WO2013125453A1 - Polyester resin composition used in reflective plate for surface-mounted led - Google Patents

Polyester resin composition used in reflective plate for surface-mounted led Download PDF

Info

Publication number
WO2013125453A1
WO2013125453A1 PCT/JP2013/053638 JP2013053638W WO2013125453A1 WO 2013125453 A1 WO2013125453 A1 WO 2013125453A1 JP 2013053638 W JP2013053638 W JP 2013053638W WO 2013125453 A1 WO2013125453 A1 WO 2013125453A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
acid
resin composition
mass
parts
Prior art date
Application number
PCT/JP2013/053638
Other languages
French (fr)
Japanese (ja)
Inventor
戸川 惠一朗
万紀 木南
順一 中尾
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2013509767A priority Critical patent/JP6048833B2/en
Publication of WO2013125453A1 publication Critical patent/WO2013125453A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting

Definitions

  • the present invention relates to a polyester resin composition suitable for use in a reflector for a surface mount LED having excellent moldability, fluidity, dimensional stability, low water absorption, solder heat resistance, surface reflectance, and the like. Furthermore, this invention relates to the polyester resin composition for LED suitable for using for the reflector for surface mount type LEDs which is excellent in gold / tin solder heat resistance, light resistance, and low water absorption.
  • LEDs light-emitting diodes
  • LEDs are used for lighting fixtures, optical elements, mobile phones, backlights for liquid crystal displays, automobile console panels, traffic lights, etc. by utilizing features such as low power consumption, long life, high brightness, and miniaturization. It is applied to display boards.
  • surface mounting technology is used to achieve lightness, thinness, and miniaturization.
  • a surface-mounted LED is generally composed of a light-emitting LED chip, a lead wire, a reflector that also serves as a case, and a sealing resin.
  • each component In order to join the entire component mounted on an electronic board with lead-free solder
  • each component must be formed of a material that can withstand the soldering reflow temperature of 260 ° C.
  • the melting point (melting peak temperature) of the material is required to be 280 ° C. or higher.
  • the reflector in addition to these heat resistances, surface reflectivity for efficiently extracting light and durability against heat and ultraviolet rays are required. From this point of view, various heat-resistant plastic materials such as ceramics, semi-aromatic polyamides, liquid crystal polymers, and thermosetting silicones have been studied.
  • high refractive fillers such as titanium oxide are dispersed in semi-aromatic polyamides and polyesters.
  • the resin made has a good balance of mass productivity, heat resistance, surface reflectance, etc., and is most commonly used.
  • Patent Documents 1 and 2 have been proposed as polyester resin compositions for LED reflectors.
  • a dicarboxylic acid component comprising from 0 to 10 mol% of an aromatic dicarboxylic acid residue; and (b) i) a 2,2,4,4-tetramethyl-1,3-cyclobutanediol residue from 1 to 99 mol%; and ii)
  • Disclosed is a glycol component containing 1-99 mol% 1,4-cyclohexanedimethanol residues (wherein the total mol% of dicarboxylic acid component is 100 mol% and the total mol% of glycol component is 100 mol%)
  • the mechanical properties tend to be good, there are problems in moldability and light
  • Patent Document 3 (A) 100 parts by mass of a polyester resin, (B) 2 to 50 parts by mass of a phosphinate whose anion portion is a calcium salt or an aluminum salt of phosphinic acid, and (C) 0.5% of titanium dioxide.
  • a flame-retardant polyester resin composition for a reflector of an illuminating device using a semiconductor light-emitting element as a light source comprising: 30 parts by mass and (D) 0.01-3 parts by mass of a polyolefin resin having a polar group
  • Patent Document 4 100 parts by mass of wholly aromatic thermotropic liquid crystal polyester, 97 to 85% by mass of titanium oxide obtained by a production method including a roasting step, 3 to 15% by mass of aluminum oxide (including hydrate) (Total of 100% by mass of both) comprising 8 to 42 parts by mass of titanium oxide particles surface-treated, 25 to 50 parts by mass of glass fibers, and 0 to 8 parts by mass of other inorganic fillers.
  • Resin composition obtained through a melt-kneading step including a step of supplying at least a part of the glass fiber from a position 30% or more downstream with respect to the total length of the cylinder of the biaxial kneader using a shaft kneader.
  • Patent Document 5 discloses a dry unsaturated polyester resin composition containing at least an unsaturated polyester resin, a polymerization initiator, an inorganic filler, a white pigment, a release agent, and a reinforcing material, wherein the unsaturated polyester resin is The total amount of the inorganic filler and the white pigment is in the range of 44 to 74% by mass with respect to the total amount of the composition. The proportion of the white pigment in the total amount of the inorganic filler and the white pigment is 30% by mass or more, and the unsaturated polyester resin is mixed with the unsaturated alkyd resin and the crosslinking agent.
  • polyesters and polyamides are used while having problems in heat-resistant coloring, light resistance and moldability.
  • the required melting point (melting peak temperature) of the polyester resin composition used for the surface mount LED reflector is as high as 280 ° C. or higher, preferably 290 ° C. or higher, and the aromatic ring concentration is high. It is preferable.
  • a polyester resin composition used for a surface mount LED reflector satisfying these conditions has not been reported so far.
  • the present inventor can advantageously perform injection molding and reflow soldering processes while satisfying the characteristics as an LED reflector, and further, gold / tin eutectic solder heat resistance, low water absorption As a result of intensive studies on the composition of polyester having excellent properties and light resistance, the present invention has been completed.
  • the present invention has the following configuration.
  • the glycol component is one or more selected from ethylene glycol, 1,4-cyclohexanedimethanol, 1,3-propanediol, neopentyl glycol, and 1,4-butanediol.
  • the non-fibrous or non-needle filler (D) is talc, and is contained at a ratio of 0.1 to 5 parts by mass of talc with respect to 100 parts by mass of the copolyester resin (A).
  • Composition. (9) A surface-mounted LED reflector obtained by molding the polyester resin composition according to any one of (1) to (8).
  • the polyester resin composition of the present invention uses a specific copolyester resin excellent in processability such as moldability during injection molding and solder heat resistance.
  • a reflector for a surface-mounted LED that highly satisfies the required characteristics can be industrially advantageously produced.
  • the polyester resin composition of the present invention is adaptable to a gold / tin eutectic solder process because the main component copolymer polyester resin has a high melting point of 280 ° C. or more and excellent heat resistance. Since the aromatic ring concentration is high, characteristics such as excellent heat resistance, toughness, and light resistance, and excellent adhesion to the sealing material can be exhibited.
  • the polyester resin composition of the present invention is intended to be used for a reflector for a surface mount LED.
  • the surface mount type LED includes a chip LED type using a printed wiring board, a gull wing type using a lead frame, and a PLCC type.
  • the polyester resin composition of the present invention injection-molds all these reflectors. Can be manufactured.
  • the polyester resin composition of the present invention comprises a copolymerized polyester resin (A), titanium oxide (B), at least one reinforcing material (C) selected from the group consisting of a fibrous reinforcing material and an acicular reinforcing material, and Contains non-fibrous or non-needle filler (D), 0.5 to 100 parts by mass of titanium oxide (B) and 100 to 100 parts by mass of reinforcing material (C) with respect to 100 parts by mass of copolyester resin (A) A polyester resin composition containing 0 to 50 parts by mass of non-fibrous or non-needle filler (D), wherein the copolymerized polyester resin (A) is 4,4′-biphenyldicarboxylic acid It is a polyester resin composition used for a reflector for a surface-mounted LED, having an acid component composed of an acid and another dicarboxylic acid and a glycol component as constituent components and a melting point of 280 ° C. or higher.
  • the copolyester resin (A) is blended to realize excellent UV resistance in addition to a high melting point and low water absorption in order to impart high reliability.
  • A) is characterized in that it comprises an acid component composed of 4,4′-biphenyldicarboxylic acid and other dicarboxylic acid and a glycol component as constituent components and has a melting point of 280 ° C. or higher.
  • Copolymerization polyester resin (A) can make melting
  • the melting point of the copolyester resin (A) is preferably 290 ° C. or higher, more preferably 300 ° C. or higher, and still more preferably 310 ° C. or higher.
  • the upper limit of the melting point of the copolyester resin (A) is not particularly set, but is 340 ° C. or lower due to the limitation of the raw material components that can be used. The melting point is measured by the method described in the Examples section below.
  • the copolymerized polyester resin (A) preferably contains 4,4′-biphenyldicarboxylic acid in an amount of 30 mol% or more, more preferably 4,4′-biphenyldicarboxylic acid in an amount of 50 mol% or more, still more preferably. Is 60 mol% or more, particularly preferably 63 mol% or more, and most preferably 70 mol% or more. If 4,4′-biphenyldicarboxylic acid is less than 30 mol% of the total acid component, moldability, solder heat resistance, and light resistance tend to be lowered.
  • the amount of 4,4′-biphenyldicarboxylic acid is preferably 90 mol% or less of the total acid component.
  • dicarboxylic acids are aromatic dicarboxylic acids such as terephthalic acid, 2,6-naphthalenedicarboxylic acid, isophthalic acid, diphenoxyethanedicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, and 4,4′-diphenyl ketone dicarboxylic acid.
  • Aliphatic dicarboxylic acids such as acid, adipic acid, sebacic acid, succinic acid, glutaric acid and dimer acid, hexahydroterephthalic acid, hexahydroisophthalic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1 , 4-cyclohexanedicarboxylic acid and the like, and among them, terephthalic acid, 2,6-naphthalenedicarboxylic acid, or a mixture thereof is preferable from the viewpoint of polymerizability, cost, and heat resistance. .
  • polyoxycarboxylic acids such as p-oxybenzoic acid and oxycaproic acid, trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid, biphenylsulfonetetracarboxylic acid, biphenyltetracarboxylic acid, and anhydrides thereof You may use together.
  • the acid component constituting the copolymerized polyester resin (A) is preferably a total of 4,4′-biphenyldicarboxylic acid and other dicarboxylic acids, preferably 80 mol% or more, more preferably 90 mol% or more, and 95 mol%. The above is more preferable, 97 mol% or more is particularly preferable, and it may be 100 mol%.
  • glycol component of the copolyester resin (A) examples include ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butylene glycol, 1,2-butylene glycol, 1, 3-butylene glycol, 2,3-butylene glycol, 1,5-pentanediol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2 -Cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, 3-methyl-1,5-pentanediol, 2-methyl-1,5-pentanediol, 2-methyl-1,3-propa Diol, 2-ethyl-1,3-propanediol
  • one or two selected from ethylene glycol, 1,4-cyclohexanedimethanol, 1,3-propanediol, neopentyl glycol, and 1,4-butanediol are considered due to heat resistance, polymerizability, molding, cost, and the like.
  • a mixture of species or more is preferred. More preferably, it is at least one selected from ethylene glycol and 1,4-butanediol.
  • diethylene glycol may be by-produced during the production of the copolymer polyester resin (A) to become a copolymer component.
  • diethylene glycol by-produced is about 1 to 5 mol% with respect to ethylene glycol incorporated in the copolymer polyester resin, although it depends on the production conditions.
  • polyhydric polyols such as a trimethylol ethane, a trimethylol propane, glycerol, and a pentaerythritol.
  • the amount of 4,4′-biphenyldicarboxylic acid is preferably 63 mol% or more, preferably 70 mol% or more. Is more preferable. Further, in this case, in order to achieve a more desirable high melting point, it is more preferable that 4,4′-biphenyldicarboxylic acid is 75 mol% or more as an acid component, and 80 mol% or more is particularly preferable.
  • metal salts such as 5-sulfoisophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, 5- [4-sulfophenoxy] isophthalic acid, or 2-sulfo-1,4-butanediol, 2,5 -A dicarboxylic acid or diol containing a sulfonic acid metal base such as a metal salt such as dimethyl-3-sulfo-2,5-hexanediol may be used in the total acid component or in a range of 20 mol% or less of the total diol component. Good.
  • copolyester resin (A) Although it does not specifically limit as a catalyst used when manufacturing copolyester resin (A), It is preferable that at least 1 type of compound chosen from the compound of Ge, Sb, Ti, Al, Mn, or Mg is used. . These compounds are added to the reaction system as powders, aqueous solutions, ethylene glycol solutions, ethylene glycol slurries and the like.
  • phosphoric acid phosphoric acid esters such as polyphosphoric acid and trimethyl phosphate
  • phosphonic acid compounds phosphonic acid compounds
  • phosphinic acid compounds phosphine oxide compounds
  • phosphonous acid compounds phosphonous acid compounds
  • phosphinic acid compounds phosphine compounds
  • phosphorus compound selected from the group consisting of:
  • the acid value of the copolyester resin (A) is preferably 1 to 40 eq / ton.
  • the acid value exceeds 40 eq / ton, light resistance tends to decrease.
  • the acid value is less than 1 eq / ton, the polycondensation reactivity tends to decrease and the productivity tends to deteriorate.
  • the intrinsic viscosity (IV) of the copolyester resin (A) is preferably 0.10 to 0.70 dl / g, more preferably 0.20 to 0.65 dl / g, still more preferably 0.25 to 0.60 dl / g.
  • the copolymerized polyester resin (A) is present in a proportion of 25 to 90% by mass, preferably 40 to 75% by mass in the polyester resin composition of the present invention.
  • the proportion of the copolymerized polyester resin (A) is less than the above lower limit, the mechanical strength becomes low, and when it exceeds the above upper limit, the blending amount of titanium oxide (B) and the reinforcing material (C) is insufficient, and the desired amount It becomes difficult to obtain the effect.
  • Titanium oxide (B) is blended to increase the surface reflectance of the reflector.
  • TiO dititanium trioxide
  • TiO 2 rutile type titanium dioxide
  • the average particle diameter of titanium oxide (B) is generally in the range of 0.05 to 2.0 ⁇ m, preferably 0.15 to 0.5 ⁇ m, and may be used alone or may have different particle diameters. Titanium may be used in combination.
  • the titanium oxide component concentration is 90% or more, preferably 95% or more, and more preferably 97% or more.
  • the titanium oxide (B) may be one that has been surface-treated with a metal oxide such as silica, alumina, zinc oxide, zirconia, a coupling agent, an organic acid, an organic polyhydric alcohol, or siloxane. it can.
  • a metal oxide such as silica, alumina, zinc oxide, zirconia, a coupling agent, an organic acid, an organic polyhydric alcohol, or siloxane. it can.
  • the proportion of titanium oxide (B) is 0.5 to 100 parts by mass, preferably 10 to 80 parts by mass with respect to 100 parts by mass of the copolyester resin (A). If the ratio of titanium oxide (B) is less than the above lower limit, the surface reflectivity is lowered, and if it exceeds the upper limit, molding processability may be lowered, such as a significant decrease in physical properties and fluidity.
  • the reinforcing material (C) is blended in order to improve the moldability of the polyester resin composition and the strength of the molded product, and uses at least one selected from a fibrous reinforcing material and an acicular reinforcing material.
  • a fibrous reinforcing material include glass fiber, carbon fiber, boron fiber, ceramic fiber, and metal fiber.
  • the acicular reinforcing material include potassium titanate whisker, aluminum borate whisker, zinc oxide whisker, and carbonic acid. Calcium whiskers, magnesium sulfate whiskers, wollastonite and the like can be mentioned.
  • glass fibers chopped strands or continuous filament fibers having a length of 0.1 mm to 100 mm can be used.
  • a glass fiber having a circular cross section and a non-circular cross section can be used as the cross-sectional shape of the glass fiber.
  • the diameter of the circular cross-section glass fiber is 20 ⁇ m or less, preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less.
  • a glass fiber having a non-circular cross section is preferred from the viewpoint of physical properties and fluidity.
  • Non-circular cross-section glass fibers include those that are substantially oval, substantially oval, or substantially bowl-shaped in a cross section perpendicular to the length direction of the fiber length, and have a flatness of 1.5 to 8. It is preferable.
  • the flatness is assumed to be a rectangle with the smallest area circumscribing a cross section perpendicular to the longitudinal direction of the glass fiber, the length of the long side of the rectangle is the major axis, and the length of the short side is the minor axis. It is the ratio of major axis / minor axis.
  • the thickness of the glass fiber is not particularly limited, but the minor axis is about 1 to 20 ⁇ m and the major axis is about 2 to 100 ⁇ m. Further, glass fibers are preferably used in the form of chopped strands which are formed into fiber bundles and cut to a fiber length of about 1 to 20 mm.
  • the difference in refractive index from the copolyester resin is large, so use a material whose refractive index is increased by changing the glass composition or surface treatment. It is preferable to do.
  • the proportion of the reinforcing material (C) is 0 to 100 parts by mass, preferably 5 to 100 parts by mass, and more preferably 10 to 60 parts by mass with respect to 100 parts by mass of the copolyester resin (A).
  • the reinforcing material (C) is not an essential component, but the proportion of 5 parts by mass or more is preferable because the mechanical strength of the molded product is improved.
  • the ratio of the reinforcing material (C) exceeds the above upper limit, the surface reflectance and the moldability tend to be lowered.
  • non-fibrous or non-needle filler (D) examples include reinforcing fillers, conductive fillers, magnetic fillers, flame retardant fillers, thermal conductive fillers, thermal yellowing suppression fillers, etc., according to purpose. Glass beads, glass flakes, glass balloons, silica, talc, kaolin, mica, alumina, hydrotalcite, montmorillonite, graphite, carbon nanotubes, fullerene, indium oxide, tin oxide, iron oxide, magnesium oxide, aluminum hydroxide, Magnesium hydroxide, calcium hydroxide, red phosphorus, calcium carbonate, magnesium acetate, lead zirconate titanate, barium titanate, aluminum nitride, boron nitride, zinc borate, barium sulfate, and non-acicular wollastonite, titanium Potassium oxide, aluminum borate, Magnesium, zinc oxide, calcium carbonate, and the like.
  • fillers may be used not only alone but also in combination of several kinds.
  • talc is preferable because it has an effect of accelerating crystallization and improves moldability.
  • the addition amount of the filler may be selected as an optimum amount, but it is possible to add up to 50 parts by mass with respect to 100 parts by mass of the copolyester resin (A), but the mechanical strength of the resin composition In view of the above, 0.1 to 20 parts by mass is preferable, and 1 to 10 parts by mass is more preferable.
  • talc it is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the copolyester resin (A).
  • the fibrous reinforcing material and filler are preferably used after being treated with an organic treatment or a coupling agent, or in combination with a coupling agent at the time of melt compounding.
  • a coupling agent any of a silane coupling agent, a titanate coupling agent, and an aluminum coupling agent may be used, and among them, an aminosilane coupling agent and an epoxy silane coupling agent are particularly preferable. .
  • additives of conventional polyester resin compositions for LED reflectors can be used.
  • Additives include stabilizers, impact modifiers, flame retardants, mold release agents, slidability improvers, colorants, fluorescent brighteners, plasticizers, crystal nucleating agents, thermoplastic resins other than polyester, and the like.
  • Stabilizers include organic antioxidants such as hindered phenol antioxidants, sulfur antioxidants, phosphorus antioxidants, heat stabilizers, light stabilizers such as hindered amines, benzophenones, and imidazoles. Examples include ultraviolet absorbers, metal deactivators, and copper compounds. Copper compounds include cuprous chloride, cuprous bromide, cuprous iodide, cupric chloride, cupric bromide, cupric iodide, cupric phosphate, cupric pyrophosphate, Copper salts of organic carboxylic acids such as copper sulfide, copper nitrate, and copper acetate can be used. Further, as a component other than the copper compound, an alkali metal halide compound is preferably contained.
  • organic antioxidants such as hindered phenol antioxidants, sulfur antioxidants, phosphorus antioxidants, heat stabilizers, light stabilizers such as hindered amines, benzophenones, and imidazoles. Examples include ultraviolet absorbers, metal deactivators, and
  • alkali metal halide compound examples include lithium chloride, lithium bromide, lithium iodide, sodium fluoride, sodium chloride, bromide.
  • examples thereof include sodium, sodium iodide, potassium fluoride, potassium chloride, potassium bromide, potassium iodide and the like.
  • These additives may be used alone or in combination of several kinds. Although the addition amount of a stabilizer should just select the optimal quantity, it is possible to add a maximum of 5 mass parts with respect to 100 mass parts of copolyester resin (A).
  • thermoplastic resin different from the copolymerized polyester resin (A) may be added to the polyester resin composition of the present invention.
  • thermoplastic resins can be blended in a molten state by melt kneading.
  • the thermoplastic resin may be made into a fiber or particle and dispersed in the polyamide resin composition of the present invention.
  • An optimum amount of the thermoplastic resin may be selected, but a maximum of 50 parts by mass can be added to 100 parts by mass of the copolyester resin (A).
  • Impact modifiers include ethylene-propylene rubber (EPM), ethylene-propylene-diene rubber (EPDM), ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, ethylene-methacrylic acid copolymer, ethylene- Polyolefin resins such as methacrylic acid ester copolymer, ethylene vinyl acetate copolymer, styrene-butadiene-styrene block copolymer (SBS), styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-isoprene -Styrene copolymer (SIS), vinyl polymer resin such as acrylate copolymer, polybutylene terephthalate or polybutylene naphthalate as hard segment, polytetramethylene glycol or polycaprolactone or poly Polyester block copolymer in which the turbo sulfonate diol as
  • a reactive group capable of reacting with the polyester is copolymerized.
  • the reactive group is a group capable of reacting with a hydroxyl group and / or a carboxyl group which is a terminal group of the polyester resin.
  • Specific examples include an acid anhydride group, an epoxy group, an oxazoline group, an amino group, and an isocyanate group.
  • an epoxy group and an isocyanate group are most excellent in reactivity.
  • the thermoplastic resin having a reactive group that reacts with the polyester resin is finely dispersed in the polyester and finely dispersed, so that the distance between the particles is shortened and the impact resistance is greatly improved.
  • a combination of a halogen flame retardant and a flame retardant aid is good.
  • a halogen flame retardant brominated polystyrene, brominated polyphenylene ether, brominated bisphenol type epoxy polymer, brominated styrene maleic anhydride Polymers, brominated epoxy resins, brominated phenoxy resins, decabromodiphenyl ether, decabromobiphenyl, brominated polycarbonate, perchlorocyclopentadecane, brominated cross-linked aromatic polymers, etc. are preferred.
  • halogen flame retardant is preferably a combination of dibromopolystyrene and the flame retardant auxiliary is any combination of antimony trioxide, sodium antimonate, and zinc stannate.
  • Non-halogen flame retardants include melamine cyanurate, red phosphorus, phosphinic acid metal salts, and nitrogen-containing phosphoric acid compounds. In particular, a combination of a phosphinic acid metal salt and a nitrogen-containing phosphoric acid compound is preferable.
  • the nitrogen-containing phosphoric acid compound a reaction product of melamine or a melamine condensate such as melam, melem, melon and polyphosphoric acid Or a mixture thereof.
  • flame retardants and flame retardant aids addition of hydrotalcite-based compounds and alkali compounds is preferable as metal corrosion prevention for molds and the like when these flame retardants are used.
  • the addition amount of the flame retardant may be an optimum amount, but it is possible to add a maximum of 50 parts by mass with respect to 100 parts by mass of the copolymerized polyamide resin (A).
  • the release agent examples include long chain fatty acids or esters thereof, metal salts, amide compounds, polyethylene wax, silicone, polyethylene oxide, and the like.
  • the long chain fatty acid preferably has 12 or more carbon atoms, and examples thereof include stearic acid, 12-hydroxystearic acid, behenic acid, and montanic acid. Partial or total carboxylic acid is esterified with monoglycol or polyglycol. Or a metal salt may be formed.
  • the amide compound include ethylene bisterephthalamide and methylene bisstearyl amide. These release agents may be used alone or as a mixture.
  • the addition amount of the release material may be selected as an optimum amount, but a maximum of 5 parts by mass can be added to 100 parts by mass of the copolyester resin (A).
  • the polyester resin composition of the present invention preferably has a melting peak temperature (Tm) of 280 ° C. or higher in DSC measurement, more preferably 290 ° C. or higher, further preferably 300 ° C. or higher, particularly preferably 310 ° C. or higher. Most preferably, it is 320 degreeC or more.
  • Tm melting peak temperature
  • the upper limit of Tm of the polyester resin composition of the present invention is preferably 340 ° C. or lower for the following reason. When Tm exceeds the above upper limit, the processing temperature required for injection molding the polyester resin composition of the present invention becomes extremely high, so that the polyester resin composition decomposes during processing, and the desired physical properties and appearance are obtained. There may not be.
  • Tm when Tm is less than the above lower limit, the crystallization rate is slow, and in some cases, molding may be difficult, and further, solder heat resistance may be reduced.
  • a Tm of 310 ° C. or higher is preferable because it satisfies the reflow solder heat resistance of 280 ° C. and can be applied to a gold / tin eutectic solder process.
  • the polyester resin composition of the present invention preferably has a difference in melting peak temperature (Tm) and cooling crystallization temperature (Tc2) of 40 ° C. or less, more preferably 35 ° C. or less, and still more preferably 30 in DSC measurement. It is below °C.
  • the temperature-falling crystallization temperature (Tc2) is a temperature at which crystallization starts when the temperature is lowered from a temperature 10 ° C. higher than the melting point of the copolyester resin in DSC measurement.
  • the melting peak temperature (Tm) and the cooling crystallization temperature (Tc2) are measured by the methods described in the Examples section below. When the difference between the melting peak temperature (Tm) and the cooling crystallization temperature (Tc2) is 40 ° C.
  • the copolymerized polyester resin (A) in the present invention has an excellent balance of low water absorption and fluidity in addition to a high melting point and moldability, and also has excellent light resistance. For this reason, the polyester resin composition of the present invention obtained from such a copolyester resin (A) has a high melting point of 280 ° C. or higher and low water absorption in the molding of a reflector of a surface-mounted LED. Thin-walled, high-cycle molding is possible.
  • the polyester resin composition of the present invention can be produced by blending the above-described constituent components by a conventionally known method. For example, each component is added during the polycondensation reaction of the copolyester resin (A), the copolyester resin (A) and other components are dry blended, or a twin screw type extruder is used. The method of melt-kneading each structural component can be mentioned.
  • the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
  • the measured value described in the Example is measured by the following method.
  • the cylinder temperature is set to the melting point of the resin + 20 ° C.
  • the mold temperature is set to 120 ° C.
  • a flat plate having a film gate length of 100 mm, width of 100 mm, and thickness of 1 mm.
  • Injection molding was carried out using a production mold. Molding was performed at an injection speed of 50 mm / sec, a holding pressure of 30 MPa, an injection time of 10 seconds, and a cooling time of 10 seconds. The quality of the moldability was evaluated as follows. ⁇ : A molded product can be obtained without problems. ⁇ : Sprue sometimes remains in the mold. X: The releasability is insufficient, and the molded product sticks to the mold or deforms.
  • the cylinder temperature is set to the melting point of the resin + 20 ° C.
  • the mold temperature is set to 140 ° C.
  • the length is 127 mm
  • the width is 12.6 mm
  • the thickness is 0.8 mm.
  • the test piece for the UL combustion test was injection molded to produce a test piece.
  • the test piece was left in an atmosphere of 85 ° C. and 85% RH (relative humidity) for 72 hours.
  • the specimen was heated in an air reflow furnace (AIS-20-82C manufactured by ATEC) from room temperature to 150 ° C over 60 seconds, preheated, and then heated to 190 ° C at a rate of 0.5 ° C / min.
  • Preheating was performed. Thereafter, the temperature was raised to a predetermined set temperature at a rate of 100 ° C./min, held at the predetermined temperature for 10 seconds, and then cooled. The set temperature was increased from 240 ° C. every 5 ° C., and the highest set temperature at which the surface did not swell or deformed was defined as the reflow heat resistant temperature, which was used as an index of solder heat resistance.
  • Reflow heat resistant temperature is 260 ° C or higher and lower than 280 ° C.
  • X Reflow heat resistant temperature is lower than 260 ° C.
  • test piece for evaluation was prepared. This test piece was irradiated with UV light at an illuminance of 50 mW / cm 2 in an environment of 63 ° C. and 50% RH using a super accelerated weathering tester “I Super UV Tester SUV-F11”. The light reflectance at a wavelength of 460 nm of the test piece was measured before irradiation and 60 hours after irradiation.
  • the retention rate of the light reflectance of the post-irradiation test piece relative to the light reflectance of the pre-irradiation test piece was evaluated according to the following criteria. ⁇ : Retention rate 90% or more ⁇ : Retention rate less than 90% to 85% or more ⁇ : Retention rate less than 85%
  • the resin under slight pressure was discharged into water as a strand, cooled, and then cut with a cutter to obtain a cylindrical pellet having a length of about 3 mm and a diameter of about 2 mm.
  • the intrinsic viscosity of the obtained copolyester was 0.60 dl / g
  • the resin composition was 65 mol% 4,4′-biphenyldicarboxylic acid, 35 mol% terephthalic acid, ethylene glycol as determined by 1 H-NMR measurement. Was 98.2 mol% and diethylene glycol was 1.8 mol%.
  • Table 1 shows characteristic values of the obtained copolyester resin.
  • the intrinsic viscosity of the obtained copolyester was 0.60 dl / g, the resin composition was 65 mol% 4,4′-biphenyldicarboxylic acid, 35 mol% terephthalic acid, ethylene glycol as determined by 1 H-NMR measurement. Was 98.2 mol% and diethylene glycol was 1.8 mol%.
  • Table 1 shows characteristic values of the obtained copolyester resin.
  • the pressure in the reaction system was gradually decreased to 13.3 Pa (0.1 Torr) while the temperature was raised to 280 ° C. over 60 minutes, and a polycondensation reaction was further performed at 280 ° C. and 13.3 Pa. Subsequent to releasing the pressure, the resin under slight pressure was discharged into water as a strand, cooled, and then cut with a cutter to obtain a cylindrical pellet having a length of about 3 mm and a diameter of about 2 mm.
  • the obtained PET had an IV of 0.61 dl / g, and the resin composition was 100 mol% terephthalic acid, 98.0 mol% ethylene glycol, and 2.0 mol% diethylene glycol, as determined by 1 H-NMR. It was.
  • the characteristic values of the obtained polyester resin are shown in Table 2.
  • the autoclave was pressurized to 22 kg / cm 2 .
  • the reaction was continued for 1 hour, and then the temperature was raised to 230 ° C., and then the temperature was maintained at 230 ° C. for 2 hours.
  • the reaction was carried out while gradually removing water vapor and maintaining the pressure at 22 kg / cm 2 .
  • the pressure was reduced to 10 kg / cm 2 over 30 minutes and the reaction was further continued for 1 hour to obtain a prepolymer having an intrinsic viscosity [ ⁇ ] of 0.25 dl / g. This was dried at 100 ° C. under reduced pressure for 12 hours and pulverized to a size of 2 mm or less.
  • a white polyamide having a melting point of 310 ° C., an intrinsic viscosity [ ⁇ ] of 1.33 dl / g, and a terminal sealing rate of 90% was obtained by solid-phase polymerization at 230 ° C. and 0.1 mmHg for 10 hours. Obtained.
  • Examples 1 to 11, Comparative Examples 1 to 5 Using the twin screw extruder STS-35 manufactured by Coperion Co., Ltd., with the components and mass ratios described in Tables 3 and 4, the resins were melt kneaded at the melting point of the resin + 15 ° C., and Examples 1 to 11 and Comparative Examples 1 to 5 Polyester resin composition and polyamide resin composition were obtained.
  • the materials used other than the copolyester resin are as follows. Titanium oxide (B): Ipehara Sangyo Co., Ltd.
  • Reinforcing material C: Glass fiber (manufactured by Nittobo Co., Ltd., CS-3J-324), acicular wallast (manufactured by NYCO, NYGLOS8) Filler (D): Talc (Micron White 5000A, Hayashi Kasei Co., Ltd.)
  • Mold release agent Magnesium stearate Stabilizer: Pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (Irganox 1010, manufactured by Ciba Specialty Chemicals)
  • polyester resin compositions and polyamide resin compositions obtained in Examples 1 to 11 and Comparative Examples 1 to 5 were subjected to evaluation of various properties. The results are shown in Tables 3 and 4.
  • the melting peak temperature by DSC of the polyester resin composition is 280 ° C. or higher, it can be applied to the reflow soldering process, and when the melting peak temperature exceeds 310 ° C., the reflow heat resistant temperature is 280 ° C. or higher. Therefore, it exhibits solder heat resistance that can be applied to gold / tin eutectic soldering processes, and has excellent adhesion to sealing materials and surface reflectivity, which are important characteristics for LED applications, and moldability. It was confirmed that the fluidity, dimensional stability, low water absorption, and light resistance were excellent. On the other hand, from Table 4, all of these characteristics could not be satisfied in the comparative example. Although the polyamide resin of Comparative Example 5 has a high melting point, the reflow heat resistant temperature could not satisfy 280 ° C. or higher due to water absorption due to the amide structure.
  • the polyester resin composition of the present invention is not only excellent in heat resistance, moldability, fluidity, and low water absorption, but also has excellent adhesion to a sealing material in LED applications, and also has excellent light resistance. Since the copolyester resin is used, the reflector for surface mount type LED can be produced industrially advantageously while highly satisfying the required characteristics.

Abstract

The present invention is a polyester resin composition including: a copolymer polyester resin (A); a titanium oxide (B); at least one type of reinforcing material (C) selected from a group comprising a fibrous reinforcing material and a needle-like reinforcing material; and a non-fibrous or non-needle-like filler (D). The polyester resin composition contains the titanium oxide (B) in the amount of 0.5-100 parts by mass, the reinforcing material (C) in the amount of 0-100 parts per mass, and the non-fibrous or non-needle-like filler (D) in the amount of 0-50 parts per mass, relative to 100 parts per mass of the copolymer polyester resin (A). The present invention is capable of providing the polyester resin composition used in a reflective plate for a surface-mounted LED, wherein the copolymer polyester resin (A) has a 4,4'-biphenyldicarboxylic acid, an acid component comprising other dicarboxylic acids, and a glycol component as the constituent components thereof, and a fusion point of at least 280°C, said polyester resin composition being suitable for reflective plates for surface-mounted LEDs and having excellent heat resistance, excellent moldability during injection molding, excellent low water absorbability, and excellent surface reflectivity.

Description

表面実装型LED用反射板に使用するポリエステル樹脂組成物Polyester resin composition used for reflector for surface mount LED
 本発明は、成形性、流動性、寸法安定性、低吸水性、ハンダ耐熱性、表面反射率等に優れる表面実装型LED用反射板に使用するのに好適なポリエステル樹脂組成物に関する。さらには、本発明は、金/錫ハンダ耐熱性、耐光性、低吸水性に優れる表面実装型LED用反射板に使用するのに好適なLED用ポリエステル樹脂組成物に関する。 The present invention relates to a polyester resin composition suitable for use in a reflector for a surface mount LED having excellent moldability, fluidity, dimensional stability, low water absorption, solder heat resistance, surface reflectance, and the like. Furthermore, this invention relates to the polyester resin composition for LED suitable for using for the reflector for surface mount type LEDs which is excellent in gold / tin solder heat resistance, light resistance, and low water absorption.
 近年、LED(発光ダイオード)は、低消費電力、長寿命、高輝度、小型化可能などの特徴を活用して、照明器具、光学素子、携帯電話、液晶ディスプレイ用バックライト、自動車コンソールパネル、信号機、表示板などに応用されている。また、意匠性、携帯性を重視する用途では、軽薄短小化を実現するために表面実装技術が使用されている。 In recent years, LEDs (light-emitting diodes) are used for lighting fixtures, optical elements, mobile phones, backlights for liquid crystal displays, automobile console panels, traffic lights, etc. by utilizing features such as low power consumption, long life, high brightness, and miniaturization. It is applied to display boards. In applications where design and portability are important, surface mounting technology is used to achieve lightness, thinness, and miniaturization.
 表面実装型LEDは一般に、発光するLEDチップ、リード線、ケースを兼ねた反射板、封止樹脂から構成されているが、電子基板上に実装された部品全体を非鉛化ハンダで接合するために、各部品がハンダ付けリフロー温度260℃に耐えられる材料で形成されることが必要である。材料の融点(融解ピーク温度)としては、280℃以上が必要とされる。特に反射板に関しては、これら耐熱性に加え、光を効率的に取り出すための表面反射率、熱や紫外線に対する耐久性が求められる。かかる観点から、セラミックや半芳香族ポリアミド、液晶ポリマー、熱硬化性シリコーン等の種々の耐熱プラスチック材料が検討されており、なかでも、半芳香族ポリアミドやポリエステルに酸化チタン等の高屈折フィラーを分散させた樹脂は量産性、耐熱性、表面反射率などのバランスが良く、最も汎用的に使用されている。最近では、LEDの汎用化にともない、反射板には加工性や信頼性のさらなる向上が必要となっており、長期の耐熱着色性、耐光性の向上が求められている。 A surface-mounted LED is generally composed of a light-emitting LED chip, a lead wire, a reflector that also serves as a case, and a sealing resin. In order to join the entire component mounted on an electronic board with lead-free solder In addition, each component must be formed of a material that can withstand the soldering reflow temperature of 260 ° C. The melting point (melting peak temperature) of the material is required to be 280 ° C. or higher. In particular, regarding the reflector, in addition to these heat resistances, surface reflectivity for efficiently extracting light and durability against heat and ultraviolet rays are required. From this point of view, various heat-resistant plastic materials such as ceramics, semi-aromatic polyamides, liquid crystal polymers, and thermosetting silicones have been studied. Among them, high refractive fillers such as titanium oxide are dispersed in semi-aromatic polyamides and polyesters. The resin made has a good balance of mass productivity, heat resistance, surface reflectance, etc., and is most commonly used. Recently, with the generalization of LEDs, it is necessary to further improve the workability and reliability of the reflector, and long-term heat-resistant coloring and light resistance are required to be improved.
 LED反射板用のポリエステル樹脂組成物としては、例えば特許文献1~2が提案されている。
 特許文献1,2では、(a)i)テレフタル酸残基70~100モル%;ii)炭素数20以下の芳香族ジカルボン酸残基0~30モル%;及びiii)炭素数16以下の脂肪族ジカルボン酸残基0~10モル%を含むジカルボン酸成分;並びに(b)i)2,2,4,4-テトラメチル-1,3-シクロブタンジオール残基1~99モル%;及びii)1,4-シクロヘキサンジメタノール残基1~99モル%を含むグリコール成分(ここでジカルボン酸成分の総モル%は100モル%であり、グリコール成分の総モル%は100モル%である)が開示されているが、機械物性が良好傾向にあるものの、成形性、耐光性に問題がある。また、特許文献3では(A)ポリエステル樹脂100質量部に対し、(B)アニオン部分がホスフィン酸のカルシウム塩又はアルミニウム塩であるホスフィン酸塩2~50質量部、(C)二酸化チタン0.5~30質量部、及び(D)極性基を有するポリオレフィン樹脂0.01~3質量部を配合したことを特徴とする、半導体発光素子を光源とする照明装置反射板用難燃性ポリエステル樹脂組成物が開示されているが、金/錫ハンダ耐熱性、耐熱性、耐光性に問題がある。また、特許文献4では、全芳香族サーモトロピック液晶ポリエステル100質量部、焙焼工程を含む製法で得られた酸化チタン97~85質量%を酸化アルミニウム(水和物を含む)3~15質量%(両者を合わせて100質量%とする。)で表面処理してなる酸化チタン粒子8~42質量部、ガラス繊維25~50質量部、およびその他の無機充填材0~8質量部からなり、二軸混練機を使用して、前記ガラス繊維の少なくとも一部を、二軸混練機のシリンダーの全長に対して30%以上下流側の位置から供給する工程を含む溶融混練工程を経て得られる樹脂組成物が開示されているが、耐熱性、耐光性に問題がある。
 また、特許文献5では、不飽和ポリエステル樹脂、重合開始剤、無機充填剤、白色顔料、離型剤、及び補強材を少なくとも含む乾式不飽和ポリエステル樹脂組成物であって、前記不飽和ポリエステル樹脂が、前記組成物全体量に対して14~40質量%の範囲内であり、前記無機充填剤と前記白色顔料の配合量の合計が、前記組成物全体量に対して44~74質量%の範囲内であり、前記無機充填剤と前記白色顔料の配合量の合計に占める前記白色顔料の割合が30質量%以上であり、前記不飽和ポリエステル樹脂が、不飽和アルキッド樹脂と架橋剤が混合されたものであることを特徴とするLEDリフレクター用不飽和ポリエステル樹脂組成物が開示されているが、成形性、耐光性に問題がある。また、これまで表面実装型LED用反射板としては、各種ポリアミドが使用されてきたが、耐熱着色性、耐光性、吸水性に問題があった。
For example, Patent Documents 1 and 2 have been proposed as polyester resin compositions for LED reflectors.
In Patent Documents 1 and 2, (a) i) terephthalic acid residues 70 to 100 mol%; ii) aromatic dicarboxylic acid residues 0 to 30 mol% having 20 or less carbon atoms; and iii) fats having 16 or less carbon atoms A dicarboxylic acid component comprising from 0 to 10 mol% of an aromatic dicarboxylic acid residue; and (b) i) a 2,2,4,4-tetramethyl-1,3-cyclobutanediol residue from 1 to 99 mol%; and ii) Disclosed is a glycol component containing 1-99 mol% 1,4-cyclohexanedimethanol residues (wherein the total mol% of dicarboxylic acid component is 100 mol% and the total mol% of glycol component is 100 mol%) However, although the mechanical properties tend to be good, there are problems in moldability and light resistance. Further, in Patent Document 3, (A) 100 parts by mass of a polyester resin, (B) 2 to 50 parts by mass of a phosphinate whose anion portion is a calcium salt or an aluminum salt of phosphinic acid, and (C) 0.5% of titanium dioxide. A flame-retardant polyester resin composition for a reflector of an illuminating device using a semiconductor light-emitting element as a light source, comprising: 30 parts by mass and (D) 0.01-3 parts by mass of a polyolefin resin having a polar group However, there are problems in the heat resistance, heat resistance, and light resistance of gold / tin solder. In Patent Document 4, 100 parts by mass of wholly aromatic thermotropic liquid crystal polyester, 97 to 85% by mass of titanium oxide obtained by a production method including a roasting step, 3 to 15% by mass of aluminum oxide (including hydrate) (Total of 100% by mass of both) comprising 8 to 42 parts by mass of titanium oxide particles surface-treated, 25 to 50 parts by mass of glass fibers, and 0 to 8 parts by mass of other inorganic fillers. Resin composition obtained through a melt-kneading step including a step of supplying at least a part of the glass fiber from a position 30% or more downstream with respect to the total length of the cylinder of the biaxial kneader using a shaft kneader. Although a product is disclosed, there is a problem in heat resistance and light resistance.
Patent Document 5 discloses a dry unsaturated polyester resin composition containing at least an unsaturated polyester resin, a polymerization initiator, an inorganic filler, a white pigment, a release agent, and a reinforcing material, wherein the unsaturated polyester resin is The total amount of the inorganic filler and the white pigment is in the range of 44 to 74% by mass with respect to the total amount of the composition. The proportion of the white pigment in the total amount of the inorganic filler and the white pigment is 30% by mass or more, and the unsaturated polyester resin is mixed with the unsaturated alkyd resin and the crosslinking agent. Although the unsaturated polyester resin composition for LED reflectors characterized by being is disclosed, there exists a problem in a moldability and light resistance. In addition, various polyamides have been used as surface mount LED reflectors, but there are problems with heat-resistant coloring, light resistance, and water absorption.
 以上のように、従来提案されているポリエステルやポリアミドでは、耐熱着色性、耐光性、成形性に課題を抱えながら使用している実情がある。 As described above, conventionally proposed polyesters and polyamides are used while having problems in heat-resistant coloring, light resistance and moldability.
 さらに、近年では、照明用途への展開も積極的に行われている。照明用途への展開を考えた場合、コストダウンやハイパワー化、寿命の向上、長期信頼性の向上がさらに求められている。そのため、信頼性の向上策として、リードフレームとLEDチップの接合には、従来のエポキシ樹脂/銀ペーストではなく、劣化が少なく、熱伝導率の高い金/錫共晶ハンダが使用されつつある。しかしながら、金/錫共晶ハンダの加工には、280℃以上290℃未満の温度がかかるため、使用される樹脂には、工程に耐えるために290℃以上の融点が求められる。また、金/錫共晶ハンダの加工時においても、樹脂中の水分による成型品の表面に膨れ(ブリスター)の発生を防ぐために、樹脂には低吸水であることが求められる。 Furthermore, in recent years, it has been actively developed for lighting applications. When considering the development of lighting applications, further cost reduction, higher power, longer life, and long-term reliability are required. Therefore, as a measure for improving the reliability, gold / tin eutectic solder having a low deterioration and a high thermal conductivity is being used instead of the conventional epoxy resin / silver paste for bonding the lead frame and the LED chip. However, since processing of gold / tin eutectic solder requires a temperature of 280 ° C. or higher and lower than 290 ° C., the resin to be used is required to have a melting point of 290 ° C. or higher in order to withstand the process. Further, even when processing gold / tin eutectic solder, the resin is required to have low water absorption in order to prevent blisters from occurring on the surface of the molded product due to moisture in the resin.
 以上の通り、表面実装型LED用反射板に使用するポリエステル樹脂組成物としては、必要とされる融点(融解ピーク温度)が280℃以上、好ましくは290℃以上と高く、かつ芳香環濃度が高いことが好ましい。しかしながら、これらを満足した表面実装型LED用反射板に使用するポリエステル樹脂組成物は、これまで報告されていない。 As described above, the required melting point (melting peak temperature) of the polyester resin composition used for the surface mount LED reflector is as high as 280 ° C. or higher, preferably 290 ° C. or higher, and the aromatic ring concentration is high. It is preferable. However, a polyester resin composition used for a surface mount LED reflector satisfying these conditions has not been reported so far.
特表2008-544030号公報Special table 2008-544030 gazette 特表2008-544031号公報Special table 2008-54031 特開2010-270177号公報JP 2010-270177 A 特開2008-231368号公報JP 2008-231368 A 特許4844699号公報Japanese Patent No. 4844699
 本発明は、上記の従来技術の問題点に鑑み創案されたものであり、その目的は、射出成形時の成形性、流動性、寸法安定性、低吸水性、ハンダ耐熱性、表面反射率、耐光性に優れる表面実装型LED用反射板に使用するのに好適なポリエステル樹脂組成物を提供することにある。さらには、本発明の目的は、長期的な信頼性を確保すべく、金/錫共晶ハンダ工程が適応可能な高融点、ハンダ工程での水分による成型品の膨らみ低減のための低吸水性、屋外使用や長期使用時の耐光性を達成した表面実装型LED用反射板に使用するのに好適なポリエステル樹脂組成物を提供することにある。 The present invention was devised in view of the above-mentioned problems of the prior art, and its purpose is moldability during injection molding, fluidity, dimensional stability, low water absorption, solder heat resistance, surface reflectance, An object of the present invention is to provide a polyester resin composition suitable for use in a surface mount LED reflector having excellent light resistance. Furthermore, an object of the present invention is to provide a high melting point that can be applied to a gold / tin eutectic soldering process and to ensure a long-term reliability, and a low water absorption for reducing swelling of a molded product due to moisture in the soldering process. Another object of the present invention is to provide a polyester resin composition suitable for use in a surface mount LED reflector that has achieved light resistance during outdoor use or long-term use.
 本発明者は、上記目的を達成するために、LED反射板としての特性を満たしながら射出成形やリフローハンダ工程を有利に行うことができ、さらには、金/錫共晶ハンダ耐熱性、低吸水性、耐光性にも優れたポリエステルの組成を鋭意検討した結果、本発明の完成に至った。 In order to achieve the above object, the present inventor can advantageously perform injection molding and reflow soldering processes while satisfying the characteristics as an LED reflector, and further, gold / tin eutectic solder heat resistance, low water absorption As a result of intensive studies on the composition of polyester having excellent properties and light resistance, the present invention has been completed.
 即ち、本発明は、以下の構成を有するものである。
(1)共重合ポリエステル樹脂(A)、酸化チタン(B)、繊維状強化材及び針状強化材からなる群より選択される少なくとも1種の強化材(C)、及び非繊維状又は非針状充填材(D)を含有し、共重合ポリエステル樹脂(A)100質量部に対して酸化チタン(B)0.5~100質量部、強化材(C)0~100質量部、及び非繊維状又は非針状充填材(D)0~50質量部の割合で含有するポリエステル樹脂組成物であって、共重合ポリエステル樹脂(A)が、4,4’-ビフェニルジカルボン酸とその他のジカルボン酸からなる酸成分とグリコール成分を構成成分とし、融点が280℃以上であることを特徴とする表面実装型LED用反射板に使用するポリエステル樹脂組成物。
(2)共重合ポリエステル樹脂(A)を構成する全酸成分の30モル%以上が、4,4’-ビフェニルジカルボン酸であることを特徴とする(1)に記載のポリエステル樹脂組成物。
(3)共重合ポリエステル樹脂(A)を構成するその他のジカルボン酸が、テレフタル酸及び/又は2,6-ナフタレンジカルボン酸であることを特徴とする(1)又は(2)に記載のポリエステル樹脂組成物。
(4)共重合ポリエステル樹脂(A)を構成する全酸成分の30~90モル%が4,4’-ビフェニルジカルボン酸であり、その他のジカルボン酸がテレフタル酸及び/又は2,6-ナフタレンジカルボン酸であり、グリコール成分がエチレングリコール、1,4-シクロヘキサンジメタノール、1,3-プロパンジオール、ネオペンチルグリコール、1,4-ブタンジオールから選ばれる一種または二種以上であることを特徴とする(1)~(3)のいずれかに記載のポリエステル樹脂組成物。
(5)非繊維状又は非針状充填材(D)がタルクであり、共重合ポリエステル樹脂(A)100質量部に対してタルク0.1~5質量部の割合で含有することを特徴とする(1)~(4)のいずれかに記載のポリエステル樹脂組成物。
(6)ハンダリフロー耐熱温度が260℃以上であることを特徴とする(1)~(5)のいずれかに記載のポリエステル樹脂組成物。
(7)ハンダリフロー耐熱温度が280℃以上であることを特徴とする(1)~(6)のいずれかに記載のポリエステル樹脂組成物。
(8)ポリエステル樹脂組成物の融解ピーク温度(Tm)と降温結晶化温度(Tc2)の差が40℃以下であることを特徴とする(1)~(7)のいずれかに記載のポリエステル樹脂組成物。
(9)(1)~(8)のいずれかに記載のポリエステル樹脂組成物を用いて成形して得られることを特徴とする表面実装型LED用反射板。
That is, the present invention has the following configuration.
(1) Copolyester resin (A), titanium oxide (B), at least one reinforcing material (C) selected from the group consisting of fibrous reinforcing materials and acicular reinforcing materials, and non-fibrous or non-needle Containing a filler (D), 0.5 to 100 parts by weight of titanium oxide (B), 0 to 100 parts by weight of reinforcing material (C), and 100% by weight of 100 parts by weight of the copolyester resin (A) Or non-needle-like filler (D) in a proportion of 0 to 50 parts by weight, wherein the copolymerized polyester resin (A) comprises 4,4′-biphenyldicarboxylic acid and other dicarboxylic acids A polyester resin composition for use in a reflector for a surface-mounted LED, comprising an acid component and a glycol component, each having a melting point of 280 ° C. or higher.
(2) The polyester resin composition as described in (1), wherein 30 mol% or more of all acid components constituting the copolyester resin (A) is 4,4′-biphenyldicarboxylic acid.
(3) The polyester resin as described in (1) or (2), wherein the other dicarboxylic acid constituting the copolyester resin (A) is terephthalic acid and / or 2,6-naphthalenedicarboxylic acid Composition.
(4) 30 to 90 mol% of the total acid component constituting the copolyester resin (A) is 4,4′-biphenyldicarboxylic acid, and the other dicarboxylic acid is terephthalic acid and / or 2,6-naphthalenedicarboxylic acid. It is an acid, and the glycol component is one or more selected from ethylene glycol, 1,4-cyclohexanedimethanol, 1,3-propanediol, neopentyl glycol, and 1,4-butanediol. The polyester resin composition according to any one of (1) to (3).
(5) The non-fibrous or non-needle filler (D) is talc, and is contained at a ratio of 0.1 to 5 parts by mass of talc with respect to 100 parts by mass of the copolyester resin (A). The polyester resin composition according to any one of (1) to (4).
(6) The polyester resin composition according to any one of (1) to (5), wherein the solder reflow heat-resistant temperature is 260 ° C. or higher.
(7) The polyester resin composition according to any one of (1) to (6), wherein the solder reflow heat-resistant temperature is 280 ° C. or higher.
(8) The polyester resin according to any one of (1) to (7), wherein the difference between the melting peak temperature (Tm) and the cooling crystallization temperature (Tc2) of the polyester resin composition is 40 ° C. or less. Composition.
(9) A surface-mounted LED reflector obtained by molding the polyester resin composition according to any one of (1) to (8).
 本発明のポリエステル樹脂組成物は、高い耐熱性、低い吸水性に加えて、射出成形時の成形性やハンダ耐熱性など加工性に優れる特定の共重合ポリエステル樹脂を使用しているので、全ての必要な特性を高度に満足する表面実装型LED用反射板を工業的に有利に製造することができる。 In addition to high heat resistance and low water absorption, the polyester resin composition of the present invention uses a specific copolyester resin excellent in processability such as moldability during injection molding and solder heat resistance. A reflector for a surface-mounted LED that highly satisfies the required characteristics can be industrially advantageously produced.
 また、本発明のポリエステル樹脂組成物は、主成分の共重合ポリエステル樹脂が280℃以上の高融点で耐熱性にも優れるため、金/錫共晶ハンダ工程にも適応可能であり、さらには、芳香環濃度が高いので、耐熱性、強靭性、耐光性に優れるとともに、封止材との密着性にも優れるなどの特徴を示すことができる。 In addition, the polyester resin composition of the present invention is adaptable to a gold / tin eutectic solder process because the main component copolymer polyester resin has a high melting point of 280 ° C. or more and excellent heat resistance. Since the aromatic ring concentration is high, characteristics such as excellent heat resistance, toughness, and light resistance, and excellent adhesion to the sealing material can be exhibited.
 本発明のポリエステル樹脂組成物は、表面実装型LED用反射板に使用することを意図するものである。表面実装型LEDには、プリント配線板を用いたチップLED型、リードフレームを用いたガルウィング型、PLCC型などが挙げられるが、本発明のポリエステル樹脂組成物はこれらの全ての反射板を射出成形により製造することができる。 The polyester resin composition of the present invention is intended to be used for a reflector for a surface mount LED. The surface mount type LED includes a chip LED type using a printed wiring board, a gull wing type using a lead frame, and a PLCC type. The polyester resin composition of the present invention injection-molds all these reflectors. Can be manufactured.
 本発明のポリエステル樹脂組成物は、共重合ポリエステル樹脂(A)、酸化チタン(B)、繊維状強化材及び針状強化材からなる群より選択される少なくとも1種の強化材(C)、及び非繊維状又は非針状充填材(D)を含有し、共重合ポリエステル樹脂(A)100質量部に対して酸化チタン(B)0.5~100質量部、強化材(C)0~100質量部、及び非繊維状又は非針状充填材(D)0~50質量部の割合で含有するポリエステル樹脂組成物であって、共重合ポリエステル樹脂(A)が、4,4’-ビフェニルジカルボン酸とその他のジカルボン酸からなる酸成分とグリコール成分を構成成分とし、融点が280℃以上である、表面実装型LED用反射板に使用するポリエステル樹脂組成物である。 The polyester resin composition of the present invention comprises a copolymerized polyester resin (A), titanium oxide (B), at least one reinforcing material (C) selected from the group consisting of a fibrous reinforcing material and an acicular reinforcing material, and Contains non-fibrous or non-needle filler (D), 0.5 to 100 parts by mass of titanium oxide (B) and 100 to 100 parts by mass of reinforcing material (C) with respect to 100 parts by mass of copolyester resin (A) A polyester resin composition containing 0 to 50 parts by mass of non-fibrous or non-needle filler (D), wherein the copolymerized polyester resin (A) is 4,4′-biphenyldicarboxylic acid It is a polyester resin composition used for a reflector for a surface-mounted LED, having an acid component composed of an acid and another dicarboxylic acid and a glycol component as constituent components and a melting point of 280 ° C. or higher.
 共重合ポリエステル樹脂(A)は、高い信頼性を付与するために、高融点、低吸水性に加えて、優れた耐UV性を実現するために配合されるものであり、共重合ポリエステル樹脂(A)が、4,4’-ビフェニルジカルボン酸とその他のジカルボン酸からなる酸成分とグリコール成分を構成成分とし、融点が280℃以上であることを特徴とする。共重合ポリエステル樹脂(A)は、下記の構成を有することにより、融点を280℃以上にすることができる。共重合ポリエステル樹脂(A)の融点は、好ましくは290℃以上、より好ましくは300℃以上、さらに好ましくは310℃以上である。共重合ポリエステル樹脂(A)の融点の上限は特に設定しないが、使用できる原料成分の制限より、340℃以下である。融点は、下記実施例の項に記載された方法で測定される。 The copolyester resin (A) is blended to realize excellent UV resistance in addition to a high melting point and low water absorption in order to impart high reliability. A) is characterized in that it comprises an acid component composed of 4,4′-biphenyldicarboxylic acid and other dicarboxylic acid and a glycol component as constituent components and has a melting point of 280 ° C. or higher. Copolymerization polyester resin (A) can make melting | fusing point 280 degreeC or more by having the following structure. The melting point of the copolyester resin (A) is preferably 290 ° C. or higher, more preferably 300 ° C. or higher, and still more preferably 310 ° C. or higher. The upper limit of the melting point of the copolyester resin (A) is not particularly set, but is 340 ° C. or lower due to the limitation of the raw material components that can be used. The melting point is measured by the method described in the Examples section below.
 共重合ポリエステル樹脂(A)は、4,4’-ビフェニルジカルボン酸が全酸成分の30モル%以上含むことが好ましく、より好ましくは4,4’-ビフェニルジカルボン酸が50モル%以上、更に好ましくは60モル%以上、特に好ましくは63モル%以上、最も好ましくは70モル%以上である。4,4’-ビフェニルジカルボン酸が全酸成分の30モル%未満では、成形性、ハンダ耐熱性、耐光性が低下する傾向にある。4,4’-ビフェニルジカルボン酸は、全酸成分の90モル%以下であることが好ましい。90モル%を超えると、ポリエステル樹脂の融点が高くなり過ぎ、重合条件の設定が難しくなる傾向にある。
 その他のジカルボン酸とは、テレフタル酸、2、6-ナフタレンジカルボン酸、イソフタル酸、ジフェノキシエタンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ジフェニルケトンジカルボン酸等の芳香族ジカルボン酸、アジピン酸、セバシン酸、コハク酸、グルタル酸、ダイマー酸等の脂肪族ジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環族ジカルボン酸などが挙げられ、これらの中では、重合性、コスト、耐熱性の点からテレフタル酸、2、6-ナフタレンジカルボン酸、またはこれらの混合物が好ましい。また、p-オキシ安息香酸、オキシカプロン酸等のオキシ酸、トリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸、ビフェニルスルホンテトラカルボン酸、ビフェニルテトラカルボン酸などの多価カルボン酸及びその無水物を併用しても構わない。共重合ポリエステル樹脂(A)を構成する酸成分としては、4,4’-ビフェニルジカルボン酸とその他のジカルボン酸の合計で、80モル%以上が好ましく、90モル%以上がより好ましく、95モル%以上がさらに好ましく、97モル%以上が特に好ましく、100モル%であっても構わない。
The copolymerized polyester resin (A) preferably contains 4,4′-biphenyldicarboxylic acid in an amount of 30 mol% or more, more preferably 4,4′-biphenyldicarboxylic acid in an amount of 50 mol% or more, still more preferably. Is 60 mol% or more, particularly preferably 63 mol% or more, and most preferably 70 mol% or more. If 4,4′-biphenyldicarboxylic acid is less than 30 mol% of the total acid component, moldability, solder heat resistance, and light resistance tend to be lowered. The amount of 4,4′-biphenyldicarboxylic acid is preferably 90 mol% or less of the total acid component. If it exceeds 90 mol%, the melting point of the polyester resin becomes too high, and the setting of the polymerization conditions tends to be difficult.
Other dicarboxylic acids are aromatic dicarboxylic acids such as terephthalic acid, 2,6-naphthalenedicarboxylic acid, isophthalic acid, diphenoxyethanedicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, and 4,4′-diphenyl ketone dicarboxylic acid. Aliphatic dicarboxylic acids such as acid, adipic acid, sebacic acid, succinic acid, glutaric acid and dimer acid, hexahydroterephthalic acid, hexahydroisophthalic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1 , 4-cyclohexanedicarboxylic acid and the like, and among them, terephthalic acid, 2,6-naphthalenedicarboxylic acid, or a mixture thereof is preferable from the viewpoint of polymerizability, cost, and heat resistance. . Also, polyoxycarboxylic acids such as p-oxybenzoic acid and oxycaproic acid, trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid, biphenylsulfonetetracarboxylic acid, biphenyltetracarboxylic acid, and anhydrides thereof You may use together. The acid component constituting the copolymerized polyester resin (A) is preferably a total of 4,4′-biphenyldicarboxylic acid and other dicarboxylic acids, preferably 80 mol% or more, more preferably 90 mol% or more, and 95 mol%. The above is more preferable, 97 mol% or more is particularly preferable, and it may be 100 mol%.
 また、共重合ポリエステル樹脂(A)のグリコ-ル成分としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブチレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、2,3-ブチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジエタノール、3-メチル-1,5-ペンタンジオール、2-メチル-1,5-ペンタンジオール、2-メチル-1,3-プロパンジオール、2-エチル-1,3-プロパンジオール、ネオペンチルグリコール、2-エチル-2-メチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-メチル-2-n-ブチル-1,3-プロパンジオール、2-n-ブチル-2-エチル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、2-エチル-2-n-ヘキシル-1,3-プロパンジオール、2,2-ジ-n-ヘキシル-1,3-プロパンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール、トリエチレングリコール、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコール、ポリプロピレングリコールなどの脂肪族グリコール、ヒドロキノン、4,4’-ジヒドロキシビスフェノール、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、1,4-ビス(β-ヒドロキシエトキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)エーテル、ビス(p-ヒドロキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)メタン、1,2-ビス(p-ヒドロキシフェニル)エタン、ビスフェノールA、ビスフェノールAのアルキレンオキサイド付加物などの芳香族グリコールなどが挙げられる。これらの中では、耐熱性、重合性、成形、コストなどからエチレングリコール、1,4-シクロヘキサンジメタノール、1,3-プロパンジオール、ネオペンチルグリコール、1,4-ブタンジオールから選ばれる一種または二種以上の混合物が好ましい。更に好ましくは、エチレングリコール、1,4-ブタンジオールから選ばれる一種以上である。なお、グリコール成分にエチレングリコールを用いた場合、共重合ポリエステル樹脂(A)の製造時に、ジエチレングリコールが副生し、共重合成分となることがある。この場合、副生するジエチレングリコールは、製造条件にもよるが共重合ポリエステル樹脂に組み込まれるエチレングリコールに対して1~5モル%程度である。また、トリメチロールエタン、トリメチロールプロパン、グリセリン、ペンタエリスリトール等の多価ポリオールを併用しても構わない。 Examples of the glycol component of the copolyester resin (A) include ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butylene glycol, 1,2-butylene glycol, 1, 3-butylene glycol, 2,3-butylene glycol, 1,5-pentanediol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2 -Cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, 3-methyl-1,5-pentanediol, 2-methyl-1,5-pentanediol, 2-methyl-1,3-propa Diol, 2-ethyl-1,3-propanediol, neopentyl glycol, 2-ethyl-2-methyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2-methyl-2 N-butyl-1,3-propanediol, 2-n-butyl-2-ethyl-1,3-propanediol, 2,2-di-n-butyl-1,3-propanediol, 2-ethyl- 2-n-hexyl-1,3-propanediol, 2,2-di-n-hexyl-1,3-propanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol , Aliphatic glycols such as triethylene glycol, polyethylene glycol, polytrimethylene glycol, polytetramethylene glycol, polypropylene glycol, Droquinone, 4,4'-dihydroxybisphenol, 1,4-bis (β-hydroxyethoxy) benzene, 1,4-bis (β-hydroxyethoxyphenyl) sulfone, bis (p-hydroxyphenyl) ether, bis (p- Examples include aromatic glycols such as hydroxyphenyl) sulfone, bis (p-hydroxyphenyl) methane, 1,2-bis (p-hydroxyphenyl) ethane, bisphenol A, and alkylene oxide adducts of bisphenol A. Among these, one or two selected from ethylene glycol, 1,4-cyclohexanedimethanol, 1,3-propanediol, neopentyl glycol, and 1,4-butanediol are considered due to heat resistance, polymerizability, molding, cost, and the like. A mixture of species or more is preferred. More preferably, it is at least one selected from ethylene glycol and 1,4-butanediol. In addition, when ethylene glycol is used for the glycol component, diethylene glycol may be by-produced during the production of the copolymer polyester resin (A) to become a copolymer component. In this case, diethylene glycol by-produced is about 1 to 5 mol% with respect to ethylene glycol incorporated in the copolymer polyester resin, although it depends on the production conditions. Moreover, you may use together polyhydric polyols, such as a trimethylol ethane, a trimethylol propane, glycerol, and a pentaerythritol.
 共重合ポリエステル樹脂(A)のグリコ-ル成分として全量、エチレングリコールを用いる場合、酸成分として4,4’-ビフェニルジカルボン酸を63モル%以上とすることが好ましく、70モル%以上とすることがより好ましい。また、この場合、より望ましい高融点を達成するためには、酸成分として4,4’-ビフェニルジカルボン酸を75モル%以上とすることがさらに好ましく、80モル%以上とすることが特に好ましい。 When ethylene glycol is used as the glycol component of the copolyester resin (A), the amount of 4,4′-biphenyldicarboxylic acid is preferably 63 mol% or more, preferably 70 mol% or more. Is more preferable. Further, in this case, in order to achieve a more desirable high melting point, it is more preferable that 4,4′-biphenyldicarboxylic acid is 75 mol% or more as an acid component, and 80 mol% or more is particularly preferable.
 また、5-スルホイソフタル酸、4-スルホナフタレン-2,7-ジカルボン酸、5-[4-スルホフェノキシ]イソフタル酸等の金属塩、または2-スルホ-1,4-ブタンジオール、2,5-ジメチル-3-スルホ-2,5-ヘキサンジオール等の金属塩などのスルホン酸金属塩基を含有するジカルボン酸またはジオールを全酸成分または全ジオール成分の20モル%以下の範囲で使用してもよい。 Further, metal salts such as 5-sulfoisophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, 5- [4-sulfophenoxy] isophthalic acid, or 2-sulfo-1,4-butanediol, 2,5 -A dicarboxylic acid or diol containing a sulfonic acid metal base such as a metal salt such as dimethyl-3-sulfo-2,5-hexanediol may be used in the total acid component or in a range of 20 mol% or less of the total diol component. Good.
 共重合ポリエステル樹脂(A)を製造するに際に使用する触媒として、特に限定がされないが、Ge、Sb、Ti、Al、MnまたはMgの化合物から選ばれる少なくとも一種の化合物が用いられることが好ましい。これらの化合物は、粉体、水溶液、エチレングリコール溶液、エチレングリコールのスラリー等として反応系に添加される。 Although it does not specifically limit as a catalyst used when manufacturing copolyester resin (A), It is preferable that at least 1 type of compound chosen from the compound of Ge, Sb, Ti, Al, Mn, or Mg is used. . These compounds are added to the reaction system as powders, aqueous solutions, ethylene glycol solutions, ethylene glycol slurries and the like.
 また、安定剤として、燐酸、ポリ燐酸やトリメチルフォスフェート等の燐酸エステル類、ホスホン酸系化合物、ホスフィン酸系化合物、ホスフィンオキサイド系化合物、亜ホスホン酸系化合物、亜ホスフィン酸系化合物、ホスフィン系化合物からなる群より選ばれる少なくとも一種のリン化合物を使用するのが好ましい。 Further, as stabilizers, phosphoric acid, phosphoric acid esters such as polyphosphoric acid and trimethyl phosphate, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphonous acid compounds, phosphinic acid compounds, phosphine compounds It is preferable to use at least one phosphorus compound selected from the group consisting of:
 共重合ポリエステル樹脂(A)の酸価としては、1~40eq/tonであることが好ましい。酸価が40eq/tonを超えると、耐光性が低下する傾向にある。また、酸価が1eq/ton未満では、重縮合反応性が低下して生産性が悪くなる傾向にある。 The acid value of the copolyester resin (A) is preferably 1 to 40 eq / ton. When the acid value exceeds 40 eq / ton, light resistance tends to decrease. On the other hand, when the acid value is less than 1 eq / ton, the polycondensation reactivity tends to decrease and the productivity tends to deteriorate.
 共重合ポリエステル樹脂(A)の極限粘度(IV)は、0.10~0.70dl/gであることが好ましく、より好ましくは0.20~0.65dl/g、さらに好ましくは0.25~0.60dl/gである。 The intrinsic viscosity (IV) of the copolyester resin (A) is preferably 0.10 to 0.70 dl / g, more preferably 0.20 to 0.65 dl / g, still more preferably 0.25 to 0.60 dl / g.
 共重合ポリエステル樹脂(A)は、本発明のポリエステル樹脂組成物において25~90質量%、好ましくは40~75質量%の割合で存在する。共重合ポリエステル樹脂(A)の割合が上記下限未満であると、機械的強度が低くなり、上記上限を超えると、酸化チタン(B)や強化材(C)の配合量が不足し、所望の効果が得られにくくなる。 The copolymerized polyester resin (A) is present in a proportion of 25 to 90% by mass, preferably 40 to 75% by mass in the polyester resin composition of the present invention. When the proportion of the copolymerized polyester resin (A) is less than the above lower limit, the mechanical strength becomes low, and when it exceeds the above upper limit, the blending amount of titanium oxide (B) and the reinforcing material (C) is insufficient, and the desired amount It becomes difficult to obtain the effect.
 酸化チタン(B)は、反射板の表面反射率を高めるために配合されるものであり、例えば硫酸法や塩素法により作製されたルチル型およびアナターゼ型の二酸化チタン(TiO)、一酸化チタン(TiO)、三酸化二チタン(Ti)などが挙げられるが、特にルチル型の二酸化チタン(TiO)が好ましく使用される。酸化チタン(B)の平均粒径は、一般に0.05~2.0μm、好ましくは0.15~0.5μmの範囲であり、1種で使用しても良いし、異なる粒径を有する酸化チタンを組み合わせて使用しても良い。酸化チタン成分濃度としては、90%以上、好ましくは95%以上、さらに好ましくは97%以上である。また、酸化チタン(B)は、シリカ、アルミナ、酸化亜鉛、ジルコニア等の金属酸化物、カップリング剤、有機酸、有機多価アルコール、シロキサン等で表面処理を施されたものを使用することができる。 Titanium oxide (B) is blended to increase the surface reflectance of the reflector. For example, rutile type and anatase type titanium dioxide (TiO 2 ) and titanium monoxide produced by the sulfuric acid method and the chlorine method. (TiO), dititanium trioxide (Ti 2 O 3 ) and the like can be mentioned, and rutile type titanium dioxide (TiO 2 ) is particularly preferably used. The average particle diameter of titanium oxide (B) is generally in the range of 0.05 to 2.0 μm, preferably 0.15 to 0.5 μm, and may be used alone or may have different particle diameters. Titanium may be used in combination. The titanium oxide component concentration is 90% or more, preferably 95% or more, and more preferably 97% or more. In addition, the titanium oxide (B) may be one that has been surface-treated with a metal oxide such as silica, alumina, zinc oxide, zirconia, a coupling agent, an organic acid, an organic polyhydric alcohol, or siloxane. it can.
 酸化チタン(B)の割合は、共重合ポリエステル樹脂(A)100質量部に対して0.5~100質量部、好ましくは10~80質量部である。酸化チタン(B)の割合が上記下限未満であると、表面反射率が低下し、上記上限を超えると、物性の大幅な低下や流動性が低下するなど成形加工性が低下するおそれがある。 The proportion of titanium oxide (B) is 0.5 to 100 parts by mass, preferably 10 to 80 parts by mass with respect to 100 parts by mass of the copolyester resin (A). If the ratio of titanium oxide (B) is less than the above lower limit, the surface reflectivity is lowered, and if it exceeds the upper limit, molding processability may be lowered, such as a significant decrease in physical properties and fluidity.
 強化材(C)は、ポリエステル樹脂組成物の成形性と成形品の強度を向上するために配合されるものであり、繊維状強化材及び針状強化材から選択される少なくとも1種を使用する。繊維状強化材としては、例えばガラス繊維、炭素繊維、ホウ素繊維、セラミック繊維、金属繊維などが挙げられ、針状強化材としては、例えばチタン酸カリウムウィスカー、ホウ酸アルミニウムウィスカー、酸化亜鉛ウィスカー、炭酸カルシウムウィスカー、硫酸マグネシウムウィスカー、ワラストナイトなどが挙げられる。ガラス繊維としては、0.1mm~100mmの長さを有するチョップドストランドまたは連続フィラメント繊維を使用することが可能である。ガラス繊維の断面形状としては、円形断面及び非円形断面のガラス繊維を用いることができる。円形断面ガラス繊維の直径は20μm以下、好ましくは15μm以下、さらに好ましくは10μm以下である。また、物性面や流動性より非円形断面のガラス繊維が好ましい。非円形断面のガラス繊維としては、繊維長の長さ方向に対して垂直な断面において略楕円形、略長円形、略繭形であるものをも含み、偏平度が1.5~8であることが好ましい。ここで偏平度とは、ガラス繊維の長手方向に対して垂直な断面に外接する最小面積の長方形を想定し、この長方形の長辺の長さを長径とし、短辺の長さを短径としたときの、長径/短径の比である。ガラス繊維の太さは特に限定されるものではないが、短径が1~20μm、長径2~100μm程度である。また、ガラス繊維は繊維束となって、繊維長1~20mm程度に切断されたチョップドストランド状のものが好ましく使用できる。さらには、ポリエステル樹脂組成物の表面反射率を高めるためには、共重合ポリエステル樹脂との屈折率差が大きいことが好ましいため、ガラス組成の変更や表面処理により、屈折率を高めたものを使用することが好ましい。 The reinforcing material (C) is blended in order to improve the moldability of the polyester resin composition and the strength of the molded product, and uses at least one selected from a fibrous reinforcing material and an acicular reinforcing material. . Examples of the fibrous reinforcing material include glass fiber, carbon fiber, boron fiber, ceramic fiber, and metal fiber. Examples of the acicular reinforcing material include potassium titanate whisker, aluminum borate whisker, zinc oxide whisker, and carbonic acid. Calcium whiskers, magnesium sulfate whiskers, wollastonite and the like can be mentioned. As glass fibers, chopped strands or continuous filament fibers having a length of 0.1 mm to 100 mm can be used. As the cross-sectional shape of the glass fiber, a glass fiber having a circular cross section and a non-circular cross section can be used. The diameter of the circular cross-section glass fiber is 20 μm or less, preferably 15 μm or less, more preferably 10 μm or less. Further, a glass fiber having a non-circular cross section is preferred from the viewpoint of physical properties and fluidity. Non-circular cross-section glass fibers include those that are substantially oval, substantially oval, or substantially bowl-shaped in a cross section perpendicular to the length direction of the fiber length, and have a flatness of 1.5 to 8. It is preferable. Here, the flatness is assumed to be a rectangle with the smallest area circumscribing a cross section perpendicular to the longitudinal direction of the glass fiber, the length of the long side of the rectangle is the major axis, and the length of the short side is the minor axis. It is the ratio of major axis / minor axis. The thickness of the glass fiber is not particularly limited, but the minor axis is about 1 to 20 μm and the major axis is about 2 to 100 μm. Further, glass fibers are preferably used in the form of chopped strands which are formed into fiber bundles and cut to a fiber length of about 1 to 20 mm. Furthermore, in order to increase the surface reflectance of the polyester resin composition, it is preferable that the difference in refractive index from the copolyester resin is large, so use a material whose refractive index is increased by changing the glass composition or surface treatment. It is preferable to do.
 強化材(C)の割合は、共重合ポリエステル樹脂(A)100質量部に対して0~100質量部、好ましくは5~100質量部、より好ましくは10~60質量部である。強化材(C)は必須成分ではないが、その割合が5質量部以上であると、成形品の機械的強度が向上して好ましい。強化材(C)の割合が上記上限を超えると、表面反射率、成形加工性が低下する傾向がある。 The proportion of the reinforcing material (C) is 0 to 100 parts by mass, preferably 5 to 100 parts by mass, and more preferably 10 to 60 parts by mass with respect to 100 parts by mass of the copolyester resin (A). The reinforcing material (C) is not an essential component, but the proportion of 5 parts by mass or more is preferable because the mechanical strength of the molded product is improved. When the ratio of the reinforcing material (C) exceeds the above upper limit, the surface reflectance and the moldability tend to be lowered.
 非繊維状又は非針状充填材(D)としては、目的別には強化用フィラーや導電性フィラー、磁性フィラー、難燃フィラー、熱伝導フィラー、熱黄変抑制用フィラーなどが挙げられ、具体的にはガラスビーズ、ガラスフレーク、ガラスバルーン、シリカ、タルク、カオリン、マイカ、アルミナ、ハイドロタルサイト、モンモリロナイト、グラファイト、カーボンナノチューブ、フラーレン、酸化インジウム、酸化錫、酸化鉄、酸化マグネシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、赤燐、炭酸カルシウム、酢酸マグネシウム、チタン酸ジルコン酸鉛、チタン酸バリウム、窒化アルミニウム、窒化ホウ素、ホウ酸亜鉛、硫酸バリウム、および針状ではないワラストナイト、チタン酸カリウム、ホウ酸アルミニウム、硫酸マグネシウム、酸化亜鉛、炭酸カルシウム等が挙げられる。これら充填材は、1種のみの単独使用だけではなく、数種を組み合わせて用いても良い。これらの中では、タルクが結晶化を速める効果を有し、成形性が向上することから好ましい。充填材の添加量は最適な量を選択すれば良いが、共重合ポリエステル樹脂(A)100質量部に対して最大50質量部を添加することが可能であるが、樹脂組成物の機械的強度の観点から、0.1~20質量部が好ましく、より好ましくは1~10質量部である。タルクを使用する場合、共重合ポリエステル樹脂(A)100質量部に対して0.1~5質量部が好ましく、より好ましくは、0.5~3質量部である。また、繊維状強化材、充填材は共重合ポリエステル樹脂との親和性を向上させるため、有機処理やカップリング剤処理したものを使用するか、または溶融コンパウンド時にカップリング剤と併用することが好ましく、カップリング剤としては、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤のいずれを使用しても良いが、その中でも、特にアミノシランカップリング剤、エポキシシランカップリング剤が好ましい。 Examples of the non-fibrous or non-needle filler (D) include reinforcing fillers, conductive fillers, magnetic fillers, flame retardant fillers, thermal conductive fillers, thermal yellowing suppression fillers, etc., according to purpose. Glass beads, glass flakes, glass balloons, silica, talc, kaolin, mica, alumina, hydrotalcite, montmorillonite, graphite, carbon nanotubes, fullerene, indium oxide, tin oxide, iron oxide, magnesium oxide, aluminum hydroxide, Magnesium hydroxide, calcium hydroxide, red phosphorus, calcium carbonate, magnesium acetate, lead zirconate titanate, barium titanate, aluminum nitride, boron nitride, zinc borate, barium sulfate, and non-acicular wollastonite, titanium Potassium oxide, aluminum borate, Magnesium, zinc oxide, calcium carbonate, and the like. These fillers may be used not only alone but also in combination of several kinds. Among these, talc is preferable because it has an effect of accelerating crystallization and improves moldability. The addition amount of the filler may be selected as an optimum amount, but it is possible to add up to 50 parts by mass with respect to 100 parts by mass of the copolyester resin (A), but the mechanical strength of the resin composition In view of the above, 0.1 to 20 parts by mass is preferable, and 1 to 10 parts by mass is more preferable. When talc is used, it is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the copolyester resin (A). In order to improve the affinity with the copolyester resin, the fibrous reinforcing material and filler are preferably used after being treated with an organic treatment or a coupling agent, or in combination with a coupling agent at the time of melt compounding. As the coupling agent, any of a silane coupling agent, a titanate coupling agent, and an aluminum coupling agent may be used, and among them, an aminosilane coupling agent and an epoxy silane coupling agent are particularly preferable. .
 本発明のポリエステル樹脂組成物には、従来のLED反射板用ポリエステル樹脂組成物の各種添加剤を使用することができる。添加剤としては、安定剤、衝撃改良材、難燃剤、離型剤、摺動性改良材、着色剤、蛍光増白剤、可塑剤、結晶核剤、ポリエステル以外の熱可塑性樹脂などが挙げられる。 In the polyester resin composition of the present invention, various additives of conventional polyester resin compositions for LED reflectors can be used. Additives include stabilizers, impact modifiers, flame retardants, mold release agents, slidability improvers, colorants, fluorescent brighteners, plasticizers, crystal nucleating agents, thermoplastic resins other than polyester, and the like. .
 安定剤としては、ヒンダードフェノール系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤などの有機系酸化防止剤や熱安定剤、ヒンダードアミン系、ベンゾフェノン系、イミダゾール系等の光安定剤や紫外線吸収剤、金属不活性化剤、銅化合物などが挙げられる。銅化合物としては、塩化第一銅、臭化第一銅、ヨウ化第一銅、塩化第二銅、臭化第二銅、ヨウ化第二銅、燐酸第二銅、ピロリン酸第二銅、硫化銅、硝酸銅、酢酸銅などの有機カルボン酸の銅塩などを用いることができる。さらに銅化合物以外の構成成分としては、ハロゲン化アルカリ金属化合物を含有することが好ましく、ハロゲン化アルカリ金属化合物としては、塩化リチウム、臭化リチウム、ヨウ化リチウム、フッ化ナトリウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、フッ化カリウム、塩化カリウム、臭化カリウム、ヨウ化カリウムなどが挙げられる。これら添加剤は、1種のみの単独使用だけではなく、数種を組み合わせて用いても良い。安定剤の添加量は最適な量を選択すれば良いが、共重合ポリエステル樹脂(A)100質量部に対して最大5質量部を添加することが可能である。 Stabilizers include organic antioxidants such as hindered phenol antioxidants, sulfur antioxidants, phosphorus antioxidants, heat stabilizers, light stabilizers such as hindered amines, benzophenones, and imidazoles. Examples include ultraviolet absorbers, metal deactivators, and copper compounds. Copper compounds include cuprous chloride, cuprous bromide, cuprous iodide, cupric chloride, cupric bromide, cupric iodide, cupric phosphate, cupric pyrophosphate, Copper salts of organic carboxylic acids such as copper sulfide, copper nitrate, and copper acetate can be used. Further, as a component other than the copper compound, an alkali metal halide compound is preferably contained. Examples of the alkali metal halide compound include lithium chloride, lithium bromide, lithium iodide, sodium fluoride, sodium chloride, bromide. Examples thereof include sodium, sodium iodide, potassium fluoride, potassium chloride, potassium bromide, potassium iodide and the like. These additives may be used alone or in combination of several kinds. Although the addition amount of a stabilizer should just select the optimal quantity, it is possible to add a maximum of 5 mass parts with respect to 100 mass parts of copolyester resin (A).
 本発明のポリエステル樹脂組成物には、共重合ポリエステル樹脂(A)とは異なる熱可塑性樹脂を添加しても良い。例えば、ポリアミド(PA)、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、ポリテトラフルオロエチレン(PTFE)、フッ素樹脂、アラミド樹脂、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン(PEK)、ポリエーテルイミド(PEI)、熱可塑性ポリイミド、ポリアミドイミド(PAI)、ポリエーテルケトンケトン(PEKK)、ポリフェニレンエーテル(PPE)、ポリエーテルスルホン(PES)、ポリサルホン(PSU)、ポリアリレート(PAR)、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリカーボネート(PC)、ポリオキシメチレン(POM)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリメチルペンテン(TPX)、ポリスチレン(PS)、ポリメタクリル酸メチル、アクリロニトリル-スチレン共重合体(AS)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)が挙げられる。これら熱可塑性樹脂は、溶融混練により、溶融状態でブレンドすることも可能であるが、熱可塑性樹脂を繊維状、粒子状にし、本発明のポリアミド樹脂組成物に分散しても良い。熱可塑性樹脂の添加量は最適な量を選択すれば良いが、共重合ポリエステル樹脂(A)100質量部に対して最大50質量部を添加することが可能である。 A thermoplastic resin different from the copolymerized polyester resin (A) may be added to the polyester resin composition of the present invention. For example, polyamide (PA), polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polytetrafluoroethylene (PTFE), fluororesin, aramid resin, polyetheretherketone (PEEK), polyetherketone (PEK), polyether Imide (PEI), thermoplastic polyimide, polyamideimide (PAI), polyether ketone ketone (PEKK), polyphenylene ether (PPE), polyethersulfone (PES), polysulfone (PSU), polyarylate (PAR), polyethylene terephthalate, Polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polycarbonate (PC), polyoxymethylene (POM), polypropylene (PP), polyethylene (PE) Polymethyl pentene (TPX), polystyrene (PS), polymethyl methacrylate, acrylonitrile - styrene copolymer (AS), acrylonitrile - butadiene - styrene copolymer (ABS) and the like. These thermoplastic resins can be blended in a molten state by melt kneading. However, the thermoplastic resin may be made into a fiber or particle and dispersed in the polyamide resin composition of the present invention. An optimum amount of the thermoplastic resin may be selected, but a maximum of 50 parts by mass can be added to 100 parts by mass of the copolyester resin (A).
 衝撃改良剤としては、エチレン-プロピレンゴム(EPM)、エチレン-プロピレン-ジエンゴム(EPDM)、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸エステル共重合体、エチレン酢酸ビニル共重合体等のポリオレフィン系樹脂、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-イソプレン-スチレン共重合体(SIS)、アクリル酸エステル共重合体等のビニルポリマー系樹脂、ポリブチレンテレフタレートまたはポリブチレンナフタレートをハードセグメントとし、ポリテトラメチレングリコールまたはポリカプロラクトンまたはポリカーボネートジオールをソフトセグメントとしたポリエステルブロック共重合体、ナイロンエラストマー、ウレタンエラストマー、アクリルエラストマー、シリコンゴム、フッ素系ゴム、異なる2種のポリマーより構成されたコアシェル構造を有するポリマー粒子などが挙げられる。衝撃改良剤の添加量は最適な量を選択すれば良いが、共重合ポリエステル樹脂(A)100質量部に対して最大30質量部を添加することが可能である。 Impact modifiers include ethylene-propylene rubber (EPM), ethylene-propylene-diene rubber (EPDM), ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, ethylene-methacrylic acid copolymer, ethylene- Polyolefin resins such as methacrylic acid ester copolymer, ethylene vinyl acetate copolymer, styrene-butadiene-styrene block copolymer (SBS), styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-isoprene -Styrene copolymer (SIS), vinyl polymer resin such as acrylate copolymer, polybutylene terephthalate or polybutylene naphthalate as hard segment, polytetramethylene glycol or polycaprolactone or poly Polyester block copolymer in which the turbo sulfonate diol as a soft segment, a nylon elastomer, urethane elastomer, acrylic elastomer, silicone rubber, fluorinated rubber, and the like polymer particles having a core-shell structure constituted from two different polymers. The addition amount of the impact modifier may be selected as an optimum amount, but it is possible to add a maximum of 30 parts by mass with respect to 100 parts by mass of the copolyester resin (A).
 本発明のポリエステル樹脂組成物に対して、共重合ポリエステル樹脂(A)以外の熱可塑性樹脂および耐衝撃改良材を添加する場合にはポリエステルと反応可能な反応性基が共重合されていることが好ましく、反応性基としてはポリエステル樹脂の末端基である水酸基及び/又はカルボキシル基と反応しうる基である。具体的には酸無水物基、エポキシ基、オキサゾリン基、アミノ基、イソシアネート基等が例示されるが、それらの中でもエポキシ基、イソシアネート基が最も反応性に優れている。このようにポリエステル樹脂と反応する反応性基を有する熱可塑性樹脂はポリエステル中に微分散し、微分散するがゆえに粒子間の距離が短くなり耐衝撃性が大幅に改良されるという報告もある。 When a thermoplastic resin other than the copolymerized polyester resin (A) and an impact resistance improving material are added to the polyester resin composition of the present invention, a reactive group capable of reacting with the polyester is copolymerized. Preferably, the reactive group is a group capable of reacting with a hydroxyl group and / or a carboxyl group which is a terminal group of the polyester resin. Specific examples include an acid anhydride group, an epoxy group, an oxazoline group, an amino group, and an isocyanate group. Among these, an epoxy group and an isocyanate group are most excellent in reactivity. There is also a report that the thermoplastic resin having a reactive group that reacts with the polyester resin is finely dispersed in the polyester and finely dispersed, so that the distance between the particles is shortened and the impact resistance is greatly improved.
 難燃剤としては、ハロゲン系難燃剤と難燃助剤の組み合わせが良く、ハロゲン系難燃剤としては、臭素化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ビスフェノール型エポキシ系重合体、臭素化スチレン無水マレイン酸重合体、臭素化エポキシ樹脂、臭素化フェノキシ樹脂、デカブロモジフェニルエーテル、デカブロモビフェニル、臭素化ポリカーボネート、パークロロシクロペンタデカン及び臭素化架橋芳香族重合体等が好ましく、難燃助剤としては、三酸化アンチモン、五酸化アンチモン、アンチモン酸ナトリウム、錫酸亜鉛、ホウ酸亜鉛、モンモリロナイトなどの層状ケイ酸塩、フッ素系ポリマー、シリコーンなどが挙げられる。中でも、熱安定性の面より、ハロゲン系難燃剤としては、ジブロムポリスチレン、難燃助剤としては、三酸化アンチモン、アンチモン酸ナトリウム、錫酸亜鉛のいずれかとの組み合わせが好ましい。また、非ハロゲン系難燃剤としては、メラミンシアヌレート、赤リン、ホスフィン酸の金属塩、含窒素リン酸系の化合物が挙げられる。特に、ホスフィン酸金属塩と含窒素リン酸系化合物との組み合わせが好ましく、含窒素リン酸系化合物としては、メラミンまたは、メラム、メレム、メロンのようなメラミンの縮合物とポリリン酸の反応生成物またはそれらの混合物を含む。その他難燃剤、難燃助剤としては、これら難燃剤の使用の際、金型等の金属腐食防止として、ハイドロタルサイト系化合物やアルカリ化合物の添加が好ましい。難燃剤の添加量は最適な量を選択すれば良いが、共重合ポリアミド樹脂(A)100質量部に対して最大50質量部を添加することが可能である。 As a flame retardant, a combination of a halogen flame retardant and a flame retardant aid is good. As a halogen flame retardant, brominated polystyrene, brominated polyphenylene ether, brominated bisphenol type epoxy polymer, brominated styrene maleic anhydride Polymers, brominated epoxy resins, brominated phenoxy resins, decabromodiphenyl ether, decabromobiphenyl, brominated polycarbonate, perchlorocyclopentadecane, brominated cross-linked aromatic polymers, etc. are preferred. Examples include layered silicates such as antimony, antimony pentoxide, sodium antimonate, zinc stannate, zinc borate, and montmorillonite, fluorine-based polymers, and silicones. Among these, from the viewpoint of thermal stability, the halogen flame retardant is preferably a combination of dibromopolystyrene and the flame retardant auxiliary is any combination of antimony trioxide, sodium antimonate, and zinc stannate. Non-halogen flame retardants include melamine cyanurate, red phosphorus, phosphinic acid metal salts, and nitrogen-containing phosphoric acid compounds. In particular, a combination of a phosphinic acid metal salt and a nitrogen-containing phosphoric acid compound is preferable. As the nitrogen-containing phosphoric acid compound, a reaction product of melamine or a melamine condensate such as melam, melem, melon and polyphosphoric acid Or a mixture thereof. As other flame retardants and flame retardant aids, addition of hydrotalcite-based compounds and alkali compounds is preferable as metal corrosion prevention for molds and the like when these flame retardants are used. The addition amount of the flame retardant may be an optimum amount, but it is possible to add a maximum of 50 parts by mass with respect to 100 parts by mass of the copolymerized polyamide resin (A).
 離型剤としては、長鎖脂肪酸またはそのエステルや金属塩、アマイド系化合物、ポリエチレンワックス、シリコーン、ポリエチレンオキシド等が挙げられる。長鎖脂肪酸としては、特に炭素数12以上が好ましく、例えばステアリン酸、12-ヒドロキシステアリン酸、ベヘン酸、モンタン酸などが挙げられ、部分的もしくは全カルボン酸が、モノグリコールやポリグリコールによりエステル化されていてもよく、または金属塩を形成していても良い。アマイド系化合物としては、エチレンビステレフタルアミド、メチレンビスステアリルアミドなどが挙げられる。これら離型剤は、単独であるいは混合物として用いても良い。離型材の添加量は最適な量を選択すれば良いが、共重合ポリエステル樹脂(A)100質量部に対して最大5質量部を添加することが可能である。 Examples of the release agent include long chain fatty acids or esters thereof, metal salts, amide compounds, polyethylene wax, silicone, polyethylene oxide, and the like. The long chain fatty acid preferably has 12 or more carbon atoms, and examples thereof include stearic acid, 12-hydroxystearic acid, behenic acid, and montanic acid. Partial or total carboxylic acid is esterified with monoglycol or polyglycol. Or a metal salt may be formed. Examples of the amide compound include ethylene bisterephthalamide and methylene bisstearyl amide. These release agents may be used alone or as a mixture. The addition amount of the release material may be selected as an optimum amount, but a maximum of 5 parts by mass can be added to 100 parts by mass of the copolyester resin (A).
 本発明のポリエステル樹脂組成物は、DSC測定において融解ピーク温度(Tm)が280℃以上であることが好ましく、より好ましくは、290℃以上、更に好ましくは300℃以上、特に好ましくは310℃以上、最も好ましくは320℃以上である。本発明のポリエステル樹脂組成物のTmの上限は、次の理由により340℃以下であることが好ましい。Tmが上記上限を超える場合、本発明のポリエステル樹脂組成物を射出成形する際に必要となる加工温度が極めて高くなるため、加工時にポリエステル樹脂組成物が分解し、目的の物性や外観が得られない場合がある。逆に、Tmが上記下限未満の場合、結晶化速度が遅くなり、いずれも成形が困難になる場合があり、さらには、ハンダ耐熱性の低下を招く恐れがある。Tmが310℃以上であると、280℃のリフローハンダ耐熱性を満足し、金/錫共晶ハンダ工程にも適応可能になるので好ましい。 The polyester resin composition of the present invention preferably has a melting peak temperature (Tm) of 280 ° C. or higher in DSC measurement, more preferably 290 ° C. or higher, further preferably 300 ° C. or higher, particularly preferably 310 ° C. or higher. Most preferably, it is 320 degreeC or more. The upper limit of Tm of the polyester resin composition of the present invention is preferably 340 ° C. or lower for the following reason. When Tm exceeds the above upper limit, the processing temperature required for injection molding the polyester resin composition of the present invention becomes extremely high, so that the polyester resin composition decomposes during processing, and the desired physical properties and appearance are obtained. There may not be. On the other hand, when Tm is less than the above lower limit, the crystallization rate is slow, and in some cases, molding may be difficult, and further, solder heat resistance may be reduced. A Tm of 310 ° C. or higher is preferable because it satisfies the reflow solder heat resistance of 280 ° C. and can be applied to a gold / tin eutectic solder process.
 さらに、本発明のポリエステル樹脂組成物は、DSC測定において融解ピーク温度(Tm)と降温結晶化温度(Tc2)差が40℃以下であることが好ましく、より好ましくは35℃以下、更に好ましくは30℃以下である。降温結晶化温度(Tc2)とは、DSC測定に於いて、共重合ポリエステル樹脂の融点より10℃以上高い温度から降温させた際に、結晶化し始める温度である。融解ピーク温度(Tm)と降温結晶化温度(Tc2)は、下記実施例の項に記載された方法で測定される。融解ピーク温度(Tm)と降温結晶化温度(Tc2)差が40℃以下では、容易に結晶化が進行し、寸法安定性や物性などを十分に発揮することができる。一方、融解ピーク温度(Tm)と降温結晶化温度(Tc2)差が40℃を超える場合、LED用反射板は射出成形の短いサイクルで成形するため、十分に結晶化が進まないことがあり、離型不足等の成形難を引き起こしたり、十分に結晶化が終了していないため、後工程の加熱時に変形や結晶収縮が発生し、封止材やリードフレームから剥離する問題が発生し、信頼性に欠ける。 Furthermore, the polyester resin composition of the present invention preferably has a difference in melting peak temperature (Tm) and cooling crystallization temperature (Tc2) of 40 ° C. or less, more preferably 35 ° C. or less, and still more preferably 30 in DSC measurement. It is below ℃. The temperature-falling crystallization temperature (Tc2) is a temperature at which crystallization starts when the temperature is lowered from a temperature 10 ° C. higher than the melting point of the copolyester resin in DSC measurement. The melting peak temperature (Tm) and the cooling crystallization temperature (Tc2) are measured by the methods described in the Examples section below. When the difference between the melting peak temperature (Tm) and the cooling crystallization temperature (Tc2) is 40 ° C. or less, crystallization proceeds easily, and dimensional stability and physical properties can be sufficiently exhibited. On the other hand, when the difference between the melting peak temperature (Tm) and the cooling crystallization temperature (Tc2) exceeds 40 ° C., the LED reflector is molded in a short cycle of injection molding, so that crystallization may not proceed sufficiently. Due to molding difficulties such as insufficient mold release, or because crystallization has not been completed sufficiently, deformation and crystal shrinkage occur during heating in the subsequent process, causing problems of peeling from the sealing material and lead frame, resulting in reliability Lack of sex.
 本発明における共重合ポリエステル樹脂(A)は、高融点や成形性に加え、低吸水性や流動性のバランスに優れ、さらには耐光性に優れる。このため、かかる共重合ポリエステル樹脂(A)から得られる本発明のポリエステル樹脂組成物は、表面実装型LEDの反射板の成形においては、280℃以上の高融点、低吸水であることに加え、薄肉、ハイサイクルな成形が可能である。 The copolymerized polyester resin (A) in the present invention has an excellent balance of low water absorption and fluidity in addition to a high melting point and moldability, and also has excellent light resistance. For this reason, the polyester resin composition of the present invention obtained from such a copolyester resin (A) has a high melting point of 280 ° C. or higher and low water absorption in the molding of a reflector of a surface-mounted LED. Thin-walled, high-cycle molding is possible.
 本発明のポリエステル樹脂組成物は、上述の各構成成分を従来公知の方法で配合することにより製造されることができる。例えば、共重合ポリエステル樹脂(A)の重縮合反応時に各成分を添加したり、共重合ポリエステル樹脂(A)とその他の成分をドライブレンドしたり、または、二軸スクリュー型の押出機を用いて各構成成分を溶融混練する方法を挙げることができる。 The polyester resin composition of the present invention can be produced by blending the above-described constituent components by a conventionally known method. For example, each component is added during the polycondensation reaction of the copolyester resin (A), the copolyester resin (A) and other components are dry blended, or a twin screw type extruder is used. The method of melt-kneading each structural component can be mentioned.
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例に記載された測定値は、以下の方法によって測定したものである。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. In addition, the measured value described in the Example is measured by the following method.
(1)共重合ポリエステル樹脂の極限粘度(IV)
 1,1,2,2-テトラクロルエタン/フェノ-ル(2:3重量比)混合溶媒中、30℃での溶液粘度から求めた。
(2)酸価
 共重合ポリエステル樹脂0.1gをベンジルアルコール10mlに加熱溶解した後、0.1NのNaOHのメタノール/ベンジルアルコール(1/9容積比)の溶液を使用して滴定して求めた。
(3)共重合ポリエステル樹脂の融点、および樹脂組成物の融解ピーク温度(Tm)、降温結晶化温度(Tc2)
 セイコ-電子工業株式会社製の示差熱分析計(DSC)、RDC-220で測定した。昇温速度20℃/分で昇温し、330℃で3分間保持したのち、330℃から130℃までを10℃/分で降温した。昇温時に観察される融解ピ-クの頂点温度を融点・Tm、降温時に観察される結晶化ピ-クの頂点温度を降温結晶化温度(Tc2)とした。
(1) Intrinsic viscosity of copolyester resin (IV)
The viscosity was determined from the solution viscosity at 30 ° C. in a 1,1,2,2-tetrachloroethane / phenol (2: 3 weight ratio) mixed solvent.
(2) Acid value After 0.1 g of copolyester resin was dissolved in 10 ml of benzyl alcohol by heating, it was determined by titration using a solution of 0.1 N NaOH in methanol / benzyl alcohol (1/9 volume ratio). .
(3) Melting point of copolymerized polyester resin, melting peak temperature (Tm) of resin composition, cooling crystallization temperature (Tc2)
Measurements were made with a differential thermal analyzer (DSC), RDC-220, manufactured by Seiko Denshi Kogyo Co., Ltd. The temperature was raised at a rate of temperature increase of 20 ° C./min, held at 330 ° C. for 3 minutes, and then cooled from 330 ° C. to 130 ° C. at a rate of 10 ° C./min. The peak temperature of the melting peak observed when the temperature was raised was the melting point Tm, and the temperature of the crystallization peak observed when the temperature was lowered was the temperature-falling crystallization temperature (Tc2).
(4)成形性
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は120℃に設定し、フィルムゲートを有する縦100mm、横100mm、厚み1mmtの平板作成用金型を使用し、射出成形を実施した。射出速度50mm/秒、保圧30MPa、射出時間10秒、冷却時間10秒で成型を行い、成形性の良悪は以下のような評価を行った。
 ○:問題なく成型品が得られる。
 △:時々スプルーが金型に残る。
 ×:離型性が不十分であり、成型品が金型に貼り付いたり変形する。
(4) Formability Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C., the mold temperature is set to 120 ° C., and a flat plate having a film gate length of 100 mm, width of 100 mm, and thickness of 1 mm. Injection molding was carried out using a production mold. Molding was performed at an injection speed of 50 mm / sec, a holding pressure of 30 MPa, an injection time of 10 seconds, and a cooling time of 10 seconds. The quality of the moldability was evaluated as follows.
○: A molded product can be obtained without problems.
Δ: Sprue sometimes remains in the mold.
X: The releasability is insufficient, and the molded product sticks to the mold or deforms.
(5)ハンダ耐熱性
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、長さ127mm、幅12.6mm、厚み0.8mmtのUL燃焼試験用テストピースを射出成形し、試験片を作製した。試験片は85℃、85%RH(相対湿度)の雰囲気中に72時間放置した。試験片はエアリフロー炉中(エイテック製 AIS-20-82C)、室温から150℃まで60秒かけて昇温させ予備加熱を行った後、190℃まで0.5℃/分の昇温速度でプレヒートを実施した。その後、100℃/分の速度で所定の設定温度まで昇温し、所定の温度で10秒間保持した後、冷却を行った。設定温度は240℃から5℃おきに増加させ、表面の膨れや変形が発生しなかった最高の設定温度をリフロー耐熱温度とし、ハンダ耐熱性の指標として用いた。
 ◎:リフロー耐熱温度が280℃以上
 ○:リフロー耐熱温度が260℃以上280℃未満
 ×:リフロー耐熱温度が260℃未満
(5) Solder heat resistance Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C., the mold temperature is set to 140 ° C., the length is 127 mm, the width is 12.6 mm, and the thickness is 0.8 mm. The test piece for the UL combustion test was injection molded to produce a test piece. The test piece was left in an atmosphere of 85 ° C. and 85% RH (relative humidity) for 72 hours. The specimen was heated in an air reflow furnace (AIS-20-82C manufactured by ATEC) from room temperature to 150 ° C over 60 seconds, preheated, and then heated to 190 ° C at a rate of 0.5 ° C / min. Preheating was performed. Thereafter, the temperature was raised to a predetermined set temperature at a rate of 100 ° C./min, held at the predetermined temperature for 10 seconds, and then cooled. The set temperature was increased from 240 ° C. every 5 ° C., and the highest set temperature at which the surface did not swell or deformed was defined as the reflow heat resistant temperature, which was used as an index of solder heat resistance.
A: Reflow heat resistant temperature is 280 ° C or higher. ○: Reflow heat resistant temperature is 260 ° C or higher and lower than 280 ° C. X: Reflow heat resistant temperature is lower than 260 ° C.
(6)拡散反射率
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、縦100mm、横100mm、厚み2mmの平板を射出成形し、評価用試験片を作製した。この試験片を用いて、日立製作所製の自記分光光度計「U3500」に同社製の積分球を設置し、350nmから800nmの波長の反射率を測定した。反射率の比較には460nmの波長における拡散反射率を求めた。リファレンスには硫酸バリウムを用いた。
(6) Diffuse reflectance Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C, the mold temperature is set to 140 ° C, and a flat plate of 100mm in length, 100mm in width and 2mm in thickness is injection molded. Then, a test piece for evaluation was produced. Using this test piece, an integrating sphere manufactured by Hitachi, Ltd. was installed in a self-recording spectrophotometer “U3500” manufactured by Hitachi, Ltd., and the reflectance at wavelengths from 350 nm to 800 nm was measured. For comparison of reflectance, diffuse reflectance at a wavelength of 460 nm was obtained. Barium sulfate was used as a reference.
(7)飽和吸水率
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、縦100mm、横100mm、厚み1mmの平板を射出成形し、評価用試験片を作製した。この試験片を80℃熱水中に50時間浸漬させ、飽和吸水時及び乾燥時の重量から以下の式より飽和吸水率を求めた。
 飽和吸水率(%)={(飽和吸水時の重量-乾燥時の重量)/乾燥時の重量}×100
(7) Saturated water absorption Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C, the mold temperature is set to 140 ° C, and a flat plate of 100mm length, 100mm width and 1mm thickness is injection molded. Then, a test piece for evaluation was produced. This test piece was immersed in hot water at 80 ° C. for 50 hours, and the saturated water absorption was determined from the following equation from the weight at the time of saturated water absorption and drying.
Saturated water absorption (%) = {(weight at saturated water absorption−weight at drying) / weight at drying} × 100
(8)流動性
 東芝機械製射出成形機IS-100を用い、シリンダー温度は330℃、金型温度は120℃に設定し、射出圧設定値40%、射出速度設定値40%、計量35mm、射出時間6秒、冷却時間10秒の条件で、幅1mm、厚み0.5mmの流動長測定用金型で射出成形し、評価用試験片を作製した。流動性の評価として、この試験片の流動長さ(mm)を測定した。
(8) Fluidity Using Toshiba Machine's injection molding machine IS-100, cylinder temperature is set to 330 ° C, mold temperature is set to 120 ° C, injection pressure set value is 40%, injection speed set value is 40%, weighing is 35mm, Under the conditions of an injection time of 6 seconds and a cooling time of 10 seconds, injection molding was performed with a flow length measuring mold having a width of 1 mm and a thickness of 0.5 mm to prepare an evaluation test piece. As an evaluation of fluidity, the flow length (mm) of this test piece was measured.
(9)シリコーン密着性
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、縦100mm、横100mm、厚み2mmの平板を射出成形し、評価用試験片を作製した。この試験片の片面に、シリコーン封止材(信越シリコーン社製、ASP-1110、封止材硬度D60)をコーティング厚み約100μmになるようにコーティングし、100℃×1時間のプレヒーティング後、150℃×4時間の硬化処理をして試験片の片面に封止材皮膜を形成させた。
 次いで、試験片上の封止材皮膜に対して、JIS K5400に基づく碁盤目試験(1mm幅クロスカット100マス)で密着性を評価した。
 ○:剥離マス目数10以下
 ×:剥離試験前のマス目形成時に剥離あり
(9) Adhesion of silicone Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C, the mold temperature is set to 140 ° C, and a flat plate of 100mm length, 100mm width and 2mm thickness is injection molded. Then, a test piece for evaluation was produced. One side of this test piece was coated with a silicone sealing material (Shin-Etsu Silicone Co., ASP-1110, sealing material hardness D60) to a coating thickness of about 100 μm, and after preheating at 100 ° C. for 1 hour, A curing treatment was performed at 150 ° C. for 4 hours to form a sealing material film on one side of the test piece.
Next, the adhesiveness of the sealing material film on the test piece was evaluated by a cross-cut test based on JIS K5400 (100 mm of 1 mm width crosscut).
○: No more than 10 peeling cells ×: There is peeling when forming the cells before the peeling test
(10)耐光性
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、縦100mm、横100mm、厚み2mmの平板を射出成形し、評価用試験片を作製した。この試験片について、超促進耐候試験機「アイスーパーUVテスターSUV-F11」を用い、63℃50%RHの環境下、50mW/cmの照度でUV照射を実施した。試験片の波長460nmの光反射率を、照射前と照射60時間後に測定した。照射前試験片の光反射率に対する、照射後試験片の光反射率の保持率を下記の基準で評価した。
 ○:保持率90%以上
 △:保持率90%未満~85%以上
 ×:保持率85%未満
(10) Light resistance Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C, the mold temperature is set to 140 ° C, and a flat plate 100mm long, 100mm wide and 2mm thick is injection molded. A test piece for evaluation was prepared. This test piece was irradiated with UV light at an illuminance of 50 mW / cm 2 in an environment of 63 ° C. and 50% RH using a super accelerated weathering tester “I Super UV Tester SUV-F11”. The light reflectance at a wavelength of 460 nm of the test piece was measured before irradiation and 60 hours after irradiation. The retention rate of the light reflectance of the post-irradiation test piece relative to the light reflectance of the pre-irradiation test piece was evaluated according to the following criteria.
○: Retention rate 90% or more △: Retention rate less than 90% to 85% or more ×: Retention rate less than 85%
(11)耐熱黄変性
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、縦100mm、横100mm、厚み2mmの平板を射出成形し、評価用試験片を作製した。この試験片を用いて、熱風乾燥機にて150℃で2時間処理して、目視にて黄変性を確認した。
 ○:変化なし
 △:若干黄変する
 ×:黄変する
(11) Heat-resistant yellowing Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C, the mold temperature is set to 140 ° C, and a flat plate of 100mm length, 100mm width and 2mm thickness is injection molded. Then, a test piece for evaluation was produced. Using this test piece, it processed for 2 hours at 150 degreeC with the hot air dryer, and confirmed yellowing visually.
○: No change △: Slightly yellow ×: Yellowish
<合成例1>
 攪拌機付き20リッターステンレス製オートクレーブに、4,4’-ビフェニルジカルボン酸ジメチルを3542g、高純度ジメチルテレフタル酸を1409g、酸成分の3倍モル量のエチレングリコール、酢酸マンガン2g、二酸化ゲルマニウム0.86gを仕込みエステル交換後、60分間かけて300℃まで昇温しつつ、反応系の圧力を徐々に下げて13.3Pa(0.1Torr)として、さらに310℃、13.3Paで重縮合反応を実施した。放圧に続き、微加圧下のレジンを水中にストランド状に吐出して冷却後、カッターで切断して長さ約3mm、直径約2mmのシリンダー形状のペレットを得た。得られた共重合ポリエステルの極限粘度は、0.60dl/g、樹脂組成は、H-NMR測定により、4,4’-ビフェニルジカルボン酸が65モル%、テレフタル酸が35モル%、エチレングリコールが98.2モル%、ジエチレングリコールが1.8モル%であった。得られた共重合ポリエステル樹脂の特性値などを表1に示す。
<Synthesis Example 1>
In a 20-liter stainless steel autoclave with a stirrer, 3542 g of dimethyl 4,4′-biphenyldicarboxylate, 1409 g of high-purity dimethyl terephthalic acid, ethylene glycol in an amount 3 times the acid component, manganese acetate 2 g, and germanium dioxide 0.86 g After the transesterification, while the temperature was raised to 300 ° C. over 60 minutes, the pressure of the reaction system was gradually reduced to 13.3 Pa (0.1 Torr), and a polycondensation reaction was further performed at 310 ° C. and 13.3 Pa. . Subsequent to releasing the pressure, the resin under slight pressure was discharged into water as a strand, cooled, and then cut with a cutter to obtain a cylindrical pellet having a length of about 3 mm and a diameter of about 2 mm. The intrinsic viscosity of the obtained copolyester was 0.60 dl / g, the resin composition was 65 mol% 4,4′-biphenyldicarboxylic acid, 35 mol% terephthalic acid, ethylene glycol as determined by 1 H-NMR measurement. Was 98.2 mol% and diethylene glycol was 1.8 mol%. Table 1 shows characteristic values of the obtained copolyester resin.
(合成例2~7)
 使用する原料の量や種類を変更する以外は、合成例1の共重合ポリエステル樹脂の重合と同様にして、各共重合ポリエステル樹脂を得た。得られた各共重合ポリエステル樹脂の特性値などを表1に示す。なお、ジエチレングリコールは、エチレングリコールが縮合して副生したものである。
(合成例8)
 攪拌機付き20リッターステンレス製オートクレーブに、4,4’-ビフェニルジカルボン酸ジメチルを3542g、高純度ジメチルテレフタル酸を1400g、酸成分の3倍モル量のエチレングリコール、酢酸マンガン2g、二酸化ゲルマニウム0.86gを仕込みエステル交換後、高純度テレフタル酸を8g添加して、60分間かけて300℃まで昇温後しつつ、反応系の圧力を徐々に下げて13.3Pa(0.1Torr)として、さらに310℃、13.3Paで重縮合反応を実施した。放圧に続き、微加圧下のレジンを水中にストランド状に吐出して冷却後、カッターで切断して長さ約3mm、直径約2mmのシリンダー形状のペレットを得た。得られた共重合ポリエステルの極限粘度は、0.60dl/g、樹脂組成は、H-NMR測定により、4,4’-ビフェニルジカルボン酸が65モル%、テレフタル酸が35モル%、エチレングリコールが98.2モル%、ジエチレングリコールが1.8モル%であった。得られた共重合ポリエステル樹脂の特性値などを表1に示す。
(Synthesis Examples 2 to 7)
Each copolyester resin was obtained in the same manner as in the polymerization of the copolyester resin of Synthesis Example 1 except that the amount and type of raw materials used were changed. Table 1 shows the characteristic values of the obtained copolymer polyester resins. Diethylene glycol is a by-product of condensation of ethylene glycol.
(Synthesis Example 8)
In a 20 liter stainless steel autoclave with a stirrer, 3542 g of dimethyl 4,4'-biphenyldicarboxylate, 1400 g of high purity dimethyl terephthalic acid, ethylene glycol, manganese acetate 2 g, and 0.86 g of germanium dioxide in an amount three times the acid component. After the transesterification, 8 g of high-purity terephthalic acid was added, and the temperature of the reaction system was gradually decreased to 13.3 Pa (0.1 Torr) while increasing the temperature to 300 ° C. over 60 minutes. The polycondensation reaction was carried out at 13.3 Pa. Subsequent to releasing the pressure, the resin under slight pressure was discharged into water as a strand, cooled, and then cut with a cutter to obtain a cylindrical pellet having a length of about 3 mm and a diameter of about 2 mm. The intrinsic viscosity of the obtained copolyester was 0.60 dl / g, the resin composition was 65 mol% 4,4′-biphenyldicarboxylic acid, 35 mol% terephthalic acid, ethylene glycol as determined by 1 H-NMR measurement. Was 98.2 mol% and diethylene glycol was 1.8 mol%. Table 1 shows characteristic values of the obtained copolyester resin.
(比較合成例1)
 攪拌機付き20リッターステンレス製オートクレーブに、高純度テレフタル酸とその2倍モル量のエチレングリコールを仕込み、トリエチルアミンを酸成分に対して0.3モル%加え、0.25MPaの加圧下250℃にて水を系外に留去しながらエステル化反応を行い、エステル化率が約95%のビス(2-ヒドロキシエチル)テレフタレートおよびオリゴマーの混合物(以下BHET混合物という)を得た。このBHET混合物に重合触媒として、二酸化ゲルマニウム(Geとして100ppm)を加え、次いで、窒素雰囲気下、常圧にて250℃で10分間攪拌した。その後、60分間かけて280℃まで昇温しつつ反応系の圧力を徐々に下げて13.3Pa(0.1Torr)として、さらに280℃、13.3Paで重縮合反応を実施した。放圧に続き、微加圧下のレジンを水中にストランド状に吐出して冷却後、カッターで切断して長さ約3mm、直径約2mmのシリンダー形状のペレットを得た。得られたPETのIVは0.61dl/gで、樹脂組成は、H-NMR測定により、テレフタル酸が100モル%、エチレングリコールが98.0モル%、ジエチレングリコールが2.0モル%であった。得られたポリエステル樹脂の特性値などを表2に示す。
(Comparative Synthesis Example 1)
A 20-liter stainless steel autoclave with a stirrer is charged with high-purity terephthalic acid and twice its amount of ethylene glycol, and 0.3 mol% of triethylamine is added to the acid component, and water is added at 250 ° C. under a pressure of 0.25 MPa. The esterification reaction was carried out while distilling out of the system to obtain a mixture of bis (2-hydroxyethyl) terephthalate and oligomer (hereinafter referred to as BHET mixture) having an esterification rate of about 95%. To this BHET mixture, germanium dioxide (100 ppm as Ge) was added as a polymerization catalyst, and then stirred at 250 ° C. for 10 minutes under a nitrogen atmosphere at normal pressure. Thereafter, the pressure in the reaction system was gradually decreased to 13.3 Pa (0.1 Torr) while the temperature was raised to 280 ° C. over 60 minutes, and a polycondensation reaction was further performed at 280 ° C. and 13.3 Pa. Subsequent to releasing the pressure, the resin under slight pressure was discharged into water as a strand, cooled, and then cut with a cutter to obtain a cylindrical pellet having a length of about 3 mm and a diameter of about 2 mm. The obtained PET had an IV of 0.61 dl / g, and the resin composition was 100 mol% terephthalic acid, 98.0 mol% ethylene glycol, and 2.0 mol% diethylene glycol, as determined by 1 H-NMR. It was. The characteristic values of the obtained polyester resin are shown in Table 2.
(比較合成例2~4)
 使用する原料の種類を変更する以外は、比較合成例1のポリエステル樹脂の重合と同様にして、各ポリエステル樹脂を得た。得られた各ポリエステル樹脂の特性値などを表2に示す。
(Comparative Synthesis Examples 2 to 4)
Each polyester resin was obtained in the same manner as in the polymerization of the polyester resin of Comparative Synthesis Example 1 except that the type of raw material used was changed. Table 2 shows the characteristic values of the obtained polyester resins.
(比較合成例5:ポリアミド樹脂)
 テレフタル酸3272.9g(19.70モル)、1,9-ノナンジアミン2849.2g(18.0モル)、2-メチル-1,8-オクタンジアミン316.58g(2.0モル)、安息香酸73.27g(0.60モル)、次亜リン酸ナトリウム一水和物6.5g(原料に対して0.1重量%)および蒸留水6リットルを内容積20リットルのオートクレーブに入れ、窒素置換した。100℃で30分間撹拌し、2時間かけて内部温度を210℃に昇温した。この時、オートクレーブは22kg/cmまで昇圧した。そのまま1時間反応を続けた後230℃に昇温し、その後2時間、230℃に温度を保ち、水蒸気を徐々に抜いて圧力を22kg/cmに保ちながら反応させた。次に、30分かけて圧力を10kg/cmまで下げ、更に1時間反応させて、極限粘度[η]が0.25dl/gのプレポリマーを得た。これを、100℃、減圧下で12時間乾燥し、2mm以下の大きさまで粉砕した。これを230℃、0.1mmHg下にて、10時間固相重合し、融点が310℃、極限粘度[η]が1.33dl/g、末端の封止率が90%である白色のポリアミドを得た。
(Comparative Synthesis Example 5: Polyamide resin)
Terephthalic acid 3272.9 g (19.70 mol), 1,9-nonanediamine 2849.2 g (18.0 mol), 2-methyl-1,8-octanediamine 316.58 g (2.0 mol), benzoic acid 73 .27 g (0.60 mol), 6.5 g of sodium hypophosphite monohydrate (0.1% by weight based on the raw material) and 6 liters of distilled water were placed in an autoclave having an internal volume of 20 liters and purged with nitrogen. . The mixture was stirred at 100 ° C. for 30 minutes, and the internal temperature was raised to 210 ° C. over 2 hours. At this time, the autoclave was pressurized to 22 kg / cm 2 . The reaction was continued for 1 hour, and then the temperature was raised to 230 ° C., and then the temperature was maintained at 230 ° C. for 2 hours. The reaction was carried out while gradually removing water vapor and maintaining the pressure at 22 kg / cm 2 . Next, the pressure was reduced to 10 kg / cm 2 over 30 minutes and the reaction was further continued for 1 hour to obtain a prepolymer having an intrinsic viscosity [η] of 0.25 dl / g. This was dried at 100 ° C. under reduced pressure for 12 hours and pulverized to a size of 2 mm or less. A white polyamide having a melting point of 310 ° C., an intrinsic viscosity [η] of 1.33 dl / g, and a terminal sealing rate of 90% was obtained by solid-phase polymerization at 230 ° C. and 0.1 mmHg for 10 hours. Obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例1~11、比較例1~5)
 表3、4に記載の成分と質量割合で、コペリオン(株)製二軸押出機STS-35を用いて、樹脂の融点+15℃で溶融混練し、実施例1~11、比較例1~5のポリエステル樹脂組成物、ポリアミド樹脂組成物を得た。表3、4中、共重合ポリエステル樹脂以外の使用材料は以下の通りである。
 酸化チタン(B):石原産業(株)製 タイペークCR-60、ルチル型TiO、平均粒径0.2μm
 強化材(C):ガラス繊維(日東紡績(株)製、CS-3J-324)、針状ワラスト((株)NYCO製、NYGLOS8)
 充填材(D):タルク(林化成(株)製 ミクロンホワイト5000A)
 離型剤:ステアリン酸マグネシウム
 安定剤:ペンタエリスリチル・テトラキス[3-(3、5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](チバ・スペシャリティーケミカルズ製、イルガノックス1010)
(Examples 1 to 11, Comparative Examples 1 to 5)
Using the twin screw extruder STS-35 manufactured by Coperion Co., Ltd., with the components and mass ratios described in Tables 3 and 4, the resins were melt kneaded at the melting point of the resin + 15 ° C., and Examples 1 to 11 and Comparative Examples 1 to 5 Polyester resin composition and polyamide resin composition were obtained. In Tables 3 and 4, the materials used other than the copolyester resin are as follows.
Titanium oxide (B): Ipehara Sangyo Co., Ltd. Typek CR-60, rutile TiO 2 , average particle size 0.2 μm
Reinforcing material (C): Glass fiber (manufactured by Nittobo Co., Ltd., CS-3J-324), acicular wallast (manufactured by NYCO, NYGLOS8)
Filler (D): Talc (Micron White 5000A, Hayashi Kasei Co., Ltd.)
Mold release agent: Magnesium stearate Stabilizer: Pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (Irganox 1010, manufactured by Ciba Specialty Chemicals)
 実施例1~11、比較例1~5で得られたポリエステル樹脂組成物、ポリアミド樹脂組成物を各種特性の評価に供した。その結果を表3、4に示す。 The polyester resin compositions and polyamide resin compositions obtained in Examples 1 to 11 and Comparative Examples 1 to 5 were subjected to evaluation of various properties. The results are shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3から、ポリエステル樹脂組成物のDSCによる融解ピーク温度が280℃以上の場合は、リフローハンダ工程に適応可能であり、さらに融解ピーク温度が310℃を超える場合は、リフロー耐熱温度が280℃以上であることから、金/錫共晶ハンダ工程にも適応可能なハンダ耐熱性を示すとともに、LED用途で重要な特性である封止材との密着性、表面反射率に優れ、さらには成形性、流動性、寸法安定性、低吸水性、耐光性にも優れるという、格別な効果が確認できた。一方、表4から、比較例では、これら特性を全て満足させることはできなかった。比較例5のポリアミド樹脂は高融点であるが、アミド構造に起因する吸水性のため、リフロー耐熱温度が280℃以上を満足できなかった。 From Table 3, when the melting peak temperature by DSC of the polyester resin composition is 280 ° C. or higher, it can be applied to the reflow soldering process, and when the melting peak temperature exceeds 310 ° C., the reflow heat resistant temperature is 280 ° C. or higher. Therefore, it exhibits solder heat resistance that can be applied to gold / tin eutectic soldering processes, and has excellent adhesion to sealing materials and surface reflectivity, which are important characteristics for LED applications, and moldability. It was confirmed that the fluidity, dimensional stability, low water absorption, and light resistance were excellent. On the other hand, from Table 4, all of these characteristics could not be satisfied in the comparative example. Although the polyamide resin of Comparative Example 5 has a high melting point, the reflow heat resistant temperature could not satisfy 280 ° C. or higher due to water absorption due to the amide structure.
 本発明のポリエステル樹脂組成物は、耐熱性、成形性、流動性、低吸水性に優れるのみならず、LED用途での封止材との密着性に優れ、さらには耐光性にも優れる特定の共重合ポリエステル樹脂を使用しているので、必要な特性を高度に満足しながら、表面実装型LED用反射板を工業的に有利に製造することができる。 The polyester resin composition of the present invention is not only excellent in heat resistance, moldability, fluidity, and low water absorption, but also has excellent adhesion to a sealing material in LED applications, and also has excellent light resistance. Since the copolyester resin is used, the reflector for surface mount type LED can be produced industrially advantageously while highly satisfying the required characteristics.

Claims (9)

  1.  共重合ポリエステル樹脂(A)、酸化チタン(B)、繊維状強化材及び針状強化材からなる群より選択される少なくとも1種の強化材(C)、及び非繊維状又は非針状充填材(D)を含有し、共重合ポリエステル樹脂(A)100質量部に対して酸化チタン(B)0.5~100質量部、強化材(C)0~100質量部、及び非繊維状又は非針状充填材(D)0~50質量部の割合で含有するポリエステル樹脂組成物であって、共重合ポリエステル樹脂(A)が、4,4’-ビフェニルジカルボン酸とその他のジカルボン酸からなる酸成分とグリコール成分を構成成分とし、融点が280℃以上であることを特徴とする表面実装型LED用反射板に使用するポリエステル樹脂組成物。 Copolyester resin (A), titanium oxide (B), at least one reinforcing material (C) selected from the group consisting of fibrous reinforcing materials and acicular reinforcing materials, and non-fibrous or non-acicular filling materials (D), and 0.5 to 100 parts by mass of titanium oxide (B), 0 to 100 parts by mass of reinforcing material (C), and non-fibrous or non-containing, with respect to 100 parts by mass of the copolyester resin (A) Needle-like filler (D) is a polyester resin composition containing 0 to 50 parts by weight, wherein the copolymer polyester resin (A) is an acid comprising 4,4′-biphenyldicarboxylic acid and other dicarboxylic acids A polyester resin composition used for a reflector for a surface-mounted LED, comprising a component and a glycol component as constituents and a melting point of 280 ° C. or higher.
  2.  共重合ポリエステル樹脂(A)を構成する全酸成分の30モル%以上が、4,4’-ビフェニルジカルボン酸であることを特徴とする請求項1に記載のポリエステル樹脂組成物。 2. The polyester resin composition according to claim 1, wherein 30 mol% or more of the total acid component constituting the copolyester resin (A) is 4,4′-biphenyldicarboxylic acid.
  3.  共重合ポリエステル樹脂(A)を構成するその他のジカルボン酸が、テレフタル酸及び/又は2,6-ナフタレンジカルボン酸であることを特徴とする請求項1又は2に記載のポリエステル樹脂組成物。 The polyester resin composition according to claim 1 or 2, wherein the other dicarboxylic acid constituting the copolymerized polyester resin (A) is terephthalic acid and / or 2,6-naphthalenedicarboxylic acid.
  4.  共重合ポリエステル樹脂(A)を構成する全酸成分の30~90モル%が4,4’-ビフェニルジカルボン酸であり、その他のジカルボン酸がテレフタル酸及び/又は2,6-ナフタレンジカルボン酸であり、グリコール成分がエチレングリコール、1,4-シクロヘキサンジメタノール、1,3-プロパンジオール、ネオペンチルグリコール、1,4-ブタンジオールから選ばれる一種または二種以上であることを特徴とする請求項1~3のいずれかに記載のポリエステル樹脂組成物。 30 to 90 mol% of the total acid component constituting the copolymer polyester resin (A) is 4,4′-biphenyldicarboxylic acid, and the other dicarboxylic acid is terephthalic acid and / or 2,6-naphthalenedicarboxylic acid. The glycol component is one or more selected from ethylene glycol, 1,4-cyclohexanedimethanol, 1,3-propanediol, neopentyl glycol, and 1,4-butanediol. 4. The polyester resin composition according to any one of items 1 to 3.
  5.  非繊維状又は非針状充填材(D)がタルクであり、共重合ポリエステル樹脂(A)100質量部に対してタルク0.1~5質量部の割合で含有することを特徴とする請求項1~4のいずれかに記載のポリエステル樹脂組成物。 The non-fibrous or non-needle filler (D) is talc and is contained in a proportion of 0.1 to 5 parts by mass of talc with respect to 100 parts by mass of the copolyester resin (A). 5. The polyester resin composition according to any one of 1 to 4.
  6.  ハンダリフロー耐熱温度が260℃以上であることを特徴とする請求項1~5のいずれかに記載のポリエステル樹脂組成物。 The polyester resin composition according to any one of claims 1 to 5, wherein the solder reflow heat-resistant temperature is 260 ° C or higher.
  7.  ハンダリフロー耐熱温度が280℃以上であることを特徴とする請求項1~6のいずれかに記載のポリエステル樹脂組成物。 The polyester resin composition according to any one of claims 1 to 6, wherein the solder reflow heat-resistant temperature is 280 ° C or higher.
  8.  ポリエステル樹脂組成物の融解ピーク温度(Tm)と降温結晶化温度(Tc2)の差が、40℃以下であることを特徴とする請求項1~7のいずれかに記載のポリエステル樹脂組成物。 The polyester resin composition according to any one of claims 1 to 7, wherein the difference between the melting peak temperature (Tm) and the temperature-falling crystallization temperature (Tc2) of the polyester resin composition is 40 ° C or less.
  9.  請求項1~8のいずれかに記載のポリエステル樹脂組成物を用いて成形して得られることを特徴とする表面実装型LED用反射板。
     
    A reflector for surface-mount LED, which is obtained by molding using the polyester resin composition according to any one of claims 1 to 8.
PCT/JP2013/053638 2012-02-24 2013-02-15 Polyester resin composition used in reflective plate for surface-mounted led WO2013125453A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013509767A JP6048833B2 (en) 2012-02-24 2013-02-15 Polyester resin composition used for reflector for surface mount LED

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012038690 2012-02-24
JP2012-038690 2012-02-24

Publications (1)

Publication Number Publication Date
WO2013125453A1 true WO2013125453A1 (en) 2013-08-29

Family

ID=49005640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053638 WO2013125453A1 (en) 2012-02-24 2013-02-15 Polyester resin composition used in reflective plate for surface-mounted led

Country Status (3)

Country Link
JP (1) JP6048833B2 (en)
TW (1) TW201345971A (en)
WO (1) WO2013125453A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015074763A (en) * 2013-10-11 2015-04-20 パナソニックIpマネジメント株式会社 Molding material for light reflector, light reflector and lighting apparatus
WO2015078748A1 (en) * 2013-11-28 2015-06-04 Dsm Ip Assets B.V. Part of a led system
JP2015105379A (en) * 2013-11-29 2015-06-08 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Thermoplastic resin composition
WO2016002193A1 (en) * 2014-06-30 2016-01-07 三井化学株式会社 Polyester resin composition for reflective materials and reflection plate containing same
JP2016147962A (en) * 2015-02-12 2016-08-18 三井化学株式会社 Polyester resin composition for camera module, and camera module
JP2016536405A (en) * 2013-11-12 2016-11-24 エスケー ケミカルズ カンパニー リミテッド Polycyclohexylenedimethylene terephthalate resin composition
US10131785B2 (en) 2015-06-30 2018-11-20 Lotte Advanced Materials Co., Ltd. Polyester resin composition with excellent impact resistance and light reliability and molded article using the same
US10508190B2 (en) 2014-12-17 2019-12-17 Lotte Advanced Materials Co., Ltd. Polyester resin composition and molded article manufactured therefrom
US10636951B2 (en) 2014-06-27 2020-04-28 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition having excellent reflectivity
US10822490B2 (en) 2013-12-30 2020-11-03 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition having excellent shock resistance and light resistance
CN113394186A (en) * 2021-06-11 2021-09-14 赛创电气(铜陵)有限公司 Metal laminated structure, chip and manufacturing and welding methods thereof
CN115536819A (en) * 2021-06-30 2022-12-30 中国科学院成都有机化学有限公司 High-processability terephthalic acid copolyester and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5915948B2 (en) * 2013-06-03 2016-05-11 東洋紡株式会社 Polyester resin and polyester resin composition for surface mounted LED reflector using the same
US11220599B2 (en) * 2018-11-26 2022-01-11 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition and article comprising the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001527144A (en) * 1997-12-30 2001-12-25 ディーエスエム エヌ.ブイ. Copolyester goods
WO2005026241A1 (en) * 2003-09-11 2005-03-24 Teijin Dupont Films Japan Limited Polyester film
JP2007320239A (en) * 2006-06-02 2007-12-13 Teijin Dupont Films Japan Ltd Biaxially stretched film
JP2008270709A (en) * 2006-10-31 2008-11-06 Techno Polymer Co Ltd Heat-dissipating resin composition, substrate for mounting led, reflector, and substrate for mounting led provided with reflector portion
JP2010121102A (en) * 2008-10-20 2010-06-03 Kaneka Corp Resin molded product with high light resistance and high thermal conductivity and lighting fixture component
JP2011118190A (en) * 2009-12-04 2011-06-16 Toray Ind Inc Polarizing reflector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001527144A (en) * 1997-12-30 2001-12-25 ディーエスエム エヌ.ブイ. Copolyester goods
WO2005026241A1 (en) * 2003-09-11 2005-03-24 Teijin Dupont Films Japan Limited Polyester film
JP2007320239A (en) * 2006-06-02 2007-12-13 Teijin Dupont Films Japan Ltd Biaxially stretched film
JP2008270709A (en) * 2006-10-31 2008-11-06 Techno Polymer Co Ltd Heat-dissipating resin composition, substrate for mounting led, reflector, and substrate for mounting led provided with reflector portion
JP2010121102A (en) * 2008-10-20 2010-06-03 Kaneka Corp Resin molded product with high light resistance and high thermal conductivity and lighting fixture component
JP2011118190A (en) * 2009-12-04 2011-06-16 Toray Ind Inc Polarizing reflector

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015074763A (en) * 2013-10-11 2015-04-20 パナソニックIpマネジメント株式会社 Molding material for light reflector, light reflector and lighting apparatus
JP2016536405A (en) * 2013-11-12 2016-11-24 エスケー ケミカルズ カンパニー リミテッド Polycyclohexylenedimethylene terephthalate resin composition
WO2015078748A1 (en) * 2013-11-28 2015-06-04 Dsm Ip Assets B.V. Part of a led system
JP2015105379A (en) * 2013-11-29 2015-06-08 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Thermoplastic resin composition
US10301449B2 (en) 2013-11-29 2019-05-28 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition having excellent light stability at high temperature
US10822490B2 (en) 2013-12-30 2020-11-03 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition having excellent shock resistance and light resistance
US11355683B2 (en) 2014-06-27 2022-06-07 Lotte Chemical Corporation Thermoplastic resin composition having excellent reflectivity
US10636951B2 (en) 2014-06-27 2020-04-28 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition having excellent reflectivity
WO2016002193A1 (en) * 2014-06-30 2016-01-07 三井化学株式会社 Polyester resin composition for reflective materials and reflection plate containing same
EP3162852A4 (en) * 2014-06-30 2018-01-24 Mitsui Chemicals, Inc. Polyester resin composition for reflective materials and reflection plate containing same
US10508190B2 (en) 2014-12-17 2019-12-17 Lotte Advanced Materials Co., Ltd. Polyester resin composition and molded article manufactured therefrom
JP2016147962A (en) * 2015-02-12 2016-08-18 三井化学株式会社 Polyester resin composition for camera module, and camera module
US10131785B2 (en) 2015-06-30 2018-11-20 Lotte Advanced Materials Co., Ltd. Polyester resin composition with excellent impact resistance and light reliability and molded article using the same
CN113394186A (en) * 2021-06-11 2021-09-14 赛创电气(铜陵)有限公司 Metal laminated structure, chip and manufacturing and welding methods thereof
CN115536819A (en) * 2021-06-30 2022-12-30 中国科学院成都有机化学有限公司 High-processability terephthalic acid copolyester and preparation method thereof
CN115536819B (en) * 2021-06-30 2023-11-10 中国科学院成都有机化学有限公司 Terephthalic acid copolyester with high processability and preparation method thereof

Also Published As

Publication number Publication date
JP6048833B2 (en) 2016-12-21
JPWO2013125453A1 (en) 2015-07-30
TW201345971A (en) 2013-11-16

Similar Documents

Publication Publication Date Title
JP6048833B2 (en) Polyester resin composition used for reflector for surface mount LED
JP6260085B2 (en) Polyester resin composition for LED reflector
JP5915948B2 (en) Polyester resin and polyester resin composition for surface mounted LED reflector using the same
JP6015652B2 (en) Thermoplastic resin composition for LED reflector
WO2012026413A1 (en) Polyamide resin composition used for reflective plate for surface mount led
JP5731312B2 (en) Thermoplastic resin for reflector and reflector
KR101638674B1 (en) Thermoplastic resin composition for reflector, reflector plate, and light-emitting diode element
JP6492078B2 (en) RESIN COMPOSITION FOR REFLECTOR AND REFLECTOR CONTAINING THE SAME
JP6048832B2 (en) Polyester resin for surface mount LED reflector
WO2016002193A1 (en) Polyester resin composition for reflective materials and reflection plate containing same
JP2018059044A (en) Polyester resin composition, method for manufacturing reflection plate, and method for manufacturing light-emitting diode (led) element
JP6221662B2 (en) Polyester resin composition for LED reflector
JP6042271B2 (en) Polyester resin composition for reflector and reflector
JP2020019914A (en) Polyester resin composition for reflector and reflector
JP2019127545A (en) Polyester resin composition for reflection material and reflection material
JP2019142986A (en) Polyester resin composition for reflective material, and reflective material
JP2019112501A (en) Polyester resin composition for reflector, and reflector

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013509767

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13752553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13752553

Country of ref document: EP

Kind code of ref document: A1