WO2013128831A1 - Solid-state image pickup device - Google Patents

Solid-state image pickup device Download PDF

Info

Publication number
WO2013128831A1
WO2013128831A1 PCT/JP2013/000854 JP2013000854W WO2013128831A1 WO 2013128831 A1 WO2013128831 A1 WO 2013128831A1 JP 2013000854 W JP2013000854 W JP 2013000854W WO 2013128831 A1 WO2013128831 A1 WO 2013128831A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
voltage
pixel
time
unit
Prior art date
Application number
PCT/JP2013/000854
Other languages
French (fr)
Japanese (ja)
Inventor
楠田 将之
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2013515615A priority Critical patent/JP5454741B1/en
Publication of WO2013128831A1 publication Critical patent/WO2013128831A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/65Noise processing, e.g. detecting, correcting, reducing or removing noise applied to reset noise, e.g. KTC noise related to CMOS structures by techniques other than CDS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/571Control of the dynamic range involving a non-linear response
    • H04N25/573Control of the dynamic range involving a non-linear response the logarithmic type

Definitions

  • the present invention relates to a solid-state imaging device having a linear log characteristic in which a linear characteristic and a log characteristic are switched at an inflection point.
  • Such a solid-state imaging device includes a photoelectric conversion element exhibiting linear log characteristics, a transfer transistor connected to the photoelectric conversion element, a floating diffusion layer connected to the transfer transistor, and a reset transistor having a source connected to the floating diffusion layer. And a pixel section having amplifying transistors that amplify the voltage of the floating diffusion layer and output the pixel signal as a pixel signal.
  • Japanese Patent Application Laid-Open No. 2004-26883 discloses an image pickup apparatus drive that can observe an inflection point position of a linear log characteristic and an inclination of the log characteristic in real time by injecting a charge from the drain of the reset transistor to the photoelectric conversion element (white reset). A method is described.
  • N-bit analog / digital conversion processing is repeatedly performed W times for each of a reset signal indicating a noise component of a pixel signal and a signal signal indicating a noise component and a signal component, and these are added.
  • a technique for reducing random noise by performing digital addition processing is described.
  • Patent Document 3 describes a method for reducing random noise during AD conversion of a pixel signal, but does not describe white reset.
  • An object of the present invention is to provide a solid-state imaging device in which random noise included in a white reset output is reduced without increasing the circuit scale.
  • a solid-state imaging device includes a photoelectric conversion element in which a low luminance side exhibits linear characteristics and a high luminance side exhibits log characteristics at an inflection point, a transfer transistor connected to the photoelectric conversion element, A pixel having a floating diffusion layer connected to a transfer transistor, a control transistor and a reset transistor connected between the floating diffusion layer, and an amplification transistor that amplifies the voltage of the floating diffusion layer and outputs it as a pixel signal
  • the pixel array unit in which circuits are arranged in a matrix and the control voltage are set, and the voltages of the control terminals of the reset transistor and the transfer transistor are set to control on / off of the reset transistor and the transfer transistor.
  • the control unit, and a reading unit that is provided for each column of the pixel unit and reads out the pixel signal the control unit Then, after the pixel signal obtained by exposing the subject with the control terminal of the transfer transistor set to an intermediate potential is read as a normal pixel signal to the reading unit, (1) the control voltage is set to the photoelectric By setting the voltage at which charge can be injected into the conversion element, charge is injected into the photoelectric conversion element via the reset transistor. (2) Next, the control terminal of the transfer transistor is turned on for a predetermined time. By setting the intermediate potential, the charge injected into the photoelectric conversion element is leaked. (3) Next, the reading unit is controlled to read out the pixel signal as a white reset signal. (4) Next In addition, the steps (1) to (3) are repeated M times (M is an integer of 2 or more), and the reading unit calculates the average value of the read M white reset signals.
  • M is an integer of 2 or more
  • the block diagram which shows the structure of a solid-state imaging device and an external device The block diagram which shows the structure of a solid-state image sensor.
  • the circuit diagram of a pixel Pixel timing chart. Photoelectric conversion characteristics during normal exposure output of pixels. Photoelectric conversion characteristics during pixel white reset. 6 is a timing chart illustrating pixel driving and column ADC operations according to the first embodiment. 9 is a timing chart illustrating pixel driving and column ADC operations according to the second embodiment.
  • FIG. 1 is a block diagram showing an overall configuration of a solid-state imaging device 1 according to an embodiment of the present invention.
  • a solid-state imaging device 1 illustrated in FIG. 1 is a solid-state imaging device having a photoelectric conversion characteristic of a linear log characteristic in which a linear characteristic and a log characteristic are switched at an inflection point.
  • the solid-state imaging device 1 according to the present embodiment is a solid-state imaging device having a linear log characteristic photoelectric conversion characteristic having a linear characteristic on the low luminance side and a log characteristic on the high luminance side from the inflection point.
  • the solid-state imaging device 1 includes an imaging element 110 and an image processing unit 120.
  • the image sensor 110 and the image processing unit 120 may be configured in one IC chip or may be configured as separate IC chips.
  • the image processing unit 120 includes an image signal processing unit 121 and an image sensor control unit 122.
  • the image sensor control unit 122 outputs SYSCLK and the register control signal to the image sensor 110 to control the image sensor 110.
  • SYSCLK is a clock signal having a predetermined frequency (for example, 54 MHz) generated by an oscillation circuit (not shown), for example.
  • the register control signal is a signal for writing data to various registers included in the timing control unit 22 shown in FIG.
  • the image sensor 110 outputs an image signal to the image signal processing unit 121.
  • the image signal processing unit 121 performs various image processing on the image signal and outputs the image signal as an image output signal to an external device.
  • the external device corresponds to a display device such as a liquid crystal panel or an organic EL panel, a memory for holding an image output signal, or the like.
  • FIG. 2 is a block diagram showing a detailed configuration of the image sensor 110 shown in FIG.
  • the image sensor 110 includes a pixel array unit 21, a timing control unit 22, a row decoder 23, a column ADC array unit 24 (reading unit), a column decoder 25, a sense amplifier 26, an LVDS serializer 27, an output terminal 28, and a ramp wave generation circuit 29. (Reference signal generator) and input terminals 210 and 211 are provided.
  • the pixel array unit 21 includes a plurality of pixels GC arranged in a matrix with M (an integer of 2 or more) rows ⁇ N (an integer of 2 or more) columns.
  • the timing control unit 22 includes a PLL, a timing generator (TG), and a register, and controls the row decoder 23, the column ADC array unit 24, the column decoder 25, the sense amplifier 26, the LVDS serializer 27, and the ramp wave generation circuit 29.
  • the PLL multiplies (for example, doubles) SYSCLK as necessary and supplies it to the TG.
  • the TG generates timing signals such as a horizontal synchronization signal and a vertical synchronization signal according to the signal supplied from the PLL, and generates a row decoder 23, a column ADC array unit 24, a column decoder 25, a sense amplifier 26, an LVDS serializer 27, and a ramp wave.
  • the circuit 29 is supplied to synchronize these operations.
  • the register holds data for defining waveforms of various pixel control signals output to each pixel by the row decoder 23, for example.
  • data held by the register is written by a register control signal output from the image sensor control unit 122.
  • the row decoder 23 includes, for example, a vertical scanning circuit and a driver circuit.
  • the vertical scanning circuit is configured by, for example, a shift register, and cyclically selects each row of the pixel array unit 21 using a vertical synchronization signal output from the TG of the timing control unit 22 as a trigger, and vertically scans the pixel array unit 21. To do.
  • the driver circuit generates a pixel control signal according to the data written in the register of the timing control unit 22, and drives each pixel GC by supplying the pixel control signal to each pixel GC.
  • the timing control unit 22 and the row decoder 23 correspond to the control unit in the present invention.
  • the column ADC array unit 24 includes N column ADCs 212 corresponding to the respective columns of the pixel array unit 21.
  • the column ADC 212 is connected to the pixel GC of each column via the vertical signal line L_1 corresponding to each column of the pixel array unit 21, and reads the pixel signal from the pixel GC of the row selected by the vertical scanning circuit.
  • Each pixel of the pixel array unit 21 outputs a pixel signal composed of only a noise component and a pixel signal obtained by adding a signal component to the noise component in one horizontal period.
  • a pixel signal including only a noise component is described as a noise component signal
  • a pixel signal obtained by adding a signal component to the noise component is described as a noise / signal component signal.
  • the column ADC 212 When an analog pixel signal is input from the pixel GC, the column ADC 212 performs AD conversion by counting time until the level of the ramp signal output from the ramp wave generation circuit 29 exceeds the level of the pixel signal. This is a single slope AD converter.
  • the column decoder 25 is constituted by, for example, a shift register, and cyclically selects the column ADC 212 of each column in one horizontal scanning period by outputting a column selection signal synchronized with the horizontal synchronization signal. As a result, the column ADC array unit 24 is horizontally scanned, and digital image signals held by the column ADC 212 of each column are sequentially output to the sense amplifier 26.
  • the sense amplifier 26 amplifies a digital image signal output from the column ADC array unit 24 via the horizontal signal line L_2 and outputs the amplified signal to the LVDS serializer 27.
  • the LVDS serializer 27 is a serializer compliant with the LVDS (Low Voltage differential signaling) standard, and differentially amplifies a signal output in parallel via the horizontal signal line L_2 from the sense amplifier 26 to obtain a predetermined bit signal. And output to the output terminal 28.
  • LVDS Low Voltage differential signaling
  • the output terminal 28 outputs the image signal from the LVDS serializer 27 to the image signal processing unit 121.
  • the ramp wave generation circuit 29 generates a ramp signal that changes linearly with a certain inclination and outputs the ramp signal to the column ADC 212.
  • the input terminal 210 receives SYSCLK supplied from the image sensor control unit 122 and outputs it to the timing control unit 22.
  • the input terminal 211 receives a register control signal supplied from the image sensor control unit 122 and outputs the register control signal to the timing control unit 22.
  • FIG. 3 is a circuit diagram showing an example of the pixel GC constituting the pixel array unit 21.
  • the pixel circuit shown in FIG. 3 includes a light receiving element (hereinafter referred to as “PD”), a transfer transistor TX (hereinafter referred to as “TX”), a reset transistor RST (hereinafter referred to as “RST”), and amplification.
  • PD light receiving element
  • TX transfer transistor
  • RST reset transistor
  • a transistor SF hereinafter referred to as “SF”
  • SEL row selection transistor
  • FD floating diffusion layer FD
  • PD is composed of a buried (complete transfer type) photodiode, a drive voltage PVSS is applied to the anode, and TX is connected to the cathode. The electric charge accumulated in the PD is transferred to the FD via TX.
  • TX is composed of, for example, an nMOS (negative channel, metal, oxide, semiconductor), and transfers signal charges accumulated in the PD to the FD.
  • a transfer control signal ⁇ TX (an example of a pixel control signal, hereinafter referred to as “ ⁇ TX”) for turning on / off TX is input to the gate of TX.
  • the drain of TX is connected to RST via FD.
  • ⁇ TX becomes a low level
  • Hi high level
  • FD accumulates signal charges transferred from PD. As a result, a voltage corresponding to the signal charge appears in the FD.
  • RST is composed of, for example, an nMOS, resets the FD, and discharges signal charges accumulated in the FD to the outside of the FD.
  • a reset signal ⁇ RST (an example of a pixel control signal, hereinafter referred to as “ ⁇ RST”) for turning on / off RST is input to the gate of RST, and ⁇ RD (control voltage, hereinafter referred to as “ ⁇ RD”) is described as a drain.
  • ⁇ RD control voltage
  • the source is connected to the gate of the SF through the FD.
  • PVDD and PVSS are output from a voltage source (not shown), and ⁇ RST and ⁇ RD are output from the row decoder 23.
  • SF is composed of, for example, an nMOS, the gate is connected to TX and RST via FD, PVDD is input to the drain, and the source is connected to SEL.
  • the SF amplifies the voltage appearing on the FD and outputs it to the SEL.
  • the SEL is composed of, for example, an nMOS, and a row selection signal ⁇ VSEN (an example of a pixel control signal, hereinafter referred to as “ ⁇ VSEN”) is input to a gate, a drain is connected to SF, and a source is connected via a vertical signal line L_1.
  • ⁇ VSEN an example of a pixel control signal
  • the SEL outputs the voltage amplified by the SF as an image signal to the column ADC 212 in the corresponding column via the vertical signal line L_1.
  • ⁇ VSEN is output from the row decoder 23.
  • FIG. 4 is a timing chart of the pixel GC in the present embodiment.
  • the voltage of the FD decreases from the reset level V_PVDD to the noise level. This is because signal charges are generated in the FD due to the influence of the parasitic capacitance between the FD and RST, the ktc noise of the FD, and the like due to the change of ⁇ RST from Hi to Lo. Since such parasitic capacitance between FD and RST and ktc noise vary from pixel to pixel, the noise level varies from pixel to pixel.
  • the reset level V_PVDD indicates the level of PVDD.
  • the column ADC 212 performs AD conversion on the analog noise component signal by counting the time until the level of the signal RAMP exceeds the level of the noise component signal.
  • ⁇ TX Lo
  • the potential (signal level) of FD is read to the column ADC 212 as a noise signal component signal.
  • the column ADC 212 performs AD conversion on the analog noise signal component signal by counting the time until the level of the signal RAMP output from the ramp wave generation circuit 29 exceeds the level of the noise signal component signal.
  • the column ADC 212 removes the digital noise component signal from the digital noise signal component signal and outputs the digital signal component signal as an image signal.
  • ⁇ RST Hi
  • the FD is reset.
  • the drive sequence shown at times t0 to t4 is for normal exposure.
  • ⁇ RD Hi
  • ⁇ TX is set to an intermediate potential.
  • the PD charge gradually leaks to the FD side.
  • the PD leak time during which ⁇ TX is an intermediate potential is made infinitely long
  • the PD has a charge up to the potential barrier of the transfer transistor, that is, a charge amount indicating the inflection point output of the pixel GC.
  • the charge remaining in the PD after securing a certain amount of PD leakage time indicates the potential barrier of the transfer transistor of each pixel GC.
  • ⁇ VSEN Hi
  • the potential (noise level) of FD is read to the column ADC 212 as a noise component signal.
  • the column ADC 212 AD converts the analog noise component signal.
  • ⁇ TX Lo
  • the potential (signal level) of FD is read to the column ADC 212 as a noise signal component signal.
  • the column ADC 212 AD converts the analog noise signal component signal.
  • the signal RAMP shown at time t3, which is the normal exposure output time has a waveform in which the voltage decreases with a predetermined gradient from the voltage V1 to the voltage V3.
  • the signal RAMP shown at time t9 at the time of white reset output has a waveform in which the voltage decreases with a predetermined gradient from the voltage V2 to the voltage V3.
  • V1> V2> V3 and the voltage V2 is an offset value.
  • FIG. 5 shows the photoelectric conversion characteristics at the time of normal exposure output of the pixel GC.
  • the sensor output changing depending on the amount of incident light
  • the output of the log area varies for each pixel GC. Therefore, when AD converting the noise / signal component signal of the normal exposure output, it is necessary to set the voltage range of the signal RAMP so as to include the entire output range of the pixel GC.
  • FIG. 6 is a photoelectric conversion characteristic at the time of white reset output of the pixel GC.
  • the white reset output does not depend on the amount of incident light, and an output corresponding to the inflection point position of each pixel GC is always obtained.
  • the output width that the white reset output can take corresponds to the inflection point variation of each pixel GC. Therefore, it is not necessary to prepare a signal RAMP that includes the entire output range of the pixel GC as in normal exposure output, and it is sufficient to prepare a signal RAMP that can include inflection point variations. By doing so, the column ADC 212 has a narrow scan range of the signal RAMP, and therefore, the AD conversion time at the time of white reset output can be shortened. The white reset can be performed a plurality of times using the shortened time.
  • a white reset sequence WR1b (times t10 to t16) having the same PD leak time is performed. Thereafter, a white reset sequence WR2a (time t16 to t22) and a white reset sequence WR2b (time t22 to t28) having different PD leak times from the first white reset are performed.
  • the white reset sequences WR2a and WR2b have the same PD leak time. The reason why white reset with different PD leak times is performed is to correct variation in log inclination in addition to variation in inflection points.
  • one sequence constituted by the white reset sequences WR1a and WR1b corresponds to a unit sequence. Further, one sequence composed of the white reset sequences WR2a and WR2b corresponds to a unit sequence.
  • two types of unit sequences with different leak times are illustrated as unit sequences, but the present invention is not limited to this, and three or more types of unit sequences with different leak times may be executed.
  • FIG. 7 is a timing chart showing the pixel driving and the operation of the column ADC 212 in the present embodiment.
  • the column ADC 212 reads out the noise component signal (Ref) at the time of normal exposure (S1), performs AD conversion (S2), and holds the converted digital data in the memory in the column ADC 212 (S3).
  • the noise signal component signal (Signal) is read out (S4) and AD converted (S5), and the converted digital data is held in the memory (S6).
  • the column ADC 212 performs CDS by taking the difference between the digital Ref and Signal (S7). The data after the CDS is accumulated in the memory in the column ADC 212 (S8).
  • the column ADC 212 reads the noise component signal (WR1a_R) (S9), performs AD conversion (S10), and holds the converted digital data in the memory in the column ADC 212 (S11). Subsequently, the noise signal component signal (WR1a_S) is read out (S12) and AD converted (S13), and the converted digital data is held in the memory (S14).
  • the column ADC 212 performs CDS by taking the difference between the digital WR1a_R and WR1a_S (S15). The post-CDS data (WR1a) is held in the memory in the column ADC 212 (S16).
  • the column ADC 212 reads the noise component signal (WR1b_R) (S17) and performs AD conversion (S18), and the converted digital data is stored in the memory in the column ADC 212. (S19). Subsequently, the noise signal component signal (WR1b_S) is read out (S20) and AD converted (S21), and the converted digital data is held in the memory (S22).
  • the column ADC 212 performs CDS by taking the difference between the digital WR1b_R and WR1b_S (S23). The post-CDS data (WR1b) is held in the memory in the column ADC 212 (S24). Thereafter, the column ADC 212 calculates an average value (WR1) of WR1a and WR1b, which is data after CDS (S25), and holds it in the memory in the column ADC 212 (S26).
  • the column ADC 212 reads the noise component signal (WR2a_R) (S27) and performs AD conversion (S28). The converted digital data is held in the memory in the column ADC 212 (S29). Subsequently, the noise signal component signal (WR2a_S) is read out (S30) and AD converted (S31), and the converted digital data is held in the memory (S32). Then, the column ADC 212 performs CDS by taking the difference between the digital WR2a_R and WR2a_S (S33). The post-CDS data (WR2a) is held in the memory in the column ADC 212 (S34).
  • the column ADC 212 reads out the noise component signal (WR2b_R) (S35) and performs AD conversion (S36), and the converted digital data is stored in the memory in the column ADC 212. (S37). Subsequently, the noise signal component signal (WR2b_S) is read out (S38) and subjected to AD conversion (S39), and the converted digital data is held in the memory (S40). Then, the column ADC 212 performs CDS by taking the difference between the digital WR2b_R and WR2b_S (S41). The post-CDS data (WR2b) is held in the memory in the column ADC 212 (S42). Thereafter, the column ADC 212 obtains an average value (WR2) of WR1a and WR2b, which is data after CDS (S43), and holds it in the memory in the column ADC 212 (S44).
  • the image signal processing unit 121 corrects the pixel signal obtained during the normal exposure, so that noise such as inflection point variation and log inclination variation in the pixel signal is corrected. It can be corrected.
  • random noise included in the white reset output can be reduced by continuously performing the white reset with the same PD leak time twice and averaging each white reset output. Furthermore, by performing white reset with different PD leak times a plurality of times, it is possible to correct variations in inflection points and log inclinations of pixel signals obtained by normal exposure.
  • the white reset with the same PD leak time is performed twice, but is not limited to twice.
  • the effect of reducing random noise increases as the number of white resets increases. In a simple calculation, if the white reset is performed M times (M is an integer of 2 or more) and averaging is performed, the random noise becomes 1 / ⁇ M.
  • the pixel GC has been described as using an embedded PD, it may be configured by a surface PD.
  • the digital data after AD conversion is averaged at all white reset outputs.
  • the CDS of white reset output and the averaging process are performed using analog values, and AD conversion is performed only on the averaged values. Note that the structure of the solid-state imaging device 1 and the imaging element 110, the circuit diagram of the pixel GC, and the timing chart of the pixel GC in the second embodiment are the same as those in FIGS.
  • FIG. 8 is a timing chart showing the pixel driving and the operation of the column ADC 212 in the present embodiment.
  • the column ADC 212 reads the noise component signal (Ref) at the time of normal exposure (S51), further reads the noise signal component signal (Signal) (S52), and performs CDS by taking the difference between the two (S53). ).
  • the column ADC 212 AD-converts the analog data after CDS (S54) and stores it in the memory in the column ADC 212 (S55).
  • the column ADC 212 reads the noise component signal (WR1a_R) (S56), further reads the noise signal component signal (WR1a_S) (S57), and obtains the difference between the two. Thus, CDS is performed (S58).
  • the column ADC 212 holds the analog data (WR1a) after CDS in the memory in the column ADC 212.
  • the column ADC 212 reads out the noise component signal (WR1b_R) at the time of white reset (S59), and further reads out the noise signal component signal (WR1b_S) ( S60) CDS is performed by taking the difference between the two (S61). Then, the column ADC 212 obtains an average value (WR1) of WR1a and WR1b, which is analog data after CDS (S62), performs AD conversion on the average value (WR1) (S63), and after conversion Data is held in the memory (S64).
  • the column ADC 212 reads the noise component signal (WR2a_R) (S65), and further the noise signal component The signal (WR2a_S) is read (S66), and CDS is performed by taking the difference between the two (S67).
  • the column ADC 212 holds the analog data (WR2a) after CDS in the memory in the column ADC 212.
  • the column ADC 212 reads the noise component signal (WR2b_R) (S68), and further reads the noise signal component signal (WR2b_S) (S69).
  • the CDS is performed by taking (S70).
  • the column ADC 212 obtains an average value (WR2) of WR2a and WR2b, which is analog data after CDS (S71), performs AD conversion on the average value (WR2) (S72), and after conversion Data is held in the memory (S73).
  • the number of AD conversions is reduced in this embodiment, so that the time required for one scan can be shortened.
  • the power consumption of the entire image sensor 110 is reduced.
  • the solid-state imaging device includes a photoelectric conversion element having a linear characteristic on a low luminance side and a log characteristic on a high luminance side at an inflection point, a transfer transistor connected to the photoelectric conversion element, and a transfer transistor connected to the transfer transistor.
  • a pixel circuit having a floating diffusion layer, a reset transistor connected between the control voltage and the floating diffusion layer, and an amplification transistor that amplifies the voltage of the floating diffusion layer and outputs the amplified pixel signal as a pixel signal.
  • An arrayed pixel array unit a control unit for setting the control voltage, and setting a voltage at a control terminal of the reset transistor and the transfer transistor to control on / off of the reset transistor and the transfer transistor;
  • a reading unit that is provided for each column of the pixel units and reads out the pixel signals, and the control unit includes the transfer traffic.
  • Steps (1) to (3) are repeated M times (M is an integer of 2 or more), and the reading unit calculates an average value of the read white reset signals for the M times.
  • the white reset shown in steps (1) to (3) is repeated M times, and each white reset signal is averaged, thereby reducing random noise included in the white reset signal. it can. Therefore, it is possible to improve the effect of correcting the variation of the normal pixel signal.
  • the reading unit performs analog / digital conversion on the M white reset signals and averages the digital white reset signals to calculate the average value.
  • the reading unit preferably averages the M analog white reset signals and calculates the average value, and then performs analog / digital conversion on the average value.
  • a reference signal generation unit that generates a ramp signal
  • the readout unit is a single slope type, and performs analog / digital conversion of the pixel signal using the ramp signal.
  • the reference signal generator has a first change that changes with a predetermined slope from time to time when the reading unit performs analog / digital conversion of the normal pixel signal from a predetermined voltage V1 to a predetermined voltage V3.
  • the predetermined voltage with time elapses from the voltage V2 which is a voltage between the voltage V1 and the voltage V3 to the voltage V3. It is preferable to output a second ramp signal that changes with an inclination.
  • the first lamp signal used during the normal exposure has a waveform from the voltage V1 to the voltage V3
  • the second lamp signal used during the white reset has a waveform from the voltage V2 to the voltage V3
  • the second ramp signal has a shorter scan width at the time of analog / digital conversion than the first ramp signal. That is, the time required for the analog / digital conversion can be shortened, and the white reset can be performed a plurality of times for the shortened time.
  • a range from the voltage V2 to the voltage V3 of the second ramp signal is a range including variations in the white reset signal.
  • a pixel signal corresponding to the inflection point position is obtained. That is, by making the second ramp signal a waveform including at least inflection point variation, the scan range of the ramp signal at the time of analog / digital conversion is narrowed, and the analog / digital conversion time of the white reset signal can be shortened. it can.
  • the leak time in the step (2) is constant and the sequence in which the steps (1) to (3) are repeated M times is a unit sequence, the leak time differs.
  • the unit sequence may be executed a plurality of times.

Abstract

At a time (t5) after an ordinary exposure output, a charge is injected to a PD. At a time (t6), a φTX is kept at an intermediate potential, and the charge of the PD gradually leaks to an FD side. At a time (t7), the potential of the FD is read, as a noise component signal, by a column ADC. At a time (t8), the signal charge stored in the PD is transferred to the FD. At a time (t9), the potential of the FD is read, as a noise signal component signal, by the column ADC. M white resets having the same PD leakage time (where M is an integer equal to or greater than two) are implemented, and the column ADC averages the signal.

Description

固体撮像装置Solid-state imaging device
 本発明は、リニア特性とログ特性とが変曲点で切り替わるリニアログ特性を持つ固体撮像装置に関するものである。 The present invention relates to a solid-state imaging device having a linear log characteristic in which a linear characteristic and a log characteristic are switched at an inflection point.
 近年、ダイナミックレンジの拡大を図るために、変曲点を境に低輝度側にリニア特性を持ち、高輝度側にログ特性を持つ固体撮像装置が知られている。このような光電変換特性は、リニアログ特性と呼ばれており、例えば、特許文献1が知られている。以下、リニアログ特性において、リニア特性を持つ領域をリニア領域、ログ特性を持つ領域をログ領域と記述する。 In recent years, in order to expand the dynamic range, a solid-state imaging device having a linear characteristic on the low luminance side and a log characteristic on the high luminance side at the inflection point is known. Such photoelectric conversion characteristics are called linear log characteristics, and for example, Patent Document 1 is known. Hereinafter, in the linear log characteristics, an area having linear characteristics is described as a linear area, and an area having log characteristics is described as a log area.
 このような固体撮像素子は、リニアログ特性を示す光電変換素子と、光電変換素子に接続された転送トランジスタと、転送トランジスタに接続された浮遊拡散層と、ソースが浮遊拡散層に接続されたリセットトランジスタと、浮遊拡散層の電圧を増幅して画素信号として出力する増幅トランジスタと、を有する画素回路がマトリクス状に配列された画素部を備えている。特許文献2には、リセットトランジスタのドレインから光電変換素子へ電荷を注入(ホワイトリセット)することで、リニアログ特性の変曲点位置やログ特性の傾きをリアルタイムに観測することができる撮像装置の駆動方法が記載されている。 Such a solid-state imaging device includes a photoelectric conversion element exhibiting linear log characteristics, a transfer transistor connected to the photoelectric conversion element, a floating diffusion layer connected to the transfer transistor, and a reset transistor having a source connected to the floating diffusion layer. And a pixel section having amplifying transistors that amplify the voltage of the floating diffusion layer and output the pixel signal as a pixel signal. Japanese Patent Application Laid-Open No. 2004-26883 discloses an image pickup apparatus drive that can observe an inflection point position of a linear log characteristic and an inclination of the log characteristic in real time by injecting a charge from the drain of the reset transistor to the photoelectric conversion element (white reset). A method is described.
 また、特許文献3には、画素信号のノイズ成分を示すリセット信号と、ノイズ成分とシグナル成分を示すシグナル信号のそれぞれについてNビットのアナログ/デジタル変換処理をW回繰り返して行い、それらを加算してデジタル加算処理することで、ランダムノイズの低減を図る技術が記載されている。 In Patent Document 3, N-bit analog / digital conversion processing is repeatedly performed W times for each of a reset signal indicating a noise component of a pixel signal and a signal signal indicating a noise component and a signal component, and these are added. A technique for reducing random noise by performing digital addition processing is described.
 しかしながら、特許文献2に記載されている技術において、画素信号のばらつき補正の効果を上げるためには、ホワイトリセット時に出力された画素信号に含まれるランダムノイズを除去する必要があった。特に、ログ特性の傾き検出は、2回分のホワイトリセットの出力差を用いて行うため、ホワイトリセット時に出力された画素信号に含まれるノイズ成分は影響が大きい。 However, in the technique described in Patent Document 2, it is necessary to remove random noise included in the pixel signal output at the time of white reset in order to increase the effect of correcting the variation of the pixel signal. In particular, since the inclination detection of the log characteristic is performed using the output difference between the two white resets, the noise component included in the pixel signal output at the time of the white reset has a large influence.
 また、特許文献3には、画素信号のAD変換時にランダムノイズを低減する方法が記載されているが、ホワイトリセットについては記載されていない。 Also, Patent Document 3 describes a method for reducing random noise during AD conversion of a pixel signal, but does not describe white reset.
特開2006-50544号公報JP 2006-50544 A 特開2006-140666号公報JP 2006-140666 A 特開2009-296423号公報JP 2009-296423 A
 本発明の目的は、回路規模を大きくすることなく、ホワイトリセット出力に含まれるランダムノイズを低減させた固体撮像装置を提供することである。 An object of the present invention is to provide a solid-state imaging device in which random noise included in a white reset output is reduced without increasing the circuit scale.
 本発明の一側面による固体撮像装置は、変曲点を境に低輝度側がリニア特性を示し、高輝度側がログ特性を示す光電変換素子と、前記光電変換素子に接続された転送トランジスタと、前記転送トランジスタに接続された浮遊拡散層と、制御電圧と前記浮遊拡散層の間に接続されたリセットトランジスタと、前記浮遊拡散層の電圧を増幅して画素信号として出力する増幅トランジスタと、を有する画素回路がマトリクス状に配列された画素アレイ部と、前記制御電圧を設定すると共に、前記リセットトランジスタ及び前記転送トランジスタの制御端子の電圧を設定して当該リセットトランジスタ及び当該転送トランジスタのオン/オフを制御する制御部と、前記画素部の列毎に設けられ、前記画素信号を読み出す読出部とを備え、前記制御部は、前記転送トランジスタの制御端子を中間電位に設定して被写体を露光することで得られた前記画素信号を通常画素信号として前記読出部に読み出させた後、(1)前記制御電圧を前記光電変換素子へ電荷注入が可能な電圧に設定することで、前記リセットトランジスタを介して当該光電変換素子へ電荷を注入させ、(2)次に、予め定められた時間だけ前記転送トランジスタの制御端子を中間電位に設定することで、前記光電変換素子に注入された電荷をリークさせ、(3)次に、前記読出部に前記画素信号をホワイトリセット信号として読み出させる制御を行い、(4)次に、前記工程(1)~(3)をM回(Mは2以上の整数)繰り返し、前記読出部は、読み出した前記M回分の前記ホワイトリセット信号の平均値を算出する。 A solid-state imaging device according to one aspect of the present invention includes a photoelectric conversion element in which a low luminance side exhibits linear characteristics and a high luminance side exhibits log characteristics at an inflection point, a transfer transistor connected to the photoelectric conversion element, A pixel having a floating diffusion layer connected to a transfer transistor, a control transistor and a reset transistor connected between the floating diffusion layer, and an amplification transistor that amplifies the voltage of the floating diffusion layer and outputs it as a pixel signal The pixel array unit in which circuits are arranged in a matrix and the control voltage are set, and the voltages of the control terminals of the reset transistor and the transfer transistor are set to control on / off of the reset transistor and the transfer transistor. The control unit, and a reading unit that is provided for each column of the pixel unit and reads out the pixel signal, the control unit Then, after the pixel signal obtained by exposing the subject with the control terminal of the transfer transistor set to an intermediate potential is read as a normal pixel signal to the reading unit, (1) the control voltage is set to the photoelectric By setting the voltage at which charge can be injected into the conversion element, charge is injected into the photoelectric conversion element via the reset transistor. (2) Next, the control terminal of the transfer transistor is turned on for a predetermined time. By setting the intermediate potential, the charge injected into the photoelectric conversion element is leaked. (3) Next, the reading unit is controlled to read out the pixel signal as a white reset signal. (4) Next In addition, the steps (1) to (3) are repeated M times (M is an integer of 2 or more), and the reading unit calculates the average value of the read M white reset signals.
固体撮像装置と外部装置の構成を示すブロック図。The block diagram which shows the structure of a solid-state imaging device and an external device. 固体撮像素子の構成を示すブロック図。The block diagram which shows the structure of a solid-state image sensor. 画素の回路図。The circuit diagram of a pixel. 画素のタイミングチャート。Pixel timing chart. 画素の通常露光出力時の光電変換特性。Photoelectric conversion characteristics during normal exposure output of pixels. 画素のホワイトリセット時の光電変換特性。Photoelectric conversion characteristics during pixel white reset. 第1の実施の形態における画素駆動とカラムADCの動作を示したタイミングチャート。6 is a timing chart illustrating pixel driving and column ADC operations according to the first embodiment. 第2の実施の形態における画素駆動とカラムADCの動作を示したタイミングチャート。9 is a timing chart illustrating pixel driving and column ADC operations according to the second embodiment.
 〔第1の実施の形態〕
 図1は、本発明の実施の形態による固体撮像装置1の全体構成を示すブロック図である。図1に示す固体撮像装置1は、リニア特性とログ特性とが変曲点で切り替わるリニアログ特性の光電変換特性を持つ固体撮像装置である。具体的には、本実施の形態による固体撮像装置1は、変曲点より低輝度側がリニア特性を持ち、高輝度側がログ特性を持つリニアログ特性の光電変換特性を持つ固体撮像装置である。
[First Embodiment]
FIG. 1 is a block diagram showing an overall configuration of a solid-state imaging device 1 according to an embodiment of the present invention. A solid-state imaging device 1 illustrated in FIG. 1 is a solid-state imaging device having a photoelectric conversion characteristic of a linear log characteristic in which a linear characteristic and a log characteristic are switched at an inflection point. Specifically, the solid-state imaging device 1 according to the present embodiment is a solid-state imaging device having a linear log characteristic photoelectric conversion characteristic having a linear characteristic on the low luminance side and a log characteristic on the high luminance side from the inflection point.
 固体撮像装置1は、撮像素子110及び画像処理部120を備えている。撮像素子110及び画像処理部120は1つのICチップ内に構成されていても良いし、別のICチップとして構成されても良い。 The solid-state imaging device 1 includes an imaging element 110 and an image processing unit 120. The image sensor 110 and the image processing unit 120 may be configured in one IC chip or may be configured as separate IC chips.
 画像処理部120は、画像信号処理部121及び撮像素子制御部122を備えている。撮像素子制御部122は、SYSCLKとレジスタ制御信号とを撮像素子110に出力し、撮像素子110を制御する。SYSCLKは例えば図略の発振回路により生成される所定の周波数(例えば54MHz)を持つクロック信号である。レジスタ制御信号は、図2に示すタイミング制御部22が備えている各種のレジスタにデータを書き込むための信号である。 The image processing unit 120 includes an image signal processing unit 121 and an image sensor control unit 122. The image sensor control unit 122 outputs SYSCLK and the register control signal to the image sensor 110 to control the image sensor 110. SYSCLK is a clock signal having a predetermined frequency (for example, 54 MHz) generated by an oscillation circuit (not shown), for example. The register control signal is a signal for writing data to various registers included in the timing control unit 22 shown in FIG.
 撮像素子110は、画像信号を画像信号処理部121に出力する。画像信号処理部121は、画像信号に対して種々の画像処理を施し、画像出力信号として外部装置に出力する。ここで、外部装置としては、液晶パネルや有機ELパネル等の表示装置や、画像出力信号を保持するメモリ等が該当する。 The image sensor 110 outputs an image signal to the image signal processing unit 121. The image signal processing unit 121 performs various image processing on the image signal and outputs the image signal as an image output signal to an external device. Here, the external device corresponds to a display device such as a liquid crystal panel or an organic EL panel, a memory for holding an image output signal, or the like.
 図2は、図1に示す撮像素子110の詳細な構成を示すブロック図である。撮像素子110は、画素アレイ部21、タイミング制御部22、ローデコーダ23、カラムADCアレイ部24(読出部)、カラムデコーダ25、センスアンプ26、LVDSシリアライザ27、出力端子28、ランプ波生成回路29(基準信号生成部)及び入力端子210、211を備えている。 FIG. 2 is a block diagram showing a detailed configuration of the image sensor 110 shown in FIG. The image sensor 110 includes a pixel array unit 21, a timing control unit 22, a row decoder 23, a column ADC array unit 24 (reading unit), a column decoder 25, a sense amplifier 26, an LVDS serializer 27, an output terminal 28, and a ramp wave generation circuit 29. (Reference signal generator) and input terminals 210 and 211 are provided.
 画素アレイ部21は、M(2以上の整数)行×N(2以上の整数)列でマトリックス状に配列された複数の画素GCにより構成されている。 The pixel array unit 21 includes a plurality of pixels GC arranged in a matrix with M (an integer of 2 or more) rows × N (an integer of 2 or more) columns.
 タイミング制御部22は、PLL、タイミングジェネレータ(TG)及びレジスタを備え、ローデコーダ23、カラムADCアレイ部24、カラムデコーダ25、センスアンプ26、LVDSシリアライザ27及びランプ波生成回路29を制御する。PLLは、必要に応じてSYSCLKを逓倍(例えば2逓倍)してTGに供給する。TGはPLLから供給された信号に従って、水平同期信号及び垂直同期信号等のタイミング信号を生成し、ローデコーダ23、カラムADCアレイ部24、カラムデコーダ25、センスアンプ26、LVDSシリアライザ27及びランプ波生成回路29に供給し、これらの動作を同期させる。 The timing control unit 22 includes a PLL, a timing generator (TG), and a register, and controls the row decoder 23, the column ADC array unit 24, the column decoder 25, the sense amplifier 26, the LVDS serializer 27, and the ramp wave generation circuit 29. The PLL multiplies (for example, doubles) SYSCLK as necessary and supplies it to the TG. The TG generates timing signals such as a horizontal synchronization signal and a vertical synchronization signal according to the signal supplied from the PLL, and generates a row decoder 23, a column ADC array unit 24, a column decoder 25, a sense amplifier 26, an LVDS serializer 27, and a ramp wave. The circuit 29 is supplied to synchronize these operations.
 レジスタは、例えばローデコーダ23が各画素に出力する各種の画素制御信号の波形を規定するためのデータを保持している。ここで、レジスタが保持するデータは、撮像素子制御部122から出力されるレジスタ制御信号によって書き込まれている。 The register holds data for defining waveforms of various pixel control signals output to each pixel by the row decoder 23, for example. Here, data held by the register is written by a register control signal output from the image sensor control unit 122.
 ローデコーダ23は、例えば、垂直走査回路とドライバ回路とを備えている。垂直走査回路は、例えば、シフトレジスタにより構成され、タイミング制御部22のTGから出力される垂直同期信号をトリガーとして、画素アレイ部21の各行をサイクリックに選択し、画素アレイ部21を垂直走査する。ドライバ回路は、タイミング制御部22のレジスタに書き込まれたデータに従って画素制御信号を生成し、各画素GCに供給することで各画素GCを駆動させる。ここで、タイミング制御部22とローデコーダ23とは、本発明における制御部に相当する。 The row decoder 23 includes, for example, a vertical scanning circuit and a driver circuit. The vertical scanning circuit is configured by, for example, a shift register, and cyclically selects each row of the pixel array unit 21 using a vertical synchronization signal output from the TG of the timing control unit 22 as a trigger, and vertically scans the pixel array unit 21. To do. The driver circuit generates a pixel control signal according to the data written in the register of the timing control unit 22, and drives each pixel GC by supplying the pixel control signal to each pixel GC. Here, the timing control unit 22 and the row decoder 23 correspond to the control unit in the present invention.
 カラムADCアレイ部24は、画素アレイ部21の各列に対応するN個のカラムADC212を備えている。カラムADC212は、画素アレイ部21の各列に対応する垂直信号線L_1を介して各列の画素GCと接続され、垂直走査回路により選択された行の画素GCから画素信号を読み出す。 The column ADC array unit 24 includes N column ADCs 212 corresponding to the respective columns of the pixel array unit 21. The column ADC 212 is connected to the pixel GC of each column via the vertical signal line L_1 corresponding to each column of the pixel array unit 21, and reads the pixel signal from the pixel GC of the row selected by the vertical scanning circuit.
 画素アレイ部21の各画素は、1水平期間において、ノイズ成分のみからなる画素信号と、ノイズ成分にシグナル成分が加算された画素信号とを出力する。ここで、ノイズ成分のみからなる画素信号をノイズ成分信号と記述し、ノイズ成分にシグナル成分が加算された画素信号をノイズ・シグナル成分信号と記述する。 Each pixel of the pixel array unit 21 outputs a pixel signal composed of only a noise component and a pixel signal obtained by adding a signal component to the noise component in one horizontal period. Here, a pixel signal including only a noise component is described as a noise component signal, and a pixel signal obtained by adding a signal component to the noise component is described as a noise / signal component signal.
 カラムADC212は、画素GCからアナログの画素信号が入力されると、ランプ波生成回路29が出力したランプ信号のレベルが画素信号のレベルを超えるまでの時間をカウントすることでAD変換を行う、所謂シングルスロープ型のAD変換器である。 When an analog pixel signal is input from the pixel GC, the column ADC 212 performs AD conversion by counting time until the level of the ramp signal output from the ramp wave generation circuit 29 exceeds the level of the pixel signal. This is a single slope AD converter.
 カラムデコーダ25は、例えばシフトレジスタにより構成され、水平同期信号に同期した列選択信号を出力することで、1水平走査期間において、各列のカラムADC212をサイクリックに選択する。これにより、カラムADCアレイ部24は水平走査され、各列のカラムADC212が保持するデジタルの画像信号をセンスアンプ26に順次に出力される。 The column decoder 25 is constituted by, for example, a shift register, and cyclically selects the column ADC 212 of each column in one horizontal scanning period by outputting a column selection signal synchronized with the horizontal synchronization signal. As a result, the column ADC array unit 24 is horizontally scanned, and digital image signals held by the column ADC 212 of each column are sequentially output to the sense amplifier 26.
 センスアンプ26は、カラムADCアレイ部24から水平信号線L_2を介して出力されるデジタルの画像信号を増幅し、LVDSシリアライザ27に出力する。 The sense amplifier 26 amplifies a digital image signal output from the column ADC array unit 24 via the horizontal signal line L_2 and outputs the amplified signal to the LVDS serializer 27.
 LVDSシリアライザ27は、LVDS(Low Voltage differential signaling)規格に準拠したシリアライザであり、センスアンプ26から水平信号線L_2を介してパラレルで出力される信号を差動増幅して所定ビットの信号とし、シリアルに変換して出力端子28に出力する。 The LVDS serializer 27 is a serializer compliant with the LVDS (Low Voltage differential signaling) standard, and differentially amplifies a signal output in parallel via the horizontal signal line L_2 from the sense amplifier 26 to obtain a predetermined bit signal. And output to the output terminal 28.
 出力端子28は、LVDSシリアライザ27からの画像信号を画像信号処理部121に出力する。 The output terminal 28 outputs the image signal from the LVDS serializer 27 to the image signal processing unit 121.
 ランプ波生成回路29は、一定の傾きを持って直線状に変化するランプ信号を生成し、カラムADC212に出力する。 The ramp wave generation circuit 29 generates a ramp signal that changes linearly with a certain inclination and outputs the ramp signal to the column ADC 212.
 入力端子210は、撮像素子制御部122から供給されるSYSCLKが入力され、タイミング制御部22に出力する。入力端子211は、撮像素子制御部122から供給されるレジスタ制御信号が入力され、タイミング制御部22に出力する。 The input terminal 210 receives SYSCLK supplied from the image sensor control unit 122 and outputs it to the timing control unit 22. The input terminal 211 receives a register control signal supplied from the image sensor control unit 122 and outputs the register control signal to the timing control unit 22.
 図3は、画素アレイ部21を構成する画素GCの一例を示した回路図である。図3に示す画素回路は、受光素子(以下“PD”と記述する。)、転送トランジスタTX(以下“TX”と記述する。)、リセットトランジスタRST(以下“RST”と記述する。)、増幅トランジスタSF(以下“SF”と記述する。)、行選択トランジスタSEL(以下“SEL”と記述する。)、及び浮遊拡散層FD(以下“FD”と記述する。FD:Floating Diffusion)を備えている。 FIG. 3 is a circuit diagram showing an example of the pixel GC constituting the pixel array unit 21. The pixel circuit shown in FIG. 3 includes a light receiving element (hereinafter referred to as “PD”), a transfer transistor TX (hereinafter referred to as “TX”), a reset transistor RST (hereinafter referred to as “RST”), and amplification. A transistor SF (hereinafter referred to as “SF”), a row selection transistor SEL (hereinafter referred to as “SEL”), and a floating diffusion layer FD (hereinafter referred to as “FD”; FD: Floating Diffusion) are provided. Yes.
 PDは埋め込み型(完全転送型)のフォトダイオードにより構成され、アノードに駆動電圧PVSSが印加され、カソードにTXが接続されている。PDで蓄積された電荷は、TXを介してFDに転送される。 PD is composed of a buried (complete transfer type) photodiode, a drive voltage PVSS is applied to the anode, and TX is connected to the cathode. The electric charge accumulated in the PD is transferred to the FD via TX.
 TXは、例えばnMOS(negative channel Metal Oxide Semiconductor)により構成され、PDにより蓄積された信号電荷をFDに転送する。TXのゲートには、TXをオン、オフするための転送制御信号φTX(画素制御信号の一例、以下“φTX”と記述する。)が入力される。TXのドレインは、FDを介してRSTに接続されている。φTXがローレベル(以下“Lo”と記述する。)になるとTXがオフし、φTXがハイレベル(以下“Hi”と記述する。)になると、TXがオンする。尚、φTXは、ローデコーダ23から出力される。 TX is composed of, for example, an nMOS (negative channel, metal, oxide, semiconductor), and transfers signal charges accumulated in the PD to the FD. A transfer control signal φTX (an example of a pixel control signal, hereinafter referred to as “φTX”) for turning on / off TX is input to the gate of TX. The drain of TX is connected to RST via FD. When φTX becomes a low level (hereinafter referred to as “Lo”), TX is turned off, and when φTX becomes a high level (hereinafter referred to as “Hi”), TX is turned on. Note that φTX is output from the row decoder 23.
 FDは、PDから転送された信号電荷を蓄積する。これにより、FDには信号電荷に応じた電圧が現れる。 FD accumulates signal charges transferred from PD. As a result, a voltage corresponding to the signal charge appears in the FD.
 RSTは、例えばnMOSにより構成され、FDをリセットし、FDに蓄積された信号電荷をFDの外部に排出する。RSTのゲートには、RSTをオン、オフするためのリセット信号φRST(画素制御信号の一例、以下“φRST”と記述する。)が入力され、ドレインにφRD(制御電圧、以下“φRD”と記述する。)が入力され、ソースがFDを介してSFのゲートに接続されている。そして、RSTは、φRST=Hiになるとオンし、FDをφRDの電位とする。また、RSTは、φRST=Loになるとオフする。 RST is composed of, for example, an nMOS, resets the FD, and discharges signal charges accumulated in the FD to the outside of the FD. A reset signal φRST (an example of a pixel control signal, hereinafter referred to as “φRST”) for turning on / off RST is input to the gate of RST, and φRD (control voltage, hereinafter referred to as “φRD”) is described as a drain. And the source is connected to the gate of the SF through the FD. RST is turned on when φRST = Hi, and FD is set to the potential of φRD. The RST is turned off when φRST = Lo.
 尚、PVDD及びPVSSは図略の電圧源から出力され、φRST及びφRDは、ローデコーダ23から出力される。 Note that PVDD and PVSS are output from a voltage source (not shown), and φRST and φRD are output from the row decoder 23.
 SFは、例えばnMOSにより構成され、ゲートがFDを介してTX及びRSTに接続され、ドレインにPVDDが入力され、ソースがSELに接続されている。そして、SFはFDに現れる電圧を電流増幅してSELに出力する。 SF is composed of, for example, an nMOS, the gate is connected to TX and RST via FD, PVDD is input to the drain, and the source is connected to SEL. The SF amplifies the voltage appearing on the FD and outputs it to the SEL.
 SELは、例えばnMOSにより構成され、ゲートに行選択信号φVSEN(画素制御信号の一例、以下“φVSEN”と記述する。)が入力され、ドレインがSFに接続され、ソースが垂直信号線L_1を介して対応する列のカラムADC212に接続されている。そして、SELは、SFにより電流増幅された電圧を画像信号として、垂直信号線L_1を介して対応する列のカラムADC212に出力する。ここで、φVSENはローデコーダ23から出力される。 The SEL is composed of, for example, an nMOS, and a row selection signal φVSEN (an example of a pixel control signal, hereinafter referred to as “φVSEN”) is input to a gate, a drain is connected to SF, and a source is connected via a vertical signal line L_1. Are connected to the column ADC 212 of the corresponding row. The SEL outputs the voltage amplified by the SF as an image signal to the column ADC 212 in the corresponding column via the vertical signal line L_1. Here, φVSEN is output from the row decoder 23.
 図4は、本実施の形態における画素GCのタイミングチャートである。時刻t0では、φTXを中間電位とし、リニアログ特性の露光期間である。φRD=Hi、φRST=Hiとしているので、FDは常にPVDDにリセットされている。 FIG. 4 is a timing chart of the pixel GC in the present embodiment. At time t0, φTX is an intermediate potential and the exposure time is linear log characteristics. Since φRD = Hi and φRST = Hi, FD is always reset to PVDD.
 そして、φRSTがLoになったとき、FDの電圧がリセットレベルV_PVDDからノイズレベルまで低下している。これは、φRSTをHiからLoに変化させたことによるFDとRSTとの間の寄生容量やFDのktcノイズ等の影響により、FDに信号電荷が発生するからである。このような、FDとRSTとの間の寄生容量やktcノイズは画素毎にばらついているため、ノイズレベルは画素毎にばらついている。また、リセットレベルV_PVDDはPVDDのレベルを示す。 And when φRST becomes Lo, the voltage of the FD decreases from the reset level V_PVDD to the noise level. This is because signal charges are generated in the FD due to the influence of the parasitic capacitance between the FD and RST, the ktc noise of the FD, and the like due to the change of φRST from Hi to Lo. Since such parasitic capacitance between FD and RST and ktc noise vary from pixel to pixel, the noise level varies from pixel to pixel. The reset level V_PVDD indicates the level of PVDD.
 時刻t1では、φVSEN=Hiにされ、FDの電位(ノイズレベル)がノイズ成分信号としてカラムADC212に読み出される。カラムADC212は、信号RAMPのレベルがノイズ成分信号のレベルを超えるまでの時間をカウントすることで、アナログのノイズ成分信号をAD変換する。 At time t1, φVSEN = Hi is set, and the potential (noise level) of FD is read to the column ADC 212 as a noise component signal. The column ADC 212 performs AD conversion on the analog noise component signal by counting the time until the level of the signal RAMP exceeds the level of the noise component signal.
 時刻t2では、φTX=Hiにされ、PDに蓄積された信号電荷がFDに転送される。そのため、時刻t2では、FDの電位はPDから転送された信号電荷量に応じてノイズレベルからシグナルレベルまで低下する。 At time t2, φTX = Hi, and the signal charge stored in the PD is transferred to the FD. Therefore, at time t2, the potential of FD decreases from the noise level to the signal level according to the signal charge amount transferred from the PD.
 時刻t3では、φTX=Loにされ、FDの電位(シグナルレベル)がノイズ・シグナル成分信号としてカラムADC212に読み出される。カラムADC212は、ランプ波生成回路29から出力される信号RAMPのレベルがノイズ・シグナル成分信号のレベルを超えるまでの時間をカウントすることで、アナログのノイズ・シグナル成分信号をAD変換する。 At time t3, φTX = Lo, and the potential (signal level) of FD is read to the column ADC 212 as a noise signal component signal. The column ADC 212 performs AD conversion on the analog noise signal component signal by counting the time until the level of the signal RAMP output from the ramp wave generation circuit 29 exceeds the level of the noise signal component signal.
 そして、カラムADC212は、デジタルのノイズ・シグナル成分信号からデジタルのノイズ成分信号を除去し、デジタルのシグナル成分信号を画像信号として出力する。時刻t4では、φRST=Hiとされ、FDがリセットされる。この時刻t0~t4で示す駆動シーケンスが、通常露光時のものである。 The column ADC 212 removes the digital noise component signal from the digital noise signal component signal and outputs the digital signal component signal as an image signal. At time t4, φRST = Hi, and the FD is reset. The drive sequence shown at times t0 to t4 is for normal exposure.
 時刻t5以降は、ホワイトリセット期間となる。まず、時刻t5では、φRD=Lo、φRST=Hi、φTX=Hiとされ、φRDからFDとPDに電荷が注入される。通常、リセットと言えば、PDの電荷を空にすること(つまり、黒リセット)だが、時刻t5ではPDを電荷で満たす操作をしているため、この操作は「ホワイトリセット」と呼ばれている。 After the time t5, it is a white reset period. First, at time t5, φRD = Lo, φRST = Hi, φTX = Hi, and charges are injected from φRD into FD and PD. Normally, speaking of resetting, the charge of the PD is emptied (that is, black reset), but at time t5, the operation of filling the PD with the charge is performed, and this operation is called “white reset”. .
 時刻t6では、φRD=Hiとされ、φTXが中間電位とされる。これにより、PDの電荷が徐々にFD側にリークしていく。このφTXが中間電位となっているPDリーク時間を無限に長くすると、PDには転送トランジスタのポテンシャル障壁までの電荷、つまり、画素GCの変曲点出力を示す電荷量が残ることになる。しかし、PDリーク時間を無限に長くしなくても、ある一定時間のPDリーク時間を確保した後にPDに残る電荷は、各画素GCの転送トランジスタのポテンシャル障壁を示したものとなる。 At time t6, φRD = Hi, and φTX is set to an intermediate potential. As a result, the PD charge gradually leaks to the FD side. When the PD leak time during which φTX is an intermediate potential is made infinitely long, the PD has a charge up to the potential barrier of the transfer transistor, that is, a charge amount indicating the inflection point output of the pixel GC. However, even if the PD leakage time is not infinitely long, the charge remaining in the PD after securing a certain amount of PD leakage time indicates the potential barrier of the transfer transistor of each pixel GC.
 時刻t7では、φVSEN=Hiにされ、FDの電位(ノイズレベル)がノイズ成分信号としてカラムADC212に読み出される。カラムADC212は、アナログのノイズ成分信号をAD変換する。 At time t7, φVSEN = Hi, and the potential (noise level) of FD is read to the column ADC 212 as a noise component signal. The column ADC 212 AD converts the analog noise component signal.
 時刻t8では、φTX=Hiにされ、PDに蓄積された信号電荷がFDに転送される。そのため、時刻t8では、FDの電位はPDから転送された信号電荷量に応じてノイズレベルからシグナルレベルまで低下する。 At time t8, φTX = Hi, and the signal charge accumulated in the PD is transferred to the FD. Therefore, at time t8, the potential of the FD decreases from the noise level to the signal level according to the signal charge amount transferred from the PD.
 時刻t9では、φTX=Loにされ、FDの電位(シグナルレベル)がノイズ・シグナル成分信号としてカラムADC212に読み出される。カラムADC212は、アナログのノイズ・シグナル成分信号をAD変換する。 At time t9, φTX = Lo, and the potential (signal level) of FD is read to the column ADC 212 as a noise signal component signal. The column ADC 212 AD converts the analog noise signal component signal.
 ここで、通常露光出力とホワイトリセット出力とでカラムADC212がノイズ・シグナル成分信号をAD変換する際に用いる信号RAMPの形が違う理由を説明する。通常露光出力時である時刻t3にて示した信号RAMPは、電圧V1から電圧V3まで所定の傾きで電圧が減少する波形となっている。一方、ホワイトリセット出力時である時刻t9にて示した信号RAMPは、電圧V2から電圧V3まで所定の傾きで電圧が減少する波形となっている。ここで、V1>V2>V3であり、電圧V2はオフセット値である。 Here, the reason why the signal RAMP used when the column ADC 212 AD converts the noise signal component signal between the normal exposure output and the white reset output will be described. The signal RAMP shown at time t3, which is the normal exposure output time, has a waveform in which the voltage decreases with a predetermined gradient from the voltage V1 to the voltage V3. On the other hand, the signal RAMP shown at time t9 at the time of white reset output has a waveform in which the voltage decreases with a predetermined gradient from the voltage V2 to the voltage V3. Here, V1> V2> V3, and the voltage V2 is an offset value.
 図5は、画素GCの通常露光出力時の光電変換特性である。入射光量によってセンサ出力は変化していることに加え、画素GC毎に変曲点のばらつきが存在する。このため、ログ領域の出力は画素GC毎にばらつきを持っている。従って、通常露光出力のノイズ・シグナル成分信号をAD変換する際は、画素GCの出力可能範囲の全てを包含するように、信号RAMPの電圧範囲を設定する必要がある。 FIG. 5 shows the photoelectric conversion characteristics at the time of normal exposure output of the pixel GC. In addition to the sensor output changing depending on the amount of incident light, there is an inflection point variation for each pixel GC. For this reason, the output of the log area varies for each pixel GC. Therefore, when AD converting the noise / signal component signal of the normal exposure output, it is necessary to set the voltage range of the signal RAMP so as to include the entire output range of the pixel GC.
 図6は、画素GCのホワイトリセット出力時の光電変換特性である。ホワイトリセット出力は、理想的には、入射光量に依存せず、各画素GCの変曲点位置に相当する出力が常に得られる。ホワイトリセット出力が取り得る出力幅というのは、各画素GCの変曲点ばらつきに相当する。従って、通常露光出力時のように画素GCの出力可能範囲全てを包含した信号RAMPを用意する必要はなく、変曲点ばらつきを包含できる信号RAMPを用意すればよい。こうすることで、カラムADC212は信号RAMPのスキャン範囲が狭くなるため、ホワイトリセット出力時のAD変換時間を短縮することができる。そして短縮された時間を利用して、ホワイトリセットを複数回実施することができる。 FIG. 6 is a photoelectric conversion characteristic at the time of white reset output of the pixel GC. Ideally, the white reset output does not depend on the amount of incident light, and an output corresponding to the inflection point position of each pixel GC is always obtained. The output width that the white reset output can take corresponds to the inflection point variation of each pixel GC. Therefore, it is not necessary to prepare a signal RAMP that includes the entire output range of the pixel GC as in normal exposure output, and it is sufficient to prepare a signal RAMP that can include inflection point variations. By doing so, the column ADC 212 has a narrow scan range of the signal RAMP, and therefore, the AD conversion time at the time of white reset output can be shortened. The white reset can be performed a plurality of times using the shortened time.
 図4に戻り、時刻t4~t10で示すホワイトリセットシーケンスWR1aの後、PDリーク時間が同じホワイトリセットシーケンスWR1b(時刻t10~t16)を行う。その後、1回目のホワイトリセットとPDリーク時間が異なるホワイトリセットシーケンスWR2a(時刻t16~t22)及びホワイトリセットシーケンスWR2b(時刻t22~t28)を行う。ホワイトリセットシーケンスWR2aとWR2bは、PDリーク時間が同じである。このようにPDリーク時間の異なるホワイトリセットを行うのは、変曲点のばらつきに加えて、ログ傾きのばらつきを補正するためである。 Returning to FIG. 4, after the white reset sequence WR1a shown at times t4 to t10, a white reset sequence WR1b (times t10 to t16) having the same PD leak time is performed. Thereafter, a white reset sequence WR2a (time t16 to t22) and a white reset sequence WR2b (time t22 to t28) having different PD leak times from the first white reset are performed. The white reset sequences WR2a and WR2b have the same PD leak time. The reason why white reset with different PD leak times is performed is to correct variation in log inclination in addition to variation in inflection points.
 なお、ホワイトリセットシーケンスWR1a、WR1bにより構成される1つのシーケンスが単位シーケンスに該当する。また、ホワイトリセットシーケンスWR2a、WR2bにより構成される1つのシーケンスが単位シーケンスに該当する。ここでは、単位シーケンスとしてリーク時間の異なる2種類の単位シーケンスを例示したが、本発明はこれに限定されず、それぞれリーク時間の異なる3種類以上の単位シーケンスが実行されてもよい。 Note that one sequence constituted by the white reset sequences WR1a and WR1b corresponds to a unit sequence. Further, one sequence composed of the white reset sequences WR2a and WR2b corresponds to a unit sequence. Here, two types of unit sequences with different leak times are illustrated as unit sequences, but the present invention is not limited to this, and three or more types of unit sequences with different leak times may be executed.
 図7は、本実施の形態における画素の駆動とカラムADC212の動作とを示したタイミングチャートである。まず、カラムADC212は、通常露光時のノイズ成分信号(Ref)を読み出して(S1)AD変換し(S2)、変換後のデジタルデータをカラムADC212内のメモリに保持する(S3)。続いて、ノイズ・シグナル成分信号(Signal)を読み出して(S4)AD変換し(S5)、変換後のデジタルデータをメモリに保持する(S6)。そして、カラムADC212は、デジタルのRefとSignalの差分を取ることでCDSを実施する(S7)。CDS後のデータは、カラムADC212内のメモリに蓄積される(S8)。 FIG. 7 is a timing chart showing the pixel driving and the operation of the column ADC 212 in the present embodiment. First, the column ADC 212 reads out the noise component signal (Ref) at the time of normal exposure (S1), performs AD conversion (S2), and holds the converted digital data in the memory in the column ADC 212 (S3). Subsequently, the noise signal component signal (Signal) is read out (S4) and AD converted (S5), and the converted digital data is held in the memory (S6). Then, the column ADC 212 performs CDS by taking the difference between the digital Ref and Signal (S7). The data after the CDS is accumulated in the memory in the column ADC 212 (S8).
 次に、ホワイトリセットとPDリークが行われた後、カラムADC212は、ノイズ成分信号(WR1a_R)を読み出して(S9)AD変換し(S10)、変換後のデジタルデータをカラムADC212内のメモリに保持する(S11)。続いて、ノイズ・シグナル成分信号(WR1a_S)を読み出して(S12)AD変換し(S13)、変換後のデジタルデータをメモリに保持する(S14)。そしてカラムADC212は、デジタルのWR1a_RとWR1a_Sとの差分を取ることでCDSを実施する(S15)。CDS後のデータ(WR1a)は、カラムADC212内のメモリに保持される(S16)。 Next, after white reset and PD leak are performed, the column ADC 212 reads the noise component signal (WR1a_R) (S9), performs AD conversion (S10), and holds the converted digital data in the memory in the column ADC 212 (S11). Subsequently, the noise signal component signal (WR1a_S) is read out (S12) and AD converted (S13), and the converted digital data is held in the memory (S14). The column ADC 212 performs CDS by taking the difference between the digital WR1a_R and WR1a_S (S15). The post-CDS data (WR1a) is held in the memory in the column ADC 212 (S16).
 続いて、同様にホワイトリセットとPDリークが行われた後、カラムADC212は、ノイズ成分信号(WR1b_R)を読み出して(S17)AD変換し(S18)、変換後のデジタルデータをカラムADC212内のメモリに保持する(S19)。続いて、ノイズ・シグナル成分信号(WR1b_S)を読み出して(S20)AD変換し(S21)、変換後のデジタルデータをメモリに保持する(S22)。そしてカラムADC212は、デジタルのWR1b_RとWR1b_Sとの差分を取ることでCDSを実施する(S23)。CDS後のデータ(WR1b)は、カラムADC212内のメモリに保持される(S24)。その後、カラムADC212は、CDS後のデータであるWR1aとWR1bとの平均値(WR1)を求め(S25)カラムADC212内のメモリに保持する(S26)。 Subsequently, after white reset and PD leak are similarly performed, the column ADC 212 reads the noise component signal (WR1b_R) (S17) and performs AD conversion (S18), and the converted digital data is stored in the memory in the column ADC 212. (S19). Subsequently, the noise signal component signal (WR1b_S) is read out (S20) and AD converted (S21), and the converted digital data is held in the memory (S22). The column ADC 212 performs CDS by taking the difference between the digital WR1b_R and WR1b_S (S23). The post-CDS data (WR1b) is held in the memory in the column ADC 212 (S24). Thereafter, the column ADC 212 calculates an average value (WR1) of WR1a and WR1b, which is data after CDS (S25), and holds it in the memory in the column ADC 212 (S26).
 次に、ホワイトリセットと1、2回目のPDリーク時とはPDリーク時間が異なるPDリークが行われた後、カラムADC212は、ノイズ成分信号(WR2a_R)を読み出して(S27)AD変換し(S28)、変換後のデジタルデータをカラムADC212内のメモリに保持する(S29)。続いて、ノイズ・シグナル成分信号(WR2a_S)を読み出して(S30)AD変換し(S31)、変換後のデジタルデータをメモリに保持する(S32)。そして、カラムADC212は、デジタルのWR2a_RとWR2a_Sとの差分を取ることでCDSを実施する(S33)。CDS後のデータ(WR2a)は、カラムADC212内のメモリに保持される(S34)。 Next, after a white leak and a PD leak with different PD leak times from the first and second PD leaks, the column ADC 212 reads the noise component signal (WR2a_R) (S27) and performs AD conversion (S28). The converted digital data is held in the memory in the column ADC 212 (S29). Subsequently, the noise signal component signal (WR2a_S) is read out (S30) and AD converted (S31), and the converted digital data is held in the memory (S32). Then, the column ADC 212 performs CDS by taking the difference between the digital WR2a_R and WR2a_S (S33). The post-CDS data (WR2a) is held in the memory in the column ADC 212 (S34).
 続いて、同様にホワイトリセットとPDリークが行われた後、カラムADC212は、ノイズ成分信号(WR2b_R)を読み出して(S35)AD変換し(S36)、変換後のデジタルデータをカラムADC212内のメモリに保持する(S37)。続いて、ノイズ・シグナル成分信号(WR2b_S)を読み出して(S38)AD変換し(S39)、変換後のデジタルデータをメモリに保持する(S40)。そして、カラムADC212は、デジタルのWR2b_RとWR2b_Sとの差分を取ることでCDSを実施する(S41)。CDS後のデータ(WR2b)は、カラムADC212内のメモリに保持される(S42)。その後、カラムADC212は、CDS後のデータであるWR1aとWR2bとの平均値(WR2)を求め(S43)、カラムADC212内のメモリに保持する(S44)。 Subsequently, after white reset and PD leak are similarly performed, the column ADC 212 reads out the noise component signal (WR2b_R) (S35) and performs AD conversion (S36), and the converted digital data is stored in the memory in the column ADC 212. (S37). Subsequently, the noise signal component signal (WR2b_S) is read out (S38) and subjected to AD conversion (S39), and the converted digital data is held in the memory (S40). Then, the column ADC 212 performs CDS by taking the difference between the digital WR2b_R and WR2b_S (S41). The post-CDS data (WR2b) is held in the memory in the column ADC 212 (S42). Thereafter, the column ADC 212 obtains an average value (WR2) of WR1a and WR2b, which is data after CDS (S43), and holds it in the memory in the column ADC 212 (S44).
 このようにして得られたホワイトリセット出力を用いて、画像信号処理部121が通常露光時に得られた画素信号を補正することで、画素信号における変曲点ばらつきやログ傾きのばらつき等のノイズを補正することができる。 By using the white reset output obtained in this way, the image signal processing unit 121 corrects the pixel signal obtained during the normal exposure, so that noise such as inflection point variation and log inclination variation in the pixel signal is corrected. It can be corrected.
 以上、説明したように、PDリーク時間の同じホワイトリセットを2回続けて行い、各ホワイトリセット出力を平均化することで、ホワイトリセット出力に含まれるランダムノイズを低減することができる。更に、PDリーク時間の異なるホワイトリセットを複数回行うことで、通常露光で得られた画素信号の変曲点のばらつきとログ傾きのばらつきを補正することができる。 As described above, random noise included in the white reset output can be reduced by continuously performing the white reset with the same PD leak time twice and averaging each white reset output. Furthermore, by performing white reset with different PD leak times a plurality of times, it is possible to correct variations in inflection points and log inclinations of pixel signals obtained by normal exposure.
 更に、ホワイトリセット出力時の信号RAMPをオフセットを持たせた波形とすることで、ホワイトリセット出力時のAD変換にかかる時間を短縮することができる。従って、1水平走査の中で複数回のホワイトリセットを実施することができる。 Furthermore, by setting the signal RAMP at the time of white reset output to a waveform having an offset, the time required for AD conversion at the time of white reset output can be shortened. Therefore, a plurality of white resets can be performed in one horizontal scan.
 尚、本実施の形態では、同じPDリーク時間のホワイトリセットを2回続けて行うこととしたが、2回に限るものではない。ランダムノイズの低減効果は、ホワイトリセット回数を増やせば増やすほど大きくなる。単純な計算では、M回(Mは2以上の整数)のホワイトリセットを行って平均化を行えば、ランダムノイズは1/√Mとなる。 In the present embodiment, the white reset with the same PD leak time is performed twice, but is not limited to twice. The effect of reducing random noise increases as the number of white resets increases. In a simple calculation, if the white reset is performed M times (M is an integer of 2 or more) and averaging is performed, the random noise becomes 1 / √M.
 また、画素GCを埋め込み型のPDを用いることとして説明したが、表面型のPDで構成してもよい。 In addition, although the pixel GC has been described as using an embedded PD, it may be configured by a surface PD.
 更に、本実施の形態ではカラムADC212の方式としてシングルスロープ型を用いて説明したが、シングルスロープ型以外のADC方式であってもよい。 Furthermore, although the present embodiment has been described using a single slope type as the method of the column ADC 212, an ADC method other than the single slope type may be used.
 〔第2の実施の形態〕
 第1の実施の形態では、全てのホワイトリセット出力時において、AD変換を行った後のデジタルデータを平均化処理していた。第2の実施の形態では、ホワイトリセット出力のCDS及び平均化処理はアナログ値で行い、平均化された値に対してのみAD変換を行う。尚、第2の実施の形態における固体撮像装置1及び撮像素子110の構造、画素GCの回路図、画素GCのタイミングチャートは図1~図4と同じ構成であるため、説明を省略する。
[Second Embodiment]
In the first embodiment, the digital data after AD conversion is averaged at all white reset outputs. In the second embodiment, the CDS of white reset output and the averaging process are performed using analog values, and AD conversion is performed only on the averaged values. Note that the structure of the solid-state imaging device 1 and the imaging element 110, the circuit diagram of the pixel GC, and the timing chart of the pixel GC in the second embodiment are the same as those in FIGS.
 図8は、本実施の形態における画素駆動とカラムADC212の動作を示したタイミングチャートである。まず、カラムADC212は、通常露光時のノイズ成分信号(Ref)を読み出し(S51)、更にノイズ・シグナル成分信号(Signal)を読み出して(S52)両者の差分を取ることでCDSを実施する(S53)。そして、カラムADC212は、CDS後のアナログデータをAD変換し(S54)、カラムADC212内のメモリに蓄積する(S55)。 FIG. 8 is a timing chart showing the pixel driving and the operation of the column ADC 212 in the present embodiment. First, the column ADC 212 reads the noise component signal (Ref) at the time of normal exposure (S51), further reads the noise signal component signal (Signal) (S52), and performs CDS by taking the difference between the two (S53). ). The column ADC 212 AD-converts the analog data after CDS (S54) and stores it in the memory in the column ADC 212 (S55).
 次に、ホワイトリセットとPDリークが行われた後、カラムADC212は、ノイズ成分信号(WR1a_R)を読み出し(S56)、更にノイズ・シグナル成分信号(WR1a_S)を読み出して(S57)両者の差分を取ることでCDSを実施する(S58)。そして、カラムADC212は、CDS後のアナログデータ(WR1a)をカラムADC212内のメモリに保持する。 Next, after white reset and PD leak are performed, the column ADC 212 reads the noise component signal (WR1a_R) (S56), further reads the noise signal component signal (WR1a_S) (S57), and obtains the difference between the two. Thus, CDS is performed (S58). The column ADC 212 holds the analog data (WR1a) after CDS in the memory in the column ADC 212.
 続いて、同様にホワイトリセットとPDリークとが行われた後、カラムADC212は、ホワイトリセット時のノイズ成分信号(WR1b_R)を読み出し(S59)、更にノイズ・シグナル成分信号(WR1b_S)を読み出して(S60)両者の差分を取ることでCDSを実施する(S61)。そして、カラムADC212は、CDS後のアナログデータであるWR1aとWR1bとの平均値(WR1)を求め(S62)、その平均値(WR1)に対してAD変換を行って(S63)、変換後のデータをメモリに保持する(S64)。 Subsequently, after white reset and PD leak are similarly performed, the column ADC 212 reads out the noise component signal (WR1b_R) at the time of white reset (S59), and further reads out the noise signal component signal (WR1b_S) ( S60) CDS is performed by taking the difference between the two (S61). Then, the column ADC 212 obtains an average value (WR1) of WR1a and WR1b, which is analog data after CDS (S62), performs AD conversion on the average value (WR1) (S63), and after conversion Data is held in the memory (S64).
 次に、ホワイトリセットと1、2回目のPDリーク時とはPDリーク時間が異なるPDリークが行われた後、カラムADC212は、ノイズ成分信号(WR2a_R)を読み出し(S65)、更にノイズ・シグナル成分信号(WR2a_S)を読み出して(S66)両者の差分を取ることでCDSを実施する(S67)。そして、カラムADC212は、CDS後のアナログデータ(WR2a)をカラムADC212内のメモリに保持する。 Next, after a white leak and a PD leak with different PD leak times from the first and second PD leaks, the column ADC 212 reads the noise component signal (WR2a_R) (S65), and further the noise signal component The signal (WR2a_S) is read (S66), and CDS is performed by taking the difference between the two (S67). The column ADC 212 holds the analog data (WR2a) after CDS in the memory in the column ADC 212.
 続いて、同様にホワイトリセットとPDリークが行われた後、カラムADC212は、ノイズ成分信号(WR2b_R)を読み出し(S68)、更にノイズ・シグナル成分信号(WR2b_S)を読み出して(S69)両者の差分を取ることでCDSを実施する(S70)。そして、カラムADC212は、CDS後のアナログデータであるWR2aとWR2bとの平均値(WR2)を求め(S71)、その平均値(WR2)に対してAD変換を行って(S72)、変換後のデータをメモリに保持する(S73)。 Subsequently, after white reset and PD leak are similarly performed, the column ADC 212 reads the noise component signal (WR2b_R) (S68), and further reads the noise signal component signal (WR2b_S) (S69). The CDS is performed by taking (S70). Then, the column ADC 212 obtains an average value (WR2) of WR2a and WR2b, which is analog data after CDS (S71), performs AD conversion on the average value (WR2) (S72), and after conversion Data is held in the memory (S73).
 第2の実施の形態では、第1の実施の形態に比べ、本実施の形態ではAD変換の回数が少なくなるため、1走査にかかる時間を短縮することができる。更に、撮像素子110全体の消費電力の低減にも繋がる。 In the second embodiment, compared to the first embodiment, the number of AD conversions is reduced in this embodiment, so that the time required for one scan can be shortened. In addition, the power consumption of the entire image sensor 110 is reduced.
 (上記の固体撮像装置の纏め)
 上記固体撮像装置は、変曲点を境に低輝度側がリニア特性を示し、高輝度側がログ特性を示す光電変換素子と、前記光電変換素子に接続された転送トランジスタと、前記転送トランジスタに接続された浮遊拡散層と、制御電圧と前記浮遊拡散層の間に接続されたリセットトランジスタと、前記浮遊拡散層の電圧を増幅して画素信号として出力する増幅トランジスタと、を有する画素回路がマトリクス状に配列された画素アレイ部と、前記制御電圧を設定すると共に、前記リセットトランジスタ及び前記転送トランジスタの制御端子の電圧を設定して当該リセットトランジスタ及び当該転送トランジスタのオン/オフを制御する制御部と、前記画素部の列毎に設けられ、前記画素信号を読み出す読出部と、を備え、前記制御部は、前記転送トランジスタの制御端子を中間電位に設定して被写体を露光することで得られた前記画素信号を通常画素信号として前記読出部に読み出させた後、(1)前記制御電圧を前記光電変換素子へ電荷注入が可能な電圧に設定することで、前記リセットトランジスタを介して当該光電変換素子へ電荷を注入させ、(2)次に、予め定められた時間だけ前記転送トランジスタの制御端子を中間電位に設定することで、前記光電変換素子に注入された電荷をリークさせ、(3)次に、前記読出部に前記画素信号をホワイトリセット信号として読み出させる制御を行い、(4)次に、前記工程(1)~(3)をM回(Mは2以上の整数)繰り返し、前記読出部は、読み出した前記M回分の前記ホワイトリセット信号の平均値を算出するものである。
(Summary of the above solid-state imaging device)
The solid-state imaging device includes a photoelectric conversion element having a linear characteristic on a low luminance side and a log characteristic on a high luminance side at an inflection point, a transfer transistor connected to the photoelectric conversion element, and a transfer transistor connected to the transfer transistor. A pixel circuit having a floating diffusion layer, a reset transistor connected between the control voltage and the floating diffusion layer, and an amplification transistor that amplifies the voltage of the floating diffusion layer and outputs the amplified pixel signal as a pixel signal. An arrayed pixel array unit, a control unit for setting the control voltage, and setting a voltage at a control terminal of the reset transistor and the transfer transistor to control on / off of the reset transistor and the transfer transistor; A reading unit that is provided for each column of the pixel units and reads out the pixel signals, and the control unit includes the transfer traffic. After the pixel signal obtained by exposing the subject with the control terminal of the register set to an intermediate potential is read as a normal pixel signal to the reading unit, (1) the control voltage is supplied to the photoelectric conversion element. By setting the voltage to allow charge injection, charge is injected into the photoelectric conversion element via the reset transistor. (2) Next, the control terminal of the transfer transistor is set to an intermediate potential for a predetermined time. By setting, the charge injected into the photoelectric conversion element is leaked. (3) Next, the reading unit is controlled to read the pixel signal as a white reset signal. (4) Next, Steps (1) to (3) are repeated M times (M is an integer of 2 or more), and the reading unit calculates an average value of the read white reset signals for the M times.
 この構成によれば、工程(1)~(3)で示したホワイトリセットをM回繰り返して行い、各ホワイトリセット信号を平均化することで、ホワイトリセット信号に含まれるランダムノイズを低減することができる。従って、通常画素信号のばらつき補正の効果を向上させることができる。 According to this configuration, the white reset shown in steps (1) to (3) is repeated M times, and each white reset signal is averaged, thereby reducing random noise included in the white reset signal. it can. Therefore, it is possible to improve the effect of correcting the variation of the normal pixel signal.
 また、上記構成において、前記読出部は、前記M回のホワイトリセット信号をそれぞれアナログ/デジタル変換し、デジタルのホワイトリセット信号を平均化して前記平均値を算出することが好ましい。 In the above configuration, it is preferable that the reading unit performs analog / digital conversion on the M white reset signals and averages the digital white reset signals to calculate the average value.
 この構成によれば、各ホワイトリセット信号をアナログ/デジタル変換した後に平均化処理を実施するため、回路規模を大きくすることなく、ホワイトリセット信号のランダムノイズを低減することができる。 According to this configuration, since the averaging process is performed after analog / digital conversion of each white reset signal, random noise of the white reset signal can be reduced without increasing the circuit scale.
 また、前記読出部は、前記M回のアナログのホワイトリセット信号を平均化して前記平均値を算出した後に当該平均値をアナログ/デジタル変換することが好ましい。 The reading unit preferably averages the M analog white reset signals and calculates the average value, and then performs analog / digital conversion on the average value.
 この構成によれば、アナログ/デジタル変換の回数が少なくて済むため、1水平走査時間を短縮できると共に、装置の消費電力を低減させることができる。 According to this configuration, since the number of analog / digital conversions can be reduced, one horizontal scanning time can be shortened and the power consumption of the apparatus can be reduced.
 また、上記構成において、ランプ信号を生成する基準信号生成部を更に備え、前記読出部は、シングルスロープ型であって、前記ランプ信号を用いて前記画素信号をアナログ/デジタル変換するものであり、前記基準信号生成部は、前記読出部が前記通常画素信号をアナログ/デジタル変換する際は、予め定められた電圧V1から予め定められた電圧V3まで時間の経過と共に所定の傾きで変化する第1ランプ信号を出力し、前記読出部が前記ホワイトリセット信号をアナログ/デジタル変換する際は、前記電圧V1と前記電圧V3の間の電圧である電圧V2から前記電圧V3まで時間の経過と共に前記所定の傾きで変化する第2ランプ信号を出力することが好ましい。 Further, in the above configuration, a reference signal generation unit that generates a ramp signal is further provided, and the readout unit is a single slope type, and performs analog / digital conversion of the pixel signal using the ramp signal. The reference signal generator has a first change that changes with a predetermined slope from time to time when the reading unit performs analog / digital conversion of the normal pixel signal from a predetermined voltage V1 to a predetermined voltage V3. When the reading unit outputs the ramp signal and the reading unit performs analog / digital conversion of the white reset signal, the predetermined voltage with time elapses from the voltage V2 which is a voltage between the voltage V1 and the voltage V3 to the voltage V3. It is preferable to output a second ramp signal that changes with an inclination.
 この構成によれば、通常露光時に用いる第1ランプ信号は電圧V1から電圧V3の波形であるのに対し、ホワイトリセット時に用いる第2ランプ信号は電圧V2から電圧V3の波形であり、しかも電圧V2は電圧V1と電圧V3の間の値であることから、第1ランプ信号より第2ランプ信号の方がアナログ/デジタル変換時のスキャン幅が短い波形となっている。つまり、アナログ/デジタル変換にかかる時間を短縮することができ、短縮した時間分、複数回のホワイトリセットを実施することができる。 According to this configuration, the first lamp signal used during the normal exposure has a waveform from the voltage V1 to the voltage V3, whereas the second lamp signal used during the white reset has a waveform from the voltage V2 to the voltage V3, and the voltage V2 Is a value between the voltage V1 and the voltage V3, the second ramp signal has a shorter scan width at the time of analog / digital conversion than the first ramp signal. That is, the time required for the analog / digital conversion can be shortened, and the white reset can be performed a plurality of times for the shortened time.
 また、上記構成において、前記第2ランプ信号の前記電圧V2から前記電圧V3の範囲は、前記ホワイトリセット信号のばらつきを包含する範囲であることが好ましい。 Further, in the above configuration, it is preferable that a range from the voltage V2 to the voltage V3 of the second ramp signal is a range including variations in the white reset signal.
 ホワイトリセット時は、変曲点位置に相当する画素信号が得られる。つまり、第2ランプ信号を少なくとも変曲点ばらつきを包含した波形とすることで、アナログ/デジタル変換時のランプ信号のスキャン範囲が狭くなり、ホワイトリセット信号のアナログ/デジタル変換時間を短縮することができる。 At the time of white reset, a pixel signal corresponding to the inflection point position is obtained. That is, by making the second ramp signal a waveform including at least inflection point variation, the scan range of the ramp signal at the time of analog / digital conversion is narrowed, and the analog / digital conversion time of the white reset signal can be shortened. it can.
 また、上記構成において、前記工程(4)では、前記工程(2)におけるリーク時間を一定にして前記工程(1)~(3)をM回繰り返すシーケンスを単位シーケンスとすると、前記リーク時間の異なる単位シーケンスが複数回実行されてもよい。 Further, in the above configuration, in the step (4), if the leak time in the step (2) is constant and the sequence in which the steps (1) to (3) are repeated M times is a unit sequence, the leak time differs. The unit sequence may be executed a plurality of times.
 この構成によれば、リーク期間の異なる複数のホワイトリセット出力が得られる。 According to this configuration, a plurality of white reset outputs having different leak periods can be obtained.

Claims (6)

  1.  変曲点を境に低輝度側がリニア特性を示し、高輝度側がログ特性を示す光電変換素子と、前記光電変換素子に接続された転送トランジスタと、前記転送トランジスタに接続された浮遊拡散層と、制御電圧と前記浮遊拡散層の間に接続されたリセットトランジスタと、前記浮遊拡散層の電圧を増幅して画素信号として出力する増幅トランジスタと、を有する画素回路がマトリクス状に配列された画素アレイ部と、
     前記制御電圧を設定すると共に、前記リセットトランジスタ及び前記転送トランジスタの制御端子の電圧を設定して当該リセットトランジスタ及び当該転送トランジスタのオン/オフを制御する制御部と、
     前記画素部の列毎に設けられ、前記画素信号を読み出す読出部と、
    を備え、
     前記制御部は、前記転送トランジスタの制御端子を中間電位に設定して被写体を露光することで得られた前記画素信号を通常画素信号として前記読出部に読み出させた後、
    (1)前記制御電圧を前記光電変換素子へ電荷注入が可能な電圧に設定することで、前記リセットトランジスタを介して当該光電変換素子へ電荷を注入させ、
    (2)次に、予め定められた時間だけ前記転送トランジスタの制御端子を中間電位に設定することで、前記光電変換素子に注入された電荷をリークさせ、
    (3)次に、前記読出部に前記画素信号をホワイトリセット信号として読み出させる制御を行い、
    (4)次に、前記工程(1)~(3)をM回(Mは2以上の整数)繰り返し、
     前記読出部は、読み出した前記M回分の前記ホワイトリセット信号の平均値を算出する固体撮像装置。
    The low luminance side shows linear characteristics at the inflection point and the high luminance side shows log characteristics, a transfer transistor connected to the photoelectric conversion element, a floating diffusion layer connected to the transfer transistor, A pixel array unit in which pixel circuits having a reset transistor connected between a control voltage and the floating diffusion layer, and an amplification transistor that amplifies the voltage of the floating diffusion layer and outputs it as a pixel signal are arranged in a matrix When,
    A control unit for setting the control voltage, and setting a voltage at a control terminal of the reset transistor and the transfer transistor to control on / off of the reset transistor and the transfer transistor;
    A readout unit that is provided for each column of the pixel unit and reads out the pixel signal;
    With
    The control unit causes the reading unit to read the pixel signal obtained by setting the control terminal of the transfer transistor to an intermediate potential and exposing the subject as a normal pixel signal;
    (1) By setting the control voltage to a voltage that allows charge injection into the photoelectric conversion element, charge is injected into the photoelectric conversion element via the reset transistor,
    (2) Next, by setting the control terminal of the transfer transistor to an intermediate potential for a predetermined time, the charge injected into the photoelectric conversion element is leaked,
    (3) Next, control is performed to cause the readout unit to read out the pixel signal as a white reset signal,
    (4) Next, the steps (1) to (3) are repeated M times (M is an integer of 2 or more),
    The readout unit calculates a mean value of the read M white reset signals.
  2.  前記読出部は、前記M回のホワイトリセット信号をそれぞれアナログ/デジタル変換し、デジタルのホワイトリセット信号を平均化して前記平均値を算出する請求項1に記載の固体撮像装置。 The solid-state imaging device according to claim 1, wherein the reading unit performs analog / digital conversion on each of the M white reset signals and averages the digital white reset signals to calculate the average value.
  3.  前記読出部は、前記M回のアナログのホワイトリセット信号を平均化して前記平均値を算出した後に当該平均値をアナログ/デジタル変換する請求項1に記載の固体撮像装置。 The solid-state imaging device according to claim 1, wherein the reading unit averages the M analog white reset signals to calculate the average value, and then performs analog / digital conversion on the average value.
  4.  ランプ信号を生成する基準信号生成部を更に備え、
     前記読出部は、シングルスロープ型であって、前記ランプ信号を用いて前記画素信号をアナログ/デジタル変換するものであり、
     前記基準信号生成部は、前記読出部が前記通常画素信号をアナログ/デジタル変換する際は、予め定められた電圧V1から予め定められた電圧V3まで時間の経過と共に所定の傾きで変化する第1ランプ信号を出力し、前記読出部が前記ホワイトリセット信号をアナログ/デジタル変換する際は、前記電圧V1と前記電圧V3の間の電圧である電圧V2から前記電圧V3まで時間の経過と共に前記所定の傾きで変化する第2ランプ信号を出力する請求項1~3の何れか一項に記載の固体撮像装置。
    A reference signal generator for generating a ramp signal;
    The readout unit is a single slope type, and performs analog / digital conversion of the pixel signal using the ramp signal.
    The reference signal generator has a first change that changes with a predetermined slope from time to time when the reading unit performs analog / digital conversion of the normal pixel signal from a predetermined voltage V1 to a predetermined voltage V3. When the reading unit outputs the ramp signal and the reading unit performs analog / digital conversion of the white reset signal, the predetermined voltage with time elapses from the voltage V2 which is a voltage between the voltage V1 and the voltage V3 to the voltage V3. The solid-state imaging device according to any one of claims 1 to 3, wherein a second ramp signal that changes with an inclination is output.
  5.  前記第2ランプ信号の前記電圧V2から前記電圧V3の範囲は、前記ホワイトリセット信号のばらつきを包含する範囲である請求項4に記載の固体撮像装置。 The solid-state imaging device according to claim 4, wherein a range from the voltage V2 to the voltage V3 of the second ramp signal includes a variation of the white reset signal.
  6.  前記工程(4)では、前記工程(2)におけるリーク時間を一定にして前記工程(1)~(3)をM回繰り返すシーケンスを単位シーケンスとすると、前記リーク時間の異なる単位シーケンスが複数回実行される請求項1~5の何れか一項に記載の固体撮像装置。 In the step (4), assuming that the sequence in which the leak time in the step (2) is constant and the steps (1) to (3) are repeated M times is a unit sequence, the unit sequences having different leak times are executed a plurality of times. The solid-state imaging device according to any one of claims 1 to 5, wherein
PCT/JP2013/000854 2012-02-29 2013-02-15 Solid-state image pickup device WO2013128831A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013515615A JP5454741B1 (en) 2012-02-29 2013-02-15 Solid-state imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012043285 2012-02-29
JP2012-043285 2012-02-29

Publications (1)

Publication Number Publication Date
WO2013128831A1 true WO2013128831A1 (en) 2013-09-06

Family

ID=49082047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000854 WO2013128831A1 (en) 2012-02-29 2013-02-15 Solid-state image pickup device

Country Status (2)

Country Link
JP (1) JP5454741B1 (en)
WO (1) WO2013128831A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114363537B (en) * 2022-01-12 2024-04-26 锐芯微电子股份有限公司 Pixel structure and array, circuit and method, image sensor, and storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006074663A (en) * 2004-09-06 2006-03-16 Renesas Technology Corp Solid-state imaging apparatus
JP2006140666A (en) * 2004-11-11 2006-06-01 Renesas Technology Corp Driving method of imaging device
JP2007074488A (en) * 2005-09-08 2007-03-22 Konica Minolta Holdings Inc Imaging apparatus
WO2007099620A1 (en) * 2006-03-01 2007-09-07 Fujitsu Limited Semiconductor integrated circuit
JP2007288479A (en) * 2006-04-17 2007-11-01 Konica Minolta Holdings Inc Imaging apparatus
JP2009038772A (en) * 2007-08-03 2009-02-19 Sony Corp Reference voltage circuit and imaging circuit
JP2009296423A (en) * 2008-06-06 2009-12-17 Sony Corp Solid-state imaging apparatus, imaging apparatus, electronic device, ad converter, and ad conversion method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006074663A (en) * 2004-09-06 2006-03-16 Renesas Technology Corp Solid-state imaging apparatus
JP2006140666A (en) * 2004-11-11 2006-06-01 Renesas Technology Corp Driving method of imaging device
JP2007074488A (en) * 2005-09-08 2007-03-22 Konica Minolta Holdings Inc Imaging apparatus
WO2007099620A1 (en) * 2006-03-01 2007-09-07 Fujitsu Limited Semiconductor integrated circuit
JP2007288479A (en) * 2006-04-17 2007-11-01 Konica Minolta Holdings Inc Imaging apparatus
JP2009038772A (en) * 2007-08-03 2009-02-19 Sony Corp Reference voltage circuit and imaging circuit
JP2009296423A (en) * 2008-06-06 2009-12-17 Sony Corp Solid-state imaging apparatus, imaging apparatus, electronic device, ad converter, and ad conversion method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114363537B (en) * 2022-01-12 2024-04-26 锐芯微电子股份有限公司 Pixel structure and array, circuit and method, image sensor, and storage medium

Also Published As

Publication number Publication date
JP5454741B1 (en) 2014-03-26
JPWO2013128831A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
US9485445B2 (en) Imaging apparatus and method of driving the same
KR101705491B1 (en) Solid-state image pickup apparatus, signal processing method for a solid-state image pickup apparatus, and electronic apparatus
US9479189B2 (en) A/D converter, solid-state imaging device and camera system
US9800809B2 (en) Imaging apparatus, imaging system, and method for reducing a difference in resolutions
JP5034610B2 (en) Solid-state imaging device, signal processing method for solid-state imaging device, and imaging device
KR101461150B1 (en) Solid-state imaging device, signal processing method for the same, and imaging apparatus
JP5218309B2 (en) Solid-state imaging device, control method therefor, and camera system
JP5167677B2 (en) Solid-state imaging device, driving method for solid-state imaging device, signal processing method for solid-state imaging device, and imaging device
JP4529834B2 (en) Solid-state imaging device, driving method of solid-state imaging device, and imaging device
US8659693B2 (en) Solid-state image pickup element and camera system
US20110025871A1 (en) Solid-state imaging device and camera system
US20160212365A1 (en) Signal processing device and method, imaging device, and imaging apparatus
US7612320B2 (en) Solid-state imaging apparatus with reset operation
WO2011083541A1 (en) Solid-state image capture device and image capture device
JP2013187728A (en) Solid state image sensor
JP5454741B1 (en) Solid-state imaging device
JP2013187727A (en) Solid state image sensor
JP2013058960A (en) Solid-state imaging device
JP5299597B1 (en) Solid-state imaging device
JP2013118595A (en) Solid-state imaging apparatus
WO2013027326A1 (en) Solid-state imaging device
JP2013183347A (en) Solid state imaging apparatus
JP2014096628A (en) Solid state image pickup device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013515615

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13755061

Country of ref document: EP

Kind code of ref document: A1