines whether or not the integral value (that is, cumulative position) of the monitoring activity amount at a certain time is equal to or greater than the integral value + ⁇ of the average activity amount at the certain time.
  • This ⁇ is set as a value that can determine whether or not the patient is exercising more intensely than usual, and is set to a constant value of, for example, an integral value of average activity amount ⁇ 20%.
  • the integrated value of the monitoring activity amount at the certain time T is the average activity amount at the certain time T. If it is equal to or greater than the integral value + ⁇ , it can be determined from this that the monitoring activity amount of the patient is larger than the average activity amount, and the patient is temporarily exercising more intensely than usual. On the other hand, if the integrated value of the monitoring activity amount at the fixed time T is not equal to or greater than the integrated value of the average activity amount at the fixed time T + ⁇ or more, this causes the patient to temporarily exercise more intensely than usual. It can be determined that it has not gone.
  • step SP4 if a negative result is obtained in this step SP4 because it is not equal to or greater than the integral value of the average activity over a certain time + ⁇ (for example, several%), the microcomputer 13 proceeds to step SP5 at this time.
  • step SP5 the microcomputer 13 updates the average activity amount of the patient stored in the storage unit 16 based on the history of the monitoring activity amount of the patient obtained in a certain time, and returns to step SP1.
  • the average amount of activity corresponds to the patient's activity pattern (for example, patient's bolus administration interval), for example, from 7:00 am to 5:00 pm, from 5 pm to 12:00 pm, from 12:00 pm to 7:00 am Thus, it is stored in the storage unit 16 for each time zone.
  • patient's activity pattern for example, patient's bolus administration interval
  • the microcomputer 13 would calculate the average activity amount during the time period from 7 am to 5 pm Based on the average of 15 minutes of monitoring activity obtained this time, recalculate the average activity from 7:00 am to 5:00 pm, and update the average activity from 7:00 am to 5:00 pm To do.
  • step SP3 when the monitoring activity amount continues to be equal to or greater than the average activity amount + ⁇ for a certain period of time, an affirmative result is obtained in the above step SP3, or the integrated value of the monitoring activity amount for a certain period of time is If a positive result is obtained in the above-described step SP4 by being equal to or greater than the integrated value of the average activity amount at ⁇ + ⁇ , this means that the patient is exercising more intensely than usual. At this time, the microcomputer 13 proceeds to step SP6.
  • step SP6 the microcomputer 13 calculates a blood glucose level decrease level (ie, a blood glucose level decrease) due to exercise based on the history of the monitoring activity amount obtained in a predetermined time stored in the RAM. The process proceeds to step SP7.
  • a blood glucose level decrease level ie, a blood glucose level decrease
  • the storage unit 16 stores, for example, data indicating a relationship between an activity amount per fixed time and a blood glucose level lowering degree obtained as a general viewpoint, and the microcomputer 13 stores the data.
  • the degree of decrease in blood glucose level with respect to the monitoring activity amount per fixed time is calculated from the history of the monitoring activity amount obtained at a fixed time.
  • step SP7 the microcomputer 13 calculates the amount of insulin corresponding to the decrease in blood glucose level based on the decrease in blood glucose level obtained in step SP6 and the insulin effect value stored in the storage unit 16. Then, the process proceeds to step SP8.
  • step SP8 it is determined whether or not the amount obtained by adding the currently administered insulin amount and the amount of insulin corresponding to the decrease obtained in step SP8 is equal to or greater than a set threshold value.
  • this threshold value is set as a certain amount that can be determined that the patient may cause a hypoglycemic state due to excessive exercise.
  • step SP8 if the amount obtained by adding the amount of insulin currently being administered and the amount of insulin corresponding to the decrease obtained in step SP8 is not equal to or greater than the threshold value, a negative result is obtained in step SP8. It means that you are doing more intense exercise than usual, but not enough to cause hypoglycemia.
  • the microcomputer 13 proceeds to step SP5 and updates the average activity amount of the patient stored in the storage unit 16 based on the monitoring activity amount of the patient obtained in a certain time.
  • step SP8 when the amount obtained by adding the amount of insulin currently being administered and the amount of insulin corresponding to the decrease obtained in step SP8 is equal to or greater than the threshold, when a positive result is obtained in step SP8, It means that the patient is doing too much exercise to cause a hypoglycemic condition. At this time, the microcomputer 13 proceeds to step SP9 (FIG. 4).
  • step SP9 the microcomputer 13 determines whether or not the supplementary event switch SW1 is operated within a predetermined time.
  • the microcomputer 13 stores the fact that the supplementary event switch SW1 is operated in association with the operated time in the RAM as event information. Yes.
  • the microcomputer 13 refers to this event information to determine whether or not the dietary event switch SW1 has been operated within a certain time, that is, whether or not the patient has performed dietary supplementation.
  • the eating event switch SW1 is operated within a certain time, this means that the patient has eaten within the certain time so as not to be in a hypoglycemic state.
  • step SP9 if an affirmative result is obtained in step SP9 due to the operation of the dietary event switch SW1 within a certain time, the microcomputer 13 at this time determines that the patient is not likely to cause a hypoglycemic state. Then, the process proceeds to step SP5, and the average activity amount of the patient stored in the storage unit 16 is updated based on the monitoring activity amount of the patient obtained for a certain time.
  • step SP9 the microcomputer 13 may cause the patient to experience a hypoglycemic state at this time. It is determined that there is, and the process proceeds to step SP10.
  • step SP10 the microcomputer 13 determines whether or not the current mode is the alarm mode based on the mode information stored in the storage unit 16.
  • step SP10 if the current mode is the alarm mode, and if a positive result is obtained in this step SP10, then the microcomputer 13 proceeds to step SP11.
  • step SP11 the microcomputer 13 controls the buzzer 17 to sound an alarm sound to notify the patient that there is a possibility of causing a hypoglycemia state, and proceeds to step SP12.
  • step SP12 the microcomputer 13 continues to sound an alarm until the alarm release switch SW5 is operated.
  • the alarm release switch SW5 is operated, the alarm is released by stopping the alarm sound, and the process proceeds to step SP5.
  • the average activity amount of the patient stored in the storage unit 16 is updated.
  • step SP10 if the current mode is the automatic dose control mode and if a negative result is obtained in step SP10, the microcomputer 13 proceeds to step SP13.
  • step SP13 the microcomputer 13 controls the drug solution delivery unit 11 so as to reduce the amount of insulin currently being administered by the amount of insulin corresponding to the blood glucose level reduction obtained in step SP8.
  • step SP5 the microcomputer 13 proceeds to step SP5, and updates the average activity amount of the patient stored in the storage unit 16 based on the monitoring activity amount of the patient obtained for a predetermined time.
  • the microcomputer 13 determines whether or not the patient may cause a hypoglycemic state.
  • the drug solution administration device 2 compares the activity amount of the patient being monitored (monitoring activity amount) with the average activity amount of the patient.
  • the monitoring activity amount continues to be greater than or equal to the average activity amount + ⁇ for a certain time or when the integrated value of the monitoring activity amount for a certain time is equal to or greater than the integrated value of the average activity amount for a certain time + ⁇
  • the medicinal solution administration device 2 calculates the amount of insulin corresponding to the decrease in the blood glucose level of the patient from the history of the amount of monitoring activity obtained at this time, and the amount obtained by adding this amount of insulin and the amount of insulin currently being administered Is greater than or equal to the threshold and the patient is not eating, it is determined that the patient may cause a hypoglycemic condition due to excessive exercise.
  • the drug solution administration device 2 sounds an alarm to notify the patient that there is a possibility of causing a hypoglycemic state, or reduces the dose of insulin so that the patient does not cause the hypoglycemic state.
  • the blood glucose level is first changed at the time t1 as shown in FIG.
  • the dose of insulin is decreased because the threshold value L1 was exceeded.
  • the blood glucose level continues to decrease, and at time t2 when the second threshold L2 that can be determined to be a hypoglycemic state is reached, it is determined that the patient is in a hypoglycemic state, and an alarm is sounded, for example.
  • the blood glucose level falls below the first threshold value L1, so that the dose of insulin is reduced. .
  • the patient may cause the hypoglycemic state at an earlier time point compared with the case where it is determined whether or not the patient causes the hypoglycemic state based only on the measured blood glucose level. It can be determined whether or not there is sex.
  • the medicinal solution administration device 2 by comparing the monitoring activity amount and the average activity amount according to the activity pattern of the patient, it is possible to determine whether or not there is a possibility of causing a hypoglycemia state. It is possible to make an accurate judgment that matches the activity pattern.
  • the drug solution administration device 2 can accurately determine whether or not the patient may cause the hypoglycemic state before the patient actually causes the hypoglycemic state, thus, it is possible to prevent the patient from becoming hypoglycemic.
  • the present invention is not limited to this.
  • the alarm may be canceled when the dietary supplement event switch SW1 is operated by the patient who has supplemented the diet.
  • the drug administration device 2 determines that the patient may cause a hypoglycemic state in the dose automatic control mode, the dose of insulin is automatically reduced.
  • the dose of insulin may be returned to the original amount.
  • the patient can cause a hypoglycemic state
  • An alarm may be sounded by determining that there is a characteristic.
  • the present invention is not limited to this, and it may be determined that the patient may cause a hyperglycemic state when the amount of monitoring activity is smaller than the average activity amount.
  • the microcomputer 13 of the drug solution administration device 2 has the monitoring activity amount of the patient equal to or less than the average activity amount ⁇ x and not less than a certain time.
  • the integrated value of the monitoring activity amount is equal to or less than the integrated value of the average activity amount at a certain time minus ⁇ x, it is determined that the activity amount of the patient is remarkably reduced.
  • both ⁇ x and ⁇ x are set as values at which it can be determined that the activity amount of the patient is significantly reduced.
  • ⁇ x is set to a constant value of average activity amount ⁇ 50%
  • ⁇ x is an average value. It is set to a constant value of integral value of activity amount ⁇ 50%.
  • the degree of increase in blood glucose level (that is, the increase in blood glucose level) is calculated, and the increase in blood glucose level is calculated based on the increase in blood glucose level and the insulin effect level. Calculate the amount of insulin needed to lower.
  • the patient may cause a hyperglycemic state It is determined that there is an alarm, and an alarm is sounded or the amount of insulin currently being administered is increased.
  • the amount of insulin to be increased at this time may be, for example, the amount of insulin necessary for lowering the increased blood sugar level.
  • the drug solution administration device 2 can prevent the hyperglycemia state in addition to the hypoglycemia state.
  • the amount of activity represented by the product of exercise intensity and time is measured based on the patient's body movement obtained from the acceleration sensor 18, and the patient is based on this amount of activity. Judgment whether or not is doing excessive exercise.
  • EX amount of activity
  • calorie consumption and exercise intensity can also be measured based on the patient's body movement obtained from the acceleration sensor 18, and its algorithms are also widely known.
  • the amount obtained by adding the currently administered insulin amount and the insulin amount corresponding to the blood glucose level lowering is equal to or greater than the set threshold value, and the supplementary event switch SW1 is operated. If not, it was determined that the patient could cause a hypoglycemic condition.
  • the present invention is not limited to this, and instead of operating the supplementary event switch SW1 when supplementary food is provided, the calorie or carbohydrate amount of the eaten food may be input via the operation unit 14.
  • the microcomputer 13 calculates the degree of increase in blood sugar level (that is, an increase) from the input calorie and carbohydrate amount, and further calculates the amount of insulin necessary for lowering the blood sugar level of this increase.
  • the microcomputer 13 calculates the degree of increase in blood sugar level (that is, an increase) from the input calorie and carbohydrate amount, and further calculates the amount of insulin necessary for lowering the blood sugar level of this increase.
  • what is necessary is just to be made to input the increase degree of the blood glucose level with respect to a calorie or the amount of carbohydrates as patient information at the time of initial setting, for example.
  • the threshold value is equal to or higher than the set threshold value, it is determined that the patient may cause a hypoglycemic state.
  • hypoglycemic state is determined not by whether or not it is simply supplemented, but by how much supplementation has been performed. Can be determined.
  • the hypoglycemic state is determined only at the time of basal administration.
  • the insulin amount at the time of basal administration may be reset at the time of bolus administration or blood glucose level measurement (SMBG: Self Monitoring Blood Glucose) performed at any timing
  • the patient may be determined that the patient is exercising more vigorously than usual only when the monitoring activity amount is equal to or greater than the average activity amount + ⁇ for a certain time period, or for a certain time period. It may be determined that the patient is exercising more intensely than usual only when the integrated value of the monitoring activity amount at is equal to or greater than the integrated value of the average activity amount at a certain time + ⁇ .
  • the buzzer 17 as the audio output unit is provided in the drug solution administration device 2 and an alarm is issued from the buzzer 17 when it is determined that the patient may cause a hypoglycemia state due to excessive exercise. I made it ring.
  • an announcement sound that the patient may cause a hypoglycemic state may be output, and together with such an announcement sound, the hypoglycemic state is caused.
  • Character information indicating the possibility may be displayed on the display unit 15.
  • the drug solution administration device 2 has two modes, ie, an alarm mode and a dose automatic control mode as modes, but is not limited to this, and has only one mode. You may do it.
  • the acceleration sensor 18 is provided in the drug solution administration device 2.
  • the present invention is not limited thereto, and the medicinal solution administration device 2 is not provided with an acceleration sensor, and receives data indicating the patient's body movement from an acceleration sensor provided in a device different from the medicinal solution administration device 2 via the communication unit 21. You may make it do.
  • the drug solution administration device 2 and the controller 3 are separated, but these may be integrated by providing the drug solution administration device 2 with the function of the controller 3.
  • the microcomputer 13 measures the activity amount of the patient based on the detection result of the acceleration sensor 18, and the comparison result between the measured activity amount and the normal average activity amount of the patient.
  • the first determination unit for determining whether or not the patient is exercising more intensely than usual when the first determination unit determines that the patient is exercising more intensely than usual, the blood glucose level decreases due to the exercise.
  • the corresponding amount of insulin is calculated, and based on the calculated amount of insulin and the amount of insulin currently being administered, functions as a second determination unit that determines whether the patient is likely to cause a hypoglycemic state I made it.
  • the microcomputer 13 instead of the microcomputer 13, three pieces of hardware that function as a measurement unit, a first determination unit, and a second determination unit may be provided in the drug solution administration device 2.
  • the measurement unit, the first determination unit, and the second determination unit may be configured by various software configurations and hardware configurations.
  • the present invention can be applied to the medical field, for example.

Abstract

 低血糖状態を未然に防ぐことができるようにする。 患者の活動量をモニタリングして、モニタリング活動量と平均活動量を比較することで、患者が普段より激しい運動を行っているか否かを判定し、患者が激しい運動を行っていると判定すると、運動により低下する血糖値に相当するインスリン量を算出し、算出したインスリン量と現在投与中のインスリン量とに基づいて、患者が低血糖状態を引き起こす可能性があるか否かを判定する。こうすることで、患者が低血糖状態を引き起こしてしまう前に、患者が低血糖状態を引き起こす可能性があるか否かを正確に判定することができ、かくして低血糖状態を未然に防ぐことができる。

Description

薬液投与装置
 本発明は、薬液投与装置に関し、例えばインスリンを体内に投与する場合に適用して好適なものである。
 近年、糖尿病は日本を始め世界中で患者数が増大の傾向を示している。また、これに伴う治療費用の増大が懸念されている。糖尿病の中でも、1型糖尿病は、適切な時間に適切量のインスリンの注入する治療が必要となる慢性疾患である。古くからシリンジを用いた手動投与か、インジェクタを用いた手動投与が行われてきた。これらに対してより簡便に安全に、適切な治療を行うために、投与量および投与時期をプログラムが可能な自動の薬液投与システムが開発されてきた。
 このシステムは輸液ポンプ、専用の輸液セット、カテ-テルからなり、現在、薬液投与装置を携帯可能にしたシステムも使用されてきている。最近、この携帯型のシステムにおいて、輸液セットのチューブのわずらわしさを排除し、扱い勝手を向上するため輸液セットを用いずに、体表に両面テ-プで貼り付け固定した小型軽量な輸液ポンプから直接カテ-テルを挿入して投与を行うパッチタイプの薬液投与装置が登場している(例えば、特許文献1参照)。
特表2010-501283公報
 ところで、薬液投与装置では、患者にインスリンを投与することで血糖値を下げるが、インスリン投与時に患者が過度な運動をした場合、運動によってさらに血糖値が下がり、低血糖状態を引き起こしてしまう恐れがある。
 そこで、患者の血糖値を定期的に測定して、低血糖状態が起きていないか監視するようになされた薬液投与装置も知られている。
 しかしながら、測定した血糖値をもとに低血糖状態が起きているかどうかを判断する場合、低血糖状態が起きることを前もって予測することは難しい。
 本発明は以上の点を考慮してなされたもので、低血糖状態を未然に防ぐことのできる薬液投与装置を提案しようとするものである。
 かかる課題を解決するため本発明においては、使用者にインスリンを投与する携帯型の薬液投与装置において、使用者の体動を検出する加速度センサの検出結果に基づいて使用者の活動量を計測する計測部と、計測した当該活動量と使用者の平均活動量との比較から、使用者の当該活動量が前記平均活動量に対して、前記平均活動量よりも多いか否かを判定する第1の判定部と、前記第1の判定部により前記平均活動量よりも当該活動量が多いと判定された場合に、使用者の活動により低下する血糖値に相当するインスリン量を算出し、算出したインスリン量と現在投与中のインスリン量とに基づいて、使用者が低血糖状態を引き起こす可能性があるか否かを判定する第2の判定部とを設けるようにした。
 これにより、実際に患者が低血糖状態を引き起こしてしまう前に、患者が低血糖状態を引き起こす可能性があるか否かを正確に判定することができる。
 本発明によれば、実際に患者が低血糖状態を引き起こしてしまう前に、患者が低血糖状態を引き起こす可能性があるか否かを正確に判定することができ、かくして、患者が低血糖状態となるのを未然に防ぐことのできる薬液投与装置を実現できる。
薬液投与システムの構成を示す略線図である。 薬液投与装置の内部構成を示す略線図である。 低血糖状態判定処理を示すフローチャートである。 図3の低血糖状態判定処理を示すフローチャートにつづくフローチャートである。 モニタリング活動量と平均活動量との比較の説明にともなうグラフである。 低血糖状態と判定するタイミングの説明にともなうグラフである。
 以下に、図面について、本発明の一実施の形態を詳述する。
〔1.薬液投与システムの構成〕
 図1に示すように、薬液投与システム1は、使用者の皮膚に貼り付けられることにより保持されて使用される携帯型の薬液投与装置2と、薬液投与装置2と無線で通信することで薬液投与装置2を制御するコントローラ3とを有する構成とされる。
〔2.薬液投与装置の構成〕
 薬液投与装置2は、内部に薬液(すなわちインスリン)が貯蔵されており、コントローラ3から送信される制御信号に応じて薬液を使用者の体内に投与するようになっている。
 この薬液投与装置2は、図2に示すように、穿刺部10、薬液送出部11、薬液貯蔵部12、マイクロコンピュータ13、操作部14、表示部15、記憶部16、ブザー17、加速度センサ18、血糖センサ19、バッテリ20、通信部21により構成される。
 マイクロコンピュータ13は、CPU、RAM、ROM等でなるコンピュータであり、CPUがROMに格納される基本プログラムをRAMに読みだして実行することにより全体を統括制御するとともに、CPUがROMに格納される各種プログラムをRAMに読みだして実行することにより各種処理を実行する。
 操作部14は、複数のスイッチからなり、例えば、補食イベントスイッチSW1、モードスイッチSW2、数値設定スイッチSW3、ボーラススイッチSW4、アラーム解除スイッチSW5からなる。
 補食イベントスイッチSW1は、患者が食事を取ったときにその旨を薬液投与装置2に通知するためのスイッチである。モードスイッチSW2は、モードをアラームモード又は投与量自動制御モード(モードについては後述する)に設定するためのスイッチである。数値設定スイッチSW3は、例えば、患者の年齢、性別、身長、体重等の数値を入力するためのスイッチである。ボーラススイッチSW4は、ボーラス投与を行うためのスイッチである。アラーム解除スイッチSW5は、ブザー17からアラームが鳴ったときにこれを解除するためのスイッチである。
 尚、指定された薬液投与量及び投与速度で連続的にインスリンを自動投与することをベーサル投与と呼び、これに対して、任意のタイミングでインスリンを追加投与することをボーラス投与と呼ぶ。
 記憶部16は、例えば不揮発性メモリであり、各種データを記憶する。加速度センサ18は、例えば3軸の加速度センサであり、患者が活動するときに生じる前後、左右、上下方向の加速度の大きさ(すなわち体動)を検出し、これをマイクロコンピュータ13に供給する。血糖センサ19は、患者の血糖値の変動を連側的に測定するCGM(Continuous Glucose Monitoring)用のセンサであり、測定した血糖値をマイクロコンピュータ13に供給する。バッテリ20は、各部に電源電力を供給する。
 マイクロコンピュータ13は、通信部21を介してコントローラ3と通信することで、コントローラ3と各種信号を送受する。
 すなわちマイクロコンピュータ13は、血糖センサ19から得られる患者の血糖値を示す信号を通信部21を介してコントローラ3に送信する一方で、患者の血糖値の変動に応じて薬液の投与を制御するための制御信号を通信部21を介してコントローラ3から受信する。
 そしてマイクロコンピュータ13は、この制御信号に応じて、指定された投与量及び投与速度で患者に薬液を投与するように薬液送出部11を制御する。この結果、指定された投与速度で、指定された投与量の薬液(インスリン)が薬液貯蔵部12から薬液送出部11、穿刺部10を介して患者に投与される。
 またマイクロコンピュータ13は、随時、各部の動作状況を示す信号や、操作部14に対する操作に応じた内容を示す信号を通信部21を介してコントローラ3に送信する。
 さらにマイクロコンピュータ13は、操作部14に対する操作に応じた内容を表示部15に表示したり、その内容に応じた処理を実行したりもする。
 さらにマイクロコンピュータ13は、加速度センサ18から得られる患者の体動に基づいて患者の活動量を計測する。
 ここでは、一例として、厚生労働省により定義されているEXという単位で表される活動量を計測する。この活動量(EX)は、運動強度(単位はMets)と時間(単位はhour)の積であり、例えば1時間歩き続けたとすると、歩行の運動強度が3Metsといわれていることから、活動量は3×1=3EXとなる。
 尚、加速度センサから得られる体動に基づいて活動量を計測するアルゴリズムについては既に多くのアルゴリズムが知られている。マイクロコンピュータ13には、そのうちの1つがプログラムとして格納されていて、マイクロコンピュータ13は、そのプログラムを実行することで、加速度センサ18から得られる患者の体動に基づいて患者の活動量を計測するようになっている。
 具体的な例としては、マイクロコンピュータ13が、例えば、予め記憶部16に記憶されている、所定時間当たりの体動の平均値と活動量との関係を示すデータを参照することで、加速度センサ18から得られる患者の体動の所定時間当たりの平均値から患者の活動量を計測する。
 マイクロコンピュータ13は、この活動量を一定間隔(例えば1分)ごとに計測することで、患者の活動量をモニタリングする。
 さらにマイクロコンピュータ13は、記憶部16に記憶されている患者の平均活動量と、モニタリングしている患者の現在の活動量(これをモニタリング活動量とも呼ぶ)とを比較する。ここで、平均活動量とは、日常生活での平均的な活動量を表す。
 マイクロコンピュータ13は、この平均活動量と、モニタリング活動量とを比較することで、患者の活動量が平均活動量よりも多いかどうか、すなわち患者が普段より激しい過剰な運動を行っているかどうかを判定する。
 ところで、薬液投与装置2によりインスリンを投与されている患者が、過剰な運動を続けると、低血糖状態を引き起こしてしまう恐れがある。
 そこで、マイクロコンピュータ13は、患者が過剰な運動を行っていると判定したときに、低血糖状態を引き起こす可能性があると判定する。
 そしてマイクロコンピュータ13は、現在のモードがアラームモードであれば、低血糖状態を引き起こす可能性がある旨を患者に通知するために、ブザー17を制御してアラーム音を鳴らす。
 一方で、現在のモードが投与量自動制御モードであれば、マイクロコンピュータ13は、患者が低血糖状態を引き起こさないように、薬液送出部11を制御して薬液投与量を減らす。
 このように、薬液投与装置2は、患者の活動量をモニタリングして、このモニタリング活動量から患者が過剰な運動を行っていて低血糖状態を引き起こす可能性があると判定すると、低血糖状態を引き起こさないように、アラーム音を鳴らしたり、薬液投与量を減らしたりするようになっている。
 以下、低血糖状態を引き起こす可能性があるかどうかを判定するときの処理(低血糖状態判定処理と呼ぶ)の手順について、より詳しく説明する。
〔3.低血糖状態判定処理〕
 図3及び図4に、低血糖状態判定処理の手順を示す。尚、この低血糖状態判定処理は、ボーラス投与時には実行されず、ベーサル投与時にのみ実行される処理である。また、薬液投与装置2では、少なくともこの低血糖状態判定処理を開始する前に、初期設定として、患者の年齢、性別、身長、体重の入力と、インスリン効果値の入力と、モードの設定とを患者(患者以外の人間でも可)に操作部14を介して行わせるようになっている。尚、インスリン効果値とは、インスリン量1単位で低下する血糖値を示す値である。
 マイクロコンピュータ13は、入力された患者の年齢、性別、身長、体重、インスリン効果値を患者情報として記憶部16に記憶するとともに、設定されたモード(アラームモード又は投与量自動制御モード)を示すモード情報を記憶部16に記憶する。
 また記憶部16には、年齢、性別、身長、体重別に統計的に得られた平均活動量のデータがあらかじめ記憶されていて、マイクロコンピュータ13は、このデータを参照することで、入力された患者の年齢、性別、身長、体重からこの患者の平均活動量を推定し、これを記憶部16に記憶する。
 マイクロコンピュータ13は、このような初期設定が完了すると、低血糖状態判定処理手順RTを開始して、ステップSP1に移る。
 ステップSP1においてマイクロコンピュータ13は、記憶部16から患者の平均活動量を読み出して、ステップSP2に移る。
 ステップSP2においてマイクロコンピュータ13は、患者の活動量のモニタリングを一定間隔(例えば1分)ごとに一定時間(例えば15分間)行って、ステップSP3に移る。尚、マイクロコンピュータ13は、一定間隔(1分)ごとのモニタリング活動量の履歴をRAMに記憶していく。
 ステップSP3においてマイクロコンピュータ13は、一定時間(例えば15分間)以上、モニタリング活動量が、平均活動量+α以上であり続けているか否かを判定する。尚、このαは、患者が普段より激しい運動をしていると判定できる値として設定されており、例えば平均活動量×20%の一定値に設定されている。
 つまり、図5(A)に示すように、一定時間T以上、患者のモニタリング活動量が平均活動量+α以上であり続けていれば、このことから、患者のモニタリング活動量が平均活動量より多く、患者が普段より激しい運動を継続的に行っていると判定できる。一方で、一定時間T以上、平均活動量+α以上であり続けていなければ、患者が普段より激しい運動を継続的に行ってはいないと判定できる。
 尚、マイクロコンピュータ13は、今回計測した一定時間分のモニタリング活動量と、前回計測した一定時間分のモニタリング活動量とをもとに、一定時間以上、モニタリング活動量が、平均活動量+α以上であり続けているか否かを判定するようになっている。
 ここで、一定時間以上、患者のモニタリング活動量が平均活動量+α以上であり続けてはいないことにより、このステップSP3で否定結果を得ると、このとき、マイクロコンピュータ13は、ステップSP4に移る。
 ステップSP4においてマイクロコンピュータ13は、一定時間でのモニタリング活動量の積分値(すなわち累積置)が、一定時間での平均活動量の積分値+β以上であるか否かを判定する。尚、このβは、患者が普段より激しい運動をしているかどうかを判定できる値として設定されており、例えば平均活動量の積分値×20%の一定値に設定されている。
 つまり、モニタリング活動量が平均活動量+α以上であり続けてはいないものの、図5(B)に示すように、一定時間Tでのモニタリング活動量の積分値が一定時間Tでの平均活動量の積分値+β以上であれば、このことから、患者のモニタリング活動量が平均活動量より多く、患者が一時的に普段より激しい運動を行っていると判定できる。一方で、一定時間Tでのモニタリング活動量の積分値が一定時間Tでの平均活動量の積分値+β以上でなければ、このことから、患者が普段より激しい運動を継続的にも一時的にも行っていないと判定できる。
 ここで、一定時間での平均活動量の積分値+β(例えば数%)以上でないことにより、このステップSP4で否定結果を得ると、このとき、マイクロコンピュータ13は、ステップSP5に移る。
 ステップSP5においてマイクロコンピュータ13は、一定時間に得られた患者のモニタリング活動量の履歴をもとに、記憶部16に記憶されている患者の平均活動量を更新して、ステップSP1に戻る。
 尚、平均活動量は、患者の活動パターン(例えば患者のボーラス投与間隔等)に合わせて、例えば、朝7時~夕方5時、夕方5時~夜12時、夜12時~朝7時のように時間帯ごとに記憶部16に記憶されるようになっている。
 実際、朝7時~7時15分までの15分間に、1分ごとに活動量を計測したとすると、マイクロコンピュータ13は、朝7時~夕方5時までの時間帯の平均活動量と、今回得られた15分間のモニタリング活動量の平均とをもとに、朝7時~夕方5時までの平均活動量を再計算して、朝7時~夕方5時までの平均活動量を更新する。
 これに対して、一定時間、モニタリング活動量が平均活動量+α以上であり続けていることにより上述のステップSP3で肯定結果を得た場合、もしくは一定時間でのモニタリング活動量の積分値が一定時間での平均活動量の積分値+β以上であることにより上述のステップSP4で肯定結果を得た場合、このことは、患者が普段より激しい運動を行っていることを意味する。このとき、マイクロコンピュータ13は、ステップSP6に移る。
 ステップSP6において、マイクロコンピュータ13は、RAMに記憶されている一定時間に得られたモニタリング活動量の履歴をもとに、運動による血糖値の低下度合い(すなわち血糖値の低下分)を算出して、ステップSP7に移る。
 尚、記憶部16には、例えば、一般的な見地として得られた、一定時間当たりの活動量と血糖値の低下度合いとの関係を示すデータが記憶されていて、マイクロコンピュータ13は、このデータを参照することで、一定時間に得られたモニタリング活動量の履歴から、一定時間当たりのモニタリング活動量に対する血糖値の低下度合いを算出する。
 ステップSP7において、マイクロコンピュータ13は、ステップSP6で得られた血糖値の低下度合いと、記憶部16に記憶されているインスリン効果値とをもとに、血糖値の低下分相当のインスリン量を算出して、ステップSP8に移る。
 ステップSP8において、現在投与中のインスリン量とステップSP8で得られた低下分相当のインスリン量とを足した量が、設定されている閾値以上であるか否かを判定する。
 尚、この閾値は、患者が過剰な運動により低血糖状態を引き起こす可能性があると判定できる一定量として設定されている。
 ここで、現在投与中のインスリン量とステップSP8で得られた低下分相当のインスリン量とを足した量が閾値以上でないことにより、このステップSP8で否定結果を得ると、このことは、患者が普段よりは激しい運動を行っているものの、低血糖状態を引き起こすほどではないことを意味する。このときマイクロコンピュータ13は、ステップSP5に移り、一定時間に得られた患者のモニタリング活動量をもとに、記憶部16に記憶されている患者の平均活動量を更新する。
 これに対して、現在投与中のインスリン量とステップSP8で得られた低下分相当のインスリン量とを足した量が閾値以上であることにより、ステップSP8で肯定結果を得ると、このことは、患者が低血糖状態を引き起こすほどの過剰な運動を行っていることを意味する。このときマイクロコンピュータ13は、ステップSP9(図4)に移る。
 ステップSP9においてマイクロコンピュータ13は、一定時間内に補食イベントスイッチSW1が操作されたか否かを判定する。
 尚、マイクロコンピュータ13は、補食イベントスイッチSW1が操作されると、補食イベントスイッチSW1が操作された旨を、操作された時刻と対応つけて、イベント情報としてRAMに記憶させるようになっている。
 マイクロコンピュータ13は、このイベント情報を参照することで、一定時間内に補食イベントスイッチSW1が操作されたか否か、すなわち患者が補食を行ったか否かを判定するようになっている。
 ここで、一定時間内に補食イベントスイッチSW1が操作されていれば、このことは、患者が低血糖状態とならないように一定時間内に補食を行ったことを意味する。
 ゆえに、一定時間内に補食イベントスイッチSW1が操作されたことにより、このステップSP9で肯定結果を得ると、このとき、マイクロコンピュータ13は、患者が低血糖状態を引き起こす可能性はないと判定してステップSP5に移り、一定時間に得られた患者のモニタリング活動量をもとに、記憶部16に記憶されている患者の平均活動量を更新する。
 これに対して、一定時間内に補食イベントスイッチSW1が操作されてはいないことにより、ステップSP9で否定結果を得ると、このとき、マイクロコンピュータ13は、患者が低血糖状態を引き起こす可能性があると判定して、ステップSP10に移る。
 ステップSP10においてマイクロコンピュータ13は、記憶部16に記憶されているモード情報をもとに、現在のモードがアラームモードであるか否かを判定する。
 ここで、現在のモードがアラームモードであることにより、このステップSP10で肯定結果を得ると、このときマイクロコンピュータ13は、ステップSP11に移る。
 ステップSP11においてマイクロコンピュータ13は、ブザー17を制御してアラーム音を鳴らすことで、低血糖状態を引き起こす可能性がある旨を患者に通知して、ステップSP12に移る。
 ステップSP12においてマイクロコンピュータ13は、アラーム解除スイッチSW5が操作されるまでアラームを鳴らしつづけ、アラーム解除スイッチSW5が操作されると、アラーム音を停止させることでアラームを解除してステップSP5に移り、一定時間に得られた患者のモニタリング活動量をもとに、記憶部16に記憶されている患者の平均活動量を更新する。
 これに対して、現在のモードが投与量自動制御モードであることにより、上述のステップSP10で否定結果を得ると、このときマイクロコンピュータ13は、ステップSP13に移る。
 ステップSP13においてマイクロコンピュータ13は、現在投与中のインスリン量を、ステップSP8で得られた血糖値低下分相当のインスリン量だけ減らすように、薬液送出部11を制御する。
 そして、マイクロコンピュータ13は、ステップSP5に移り、一定時間に得られた患者のモニタリング活動量をもとに、記憶部16に記憶されている患者の平均活動量を更新する。
 このような低血糖状態判定処理により、マイクロコンピュータ13は、患者が低血糖状態を引き起こす可能性があるかどうかを判定するようになっている。
〔4.動作及び効果〕
 以上の構成において、薬液投与装置2は、モニタリングしている患者の活動量(モニタリング活動量)と、患者の平均活動量とを比較する。
 ここで、一定時間以上、モニタリング活動量が平均活動量+α以上であり続けている場合、もしくは一定時間でのモニタリング活動量の積分値が一定時間での平均活動量の積分値+β以上である場合に、患者が普段と比べて激しい運動をしていると判定する。
 さらに、薬液投与装置2は、このとき得られたモニタリング活動量の履歴から、患者の血糖値の低下分相当のインスリン量を算出し、このインスリン量と現在投与中のインスリン量とを足した量が閾値以上で、且つ患者が補食を行っていない場合に、患者が過剰な運動により低血糖状態を引き起こす可能性があると判定する。
 そして、薬液投与装置2は、低血糖状態を引き起こす可能性がある旨を患者に通知するためにアラームを鳴らしたり、患者が低血糖状態を引き起こさないようにインスリンの投与量を減らしたりする。
 ところで、例えば、測定した血糖値のみをもとに、患者が低血糖状態を引き起こすか否かを判定する場合、図6(A)に示すように、まず時点t1で、血糖値が第1の閾値L1を下回ったためにインスリンの投与量を減らす。
 さらに時点t1以降も、血糖値が下がりつづけ、低血糖状態と判定できる第2の閾値L2に達した時点t2で、患者が低血糖状態となっていると判定して、例えばアラームを鳴らす。
 これに対して、本実施の形態の薬液投与装置2の場合、図6(B)に示すように、まず時点t1で、血糖値が第1の閾値L1を下回ったためにインスリンの投与量を減らす。
 その後、モニタリング活動量と平均活動量の比較、及び血糖値低下分相当のインスリン量と現在投与中のインスリン量とを足した量と閾値との比較から、図6(A)の時点t2よりも前の時点txで、患者が低血糖状態を引き起こす可能性があると判定する。
 このように薬液投与装置2では、測定した血糖値のみをもとに患者が低血糖状態を引き起こすか否かを判定する場合と比較して、より早い時点で、患者が低血糖状態を引き起こす可能性があるか否かを判定することができる。
 また薬液投与装置2では、患者の活動パターンに合わせてモニタリング活動量と平均活動量の比較を行うようにしたことにより、低血糖状態を引き起こす可能性があるか否かを判定するうえで、患者の活動パターン合った正確な判定を行うことができる。
 さらに薬液投与装置2では、患者が激しい運動をしていても、補食を行っていれば、患者が低血糖状態を引き起こす可能性はないと判定するようにした。
 これにより、低血糖状態にならないように補食を行っているにもかかわらず、低血糖状態を引き起こす可能性があると判定するようなことなく、より正確な判定を行うことができる。
 以上の構成によれば、薬液投与装置2は、実際に患者が低血糖状態を引き起こしてしまう前に、患者が低血糖状態を引き起こす可能性があるか否かを正確に判定することができ、かくして、患者が低血糖状態となるのを未然に防ぐことができる。
〔5.他の実施の形態〕
〔5-1.他の実施の形態1〕
 尚、上述した実施の形態では、薬液投与装置2が、アラームモード時、患者が低血糖状態を引き起こす可能性があると判定するとアラーム音を鳴らし、その後、アラーム解除スイッチSW5が操作されることに応じて、アラームを解除するようにした。
 これに限らず、例えば、アラーム音を鳴らした後、補食を行った患者により補食イベントスイッチSW1が操作されたら、アラームを解除するようにしてもよい。
 また、上述した実施の形態では、薬液投与装置2が、投与量自動制御モード時、患者が低血糖状態を引き起こす可能性があると判定すると、インスリンの投与量を自動的に減らすようにした。
 ここで、インスリンの投与量を自動的に減らした後、補食を行った患者により補食イベントスイッチSW1が操作されたら、インスリンの投与量を元の量に戻すようにしてもよい。
 さらに補食イベントスイッチSW1の操作に関わらず、患者の血糖値の低下分相当のインスリン量と現在投与中のインスリン量とを足した量が閾値以上であれば、患者が低血糖状態を引き起こす可能性があると判定して、アラームを鳴らしたりするようにしてもよい。
〔5-2.他の実施の形態2〕
 また、上述した実施の形態では、薬液投与装置2が、モニタリング活動量が平均活動量と比べて多いときに、患者が低血糖状態を引き起こす可能性があると判定するようにした。
 これに限らず、モニタリング活動量が平均活動量と比べて少ないときに、患者が高血糖状態を引き起こす可能性があると判定するようにしてもよい。
 この場合、薬液投与装置2のマイクロコンピュータ13は、低血糖状態を判定する場合とは逆に、例えば、一定時間以上、患者のモニタリング活動量が平均活動量-αx以下であり、且つ一定時間でのモニタリング活動量の積分値が、一定時間での平均活動量の積分値-βx以下である場合に、患者の活動量が著しく低下していると判定する。
 尚、αx及びβxはともに、患者の活動量が著しく低下していると判定できる値として設定されており、例えば、αxは、平均活動量×50%の一定値に設定され、βxは、平均活動量の積分値×50%の一定値に設定されている。
 さらにモニタリング活動量の履歴をもとに、血糖値の増加度合い(すなわち血糖値の増加分)を算出し、さらに血糖値の増加度合いとインスリン効果値とをもとに、増加分の血糖値を下げるのに必要なインスリン量を算出する。
 そして、例えば、現在投与中のインスリン量から増加分の血糖値を下げるのに必要なインスリン量を引いた量が、設定されている閾値以下である場合に、患者が高血糖状態を引き起こす可能性があると判断して、アラーム音を鳴らしたり、現在投与中のインスリン量を増やしたりする。
 尚、このとき増やすインスリン量は、例えば、増加分の血糖値を下げるのに必要なインスリン量とすればよい。
 このようにすれば、薬液投与装置2が、低血糖状態にくわえて、高血糖状態も未然に防ぐことができる。
〔5-3.他の実施の形態3〕
 さらに、上述した実施の形態では、加速度センサ18から得られる患者の体動をもとに、運動強度と時間との積で表される活動量を計測し、この活動量をもとに、患者が過剰な運動を行っているか否かを判定するようにした。
 これに限らず、患者が激しい運動を行っているか否かを判定できる情報であれば、運動強度と時間との積で表される活動量(EX)の代わりに、消費カロリーや運動強度などを患者の活動量として計測するようにしてもよい。
 尚、消費カロリーや運動強度についても、加速度センサ18から得られる患者の体動に基づいて計測することができ、そのアルゴリズムも広く知られている。
〔5-4.他の実施の形態4〕
 さらに、上述した実施の形態では、現在投与中のインスリン量と、血糖値低下分相当のインスリン量とを足した量が、設定されている閾値以上であり、且つ補食イベントスイッチSW1が操作されていない場合に、患者が低血糖状態を引き起こす可能性があると判定するようにした。
 これに限らず、補食を行ったときに、補食イベントスイッチSW1を操作させる代わりに、食べた物のカロリーや炭水化物量を操作部14を介して入力させるようにしてもよい。
 この場合、マイクロコンピュータ13は、入力されたカロリーや炭水化物量から血糖値の増加度合い(すなわち増加分)を算出し、さらにこの増加分の血糖値を下げるのに必要なインスリン量を算出する。尚、カロリーや炭水化物量に対する血糖値の増加度合いは、例えば、初期設定時に、患者情報として入力させるようにすればよい。
 そして、例えば、現在投与中のインスリン量と運動による血糖値低下分相当のインスリン量とを足した量から、補食による増加分の血糖値を下げるのに必要なインスリン量を引いた量が、設定されている閾値以上である場合に、患者が低血糖状態を引き起こす可能性があると判定するようにする。
 このように、単に補食したか否かでなく、どの程度の補食をしたかによって低血糖状態を判定するようにすれば、一段と正確に低血糖状態を引き起こす可能性があるか否かを判定することができる。
〔5-5.他の実施の形態5〕
 さらに、上述した実施の形態では、ベーサル投与時にのみ、低血糖状態の判定を行うようにした。
 これにくわえて、ボーラス投与時や任意のタイミングで行う血糖値測定(SMBG:Self Monitoring Blood Glucose)時にベーサル投与時のインスリン量をリセットできるようにしてもよい
〔5-6.他の実施の形態6〕
 さらに、上述した実施の形態では、一定時間以上、モニタリング活動量が平均活動量+α以上であり続けている場合、もしくは一定時間でのモニタリング活動量の積分値が一定時間での平均活動量の積分値+β以上である場合に、患者が普段と比べて激しい運動をしていると判定するようにした。
 これに限らず、一定時間以上、モニタリング活動量が平均活動量+α以上であり続けている場合にのみ患者が普段と比べて激しい運動をしていると判定するようにしてもよいし、一定時間でのモニタリング活動量の積分値が一定時間での平均活動量の積分値+β以上である場合にのみ患者が普段と比べて激しい運動をしていると判定するようにしてもよい。
〔5-7.他の実施の形態7〕
 さらに、上述した実施の形態では、薬液投与装置2に音声出力部としてのブザー17を設け、患者が過剰な運動により低血糖状態を引き起こす可能性があると判定したときに、ブザー17からアラームを鳴らすようにした。
 これに限らず、例えば、アラームを鳴らす代わりに、患者が低血糖状態を引き起こす可能性がある旨のアナウンス音声を出力するようにしてもよく、またこのようなアナウンス音声と共に、低血糖状態を引き起こす可能性がある旨の文字情報を表示部15に表示するなどしてもよい。
〔5-8.他の実施の形態8〕
 さらに、上述した実施の形態では、薬液投与装置2が、モードとして、アラームモードと投与量自動制御モードの2つのモードを有するようにしたが、これに限らず、どちらか一方のモードのみを有するようにしてもよい。
〔5-9.他の実施の形態9〕
 さらに、上述した実施の形態では、薬液投与装置2に加速度センサ18を設けるようにした。
 これに限らず、薬液投与装置2には加速度センサを設けず、薬液投与装置2とは別の装置に設けられた加速度センサから、患者の体動を示すデータを、通信部21を介して受信するようにしてもよい。
 さらに、上述した実施の形態では、薬液投与装置2とコントローラ3とを別体としたが、薬液投与装置2にコントローラ3の機能を設けることで、これらを一体としてもよい。
〔5-10.他の実施の形態10〕
 さらに、上述した実施の形態では、マイクロコンピュータ13が、加速度センサ18の検出結果に基づいて患者の活動量を計測する計測部、計測した活動量と患者の普段の平均活動量との比較結果から、患者が普段より激しい運動を行っているか否かを判定する第1の判定部、第1の判定部により普段より激しい運動を行っていると判定された場合に、運動により低下する血糖値に相当するインスリン量を算出し、算出したインスリン量と現在投与中のインスリン量とに基づいて、患者が低血糖状態を引き起こす可能性があるか否かを判定する第2の判定部として機能するようにした。
 これに限らず、例えば、マイクロコンピュータ13の代わりに、計測部、第1の判定部、第2の判定部としてそれぞれ機能する3つのハードウェアを薬液投与装置2に設けるようにしてもよいし、この他種々のソフトウェア構成及びハードウェア構成で、計測部、第1の判定部、第2の判定部を構成するようにしてもよい。
 本発明は、例えば医療分野に適用することができる。
 1……薬液投与システム、2……薬液投与装置、3……コントローラ、10……穿刺部、11……薬液送出部、12……薬液貯蔵部、13……マイクロコンピュータ、14……操作部、15……表示部、16……記憶部、17……ブザー、18……加速度センサ、19……血糖センサ、20……バッテリ、21……通信部

Claims (7)

  1.  使用者にインスリンを投与する携帯型の薬液投与装置において、
     使用者の体動を検出する加速度センサの検出結果に基づいて使用者の活動量を計測する計測部と、
     計測した当該活動量と使用者の平均活動量との比較から、使用者の当該活動量が前記平均活動量に対して、前記平均活動量よりも多いか否かを判定する第1の判定部と、
     前記第1の判定部により前記平均活動量よりも当該活動量が多いと判定された場合に、使用者の活動により低下する血糖値に相当するインスリン量を算出し、算出したインスリン量と現在投与中のインスリン量とに基づいて、使用者が低血糖状態を引き起こす可能性があるか否かを判定する第2の判定部と
     を有する薬液投与装置。
  2.  前記第1の判定部は、
     一定時間以上、計測した活動量が平均活動量に一定量の活動量を加えたものとして設定されている閾値以上であり続けた場合、もしくは一定時間計測した活動量の積分値が一定時間での平均活動量の積分値に一定値の活動量を加えたものとして設定されている閾値以上である場合に、使用者が前記平均活動量に対して当該活動量が多いと判定する
     請求項1に記載の薬液投与装置。
  3.  前記第2の判定部は、
     算出した運動により低下する血糖値に相当するインスリン量と、現在投与中のインスリン量とを足した量が、一定量以上となる場合に、使用者が低血糖状態を引き起こす可能性があると判定する
     請求項2に記載の薬液投与装置。
  4.  さらに使用者が補食を行ったときに操作する操作部を有し、
     前記第2の判定部は、
     算出した運動により低下する血糖値に相当するインスリン量と現在投与中のインスリン量とを足した量が一定量以上であり、且つ前記操作部が操作されてなく使用者が補食を行っていない場合に、使用者が低血糖状態を引き起こす可能性があると判定する
     請求項3に記載の薬液投与装置。
  5.  さらに音声出力部を有し、
     上記音声出力部は、
     上記第2の判定部により使用者が低血糖状態を引き起こす可能性があると判定されたときに、アラーム音を出力することで、使用者に低血糖状態を引き起こす可能性がある旨を通知する
     請求項1に記載の薬液投与装置。
  6.  さらに使用者に投与するインスリン量を制御する制御部を有し、
     前記制御部は、
     前記第2の判定部により使用者が低血糖状態を引き起こす可能性があると判定されたときに、低血糖状態を引き起こさないように現在投与中のインスリン量を減らす
     請求項1に記載の薬液投与装置。
  7.  さらに記憶部を有し、
     前記記憶部には、使用者の活動パターンに応じた時間帯ごとの平均活動量が記憶され、
     前記第1の判定部は、
     計測した活動量と、計測時の時間帯に対応する平均活動量との比較結果から、前記平均活動量に対して当該活動量が多いか否かを判定する
     請求項1に記載の薬液投与装置。
PCT/JP2013/001158 2012-02-28 2013-02-27 薬液投与装置 WO2013128912A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-041705 2012-02-28
JP2012041705 2012-02-28

Publications (1)

Publication Number Publication Date
WO2013128912A1 true WO2013128912A1 (ja) 2013-09-06

Family

ID=49082124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001158 WO2013128912A1 (ja) 2012-02-28 2013-02-27 薬液投与装置

Country Status (1)

Country Link
WO (1) WO2013128912A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016502420A (ja) * 2012-10-30 2016-01-28 デックスコム・インコーポレーテッド 高感度でかつ特異的なアラームを提供するためのシステム及び方法
WO2016079128A1 (en) * 2014-11-17 2016-05-26 Zealand Pharma A/S Apparatus and methods for administering a pharmaceutical agent

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004024699A (ja) * 2002-06-27 2004-01-29 Asahi Medical Co Ltd 血糖管理システム、血糖管理プログラム、装着システムおよび血糖管理方法
WO2010052849A1 (ja) * 2008-11-04 2010-05-14 パナソニック株式会社 測定装置、インスリン注入装置、測定方法、インスリン注入装置の制御方法及びプログラム
JP2011200457A (ja) * 2010-03-25 2011-10-13 Seiko Epson Corp 流体注入システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004024699A (ja) * 2002-06-27 2004-01-29 Asahi Medical Co Ltd 血糖管理システム、血糖管理プログラム、装着システムおよび血糖管理方法
WO2010052849A1 (ja) * 2008-11-04 2010-05-14 パナソニック株式会社 測定装置、インスリン注入装置、測定方法、インスリン注入装置の制御方法及びプログラム
JP2011200457A (ja) * 2010-03-25 2011-10-13 Seiko Epson Corp 流体注入システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016502420A (ja) * 2012-10-30 2016-01-28 デックスコム・インコーポレーテッド 高感度でかつ特異的なアラームを提供するためのシステム及び方法
US10143426B2 (en) 2012-10-30 2018-12-04 Dexcom, Inc. Systems and methods for dynamically and intelligently monitoring a host's glycemic condition after an alert is triggered
US10555705B2 (en) 2012-10-30 2020-02-11 Dexcom, Inc. Systems and methods for dynamically and intelligently monitoring a host's glycemic condition after an alert is triggered
US10702215B2 (en) 2012-10-30 2020-07-07 Dexcom, Inc. Systems and methods for dynamically and intelligently monitoring a host's glycemic condition after an alert is triggered
US11006903B2 (en) 2012-10-30 2021-05-18 Dexcom, Inc. Systems and methods for dynamically and intelligently monitoring a host's glycemic condition after an alert is triggered
US11026640B1 (en) 2012-10-30 2021-06-08 Dexcom, Inc. Systems and methods for dynamically and intelligently monitoring a host's glycemic condition after an alert is triggered
US11690577B2 (en) 2012-10-30 2023-07-04 Dexcom, Inc. Systems and methods for dynamically and intelligently monitoring a host's glycemic condition after an alert is triggered
WO2016079128A1 (en) * 2014-11-17 2016-05-26 Zealand Pharma A/S Apparatus and methods for administering a pharmaceutical agent

Similar Documents

Publication Publication Date Title
US10940266B2 (en) Control unit for infusion pump units, including a controlled intervention unit
US11883190B2 (en) Autonomous drug delivery system
JP5671824B2 (ja) 流体注入システム
US9028407B1 (en) Methods and apparatus for monitoring patient conditions
US11004555B2 (en) System and method considering the effect of physical activity on the glucoregulatory system
CN101534704A (zh) 自适应低血糖警报系统和方法
JP2010522600A (ja) 加速度センサによって測定される患者の活動状態に基づく薬剤投与
WO2009115948A1 (en) A closed loop system for automatically controlling a physiological variable of a patient
JP2017537753A (ja) 呼吸パラメータによって誘導される自動静脈内投与および静脈内チューブクランプアクティブ化
EP4104183A1 (en) Dual hormone delivery system for reducing impending hypoglycemia and/or hyperglycemia risk
WO2013128912A1 (ja) 薬液投与装置
US20220262479A1 (en) Methods and Devices for Minimally Burdensome Blood Glucose Management for Insulin-requiring Diabetes
CN111741712A (zh) 血压测定装置、血压测定方法和程序、呼吸辅助装置
JP5561095B2 (ja) 流体注入システム
WO2019027491A1 (en) RESPIRATION MONITORING SYSTEM WITH SENSORY ALERT
WO2019169026A1 (en) Autonomous drug delivery system
JP5971283B2 (ja) 流体注入システム
US20240138760A1 (en) Autonomous drug delivery system
JP5592314B2 (ja) 生体モニタリングシステムとプログラム
US20230389864A1 (en) Identification of a nociception parameter
EP3242233B1 (en) Sensor device for detecting at least one analyte in a body fluid of a user
JP2020092813A (ja) 生体情報システム
JP2019076705A (ja) 測定装置、測定プログラム及び測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13755439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP