WO2013125455A1 - 回路基板、回路基板の製造方法、及び、表示装置 - Google Patents

回路基板、回路基板の製造方法、及び、表示装置 Download PDF

Info

Publication number
WO2013125455A1
WO2013125455A1 PCT/JP2013/053643 JP2013053643W WO2013125455A1 WO 2013125455 A1 WO2013125455 A1 WO 2013125455A1 JP 2013053643 W JP2013053643 W JP 2013053643W WO 2013125455 A1 WO2013125455 A1 WO 2013125455A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
electrode
insulating film
organic insulating
contact hole
Prior art date
Application number
PCT/JP2013/053643
Other languages
English (en)
French (fr)
Inventor
貴翁 斉藤
健太郎 鍛治
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013125455A1 publication Critical patent/WO2013125455A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode

Definitions

  • the present invention relates to a circuit board, a circuit board manufacturing method, and a display device. More specifically, the present invention relates to a circuit board used as a constituent member of a high-definition liquid crystal display device, a circuit board manufacturing method, and a display device.
  • a circuit board has an electronic circuit as a constituent element.
  • a circuit board including an element such as a thin film transistor (TFT) is a liquid crystal display device, an organic electroluminescence display device, and an electronic device such as a solar cell. Widely used as a component.
  • TFT thin film transistor
  • the TFT array substrate usually has a pixel circuit including a structure in which a TFT as a switching element is provided at an intersection of an m ⁇ n matrix wiring composed of m rows of gate bus lines and n columns of source bus lines.
  • the drain wiring of the TFT is electrically connected to the pixel electrode through, for example, a drain lead wiring and a contact hole.
  • a board for the purpose of preventing a leakage current of a charge storage capacitor constituting a pixel of an active matrix display device is disclosed (for example, see Patent Document 1).
  • a method of manufacturing a liquid crystal display device for reducing the number of photolithography steps for forming an etching resist when obtaining a TFT substrate of the liquid crystal display device is disclosed (for example, see Patent Document 2). .
  • Figure 10 is a cross-sectional view schematically showing a pixel of a contact hole of a conventional circuit board.
  • the hole diameter (the diameter indicated by “10 ⁇ m” in FIG. 10) is large.
  • the hole diameter is 10 ⁇ m when the film thickness of the organic insulating film is 2.5 ⁇ m and the taper angle of the organic insulating film is 45 °.
  • the contact hole has such a large diameter, and there is room for improvement for sufficiently increasing the transmittance particularly when the circuit board is used for a high-definition display device.
  • the present invention has been made in view of the above situation, and provides a circuit board having a sufficiently improved aperture ratio in a circuit board provided with a contact hole, a method for manufacturing the circuit board, and a display device. It is intended.
  • the inventors of the present invention have studied various circuit boards that have an improved aperture ratio and can be appropriately used for display devices and the like. Further, the inventors of the present invention have a problem that the inclined portion of the contact hole is disturbed by the source metal because the liquid crystal orientation is disturbed and the display quality is lowered. Therefore, depending on the size of the hole diameter of the contact hole. We paid attention to the fact that the line width of the source metal is increased and the area of the opening is reduced (the aperture ratio is reduced). Then, in order to prevent the decrease in the aperture ratio, studies were made to appropriately reduce the hole diameter. Here, if the thickness of the insulating film through which the contact hole passes is reduced, the capacitance is changed and the display is affected.
  • connection portion with the source metal (5 ⁇ m portion in FIG. 10) can be reduced, or organic insulation can be achieved.
  • Increasing the taper angle of the film finds that such influence is small and advantageous in design, and finds that appropriate measures can be taken for the improvement by improving the following two points, and solves the above problems brilliantly
  • the present inventors have arrived at the present invention.
  • a photoacid generator is added to the organic insulating film material to obtain a chemically amplified material.
  • the diameter of the connecting portion with the source metal can be suitably miniaturized, and a contact hole having a large taper angle can be formed (see FIG. 2).
  • the connecting portion diameter (minimum diameter) with the source metal is 4 ⁇ m, and the taper angle is 60 °.
  • the hole diameter can be reduced from 10 ⁇ m shown in FIG. 10 to 7 ⁇ m.
  • (2) forming an inorganic insulating film on the organic insulating film can also be mentioned.
  • the organic insulating film material By making the organic insulating film material a chemically amplified material, when the inorganic insulating film under the organic insulating film is dry-etched after the organic insulating film is applied, the organic insulating film is also etched to roughen the surface, and the organic insulating film Where the taper angle of the film portion becomes small (for example, 45 ° in FIG. 10), the above-described configuration (2) can sufficiently prevent such surface roughness, and the taper angle is sufficiently large. (For example, 60 ° in FIG. 2). That is, due to the synergistic effect of the above (1) and (2), the present invention reduces the diameter of the contact portion of the contact hole with the source metal or the like (minimum diameter of the contact hole) or increases the taper angle of the contact hole. The hole diameter (maximum diameter) can be made sufficiently small.
  • the present invention provides (i) the organic insulating film material is a chemical amplification type, and (ii) the inorganic insulating film on the organic insulating film in order to sufficiently prevent the roughness of the organic insulating film associated with the above (i). It differs from the invention described in the above-mentioned patent document in two points of forming a film.
  • the present invention is a circuit board comprising a first electrode and a second electrode provided in different layers, and the circuit board has a contact hole for electrically connecting the first electrode and the second electrode.
  • An organic insulating film provided between the layer provided with the first electrode and the layer provided with the second electrode, when the circuit board is viewed in cross-section, and the inorganic provided on the organic insulating film
  • An insulating film is provided, and the organic insulating film is a circuit board that is configured to include a chemically amplified material that generates an acid by irradiating light for patterning the organic insulating film.
  • the circuit board of the present invention is usually a circuit board for a display device.
  • the taper angle of the organic insulating film in the present invention can be increased with the chemically amplified material.
  • the organic insulating film may contain other materials as long as a chemical amplification type material is essential, but it is preferably substantially composed of a chemical amplification type material.
  • the chemically amplified material is preferably an acrylic resin containing a photoacid generator.
  • the circuit board includes a thin film transistor element
  • the thin film transistor element includes a source electrode, a drain electrode, and a semiconductor layer
  • the first electrode is a drain electrode
  • the circuit board is used for a display device, and the second electrode is preferably a pixel electrode.
  • the layer with the second electrode is higher than the layer with the first electrode.
  • the taper angle of the contact hole is preferably 50 ° or more. More preferably, it is 60 ° or more.
  • the upper limit is preferably 80 °.
  • the taper angle can be, for example, an average value of the gradient of the side wall (inclined surface) of the organic insulating film portion.
  • the thickness of the organic insulating film is preferably 2 ⁇ m or more. As an upper limit, it is preferable that it is 10 micrometers or less, for example.
  • the minimum diameter of the contact hole is preferably 4 ⁇ m or less.
  • the minimum diameter of the contact hole refers to the diameter of the portion where the diameter is the smallest in a contact hole whose diameter increases or decreases in a conical shape.
  • the first electrode is a drain electrode (source metal)
  • It is a connection part diameter with a drain electrode (source metal).
  • the maximum diameter of the contact hole is preferably 8 ⁇ m or less.
  • the maximum diameter of the contact hole refers to the diameter of the portion where the diameter is maximum in the contact hole whose diameter increases or decreases conically.
  • the first electrode is a light shielding electrode, and the contact hole preferably overlaps with the first electrode.
  • the contact hole overlaps with the first electrode as long as the contact hole substantially overlaps with the first electrode.
  • the semiconductor layer of the thin film transistor element is preferably an oxide semiconductor layer.
  • the oxide semiconductor layer is particularly preferably composed of indium gallium zinc composite oxide (IGZO).
  • the present invention is also a method for manufacturing a circuit board including a first electrode and a second electrode provided in different layers, wherein the manufacturing method includes a step of forming a first electrode and a step of forming an organic insulating film.
  • the electrode and the second electrode are electrically connected through the hole, and the step of forming the organic insulating film is a chemical amplification that generates acid by irradiating light for patterning the organic insulating film.
  • the circuit board obtained by the method for manufacturing a circuit board of the present invention can exhibit the above-described effect of improving the aperture ratio. It is preferable that the material of the organic insulating film is substantially composed of a chemically amplified material.
  • the first electrode and the second electrode are usually electrically connected through the hole simultaneously with the formation of the second electrode. Thereby, a contact hole is formed.
  • the preferable form of the circuit board obtained by the manufacturing method of the circuit board of this invention is the same as the preferable form of the circuit board of this invention mentioned above.
  • This invention is also a display apparatus provided with the circuit board obtained by the circuit board of this invention, or the manufacturing method of the circuit board of this invention.
  • the display device include liquid crystal display devices, EL display devices such as organic EL display devices and inorganic EL display devices. Among them, a small-sized, high-definition display device such as a smartphone, a tablet, and a car navigation is particularly preferable. As the display device, a liquid crystal display device is preferable.
  • the preferred form of the circuit board provided in the display device of the present invention is the same as the preferred form of the circuit board of the present invention described above.
  • the circuit board of the present invention, the method of manufacturing the circuit board, and the configuration of the display device are not particularly limited by other components as long as the above-described components are essential.
  • the circuit board manufacturing method and other configurations usually used in display devices can be applied as appropriate.
  • the aperture ratio can be sufficiently improved in a circuit board provided with contact holes.
  • FIG. 3 is a schematic plan view illustrating a picture element of the circuit board according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view taken along the line AB in FIG. 1.
  • FIG. 3 is a schematic plan view showing each member of a terminal portion in the circuit board of Embodiment 1 in an exploded manner.
  • FIG. 3 is a schematic plan view showing terminal portions on the circuit board according to the first embodiment.
  • FIG. 5 is a schematic cross-sectional view taken along line CD in FIG. 4.
  • FIG. 3 is a schematic plan view showing each element of the picture element in the circuit board of Embodiment 1 in an exploded manner.
  • 3 is a schematic plan view showing a circuit board in Embodiment 1 or 2.
  • FIG. 9 is an exploded perspective schematic diagram illustrating a structure of a liquid crystal display device including the liquid crystal panel illustrated in FIG. 8. It is a cross-sectional schematic diagram which shows the contact hole of the pixel of the conventional circuit board.
  • the gate metal refers to a gate electrode, a gate bus line, or a metal made of the same material.
  • the source metal refers to a source electrode, a source bus line, or a metal made of the same material as these.
  • the circuit board is also referred to as a TFT substrate because it is a substrate on which TFTs are provided in the embodiment.
  • the substrate opposed to the circuit substrate is also a CF substrate because it is a substrate on which color filters (CFs) are arranged in the embodiment.
  • the aperture ratio is the ratio of the light-transmitting area to the total area of the light-transmitting area and the light-blocking area in the circuit board in the display area where an image is displayed when the circuit board is applied to a display device.
  • the transparent electrode (transparent conductive film) ITO in the present specification can be formed simultaneously with the pixel electrode Pixel.
  • FIG. 1 is a plan view schematically showing a pixel of a circuit board of the first embodiment.
  • the circuit substrate according to the first embodiment includes a pixel circuit including a structure in which a TFT as a switching element is provided at an intersection of an m ⁇ n matrix wiring composed of m rows of gate bus lines Gate and n columns of source bus lines Source.
  • the drain wiring of the TFT is electrically connected to the pixel electrode Pixel through the drain lead wiring and the contact hole CH.
  • the pixel electrode Pixel is made of ITO (indium tin oxide), but may be made of another transparent conductive film such as IZO (indium zinc oxide) instead of ITO.
  • FIG. 2 is a schematic cross-sectional view taken along the line AB in FIG. FIG. 2 shows a contact hole CH for electrically connecting the drain electrode (drain lead wiring) SD and the pixel electrode Pixel of the circuit board according to the first embodiment.
  • the circuit board of Embodiment 1 includes a drain electrode (drain lead-out wiring) SD that is a first electrode and a pixel electrode Pixel that is a second electrode, which are provided in different layers.
  • the organic insulating film JAS between the layer provided with the drain electrode (drain lead wiring) SD and the layer provided with the pixel electrode Pixel, And an inorganic insulating film Pas2 provided on the organic insulating film JAS.
  • An inorganic insulating film Pas1 is disposed under the organic insulating film JAS (between the drain electrode [drain lead wiring] SD and the organic insulating film JAS).
  • the organic insulating film JAS is made of a chemically amplified material that generates an acid when irradiated with light for patterning the organic insulating film JAS.
  • Chemically amplified material in the first embodiment is an acrylic resin containing a photoacid generator (photosensitive acrylic resin material).
  • a photoacid generator what is necessary is just a general material normally used in the technical field of this invention, and can use ionicity and nonionicity suitably.
  • the main component of the organic insulating film is an acrylic resin, and a chemically amplified photosensitive agent is used as the photosensitive agent.
  • the diameter (minimum diameter) of the connection portion with the drain electrode (drain lead wiring) SD can be reduced to 4 ⁇ m.
  • the inorganic insulating film for example, a silicon oxide film (SiO 2 ), a silicon nitride film (SiN x ), a silicon nitride oxide film (SiNO), or the like is used.
  • the taper angle of the organic insulating film JAS portion of the contact hole CH (the average value of the gradient of the side wall [inclined surface] of the organic insulating film JAS portion) is 60 °.
  • the film thickness of the organic insulating film JAS is sufficiently thick as 2.5 ⁇ m, and the influence on the display due to the capacitance is sufficiently small.
  • the maximum diameter of the contact hole (hereinafter also referred to as the hole diameter) is as small as 7 ⁇ m, and the aperture ratio can be made sufficiently high. Thereby, even when the circuit board of Embodiment 1 is applied to a high-definition liquid crystal display panel, the aperture ratio can be made sufficiently excellent.
  • the organic insulating film JAS is configured with a chemical amplification material as an essential component
  • the organic insulating film JAS is also etched.
  • the surface of the organic insulating film JAS is roughened and the taper angle becomes small (for example, FIG. 10).
  • the circuit board of Embodiment 1 is provided on the organic insulating film JAS. Since the inorganic insulating film Pas2 is provided, the surface of the organic insulating film JAS can be sufficiently prevented from being roughened, and the taper angle can be made sufficiently large as shown in FIG.
  • the inorganic insulating film Pas1 is originally provided to insulate the source metal from the ITO film thereover.
  • the organic insulating film JAS is provided in order to reduce the capacitance between the source metal and the ITO film and to prevent electrical leakage between the source metal and the ITO film due to foreign matter.
  • the circuit board of Embodiment 1 can increase the taper angle of the insulating film in the contact hole portion and reduce the hole diameter.
  • FIG. 3 is a schematic plan view illustrating each member of the terminal portion of the circuit board according to the first embodiment in an exploded manner.
  • the terminal portion is arranged in a region (non-display region) outside the pixel electrode area as shown in FIG. 7 described later.
  • Such a configuration of the terminal portion basically does not greatly affect the aperture ratio and display quality.
  • Each member shown in FIG. 3 includes a gate metal G, a gate insulating film GI that is an inorganic insulating film, a source metal SD, an inorganic insulating film Pas1, an organic insulating film JAS, an inorganic insulating film Pas2, and a transparent conductive film ITO.
  • the letters written on each member indicate each member.
  • Each plan view is shown in order from the left side in FIG.
  • the members are stacked in this order from the lower layer.
  • the members are disassembled for each member and arranged in the left-right direction.
  • the organic insulating film JAS is not formed in the contact hole portion of the terminal portion. Since the peripheral region with the terminal portion basically does not contribute to the display, even if the organic insulating film is not provided in this way, there is almost no influence on the display.
  • a gate metal and a source metal what is used normally can be used, for example, metals, such as tantalum (Ta), aluminum (Al), tungsten (W), copper (Cu), nitride of these metals Or an aluminum alloy or the like.
  • metals such as tantalum (Ta), aluminum (Al), tungsten (W), copper (Cu), nitride of these metals Or an aluminum alloy or the like.
  • the transparent conductive film ITO is made of ITO, but may be made of another transparent electrode such as IZO or a light-shielding conductive film instead of ITO.
  • the insulating film contact holes CH GI and CHi1 in the gate insulating film GI and the inorganic insulating film Pas1 are formed simultaneously with the formation of the hole CHi2 in the uppermost insulating film (inorganic insulating film Pas2).
  • a source contact hole CH SD is provided in the source metal SD.
  • the circuit board of the first embodiment is a TFT side substrate provided with a thin film transistor (TFT). As shown in FIG. 7 described later, a pixel electrode area (display area) and a region outside the pixel electrode area (non-display area). Display area).
  • TFT thin film transistor
  • circuit substrate of the first embodiment is preferably an active matrix substrate, whereby voltage application is controlled for each pixel due to the switching function of the TFT, and precise active matrix driving can be performed.
  • FIG. 4 is a schematic plan view illustrating terminal portions on the circuit board according to the first embodiment.
  • FIG. 4 is also a superimposed view of each member shown in FIG.
  • FIG. 5 is a schematic cross-sectional view taken along line CD of FIG. 3 to 5 show the terminal portion connected to the gate bus line, the same configuration can be applied to the connection portion of the source driver connected to the source bus line.
  • FIG. 6 is a schematic plan view showing each element of the picture element in the circuit board of Embodiment 1 in an exploded manner.
  • Each member shown in FIG. 6 includes a gate metal G, an oxide semiconductor IGZO made of indium gallium zinc composite oxide, a gate insulating film GI, an insulating film (also referred to as an etching stopper ES), a source metal SD, and an inorganic insulating film.
  • Pas1 organic insulating film JAS
  • transparent electrode (counter electrode) COM transparent electrode (counter electrode) COM
  • inorganic insulating film Pas2 transparent electrode (pixel electrode) Pixel
  • a schematic plan view of each member First, it is shown in order from the upper left to the right side in FIG.
  • each member has shown each member.
  • the respective members are laminated in this order from the lower layer, and in FIG. 6, these are disassembled for each member and arranged as described above. Note that in the oxide semiconductor IGZO and the gate insulating film GI made of indium gallium zinc composite oxide, the gate insulating film is in the lower layer and the oxide semiconductor IGZO is in the upper layer.
  • the chemically amplified material uses an acrylic resin as a base polymer and a chemically amplified material as a photosensitive agent. Other configurations are the same as those of the first embodiment.
  • the circuit board according to Embodiment 1 or 2 described above can be manufactured by a method usually used in the technical field of the present invention.
  • a method of forming a source metal after forming a wiring layer, a resist is formed by a mask process, the wiring layer is etched, and a source bus line, a source electrode, and a drain electrode formed of the source metal are formed. Form. Next, the resist on the substrate is removed.
  • the contact hole can be formed by etching the gate electrode-drain electrode connecting portion and the terminal portion after laminating the inorganic insulating film Pas1, the organic insulating film JAS, and the inorganic insulating film Pas2 as described above. it can. Note that the inorganic insulating film can be etched by dry etching.
  • FIG. 7 is a schematic plan view showing a circuit board in the first or second embodiment.
  • the circuit board 100 is a TFT side substrate provided with a thin film transistor (TFT), and includes a picture element electrode area (display area) and an area outside the picture element electrode area (non-display area).
  • the non-display region, the connecting portion 51 and the terminal portions 61 are arranged.
  • the source driver can be mounted on the circuit board 100 by the chip-on-glass (COG) method, for example, via the connection unit 51.
  • COG chip-on-glass
  • the terminal unit 61 it is possible to implement a flexible printed circuit (FPC) on the circuit board 100.
  • FPC flexible printed circuit
  • a gate bus line 13 and a source bus line 19s are provided on a glass substrate (not shown) so as to be substantially orthogonal to each other. Further, the gate bus line 13 and the source bus line 19s are provided. A pixel electrode Pixel and a TFT are provided for each region surrounded by. Further, a drain 19d formed of a source metal is disposed so as to overlap the pixel electrode 31.
  • FIG. 8 is an exploded perspective schematic view showing a structure of a liquid crystal panel including the circuit board according to the first or second embodiment.
  • the substrate 72 on the CF side of the liquid crystal panel 200 and the circuit board 100 sandwich the liquid crystal 73.
  • the liquid crystal panel 200 includes a backlight 75 on the back surface of the circuit board 100. The light of the backlight 75 passes through the polarizing plate 74, the circuit board 100, the liquid crystal 73, the CF substrate 72, and the polarizing plate 71 in this order, and the passage / non-transmission of light is controlled by controlling the orientation of the liquid crystal.
  • FIG. 9 is an exploded perspective schematic view showing the structure of a liquid crystal display device including the liquid crystal panel shown in FIG.
  • FIG. 9 is an exploded perspective schematic view showing the structure of a liquid crystal display device including the liquid crystal panel shown in FIG.
  • the liquid crystal panel 200 is fixed on the fixed panel 400 and sealed by the front cabinet 300 and the rear cabinet 500. Then, the rear cabinet 500 and the upper stand 700 are fixed via a metal fitting 600. Further, the upper stand 700 and the lower stand 800 are fitted together.
  • the circuit board described in Embodiment 1 or 2 is more preferably used for a high-definition model.
  • the reason is that when the taper angle of the organic insulating film of the circuit board according to Embodiment 1 or 2 is reduced, the alignment disorder region of the liquid crystal molecules on the taper is increased, and a light shielding metal is usually provided, and the transmittance is increased. It will decline. For high definition models small pixel size, larger than the disadvantage of the transmittance decreases. Therefore, by applying the circuit board described in the first or second embodiment and increasing the taper angle of the organic insulating film of the circuit board in the high-definition model, the advantageous effect of increasing the aperture ratio is particularly remarkable. it can.
  • the configuration of the circuit board and the display device of the present invention can be confirmed by analyzing the TFT substrate of the product, and in particular, by analyzing the component of the insulating film. .
  • the form of the contact hole according to the first and second embodiments described above is effective even when applied to a contact hole in a pixel other than a contact hole for connecting a drain electrode and a pixel electrode, for example. is intended to be, also the form of applying the configuration of the present invention to these contact holes, are included in the present invention. Further, the present invention is preferably applied to all contact holes in the picture element, but the present invention may be applied to at least some of the contact holes in the picture element.
  • Such a contact hole configuration according to the present invention is applicable to, for example, a contact hole in a non-display region such as a scan driver IC or a data driver IC as long as it is applied to at least a part of the contact hole in the display region. It doesn't matter.
  • oxide semiconductor in addition to IGZO, for example, ISZO (In-Si-Zn-O), IAZO (In-Al-Zn-O), INiZO (In-Ni-Zn-O), ICuZO (In-Cu-). Zn—O), IHfZO (In—Hf—Zn—O), IZO (In—Zn—O), and the like can be preferably used.
  • an oxide semiconductor is preferable in that a TFT can be made small and BM (black matrix) light shielding can be made small, but instead of an oxide semiconductor, other a-Si (amorphous silicon) semiconductors, etc. A semiconductor that is usually used in the TFT can be used.
  • the display device of the present invention is not limited to this, and an EL display device such as an organic EL display device or an inorganic EL display device. It is also possible to exert an advantageous effect in In addition, as a mode of the liquid crystal display device of the present invention, it is also applicable to a VA (Vertical Alignment) mode, a TN (Twisted Nematic) mode, an IPS (In-Plane Switching) mode, an FFS (Fringe Field Switching) mode, and other modes. can do.
  • VA Very Alignment
  • TN Transmission Nematic
  • IPS In-Plane Switching
  • FFS Frringe Field Switching
  • constituent members other than those described above are the same as the constituent members in the first or second embodiment.
  • Reference Example 1 The configuration of Reference Example 1 is the same as that of Embodiment 1 except that a naphthoquinonediazide derivative is used instead of the chemically amplified material as the material of the organic insulating film JAS.
  • the quinonediazide-based material is developed due to a difference in solubility in a developing solution (alkaline) between a photosensitive region exposed to exposure light (naphthoquinonediazide is changed to carboxylic acid) and a non-photosensitive region not exposed. That is, the non-photosensitive area is slightly dissolved in the developer). As a result, the taper angle becomes smaller than that in the first embodiment (for example, FIG. 10).
  • IGZO oxide semiconductor made of indium gallium zinc composite oxide
  • TFT thin film transistor element GI: gate insulating film CH, CH GI , CHi1, CHi2: (contact) hole provided in the insulating film CH SD : (contact) hole BL provided in the source metal: black light

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

本発明は、コンタクトホールが設けられた回路基板において、開口率が充分に向上された回路基板、回路基板の製造方法、及び、表示装置を提供する。本発明は、互いに異なる層に設けられた第1電極(SD)及び第2電極(Pixel)を備える回路基板であって、上記回路基板は、第1電極と第2電極とを電気的に接続するコンタクトホール(CH)が設けられ、回路基板を断面視したときに、第1電極が設けられた層と第2電極が設けられた層との間に、有機絶縁膜(JAS)、及び、該有機絶縁膜上に設けられた無機絶縁膜(Pas2)を備え、上記有機絶縁膜は、有機絶縁膜のパターニングのため の光を照射することにより酸を発生する化学増幅型材料を必須として構成されるものである回路基板である。

Description

回路基板、回路基板の製造方法、及び、表示装置
本発明は、回路基板、回路基板の製造方法、及び、表示装置に関する。より詳しくは、高精細な液晶表示装置の構成部材として用いられる回路基板、回路基板の製造方法、及び、表示装置に関するものである。
回路基板は、電子回路を構成要素として有するものであり、例えば、薄膜トランジスタ(TFT)等の素子を含む回路基板は、液晶表示装置、有機エレクトロルミネセンス表示装置、及び、太陽電池等の電子装置の構成部材として広く利用されている。
以下、TFT駆動の液晶表示パネルを構成するTFTアレイ基板の回路構成を例に挙げて説明する。TFTアレイ基板は、通常、m行のゲートバスラインとn列のソースバスラインとからなるm×nマトリクス配線の交点に、スイッチング素子であるTFTが設けられた構造を含む画素回路を有する。TFTのドレイン配線は、例えばドレイン引き出し配線及びコンタクトホールを介して、絵素電極に電気的に接続されている。
近年、中小型等の高精細の表示装置が普及していることから、高精細の表示装置に適合するような設計の回路基板が強く望まれている。
従来の回路基板としては、例えば、アクティブマトリクス型表示装置の画素を構成する電荷保持容量のリーク電流を防止することを目的とした基板が開示されている(例えば、特許文献1参照)。また、液晶表示装置のTFT基板を得る際に、エッチングレジストを形成するためのフォトリソグラフィの工程を減らすことを目的とした液晶表示装置の製造方法が開示されている(例えば、特許文献2参照)。
そして、酸化物半導体TFTを用いたTFT基板の信頼性を向上することを目的として、島状の酸化物半導体層を備えた特定の薄膜トランジスタと、前記薄膜トランジスタと外部配線とを電気的に接続する特定の端子部とを備えた半導体装置が開示されている(例えば、特許文献3参照)。
特開2010-256517号公報 特開2011-100041号公報 国際公開第2011/070981号
図10は、従来の回路基板の絵素のコンタクトホールを示す断面模式図である。図10のような、ドレイン電極(ソースメタルSD)と絵素電極Pixelとを接続するためのコンタクトホールにおいて、ホール径(図10の「10μm」と示された部分の径)が大きくなっている。なお、図10においては、ソースメタルとの接続部径を5μmとした場合、有機絶縁膜の膜厚が2.5μm、有機絶縁膜のテーパー角が45°だと、ホール径は10μmとなる。
従来の回路基板においては、このようにコンタクトホールの径が大きく、特に高精細な表示装置に用いられる回路基板とする場合に、透過率を充分に高めるための工夫の余地があった。
本発明は、上記現状に鑑みてなされたものであり、コンタクトホールが設けられた回路基板において、開口率が充分に向上された回路基板、回路基板の製造方法、及び、表示装置を提供することを目的とするものである。
本発明者らは、開口率が向上され、表示装置等に適切に用いることができる回路基板について種々検討した。更に、本発明者らは、コンタクトホールの傾斜部分は、液晶の配向乱れがあり表示品位が低下するため、通常はソースメタルで遮光するところ、そのためにコンタクトホールのホール径の大きさに応じてソースメタルの線幅が大きくなり、開口部の面積が小さくなる(開口率が低下する)ことに着目した。そして、この開口率の低下を防ぐため、ホール径を適切に小さくすることを検討した。ここで、コンタクトホールが貫通する絶縁膜の膜厚を薄くすると、容量が変化し、表示上影響があるが、ソースメタルとの接続部径(図10の5μm部分)を小さくしたり、有機絶縁膜のテーパー角を大きくしたりすることはそのような影響が小さく設計上有利であることを見いだし、下記2点の改善により、そのための適切な対策ができることを見いだし、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、先ず、(1)有機絶縁膜材料内に光酸発生剤を加え、化学増幅型材料とすることが挙げられる。これにより、ソースメタルとの接続部径を好適に微細化したり、更に、テーパー角の大きなコンタクトホールを形成したりすることができる(図2参照)。図2では、ソースメタルとの接続部径(最小径)が4μmであり、テーパー角が60°である。例えば、図2では、ホール径を、図10に示した10μmから、7μmにまで小さくすることが可能である。また、(2)有機絶縁膜上にも無機絶縁膜を形成することが挙げられる。有機絶縁膜材料を化学増幅型材料とすることにより、有機絶縁膜塗布後の、有機絶縁膜の下の無機絶縁膜をドライエッチングする時に有機絶縁膜もエッチングされてその表面が荒らされ、有機絶縁膜部分のテーパー角が小さくなってしまうところ(例えば、図10では45°)、上記(2)の構成により、このような表面の荒れを充分に防止することができ、テーパー角を充分に大きなものとすることができる(例えば、図2では60°)。すなわち、上記(1)と(2)との相乗効果により、本発明は、コンタクトホールのソースメタル等との接続部径(コンタクトホールの最小径)を小さくしたり、コンタクトホールのテーパー角を大きくしたりすることができ、ホール径(最大径)を充分に小さくすることができる。
すなわち、本発明は、(i)有機絶縁膜材料を化学増幅型とすること、(ii)上記(i)に伴う有機絶縁膜の荒れを充分に防止するために、有機絶縁膜上に無機絶縁膜を形成すること、の2点で上記特許文献に記載の発明とは異なる。
すなわち、本発明は、互いに異なる層に設けられた第1電極及び第2電極を備える回路基板であって、上記回路基板は、第1電極と第2電極とを電気的に接続するコンタクトホールが設けられ、回路基板を断面視したときに、第1電極が設けられた層と第2電極が設けられた層との間に、有機絶縁膜、及び、該有機絶縁膜上に設けられた無機絶縁膜を備え、上記有機絶縁膜は、有機絶縁膜のパターニングのための光を照射することにより酸を発生する化学増幅型材料を必須として構成されるものである回路基板である。なお、本発明の回路基板は、通常は表示装置用の回路基板である。
上記化学増幅型材料は、露光光が当たった感光領域は化学増幅型材料中の感光剤から酸が発生し、連鎖的にポリマーのアルカリ不溶性基をアルカリ可溶性基に変えるが、非感光領域は実質的にアルカリ性の現像液には溶けない。そのため、化学増幅型材料の方が、本発明における有機絶縁膜のテーパー角を大きくすることができる。
上記有機絶縁膜は、化学増幅型材料を必須として構成されるものである限り、他の材料を含んでいてもよいが、化学増幅型材料から実質的に構成されるものであることが好ましい。
上記化学増幅型材料は、光酸発生剤を含有するアクリル樹脂であることが好ましい。
上記回路基板は、薄膜トランジスタ素子を有し、上記薄膜トランジスタ素子は、ソース電極、ドレイン電極及び半導体層を有し、上記第1電極は、ドレイン電極であることが好ましい。
上記回路基板は、表示装置に用いられるものであり、上記第2電極は、絵素電極であることが好ましい。なお、上記第1電極のある層よりも、上記第2電極のある層がより上にあることが好ましい。
上記コンタクトホールのテーパー角は、50°以上であることが好ましい。より好ましくは、60°以上である。上限値としては、例えば、80°であることが好ましい。テーパー角は、例えば、有機絶縁膜部分の側壁(傾斜面)の勾配の平均値とすることができる。
上記有機絶縁膜の膜厚は、2μm以上であることが好ましい。上限値としては、例えば、10μm以下であることが好ましい。
上記コンタクトホールの最小径は、4μm以下であることが好ましい。コンタクトホールの最小径は、円錐状に直径が増加・減少するコンタクトホールにおいて、直径が最小となる箇所の径を言い、例えば、上記第1電極が、ドレイン電極(ソースメタル)である場合は、ドレイン電極(ソースメタル)との接続部径である。
また上記コンタクトホールの最大径は、8μm以下であることが好ましい。コンタクトホールの最大径は、円錐状に直径が増加・減少するコンタクトホールにおいて、直径が最大となる箇所の径を言う。
上記第1電極は、遮光電極であり、上記コンタクトホールは、上記第1電極と重畳する
ことが好ましい。上記コンタクトホールが上記第1電極と重畳するとは、上記コンタクトホールが上記第1電極と実質的に重畳するものであればよい。
上記薄膜トランジスタ素子の半導体層は、酸化物半導体層であることが好ましい。上記酸化物半導体層は、インジウムガリウム亜鉛複合酸化物(IGZO)から構成されることが特に好ましい。
本発明はまた、互いに異なる層に設けられた第1電極及び第2電極を備える回路基板の製造方法であって、上記製造方法は、第1電極を形成する工程、有機絶縁膜を形成する工程、上記有機絶縁膜上に無機絶縁膜を形成する工程、パターニングにより上記有機絶縁膜及び上記無機絶縁膜にコンタクトホール用のホールを形成する工程、第2電極を形成する工程を含み、上記第1電極及び第2電極は、上記ホールを介して電気的に接続されており、上記有機絶縁膜を形成する工程は、有機絶縁膜のパターニングのための光を照射することにより酸を発生する化学増幅型材料を有機絶縁膜の材料の少なくとも一部として用いる回路基板の製造方法でもある。本発明の回路基板の製造方法により得られた回路基板は、上述した開口率向上効果を発揮することができる。有機絶縁膜の材料を実質的に化学増幅型材料から構成されるものとすることが好ましい。
本発明の回路基板の製造方法においては、第2電極の形成と同時に、通常、上記第1電極及び第2電極は、上記ホールを介して電気的に接続される。これにより、コンタクトホールが形成される。
なお、本発明の回路基板の製造方法により得られる回路基板の好ましい形態は、上述した本発明の回路基板の好ましい形態と同様である。
本発明はまた、本発明の回路基板、又は、本発明の回路基板の製造方法により得られた回路基板を備える表示装置でもある。上記表示装置としては、液晶表示装置、有機EL表示装置や無機EL表示装置等のEL表示装置等が挙げられる。中でも、スマートフォン、タブレット、カーナビゲーション等の中小型の、高精細の表示装置が特に好ましい。また、表示装置としては、液晶表示装置が好ましい。
本発明の表示装置が備える回路基板の好ましい形態は、上述した本発明の回路基板の好ましい形態と同様である。
本発明の回路基板、回路基板の製造方法、及び、表示装置の構成としては、上述した構成要素を必須とするものである限り、その他の構成要素により特に限定されるものではなく、回路基板、回路基板の製造方法、及び、表示装置に通常用いられるその他の構成を適宜適用することができる。
本発明によれば、コンタクトホールが設けられた回路基板において、開口率を充分に向上することができる。
実施形態1の回路基板の絵素を示す平面模式図である。 図1のA-B線における断面模式図である。 実施形態1の回路基板における端子部の各部材を分解して示した平面模式図である。 実施形態1の回路基板における端子部を示す平面模式図である。 図4のC-D線における断面模式図である。 実施形態1の回路基板における絵素の各部材を分解して示した平面模式図である。 実施形態1又は2における回路基板を示す平面模式図である。 実施形態1又は2における回路基板を備える液晶パネルの構造を示す分解斜視模式図である。 図8に示した液晶パネルを備える液晶表示装置の構造を示す分解斜視模式図である。 従来の回路基板の絵素のコンタクトホールを示す断面模式図である。
本明細書において、ゲートメタルは、ゲート電極、ゲートバスライン、又は、これらと同じ材料からなるメタルを言う。ソースメタルは、ソース電極、ソースバスライン、又は、これらと同じ材料からなるメタルを言う。回路基板は、実施形態においてTFTが設けられる基板であることから、TFT基板ともいう。上記回路基板に対向する基板は、実施形態においてカラーフィルタ(CF)が配置される基板であることから、CF基板ともいう。また、開口率は、回路基板を表示装置に適用した場合に画像を表示する表示領域内の、回路基板における透光領域と遮光領域との合計面積に対する透光領域の割合である。なお、本明細書における透明電極(透明導電膜)ITOは、通常は絵素電極Pixelと同時に形成することができるものである。
以下に実施形態を掲げ、本発明を図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
(実施形態1)
図1は、実施形態1の回路基板の絵素を示す平面模式図である。実施形態1の回路基板は、m行のゲートバスラインGateと、n列のソースバスラインSourceとからなるm×nマトリクス配線の交点に、スイッチング素子であるTFTが設けられた構造を含む画素回路を有する。TFTのドレイン配線は、ドレイン引き出し配線及びコンタクトホールCHを介して、絵素電極Pixelに電気的に接続されている。絵素電極Pixelは、ITO(インジウム錫酸化物)からなるが、ITOの代わりに、IZO(インジウム亜鉛酸化物)等のその他の透明導電膜からなるものとすることも可能である。
図2は、図1のA-B線における断面模式図である。図2は、実施形態1の回路基板のドレイン電極(ドレイン引き出し配線)SDと絵素電極Pixelとを電気的に接続するためのコンタクトホールCHを示す。実施形態1の回路基板は、互いに異なる層に設けられた第1電極であるドレイン電極(ドレイン引き出し配線)SD及び第2電極である絵素電極Pixelを備える。実施形態1の回路基板は、回路基板を断面視したときに、ドレイン電極(ドレイン引き出し配線)SDが設けられた層と絵素電極Pixelが設けられた層との間に、有機絶縁膜JAS、及び、該有機絶縁膜JAS上に設けられた無機絶縁膜Pas2を備える。なお、有機絶縁膜JASの下(ドレイン電極〔ドレイン引き出し配線〕SDと有機絶縁膜JASとの間)には、無機絶縁膜Pas1が配置されている。
有機絶縁膜JASは、有機絶縁膜JASのパターニングのための光を照射することにより酸を発生する化学増幅型材料から構成される。実施形態1における化学増幅型材料は、光酸発生剤を含有するアクリル樹脂(感光性アクリル樹脂材料)である。光酸発生剤としては、本発明の技術分野において通常用いられる一般的な材料であればよく、イオン性、非イオン性のいずれをも好適に用いることができる。言い換えれば、有機絶縁膜の主成分はアクリル樹脂であり、感光剤として化学増幅型感光剤を使用している。これにより、図2に示されるように、ドレイン電極(ドレイン引き出し配線)SDとの接続部径(最小径)を4μmと微細化することができる。なお、本実施形態中、無機絶縁膜としては、例えば、酸化シリコン膜(SiO)、窒化シリコン膜(SiN)、窒化酸化シリコン膜(SiNO)等が用いられる。
またコンタクトホールCHの有機絶縁膜JAS部分のテーパー角(有機絶縁膜JAS部分の側壁〔傾斜面〕の勾配の平均値)は、60°である。なお、有機絶縁膜JASの膜厚は、2.5μmと充分に厚く、容量に起因する表示上の影響は充分に小さい。このような構成の結果、表示品位を優れたものとしながら、コンタクトホールの最大径(以下、ホール径とも言う。)は、7μmと小さく、開口率を充分に高いものとすることができる。これにより、実施形態1の回路基板を高精細の液晶表示パネルに適用した場合であっても、開口率を充分に優れたものとすることができる。
有機絶縁膜JASが、化学増幅型材料を必須として構成される場合は、有機絶縁膜JAS塗布後、有機絶縁膜JASの下の無機絶縁膜Pas1をドライエッチングする時に、有機絶縁膜JASもエッチングされ、有機絶縁膜JASの表面が荒らされ、テーパー角が小さくなってしまう(例えば、図10)ことがあるが、実施形態1の回路基板は、上述したように、有機絶縁膜JAS上に設けられた無機絶縁膜Pas2を備えるため、有機絶縁膜JASの表面の荒れを充分に防止することができ、図2に示したようにテーパー角を充分に大きなものとすることができる。
なお、無機絶縁膜Pas1は、そもそも、ソースメタルとその上層にあるITO膜との絶縁をとるために設けられている。また、有機絶縁膜JASは、ソースメタル-ITO膜との容量を小さくしたり、異物によるソースメタル-ITO膜間の電気的なリークを防止したりするために設けられている。
以上のように、実施形態1の回路基板は、コンタクトホール部分の絶縁膜のテーパー角を大きくし、ホール径を小さくすることができる。
図3は、実施形態1の回路基板における端子部の各部材を分解して示した平面模式図である。端子部とは、後述する図7に示されるように、絵素電極エリアの外側の領域(非表示領域)に配置されている。このような端子部の構成は、基本的に開口率や表示品位に大きく影響するものではない。
図3に示した各部材とは、ゲートメタルG、無機絶縁膜であるゲート絶縁膜GI、ソースメタルSD、無機絶縁膜Pas1、有機絶縁膜JAS、無機絶縁膜Pas2、透明導電膜ITOであり、各部材の上に記載された文字は、各部材を示している。それぞれの平面模式図が、図3において左側から順に示されている。実施形態1に係る端子部は、この順で、各部材が下層から順に積層されているところ、図3ではこれを部材毎に分解して左右方向に並べて示している。なお、有機絶縁膜JASは、端子部のコンタクトホール部では形成されていない。端子部のある周辺領域は、基本的に表示に寄与しないため、このように有機絶縁膜を設けなくても、表示上の影響は殆どないものである。
なお、ゲートメタル、ソースメタルとしては、通常用いられるものを用いることができ、例えばタンタル(Ta)、アルミニウム(Al)、タングステン(W)、銅(Cu)等の金属、これらの金属の窒化物や、アルミニウム合金等とすることができる。
透明導電膜ITOは、ITOからなるが、ITOの代わりに、IZO等のその他の透明電極や、遮光性の導電膜からなるものとすることも可能である。
なお、ゲート絶縁膜GI、無機絶縁膜Pas1、無機絶縁膜Pas2には、それぞれ絶縁膜コンタクトホールCHGI、CHi1、CHi2が設けられている。ゲート絶縁膜GI、無機絶縁膜Pas1における絶縁膜コンタクトホールCHGI、CHi1は、最上層の絶縁膜(無機絶縁膜Pas2)のホールCHi2の形成と同時に形成される。
なお、ソースメタルSDには、ソースコンタクトホールCHSDが設けられている。
実施形態1の回路基板は、薄膜トランジスタ(TFT)が設けられたTFT側基板であり、後述する図7に示すように、絵素電極エリア(表示領域)と絵素電極エリアの外側の領域(非表示領域)とを備える。
なお、実施形態1の回路基板は、アクティブマトリクス基板であることが好ましく、これによりTFTのスイッチング機能に起因して画素ごとに電圧の印加が制御され、精密なアクティブマトリクス駆動を行うことができる。
図4は、実施形態1の回路基板における端子部を示す平面模式図である。図4は、図3に示した各部材の重ね合わせ図でもある。図5は、図4のC-D線における断面模式図である。なお、図3~図5では、ゲートバスラインに接続されている端子部を示しているが、ソースバスラインに接続されているソースドライバの接続部においても同様の構成を適用することができる。
図6は、実施形態1の回路基板における絵素の各部材を分解して示した平面模式図である。図6に示した各部材とは、ゲートメタルG、インジウムガリウム亜鉛複合酸化物からなる酸化物半導体IGZO及びゲート絶縁膜GI、絶縁膜(エッチングストッパESとも言う。)、ソースメタルSD、無機絶縁膜(パターニングされていない面状の膜)Pas1、有機絶縁膜JAS、透明電極(対向電極)COM、無機絶縁膜Pas2、透明電極(絵素電極)Pixelであり、それぞれの部材の平面模式図が、先ず、図6の左上から右側に向かい、次いで、左下から右側に向かう順に示されている。なお、各部材の上に記載された文字は、各部材を示している。実施形態1に係る絵素は、この順で、各部材が下層から順に積層されて構成されているところ、図6ではこれを部材毎に分解して上記したように並べて示している。なお、インジウムガリウム亜鉛複合酸化物からなる酸化物半導体IGZO及びゲート絶縁膜GIは、ゲート絶縁膜が下層にあり、酸化物半導体IGZOが上層にある。
(実施形態2)
化学増幅型材料は従来材料に比べ、ポストベーク、及び、ドライエッチングでの膜減り量が変わるため、塗布膜厚の調整が必要である。TFT作製工程が完了したときに膜厚を従来品と同等にするためには、例えば、0μmを超え、1μm以下だけ、厚く塗布することが好ましい。テーパー角・ホール径については、例えば60°以上、3μm以上、10μm未満であることが好ましい。なお、化学増幅型材料は、実施形態1と同様に、ベースポリマーとしてアクリル樹脂、感光剤として化学増幅型材料を使用する。その他の構成も実施形態1の構成と同様である。
上述した実施形態1又は2の回路基板は、本発明の技術分野において通常用いられる方法で作製することが可能である。例えば、ソースメタルの形成方法は、配線層を形成した後、マスクプロセスによりレジストを形成し、配線層に対してエッチングを行って、ソースバスライン、ソース電極及びソースメタルで形成されたドレイン電極を形成する。次いで、基板上のレジストを除去する。
また、コンタクトホールの形成方法は、無機絶縁膜Pas1、有機絶縁膜JAS、無機絶縁膜Pas2を上述したように積層させたうえで、ゲート電極-ドレイン電極接続部及び端子部においてエッチングによりおこなうことができる。なお、無機絶縁膜は、ドライエッチングによりエッチングすることができる。
図7は、実施形態1又は2における回路基板を示す平面模式図である。回路基板100は、薄膜トランジスタ(TFT)が設けられたTFT側基板であり、絵素電極エリア(表示領域)と絵素電極エリアの外側の領域(非表示領域)とを備える。非表示領域には、接続部51及び端子部61が配置されている。例えば、接続部51を介して、ソースドライバを、例えばチップオングラス(COG)方式で回路基板100上に実装することができる。また、端子部61を介して、フレキシブルプリント基板(FPC)を回路基板100上に実装することができる。例えば、FPCから端子部61及び接続部51を介してソースドライバを駆動するための信号を入力することができる。
なお、回路基板100の表示領域には、ガラス基板(示さず)上に、ゲートバスライン13とソースバスライン19sとが略直交するように設けられ、更に、ゲートバスライン13とソースバスライン19sとで囲まれる領域ごとに絵素電極Pixel及びTFTが設けられている。また、絵素電極31と重なるように、ソースメタルで形成されたドレイン19dが配置されている。
図8は、実施形態1又は2における回路基板を備える液晶パネルの構造を示す分解斜視模式図である。図8に示されるように、液晶パネル200のCF側の基板72と回路基板100とは液晶73を挟持する。また、液晶パネル200は、回路基板100の背面に、バックライト75を備える。バックライト75の光は、偏光板74、回路基板100、液晶73、CF基板72、及び、偏光板71をこの順に通過し、液晶の配向制御により光の通過・非透過を制御する。
図9は、図8に示した液晶パネルを備える液晶表示装置の構造を示す分解斜視模式図である。図9は、図8に示した液晶パネルを備える液晶表示装置の構造を示す分解斜視模式図である。図8に示されるように、液晶パネル200は、固定パネル400上に固定され、前部キャビネット300及び後部キャビネット500により封じられる。そして、後部キャビネット500と上部スタンド700とが金具600を介して固定される。また上部スタンド700と下部スタンド800とが嵌め合わせされる。
(実施形態3)
実施形態1又は2に記載の回路基板は、高精細機種に使用することがより好ましい。その理由は、実施形態1又は2に係る回路基板の有機絶縁膜のテーパー角が小さくなると、テーパー上の液晶分子の配向乱れ領域が大きくなり、通常は遮光メタルが設けられることとなり、透過率が低下してしまう。高精細機種は絵素サイズが小さいため、透過率が低下することの不利益がより大きい。そこで、実施形態1又は2に記載の回路基板を適用して、高精細機種における回路基板の有機絶縁膜のテーパー角を大きくすることにより、開口率を高めることの有利な効果を特に顕著に発揮できる。
回路基板及び表示装置(液晶テレビ等)においては、製品のTFT基板を解析し、特に、絶縁膜の成分分析をおこなうことにより、本発明の回路基板及び表示装置に係る構成を確認することができる。
(その他の実施形態)
上述した実施形態1、2に係るコンタクトホールの形態は、例えば、ドレイン電極と絵素電極とを接続するためのコンタクトホール以外の絵素内のコンタクトホールに適用しても本発明の効果が発揮されるものであり、これらコンタクトホールに本発明の構成を適用した形態も、本発明に含まれる。また、絵素内のすべてのコンタクトホールに本発明が適用されていることが好ましいが、絵素内の少なくとも一部のコンタクトホールに本発明が適用されていればよい。なお、このような本発明に係るコンタクトホールの形態は、表示領域内のコンタクトホールの少なくとも一部に適用されている限り、例えば、走査ドライバICやデータドライバICといった非表示領域のコンタクトホールに適用しても構わない。
酸化物半導体としては、IGZO以外に、例えばISZO(In-Si-Zn-O)、IAZO(In-Al-Zn-O)、INiZO(In-Ni-Zn-O)、ICuZO(In-Cu-Zn-O)、IHfZO(In-Hf-Zn-O)、IZO(In-Zn-O)等を好適に用いることができる。また、酸化物半導体であることが、TFTを小さくでき、BM(ブラックマトリックス)遮光も小さくすることができる点で好ましいが、酸化物半導体の代わりに、その他のa-Si(アモルファスシリコン)半導体等のTFTにおいて通常用いられる半導体を用いることができる。
なお、図8及び図9は、液晶表示装置の構成を示すものであるが、本発明の表示装置はこれに限定されることはなく、有機EL表示装置や無機EL表示装置等のEL表示装置等においても有利な効果を発揮できる。また、本発明の液晶表示装置のモードとしては、VA(Vertical Alignment)モード、TN(Twisted Nematic)モード、IPS(In-Plane Switching)モード,FFS(Fringe Field Switching)モード、その他のモードにおいても適用することができる。
上記その他の実施形態は、上述した以外の構成部材は、実施形態1又は実施形態2の構成部材と同様である。
(参考例1)
参考例1の構成は、有機絶縁膜JASの材料として、化学増幅型材料の代わりにナフトキノンジアジド誘導体を使用した以外は、実施形態1と同様である。
キノンジアジド系材料は、露光光が当たった感光領域(ナフトキノンジアジドがカルボン酸に変わる)と、当たっていない非感光領域の、現像液(アルカリ性)への溶解度の差により現像される。すなわち、非感光領域も少しは現像液に溶ける)。その結果、テーパー角は、実施形態1に比較して小さくなってしまう(例えば、図10)。
Gate:ゲートバスライン
G:ゲートメタル
Source:ソースバスライン
SD:ソースメタル(ドレイン電極)
COM:透明電極(対向電極)
JAS:有機絶縁膜
GI:ゲート絶縁膜
Pas1、Pas2、Pas51:無機絶縁膜
Pixel:透明電極(絵素電極)
ITO:透明電極(透明導電膜)
Pixel:絵素電極
ES:エッチングストッパ
IGZO:インジウムガリウム亜鉛複合酸化物からなる酸化物半導体
TFT:薄膜トランジスタ素子
GI:ゲート絶縁膜
CH、CHGI、CHi1、CHi2:絶縁膜に設けられた(コンタクト)ホール
CHSD:ソースメタルに設けられた(コンタクト)ホール
BL:ブラックライト
A:液晶の配向乱れ
T:開口部
LC:液晶
13:ゲートバスライン
19s:ソースバスライン
51:接続部
61:端子部
71、74:偏光板
72:CF基板
73:液晶
75:バックライト
100:回路基板
200:液晶パネル
300:前部キャビネット
400:固定パネル
500:後部キャビネット
600:金具
700:上部スタンド
800:下部スタンド
900:液晶表示装置
 

Claims (12)

  1. 互いに異なる層に設けられた第1電極及び第2電極を備える回路基板であって、
    該回路基板は、第1電極と第2電極とを電気的に接続するコンタクトホールが設けられ、回路基板を断面視したときに、第1電極が設けられた層と第2電極が設けられた層との間に、有機絶縁膜、及び、該有機絶縁膜上に設けられた無機絶縁膜を備え、
    該有機絶縁膜は、有機絶縁膜のパターニングのための光を照射することにより酸を発生する化学増幅型材料を必須として構成されるものである
    ことを特徴とする回路基板。
  2. 前記回路基板は、薄膜トランジスタ素子を有し、
    該薄膜トランジスタ素子は、ソース電極、ドレイン電極及び半導体層を有し、
    前記第1電極は、ドレイン電極である
    ことを特徴とする請求項1に記載の回路基板。
  3. 前記回路基板は、表示装置に用いられるものであり、
    前記第2電極は、絵素電極である
    ことを特徴とする請求項1又は2に記載の回路基板。
  4. 前記化学増幅型材料は、光酸発生剤を含有するアクリル樹脂である
    ことを特徴とする請求項1~3のいずれかに記載の回路基板。
  5. 前記コンタクトホールのテーパー角は、50°以上である
    ことを特徴とする請求項1~4のいずれかに記載の回路基板。
  6. 前記有機絶縁膜の膜厚は、2μm以上である
    ことを特徴とする請求項1~5のいずれかに記載の回路基板。
  7. 前記コンタクトホールの最小径は、4μm以下である
    ことを特徴とする請求項1~6のいずれかに記載の回路基板。
  8. 前記コンタクトホールの最大径は、8μm以下である
    ことを特徴とする請求項1~7のいずれかに記載の回路基板。
  9. 前記第1電極は、遮光電極であり、
    前記コンタクトホールは、該第1電極と重畳する
    ことを特徴とする請求項1~8のいずれかに記載の回路基板。
  10. 前記薄膜トランジスタ素子の半導体層は、酸化物半導体層である
    ことを特徴とする請求項2に記載の回路基板。
  11. 互いに異なる層に設けられた第1電極及び第2電極を備える回路基板の製造方法であって、
    該製造方法は、第1電極を形成する工程、有機絶縁膜を形成する工程、該有機絶縁膜上に無機絶縁膜を形成する工程、パターニングにより該有機絶縁膜及び該無機絶縁膜にコンタクトホール用のホールを形成する工程、第2電極を形成する工程を含み、
    該第1電極及び第2電極は、該ホールを介して電気的に接続されており、
    該有機絶縁膜を形成する工程は、有機絶縁膜のパターニングのための光を照射することにより酸を発生する化学増幅型材料を有機絶縁膜の材料の少なくとも一部として用いる
    ことを特徴とする回路基板の製造方法。
  12. 請求項1~10のいずれかに記載の回路基板、又は、請求項11に記載の回路基板の製造方法により得られた回路基板を備えることを特徴とする表示装置。
     
PCT/JP2013/053643 2012-02-23 2013-02-15 回路基板、回路基板の製造方法、及び、表示装置 WO2013125455A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012037887 2012-02-23
JP2012-037887 2012-02-23

Publications (1)

Publication Number Publication Date
WO2013125455A1 true WO2013125455A1 (ja) 2013-08-29

Family

ID=49005642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053643 WO2013125455A1 (ja) 2012-02-23 2013-02-15 回路基板、回路基板の製造方法、及び、表示装置

Country Status (1)

Country Link
WO (1) WO2013125455A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191270A (ja) * 2007-02-01 2008-08-21 Tokyo Ohka Kogyo Co Ltd 液晶表示素子用平坦化絶縁膜形成用組成物および液晶表示素子用平坦化絶縁膜の製造方法
JP2009204893A (ja) * 2008-02-28 2009-09-10 Hitachi Displays Ltd 液晶表示装置とその製造方法
WO2010038514A1 (ja) * 2008-10-02 2010-04-08 シャープ株式会社 表示装置用基板、表示装置用基板の製造方法、表示装置、液晶表示装置、液晶表示装置の製造方法及び有機エレクトロルミネセンス表示装置
JP2011170305A (ja) * 2010-01-19 2011-09-01 Fujifilm Corp ポジ型感光性樹脂組成物、硬化膜の形成方法、硬化膜、有機el表示装置、及び、液晶表示装置
JP2012078693A (ja) * 2010-10-05 2012-04-19 Hitachi Displays Ltd 表示装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191270A (ja) * 2007-02-01 2008-08-21 Tokyo Ohka Kogyo Co Ltd 液晶表示素子用平坦化絶縁膜形成用組成物および液晶表示素子用平坦化絶縁膜の製造方法
JP2009204893A (ja) * 2008-02-28 2009-09-10 Hitachi Displays Ltd 液晶表示装置とその製造方法
WO2010038514A1 (ja) * 2008-10-02 2010-04-08 シャープ株式会社 表示装置用基板、表示装置用基板の製造方法、表示装置、液晶表示装置、液晶表示装置の製造方法及び有機エレクトロルミネセンス表示装置
JP2011170305A (ja) * 2010-01-19 2011-09-01 Fujifilm Corp ポジ型感光性樹脂組成物、硬化膜の形成方法、硬化膜、有機el表示装置、及び、液晶表示装置
JP2012078693A (ja) * 2010-10-05 2012-04-19 Hitachi Displays Ltd 表示装置の製造方法

Similar Documents

Publication Publication Date Title
US10504800B2 (en) Array substrate for display device and manufacturing method thereof
US8537320B2 (en) Liquid crystal display device comprising first and second data link lines electrically connected to odd and even data lines respectively and crossing each other to connect even and odd data pad electrodes respectively
US20160048045A1 (en) Display component, display device, and method of producing display component
KR101870986B1 (ko) 박막 트랜지스터 어레이 기판 제조방법
JP2011095451A (ja) 横電界方式の液晶表示装置
JP2007322563A (ja) 表示装置
JP4317705B2 (ja) 液晶表示装置
JP6497876B2 (ja) 液晶表示パネル、及びその製造方法
JP2002268074A (ja) 液晶表示装置
US20180188573A1 (en) Array substrate and method for fabricating the same, display panel and display device
WO2014205904A1 (zh) 阵列基板及其制造方法和显示装置
CN108873511B (zh) 平面显示面板及其制造方法
KR101085137B1 (ko) 액정 표시 패널 및 그 제조방법
KR20170052801A (ko) 표시 장치 및 그 제조 방법
US20170219899A1 (en) Active matrix substrate, liquid crystal panel, and method for manufacturing active matrix substrate
JP2008076702A (ja) 表示装置の製造方法
US20150185530A1 (en) TFT Array Substrate, Liquid Crystal Panel and LCD
JP2007140458A (ja) 液晶表示装置アレイ基板及びその製造方法
JP2007093859A (ja) 液晶装置および電子機器
WO2013125455A1 (ja) 回路基板、回路基板の製造方法、及び、表示装置
KR101818453B1 (ko) 액정 표시 장치 및 이의 제조 방법
JP5542710B2 (ja) 表示装置用アレイ基板及び表示装置
KR20070072113A (ko) 액정표시소자 및 그 제조방법
US8400602B2 (en) Pixel unit, LCD panel, and method for forming the same
KR101969428B1 (ko) 프린지 필드 스위칭 모드 액정표시장치용 어레이 기판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13751253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP