WO2013125609A1 - Reformed coal production equipment, and method for controlling same - Google Patents

Reformed coal production equipment, and method for controlling same Download PDF

Info

Publication number
WO2013125609A1
WO2013125609A1 PCT/JP2013/054252 JP2013054252W WO2013125609A1 WO 2013125609 A1 WO2013125609 A1 WO 2013125609A1 JP 2013054252 W JP2013054252 W JP 2013054252W WO 2013125609 A1 WO2013125609 A1 WO 2013125609A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
coal
inner cylinder
dry distillation
waste heat
Prior art date
Application number
PCT/JP2013/054252
Other languages
French (fr)
Japanese (ja)
Inventor
慶一 中川
大本 節男
佐藤 文昭
佐藤 淳
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to DE112013001121.2T priority Critical patent/DE112013001121T5/en
Priority to IN5895DEN2014 priority patent/IN2014DN05895A/en
Priority to AU2013223201A priority patent/AU2013223201B9/en
Priority to US14/373,573 priority patent/US20140373435A1/en
Priority to CN201380006006.3A priority patent/CN104066824B/en
Publication of WO2013125609A1 publication Critical patent/WO2013125609A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/04Raw material of mineral origin to be used; Pretreatment thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B1/00Retorts
    • C10B1/10Rotary retorts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/28Other processes
    • C10B47/30Other processes in rotary ovens or retorts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/02Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B51/00Destructive distillation of solid carbonaceous materials by combined direct and indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to a modified coal production facility and a control method thereof, and is particularly useful when applied to reforming a low-grade coal (poor coal) having a high moisture content such as lignite and subbituminous coal. Is.
  • Low-grade coal (poor coal) with a high moisture content such as lignite and sub-bituminous coal has a low calorific value per unit weight, so the heat value per unit weight can be reduced by heat treatment and drying. To increase.
  • modified coal production equipment for reforming such low-grade coal examples include, for example, an indirect heating type dry distillation apparatus that indirectly heats low-grade coal with a heating gas and dry distillation generated in the dry distillation apparatus.
  • an indirect heating type dry distillation apparatus that indirectly heats low-grade coal with a heating gas and dry distillation generated in the dry distillation apparatus.
  • the above-mentioned dry distillation gas is composed of a low boiling point component, but is accompanied by a high boiling point component tar (dry distillation oil) in order to treat the low-grade coal at a relatively high temperature.
  • tar dry distillation oil
  • the dry distillation gas is cooled, the tar adheres to the wall surface of a duct or the like through which the dry distillation gas flows. As the amount of tar attached increases, problems such as blocking the duct may occur, and various techniques for removing the tar have been developed.
  • Patent Document 1 air is diluted with water vapor or an inert gas to adjust the oxygen concentration to 3% to 21% by volume, and the gas is adjusted to a temperature of 350 ° C. to 500 ° C.
  • a decoking method for burning and removing the coke is disclosed.
  • Patent Document 2 by supplying an oxygen-containing gas into the inner cylinder of the external heat kiln, organic carbides and combustible gas in the processed product generated by thermal decomposition are combusted, whereby heat is generated.
  • a method for thermally decomposing a processed product using an external heat kiln in which the temperature of the cracked gas is increased to prevent liquefaction or solidification thereof.
  • JP 2004-3738 A see, for example, paragraphs [0011], [0014], [0015], etc.
  • An object of the present invention is to provide a modified coal production facility and a control method thereof.
  • the reformed coal production facility for solving the above-mentioned problems includes a drying means for drying coal, a dry distillation means for carbonizing the dried coal, and a cooling means for cooling the dry coal.
  • the dry distillation means is an indirect heating type dry distillation apparatus comprising an inner cylinder to which the dried coal is transferred and an outer cylinder to which a heating gas for heating the inner cylinder is supplied.
  • a heating gas generation means for generating the heating gas; a dry distillation gas supply means for supplying a dry distillation gas generated in the inner cylinder to the heating gas generation means; and the heating generated by the heating gas generation means.
  • Waste gas generation means for generating a waste heat gas by exchanging heat of the heated gas when a part of the gas is supplied, the waste heat gas, and the heating gas indirectly heating the coal in the outer cylinder
  • the low temperature heating gas Characterized in that the inner cylinder and a distributor for supplying mixed gas distribution means.
  • a modified coal production facility according to a second invention that solves the above-described problem is the modified coal production facility according to the first invention described above, wherein the mixed gas distribution and supply means supplies the dried coal. It is connected to the receiving side of the inner cylinder to be received.
  • the modified coal production facility according to the third invention for solving the above-described problem is the modified coal production facility according to the second invention described above, wherein the indirect heating type carbonization device is configured to use the coal that has been carbonized.
  • Gas temperature measuring means is provided on the discharge outlet side for measuring the gas temperature, and the mixed gas distribution supply means adjusts the flow rates of the low-temperature heating gas and the waste heat gas supplied into the inner cylinder.
  • a gas flow rate adjusting means and a control means for controlling the gas flow rate adjusting means based on the gas temperature measured by the gas temperature measuring means are provided.
  • a modified coal production facility according to a fourth invention for solving the above-described problem is the modified coal production facility according to the third invention described above, wherein the drying means, the indirectly heated carbonization apparatus, and the cooling means.
  • a plurality of equipment main bodies having the above are provided in parallel.
  • a control method for a modified coal production facility that solves the above-described problem is a method for controlling the modified coal production facility according to the third aspect of the invention, wherein the coal to the inner cylinder is controlled.
  • the control means controls the gas flow rate adjusting means to supply the low temperature heating gas and the waste heat gas to the inner cylinder, while increasing the amount of fuel supplied to the heating gas generation means,
  • the control means controls the gas flow rate adjusting means to stop the supply of the low temperature heating gas and the waste heat gas to the inner cylinder. It is characterized by doing.
  • a method for controlling a reformed coal production facility according to a sixth aspect of the present invention that solves the above-described problem is a method of controlling the reformed coal production facility according to the fourth aspect of the invention, wherein the facility main body that is to be stopped is used.
  • the control means controls the gas flow rate adjusting means to start supplying the low-temperature heating gas and the waste heat gas to the inner cylinder, and in the equipment main body to be stopped, When all of the coal is discharged from the inner cylinder, the supply of the heated gas to the inner cylinder is stopped, while the heating gas supplied to the outer cylinder is set to a steady state in the equipment main body that is in steady operation.
  • the control means controls the gas flow rate adjusting means to stop the supply of the low-temperature heating gas and the waste heat gas to the inner cylinder.
  • the heated gas when the equipment is stopped, the heated gas can be supplied to the indirectly heated dry distillation means until the coal (dry distilled coal) is discharged from the indirectly heated dry distillation means, It is possible to prevent new tar from being generated. Since the low temperature heating gas and the waste heat gas are supplied to the indirect heating type dry distillation means, the dry distillation gas in the indirect heating type dry distillation means and the dry distillation gas supply means can be purged. Therefore, it is possible to prevent tar from adhering to the wall surfaces in the indirectly heated dry distillation means and the dry distillation gas supply means.
  • the oxygen concentration of the low-temperature heating gas and waste heat gas is about 2 to 3%, even if tar adheres to the wall surface in the indirectly heated dry distillation means and the dry distillation gas supply means, the tar is burned and removed. can do. Therefore, even when the facility is stopped, tar can be efficiently removed without reducing the production amount of the modified coal. Tar removal work by indirect heating type dry distillation means and dry distillation gas supply means becomes unnecessary, and maintenance and inspection work can be performed efficiently.
  • 1 is an overall schematic configuration diagram of a modified coal production facility according to a first embodiment of the present invention. It is a control flow figure of the reformed coal manufacturing equipment concerning the 1st example of the present invention. It is a whole schematic block diagram of the reformed coal manufacturing equipment concerning the 2nd example of the present invention. It is a control flow figure of the reformed coal manufacturing equipment concerning the 2nd example of the present invention.
  • Embodiments of the modified coal production facility and the control method thereof according to the present invention will be described in each example.
  • low-grade coal 1 such as lignite and bituminous coal is drying means for drying the low-grade coal 1 with a hopper or the like not shown. It is supplied to the drying device 111.
  • the delivery port of the drying device 111 communicates with a receiving port 122a of the carbonization device 121 for carbonizing the dry coal 2.
  • the outlet 122 b of the carbonization device 121 communicates with an inlet of a cooling device 131 that is a cooling means for cooling the carbonized coal 3.
  • the dry distillation apparatus 121 includes an inner cylinder 122 and an outer cylinder 123 that covers the inner cylinder 122.
  • the heating gas 11 described later is supplied to the outer cylinder 123.
  • the dry coal 2 supplied in the inner cylinder 122 is indirectly heated and dry-distilled, and the dry-distilled coal 3 is produced
  • the dry distillation apparatus 121 is an indirect heating type apparatus in which the high-temperature gas (heating gas) serving as a heat source and the low-grade coal 1 are not in direct contact, for example, an external heating kiln or the like, and constitutes an indirect heating type dry distillation means. .
  • the gas discharge port of the inner cylinder 122 of the carbonization apparatus 121 communicates with the gas inlet of the combustion furnace 124 via the carbonization gas supply pipe 101.
  • generated by dry distillation is supplied to the gas inlet of the combustion furnace 124.
  • FIG. A fuel (not shown) such as natural gas is also supplied to the gas receiving port of the combustion furnace 124.
  • fuel such as the dry distillation gas 14 and natural gas burns to generate the heated gas 11. That is, the combustion furnace 124 serves as a heated gas generation unit.
  • the gas discharge port of the combustion furnace 124 communicates with the gas inlet of the outer cylinder 123 of the dry distillation apparatus 121 via the heated gas supply pipe 51.
  • the heated gas supply pipe 51 communicates with the gas inlet of the steam generator 125 via the heated gas branch pipe 53.
  • the steam generator 125 constitutes a waste heat gas generating means for generating the waste heat gas 13 by generating steam by the heat gas 11 exchanging heat with water.
  • the gas discharge port of the steam generator 125 communicates with an exhaust pipe 52 described later via a waste heat gas supply pipe 54.
  • the gas discharge port of the outer cylinder 123 of the dry distillation apparatus 121 is an exhaust gas purification means for purifying the low temperature heating gas 12 generated by heating the inner cylinder 122 and the waste heat gas 13 through the exhaust pipe 52. It communicates with the gas inlet of a certain exhaust gas treatment device 127. The low-temperature heating gas 12 and the waste heat gas 13 are purified by the exhaust gas treatment device 127 and discharged outside the system.
  • the exhaust pipe 52 communicates with the gas receiving port of the blower 126 via the mixed gas supply pipe 55.
  • the gas outlet of the blower 126 communicates with the gas inlet of the combustion furnace 124 through the mixed gas supply pipe 56.
  • the mixed gas supply pipe 56 communicates with the mixed gas branch pipe 102.
  • the mixed gas branch pipe 102 communicates with the mixed gas communication pipe 104 via a flow rate adjusting valve (three-way valve) 103 and also communicates with the mixed gas distribution pipe 105 via the flow rate adjusting valve 103.
  • the mixed gas communication pipe 104 communicates with the dry distillation gas supply pipe 101.
  • the mixed gas distribution pipe 105 communicates with the gas inlet on the inlet 122 a side of the inner cylinder 122 of the dry distillation apparatus 121.
  • the dry distillation gas supply pipe 101 is provided with a gas temperature measuring device 106 which is a gas temperature measuring means for measuring the gas temperature in the pipe.
  • the gas temperature measuring device 106 is connected to the control device 109 so that the measured gas temperature can be transmitted to the control device 109.
  • the dry distillation gas supply pipe 101 is provided with differential pressure measuring devices 107a and 107b for measuring a pressure difference in the pipe.
  • the differential pressure measuring devices 107 a and 107 b are connected to the control device 109 so that the measured pressure difference in the pipe can be transmitted to the control device 109.
  • an inner cylinder gas temperature measuring device 108 which is a gas temperature measuring means for measuring the gas temperature in the inner cylinder 122 is provided.
  • the inner cylinder gas temperature measuring device 108 is connected to the control device 109 so that the measured gas temperature in the inner cylinder can be transmitted to the control device 109.
  • the exhaust pipe 52, the waste heat gas supply pipe 54, the mixed gas supply pipe 55, the blower 126, the mixed gas supply pipe 56, the mixed gas branch pipe 102, the flow rate adjusting valve 103, the mixed gas distribution pipe 105, etc. are mixed and supplied with the mixed gas. It has a means.
  • the flow rate adjusting valve 103 constitutes a gas flow rate adjusting means for adjusting the supply amounts of the low-temperature heating gas 12 and the waste heat gas 13 to the dry distillation apparatus 121.
  • the control device 109 controls the flow rate adjusting valve 103, the amount of fuel supplied to the combustion furnace 124, the amount of low-grade coal 1 supplied to the drying device 111, and the heating gas 11 supplied to the dry distillation device 121 based on the measurement values obtained by various measuring instruments.
  • the supply amount is controlled. That is, the control device 109 serves as a control means for adjusting the valve opening degree of the flow rate adjusting valve 103 based on the measurement values obtained by various measuring instruments.
  • the hopper quantifies the low-grade coal 1 at room temperature into the drying device 111.
  • Supply one by one The low-grade coal 1 supplied to the drying device 111 is heated to about 200 ° C. by drying combustion gas (about 150 to 300 ° C.) from a drying combustor (not shown) to remove moisture.
  • the charcoal 2 is transferred into the inner cylinder 122 of the dry distillation apparatus 121.
  • the dry coal 2 transferred to the carbonization device 121 is indirectly heated and dry-distilled with the heated gas 11 (gas temperature: about 1050 ° C., oxygen concentration: about 2-3%) from the combustion furnace 124, Components such as the dry distillation gas 14 containing gaseous tar are removed to form the dry distillation coal 3 and fed to the cooling device 131.
  • the dry-distilled coal 3 fed to the cooling device 131 becomes the reformed coal 4 by being cooled to about 50 ° C.
  • the heated gas 11 (gas temperature: about 1050 ° C., oxygen concentration: about 2-3%) generated in the combustion furnace 124 is fed to the outer cylinder 123 of the dry distillation apparatus 121 through the heated gas feed pipe 51.
  • the heating gas 11 used for heating the inner cylinder 122 in the outer cylinder 123 becomes a low-temperature heating gas 12 (gas temperature: about 350 ° C., oxygen concentration: about 2-3%).
  • the low-temperature heating gas 12 is supplied to the exhaust pipe 52.
  • the heated gas 11 is fed to the steam generator 125 via the heated gas feed pipe 51 and the heated gas branch pipe 53.
  • the heated gas 11 used to generate water vapor by the steam generator 125 becomes the waste heat gas 13 (gas temperature: about 350 ° C., oxygen concentration: about 2-3%).
  • the waste heat gas 13 is supplied to the exhaust pipe 52 through the waste heat gas supply pipe 54.
  • a part of the low temperature heating gas 12 and the waste heat gas 13 is supplied to the exhaust gas treatment device 127.
  • the low temperature heating gas 12 and the waste heat gas 13 are purified by the exhaust gas treatment device 127 and discharged out of the system.
  • the remainder of the low-temperature heating gas 12 and the waste heat gas 13 (gas temperature: about 350 ° C., oxygen concentration: about 2-3%) is fed to the blower 126 via the mixed gas feed pipe 55.
  • a part of the low-temperature heating gas 12 and the waste heat gas 13 fed to the blower 126 is supplied to the combustion furnace 124 through the mixed gas supply pipe 56. Further, the remaining part of the low-temperature heating gas 12 and the waste heat gas 13 (gas temperature: about 350 ° C., oxygen concentration: about 2-3%) fed to the blower 126 is supplied to the mixed gas branch pipe 102. The remainder of the low-temperature heating gas 12 and the waste heat gas 13 (gas temperature: about 350 ° C., oxygen concentration: about 2-3%) supplied to the mixed gas branch pipe 102 passes through the flow rate adjusting valve 103 and the mixed gas communication pipe 104. Is supplied to the dry distillation gas supply pipe 101, or is supplied to the inlet 122 a side of the inner cylinder 122 of the dry distillation apparatus 121 through the flow rate adjusting valve 103 and the mixed gas distribution pipe 105.
  • the valve opening degree of the flow rate adjusting valve 103 is controlled by the control device 109 based on the gas temperature measured by the gas temperature measuring device 106. For example, when the gas temperature measured by the gas temperature measuring device 106 is 400 ° C. or higher, the control device 109 opens the flow rate adjusting valve 103 and adjusts the opening so that the gas temperature becomes higher than 550 ° C.
  • the flow rate adjustment valve 103 is adjusted to be throttled. As a result, a mixed gas in which the low-temperature heating gas 12 and the waste heat gas 13 (oxygen concentration: about 2 to 3%) and the dry distillation gas 14 (gas temperature: about 400 ° C., oxygen concentration: 0%) are mixed and mixed. The oxygen concentration in the gas is adjusted to about 1 to 2%.
  • gaseous tar dry distillation oil
  • adhesion of the tar to the dry distillation gas supply pipe 101 can be prevented. That is, by adjusting the supply amounts of the low-temperature heating gas 12 and the waste heat gas 13 to the dry distillation gas supply pipe 101 based on the gas temperature in the dry distillation gas supply pipe 101, tar is formed on the wall surface in the dry distillation gas supply pipe 101. Decoking is performed at the timing of adhesion, and tar can be efficiently removed.
  • step SA1 the operation
  • step SA2 the transfer of the dry coal 2 to the inner cylinder 122 of the dry distillation apparatus 121 is stopped.
  • step SA11 there is no new transfer of the dry charcoal 2 to the inner cylinder 122 of the dry distillation apparatus 121, so the amount of dry distillation gas 14 generated is reduced.
  • step SA11 the supply amount of the dry distillation gas 14 to the combustion furnace 124 decreases.
  • the supply amount of fuel such as natural gas to the combustion furnace 124 is increased and combustion is performed.
  • step SA12 the amount of additional cooking in the furnace 124
  • step SA13 all the carbonized coal 3 is discharged from the carbonization apparatus 121 (step SA13). That is, the generation of the dry distillation gas 14 is stopped in the dry distillation apparatus 121.
  • step SA3 the control device 109 adjusts the flow rate adjustment valve 103, and the low temperature heating gas 12 and waste heat gas to the inlet 122a side of the inner cylinder 122 of the dry distillation apparatus 121 via the mixed gas distribution pipe 105. 13 supply is started. That is, the low-temperature heating gas 12 and the waste heat gas 13 are forcibly sent from the receiving port 122a side of the inner cylinder 122 of the dry distillation apparatus 121 into the inside thereof. Thereby, the dry distillation gas 14 in the inner cylinder 122 of the dry distillation apparatus 121 and the dry distillation gas supply pipe 101 is purged.
  • step SA4 the amount of additional cooking in the combustion furnace 124 is reduced.
  • step SA5 the gas temperature and the generation amount of the heated gas 11 generated in the combustion furnace 124 are reduced.
  • step SA6 the temperature of the dry distillation apparatus 121 decreases.
  • step SA7 the temperature of the waste heat gas 13 itself decreases.
  • step SA8 the control device 109 makes a determination based on the inner cylinder gas temperature measured by the inner cylinder gas temperature measuring instrument 108. If the gas temperature in the vicinity of the outlet 122b of the inner cylinder 122 of the dry distillation apparatus 121 is higher than 300 ° C., the process returns to step SA4. On the other hand, when the temperature in the vicinity of the discharge port 122b of the inner cylinder 122 of the dry distillation apparatus 121 is 300 ° C. or less, the process proceeds to step SA9, and in this step SA9, the control device 109 controls the flow rate adjusting valve 103 and The adjustment valve 103 is closed. That is, the supply of the low-temperature heating gas 12 and the waste heat gas 13 to the inner cylinder 122 of the dry distillation apparatus 121 is stopped.
  • the low temperature heating gas 12 and the waste heat gas 13 are supplied to the inlet 122a side of the inner cylinder 122 of the dry distillation apparatus 121.
  • the dry distillation gas 14 in the inner cylinder 122 of the dry distillation apparatus 121 and the dry distillation gas supply pipe 101 is forcibly discharged. Further, the dry distillation gas 14 is burned in the combustion furnace 124.
  • tar can be lightened by oxidative decomposition.
  • the lightened gas flows into the combustion furnace 124 and burns in the combustion furnace 124.
  • the tar can be removed by combustion.
  • a modified coal production facility according to a second embodiment of the present invention will be described with reference to FIGS. 3, 4A, and 4B.
  • the modified coal production facility includes three modified coal production facility bodies 100A, 100B, and 100C arranged in parallel.
  • the reformed coal production equipment main bodies 100A, 100B, and 100C include a drying device 111, a carbonization device 121, and a cooling device 131, respectively, as in the modified coal production facility 100 according to the first embodiment described above.
  • the reformed coal production facility includes one combustion furnace 124, one blower 126, and one exhaust gas treatment device 127, similar to the modified coal production facility 100 according to the first embodiment described above.
  • the gas outlet of the blower 126 communicates with the gas inlet of the combustion furnace 124 through the mixed gas supply pipe 56.
  • the gas discharge port of the combustion furnace 124 communicates with the outer cylinder 123 of the dry distillation apparatus 121 of each of the equipment main bodies 100A, 100B, and 100C via the heated gas supply pipes 51a to 51c.
  • the heated gas feed pipes 51a to 51c communicate with the gas inlets of the respective steam generators 125 via the heated gas branch pipes 53a to 53c.
  • the gas discharge ports of the respective steam generators 125 communicate with the waste heat gas supply pipes 54a to 54c, respectively.
  • the gas discharge port of the outer cylinder 123 of each carbonization apparatus 121 communicates with the exhaust pipes 52a to 52c.
  • a part of the low-temperature heating gas 12 and the waste heat gas 13 generated by the heating gas 11 heating the inner cylinder 122 passes through the exhaust pipes 52a to 52c and the waste heat gas supply pipes 54a to 54c.
  • the waste heat gas 13 is supplied to an exhaust gas treatment device 127 which is an exhaust gas purification means for purifying the waste heat gas 13, and is purified by the exhaust gas treatment device 127 and discharged outside the system.
  • the remainder of the low-temperature heating gas 12 and the waste heat gas 13 are supplied to the blower 126 through the exhaust pipes 52a to 52c, the waste heat gas supply pipes 54a to 54c, and the mixed gas supply pipe 55.
  • the gas discharge port of the inner cylinder 122 of each carbonization device 121 communicates with the gas reception port of the combustion furnace 124 via the carbonization gas supply pipes 101a to 101c.
  • the mixed gas supply pipe 56 communicates with the mixed gas branch pipes 102a to 102c.
  • the mixed gas branch pipes 102a to 102c communicate with the mixed gas communication pipes 104a to 104c via the flow rate adjusting valves (three-way valves) 103a to 103c, respectively, and the mixed gas distribution pipes 105a to 105c via the flow rate adjusting valves 103a to 103c. 105c is contacted respectively.
  • the mixed gas communication pipes 104a to 104c communicate with the dry distillation gas supply pipes 101a to 101c, respectively.
  • the mixed gas distribution pipes 105a to 105c are in communication with the gas inlets on the inlet 122a side of the inner cylinder 122 of each dry distillation apparatus 121, respectively.
  • the dry distillation gas supply pipe 101a is provided with a gas temperature measuring device 106 which is a gas temperature measuring means for measuring the gas temperature in the pipe.
  • the gas temperature measuring device 106 is connected to the control device 109 so that the measured gas temperature can be transmitted to the control device 109.
  • gas temperature measuring instruments (not shown) are also provided in the dry distillation gas supply pipes 101b and 101c. These gas temperature measuring devices are also connected to the control device 109 so that the gas temperature measured by the gas temperature measuring device can be transmitted to the control device 109.
  • the dry distillation gas supply pipe 101a is provided with differential pressure measuring devices 107a and 107b for measuring the pressure difference in the pipe.
  • the differential pressure measuring devices 107 a and 107 b are connected to the control device 109 so that the measured pressure difference in the pipe can be transmitted to the control device 109.
  • a differential pressure measuring instrument (not shown) is provided in each of the dry distillation gas supply pipes 101b and 101c. These differential pressure measuring devices are also connected to the control device 109 so that the pressure difference in the pipe measured by the differential pressure measuring device can be transmitted to the control device 109.
  • the inner cylinder internal gas temperature measuring device 108 which measures the gas temperature in the inner cylinder 122 is provided in the delivery port 122b of the inner cylinder 122 of the carbonization apparatus 121 of the equipment main body 100A.
  • the inner cylinder gas temperature measuring device 108 is connected to the control device 109 so that the measured gas temperature in the inner cylinder can be transmitted to the control device 109.
  • an inner cylinder internal gas temperature measuring device (not shown) that measures the gas temperature in the inner cylinder 122 is also provided at the outlet 122b of the inner cylinder 122 of the dry distillation apparatus 121 of the equipment main bodies 100B and 100C. Each is provided.
  • These in-cylinder gas temperature measuring devices are also connected to the control device 109 so that the measured gas temperature in the inner cylinder can be transmitted to the control device 109.
  • the pipes 105a to 105c and the like constitute mixed gas distribution supply means.
  • the flow rate adjusting valves 103a to 103c constitute gas flow rate adjusting means for adjusting the supply amounts of the low-temperature heating gas 12 and the waste heat gas 13 to the dry distillation apparatuses 121 of the equipment main bodies 100A, 100B, and 100C.
  • the control device 109 supplies the low-grade coal 1 to the drying devices 111 of the equipment main bodies 100A, 100B, and 100C based on the flow rate adjusting valves 103a to 103c and the amount of fuel supplied to the combustion furnace 124 based on the measurement values obtained by various measuring instruments.
  • the amount, the supply amount of the heated gas 11 to the dry distillation apparatus 121 of each equipment main body 100A, 100B, 100C, etc. are controlled. That is, the control device 109 constitutes a control means for adjusting the valve opening degree of the flow rate adjusting valves 103a to 103c based on the measurement values obtained by various measuring instruments.
  • the operation for controlling to prevent the tar from adhering to the dry distillation gas supply pipes 101a, 101b, 101c during the steady operation is the above-described first operation. This is the same as the modified coal production facility 100 according to the embodiment, and the description thereof is omitted.
  • the reformed coal production facility main body 100A is in steady operation (step SB1).
  • the reformed coal production equipment main bodies 100B and 100C are also in steady operation (step SC1).
  • step SB2 In order to stop the reformed coal production facility main body 100A, the transfer of the dry coal 2 to the inner cylinder 122 of the carbonization device 121 is stopped (step SB2). As a result, the amount of dry coal 2 in the inner cylinder 122 of the dry distillation apparatus 121 of the equipment main body 100A decreases, so the supply amount of the heated gas 11 from the combustion furnace 124 to the outer cylinder 123 of the dry distillation apparatus 121 is reduced. The amount is reduced (step SB3). That is, in the carbonization apparatus 121 of the equipment main body 100A, the heat load is reduced.
  • the equipment main bodies 100B and 100C increase the transfer of the dry charcoal 2 to the inner cylinder 122 of each dry distillation apparatus 121 of the equipment main bodies 100B and 100C (step SC2).
  • step SC2 the amount of dry coal 2 in the inner cylinder 122 of each of the carbonization devices 121 of the equipment main bodies 100B and 100C increases, so the heated gas 11 from the combustion furnace 124 to the outer cylinder 123 of each of the carbonization devices 121 is increased.
  • step SC3 That is, in each of the carbonization devices 121 of the equipment main bodies 100B and 100C, the heat load increases.
  • the control device 109 adjusts the flow rate adjusting valve 103a, and supplies the low-temperature heating gas 12 and the waste heat gas 13 to the inlet 122a side of the inner cylinder 122 of the dry distillation apparatus 121 via the mixed gas distribution pipe 105a ( Step SB4).
  • the dry distillation gas 14 in the inner cylinder 122 and the dry distillation gas supply pipe 101a of the dry distillation apparatus 121 of the equipment main body 100A is purged by the low temperature heating gas 12 and the waste heat gas 13.
  • the oxygen concentration of the gas inside the inner cylinder 122 and the dry distillation gas supply pipe 101a becomes about 1 to 2%, and tar is oxidatively decomposed and lightened. Also, the lightened light gas is burned. Therefore, the adhesion of tar to the inner cylinder 122 and the wall surface of the dry distillation gas supply pipe 101a is prevented.
  • step SB5 all the carbonized carbon 3 is discharged from the inner cylinder 122 of the carbonization device 121 of the equipment main body 100A (step SB5), and the supply of the heating gas 11 to the outer cylinder 123 of the carbonization device 121 of the equipment main body 100A is stopped. (Step SB6). Thereby, the thermal load of the dry distillation apparatus 121 of the equipment main body 100A is reduced.
  • step SC4 the supply of the heating gas 11 to the outer cylinder 123 of each dry distillation apparatus 121 of the equipment main bodies 100B and 100C is in a steady state (step SC4). Thereby, it maintains with the state in which the thermal load of each dry distillation apparatus 121 of each equipment main body 100B and 100C increased.
  • step SB7 when the supply of the heated gas 11 to the outer cylinder 123 of the dry distillation apparatus 121 of the equipment main body 100A is stopped for a predetermined time (step SB7), the inside of the carbonization apparatus 121 of the equipment main body 100A. Since the dry distillation gas 14 is eliminated in the cylinder 122 and the dry distillation gas supply pipe 101a, the supply of the low temperature heating gas 12 and the waste heat gas 13 is not required, and therefore the inlet 122a of the inner cylinder 122 of the dry distillation apparatus 121 of the equipment body 100A. The supply of the low-temperature heating gas 12 and the waste heat gas 13 to the side is stopped (step SB8). In step SB8, operations such as maintenance and inspection for the equipment main body 100A are performed as necessary.
  • step SB9 the dry coal from the drying device 111 of the equipment main body 100A to the inner cylinder 122 of the carbonization device 121 is returned to return to the steady operation state. 2 is started (step SB9).
  • step SB10 the supply amount of the heating gas 11 from the combustion furnace 124 to the outer cylinder 123 of the dry distillation apparatus 121 is reduced.
  • step SB10 the heat load increases.
  • step SC5 the transfer of the dry coal 2 to the inner cylinder 122 of each of the carbonization devices 121 of the equipment main bodies 100B and 100C is reduced.
  • step SC6 the transfer of the dry charcoal 2 to the inner cylinder 122 of each of the carbonization devices 121 of the equipment main bodies 100B and 100C decreases, so the heated gas 11 from the combustion furnace 124 to the outer cylinder 123 of each of the carbonization devices 121 is reduced.
  • step SC6 the heat load is reduced.
  • the supply amount of the dry coal 2 to the inner cylinder 122 of the dry distillation apparatus 121 of the equipment main body 100A reaches a predetermined amount, and the supply amount of the heated gas 11 to the outer cylinder 123 of the dry distillation apparatus 121 reaches a predetermined amount.
  • the equipment main body 100A returns to the steady operation state (step SB11).
  • the supply amount of the dry coal 2 to the inner cylinder 122 of each of the carbonization devices 121 of the equipment main bodies 100B and 100C reaches a predetermined amount, and the supply amount of the heating gas 11 to the outer tube 123 of each of the carbonization devices 121.
  • the equipment main bodies 100B and 100C also return to the steady operation state (step SC7).
  • the modified coal production facility when the facility main body is stopped, dry distillation of the facility main body to be stopped is performed.
  • the dry distillation gas 14 in the inner cylinder 122 and the dry distillation gas supply pipe of the dry distillation apparatus 121 is forcibly discharged. Will be. Further, the dry distillation gas 14 is burned in the combustion furnace 124.
  • tar can be lightened by oxidative decomposition.
  • the lightened gas flows into the combustion furnace 124 and burns in the combustion furnace 124. Further, even if tar adheres to the wall surface of the inner cylinder 122 of the carbonization apparatus 121 or the carbonization gas supply pipe, the tar can be removed by combustion.
  • the reformed coal production facility and the control method thereof according to the present invention can remove tar efficiently without reducing the production amount of the reformed coal even when the facility is stopped. It can be used beneficially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Coke Industry (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

The purpose of the present invention is to provide reformed coal production equipment whereby it is possible to efficiently remove tar without lowering the production amount of reformed coal even when the equipment is stopped. Reformed coal production equipment provided with: a combustion furnace (124) for generating heated gas; a dry distillation gas supply pipe (101) for supplying dry distillation gas (14) that was generated at the inner cylinder (122) of a dry distillation device (121) to the combustion furnace; a vapor generator (125) to which a portion of the heated gas (11) generated at the combustion furnace is supplied and which generates waste heat gas (13) by subjecting the heated gas to heat exchange; and a discharge pipe (52), a waste heat gas delivery pipe (53), a mixed gas delivery pipe (55), a blower (126), a mixed gas supply pipe (56), a mixed gas branching pipe (102), a flow rate adjustment valve (103), and a mixed gas allocation pipe (105) which supply and allocate, to the aforementioned inner cylinder, the waste heat gas and low-temperature heated gas (12) generated by indirectly heating dried coal (2) by means of the heated gas within the outer cylinder (123) of the dry distillation device.

Description

改質石炭製造設備およびその制御方法Modified coal production facility and control method thereof
 本発明は、改質石炭製造設備およびその制御方法に関し、特に、褐炭や亜瀝青炭などのような多孔質で水分含有量の多い低品位炭(低質炭)を改質する場合に適用すると有用なものである。 The present invention relates to a modified coal production facility and a control method thereof, and is particularly useful when applied to reforming a low-grade coal (poor coal) having a high moisture content such as lignite and subbituminous coal. Is.
 褐炭や亜瀝青炭などのような多孔質で水分含有量の多い低品位炭(低質炭)は、単位重量当たりの発熱量が低いため、加熱処理して乾燥させることにより、単位重量当たりの発熱量を高めるようにしている。 Low-grade coal (poor coal) with a high moisture content such as lignite and sub-bituminous coal has a low calorific value per unit weight, so the heat value per unit weight can be reduced by heat treatment and drying. To increase.
 このような低品位炭の改質を行う改質石炭製造設備として、例えば、加熱ガスにより低品位炭を間接的に加熱して乾留する間接加熱方式の乾留装置と、前記乾留装置で発生した乾留ガスを乾留ガス供給管を介して供給し、当該乾留ガス等を燃焼して前記加熱ガスを生成する燃焼炉とを備える設備がある。 Examples of the modified coal production equipment for reforming such low-grade coal include, for example, an indirect heating type dry distillation apparatus that indirectly heats low-grade coal with a heating gas and dry distillation generated in the dry distillation apparatus. There is a facility provided with a combustion furnace that supplies gas through a dry distillation gas supply pipe and burns the dry distillation gas or the like to generate the heated gas.
 上述の乾留ガスは低沸点成分からなるが、前記低品位炭を比較的高温で処理するため、高沸点成分のタール(乾留油)を同伴している。前記乾留ガスが冷却されると、当該乾留ガスが流通するダクト等の壁面に前記タールが付着していくことになる。タールの付着量が多くなると前記ダクトを閉塞する等の問題が生じる可能性があるため、前記タールを除去する技術が種々開発されている。 The above-mentioned dry distillation gas is composed of a low boiling point component, but is accompanied by a high boiling point component tar (dry distillation oil) in order to treat the low-grade coal at a relatively high temperature. When the dry distillation gas is cooled, the tar adheres to the wall surface of a duct or the like through which the dry distillation gas flows. As the amount of tar attached increases, problems such as blocking the duct may occur, and various techniques for removing the tar have been developed.
 例えば、下記の特許文献1には、空気を水蒸気または不活性気体で希釈して酸素濃度3体積%~21体積%に調整すると共に、温度350℃~500℃に調整したガスにより、管内に付着したコークを燃焼除去するデコーキング方法が開示されている。 For example, in Patent Document 1 below, air is diluted with water vapor or an inert gas to adjust the oxygen concentration to 3% to 21% by volume, and the gas is adjusted to a temperature of 350 ° C. to 500 ° C. A decoking method for burning and removing the coke is disclosed.
 下記の特許文献2には、外熱キルンの内筒内へ酸素含有ガスを供給することで、熱分解によって生成された処理物中の有機物の炭化物や可燃性ガスが燃焼させられ、これにより熱分解ガスの温度が上昇して、その液化や固化を防止するようにした外熱キルンによる処理物の熱分解処理方法が開示されている。 In Patent Document 2 described below, by supplying an oxygen-containing gas into the inner cylinder of the external heat kiln, organic carbides and combustible gas in the processed product generated by thermal decomposition are combusted, whereby heat is generated. There has been disclosed a method for thermally decomposing a processed product using an external heat kiln in which the temperature of the cracked gas is increased to prevent liquefaction or solidification thereof.
特開平5-188653号公報(例えば、段落[0013],[0017]等参照)Japanese Patent Laid-Open No. 5-188653 (see paragraphs [0013], [0017], etc.) 特開2004-3738号公報(例えば、段落[0011],[0014],[0015]等参照)JP 2004-3738 A (see, for example, paragraphs [0011], [0014], [0015], etc.)
 しかしながら、前述した特許文献1に記載のデコーキング方法を前述の改質石炭製造設備に適用し、酸素濃度を調整した酸素濃度調整ガスを前記乾留装置に直接供給することで、停止時に発生したタールを燃焼して当該タールの乾留装置への付着を抑制することができるが、前記酸素濃度調整ガスを空気や不活性ガス(窒素や水蒸気)から製造しようとすると、そのための装置が必要になり、この装置に起因して、改質石炭の生産コストが増加してしまう。また、前記タールと反応させるために前記酸素濃度調整ガスを事前に昇温しなければならず、追加エネルギが必要となってしまう。つまり、タールを効率良く除去することができなかった。 However, the decoking method described in Patent Document 1 described above is applied to the above-described reformed coal production facility, and the oxygen concentration-adjusted gas whose oxygen concentration is adjusted is directly supplied to the dry distillation apparatus, so that tar generated at the time of stopping Although it is possible to suppress the tar from adhering to the carbonization apparatus, if an attempt is made to produce the oxygen concentration adjusting gas from air or an inert gas (nitrogen or water vapor), an apparatus for that purpose is required. Due to this device, the production cost of the reformed coal increases. Moreover, in order to make it react with the tar, the oxygen concentration adjusting gas must be heated in advance, and additional energy is required. That is, tar could not be removed efficiently.
 前述した特許文献2に記載の外熱キルンによる処理物の熱分解方法では、熱分解によって生成された処理物の有機物の炭化物自体を燃焼しているため、この方法を改質石炭製造設備に適用すると、当該設備を停止するときにも、石炭を乾留装置に供給し、この石炭自体を燃焼しなければならず、改質石炭の生産量が低下してしまう。 In the thermal decomposition method of the processed material by the external heat kiln described in Patent Document 2, the organic carbide of the processed material generated by the thermal decomposition is burned, and therefore this method is applied to the modified coal production facility. Then, also when stopping the said equipment, coal must be supplied to a carbonization apparatus, this coal itself must be burned, and the production amount of reformed coal will fall.
 以上のことから、本発明は前述した課題を解決するために為されたものであり、設備を停止するときであっても、改質石炭の生産量を低下させずに、効率良くタールを除去できる改質石炭製造設備およびその制御方法を提供することを目的としている。 From the above, the present invention has been made to solve the above-mentioned problems, and even when the facility is stopped, tar is efficiently removed without reducing the production amount of the modified coal. An object of the present invention is to provide a modified coal production facility and a control method thereof.
 上述した課題を解決する第1の発明に係る改質石炭製造設備は、石炭を乾燥させる乾燥手段と、乾燥された前記石炭を乾留する乾留手段と、乾留された前記石炭を冷却する冷却手段とを具備し、前記乾留手段が、乾燥された前記石炭が移送される内筒と、前記内筒を加熱する加熱ガスが供給される外筒とを備える間接加熱式乾留装置である改質石炭製造設備であって、前記加熱ガスを生成する加熱ガス生成手段と、前記加熱ガス生成手段へ前記内筒で発生した乾留ガスを供給する乾留ガス供給手段と、前記加熱ガス生成手段で生成した前記加熱ガスの一部が供給され、当該加熱ガスを熱交換して廃熱ガスを生成する廃熱ガス生成手段と、前記廃熱ガス、および前記外筒内にて前記加熱ガスが前記石炭を間接加熱して生じる低温加熱ガスを前記内筒内へ分配供給する混合ガス分配供給手段とを備えることを特徴とする。 The reformed coal production facility according to the first invention for solving the above-mentioned problems includes a drying means for drying coal, a dry distillation means for carbonizing the dried coal, and a cooling means for cooling the dry coal. And the dry distillation means is an indirect heating type dry distillation apparatus comprising an inner cylinder to which the dried coal is transferred and an outer cylinder to which a heating gas for heating the inner cylinder is supplied. A heating gas generation means for generating the heating gas; a dry distillation gas supply means for supplying a dry distillation gas generated in the inner cylinder to the heating gas generation means; and the heating generated by the heating gas generation means. Waste gas generation means for generating a waste heat gas by exchanging heat of the heated gas when a part of the gas is supplied, the waste heat gas, and the heating gas indirectly heating the coal in the outer cylinder The low temperature heating gas Characterized in that the inner cylinder and a distributor for supplying mixed gas distribution means.
 上述した課題を解決する第2の発明に係る改質石炭製造設備は、前述した第1の発明に係る改質石炭製造設備であって、前記混合ガス分配供給手段が、乾燥された前記石炭を受け入れる前記内筒の受入口側に接続していることを特徴とする。 A modified coal production facility according to a second invention that solves the above-described problem is the modified coal production facility according to the first invention described above, wherein the mixed gas distribution and supply means supplies the dried coal. It is connected to the receiving side of the inner cylinder to be received.
 上述した課題を解決する第3の発明に係る改質石炭製造設備は、前述した第2の発明に係る改質石炭製造設備であって、前記間接加熱式乾留装置が、乾留された前記石炭を排出する排出口側に設けられ、ガス温度を計測するガス温度計測手段を備え、前記混合ガス分配供給手段が、前記内筒内へ供給する前記低温加熱ガスおよび前記廃熱ガスの流量を調整するガス流量調整手段と、前記ガス流量調整手段を、前記ガス温度計測手段で計測した前記ガス温度に基づき制御する制御手段とを備えることを特徴とする。 The modified coal production facility according to the third invention for solving the above-described problem is the modified coal production facility according to the second invention described above, wherein the indirect heating type carbonization device is configured to use the coal that has been carbonized. Gas temperature measuring means is provided on the discharge outlet side for measuring the gas temperature, and the mixed gas distribution supply means adjusts the flow rates of the low-temperature heating gas and the waste heat gas supplied into the inner cylinder. A gas flow rate adjusting means and a control means for controlling the gas flow rate adjusting means based on the gas temperature measured by the gas temperature measuring means are provided.
 上述した課題を解決する第4の発明に係る改質石炭製造設備は、前述した第3の発明に係る改質石炭製造設備であって、前記乾燥手段と前記間接加熱式乾留装置と前記冷却手段とを有す設備本体を並列にて複数備えることを特徴とする。 A modified coal production facility according to a fourth invention for solving the above-described problem is the modified coal production facility according to the third invention described above, wherein the drying means, the indirectly heated carbonization apparatus, and the cooling means. A plurality of equipment main bodies having the above are provided in parallel.
 上述した課題を解決する第5の発明に係る改質石炭製造設備の制御方法は、前述した第3の発明に係る改質石炭製造設備を制御する方法であって、前記内筒への前記石炭の供給を停止し、前記制御手段が前記ガス流量調整手段を制御して前記低温加熱ガスおよび前記廃熱ガスを前記内筒へ供給する一方、前記加熱ガス生成手段へ供給する燃料を増量し、前記ガス温度計測手段で計測したガス温度が所定の温度より低くなると、前記制御手段が前記ガス流量調整手段を制御して、前記内筒への前記低温加熱ガスおよび前記廃熱ガスの供給を停止することを特徴とする。 A control method for a modified coal production facility according to a fifth aspect of the present invention that solves the above-described problem is a method for controlling the modified coal production facility according to the third aspect of the invention, wherein the coal to the inner cylinder is controlled. The control means controls the gas flow rate adjusting means to supply the low temperature heating gas and the waste heat gas to the inner cylinder, while increasing the amount of fuel supplied to the heating gas generation means, When the gas temperature measured by the gas temperature measuring means becomes lower than a predetermined temperature, the control means controls the gas flow rate adjusting means to stop the supply of the low temperature heating gas and the waste heat gas to the inner cylinder. It is characterized by doing.
 上述した課題を解決する第6の発明に係る改質石炭製造設備の制御方法は、前述した第4の発明に係る改質石炭製造設備を制御する方法であって、停止する前記設備本体にて、前記内筒への前記石炭の供給を停止する一方、定常運転する前記設備本体にて、前記乾燥手段へ供給する前記石炭を増量すると共に、前記外筒へ供給する前記加熱ガスを増量し、停止する前記設備本体にて、前記制御手段が前記ガス流量調整手段を制御して、前記内筒への前記低温加熱ガスおよび前記廃熱ガスの供給を開始し、停止する前記設備本体にて、前記内筒から前記石炭が全て排出されると、当該内筒への前記加熱ガスの供給を停止する一方、定常運転する前記設備本体にて、前記外筒へ供給する前記加熱ガスを定常状態にし、停止する前記設備本体にて、前記内筒から前記乾留ガスが全て排出されると、前記制御手段が前記ガス流量調整手段を制御して、当該内筒への前記低温加熱ガスおよび前記廃熱ガスの供給を停止することを特徴とする。 A method for controlling a reformed coal production facility according to a sixth aspect of the present invention that solves the above-described problem is a method of controlling the reformed coal production facility according to the fourth aspect of the invention, wherein the facility main body that is to be stopped is used. In addition, while stopping the supply of the coal to the inner cylinder, while increasing the amount of the coal supplied to the drying means in the equipment main body that is in steady operation, the heating gas supplied to the outer cylinder is increased, In the equipment main body to be stopped, the control means controls the gas flow rate adjusting means to start supplying the low-temperature heating gas and the waste heat gas to the inner cylinder, and in the equipment main body to be stopped, When all of the coal is discharged from the inner cylinder, the supply of the heated gas to the inner cylinder is stopped, while the heating gas supplied to the outer cylinder is set to a steady state in the equipment main body that is in steady operation. In the equipment body to stop When all of the dry distillation gas is discharged from the inner cylinder, the control means controls the gas flow rate adjusting means to stop the supply of the low-temperature heating gas and the waste heat gas to the inner cylinder. And
 本発明によれば、設備を停止するときに、間接加熱式乾留手段から石炭(乾留炭)が排出されるまで、当該間接加熱式乾留手段へ前記加熱ガスを供給することができ、石炭の冷却による新たにタールが生成することを防止できる。低温加熱ガスおよび廃熱ガスを間接加熱式乾留手段に供給することから、当該間接加熱式乾留手段および乾留ガス供給手段内の前記乾留ガスをパージすることができる。よって、間接加熱式乾留手段内および乾留ガス供給手段内の壁面へのタールの付着を防止できる。また、低温加熱ガスおよび廃熱ガスの酸素濃度が約2~3%であることから、間接加熱式乾留手段内および乾留ガス供給手段内の壁面にタールが付着したとしても、当該タールを燃焼除去することができる。よって、設備を停止するときであっても、改質石炭の生産量を低下させずに、効率良くタールを除去できる。間接加熱式乾留手段および乾留ガス供給手段などでのタール除去作業が不要となり、保守・点検作業を効率良く行うことができる。 According to the present invention, when the equipment is stopped, the heated gas can be supplied to the indirectly heated dry distillation means until the coal (dry distilled coal) is discharged from the indirectly heated dry distillation means, It is possible to prevent new tar from being generated. Since the low temperature heating gas and the waste heat gas are supplied to the indirect heating type dry distillation means, the dry distillation gas in the indirect heating type dry distillation means and the dry distillation gas supply means can be purged. Therefore, it is possible to prevent tar from adhering to the wall surfaces in the indirectly heated dry distillation means and the dry distillation gas supply means. In addition, since the oxygen concentration of the low-temperature heating gas and waste heat gas is about 2 to 3%, even if tar adheres to the wall surface in the indirectly heated dry distillation means and the dry distillation gas supply means, the tar is burned and removed. can do. Therefore, even when the facility is stopped, tar can be efficiently removed without reducing the production amount of the modified coal. Tar removal work by indirect heating type dry distillation means and dry distillation gas supply means becomes unnecessary, and maintenance and inspection work can be performed efficiently.
本発明の第1の実施例に係る改質石炭製造設備の全体概略構成図である。1 is an overall schematic configuration diagram of a modified coal production facility according to a first embodiment of the present invention. 本発明の第1の実施例に係る改質石炭製造設備の制御フロー図である。It is a control flow figure of the reformed coal manufacturing equipment concerning the 1st example of the present invention. 本発明の第2の実施例に係る改質石炭製造設備の全体概略構成図である。It is a whole schematic block diagram of the reformed coal manufacturing equipment concerning the 2nd example of the present invention. 本発明の第2の実施例に係る改質石炭製造設備の制御フロー図である。It is a control flow figure of the reformed coal manufacturing equipment concerning the 2nd example of the present invention.
 本発明に係る改質石炭製造設備およびその制御方法の実施形態を各実施例にて説明する。 Embodiments of the modified coal production facility and the control method thereof according to the present invention will be described in each example.
 本発明の第1の実施例に係る改質石炭製造設備を図1および図2に基づいて説明する。 The modified coal production facility according to the first embodiment of the present invention will be described with reference to FIGS.
 本実施例に係る改質石炭製造設備100では、図1に示すように、まず、褐炭や瀝青炭等の低品位炭1が図示しないホッパ等により、当該低品位炭1を乾燥させる乾燥手段である乾燥装置111に供給される。乾燥装置111の送出口は、乾燥炭2を乾留する乾留装置121の受入口122aに連絡している。乾留装置121の送出口122bは、乾留炭3を冷却する冷却手段である冷却装置131の受入口に連絡している。 In the modified coal production facility 100 according to the present embodiment, as shown in FIG. 1, first, low-grade coal 1 such as lignite and bituminous coal is drying means for drying the low-grade coal 1 with a hopper or the like not shown. It is supplied to the drying device 111. The delivery port of the drying device 111 communicates with a receiving port 122a of the carbonization device 121 for carbonizing the dry coal 2. The outlet 122 b of the carbonization device 121 communicates with an inlet of a cooling device 131 that is a cooling means for cooling the carbonized coal 3.
 乾留装置121は、内筒122と、内筒122を覆う外筒123とを有する。外筒123には、後述の加熱ガス11が供給される。これにより、内筒122内に供給された乾燥炭2を間接的に加熱して乾留し乾留炭3を生成している。つまり、乾留装置121は、熱源となる高温ガス(加熱ガス)と低品位炭1とが直接接触しない間接加熱方式の装置、例えば外熱式キルン等であり、間接加熱式乾留手段をなしている。 The dry distillation apparatus 121 includes an inner cylinder 122 and an outer cylinder 123 that covers the inner cylinder 122. The heating gas 11 described later is supplied to the outer cylinder 123. Thereby, the dry coal 2 supplied in the inner cylinder 122 is indirectly heated and dry-distilled, and the dry-distilled coal 3 is produced | generated. That is, the dry distillation apparatus 121 is an indirect heating type apparatus in which the high-temperature gas (heating gas) serving as a heat source and the low-grade coal 1 are not in direct contact, for example, an external heating kiln or the like, and constitutes an indirect heating type dry distillation means. .
 乾留装置121の内筒122のガス排出口は、乾留ガス供給管101を介して燃焼炉124のガス受入口に連絡している。これにより、乾留によって生成するガス状のタール(乾留油)を含む乾留ガス14は燃焼炉124のガス受入口に供給される。燃焼炉124のガス受入口には天然ガス等の燃料(図示せず)も供給される。燃焼炉124は、乾留ガス14および天然ガス等の燃料が燃焼して加熱ガス11を生成する。つまり、燃焼炉124は、加熱ガス生成手段をなしている。燃焼炉124のガス排出口は、加熱ガス送給管51を介して、乾留装置121の外筒123のガス受入口に連絡している。 The gas discharge port of the inner cylinder 122 of the carbonization apparatus 121 communicates with the gas inlet of the combustion furnace 124 via the carbonization gas supply pipe 101. Thereby, the dry distillation gas 14 containing the gaseous tar (dry distillation oil) produced | generated by dry distillation is supplied to the gas inlet of the combustion furnace 124. FIG. A fuel (not shown) such as natural gas is also supplied to the gas receiving port of the combustion furnace 124. In the combustion furnace 124, fuel such as the dry distillation gas 14 and natural gas burns to generate the heated gas 11. That is, the combustion furnace 124 serves as a heated gas generation unit. The gas discharge port of the combustion furnace 124 communicates with the gas inlet of the outer cylinder 123 of the dry distillation apparatus 121 via the heated gas supply pipe 51.
 加熱ガス送給管51は、加熱ガス分岐管53を介して蒸気発生器125のガス受入口に連絡している。蒸気発生器125は、加熱ガス11が水と熱交換して水蒸気を発生して廃熱ガス13を生成する廃熱ガス生成手段をなしている。蒸気発生器125のガス排出口は、廃熱ガス送給管54を介して後述の排気管52に連絡している。 The heated gas supply pipe 51 communicates with the gas inlet of the steam generator 125 via the heated gas branch pipe 53. The steam generator 125 constitutes a waste heat gas generating means for generating the waste heat gas 13 by generating steam by the heat gas 11 exchanging heat with water. The gas discharge port of the steam generator 125 communicates with an exhaust pipe 52 described later via a waste heat gas supply pipe 54.
 乾留装置121の外筒123のガス排出口は、排気管52を介して、前記加熱ガス11が内筒122を加熱して生じる低温加熱ガス12、および廃熱ガス13を浄化する排ガス浄化手段である排ガス処理装置127のガス受入口に連絡している。なお、低温加熱ガス12および廃熱ガス13は排ガス処理装置127で浄化処理されて系外に排出される。 The gas discharge port of the outer cylinder 123 of the dry distillation apparatus 121 is an exhaust gas purification means for purifying the low temperature heating gas 12 generated by heating the inner cylinder 122 and the waste heat gas 13 through the exhaust pipe 52. It communicates with the gas inlet of a certain exhaust gas treatment device 127. The low-temperature heating gas 12 and the waste heat gas 13 are purified by the exhaust gas treatment device 127 and discharged outside the system.
 排気管52は、混合ガス送給管55を介してブロア126のガス受入口に連絡している。ブロア126のガス排出口は、混合ガス供給管56を介して燃焼炉124のガス受入口に連絡している。混合ガス供給管56は、混合ガス分岐管102に連絡している。混合ガス分岐管102は、流量調整バルブ(三方弁)103を介して混合ガス連絡管104に連絡すると共に、流量調整バルブ103を介して混合ガス分配管105に連絡している。混合ガス連絡管104は、乾留ガス供給管101に連絡している。混合ガス分配管105は、乾留装置121の内筒122の受入口122a側のガス受入口に連絡している。 The exhaust pipe 52 communicates with the gas receiving port of the blower 126 via the mixed gas supply pipe 55. The gas outlet of the blower 126 communicates with the gas inlet of the combustion furnace 124 through the mixed gas supply pipe 56. The mixed gas supply pipe 56 communicates with the mixed gas branch pipe 102. The mixed gas branch pipe 102 communicates with the mixed gas communication pipe 104 via a flow rate adjusting valve (three-way valve) 103 and also communicates with the mixed gas distribution pipe 105 via the flow rate adjusting valve 103. The mixed gas communication pipe 104 communicates with the dry distillation gas supply pipe 101. The mixed gas distribution pipe 105 communicates with the gas inlet on the inlet 122 a side of the inner cylinder 122 of the dry distillation apparatus 121.
 乾留ガス供給管101には、管内のガス温度を計測するガス温度計測手段であるガス温度計測器106が設けられる。ガス温度計測器106は、計測したガス温度を制御装置109に送信可能に当該制御装置109と接続している。乾留ガス供給管101には、管内の圧力差を計測する差圧計測器107a,107bが設けられる。差圧計測器107a,107bは、計測した管内の圧力差を制御装置109に送信可能に当該制御装置109と接続している。 The dry distillation gas supply pipe 101 is provided with a gas temperature measuring device 106 which is a gas temperature measuring means for measuring the gas temperature in the pipe. The gas temperature measuring device 106 is connected to the control device 109 so that the measured gas temperature can be transmitted to the control device 109. The dry distillation gas supply pipe 101 is provided with differential pressure measuring devices 107a and 107b for measuring a pressure difference in the pipe. The differential pressure measuring devices 107 a and 107 b are connected to the control device 109 so that the measured pressure difference in the pipe can be transmitted to the control device 109.
 乾留装置121の内筒122の送出口122bには、内筒122内のガス温度を計測するガス温度計測手段である内筒内ガス温度計測器108が設けられる。内筒内ガス温度計測器108は、計測した内筒内のガス温度を制御装置109に送信可能に当該制御装置109と接続している。 At the outlet 122b of the inner cylinder 122 of the dry distillation apparatus 121, an inner cylinder gas temperature measuring device 108 which is a gas temperature measuring means for measuring the gas temperature in the inner cylinder 122 is provided. The inner cylinder gas temperature measuring device 108 is connected to the control device 109 so that the measured gas temperature in the inner cylinder can be transmitted to the control device 109.
 排気管52、廃熱ガス送給管54、混合ガス送給管55、ブロア126、混合ガス供給管56、混合ガス分岐管102、流量調整バルブ103、混合ガス分配管105等が混合ガス分配供給手段をなしている。流量調整バルブ103が、乾留装置121への低温加熱ガス12、廃熱ガス13の供給量を調整するガス流量調整手段をなしている。 The exhaust pipe 52, the waste heat gas supply pipe 54, the mixed gas supply pipe 55, the blower 126, the mixed gas supply pipe 56, the mixed gas branch pipe 102, the flow rate adjusting valve 103, the mixed gas distribution pipe 105, etc. are mixed and supplied with the mixed gas. It has a means. The flow rate adjusting valve 103 constitutes a gas flow rate adjusting means for adjusting the supply amounts of the low-temperature heating gas 12 and the waste heat gas 13 to the dry distillation apparatus 121.
 制御装置109は、各種計測器による計測値に基づき流量調整バルブ103、燃焼炉124への燃料の供給量、乾燥装置111への低品位炭1の供給量、乾留装置121への加熱ガス11の供給量などを制御している。つまり、制御装置109は、各種計測器による計測値に基づき、流量調整バルブ103のバルブ開度等を調整する制御手段をなしている。 The control device 109 controls the flow rate adjusting valve 103, the amount of fuel supplied to the combustion furnace 124, the amount of low-grade coal 1 supplied to the drying device 111, and the heating gas 11 supplied to the dry distillation device 121 based on the measurement values obtained by various measuring instruments. The supply amount is controlled. That is, the control device 109 serves as a control means for adjusting the valve opening degree of the flow rate adjusting valve 103 based on the measurement values obtained by various measuring instruments.
 このようにして構成された本実施例に係る改質石炭製造設備100においては、低品位炭1が前記ホッパ内に投入されると、当該ホッパが常温の低品位炭1を乾燥装置111に定量ずつ供給する。乾燥装置111に供給された低品位炭1は、図示しない乾燥用燃焼器からの乾燥用の燃焼ガス(約150~300℃)で約200℃まで加熱されて水分が除去されることにより、乾燥炭2となって乾留装置121の内筒122内に移送される。乾留装置121に移送された乾燥炭2は、燃焼炉124からの加熱ガス11(ガス温度:約1050℃、酸素濃度:約2~3%)で間接的に加熱されて乾留されることにより、ガス状のタールを含む乾留ガス14等の成分が取り除かれて乾留炭3となって冷却装置131に送給される。冷却装置131に送給された乾留炭3は、約50℃まで冷却されることにより、改質石炭4となる。 In the modified coal production facility 100 according to the present embodiment configured as described above, when the low-grade coal 1 is charged into the hopper, the hopper quantifies the low-grade coal 1 at room temperature into the drying device 111. Supply one by one. The low-grade coal 1 supplied to the drying device 111 is heated to about 200 ° C. by drying combustion gas (about 150 to 300 ° C.) from a drying combustor (not shown) to remove moisture. The charcoal 2 is transferred into the inner cylinder 122 of the dry distillation apparatus 121. The dry coal 2 transferred to the carbonization device 121 is indirectly heated and dry-distilled with the heated gas 11 (gas temperature: about 1050 ° C., oxygen concentration: about 2-3%) from the combustion furnace 124, Components such as the dry distillation gas 14 containing gaseous tar are removed to form the dry distillation coal 3 and fed to the cooling device 131. The dry-distilled coal 3 fed to the cooling device 131 becomes the reformed coal 4 by being cooled to about 50 ° C.
 他方、燃焼炉124で生成した加熱ガス11(ガス温度:約1050℃、酸素濃度:約2~3%)は、加熱ガス送給管51を介して乾留装置121の外筒123に送給される。外筒123内で内筒122の加熱に使用された加熱ガス11は低温加熱ガス12(ガス温度:約350℃、酸素濃度:約2~3%)となる。低温加熱ガス12は排気管52に送給される。また、加熱ガス11は、加熱ガス送給管51、加熱ガス分岐管53を介して蒸気発生器125に送給される。蒸気発生器125で水蒸気の発生に使用された加熱ガス11は廃熱ガス13(ガス温度:約350℃、酸素濃度:約2~3%)となる。廃熱ガス13は廃熱ガス送給管54を介して排気管52に送給される。 On the other hand, the heated gas 11 (gas temperature: about 1050 ° C., oxygen concentration: about 2-3%) generated in the combustion furnace 124 is fed to the outer cylinder 123 of the dry distillation apparatus 121 through the heated gas feed pipe 51. The The heating gas 11 used for heating the inner cylinder 122 in the outer cylinder 123 becomes a low-temperature heating gas 12 (gas temperature: about 350 ° C., oxygen concentration: about 2-3%). The low-temperature heating gas 12 is supplied to the exhaust pipe 52. The heated gas 11 is fed to the steam generator 125 via the heated gas feed pipe 51 and the heated gas branch pipe 53. The heated gas 11 used to generate water vapor by the steam generator 125 becomes the waste heat gas 13 (gas temperature: about 350 ° C., oxygen concentration: about 2-3%). The waste heat gas 13 is supplied to the exhaust pipe 52 through the waste heat gas supply pipe 54.
 低温加熱ガス12および廃熱ガス13の一部が排ガス処理装置127に供給される。低温加熱ガス12および廃熱ガス13は、排ガス処理装置127により浄化処理されて系外に排出される。また、低温加熱ガス12および廃熱ガス13の残部(ガス温度:約350℃、酸素濃度:約2~3%)は、混合ガス送給管55を介してブロア126に送給される。 A part of the low temperature heating gas 12 and the waste heat gas 13 is supplied to the exhaust gas treatment device 127. The low temperature heating gas 12 and the waste heat gas 13 are purified by the exhaust gas treatment device 127 and discharged out of the system. The remainder of the low-temperature heating gas 12 and the waste heat gas 13 (gas temperature: about 350 ° C., oxygen concentration: about 2-3%) is fed to the blower 126 via the mixed gas feed pipe 55.
 ブロア126に送給された低温加熱ガス12および廃熱ガス13の一部が混合ガス供給管56を介して燃焼炉124に供給される。また、ブロア126に送給された低温加熱ガス12および廃熱ガス13の残部(ガス温度:約350℃、酸素濃度:約2~3%)が、混合ガス分岐管102に供給される。混合ガス分岐管102に供給された低温加熱ガス12および廃熱ガス13の残部(ガス温度:約350℃、酸素濃度:約2~3%)が、流量調整バルブ103および混合ガス連絡管104を介して乾留ガス供給管101に供給される、もしくは、流量調整バルブ103および混合ガス分配管105を介して乾留装置121の内筒122の受入口122a側に供給される。 A part of the low-temperature heating gas 12 and the waste heat gas 13 fed to the blower 126 is supplied to the combustion furnace 124 through the mixed gas supply pipe 56. Further, the remaining part of the low-temperature heating gas 12 and the waste heat gas 13 (gas temperature: about 350 ° C., oxygen concentration: about 2-3%) fed to the blower 126 is supplied to the mixed gas branch pipe 102. The remainder of the low-temperature heating gas 12 and the waste heat gas 13 (gas temperature: about 350 ° C., oxygen concentration: about 2-3%) supplied to the mixed gas branch pipe 102 passes through the flow rate adjusting valve 103 and the mixed gas communication pipe 104. Is supplied to the dry distillation gas supply pipe 101, or is supplied to the inlet 122 a side of the inner cylinder 122 of the dry distillation apparatus 121 through the flow rate adjusting valve 103 and the mixed gas distribution pipe 105.
 流量調整バルブ103のバルブ開度は、ガス温度計測器106により計測されたガス温度に基づき制御装置109により制御される。制御装置109は、例えば、ガス温度計測器106により計測されたガス温度が400℃以上になると流量調整バルブ103を開きその開度が大きくなるように調整し、前記ガス温度が550℃より大きくなると流量調整バルブ103を絞るように調整する。これにより、低温加熱ガス12および廃熱ガス13(酸素濃度:約2~3%)と乾留ガス14(ガス温度:約400℃、酸素濃度:0%)とが混合した混合ガスとなり、当該混合ガス中の酸素濃度が約1~2%程度に調整されることになる。その結果、ガス状のタール(乾留油)を酸化分解(デコーキング)して、当該タールを軽質化することになり、乾留ガス供給管101への前記タールの付着を防止することができる。また、前記タールが軽質化して軽質ガスとなり当該軽質ガスが燃焼するため、ガス温度の低下が防止される。これにより、乾留ガス供給管101への前記タールの付着を防止することができる。すなわち、乾留ガス供給管101内のガス温度に基づき、乾留ガス供給管101への低温加熱ガス12および廃熱ガス13の供給量を調整することで、乾留ガス供給管101内の壁面にタールが付着しようとするタイミングでデコーキングを行うことになり、効率良くタールを除去することができる。 The valve opening degree of the flow rate adjusting valve 103 is controlled by the control device 109 based on the gas temperature measured by the gas temperature measuring device 106. For example, when the gas temperature measured by the gas temperature measuring device 106 is 400 ° C. or higher, the control device 109 opens the flow rate adjusting valve 103 and adjusts the opening so that the gas temperature becomes higher than 550 ° C. The flow rate adjustment valve 103 is adjusted to be throttled. As a result, a mixed gas in which the low-temperature heating gas 12 and the waste heat gas 13 (oxygen concentration: about 2 to 3%) and the dry distillation gas 14 (gas temperature: about 400 ° C., oxygen concentration: 0%) are mixed and mixed. The oxygen concentration in the gas is adjusted to about 1 to 2%. As a result, gaseous tar (dry distillation oil) is oxidatively decomposed (decoked) to lighten the tar, and adhesion of the tar to the dry distillation gas supply pipe 101 can be prevented. Further, since the tar is lightened to become a light gas, the light gas is burned, so that a decrease in gas temperature is prevented. Thereby, adhesion of the tar to the dry distillation gas supply pipe 101 can be prevented. That is, by adjusting the supply amounts of the low-temperature heating gas 12 and the waste heat gas 13 to the dry distillation gas supply pipe 101 based on the gas temperature in the dry distillation gas supply pipe 101, tar is formed on the wall surface in the dry distillation gas supply pipe 101. Decoking is performed at the timing of adhesion, and tar can be efficiently removed.
 また、上述のようにして構成される本実施例に係る改質石炭製造設備100を停止するときの作動について、図2を参照して以下に説明する。
 図2に示すように、まず、改質石炭製造設備100が定常運転している(ステップSA1)。この改質石炭製造設備100を停止するため、乾燥炭2の乾留装置121の内筒122への移送を停止する(ステップSA2)。
Moreover, the operation | movement when stopping the modified coal manufacturing equipment 100 which concerns on a present Example comprised as mentioned above is demonstrated below with reference to FIG.
As shown in FIG. 2, first, the reformed coal production facility 100 is in steady operation (step SA1). In order to stop the modified coal production facility 100, the transfer of the dry coal 2 to the inner cylinder 122 of the dry distillation apparatus 121 is stopped (step SA2).
 続いて、ステップSA3に進むと共に、ステップSA11に進む。ステップSA11にて、乾留装置121の内筒122への乾燥炭2の新たな移送がなくなるため、乾留ガス14の発生量が低下することになる。乾留ガス14の発生量の低下に伴って、当該乾留ガス14の燃焼炉124への供給量が減少することになるが、燃焼炉124への天然ガス等の燃料の供給量を増量して燃焼炉124の追い炊き量を上昇させることで、加熱ガス11のガス温度および生成量の低下を抑制する。つまり、燃焼炉への追い炊き量をアップする(ステップSA12)。続いて、乾留装置121から乾留炭3が全て排出される(ステップSA13)。つまり、乾留装置121にて、乾留ガス14の発生が停止することになる。 Subsequently, the process proceeds to step SA3 and to step SA11. In step SA11, there is no new transfer of the dry charcoal 2 to the inner cylinder 122 of the dry distillation apparatus 121, so the amount of dry distillation gas 14 generated is reduced. As the generation amount of the dry distillation gas 14 decreases, the supply amount of the dry distillation gas 14 to the combustion furnace 124 decreases. However, the supply amount of fuel such as natural gas to the combustion furnace 124 is increased and combustion is performed. By raising the amount of additional cooking in the furnace 124, the gas temperature and the generation amount of the heated gas 11 are suppressed. That is, the amount of additional cooking to the combustion furnace is increased (step SA12). Subsequently, all the carbonized coal 3 is discharged from the carbonization apparatus 121 (step SA13). That is, the generation of the dry distillation gas 14 is stopped in the dry distillation apparatus 121.
 他方、ステップSA3にて、制御装置109が流量調整バルブ103を調整し、混合ガス分配管105を介して、乾留装置121の内筒122の受入口122a側への低温加熱ガス12および廃熱ガス13の供給を開始する。つまり、乾留装置121の内筒122の受入口122a側からその内部へ低温加熱ガス12および廃熱ガス13を強制的に送り込むことになる。これにより、乾留装置121の内筒122内および乾留ガス供給管101内の乾留ガス14がパージされることになる。 On the other hand, in step SA3, the control device 109 adjusts the flow rate adjustment valve 103, and the low temperature heating gas 12 and waste heat gas to the inlet 122a side of the inner cylinder 122 of the dry distillation apparatus 121 via the mixed gas distribution pipe 105. 13 supply is started. That is, the low-temperature heating gas 12 and the waste heat gas 13 are forcibly sent from the receiving port 122a side of the inner cylinder 122 of the dry distillation apparatus 121 into the inside thereof. Thereby, the dry distillation gas 14 in the inner cylinder 122 of the dry distillation apparatus 121 and the dry distillation gas supply pipe 101 is purged.
 続いて、乾留装置121の内筒122内から乾留炭3が全て排出され、乾燥炭2を間接加熱することによる乾留ガス14の生成が無くなることになり、燃焼炉124への乾留ガス14の供給が無くなる。そのため、燃焼炉124での追い炊き量が減少することになる(ステップSA4)。これに伴い、燃焼炉124で生成する加熱ガス11のガス温度および生成量が低下することになる(ステップSA5)。 Subsequently, all of the carbonized coal 3 is discharged from the inner cylinder 122 of the carbonization device 121, and generation of the carbonized gas 14 due to indirect heating of the carbonized coal 2 is eliminated, and supply of the carbonized gas 14 to the combustion furnace 124 is performed. Disappears. Therefore, the amount of additional cooking in the combustion furnace 124 is reduced (step SA4). Along with this, the gas temperature and the generation amount of the heated gas 11 generated in the combustion furnace 124 are reduced (step SA5).
 続いて、定常運転時よりも少ない量であり、温度が低下した加熱ガス11を乾留装置121の外筒123に供給することから、乾留装置121の温度が低下することになる(ステップSA6)。これに伴って、低温加熱ガス12自体も温度が低下すると共に、廃熱ガス13も温度が低下することになる(ステップSA7)。 Subsequently, since the heating gas 11 whose amount is smaller than that in the steady operation and whose temperature has decreased is supplied to the outer cylinder 123 of the dry distillation apparatus 121, the temperature of the dry distillation apparatus 121 decreases (step SA6). Along with this, the temperature of the low-temperature heating gas 12 itself also decreases, and the temperature of the waste heat gas 13 also decreases (step SA7).
 続いて、ステップSA8に進み、このステップSA8にて、制御装置109が、内筒内ガス温度計測器108で計測された内筒内ガス温度に基づき判定を行うことになる。乾留装置121の内筒122の排出口122b近傍のガス温度が300℃より大きい場合には、ステップSA4に戻る。他方、乾留装置121の内筒122の排出口122b近傍の温度が300℃以下の場合には、ステップSA9に進み、このステップSA9にて、制御装置109が流量調整バルブ103を制御して当該流量調整バルブ103を閉塞することになる。つまり、乾留装置121の内筒122への低温加熱ガス12および廃熱ガス13の供給が停止される。 Subsequently, the process proceeds to step SA8, where the control device 109 makes a determination based on the inner cylinder gas temperature measured by the inner cylinder gas temperature measuring instrument 108. If the gas temperature in the vicinity of the outlet 122b of the inner cylinder 122 of the dry distillation apparatus 121 is higher than 300 ° C., the process returns to step SA4. On the other hand, when the temperature in the vicinity of the discharge port 122b of the inner cylinder 122 of the dry distillation apparatus 121 is 300 ° C. or less, the process proceeds to step SA9, and in this step SA9, the control device 109 controls the flow rate adjusting valve 103 and The adjustment valve 103 is closed. That is, the supply of the low-temperature heating gas 12 and the waste heat gas 13 to the inner cylinder 122 of the dry distillation apparatus 121 is stopped.
 したがって、本実施例に係る改質石炭製造設備100によれば、設備を停止するときに、乾留装置121の内筒122の受入口122a側に低温加熱ガス12および廃熱ガス13を供給することにより、乾留装置121の内筒122内および乾留ガス供給管101内の乾留ガス14が強制的に排出されることになる。また、この乾留ガス14を燃焼炉124で燃焼することになる。 Therefore, according to the modified coal production facility 100 according to the present embodiment, when the facility is stopped, the low temperature heating gas 12 and the waste heat gas 13 are supplied to the inlet 122a side of the inner cylinder 122 of the dry distillation apparatus 121. Thus, the dry distillation gas 14 in the inner cylinder 122 of the dry distillation apparatus 121 and the dry distillation gas supply pipe 101 is forcibly discharged. Further, the dry distillation gas 14 is burned in the combustion furnace 124.
 さらに、低温加熱ガス12および廃熱ガス13の酸素濃度が約2~3%程度であることから、タールを酸化分解して軽質化することができる。軽質化されたガスが燃焼炉124に流通し、当該燃焼炉124内で燃焼することになる。また、乾留装置121の内筒122内や乾留ガス供給管101内の壁面にタールが付着したとしても、当該タールを燃焼除去することができる。 Furthermore, since the oxygen concentration of the low-temperature heating gas 12 and the waste heat gas 13 is about 2-3%, tar can be lightened by oxidative decomposition. The lightened gas flows into the combustion furnace 124 and burns in the combustion furnace 124. Moreover, even if tar adheres to the wall surface in the inner cylinder 122 of the carbonization apparatus 121 or the carbonization gas supply pipe 101, the tar can be removed by combustion.
 よって、設備を停止するときであっても、改質石炭4の生産量を低下させずに、効率良くタールを除去できる。また、乾留装置121の内筒122内や乾留ガス供給管101内の壁面へのタールの付着を防ぐことができることから、保守・点検作業を効率良く行うことができる。 Therefore, even when the facility is stopped, tar can be efficiently removed without reducing the production amount of the reformed coal 4. Further, since tar can be prevented from adhering to the inner cylinder 122 of the carbonization apparatus 121 or the wall surface of the carbonization gas supply pipe 101, maintenance / inspection work can be performed efficiently.
 本発明の第2の実施例に係る改質石炭製造設備を図3、図4A、および図4Bに基づいて説明する。 A modified coal production facility according to a second embodiment of the present invention will be described with reference to FIGS. 3, 4A, and 4B.
 本実施例に係る改質石炭製造設備は、図3に示すように、並列に配置された3つの改質石炭製造設備本体100A,100B,100Cを備える。改質石炭製造設備本体100A,100B,100Cは、上述の第1の実施例に係る改質石炭製造設備100と同様、乾燥装置111、乾留装置121、冷却装置131をそれぞれ備える。 As shown in FIG. 3, the modified coal production facility according to the present embodiment includes three modified coal production facility bodies 100A, 100B, and 100C arranged in parallel. The reformed coal production equipment main bodies 100A, 100B, and 100C include a drying device 111, a carbonization device 121, and a cooling device 131, respectively, as in the modified coal production facility 100 according to the first embodiment described above.
 本実施例に係る改質石炭製造設備は、上述の第1の実施例に係る改質石炭製造設備100と同様、1つの燃焼炉124と1つのブロア126と、1つの排ガス処理装置127とを備える。ブロア126のガス排出口は、混合ガス供給管56を介して燃焼炉124のガス受入口に連絡している。燃焼炉124のガス排出口は、加熱ガス送給管51a~51cを介して、各設備本体100A,100B,100Cの乾留装置121の外筒123にそれぞれ連絡している。 The reformed coal production facility according to this embodiment includes one combustion furnace 124, one blower 126, and one exhaust gas treatment device 127, similar to the modified coal production facility 100 according to the first embodiment described above. Prepare. The gas outlet of the blower 126 communicates with the gas inlet of the combustion furnace 124 through the mixed gas supply pipe 56. The gas discharge port of the combustion furnace 124 communicates with the outer cylinder 123 of the dry distillation apparatus 121 of each of the equipment main bodies 100A, 100B, and 100C via the heated gas supply pipes 51a to 51c.
 加熱ガス送給管51a~51cは、加熱ガス分岐管53a~53cを介して各蒸気発生器125のガス受入口にそれぞれ連絡している。各蒸気発生器125のガス排出口は、廃熱ガス送給管54a~54cにそれぞれ連絡している。 The heated gas feed pipes 51a to 51c communicate with the gas inlets of the respective steam generators 125 via the heated gas branch pipes 53a to 53c. The gas discharge ports of the respective steam generators 125 communicate with the waste heat gas supply pipes 54a to 54c, respectively.
 各乾留装置121の外筒123のガス排出口は、排気管52a~52cにそれぞれ連絡している。前記加熱ガス11が内筒122を加熱して生じる低温加熱ガス12、および廃熱ガス13の一部が、排気管52a~52cおよび廃熱ガス送給管54a~54cを通じて、当該低温加熱ガス12および当該廃熱ガス13を浄化処理する排ガス浄化手段である排ガス処理装置127に供給され、当該排ガス処理装置127で浄化処理されて系外に排出される。低温加熱ガス12および廃熱ガス13の残部が、排気管52a~52c、廃熱ガス送給管54a~54c、および混合ガス送給管55を通じて、ブロア126に供給される。 The gas discharge port of the outer cylinder 123 of each carbonization apparatus 121 communicates with the exhaust pipes 52a to 52c. A part of the low-temperature heating gas 12 and the waste heat gas 13 generated by the heating gas 11 heating the inner cylinder 122 passes through the exhaust pipes 52a to 52c and the waste heat gas supply pipes 54a to 54c. The waste heat gas 13 is supplied to an exhaust gas treatment device 127 which is an exhaust gas purification means for purifying the waste heat gas 13, and is purified by the exhaust gas treatment device 127 and discharged outside the system. The remainder of the low-temperature heating gas 12 and the waste heat gas 13 are supplied to the blower 126 through the exhaust pipes 52a to 52c, the waste heat gas supply pipes 54a to 54c, and the mixed gas supply pipe 55.
 各乾留装置121の内筒122のガス排出口は、乾留ガス供給管101a~101cを介して、燃焼炉124のガス受入口にそれぞれ連絡している。 The gas discharge port of the inner cylinder 122 of each carbonization device 121 communicates with the gas reception port of the combustion furnace 124 via the carbonization gas supply pipes 101a to 101c.
 混合ガス供給管56は、混合ガス分岐管102a~102cに連絡している。混合ガス分岐管102a~102cは、流量調整バルブ(三方弁)103a~103cを介して混合ガス連絡管104a~104cにそれぞれ連絡すると共に、流量調整バルブ103a~103cを介して混合ガス分配管105a~105cにそれぞれ連絡している。混合ガス連絡管104a~104cは、乾留ガス供給管101a~101cにそれぞれ連絡している。混合ガス分配管105a~105cは、各乾留装置121の内筒122の受入口122a側のガス受入口にそれぞれ連絡している。 The mixed gas supply pipe 56 communicates with the mixed gas branch pipes 102a to 102c. The mixed gas branch pipes 102a to 102c communicate with the mixed gas communication pipes 104a to 104c via the flow rate adjusting valves (three-way valves) 103a to 103c, respectively, and the mixed gas distribution pipes 105a to 105c via the flow rate adjusting valves 103a to 103c. 105c is contacted respectively. The mixed gas communication pipes 104a to 104c communicate with the dry distillation gas supply pipes 101a to 101c, respectively. The mixed gas distribution pipes 105a to 105c are in communication with the gas inlets on the inlet 122a side of the inner cylinder 122 of each dry distillation apparatus 121, respectively.
 乾留ガス供給管101aには、管内のガス温度を計測するガス温度計測手段であるガス温度計測器106が設けられる。ガス温度計測器106は、計測したガス温度を、制御装置109に送信可能に当該制御装置109と接続している。乾留ガス供給管101b,101cにも、乾留ガス供給管101aと同様に、ガス温度計測器(図示せず)がそれぞれ設けられる。これらガス温度計測器も、当該ガス温度計測器で計測したガス温度を、制御装置109に送信可能に当該制御装置109と接続している。 The dry distillation gas supply pipe 101a is provided with a gas temperature measuring device 106 which is a gas temperature measuring means for measuring the gas temperature in the pipe. The gas temperature measuring device 106 is connected to the control device 109 so that the measured gas temperature can be transmitted to the control device 109. Similarly to the dry distillation gas supply pipe 101a, gas temperature measuring instruments (not shown) are also provided in the dry distillation gas supply pipes 101b and 101c. These gas temperature measuring devices are also connected to the control device 109 so that the gas temperature measured by the gas temperature measuring device can be transmitted to the control device 109.
 乾留ガス供給管101aには、管内の圧力差を計測する差圧計測器107a,107bが設けられる。差圧計測器107a,107bは、計測した管内の圧力差を制御装置109に送信可能に当該制御装置109と接続している。乾留ガス供給管101b,101cにも、乾留ガス供給管101aと同様に、差圧計測器(図示せず)がそれぞれ設けられる。これら差圧計測器も、当該差圧計測器で計測した管内の圧力差を制御装置109に送信可能に当該制御装置109と接続している。 The dry distillation gas supply pipe 101a is provided with differential pressure measuring devices 107a and 107b for measuring the pressure difference in the pipe. The differential pressure measuring devices 107 a and 107 b are connected to the control device 109 so that the measured pressure difference in the pipe can be transmitted to the control device 109. Similarly to the dry distillation gas supply pipe 101a, a differential pressure measuring instrument (not shown) is provided in each of the dry distillation gas supply pipes 101b and 101c. These differential pressure measuring devices are also connected to the control device 109 so that the pressure difference in the pipe measured by the differential pressure measuring device can be transmitted to the control device 109.
 設備本体100Aの乾留装置121の内筒122の送出口122bには、内筒122内のガス温度を計測する内筒内ガス温度計測器108が設けられる。内筒内ガス温度計測器108は、計測した内筒内のガス温度を制御装置109に送信可能に当該制御装置109と接続している。設備本体100B,100Cの乾留装置121の内筒122の送出口122bにも、設備本体100Aと同様に、内筒122内のガス温度を計測する内筒内ガス温度計測器(図示せず)がそれぞれ設けられる。これら内筒内ガス温度計測器も、計測した内筒内のガス温度を制御装置109に送信可能に当該制御装置109と接続している。 The inner cylinder internal gas temperature measuring device 108 which measures the gas temperature in the inner cylinder 122 is provided in the delivery port 122b of the inner cylinder 122 of the carbonization apparatus 121 of the equipment main body 100A. The inner cylinder gas temperature measuring device 108 is connected to the control device 109 so that the measured gas temperature in the inner cylinder can be transmitted to the control device 109. Similarly to the equipment main body 100A, an inner cylinder internal gas temperature measuring device (not shown) that measures the gas temperature in the inner cylinder 122 is also provided at the outlet 122b of the inner cylinder 122 of the dry distillation apparatus 121 of the equipment main bodies 100B and 100C. Each is provided. These in-cylinder gas temperature measuring devices are also connected to the control device 109 so that the measured gas temperature in the inner cylinder can be transmitted to the control device 109.
 排気管52a~52c、廃熱ガス送給管54a~54c、混合ガス送給管55、ブロア126、混合ガス供給管56、混合ガス分岐管102a~102c、流量調整バルブ103a~103c、混合ガス分配管105a~105c等が混合ガス分配供給手段をなしている。流量調整バルブ103a~103cが、設備本体100A,100B,100Cの各乾留装置121への低温加熱ガス12、廃熱ガス13の供給量を調整するガス流量調整手段をなしている。 Exhaust pipes 52a to 52c, waste heat gas supply pipes 54a to 54c, mixed gas supply pipe 55, blower 126, mixed gas supply pipe 56, mixed gas branch pipes 102a to 102c, flow rate adjusting valves 103a to 103c, mixed gas components The pipes 105a to 105c and the like constitute mixed gas distribution supply means. The flow rate adjusting valves 103a to 103c constitute gas flow rate adjusting means for adjusting the supply amounts of the low-temperature heating gas 12 and the waste heat gas 13 to the dry distillation apparatuses 121 of the equipment main bodies 100A, 100B, and 100C.
 制御装置109は、各種計測器による計測値に基づき流量調整バルブ103a~103c、燃焼炉124への燃料の供給量、各設備本体100A,100B,100Cの乾燥装置111への低品位炭1の供給量、各設備本体100A,100B,100Cの乾留装置121への加熱ガス11の供給量などを制御している。つまり、制御装置109は、各種計測器による計測値に基づき、流量調整バルブ103a~103cのバルブ開度等を調整する制御手段をなしている。 The control device 109 supplies the low-grade coal 1 to the drying devices 111 of the equipment main bodies 100A, 100B, and 100C based on the flow rate adjusting valves 103a to 103c and the amount of fuel supplied to the combustion furnace 124 based on the measurement values obtained by various measuring instruments. The amount, the supply amount of the heated gas 11 to the dry distillation apparatus 121 of each equipment main body 100A, 100B, 100C, etc. are controlled. That is, the control device 109 constitutes a control means for adjusting the valve opening degree of the flow rate adjusting valves 103a to 103c based on the measurement values obtained by various measuring instruments.
 このようにして構成された本実施例に係る改質石炭製造設備において、定常運転時に、乾留ガス供給管101a,101b,101cへのタールの付着を防ぐように制御する作動は、上述の第1の実施例に係る改質石炭製造設備100と同じであり、その説明を省略する。 In the reformed coal production facility according to the present embodiment configured as described above, the operation for controlling to prevent the tar from adhering to the dry distillation gas supply pipes 101a, 101b, 101c during the steady operation is the above-described first operation. This is the same as the modified coal production facility 100 according to the embodiment, and the description thereof is omitted.
 また、本実施例に係る改質石炭製造設備が具備する改質石炭製造設備本体を停止し、定常運転状態に復帰するときの作動について、図4Aおよび図4Bを参照して以下に説明する。
 改質石炭製造設備本体100B,100Cが定常運転状態である一方、改質石炭製造設備本体100Aを停止し、定常運転状態に復帰する場合について説明する。
The operation when the reformed coal production facility main body included in the modified coal production facility according to the present embodiment is stopped and returned to the steady operation state will be described below with reference to FIGS. 4A and 4B.
The case where the reformed coal production equipment main body 100B, 100C is in the steady operation state, while the reformed coal production equipment main body 100A is stopped and returned to the steady operation state will be described.
 図4Aおよび図4Bに示すように、まず、改質石炭製造設備本体100Aが定常運転している(ステップSB1)。改質石炭製造設備本体100B,100Cも定常運転している(ステップSC1)。 As shown in FIG. 4A and FIG. 4B, first, the reformed coal production facility main body 100A is in steady operation (step SB1). The reformed coal production equipment main bodies 100B and 100C are also in steady operation (step SC1).
 改質石炭製造設備本体100Aを停止するため、乾燥炭2の乾留装置121の内筒122への移送を停止する(ステップSB2)。これにより、設備本体100Aの乾留装置121の内筒122内の乾燥炭2量が減少していくことになるため、燃焼炉124から乾留装置121の外筒123への加熱ガス11の供給量を減量する(ステップSB3)。つまり、設備本体100Aの乾留装置121では、熱負荷が減少することになる。これに対し、設備本体100B,100Cでは、当該設備本体100B,100Cの各乾留装置121の内筒122への乾燥炭2の移送を増量する(ステップSC2)。これにより、設備本体100B,100Cの各乾留装置121の内筒122内の乾燥炭2量が増加していくことになるため、燃焼炉124から各乾留装置121の外筒123への加熱ガス11の供給量を増量する(ステップSC3)。つまり、設備本体100B,100Cの各乾留装置121では、熱負荷が増加することになる。 In order to stop the reformed coal production facility main body 100A, the transfer of the dry coal 2 to the inner cylinder 122 of the carbonization device 121 is stopped (step SB2). As a result, the amount of dry coal 2 in the inner cylinder 122 of the dry distillation apparatus 121 of the equipment main body 100A decreases, so the supply amount of the heated gas 11 from the combustion furnace 124 to the outer cylinder 123 of the dry distillation apparatus 121 is reduced. The amount is reduced (step SB3). That is, in the carbonization apparatus 121 of the equipment main body 100A, the heat load is reduced. On the other hand, the equipment main bodies 100B and 100C increase the transfer of the dry charcoal 2 to the inner cylinder 122 of each dry distillation apparatus 121 of the equipment main bodies 100B and 100C (step SC2). As a result, the amount of dry coal 2 in the inner cylinder 122 of each of the carbonization devices 121 of the equipment main bodies 100B and 100C increases, so the heated gas 11 from the combustion furnace 124 to the outer cylinder 123 of each of the carbonization devices 121 is increased. Is increased (step SC3). That is, in each of the carbonization devices 121 of the equipment main bodies 100B and 100C, the heat load increases.
 続いて、制御装置109が流量調整バルブ103aを調整し、混合ガス分配管105aを介して乾留装置121の内筒122の受入口122a側へ、低温加熱ガス12および廃熱ガス13を供給する(ステップSB4)。これにより、設備本体100Aの乾留装置121の内筒122内および乾留ガス供給管101a内の乾留ガス14が低温加熱ガス12および廃熱ガス13によりパージされることになる。また、当該内筒122および当該乾留ガス供給管101aの内部のガスの酸素濃度が約1~2%になり、タールが酸化分解され軽質化される。また、軽質化された軽質ガスが燃焼される。よって、内筒122や乾留ガス供給管101aの壁面へのタールの付着が防止される。 Subsequently, the control device 109 adjusts the flow rate adjusting valve 103a, and supplies the low-temperature heating gas 12 and the waste heat gas 13 to the inlet 122a side of the inner cylinder 122 of the dry distillation apparatus 121 via the mixed gas distribution pipe 105a ( Step SB4). As a result, the dry distillation gas 14 in the inner cylinder 122 and the dry distillation gas supply pipe 101a of the dry distillation apparatus 121 of the equipment main body 100A is purged by the low temperature heating gas 12 and the waste heat gas 13. Further, the oxygen concentration of the gas inside the inner cylinder 122 and the dry distillation gas supply pipe 101a becomes about 1 to 2%, and tar is oxidatively decomposed and lightened. Also, the lightened light gas is burned. Therefore, the adhesion of tar to the inner cylinder 122 and the wall surface of the dry distillation gas supply pipe 101a is prevented.
 続いて、設備本体100Aの乾留装置121の内筒122から乾留炭3が全て排出され(ステップSB5)、当該設備本体100Aの乾留装置121の外筒123への加熱ガス11の供給が停止される(ステップSB6)。これにより、設備本体100Aの乾留装置121の熱負荷が減少することになる。これに対し、設備本体100B,100Cでは、設備本体100B,100Cの各乾留装置121の外筒123への加熱ガス11の供給が定常状態になる(ステップSC4)。これにより、各設備本体100B,100Cの各乾留装置121の熱負荷が増加した状態で維持される。 Subsequently, all the carbonized carbon 3 is discharged from the inner cylinder 122 of the carbonization device 121 of the equipment main body 100A (step SB5), and the supply of the heating gas 11 to the outer cylinder 123 of the carbonization device 121 of the equipment main body 100A is stopped. (Step SB6). Thereby, the thermal load of the dry distillation apparatus 121 of the equipment main body 100A is reduced. On the other hand, in the equipment main bodies 100B and 100C, the supply of the heating gas 11 to the outer cylinder 123 of each dry distillation apparatus 121 of the equipment main bodies 100B and 100C is in a steady state (step SC4). Thereby, it maintains with the state in which the thermal load of each dry distillation apparatus 121 of each equipment main body 100B and 100C increased.
 続いて、設備本体100Aでは、当該設備本体100Aの乾留装置121の外筒123への加熱ガス11の供給が停止されてから所定時間経過すると(ステップSB7)、設備本体100Aの乾留装置121の内筒122内および乾留ガス供給管101a内に乾留ガス14が無くなり、低温加熱ガス12および廃熱ガス13の供給が不要となるため、当該設備本体100Aの乾留装置121の内筒122の受入口122a側への低温加熱ガス12および廃熱ガス13の供給が停止される(ステップSB8)。このステップSB8にて、設備本体100Aに対する保守および点検等の作業が必要に応じて行われる。 Subsequently, in the equipment main body 100A, when the supply of the heated gas 11 to the outer cylinder 123 of the dry distillation apparatus 121 of the equipment main body 100A is stopped for a predetermined time (step SB7), the inside of the carbonization apparatus 121 of the equipment main body 100A. Since the dry distillation gas 14 is eliminated in the cylinder 122 and the dry distillation gas supply pipe 101a, the supply of the low temperature heating gas 12 and the waste heat gas 13 is not required, and therefore the inlet 122a of the inner cylinder 122 of the dry distillation apparatus 121 of the equipment body 100A. The supply of the low-temperature heating gas 12 and the waste heat gas 13 to the side is stopped (step SB8). In step SB8, operations such as maintenance and inspection for the equipment main body 100A are performed as necessary.
 続いて、上述の保守および点検等の作業が終了すると、設備本体100Aを定常運転状態に復帰させるため、先ず、当該設備本体100Aの乾燥装置111から乾留装置121の内筒122内への乾燥炭2の移送を開始する(ステップSB9)。これにより、設備本体100Aの乾留装置121の内筒122内の乾燥炭2量が増加していくことになるため、燃焼炉124から乾留装置121の外筒123への加熱ガス11の供給量を増量する(ステップSB10)。これにより、設備本体100Aの乾留装置121では、熱負荷が増加することになる。これに対し、設備本体100B,100Cでは、当該設備本体100B,100Cの各乾留装置121の内筒122への乾燥炭2の移送を減量する(ステップSC5)。これにより、設備本体100B,100Cの各乾留装置121の内筒122内の乾燥炭2量が減少していくことになるため、燃焼炉124から各乾留装置121の外筒123への加熱ガス11の供給量を減量する(ステップSC6)。これにより、設備本体100B,100Cの各乾留装置121では、熱負荷が減少することになる。 Subsequently, when the operations such as maintenance and inspection described above are completed, first, the dry coal from the drying device 111 of the equipment main body 100A to the inner cylinder 122 of the carbonization device 121 is returned to return to the steady operation state. 2 is started (step SB9). Thereby, since the amount of dry coal 2 in the inner cylinder 122 of the dry distillation apparatus 121 of the equipment main body 100A increases, the supply amount of the heating gas 11 from the combustion furnace 124 to the outer cylinder 123 of the dry distillation apparatus 121 is reduced. The amount is increased (step SB10). Thereby, in the dry distillation apparatus 121 of the equipment main body 100A, the heat load increases. On the other hand, in the equipment main bodies 100B and 100C, the transfer of the dry coal 2 to the inner cylinder 122 of each of the carbonization devices 121 of the equipment main bodies 100B and 100C is reduced (step SC5). As a result, the amount of dry charcoal 2 in the inner cylinder 122 of each of the carbonization devices 121 of the equipment main bodies 100B and 100C decreases, so the heated gas 11 from the combustion furnace 124 to the outer cylinder 123 of each of the carbonization devices 121 is reduced. Is reduced (step SC6). Thereby, in each dry distillation apparatus 121 of the equipment main bodies 100B and 100C, the heat load is reduced.
 続いて、設備本体100Aの乾留装置121の内筒122への乾燥炭2の供給量が所定量に達すると共に、当該乾留装置121の外筒123への加熱ガス11の供給量が所定量に達すると、設備本体100Aが定常運転状態に復帰することになる(ステップSB11)。これに対し、設備本体100B,100Cの各乾留装置121の内筒122への乾燥炭2の供給量が所定量に達すると共に、当該各乾留装置121の外筒123への加熱ガス11の供給量が所定量に達すると、設備本体100B,100Cも定常運転状態に復帰することになる(ステップSC7)。 Subsequently, the supply amount of the dry coal 2 to the inner cylinder 122 of the dry distillation apparatus 121 of the equipment main body 100A reaches a predetermined amount, and the supply amount of the heated gas 11 to the outer cylinder 123 of the dry distillation apparatus 121 reaches a predetermined amount. Then, the equipment main body 100A returns to the steady operation state (step SB11). On the other hand, the supply amount of the dry coal 2 to the inner cylinder 122 of each of the carbonization devices 121 of the equipment main bodies 100B and 100C reaches a predetermined amount, and the supply amount of the heating gas 11 to the outer tube 123 of each of the carbonization devices 121. When the amount reaches a predetermined amount, the equipment main bodies 100B and 100C also return to the steady operation state (step SC7).
 設備本体100Bまたは設備本体100Cを停止する場合も、上述の設備本体100Aと同様の手順で作動することで、設備本体100B,100Cが具備する各乾留装置121の内筒122内や乾留ガス供給管101b,101c内の壁面へのタールの付着を防止することができる。つまり、上述した作動を停止対象となる設備本体に対し順次実施することにより、改質石炭製造設備全体の稼働率の低下を抑制しつつ、停止対象となった改質石炭製造設備本体にて効率良くタールを除去することができる。 Even when the equipment main body 100B or the equipment main body 100C is stopped, by operating in the same procedure as the equipment main body 100A described above, the inside of the inner cylinder 122 of each dry distillation apparatus 121 included in the equipment main bodies 100B and 100C or the dry distillation gas supply pipe It is possible to prevent tar from adhering to the wall surfaces in 101b and 101c. In other words, by performing the above-described operations sequentially on the equipment main body to be stopped, the efficiency of the main body of the reformed coal manufacturing equipment that is the target of the stoppage is suppressed while suppressing a decrease in the operating rate of the entire reformed coal manufacturing equipment. Tar can be removed well.
 したがって、本実施例に係る改質石炭製造設備によれば、上述の第1の実施例に係る改質石炭製造設備100と同様、設備本体を停止するときに、停止対象となる設備本体の乾留装置121の内筒122の受入口122a側に低温加熱ガス12および廃熱ガス13を供給することにより、乾留装置121の内筒122内および乾留ガス供給管内の乾留ガス14が強制的に排出されることになる。また、この乾留ガス14を燃焼炉124で燃焼することになる。 Therefore, according to the modified coal production facility according to the present embodiment, as with the modified coal production facility 100 according to the first embodiment described above, when the facility main body is stopped, dry distillation of the facility main body to be stopped is performed. By supplying the low-temperature heating gas 12 and the waste heat gas 13 to the inlet 122a side of the inner cylinder 122 of the apparatus 121, the dry distillation gas 14 in the inner cylinder 122 and the dry distillation gas supply pipe of the dry distillation apparatus 121 is forcibly discharged. Will be. Further, the dry distillation gas 14 is burned in the combustion furnace 124.
 さらに、低温加熱ガス12および廃熱ガス13の酸素濃度が約2~3%程度であることから、タールを酸化分解して軽質化することができる。軽質化されたガスが燃焼炉124に流通し、当該燃焼炉124内で燃焼することになる。また、乾留装置121の内筒122内や乾留ガス供給管内の壁面にタールが付着したとしても、当該タールを燃焼除去することができる。 Furthermore, since the oxygen concentration of the low-temperature heating gas 12 and the waste heat gas 13 is about 2-3%, tar can be lightened by oxidative decomposition. The lightened gas flows into the combustion furnace 124 and burns in the combustion furnace 124. Further, even if tar adheres to the wall surface of the inner cylinder 122 of the carbonization apparatus 121 or the carbonization gas supply pipe, the tar can be removed by combustion.
 よって、設備本体を停止するときであっても、改質石炭4の生産量を低下させずに、効率良くタールを除去できる。また、乾留装置121の内筒122内や乾留ガス供給管内の壁面へのタールの付着を防ぐことができることから、保守・点検作業を効率良く行うことができる。 Therefore, even when the equipment main body is stopped, tar can be efficiently removed without reducing the production amount of the reformed coal 4. Further, since tar can be prevented from adhering to the inner cylinder 122 of the carbonization apparatus 121 or the wall surface of the carbonization gas supply pipe, maintenance and inspection work can be performed efficiently.
 [他の実施例]
 なお、上記では、改質石炭製造設備本体100A,100B,100Cが3つ並列に配置された改質石炭製造設備について説明したが、改質石炭製造設備本体の数量は3つに限らず改質石炭製造設備本体を2つや4つ以上並列に配置された改質石炭製造設備とすることも可能である。
[Other embodiments]
In the above description, the reformed coal manufacturing facility in which three reformed coal manufacturing facility bodies 100A, 100B, and 100C are arranged in parallel has been described. It is also possible to use two or more coal production equipment main bodies as modified coal production equipment arranged in parallel.
 上記では、設備本体100Aの乾留装置121の外筒123への加熱ガス11の供給が停止されてからの経過時間に基づき、当該設備本体100Aの乾留装置121の内筒122への低温加熱ガス12および廃熱ガス13の供給を停止する改質石炭製造設備について説明したが、停止対象となる設備本体の差圧計測器107a,107bなどの計測機器の計測値に基づき、停止対象となる設備本体の乾留装置の内筒への低温加熱ガスおよび廃熱ガスの供給を停止する改質石炭製造設備とすることも可能である。 In the above, based on the elapsed time since the supply of the heating gas 11 to the outer cylinder 123 of the carbonization device 121 of the equipment main body 100A is stopped, the low temperature heating gas 12 to the inner cylinder 122 of the carbonization device 121 of the equipment main body 100A. The reformed coal production facility for stopping the supply of the waste heat gas 13 has been described, but the facility main body to be stopped based on the measured values of the measuring devices such as the differential pressure measuring devices 107a and 107b of the facility main body to be stopped It is also possible to provide a modified coal production facility that stops the supply of the low-temperature heating gas and the waste heat gas to the inner cylinder of the dry distillation apparatus.
 本発明に係る改質石炭製造設備およびその制御方法は、設備を停止するときであっても、改質石炭の生産量を低下させずに、効率良くタールを除去できるので、各種産業において、極めて有益に利用することができる。 The reformed coal production facility and the control method thereof according to the present invention can remove tar efficiently without reducing the production amount of the reformed coal even when the facility is stopped. It can be used beneficially.
1   低品位炭
2   乾燥炭
3   乾留炭
4   改質石炭
11  加熱ガス
12  低温加熱ガス
13  廃熱ガス
14  乾留ガス
51,51a~51c 加熱ガス送給管
52,52a~52c 排気管
53,53a~53c 加熱ガス分岐管
54,54a~54c 廃熱ガス送給管
55  混合ガス送給管
56  混合ガス供給管
100 改質石炭製造設備
100A,100B,100C 改質石炭製造設備本体
101,101a~101c 乾留ガス供給管
102,102a~102c 混合ガス分岐管
103,103a~103c 流量調整バルブ(三方弁)
104,104a~104c 混合ガス連絡管
105,105a~105c 混合ガス分配管
106 ガス温度計測器
107a,107b 差圧計測器
108 内筒内ガス温度計測器
109 制御装置
111 乾燥装置
121 乾留装置
122 内筒
123 外筒
124 燃焼炉
125 蒸気発生器
126 ブロア
127 排ガス処理装置
131 冷却装置
DESCRIPTION OF SYMBOLS 1 Low grade coal 2 Dry coal 3 Dry distillation coal 4 Modified coal 11 Heated gas 12 Low temperature heating gas 13 Waste heat gas 14 Dry distillation gas 51, 51a-51c Heated gas supply pipe 52, 52a- 52c Exhaust pipe 53, 53a-53c Heated gas branch pipes 54, 54a to 54c Waste heat gas supply pipe 55 Mixed gas supply pipe 56 Mixed gas supply pipe 100 Modified coal production equipment 100A, 100B, 100C Modified coal production equipment main body 101, 101a to 101c Dry distillation gas Supply pipe 102, 102a to 102c Mixed gas branch pipe 103, 103a to 103c Flow rate adjusting valve (three-way valve)
104, 104a to 104c Mixed gas communication pipe 105, 105a to 105c Mixed gas distribution pipe 106 Gas temperature measuring instrument 107a, 107b Differential pressure measuring instrument 108 Inner cylinder gas temperature measuring instrument 109 Controller 111 Drying apparatus 121 Dry distillation apparatus 122 Inner cylinder 123 Outer cylinder 124 Combustion furnace 125 Steam generator 126 Blower 127 Exhaust gas treatment device 131 Cooling device

Claims (6)

  1.  石炭を乾燥させる乾燥手段と、
     乾燥された前記石炭を乾留する乾留手段と、
     乾留された前記石炭を冷却する冷却手段とを具備し、
     前記乾留手段が、乾燥された前記石炭が移送される内筒と、前記内筒を加熱する加熱ガスが供給される外筒とを備える間接加熱式乾留装置である改質石炭製造設備であって、
     前記加熱ガスを生成する加熱ガス生成手段と、
     前記加熱ガス生成手段へ前記内筒で発生した乾留ガスを供給する乾留ガス供給手段と、
     前記加熱ガス生成手段で生成した前記加熱ガスの一部が供給され、当該加熱ガスを熱交換して廃熱ガスを生成する廃熱ガス生成手段と、
     前記廃熱ガス、および前記外筒内にて前記加熱ガスが前記石炭を間接加熱して生じる低温加熱ガスを前記内筒内へ分配供給する混合ガス分配供給手段とを備える
    ことを特徴とする改質石炭製造設備。
    A drying means for drying the coal;
    A carbonization means for carbonizing the dried coal;
    Cooling means for cooling the coal that has been carbonized,
    The dry distillation means is a modified coal production facility that is an indirect heating type dry distillation apparatus including an inner cylinder to which the dried coal is transferred and an outer cylinder to which a heating gas for heating the inner cylinder is supplied. ,
    Heated gas generating means for generating the heated gas;
    Dry distillation gas supply means for supplying dry distillation gas generated in the inner cylinder to the heated gas generation means;
    A part of the heating gas generated by the heating gas generation means is supplied, and waste heat gas generation means for generating waste heat gas by exchanging heat of the heating gas;
    And a mixed gas distribution supply means for distributing and supplying the waste heat gas and the low-temperature heating gas generated by indirectly heating the coal in the outer cylinder to the inner cylinder. Quality coal production equipment.
  2.  請求項1に記載された改質石炭製造設備であって、
     前記混合ガス分配供給手段は、乾燥された前記石炭を受け入れる前記内筒の受入口側に接続している
    ことを特徴とする改質石炭製造設備。
    The modified coal production facility according to claim 1,
    The reformed coal production facility, wherein the mixed gas distribution and supply means is connected to a receiving port side of the inner cylinder that receives the dried coal.
  3.  請求項2に記載された改質石炭製造設備であって、
     前記間接加熱式乾留装置は、乾留された前記石炭を排出する排出口側に設けられ、ガス温度を計測するガス温度計測手段を備え、
     前記混合ガス分配供給手段は、前記内筒内へ供給する前記低温加熱ガスおよび前記廃熱ガスの流量を調整するガス流量調整手段と、前記ガス流量調整手段を、前記ガス温度計測手段で計測した前記ガス温度に基づき制御する制御手段とを備える
    ことを特徴とする改質石炭製造設備。
    The modified coal production facility according to claim 2,
    The indirect heating type carbonization apparatus is provided on a discharge port side for discharging the coal that has been carbonized, and includes a gas temperature measuring unit that measures a gas temperature,
    The mixed gas distribution supply means measures the gas flow rate adjusting means for adjusting the flow rates of the low-temperature heating gas and the waste heat gas supplied into the inner cylinder, and the gas flow rate adjusting means is measured by the gas temperature measuring means. A reformed coal production facility comprising a control means for controlling based on the gas temperature.
  4.  請求項3に記載された改質石炭製造設備であって、
     前記乾燥手段と前記間接加熱式乾留装置と前記冷却手段とを有す設備本体を並列にて複数備える
    ことを特徴とする改質石炭製造設備。
    A modified coal production facility according to claim 3,
    A reformed coal production facility comprising a plurality of facility bodies having the drying means, the indirectly heated carbonization apparatus, and the cooling means in parallel.
  5.  請求項3に記載された改質石炭製造設備を制御する方法であって、
     前記内筒への前記石炭の供給を停止し、
     前記制御手段が前記ガス流量調整手段を制御して前記低温加熱ガスおよび前記廃熱ガスを前記内筒へ供給する一方、前記加熱ガス生成手段へ供給する燃料を増量し、
     前記ガス温度計測手段で計測したガス温度が所定の温度より低くなると、前記制御手段が前記ガス流量調整手段を制御して、前記内筒への前記低温加熱ガスおよび前記廃熱ガスの供給を停止する
    ことを特徴とする改質石炭製造設備の制御方法。
    A method for controlling a modified coal production facility according to claim 3, comprising:
    Stopping the supply of the coal to the inner cylinder,
    The control means controls the gas flow rate adjusting means to supply the low temperature heating gas and the waste heat gas to the inner cylinder, while increasing the amount of fuel supplied to the heating gas generation means,
    When the gas temperature measured by the gas temperature measuring means becomes lower than a predetermined temperature, the control means controls the gas flow rate adjusting means to stop the supply of the low temperature heating gas and the waste heat gas to the inner cylinder. A method for controlling a reformed coal production facility.
  6.  請求項4に記載された改質石炭製造設備を制御する方法であって、
     停止する前記設備本体にて、前記内筒への前記石炭の供給を停止する一方、定常運転する前記設備本体にて、前記乾燥手段へ供給する前記石炭を増量すると共に、前記外筒へ供給する前記加熱ガスを増量し、
     停止する前記設備本体にて、前記制御手段が前記ガス流量調整手段を制御して、前記内筒への前記低温加熱ガスおよび前記廃熱ガスの供給を開始し、
     停止する前記設備本体にて、前記内筒から前記石炭が全て排出されると、当該内筒への前記加熱ガスの供給を停止する一方、定常運転する前記設備本体にて、前記外筒へ供給する前記加熱ガスを定常状態にし、
     停止する前記設備本体にて、前記内筒から前記乾留ガスが全て排出されると、前記制御手段が前記ガス流量調整手段を制御して、当該内筒への前記低温加熱ガスおよび前記廃熱ガスの供給を停止する
    ことを特徴とする改質石炭製造設備の制御方法。
    A method for controlling a modified coal production facility according to claim 4, comprising:
    While stopping the supply of the coal to the inner cylinder in the equipment main body to be stopped, the equipment main body in steady operation increases the amount of the coal supplied to the drying means and supplies the coal to the outer cylinder. Increase the heating gas,
    In the equipment main body to be stopped, the control means controls the gas flow rate adjusting means to start supplying the low-temperature heating gas and the waste heat gas to the inner cylinder,
    When all the coal is discharged from the inner cylinder in the equipment main body to be stopped, the supply of the heated gas to the inner cylinder is stopped, while the equipment main body in steady operation is supplied to the outer cylinder. The heated gas to a steady state,
    When all of the dry distillation gas is discharged from the inner cylinder in the facility main body to be stopped, the control means controls the gas flow rate adjusting means, and the low-temperature heating gas and the waste heat gas to the inner cylinder The control method of the reformed coal manufacturing facility characterized by stopping supply of coal.
PCT/JP2013/054252 2012-02-24 2013-02-21 Reformed coal production equipment, and method for controlling same WO2013125609A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112013001121.2T DE112013001121T5 (en) 2012-02-24 2013-02-21 Production plant for reformed coal and control procedures for this
IN5895DEN2014 IN2014DN05895A (en) 2012-02-24 2013-02-21
AU2013223201A AU2013223201B9 (en) 2012-02-24 2013-02-21 Reformed coal production equipment, and method for controlling same
US14/373,573 US20140373435A1 (en) 2012-02-24 2013-02-21 Reformed coal production equipment, and method for controlling same
CN201380006006.3A CN104066824B (en) 2012-02-24 2013-02-21 Modified coal producing apparatus and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012038518A JP5804972B2 (en) 2012-02-24 2012-02-24 Modified coal production facility and control method thereof
JP2012-038518 2012-02-24

Publications (1)

Publication Number Publication Date
WO2013125609A1 true WO2013125609A1 (en) 2013-08-29

Family

ID=49005789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054252 WO2013125609A1 (en) 2012-02-24 2013-02-21 Reformed coal production equipment, and method for controlling same

Country Status (7)

Country Link
US (1) US20140373435A1 (en)
JP (1) JP5804972B2 (en)
CN (1) CN104066824B (en)
AU (1) AU2013223201B9 (en)
DE (1) DE112013001121T5 (en)
IN (1) IN2014DN05895A (en)
WO (1) WO2013125609A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025588A1 (en) * 2013-08-23 2015-02-26 三菱重工業株式会社 Coal dry distillation device
EP2843032A1 (en) * 2013-09-02 2015-03-04 Kunimichi Sato Method for increasing calorific value of low-grade coals
CN107189834A (en) * 2017-07-10 2017-09-22 自贡通达机器制造有限公司 A kind of steam-cured kettle kettle body and steam-cured method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105838391A (en) * 2016-06-06 2016-08-10 沈阳农业大学 Continuous charring equipment
CN108893127A (en) * 2018-07-03 2018-11-27 西安建筑科技大学 A kind of method that routine internal heat type low-temperature dry distillation furnace transform oxygen-enriched gas retort as
CN109205623A (en) * 2018-11-13 2019-01-15 贵州森环活性炭有限公司 A kind of external heating type activation furnace of subsection-inlet
CN111793506B (en) * 2020-07-20 2021-10-12 程建坤 Energy-saving emission-reducing coal tar extractor with cleaning function

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940185B2 (en) * 1980-03-31 1984-09-28 日本鋼管株式会社 Pretreatment method and equipment for high volatile content non-slightly caking coal
JPS6153390A (en) * 1984-08-24 1986-03-17 Hitachi Ltd Temperature control for modification unit for low-quality coal
JP2002003855A (en) * 2000-06-23 2002-01-09 Ngk Insulators Ltd Manufacturing method of carbide
WO2011074279A1 (en) * 2009-12-18 2011-06-23 三菱重工業株式会社 Coal reforming equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB216691A (en) * 1923-05-26 1924-06-05 Jacques Beaudequin The manufacture of artificial coal or coal-like substances and by-products from vegetable matters or matters of vegetable origin
US4668244A (en) * 1984-08-22 1987-05-26 Hitachi, Ltd. Method and apparatus for upgrading low rank coal
US5279712A (en) * 1991-04-05 1994-01-18 Pasco Nominees Pty Limited Process and apparatus for the pyrolysis of carbonaceous material
CN101608125B (en) * 2009-07-09 2012-09-05 神华集团有限责任公司 Method for upgrading coal pyrolysis
CN101608126B (en) * 2009-07-09 2013-04-10 神华集团有限责任公司 Device for improving quality of coal by pyrolysis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940185B2 (en) * 1980-03-31 1984-09-28 日本鋼管株式会社 Pretreatment method and equipment for high volatile content non-slightly caking coal
JPS6153390A (en) * 1984-08-24 1986-03-17 Hitachi Ltd Temperature control for modification unit for low-quality coal
JP2002003855A (en) * 2000-06-23 2002-01-09 Ngk Insulators Ltd Manufacturing method of carbide
WO2011074279A1 (en) * 2009-12-18 2011-06-23 三菱重工業株式会社 Coal reforming equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025588A1 (en) * 2013-08-23 2015-02-26 三菱重工業株式会社 Coal dry distillation device
EP2843032A1 (en) * 2013-09-02 2015-03-04 Kunimichi Sato Method for increasing calorific value of low-grade coals
CN107189834A (en) * 2017-07-10 2017-09-22 自贡通达机器制造有限公司 A kind of steam-cured kettle kettle body and steam-cured method
CN107189834B (en) * 2017-07-10 2023-08-15 自贡通达机器制造有限公司 Steam curing kettle body and steam curing method

Also Published As

Publication number Publication date
AU2013223201A1 (en) 2014-08-14
US20140373435A1 (en) 2014-12-25
AU2013223201B2 (en) 2015-07-23
DE112013001121T5 (en) 2014-11-06
JP2013173833A (en) 2013-09-05
CN104066824B (en) 2016-03-16
IN2014DN05895A (en) 2015-06-05
CN104066824A (en) 2014-09-24
AU2013223201B9 (en) 2015-08-20
JP5804972B2 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
WO2013125609A1 (en) Reformed coal production equipment, and method for controlling same
US20110104575A1 (en) Generating clean syngas from biomass
KR20080098015A (en) Method and device for the coking of high volatility coal
KR102135521B1 (en) Method for supplying hydrogen-containing reducing gas to the blast furnace shaft part
KR20120120162A (en) Method for compensating flue gas enthalpy losses of heat-recovery coke ovens
EA014523B1 (en) Method for producing a product gas rich in hydrogen
JP2017172026A (en) Method for supplying hydrogen-containing reduction gas to blast furnace shaft part
RU2573837C2 (en) System and method for production of substitute natural gas
JP2007127330A (en) Cogeneration method and system using carbonization furnace
CN105264054B (en) Pyrolysis attachment in pyrolysis gasification system generates suppressing method and pyrolysis gasification system
JP5804971B2 (en) Modified coal production facility
JP4318697B2 (en) Method and apparatus for carbonizing high water content organic matter
CN106855243A (en) integrated combustion device energy-saving system
RU2657561C2 (en) Method for combustion of low-grade fuel
TW201418444A (en) Contrivance and method for the creation of a plurality of steam or hot water streams in a bank of coke ovens
JP4528145B2 (en) Integrated gasifier and method of operation thereof
KR101842132B1 (en) Multistage device for torrefaction of biomass
EP3950633A1 (en) Method and apparatus for producing quick lime using coke dry quenching facility
KR20240072088A (en) Torrefaction units and methods
JP5685893B2 (en) Waste pyrolysis gasifier
KR20110091483A (en) Method for combustion of a low-grade fuel
JP2006124442A (en) Method for feeding water to heat recovery system and exhaust heat recovery boiler
CN113614048A (en) Method and apparatus for producing quick lime using coke dry fire extinguishing equipment and heat exchanger
AU2020272983A1 (en) Method and apparatus for the manufacturing of biochar with thermal treatment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380006006.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13752070

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14373573

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013223201

Country of ref document: AU

Date of ref document: 20130221

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120130011212

Country of ref document: DE

Ref document number: 112013001121

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13752070

Country of ref document: EP

Kind code of ref document: A1