WO2013127275A1 - 先导型电子膨胀阀 - Google Patents

先导型电子膨胀阀 Download PDF

Info

Publication number
WO2013127275A1
WO2013127275A1 PCT/CN2013/070162 CN2013070162W WO2013127275A1 WO 2013127275 A1 WO2013127275 A1 WO 2013127275A1 CN 2013070162 W CN2013070162 W CN 2013070162W WO 2013127275 A1 WO2013127275 A1 WO 2013127275A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot
valve
electronic expansion
needle
expansion valve
Prior art date
Application number
PCT/CN2013/070162
Other languages
English (en)
French (fr)
Inventor
沈珂
刘敬喜
韩荣耀
胡飞雪
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2012200685518U external-priority patent/CN202520963U/zh
Priority claimed from CN201210047736.5A external-priority patent/CN103291937B/zh
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Publication of WO2013127275A1 publication Critical patent/WO2013127275A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/325Expansion valves having two or more valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/067Expansion valves having a pilot valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a pilot type electronic expansion valve. Background technique
  • Electronic expansion valves are important components in refrigeration/heating systems and are primarily used to regulate the flow of refrigerant fluids.
  • Conventional electronic expansion valves typically include a drive mechanism (stepper motor), an actuator (threaded screw mechanism), a throttle mechanism (a valve seat), and associated auxiliary mechanisms.
  • valve needle When the valve needle opens and closes the seat, the valve needle will withstand the forces generated by the difference in fluid pressure on both sides of the seat. The larger the opening area in the seat, the greater the force the valve needle will withstand. The greater the difference in fluid pressure across the seat, the greater the force the valve needle will withstand. Therefore, when an electronic expansion valve is applied to a system with a large amount of cooling, it is necessary to use a high-torque motor to open and close the valve seat, which increases the cost of the system.
  • Patent Document CN101122343A proposes a pilot type control valve to solve the above problems.
  • the control valve includes a pilot valve and a main valve.
  • the motor first drives the pilot valve to open the pilot passage formed in the spool of the main valve, and then the spool of the main valve opens the main valve seat due to the reduced pressure of the back pressure.
  • the structure of such a control valve is still complicated and it is difficult to accurately control the opening degree of the main valve.
  • An object of one or more embodiments of the present invention is to provide a pilot type electronic expansion valve having a simpler structure.
  • Another object of one or more embodiments of the present invention is to provide a pilot type electronic expansion valve capable of accurately controlling fluid flow.
  • a pilot type electronic expansion valve comprising: a valve body; a pilot valve bore and a main valve formed on the valve body a pilot valve needle for opening the pilot valve hole; a main valve needle for opening the main valve bore; and an actuator for driving the pilot valve needle and the main valve needle; wherein, the pilot a valve needle and the main valve needle are disposed in parallel and spaced apart by a predetermined distance, and the electronic expansion valve is configured to: when the electronic expansion valve is opened, the pilot valve needle first opens the pilot valve hole, the main The valve needle then opens the main valve bore; when the electronic expansion valve is closed, the main valve needle first closes the main valve bore, and the pilot valve needle then closes the pilot valve bore.
  • a distance dl between an end of the pilot valve needle and the pilot valve hole is greater than between an end of the main valve needle and the main valve hole The distance d2.
  • the actuator comprises a nut sleeve, the nut sleeve including a first inner cavity for slidingly receiving the pilot valve needle and a second inner cavity for slidingly receiving the main valve needle a first sleeve is fixed in the first inner cavity to limit axial displacement of the pilot valve needle, and a second sleeve is fixed in the second inner cavity to limit axial displacement of the main valve needle .
  • a first spring that applies a spring force to the pilot valve needle is disposed in the first inner cavity, and a spring force is applied to the main valve needle in the second inner cavity Second spring.
  • the top surface of the pilot valve hole and the top surface of the main valve hole are at the same horizontal plane, the pilot valve needle and the main valve needle have the same length, the first sleeve The length is greater than the length of the second sleeve.
  • the top surface of the pilot valve hole and the top surface of the main valve hole are in the same water
  • the first sleeve and the second sleeve have the same length
  • the length of the pilot needle is smaller than the length of the main valve needle.
  • the pilot valve needle and the main valve needle have the same length, the first sleeve and the second sleeve have the same length, and the top surface of the pilot valve hole is low On the top surface of the main valve hole.
  • the cross-sectional area of the pilot valve hole is smaller than the cross-sectional area of the main valve hole.
  • the nut sleeve comprises an internally threaded section.
  • the actuator further comprises a main shaft having an externally threaded section, the outer threaded section of the main shaft being fitted in the internally threaded section of the nut sleeve.
  • the pilot type electronic expansion valve further includes a bearing seat for supporting the nut sleeve, wherein the nut sleeve is slidable within the bearing seat but is not rotatable relative to the bearing seat .
  • the inner circumferential surface of the support seat is provided with a guiding groove
  • the outer circumferential surface of the nut sleeve is provided with a protrusion that cooperates with the guiding groove, or the inner circumferential surface of the bearing seat
  • a protrusion is provided on the outer circumferential surface of the nut sleeve, and a guide groove that engages with the protrusion is disposed.
  • the support seat has a non-circular inner peripheral surface
  • the nut sleeve has a non-circular outer peripheral surface that matches a non-circular inner peripheral surface of the support seat.
  • the support base has a polygonal inner peripheral surface
  • the nut sleeve has a polygonal outer peripheral surface that matches the polygonal inner peripheral surface of the support base.
  • the pilot type electronic expansion valve further includes a bearing assembly that supports the spindle.
  • the bearing assembly includes a lower support fixed to the support seat, an upper support fixed to the lower support, and fixed to the lower support and the upper support Bearing between.
  • the pilot type electronic expansion valve further includes a rotor fixedly coupled to the main shaft to rotate together and a sealing cover fixedly sealed with the support seat.
  • the main shaft includes an axially extending balance channel and a radially extending balance hole, the first inner cavity and the second inner cavity being in fluid communication with the internal thread segment, the inner The threaded section is in fluid communication with the space enclosed by the seal cover via a balance passage and a balance hole of the main shaft.
  • the valve body is formed with a balance channel
  • the support seat is formed with a balance channel
  • the internal space of the valve body is via the balance channel of the valve body and the balance channel of the support seat
  • the space enclosed by the sealing cover is in fluid communication.
  • a stator that drives the rotation of the rotor is disposed outside the sealing cover.
  • a pilot valve hole and a main valve hole are formed in the valve body, and the pilot valve needle and the main valve needle which are disposed in parallel with each other are simultaneously driven by the actuator. Open the pilot valve bore and the main valve bore, especially during the opening of the electronic expansion valve, the pilot needle first opens the pilot valve bore, and then the main valve needle opens the main valve bore.
  • the internal configuration of the electronic expansion valve can be simplified.
  • the opening degree of the electronic expansion valve can be easily and accurately controlled by, for example, a stepping motor.
  • the pilot needle since the pilot needle first opens the pilot valve bore to reduce the pressure differential across the main valve bore, a smaller motor can be used to open the main valve bore.
  • the distance dl between the tip end of the pilot needle and the pilot valve hole may be set larger than between the end of the main valve needle and the main valve hole Distance d2. Therefore, the respective valve needles and valve holes of the electronic expansion valve can be easily constructed and designed to achieve the object of the present invention.
  • the actuator may include a nut sleeve and a bearing sleeve of the sliding guide nut sleeve, and the pilot valve needle and the main valve needle are both disposed on the nut sleeve It can thus move with the nut sleeve. Therefore, the rotational motion of the rotor and the main shaft can be converted into the axial movement of the nut sleeve and the pilot valve needle and the main valve needle, so that the opening degree of the pilot valve hole and the main valve hole can be precisely controlled.
  • the pilot needle and the main valve needle move axially with the nut sleeve at the same time, so a drive mechanism (a motor) can be used to drive, in particular, the active drive of the pilot needle and the main valve needle, which not only saves costs. Moreover, the stability and accuracy of the electronic expansion valve are improved.
  • a top of a pilot valve hole The top surface of the face and the main valve bore may be at the same level, and the pilot needle and the main valve needle may have the same length, but the length of the first sleeve is greater than the length of the second sleeve.
  • the pilot needle can be controlled to open first and the main valve needle to open only by adjusting the lengths of the two sleeves for the pilot needle and the main valve needle, respectively. This greatly simplifies the design and processing of the various components of the electronic expansion valve.
  • the top surface of the pilot valve hole and the top surface of the main valve hole may be at the same horizontal plane, the first sleeve and the second The sleeves can have the same length, but the length of the pilot needle is less than the length of the main needle. This can easily achieve the object of the present invention in other ways.
  • the pilot needle and the main valve needle may have the same length, and the first sleeve and the second sleeve may have the same Length, but the top surface of the pilot valve bore is lower than the top surface of the main valve bore.
  • This can be achieved by providing an additional valve seat on the main valve bore, or by further machining the pilot valve bore to recess the top surface, or by placing a different height valve on the pilot valve bore and the main valve bore.
  • the object of the present invention can be easily achieved in other manners by the above configuration.
  • a balance passage or a balance hole may be provided in each component to achieve fluid communication between an inner space of the valve body and an inner space of the seal cover, thereby The pressure balance inside the electronic expansion valve can be quickly achieved, making the operation of the electronic expansion valve more stable.
  • the rotor is disposed inside the electronic expansion valve, and the stator is disposed outside the electronic expansion valve. Therefore, the arrangement of the components of the electronic expansion valve is more flexible, and the electrical components are physically separated from the fluid in the electronic expansion valve, enhancing the tightness of the electronic expansion valve.
  • FIG. 1 is a cross-sectional view of a pilot type electronic expansion valve according to an embodiment of the present invention
  • Figure 2 is an exploded cross-sectional view of the pilot type electronic expansion valve of Figure 1;
  • Figure 3 is an enlarged view of a portion of the pilot type electronic expansion valve of Figure 1; and
  • Figures 4A, 4B and 4C illustrate the operation of the pilot type electronic expansion valve. detailed description
  • the electronic expansion valve 10 may include a valve portion for regulating the flow rate of the fluid flowing through the electronic expansion valve and an actuator for opening or closing the valve portion.
  • the electronic expansion valve 10 includes a valve body 12.
  • the valve body 12 is formed with an inlet 12-1 connected to the inlet pipe 14, an outlet 12-2 connected to the outlet pipe 16, and an upper opening 12-3 for receiving the support seat 30.
  • a pilot valve hole 20 and a main valve hole 22 are formed on the bottom of the valve body 12. Both the pilot valve bore 20 and the main valve bore 22 are in fluid communication with the outlet 12-2 to regulate the flow of fluid exiting the outlet 12-2.
  • the cross-sectional area of the pilot valve hole 20 is smaller than the cross-sectional area of the main valve hole 22, and the ratio of the cross-sectional area of the pilot valve hole 20 to the cross-sectional area of the main valve hole 22 may be according to the working environment of the electronic expansion valve. Determine the size of the drive motor used and other parameters.
  • the electronic expansion valve 10 further includes a pilot needle 40 for opening the pilot valve bore 20 and a main valve needle 42 for opening the main valve bore 22.
  • the electronic expansion valve 10 further includes an actuator that will simultaneously drive the pilot needle 40 and the main valve needle 42 (described in detail below).
  • the pilot needle 40 and the main valve needle 42 are disposed in parallel with each other and spaced apart by a predetermined distance.
  • the electronic expansion valve 10 according to an embodiment of the present invention is configured such that when the electronic expansion valve 10 is opened, the pilot needle 40 first opens the pilot valve hole 20, the main valve needle 42 then opens the main valve hole 22, and the electronic expansion valve 10 is closed. When the main valve needle 42 first closes the main valve bore 22, the pilot valve needle 40 then closes the pilot valve bore 20.
  • the pilot valve needle 40 and the main valve needle 42 are simultaneously driven by the same actuator and the pilot needle 40 first opens the pilot valve bore 20, the main valve needle 42 then opens the main valve bore 22 Therefore, the pressure difference between the inlet 12-1 and the outlet 12-2 can be balanced in advance by the pilot valve hole 20, so that the electronic expansion valve having a larger capacity can be realized with a smaller drive motor.
  • the configuration between the pilot needle 40, the main valve needle 42, the pilot valve bore 20, and the main valve bore 22 may be configured to: When the valve 10 is fully opened, the distance dl between the end of the pilot needle 40 and the pilot valve bore 20 is greater than the distance d2 between the end of the main valve needle 42 and the main valve bore 22.
  • the actuator may include a nut sleeve 50.
  • the nut sleeve 50 includes a first inner chamber 54 for slidingly receiving the pilot valve needle 40 and a second inner chamber 56 for slidingly receiving the main valve needle 42.
  • the pilot needle 40 and the main valve needle 42 may have the same configuration and may have enlarged heads 40-1 and 42-1 at their ends, respectively.
  • the first sleeve 44 can be fixedly disposed in the first inner cavity 54 to limit the axial displacement of the pilot valve needle 40
  • the second sleeve 46 can be fixedly disposed in the second inner cavity 56 to limit the main valve needle 42.
  • the pilot needle 40 can pass through the first sleeve 44 to open and close the pilot valve bore 20, and the head 40-1 of the pilot needle 40 can abut the top end of the first sleeve 44 to limit its axial displacement.
  • the main valve needle 42 can pass through the second sleeve 46 to open and close the main valve bore 22, and the head 42-1 of the main valve needle 42 can abut the top end of the second sleeve 42 to limit its axial displacement.
  • a first spring 48 that applies a spring force to the pilot needle 40 may be provided in the first lumen 54 and a second spring 49 that applies a spring force to the main needle 40 may be provided in the second lumen 56.
  • the first spring 48 can apply a force to the pilot needle 40 toward closing the pilot valve bore 20, and in a state where the electronic expansion valve 10 is open, the first spring 48 can urge the pilot needle 40 against it.
  • the top end of the first sleeve 44 in a state where the electronic expansion valve 10 is closed, the first spring 48 can be compressed by the pilot needle 40 to adjust the axial displacement of the pilot needle 40.
  • the first spring 48 can adjust the pilot needle 40 to close the pilot valve hole.
  • the closing force of 20 prevents damage to the pilot valve needle 40 or the pilot valve bore 20.
  • the second spring 49 can apply a force to the main valve needle 42 in a direction to close the main valve hole 22, and in a state where the electronic expansion valve 10 is open, the second spring 49 can press the main valve needle 42 against it. At the top end of the second sleeve 46.
  • the second spring 49 in a state where the electronic expansion valve 10 is closed, the second spring 49 can be compressed by the main valve needle 42 to adjust the axial displacement of the main valve needle 42, and in addition, the second spring 49 can adjust the main valve needle 42 to close the main valve hole.
  • the closing force of 22 prevents the main valve needle 42 or the main valve bore 22 from being damaged.
  • the end of the nut sleeve 50 opposite the first inner cavity 54 and the second inner cavity 56 may include an inner threaded section 52.
  • the actuator according to an embodiment of the present invention may further include a spindle 82 having an externally threaded section 82-1.
  • the main shaft 82 is fixedly coupled to the rotor 80 so as to be rotatable with the rotor 80.
  • the externally threaded section 82-1 of the spindle 82 can be fitted into the internally threaded section 52 of the nut sleeve 50.
  • the nut sleeve 50 can be supported in the bearing block 30 such that the nut sleeve 50 can slide within the bearing block 30 but cannot rotate relative to the bearing block 30.
  • the support seat 30 is disposed in the upper opening 12-3 of the valve body 12 and has through holes 32 and 34 through which the pilot needle 40 and the main valve needle 42 pass.
  • At least one (in this example, two) guide grooves 37-1, 37-2, the outer peripheral surface of the nut sleeve 50 may be provided on the inner peripheral surface of the support base 30.
  • a projection may be provided on the inner circumferential surface of the support seat 30, and a guide groove that cooperates with the projection may be provided on the outer circumferential surface of the nut sleeve 50.
  • the rotational movement of the rotor 80 and the main shaft 82 can be converted into the axial movement of the nut sleeve 50 through the threaded pair of the main shaft 82 and the nut sleeve 50, thereby enabling the pilot valve needle 40 and the main valve needle. 42 is axially moved to open or close the pilot valve bore 20 and the main valve bore 22.
  • the present invention is not limited thereto, but other configurations may be employed to convert the rotational motion of the main shaft 82 into the axial movement of the nut sleeve 50.
  • the support block 30 may have a non-circular inner peripheral surface
  • the nut sleeve 50 may have a non-circular outer peripheral surface that matches the non-circular inner peripheral surface of the support seat 30.
  • the support base 30 may have a polygonal inner peripheral surface
  • the nut sleeve 50 may have a polygonal outer peripheral surface that matches the polygonal inner peripheral surface of the support base 30.
  • a bearing assembly supporting the main shaft 82 may be provided in the electronic expansion valve 10.
  • the bearing assembly may include a lower support member 60 fixed to the support base 30, an upper support member 72 fixed to the lower support member 60, and a bearing 70 fixed between the lower support member 60 and the upper support member 72.
  • the bearing 70 can be a plain bearing.
  • the bearing assembly provides a more stable support for the main shaft 82, while the lower support member 60 of the bearing assembly also functions as a stop for limiting the axial displacement of the nut sleeve 50.
  • the present invention is not limited thereto, but a bearing assembly of other configurations may be employed, or the bearing assembly may be fixed relative to other fixing members of the electronic expansion valve, or even the bearing assembly may be omitted.
  • a sealing cover 90 that is sealingly fixed to the support base 30 may also be included.
  • the rotor 80 can be fixed to the inside of the sealing cover 90.
  • a pressure equalization passage is provided in a plurality of components thereof.
  • the main shaft 82 can include an axially extending balance passage 84 and a radially extending balance orifice 86.
  • the first lumen 54 and the second lumen 56 can be in fluid communication with one another and in fluid communication with the internally threaded section 52.
  • the internally threaded section 52 can be in fluid communication with the space enclosed by the seal cover 90 via the balance passage 84 of the main shaft 82 and the balance orifice 86.
  • balanced passages 18-1, 18-2 may be formed in the side wall of the valve body 12, and the balance passages 18-1, 18-2 with the valve body 12 may be formed in the lugs 38 of the support base 30.
  • the phase is in fluid communication with the balance channels 38-1, 38-2.
  • the internal space of the valve body 12 is in fluid communication with the space enclosed by the seal cover 90 via the balance passages 18-1, 18-2 of the valve body 12 and the balance passages 38-1, 38-2 on the support seat 30.
  • a pressure equalization hole may also be formed on the first sleeve 44 and the second sleeve 46.
  • a pressure balance hole may also be formed in the protrusions 57-1, 57-2 of the nut sleeve 50.
  • a pressure equalization hole 72-1 may also be formed on the upper support member 72.
  • a stator (not shown) for driving the rotation of the rotor 80 may be disposed outside the sealing cover 90. Therefore, the arrangement of the components of the electronic expansion valve is more flexible, and the electrical components are physically isolated from the fluid in the electronic expansion valve, enhancing the sealing of the electronic expansion valve.
  • stator may be disposed in the sealing cover 90.
  • the top surface of the pilot valve bore 20 and the top surface of the main valve bore 22 are disposed at the same level, and the pilot needle 40 and the main valve needle 42 have the same length.
  • the length of the first sleeve 44 is greater than the length of the second sleeve 46.
  • the pilot needle 40 closes the pilot valve hole 20, and the main valve needle 42 closes the main valve hole 22.
  • the nut sleeve 50 moves upward. Since the length of the first sleeve 44 is greater than the length of the second sleeve 46, the head of the pilot needle 40 is first urged upwardly against the top end of the first sleeve 44, thereby first opening the pilot valve bore 20.
  • the main valve needle 42 still closes the main valve bore 22 by being urged downward by the second spring 49 until the head of the main valve needle 22 abuts against the top end of the second sleeve 46, as shown in Fig. 4B.
  • FIG. 4C as the nut sleeve 50 continues to move upward, the head of the pilot needle 40 abuts against the top end of the first sleeve 44 to continue upward movement, while the head of the main valve needle 42 is due to Abutment with the top end of the second sleeve 46 also begins to move upwardly, thereby gradually opening the main valve bore 22. Thereafter, the amount of rotation of the rotor 80 can be controlled to control the opening of the main valve hole 22 in accordance with the need for flow adjustment.
  • the rotor 80 is driven in the opposite direction such that the nut sleeve 50 moves downward, so that the main valve needle 42 first closes the main valve hole 22 as shown in Fig. 4B.
  • the main valve needle 42 compresses the second spring 49 and the head of the main valve needle 42 exits the top end of the second sleeve 46.
  • the nut sleeve 50 continues to move downward, and the second spring 49 is continuously compressed until the pilot needle 40 closes the pilot valve hole 20.
  • the head of the pilot needle 44 abuts against the tip end of the first sleeve 44.
  • the head of the pilot needle 44 can exit the top end of the first sleeve 44 to further compress the first spring 48 to provide a suitable closing force.
  • the electronic expansion valve 10 of the present invention can be modified as follows.
  • the top surface of the pilot valve bore 20 and the top surface of the main valve bore 22 are disposed to be in the same water
  • the first sleeve 44 and the second sleeve 46 may have the same length, but the length of the pilot needle 40 may be less than the length of the main needle 42. This also achieves the advantageous effects of the invention as described above.
  • pilot needle 40 and the main valve needle 42 may be disposed to have the same length, and the first sleeve 44 and the second sleeve 46 may be disposed to have the same length, but the top surface of the pilot valve bore 20 may be Below the top surface of the main valve bore 22.
  • the pilot valve bore can be further machined to be recessed relative to the main valve bore, or a valve seat of a different height can be placed on the pilot valve bore or the main valve bore such that the top surface of the pilot valve bore is lower than the main valve The top surface of the hole. This also achieves the advantageous effects of the present invention as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

一种先导型电子膨胀阀(10),其包括:阀体(12);形成在阀体上的先导阀孔(20)和主阀孔(22);用于打开先导阀孔的先导阀针(40);用于打开主阀孔的主阀针(42);同时驱动先导阀针和主阀针的执行机构;其中,先导阀针(40)和主阀针(42)平行设置且隔开预定距离,并且电子膨胀阀构造成:在打开电子膨胀阀时,先导阀针(40)首先打开先导阀孔(20),主阀针(42)随后打开主阀孔(22);在关闭电子膨胀阀时,主阀针(42)首先关闭主阀孔(22),先导阀针(40)随后关闭先导阀孔(20)。该电子膨胀阀结构更加简单、能够精确控制流体的流量并且能够采用小的电机来驱动。

Description

先导型电子膨胀阀 相关申请的交叉引用
本申请要求于 2012 年 2 月 28 日提交中国专利局、 申请号为 201210047736.5、 发明名称为 "先导型电子膨胀阀" 的中国专利申请以 及于 2012年 2月 28提交中国专利局、 申请号为 201220068551.8、 发明 名称为 "先导型电子膨胀阀" 的中国专利申请的优先权, 其全部内容通 过引用结合在本申请中。 技术领域
[02]本发明涉及一种先导型电子膨胀阀。 背景技术
[03]电子膨胀阀是制冷 /制热系统中的重要部件,主要用于对制冷剂流体 的流量进行调节。 传统的电子膨胀阀一般包括驱动机构 (步进电机)、 执行机构 (螺紋螺杆机构)、 节流机构 (阀针阀座) 以及相关的辅助机 构。
[04]在阀针打开和关闭阀座时, 阀针将承受由于阀座两侧的流体压力差 所产生的力。 阀座中的开口面积越大, 阀针承受的力越大。 阀座两侧的 流体压力差越大, 阀针承受的力也越大。 因此, 在电子膨胀阀应用于制 冷量较大的系统时, 必须采用大扭矩的电机中来打开和关闭阀座, 这增 加了系统的成本。
[05]专利文献 CN101122343A提出一种先导型控制阀来解决上述问题。 该控制阀包括先导阀和主阀。 在控制阀工作时, 电机首先驱动先导阀打 开主阀的阀芯中形成的先导通路, 然后主阀的阀芯由于背压的压力减小 而打开主阀座。 但是, 这种控制阀的结构还是比较复杂并且难以精确地 控制主阀的开度。
[06]因此, 需要一种结构更加简单控制更加容易的电子膨胀阀。 发明内容
[07]本发明的一个或多个实施方式的一个目的是提供一种结构更加简 单的先导型电子膨胀阀。
[08]本发明的一个或多个实施方式的另一个目的是提供一种能够精确 控制流体流量的先导型电子膨胀阀。
[09]本发明的一个或多个实施方式的又一个目的是提供一种能够应用 于大制冷量的系统并且同时能够用小的电机驱动的先导型电子膨胀阀。
[10]为了实现上述目的中的一个或多个, 根据本发明一个方面, 提供了 一种先导型电子膨胀阀, 其包括: 阀体; 形成在所述阀体上的先导阀孔 和主阀孔; 用于打开所述先导阀孔的先导阀针; 用于打开所述主阀孔的 主阀针; 同时驱动所述先导阀针和所述主阀针的执行机构; 其中, 所述 先导阀针和所述主阀针平行设置且隔开预定距离,并且所述电子膨胀阀 构造成: 在打开所述电子膨胀阀时, 所述先导阀针首先打开所述先导阀 孔, 所述主阀针随后打开所述主阀孔; 在关闭所述电子膨胀阀时, 所述 主阀针首先关闭所述主阀孔, 所述先导阀针随后关闭所述先导阀孔。
[11]优选地, 在所述电子膨胀阀完全打开时, 所述先导阀针的末端与所 述先导阀孔之间的距离 dl 大于所述主阀针的末端与所述主阀孔之间的 距离 d2。
[12]优选地, 所述执行机构包括螺母套筒, 所述螺母套筒包括用于滑动 接收所述先导阀针的第一内腔和用于滑动接收所述主阀针的第二内腔, 第一套管固定在所述第一内腔中以限制所述先导阀针的轴向位移, 第二 套管固定在所述第二内腔中以限制所述主阀针的轴向位移。
[13]优选地, 在所述第一内腔中设置有向所述先导阀针施加弹簧力的第 一弹簧, 在所述第二内腔中设置有向所述主阀针施加弹簧力的第二弹 簧。
[14]优选地, 所述先导阀孔的顶面和所述主阀孔的顶面处于相同的水平 面, 所述先导阀针和所述主阀针具有相同的长度, 所述第一套管的长度 大于所述第二套管的长度。
[15]可替代地, 所述先导阀孔的顶面和所述主阀孔的顶面处于相同的水 平面, 所述第一套管和所述第二套管具有相同的长度, 所述先导阀针的 长度小于所述主阀针的长度。
[16]可替代地, 所述先导阀针和所述主阀针具有相同的长度, 所述第一 套管和所述第二套管具有相同的长度,所述先导阀孔的顶面低于所述主 阀孔的顶面。
[17]优选地, 所述先导阀孔的横截面积小于所述主阀孔的横截面积。 [18]优选地, 所述螺母套筒包括内螺紋段。
[19]优选地, 所述执行机构还包括具有外螺纹段的主轴, 所述主轴的外 螺紋段配合在所述螺母套筒的内螺紋段中。
[20]优选地, 所述先导型电子膨胀阀进一步包括用于支撑所述螺母套筒 的支承座,其中所述螺母套筒能够在所述支承座内滑动但是不能相对于 所述支承座转动。
[21]优选地, 所述支承座的内周表面上设置有引导槽, 所述螺母套筒的 外周表面上设置有与所述引导槽配合的突起, 或者, 所述支承座的内周 表面上设置有突起,所述螺母套筒的外周表面上设置有与所述突起配合 的引导槽。
[22]可替代地, 所述支承座具有非圆形的内周表面, 所述螺母套筒具有 与所述支承座的非圆形的内周表面匹配的非圆形的外周表面。
[23]可替代地, 所述支承座具有多边形的内周表面, 所述螺母套筒具有 与所述支承座的多边形的内周表面匹配的多边形的外周表面。
[24]优选地, 所述先导型电子膨胀阀进一步包括支撑所述主轴的轴承组 件。
[25]优选地, 所述轴承组件包括固定在所述支承座上的下支撑件、 固定 在所述下支撑件上的上支撑件以及固定在所述下支撑件和所述上支撑 件之间的轴承。
[26]优选地, 所述先导型电子膨胀阀进一步包括与所述主轴固定连接以 一起旋转的转子以及与所述支承座密封固定的密封盖。 [27]优选地, 所述主轴中包括轴向延伸的平衡通道和径向延伸的平衡 孔, 所述第一内腔和所述第二内腔与所述内螺紋段流体连通, 所述内螺 纹段经由所述主轴的平衡通道和平衡孔与所述密封盖围起的空间流体 连通。
[28]优选地, 所述阀体上形成有平衡通道, 所述支承座上形成有平衡通 道, 所述阀体的内部空间经由所述阀体的平衡通道和所述支承座的平衡 通道与所述密封盖围起的空间流体连通。
[29]优选地, 驱动所述转子转动的定子设置在所述密封盖的外侧。
[30]根据本发明的一种或几种实施方式的电子膨胀阀的优点在于:
[31]在根据本发明一种实施方式的先导型电子膨胀阀中, 阀体上形成有 的先导阀孔和主阀孔,相互平行设置的先导阀针和主阀针同时被执行机 构驱动来打开先导阀孔和主阀孔, 特别是在打开电子膨胀阀的过程中, 先导阀针首先打开先导阀孔, 随后主阀针打开主阀孔。 利用这种构造, 可以简化电子膨胀阀的内部构造。 特别是由于主阀针也被执行机构驱 动, 所以可以利用例如步进电机容易地精确地控制电子膨胀阀的开度。 另外, 由于先导阀针首先打开先导阀孔从而降低了主阀孔两侧的压力 差, 所以可以利用更小的电机来打开主阀孔。
[32]在根据本发明一种实施方式的先导型电子膨胀阀中, 先导阀针的末 端与先导阀孔之间的距离 dl可以设定成大于主阀针的末端与主阀孔之 间的距离 d2。 因此, 可以容易地构造和设计电子膨胀阀的各个阀针和 阀孔以实现本发明的目的。
[33]在根据本发明一种实施方式的先导型电子膨胀阀中, 执行机构可以 包括螺母套筒和滑动引导螺母套筒的支承座,并且先导阀针和主阀针都 设置在螺母套筒中从而能够随螺母套筒一起移动。 因此, 可以将转子和 主轴的旋转运动转变为螺母套筒和先导阀针及主阀针的轴向运动,从而 能够精确地控制先导阀孔和主阀孔的开度。 另外, 先导阀针和主阀针同 时随螺母套筒轴向运动, 因此可以采用一套驱动机构(一个电机)来驱 动特别是主动驱动先导阀针和主阀针二者,这不但节省了成本而且提高 了电子膨胀阀的稳定性和精度。
[34]在根据本发明一种实施方式的先导型电子膨胀阀中, 先导阀孔的顶 面和主阀孔的顶面可以处于相同的水平面,先导阀针和主阀针可以具有 相同的长度, 但是第一套管的长度大于第二套管的长度。 换言之, 可以 仅通过调节分别用于先导阀针和主阀针的两个套管的长度即可以控制 先导阀针先打开而主阀针后打开。这大大简化了电子膨胀阀的各部件的 设计和加工。
[35]可替代地, 在根据本发明另一种实施方式的先导型电子膨胀阀中, 先导阀孔的顶面和主阀孔的顶面可以处于相同的水平面,第一套管和第 二套管可以具有相同的长度, 但是先导阀针的长度小于主阀针的长度。 这可以以其他的方式容易地实现本发明的目的。
[36]可替代地, 在根据本发明又一种实施方式的先导型电子膨胀阀中, 先导阀针和主阀针可以具有相同的长度, 第一套管和第二套管可以具有 相同的长度, 但是先导阀孔的顶面低于主阀孔的顶面。 这可以通过在主 阀孔上设置另外的阀座来实现,或者通过对先导阀孔进行进一步的加工 使其顶面凹陷来实现,或者通过在先导阀孔和主阀孔上设置高度不同的 阀座来实现。 同样, 采用上述构造可以以其他的方式容易地实现本发明 的目的。
[37]在根据本发明一种实施方式的先导型电子膨胀阀中, 可以在各个部 件中设置平衡通道或平衡孔以实现阀体的内部空间与密封盖的内部空 间之间的流体连通, 从而可以迅速地实现电子膨胀阀内部的压力平衡, 使得电子膨胀阀的运转更加平稳。
[38]在根据本发明一种实施方式的先导型电子膨胀阀中, 转子设置在电 子膨胀阀的内部, 而定子设置在电子膨胀阀的外部。 因此, 电子膨胀阀 的各部件的布置更加灵活,并且使得电气组件与电子膨胀阀内的流体物 理地隔绝开, 增强了电子膨胀阀的密封性。 附图说明
[39]通过以下参照附图的描述, 本发明的一个或几个实施方式的特征和 优点将变得更加容易理解, 其中:
[40]图 1是根据本发明实施方式的先导型电子膨胀阀的剖视图;
[41]图 2是图 1所示先导型电子膨胀阀的分解剖视图; [42]图 3是图 1所示先导型电子膨胀阀的一部分的放大图; 以及 [43]图 4A、 4B和 4C示出了先导型电子膨胀阀的工作过程。 具体实施方式
[44〗下面对优选实施方式的描述仅仅是示范性的, 而绝不是对本发明及其 应用或用法的限制。
[45]首先将参照图 1-3描述根据本发明实施方式的先导型电子膨胀阀 (在 下文中也简称为电子膨胀阀) 的基本构造。
[46]根据本发明的电子膨胀阀 10 可以包括用于对流过电子膨胀阀的流体 的流量进行调节的阀部和用于打开或关闭阀部的执行机构。
[47]总体上, 电子膨胀阀 10包括阀体 12。 阀体 12上形成有与入流管 14 连接的入口 12-1、 与出流管 16连接的出口 12-2以及用于接收支承座 30 的上部开口 12-3。在阀体 12的底部上形成有先导阀孔 20和主阀孔 22。先 导阀孔 20和主阀孔 22都与出口 12-2流体连通以调节从出口 12-2排出的 流体的流量。优选地,先导阀孔 20的横截面积小于主阀孔 22的横截面积, 并且先导阀孔 20的横截面积相对于主阀孔 22的横截面积的比率可以根据 电子膨胀阀的工作环境、 所用驱动电机的大小以及其他参数等来确定。
[48]电子膨胀阀 10还包括用于打开先导阀孔 20的先导阀针 40和用于打开 主阀孔 22的主阀针 42。 电子膨胀阀 10进一步包括同时驱动先导阀针 40 和主阀针 42的执行机构(将在下文中具体描述)。 先导阀针 40和主阀针 42彼此平行设置且隔开预定距离。 根据本发明实施方式的电子膨胀阀 10 构造成: 在打开电子膨胀阀 10时, 先导阀针 40首先打开先导阀孔 20, 主 阀针 42随后打开主阀孔 22; 而在关闭电子膨胀阀 10时, 主阀针 42首先 关闭主阀孔 22, 先导阀针 40随后关闭先导阀孔 20。
[49]在本发明的实施方式中, 由于先导阀针 40和主阀针 42由相同的执行 机构同时驱动并且先导阀针 40先打开先导阀孔 20,主阀针 42随后打开主 阀孔 22,因此能够利用先导阀孔 20提前平衡入口 12-1和出口 12-2之间的 压力差, 从而能够利用较小的驱动电机实现具有较大容量的电子膨胀阀。
[50]在本发明的一种实施方式中, 如图 4C所示, 可以将先导阀针 40、 主 阀针 42、 先导阀孔 20和主阀孔 22之间的构造设置为: 在电子膨胀阀 10 完全打开时, 先导阀针 40的末端与先导阀孔 20之间的距离 dl大于主阀 针 42的末端与主阀孔 22之间的距离 d2。 [51]在根据本发明实施方式的电子膨胀阀 10中,执行机构可以包括螺母套 筒 50。 螺母套筒 50包括用于滑动接收先导阀针 40的第一内腔 54和用于 滑动接收主阀针 42的第二内腔 56。 先导阀针 40和主阀针 42可以具有相 同的构造, 并且可以在其端部分别具有增大的头部 40-1和 42-1。从而, 可 以在第一内腔 54中固定设置第一套管 44以限制先导阀针 40的轴向位移, 可以在第二内腔 56中固定设置第二套管 46以限制主阀针 42的轴向位移。 先导阀针 40可以穿过第一套管 44以打开和关闭先导阀孔 20,并且先导阀 针 40的头部 40-1可以抵接在第一套管 44的顶端以限制其轴向位移。主阀 针 42可以穿过第二套管 46以打开和关闭主阀孔 22, 并且主阀针 42的头 部 42-1可以抵接在第二套管 42的顶端以限制其轴向位移。
[52]另外, 可以在第一内腔 54中设置向先导阀针 40施加弹簧力的第一弹 簧 48, 可以在第二内腔 56中设置向主阀针 40施加弹簧力的第二弹簧 49。 这样,第一弹簧 48可以对先导阀针 40施加朝向关闭先导阀孔 20方向的力, 并且在电子膨胀阀 10打开的状态下, 第一弹簧 48可以迫压先导阀针 40 使其抵靠在第一套管 44的顶端。 另外, 在电子膨胀阀 10关闭的状态下, 第一弹簧 48可以被先导阀针 40压缩从而调节先导阀针 40的轴向位移,另 外,第一弹簧 48可以调节先导阀针 40关闭先导阀孔 20的关闭力以避免先 导阀针 40或先导阀孔 20损坏。 类似地, 第二弹簧 49可以对主阀针 42施 加朝向关闭主阀孔 22方向的力, 并且在电子膨胀阀 10打开的状态下, 第 二弹簧 49可以迫压主阀针 42使其抵靠在第二套管 46的顶端。另外,在电 子膨胀阀 10关闭的状态下,第二弹簧 49可以被主阀针 42压缩从而调节主 阀针 42的轴向位移, 另外, 第二弹簧 49可以调节主阀针 42关闭主阀孔 22的关闭力以避免主阀针 42或主阀孔 22损坏。
[53]螺母套筒 50的与第一内腔 54和第二内腔 56相反的一端可以包括内螺 纹段 52。
[54]根据本发明实施方式的执行机构还可以包括具有外螺紋段 82-1的主轴 82。 主轴 82与转子 80固定连接从而能够随转子 80—起旋转。 主轴 82的 外螺紋段 82-1可以配合在螺母套筒 50的内螺纹段 52中。 另外, 螺母套筒 50可以支撑在支承座 30中使得螺母套筒 50能够在支承座 30内滑动但是 不能相对于支承座 30转动。支承座 30设置在阀体 12的上部开口 12-3中, 并且具有供先导阀针 40和主阀针 42穿过的通孔 32和 34。
[55]特别是,参见图 3所示,支承座 30的内周表面上可以设置至少一个(在 本示例中为两个)引导槽 37-1、 37-2, 螺母套筒 50的外周表面上可以设置 与引导槽 37-1、 37-2配合的突起 57-1、 57-2。 或者, 可以在支承座 30的 内周表面上设置突起,而在螺母套筒 50的外周表面上设置与所述突起配合 的引导槽。
[56]采用上述构造,可以将转子 80以及主轴 82的旋转运动通过主轴 82和 螺母套筒 50的螺紋副转化为螺母套筒 50的轴向运动, 从而能够带动先导 阀针 40和主阀针 42轴向运动以打开或关闭先导阀孔 20和主阀孔 22。
[57]然而, 本发明并不局限于此, 而是可以采用其他的构造来将主轴 82 的旋转运动转化为螺母套筒 50的轴向运动。 例如, 支承座 30可以具有非 圆形的内周表面, 而螺母套筒 50可以具有与支承座 30的非圆形的内周表 面匹配的非圆形的外周表面。或者,支承座 30可以具有多边形的内周表面, 螺母套筒 50可以具有与支承座 30的多边形的内周表面匹配的多边形的外 周表面。
[58]根据本发明的实施方式, 可以在电子膨胀阀 10中设置支撑主轴 82的 轴承组件。 例如, 轴承组件可以包括固定在支承座 30上的下支撑件 60、 固定在下支撑件 60上的上支撑件 72以及固定在下支撑件 60和上支撑件 72之间的轴承 70。轴承 70可以是滑动轴承。轴承组件可以为主轴 82提供 更稳定的支撑, 同时轴承组件中的下支撑件 60还可以起到限制螺母套筒 50轴向位移的止动功能。 但是, 本领域技术人员应该理解, 本发明并不局 限于此, 而是可以采用其他构造的轴承组件, 或者轴承组件可以相对于电 子膨胀阀的其他固定部件固定, 或者甚至可以省略该轴承组件。
[59]在根据本发明实施方式的电子膨胀阀 10中, 还可以包括与支承座 30 密封固定的密封盖 90。 转子 80可以固定在密封盖 90的内侧。
[60]为了使电子膨胀阀 10内的各个区域流体连通以实现快速的压力平衡, 在其多个部件中设置有压力平衡通道。例如,主轴 82中可以包括轴向延伸 的平衡通道 84和径向延伸的平衡孔 86。 第一内腔 54和第二内腔 56可以 彼此流体连通并且与内螺纹段 52流体连通。 内螺纹段 52可以经由主轴 82 的平衡通道 84和平衡孔 86与密封盖 90围起的空间流体连通。
[61]另外, 阀体 12的侧壁中可以形成有平衡通道 18-1、 18-2, 支承座 30 的凸耳 38中可以形成有与阀体 12的平衡通道 18-1、 18-2相流体连通的平 衡通道 38-1、38-2。从而,阀体 12的内部空间经由阀体 12的平衡通道 18-1、 18-2和支承座 30上的平衡通道 38-1、 38-2与密封盖 90围起的空间流体连 通。 [62]进一步地, 第一套管 44和第二套管 46上也可以形成压力平衡孔。 螺 母套筒 50的突起 57-1、 57-2中也可以形成压力平衡孔。 上支撑件 72上也 可以形成压力平衡孔 72-1。
[63]在根据本发明的实施方式中, 用于驱动转子 80转动的定子(未示出) 可以设置在密封盖 90的外侧。 因此, 电子膨胀阀的各部件的布置更加灵 活, 并且使得电气组件与电子膨胀阀内的流体物理地隔绝开, 增强了电 子膨胀阀的密封性。
[64]然而, 本发明并不局限于此, 定子也可以设置在密封盖 90内。
[65]在图 1-3所示的实施方式中, 先导阀孔 20的顶面和主阀孔 22的顶面 设置成处于相同的水平面, 先导阀针 40和主阀针 42具有相同的长度, 但 是第一套管 44的长度大于第二套管 46的长度。
[66]从而, 如图 4A、 4B和 4C所示, 当处于图 4A所示的状态时, 先导阀 针 40关闭先导阀孔 20, 主阀针 42关闭主阀孔 22。 随着转子 80被驱动, 螺母套筒 50向上运动。 由于第一套管 44的长度大于第二套管 46的长度, 所以先导阀针 40的头部首先抵靠第一套管 44的顶端而被带动向上运动, 从而首先打开先导阀孔 20。而主阀针 42由于被第二弹簧 49向下迫压而仍 然关闭主阀孔 22, 直到主阀针 22的头部抵靠第二套管 46的顶端为止, 如 图 4B所示。 接下来, 如图 4C所示, 随着螺母套筒 50继续向上运动, 先 导阀针 40的头部与第一套管 44的顶端抵接从而继续向上运动, 而主阀针 42的头部由于与第二套管 46的顶端抵接也开始向上运动, 从而逐渐打开 主阀孔 22。 此后, 可以根据流量调节的需要, 控制转子 80的转动量以控 制主阀孔 22的开度。
[67]类似地, 在关闭电子膨胀阀 10时, 转子 80被沿相反的方向驱动使得 螺母套筒 50向下运动,从而主阀针 42首先关闭主阀孔 22,如图 4B所示。 随着螺母套筒 50继续向下运动, 主阀针 42压缩第二弹簧 49并且主阀针 42的头部离开第二套管 46的顶端。 然后, 如图 4A所示, 螺母套筒 50继 续向下运动, 第二弹簧 49被继续压缩直到先导阀针 40关闭先导阀孔 20。
[68]在图 4A所示的状态下, 先导阀针 44的头部抵接第一套管 44的顶端。 但是, 本领域技术人员可以理解, 先导阀针 44 的头部可以离开第一套管 44的顶端而进一步压缩第一弹簧 48以提供合适的关闭力。
[69]除了上述实施方式, 还可以对本发明的电子膨胀阀 10做如下改型。
[70]例如, 先导阀孔 20的顶面和主阀孔 22的顶面路设置成处于相同的水 平面, 第一套管 44和第二套管 46可以具有相同的长度, 但是先导阀针 40 的长度可以小于主阀针 42的长度。这同样可以实现如上所述的本发明的有 益效果。
[71]另外, 先导阀针 40和主阀针 42可以设置成具有相同的长度, 第一套 管 44和第二套管 46可以设置成具有相同的长度,但是先导阀孔 20的顶面 可以低于主阀孔 22的顶面。例如,可以通过对先导阀孔进行进一步的加工 使其相对于主阀孔下凹, 或者可以在先导阀孔或主阀孔上设置不同高度的 阀座使得先导阀孔的顶面低于主阀孔的顶面。 这同样可以实现如上所述的 本发明的有益效果。
[72]尽管在此已详细描述本发明的各种实施方式, 但是应该理解本发明并 不局限于这里详细描述和示出的具体实施方式, 在不偏离本发明的实质和 范围的情况下可由本领域的技术人员实现其它的变型和变体。 所有这些变 型和变体都落入本发明的范围内。 而且, 所有在此描述的构件都可以由其 他技术性上等同的构件来代替。

Claims

权利要求书
1、 一种先导型电子膨胀阀 (10), 其特征在于包括:
阀体(12);
形成在所述阀体(12)上的先导阀孔(20)和主阀孔(22);
用于打开所述先导阀孔(20)的先导阀针(40);
用于打开所述主阀孔(22)的主阀针(42);
同时驱动所述先导阀针(40)和所述主阀针(42)的执行
其中, 所述先导阀针(40)和所述主阀针(42)平行设置且隔开预定 距离, 并且
所述电子膨胀阀构造成:在打开所述电子膨胀阀时,所述先导阀针 ( 40 ) 首先打开所述先导阀孔( 20 ),所述主阀针( 42 )随后打开所述主阀孔( 22 ); 在关闭所述电子膨胀阀时, 所述主阀针(42)首先关闭所述主阀孔(22), 所述先导阀针(40)随后关闭所述先导阀孔(20)。
2、 如权利要求 1所述的先导型电子膨胀阀 (10), 其中在所述电子膨 胀阀完全打开时, 所述先导阀针 (40)的末端与所述先导阀孔(20)之间 的距离 dl 大于所述主阀针 (42)的末端与所述主阀孔(22)之间的距离 d2。
3、 如权利要求 1所述的先导型电子膨胀阀 (10), 其中所述执行机构 包括螺母套筒(50), 所述螺母套筒(50)包括用于滑动接收所述先导阀针 ( 40 )的第一内腔( 54 )和用于滑动接收所述主阀针( 42 )的第二内腔( 56 ), 第一套管 (44) 固定在所述第一内腔(54) 中以限制所述先导阀针 (40) 的轴向位移, 第二套管(46) 固定在所述第二内腔(56) 中以限制所述主 阀针(42)的轴向位移。
4、 如权利要求 3所述的先导型电子膨胀阀 (10), 其中在所述第一内 腔(54)中设置有向所述先导阀针(40)施加弹簧力的第一弹簧(48), 在 所述第二内腔(56) 中设置有向所述主阀针(40)施加弹簧力的第二弹簧 (49)„
5、 如权利要求 4所述的先导型电子膨胀阀 (10), 其中所述先导阀孔 (20)的顶面和所述主阀孔(22) 的顶面处于相同的水平面, 所述先导阀 针(40)和所述主阀针 (42)具有相同的长度, 所述第一套管 (44) 的长 度大于所述第二套管 (46) 的长度。
6、 如权利要求 4所述的先导型电子膨胀阀 (10), 其中所述先导阀孔 (20)的顶面和所述主阀孔(22) 的顶面处于相同的水平面, 所述第一套 管 (44)和所述第二套管 (46)具有相同的长度, 所述先导阀针(40) 的 长度小于所述主阀针(42) 的长度。
7、 如权利要求 4所述的先导型电子膨胀阀 (10), 其中所述先导阀针 (40)和所述主阀针(42)具有相同的长度, 所述第一套管 (44)和所述 第二套管 (46)具有相同的长度, 所述先导阀孔(20)的顶面低于所述主 阀孔(22)的顶面。
8、 如权利要求 1所述的先导型电子膨胀阀 (10), 其中所述先导阀孔 (20)的横截面积小于所述主阀孔(22)的横截面积。
9、 如权利要求 3-8中任一项所述的先导型电子膨胀阀 (10), 其中所 述螺母套筒 (50) 包括内螺紋段(52)。
10、如权利要求 9所述的先导型电子膨胀阀(10), 其中所述执行机构 还包括具有外螺紋段( 82-1 )的主轴( 82),所述主轴( 82)的外螺紋段( 82-1 ) 配合在所述螺母套筒 ( 50 )的内螺紋段( 52 )中。
11、 如权利要求 10所述的先导型电子膨胀阀 (10), 进一步包括用于 支撑所述螺母套筒(50)的支承座(30), 其中所述螺母套筒(50)能够在 所述支承座 (30) 内滑动但是不能相对于所述支承座 (30)转动。
12、 如权利要求 11所述的先导型电子膨胀阀 (10), 其中所述支承座 (30)的内周表面上设置有引导槽(37-1, 37-2), 所述螺母套筒(50)的 外周表面上设置有与所述引导槽(37-1, 37-2)配合的突起(57-1, 57-2), 或者, 所述支承座 (30)的内周表面上设置有突起, 所述螺母套筒 (50) 的外周表面上设置有与所述突起配合的引导槽。
13、 如权利要求 11所述的先导型电子膨胀阀 (10), 其中所述支承座 ( 30 )具有非圆形的内周表面,所述螺母套筒( 50 )具有与所述支承座 (30) 的非圃形的内周表面匹配的非圆形的外周表面。
14、 如权利要求 11所述的先导型电子膨胀阀 (10), 其中所述支承座 ( 30 )具有多边形的内周表面,所述螺母套筒( 50 )具有与所述支承座 ( 30 ) 的多边形的内周表面匹配的多边形的外周表面。
15、 如权利要求 11所述的先导型电子膨胀阀 (10), 进一步包括支撑 所述主轴(82)的轴承组件。
16、 如权利要求 15所述的先导型电子膨胀阀 (10), 其中所述轴承组 件包括固定在所述支承座 ( 30 )上的下支撑件( 60 )、 固定在所述下支撑件 (60)上的上支撑件(72) 以及固定在所述下支撑件(60)和所述上支撑 件(72)之间的轴承(70)。
17、 如权利要求 11所述的先导型电子膨胀阀 (10), 进一步包括与所 述主轴(82) 固定连接以一起旋转的转子(80) 以及与所述支承座 (30) 密封固定的密封盖(90)。
18、如权利要求 17所述的先导型电子膨胀阀( 10 ),其中所述主轴( 82 ) 中包括轴向延伸的平衡通道( 84 )和径向延伸的平衡孔 ( 86 ), 所述第一内 腔(54)和所述第二内腔(56)与所述内螺纹段 (52)流体连通, 所述内 螺紋段 (52)经由所述主轴(82) 的平衡通道(84)和平衡孔 (86)与所 述密封盖(90) 围起的空间流体连通。
19、如权利要求 17所述的先导型电子膨胀阀( 10),其中所述阀体( 12) 上形成有平衡通道(18-1, 18-2),所述支承座(30)上形成有平衡通道(38-1, 38-2), 所述阀体(12)的内部空间经由所述阀体(12)的平衡通道(18-1, 18-2)和所述支承座 (30) 的平衡通道(38-1, 38-2)与所述密封盖(90) 围起的空间流体连通。
20、 如权利要求 17所述的先导型电子膨胀阀 (10), 其中驱动所述转 子(80)转动的定子设置在所述密封盖(90)的外侧。
PCT/CN2013/070162 2012-02-28 2013-01-07 先导型电子膨胀阀 WO2013127275A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2012200685518U CN202520963U (zh) 2012-02-28 2012-02-28 先导型电子膨胀阀
CN201210047736.5A CN103291937B (zh) 2012-02-28 2012-02-28 先导型电子膨胀阀
CN201220068551.8 2012-02-28
CN201210047736.5 2012-02-28

Publications (1)

Publication Number Publication Date
WO2013127275A1 true WO2013127275A1 (zh) 2013-09-06

Family

ID=49081605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070162 WO2013127275A1 (zh) 2012-02-28 2013-01-07 先导型电子膨胀阀

Country Status (1)

Country Link
WO (1) WO2013127275A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104696558A (zh) * 2013-12-05 2015-06-10 艾默生环境优化技术(苏州)有限公司 电子膨胀阀

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219973A (ja) * 1987-03-09 1988-09-13 Saginomiya Seisakusho Inc 三方電磁弁
JP2002106733A (ja) * 2000-10-03 2002-04-10 Tgk Co Ltd 多方向切換弁
US20030155020A1 (en) * 2002-02-21 2003-08-21 Hisatoshi Hirota Four-way switching valve
JP2004053192A (ja) * 2002-07-23 2004-02-19 Tgk Co Ltd 定流量膨張弁
US20040036044A1 (en) * 2002-08-22 2004-02-26 Tgk Co., Ltd. Differential pressure control valve
CN102216703A (zh) * 2008-11-12 2011-10-12 丹佛斯公司 包括偏压装置的膨胀阀
CN202520963U (zh) * 2012-02-28 2012-11-07 艾默生环境优化技术(苏州)有限公司 先导型电子膨胀阀

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219973A (ja) * 1987-03-09 1988-09-13 Saginomiya Seisakusho Inc 三方電磁弁
JP2002106733A (ja) * 2000-10-03 2002-04-10 Tgk Co Ltd 多方向切換弁
US20030155020A1 (en) * 2002-02-21 2003-08-21 Hisatoshi Hirota Four-way switching valve
JP2004053192A (ja) * 2002-07-23 2004-02-19 Tgk Co Ltd 定流量膨張弁
US20040036044A1 (en) * 2002-08-22 2004-02-26 Tgk Co., Ltd. Differential pressure control valve
CN102216703A (zh) * 2008-11-12 2011-10-12 丹佛斯公司 包括偏压装置的膨胀阀
CN202520963U (zh) * 2012-02-28 2012-11-07 艾默生环境优化技术(苏州)有限公司 先导型电子膨胀阀

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104696558A (zh) * 2013-12-05 2015-06-10 艾默生环境优化技术(苏州)有限公司 电子膨胀阀

Similar Documents

Publication Publication Date Title
EP3054189B1 (en) Hydraulic shock absorber
US11555637B2 (en) Electronic expansion valve
JP7113505B2 (ja) 電動弁
CN103162477B (zh) 组合阀
US20160048141A1 (en) Single-Handle Dual-control Thermostatic Faucet
US10215291B2 (en) Regulating device
JP2016166670A (ja) ステッパモータ動作バランス流量制御弁
CN110701370B (zh) 电动驱动式流量控制阀
JP2017201197A (ja) 流量調整バルブおよびその製造方法
CN202520963U (zh) 先导型电子膨胀阀
US10794512B2 (en) Electrically-driven flow rate control valve
CN109780224A (zh) 电子膨胀阀
CN202790582U (zh) 电子膨胀阀
WO2013127275A1 (zh) 先导型电子膨胀阀
CN212536667U (zh) 流量控制阀
CN109869494A (zh) 电子膨胀阀及具有其的制冷系统
US11280497B2 (en) Regulating mechanism for regulating the flows from a plurality of gas outlets in a fuel gas valve
CN111365515B (zh) 电子膨胀阀及使用该电子膨胀阀的空调系统
CN103291937B (zh) 先导型电子膨胀阀
JP7113537B2 (ja) 電動弁
US11415018B2 (en) Valve device and steam turbine
JP2019060498A (ja) 電動弁
CN112997028A (zh) 流路切换阀
JP7291228B2 (ja) 切換弁及びそれを含む冷却システム
JP2002295694A (ja) 電動弁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13754356

Country of ref document: EP

Kind code of ref document: A1