WO2013125397A1 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
WO2013125397A1
WO2013125397A1 PCT/JP2013/053303 JP2013053303W WO2013125397A1 WO 2013125397 A1 WO2013125397 A1 WO 2013125397A1 JP 2013053303 W JP2013053303 W JP 2013053303W WO 2013125397 A1 WO2013125397 A1 WO 2013125397A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
solar cell
diode
assembly
layer
Prior art date
Application number
PCT/JP2013/053303
Other languages
English (en)
French (fr)
Inventor
剛人 辻
和田 雄人
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Publication of WO2013125397A1 publication Critical patent/WO2013125397A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/142Energy conversion devices
    • H01L27/1421Energy conversion devices comprising bypass diodes integrated or directly associated with the device, e.g. bypass diode integrated or formed in or on the same substrate as the solar cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0475PV cell arrays made by cells in a planar, e.g. repetitive, configuration on a single semiconductor substrate; PV cell microarrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module provided with a bypass diode.
  • the solar cell module is designed so that a predetermined output can be obtained by electrically connecting a plurality of solar cells in series.
  • the bypass diode is generally formed by connecting a mold type diode to the outside of the solar battery cell.
  • a mold type diode it is necessary to dispose the diodes one by one in the solar battery cell, and there is a problem that the mounting workability is poor.
  • the diode since the diode is disposed outside the solar battery cell, there is a problem that the area of the portion not contributing to the power generation of the solar battery module increases, and the power generation amount per area decreases.
  • Patent Document 1 discloses an exposed portion of a metal electrode of a diode formed by laminating a metal electrode, an amorphous silicon layer, and a metal electrode in this order on a flexible thin film, and a conductive paste or the like on a metal electrode of a solar battery cell. It is disclosed that they are adhered and disposed with an adhesive.
  • Patent Document 2 discloses a photoelectric conversion unit in which a first electrode layer as a lower electrode layer, a photoelectric conversion layer, and a transparent electrode layer (second electrode layer) are sequentially stacked on the surface of a film substrate made of a resin material.
  • the first electrode layer may be formed by sputtering or electron beam of a metal such as Ag, Al, Cu, Ti, etc., and a multilayer film of metal oxide and metal may be used as the electrode layer. Is described.
  • JP 59-94881 A Japanese Patent No. 4432236
  • the diode of Patent Document 1 is formed by sandwiching an amorphous silicon layer between a pair of metal electrodes.
  • the amorphous silicon layer functioning as a diode is thin, metal diffuses into the amorphous silicon layer and a leak path is formed. It is likely to occur and may not function as a diode.
  • Patent Document 2 it is said that the second electrode layer of the thin film solar cell may be formed using a metal such as Ag, Al, Cu, Ti, etc., but the thin film solar cell of Patent Document 2 is It does not have a diode. Patent Document 2 does not describe a diode.
  • An object of the present invention is to provide a solar cell module capable of generating power stably and efficiently over a long period of time.
  • the solar cell module of the present invention comprises: A solar battery cell having a photoelectric conversion part configured by sequentially laminating a first electrode layer, a photoelectric conversion layer, and a second electrode layer on one surface of the first substrate is divided into a plurality on the first substrate surface.
  • a solar cell unit cell a solar cell assembly in which the adjacent solar cell units are electrically connected in series
  • a diode having a diode portion formed by sequentially laminating a first electrode layer, a semiconductor layer, and a second electrode layer on one surface of a second substrate is divided into a plurality of arrays in alignment with the array of the solar cell unit cells.
  • diode assembly forming a diode unit cell
  • the diode assembly is disposed in the solar cell assembly, and each diode unit cell and the solar cell unit cell are electrically connected in reverse parallel,
  • One of the first electrode layer and the second electrode layer of the diode assembly is formed of Al or an Al alloy, and the other electrode layer is formed of a conductive oxide.
  • the diode aggregate is disposed on the non-light-receiving surface side of the solar cell.
  • the area of the diode assembly is equal to or less than the area of the solar cell assembly, and the diode assembly does not protrude from the outer periphery of the solar cell assembly. It is preferable to be disposed in the aggregate.
  • either one of the first electrode layer and the second electrode layer of the diode assembly is formed of Al or an Al alloy, and the other electrode layer is formed of a conductive oxide. Therefore, it is difficult for a leak path to occur in the diode portion. For this reason, this diode assembly has an extremely small leakage current and an excellent reverse voltage resistance. Therefore, the solar cell module of the present invention can generate power efficiently and stably over a long period of time.
  • FIG. 1 shows a schematic view of the solar cell module 10 as viewed from the cross-sectional direction. Moreover, in FIG. 2, the schematic when the solar cell module 10 is seen from a bottom face direction is shown.
  • this solar cell module 10 is mainly composed of a solar cell assembly 20 and a diode assembly 40.
  • the diode assembly 40 is disposed on the non-light-receiving surface side 20 b of the solar cell assembly 20, and both are joined via the insulating layer 60.
  • the third electrode layer 26 of the solar cell assembly 20 and the third electrode layer 46 of the diode assembly 40 are electrically connected via the conductive adhesive tape 70 having conductivity also in the adhesive portion. is doing. The whole is sealed and integrated with a sealing material 80.
  • the insulating layer 60 is not particularly limited as long as it has insulating properties. Examples thereof include resin materials such as ethylene-vinyl acetate copolymer resin (EVA), epoxy resin, and fluororesin.
  • resin materials such as ethylene-vinyl acetate copolymer resin (EVA), epoxy resin, and fluororesin.
  • Examples of the conductive adhesive tape 70 include those in which a conductive adhesive layer is formed on a conductive substrate.
  • Examples of the conductive substrate include copper foil and aluminum foil.
  • Examples of the conductive adhesive layer include those formed using an adhesive containing metal powder.
  • the sealing material 80 is not particularly limited. It is preferable that it is composed of a sealing resin and a surface protective material.
  • the sealing resin is a film made of a resin material such as ethylene vinyl acetate copolymer (EVA), epoxy resin, urethane resin, silicon resin, acrylic resin, or polyisobutylene, and has a certain degree of adhesiveness. Is preferred.
  • EVA ethylene vinyl acetate copolymer
  • EVA ethylene vinyl acetate copolymer
  • epoxy resin epoxy resin
  • urethane resin silicon resin
  • acrylic resin or polyisobutylene
  • the surface protective material tetrafluoroethylene-ethylene copolymer, vinylidene fluoride resin, trifluoroethylene chloride resin, ETFE (ethylene tetrafluoroethylene), acrylic resin, trifluoroethylene chloride coated acrylic resin, or polyester resin
  • ETFE ethylene tetrafluoroethylene
  • the solar cell assembly 20 has a plurality of solar cell unit cells 200 formed on the same substrate electrically connected in series.
  • the solar cell assembly 20 includes a first electrode layer 22, a photoelectric conversion layer 23, and a second electrode layer 24 that are sequentially stacked on the light receiving surface side 20 a of the substrate 21.
  • the photovoltaic cell having the photoelectric conversion unit 25 configured as described above and the third electrode layer 26 formed on the non-light-receiving surface 20 b of the substrate 21 is divided into a plurality of solar cell unit cells 200. Adjacent solar cell unit cells 200 are electrically connected in series.
  • the first electrode layer 22 and the photoelectric conversion layer 23 are sequentially stacked on the substrate 21 at both ends of the photoelectric conversion unit 25, and connection portions 25a and 25a where the second electrode layer 24 is not provided are provided.
  • the third electrode layer 26 is divided at the same interval as the photoelectric conversion unit of the solar cell unit cell 200 and shifted toward the photoelectric conversion unit side of one adjacent solar cell unit cell.
  • each solar cell unit cell 200 is formed through the third electrode layer 26, the substrate 21, the first electrode layer 22, the photoelectric conversion layer 23, and the second electrode layer 24.
  • a plurality of first through holes 27 are formed at predetermined intervals. As shown in FIG. 3, in the first through hole 27, the second electrode layer 24 and the third electrode layer 26 are electrically connected by the conductor layer 28.
  • the first electrode layer 22 is covered with the photoelectric conversion layer 23 and insulated from the second electrode layer 24, the conductor layer 28, and the third electrode layer 26.
  • the second through hole 29 formed through the third electrode layer 26, the substrate 21, the first electrode layer 22, and the photoelectric conversion layer 23 is formed in the connecting portion 25a.
  • the third electrode layer 26 and the first electrode layer 22 are electrically connected by the conductor layer 30.
  • SCAF Series Connection through Structures formed on Film
  • the first electrode layer 22 is formed on the light receiving surface side of the substrate 21 in which the second through holes 29 are opened, and the third electrode layer is formed on the non-light receiving surface side. 26 is formed. By doing so, the first electrode layer 22 and the third electrode layer 26 are electrically connected at the inner wall of the second through hole 29. Next, a first through hole 27 that penetrates the substrate 21, the first electrode layer 22, and the third electrode layer 26 is opened. Next, the photoelectric conversion layer 23 is formed on the entire light receiving surface side of the substrate 21. Then, both ends are covered with a mask to form the second electrode layer 24. Next, the third electrode layer 26 is formed again on the third electrode layer 26 of the substrate 21.
  • the second electrode layer 24 and the third electrode layer 26 are electrically connected at the inner wall of the first through hole 27.
  • assembly of the said SCAF structure is manufactured by dividing the photoelectric conversion part 25 and the 3rd electrode layer 26 into a predetermined shape.
  • the substrate 21 is preferably one having excellent heat resistance.
  • a glass substrate, a metal substrate whose surface is insulated, a resin substrate, and the like can be given.
  • a flexible film substrate made of polyimide, polyethylene naphthalate, polyethersulfone, polyethylene terephthalate, aramid, or the like can be preferably used.
  • a flexible film substrate By using a flexible film substrate, it can be set as a flexible photovoltaic cell assembly.
  • the thickness of the substrate 21 is not particularly limited, but is preferably about 15 to 200 ⁇ m in view of flexibility, strength, and weight.
  • the electrode layer (in this embodiment, the second electrode layer 24) disposed on the light incident side is made of ITO, SnO 2 , ZnO, or the like.
  • the transparent conductive oxide hereinafter also referred to as a transparent electrode layer.
  • the electrode layers (in this embodiment, the first electrode layer 22 and the third electrode layer 26) arranged opposite to the light incident side are made of Ag, Ag alloy, Ni, Ni alloy, Al, Al alloy or the like. It is made of a conductive metal.
  • a layer formed of a transparent conductive oxide such as ITO, SnO 2 , ZnO (hereinafter referred to as a transparent conductive oxide layer) is formed on a layer formed of these conductive metals (hereinafter referred to as a conductive metal layer). May be laminated.
  • each electrode layer is not particularly limited.
  • Various electrode materials can be formed by film formation by any film formation method known in the art, such as vapor deposition, sputtering, and plating.
  • the photoelectric conversion layer 23 is not particularly limited. Examples thereof include a semiconductor cell having a pin junction structure or a nip junction structure, a CIS semiconductor cell, a CZTS semiconductor cell, and a CdTe semiconductor cell.
  • a semiconductor cell having a pin junction structure or a nip junction structure include a microcrystalline silicon cell (hereinafter referred to as a ⁇ c-Si cell), an amorphous silicon cell (hereinafter referred to as an a-Si cell), and an amorphous silicon germanium.
  • Cell hereinafter referred to as a-SiGe cell.
  • the ⁇ c-Si cell means a photoelectric conversion cell in which a microcrystalline silicon film is included in at least i layer among n layer, i layer and p layer.
  • the a-Si cell means a photoelectric conversion cell in which the n layer, i layer and p layer are mainly formed of an amorphous silicon film.
  • An a-SiGe cell means a photoelectric conversion cell in which the i layer is formed of an amorphous silicon germanium film.
  • These semiconductor cells can be formed by forming a p-layer, an i-layer, an n-layer, and an interface layer between these layers by a conventionally known method such as a plasma CVD method.
  • the CIS semiconductor cell examples include a semiconductor cell composed of a CIS semiconductor compound such as CuInSe 2 , CuGaSe 2 , Cu (In, Ga) Se 2 , Cu (In, Ga) (S, Se) 2 .
  • This semiconductor layer can be formed by a conventionally known method such as a multi-source deposition method or a selenization method.
  • Examples of the CZTS semiconductor cell include a semiconductor cell composed of a CZTS semiconductor compound such as Cu 2 ZnSnSe 4 or Cu 2 ZnSn (S, Se) 4 .
  • This semiconductor layer can be formed by a conventionally known method such as a multi-source deposition method or a selenization method.
  • CdTe semiconductor cells include semiconductor cells made of CdTe semiconductor compounds such as CdTe and CdZnTe.
  • This semiconductor layer can be formed by a conventionally known method such as proximity sublimation.
  • the diode assembly 40 is disposed in the solar cell assembly 20.
  • the area of the diode assembly 40 is not more than the area of the solar cell assembly 20 and does not protrude from the outer periphery of the solar cell assembly 20.
  • the solar cell assembly is disposed on the non-light-receiving surface side 20b. If the area of the diode assembly 40 is larger than the area of the solar cell assembly 20 or protrudes from the outer periphery of the solar cell assembly 20, a portion that does not contribute to power generation of the solar cell module increases. Therefore, the power generation efficiency per area of the solar cell module is lowered.
  • the diode assembly 40 is configured by sequentially laminating a first electrode layer 42, a semiconductor layer 43, and a second electrode layer 44 on one surface of a substrate 41.
  • the diode having the portion 45 is divided into a plurality of diode unit cells 400 in an arrangement that matches the arrangement of the solar cell unit cells 200 to which the diodes are attached.
  • an arrangement that matches the arrangement of the solar cell unit cells to which the diodes are attached refers to the case where the diode unit cell 401 is attached to each solar cell unit cell 201 as shown in FIG.
  • the width dimension W1a of the photoelectric conversion unit 25 of the solar cell unit cell 201, the width dimension W2a of the diode unit 45 of the diode unit cell 401, and the solar cell This means that the arrangement interval W1b of the photoelectric conversion units 25 of the unit cells 201 and the arrangement interval W2b of the diode units 45 of the diode unit cells 401 are substantially the same, and as shown in FIG.
  • one diode unit cell 402 when one diode unit cell 402 is attached to three solar cell unit cells 202, one diode unit
  • the width dimension W3a of the photoelectric conversion part of the group of solar cell unit cells to which the diode part 45 of the battery 402 is attached, the width dimension W4a of the diode part 45 of the diode unit cell 402, and the arrangement of the photoelectric conversion parts of the group of solar cell unit cells This means that the interval W3b and the arrangement interval W4b of the diode portions 45 of the diode unit cell 402 are substantially the same.
  • FIG. 6A if the electrical connection position of the solar cell unit cell and the diode unit cell is provided for every three solar cell unit cells, for example, FIG. This is the same diode wiring situation.
  • the diode assembly 40 has the same SCAF structure as the solar cell assembly 20 described above.
  • the diode portion 45 configured by laminating the first electrode layer 42, the semiconductor layer 43, and the second electrode layer 44 in this order on one surface of the substrate 41, and the third portion formed on the other surface of the substrate 41.
  • a diode having the electrode layer 46 is divided into a plurality of diode unit cells 400.
  • the dimension and arrangement interval in the width direction of the diode unit cell 400 are substantially the same as the dimension and arrangement interval in the width direction of the solar cell unit cell 200.
  • connection portions 45a and 45a which are formed by laminating the first electrode layer 42 and the semiconductor layer 43 in this order, and the second electrode layer 44 is not provided.
  • the third electrode layer 46 is divided at substantially the same interval as the diode portion of the diode unit cell 400 and shifted toward the diode portion side of one adjacent diode unit cell.
  • each diode unit cell 400 includes a third electrode layer 46, a substrate 41, a first electrode layer 42, a semiconductor layer 43, and a second electrode layer 44 formed through the second electrode layer 44.
  • a plurality of through holes 47 are formed at a predetermined interval. In the first through hole 47, the second electrode layer 44 and the third electrode layer 46 are electrically connected by the conductor layer 48.
  • the first electrode layer 42 is covered with the semiconductor layer 43 and insulated from the second electrode layer 44, the conductor layer 48 and the third electrode layer 46.
  • the second through hole 49 formed through the third electrode layer 46, the substrate 41, the first electrode layer 42, and the semiconductor layer 43 is formed in the connecting portion 45a.
  • the third electrode layer 46 and the first electrode layer 42 are electrically connected by the conductor layer 50.
  • the first electrode layer 42 is formed on one surface of the substrate 41 in which the second through-holes 49 are formed, and the third electrode layer 46 is formed on the other surface. To do. By doing so, the first electrode layer 42 and the third electrode layer 46 are electrically connected at the inner wall of the second through hole 49. Next, a first through hole 47 penetrating the substrate 41, the first electrode layer 42 and the third electrode layer 46 is opened. Next, the semiconductor layer 43 is formed on the entire surface of the substrate 41 on the first electrode layer side. Then, both ends are covered with a mask to form the second electrode layer 44. Next, a third electrode layer is formed again on the third electrode layer 46 of the substrate 41.
  • the second electrode layer 44 and the third electrode layer 46 are electrically connected at the inner wall of the first through hole 47. Then, the diode portion 45 and the third electrode layer 46 are divided into predetermined shapes, whereby the diode aggregate having the SCAF structure is manufactured.
  • the diode assembly 40 is joined to the non-light-receiving surface 20b of the solar cell assembly 20 via the insulating layer 60 with the diode portion 45 side facing the solar cell assembly 20. Then, a conductive adhesive tape 70 is attached between the third electrode layer 46 of the diode assembly 40 and the corresponding third electrode layer 26 of the solar cell assembly 20, and the third electrode layer 40 of the diode assembly 40. The electrode layer 46 and the third electrode layer 26 of the solar battery cell assembly 20 are electrically connected.
  • Examples of the substrate 41 of the diode assembly 40 include a glass substrate, a metal substrate having a surface subjected to insulation treatment, a resin substrate, and the like, and the same material as the substrate 21 of the solar cell assembly 20 may be selected. preferable.
  • a flexible film substrate made of polyimide, polyethylene naphthalate, polyethersulfone, polyethylene terephthalate, aramid, or the like can be preferably used. By using the flexible film substrate, the flexibility of the diode assembly can be improved, and the flexibility of the solar cell assembly is not impaired.
  • the thermal expansion coefficients of the solar cell assembly 20 and the bypass diode assembly 40 become substantially equal, and peeling or Deformation can be reduced.
  • the thickness of the substrate 41 is not particularly limited, but is preferably about 15 to 200 ⁇ m in view of flexibility, strength, and weight.
  • one of the electrode layers is made of Al or an Al alloy
  • the other electrode layer is made of a conductive material such as ITO, SnO 2 , or ZnO. Form with oxide.
  • the Al alloy include AlSi and AlSiCu.
  • an electrode layer formed of Al or an Al alloy is referred to as an Al electrode layer
  • an electrode layer formed of a conductive oxide is referred to as a conductive oxide electrode layer.
  • either one of the first electrode layer and the second electrode layer is an Al electrode layer, and the other electrode layer is a conductive oxide electrode layer.
  • the occurrence of a leak path can be suppressed.
  • a bypass diode having a small leakage current and excellent reverse voltage tolerance can be obtained.
  • the Al electrode layer may contain Si in a solid solubility. By containing Si, it can prevent that Si of a semiconductor layer diffuses and an Al electrode layer spikes.
  • the Al electrode layer may contain Cu.
  • Cu By containing Cu, it is possible to prevent Al atoms from receiving a mechanical force due to collision of electrons and moving to the opposite side of the current (electromigration).
  • the content of Cu is preferably 0.1 to 5% by mass.
  • the film thickness of the Al electrode layer is preferably designed so that the sheet resistance of the diode part 45 is approximately the same as the sheet resistance of the photoelectric conversion part 25 of the solar cell assembly 20.
  • sheet resistance and film thickness are inversely related.
  • the electrical conductivity of Ag at 0 ° C. is 66.7 ⁇ 10 6 s / m
  • the electrical conductivity of Al at 0 ° C. is 40.0 ⁇ 10 6 s / m. Therefore, for example, when the first electrode layer 22 of the solar cell assembly 20 is formed of Ag and the Al electrode layer of the diode assembly 40 is formed of Al, the Al electrode layer is the first electrode layer 22.
  • the film thickness is preferably 1.5 to 2.0 times the thickness of the film.
  • the formation method of the Al electrode layer is not particularly limited, and can be formed by a conventionally known method.
  • the film can be formed by any film forming method known in the art such as vapor deposition, sputtering, or plating.
  • the diode assembly 40 does not require an electrode texture structure necessary for light confinement. For this reason, it is possible to set the film forming temperature low. However, since the adhesion of the electrode material to the substrate 41 decreases when the film formation temperature is lowered, it is necessary to optimize the film formation temperature within the allowable range of adhesion. Moreover, since an excessive texture structure leads to an increase in leakage of the diode portion 45, it is necessary to ensure the smoothness of the surface of the electrode layer to be formed while ensuring the adhesion of the electrode material to the substrate 41.
  • the film formation temperature is increased to a level at which the adhesion of the electrode material to the substrate 41 can be secured, and then the film formation temperature is decreased.
  • a method is preferably used in which the film formation temperature is increased to a level at which the adhesion of the electrode material to the substrate 41 can be secured, and then the film formation temperature is decreased.
  • a system using at least two chambers, a high-temperature film formation chamber and a low-temperature film formation chamber, is used.
  • a temperature gradient is set so that the temperature gradually decreases at the first high temperature. The method of making it attachable is mentioned.
  • the film thickness of the conductive oxide electrode layer is preferably substantially the same as the film thickness of the transparent electrode layer (second electrode layer 24 in this embodiment) of the solar cell assembly, and is 1.5 to 2 times. Is more preferable.
  • the formation method of the conductive oxide electrode layer is not particularly limited, and can be formed by a conventionally known method.
  • a conductive oxide can be used as an electrode material, and can be formed by any film forming method known in the art such as vapor deposition, sputtering, or plating.
  • the third electrode layer 46 of the diode assembly 40 is not particularly limited.
  • Ag, Ag alloy, Ni, Ni alloy, Al, Al alloy, etc. are mentioned.
  • the film can be formed by any film forming method known in the art such as vapor deposition, sputtering, or plating.
  • the semiconductor layer 43 is not particularly limited, and is a pin junction semiconductor cell, a pn junction semiconductor cell, a nip junction semiconductor cell, an np junction semiconductor cell, a CIS semiconductor cell, a CZTS semiconductor cell, and CdTe.
  • System semiconductor cells and the like Specific examples of a semiconductor cell having a pin junction structure, a semiconductor cell having a pn junction structure, a semiconductor cell having a nip junction structure, and a semiconductor cell having an np junction structure include a microcrystalline silicon cell and an amorphous silicon germanium cell. These can be formed by forming a p layer, an i layer, an n layer, and an interface layer thereof by a conventionally known method such as a plasma CVD method.
  • the CIS semiconductor cell, the CZTS semiconductor cell, and the CdTe semiconductor cell the same ones as described in the photoelectric conversion layer 23 can be used.
  • the diode unit cell 400 Since the diode unit cell 400 is electrically connected in reverse parallel to the solar cell unit 200, while the solar cell unit cell 200 to which the diode unit cell 400 is attached normally generates power, Since the generated current is a reverse current with respect to the diode, no current flows through the diode unit cell 400.
  • the solar cell unit cell 200 generates an electric field from the back electrode layer 22 side to the transparent electrode layer 24 side during power generation, and the diode unit cell 400 has the first electrode layer 42 from the second electrode layer 44 side. An electric field is generated toward the side.
  • the second electrode layer 44 moves to the third electrode layer 46 and moves to the third electrode layer 46 of the adjacent diode unit cell 413. Then, the electrons move through the conductive adhesive tape 70 to the third electrode layer 26 of the solar cell unit cell 213 adjacent to the opposite side.
  • one of the first electrode layer 42 and the second electrode layer 44 is formed of Al or an Al alloy, and the other electrode layer is formed of a conductive oxide such as ITO, SnO 2 , or ZnO. Since the electrode material is difficult to diffuse into the semiconductor layer 43 and a leak path is unlikely to occur, the leak current can be further reduced. For this reason, the function of the diode assembly as a bypass diode hardly deteriorates with time, and stable solar cell characteristics can be obtained over a long period of time.
  • the diode assembly 40 is disposed on the non-light-receiving surface side of the solar cell assembly 20, the sunlight to some of the solar cell unit cells can be obtained without impairing the power generation performance. Even when light is shielded, stable solar cell characteristics can be obtained. Further, in the case where a film-like one is used as the diode assembly 40, that is, when a flexible film substrate is used as the substrate 41, the diode assembly 40 is a thin film and has flexibility. The thickness and weight of the entire module do not increase so much. Furthermore, even if the solar cell assembly 20 has flexibility, the flexibility is not impaired.
  • the diode assembly 40 is formed on the substrate 41 in an array in which a plurality of diode unit cells 400 are aligned with the array of solar cell unit cells 200 to which the diode unit cells 400 are attached. For this reason, alignment is easy and the diode unit cell 400 can be attached to the target solar cell unit cell 200 reliably and with good workability.
  • the diode assembly 40 is attached to the solar cell assembly 20 with the conductive adhesive tape 70, and the diode unit cell 400 and the solar cell unit cell 200 are electrically connected.
  • the means for electrically connecting the diode unit cell 400 and the solar cell unit cell 200 is not limited to the conductive adhesive tape, and may be connected using a conventionally known method such as conductive paste or soldering.
  • the conductive adhesive tape is particularly preferable because it has good workability and is not a heating process, and thus does not damage the solar cell due to heat.
  • the diode unit cell 400 and the solar cell unit cell 200 may be electrically connected by making a hole in a part of the insulating layer 60.
  • the third electrode layer 26 of the solar battery cell assembly 20 and the second electrode layer 44 of the diode assembly 40 are electrically connected to each other at a portion where there is no insulating layer, a conductive tape is not necessarily applied. This is no longer necessary and can contribute to a reduction in material costs and a shortened work process. Further, the insulating layer 60 between the solar cell assembly 20 and the diode assembly 40 is eliminated, and the third electrode layer 26 of the solar cell assembly 20 and the second electrode layer 44 of the diode assembly 40 are brought into direct contact. You can also In that case, it contributes to the reduction in the thickness and weight of the entire module, and it is not always necessary to apply the conductive adhesive tape, which can contribute to the reduction of the material cost and the shortening of the work process.
  • the solar cell assembly 20 and the diode assembly 40 are both those having a SCAF structure, but only one of them may have a SCAF structure. Other than the SCAF structure may be used.
  • both the solar cell assembly 20 and the diode assembly 40 have the same structure, for example, both have the same SCAF structure, the solar cell assembly 20 and the diode assembly 40 can be manufactured in the same manufacturing process. This makes it possible to use the manufacturing apparatus effectively.
  • a structure in which a plurality of structures each having an electrode layer formed on the side opposite to the light receiving surface are connected in series, the substrate itself being a part of the photoelectric conversion layer.
  • examples of the diode aggregate other than the SCAF structure include a structure in which a plurality of bypass diodes are formed on one surface of a substrate and individual diodes are connected and connected in series.
  • the solar cell assembly has a substrate structure, but may have a superstrate structure.
  • the second electrode layer 44 of the diode assembly 40 faces the solar cell assembly, and the diode assembly 40 is disposed on the non-light-receiving surface side 20b of the solar cell assembly 20.
  • the third electrode layer 46 of the diode assembly 40 may be disposed on the non-light-receiving surface side 20b of the solar cell assembly 20 so as to face the solar cell assembly. That is, the third electrode layer 46 of the diode assembly 40 and the third electrode layer 26 of the solar cell assembly 20 may be joined and electrically connected.
  • Example 2 Manufacture of solar cell assembly
  • 200 nm of Ag was formed as the first electrode layer 22 on the light-receiving surface side of the polyimide film in which the second through holes 29 were formed
  • 200 nm of Ag was formed as the third electrode layer 26 on the non-light-receiving surface side.
  • the 1st through-hole 27 which penetrates a polyimide film, the 1st electrode layer 22, and the 3rd electrode layer 26 was formed.
  • 20 nm of n layer made of an amorphous silicon film to which a group 5 element is added and 500 nm of i layer made of an amorphous silicon film are added to the entire light receiving surface side of the polyimide film by plasma CVD.
  • the p layer made of the amorphous silicon film was sequentially formed to a thickness of 15 nm, and the photoelectric conversion layer 23 was formed. Then, both ends of the photoelectric conversion layer 23 were covered with a mask, and an ITO film having a thickness of about 100 nm was formed on the photoelectric conversion layer 23 as the second electrode layer 24. Next, about 100 nm of Ni was again formed on the third electrode layer 26. And the photoelectric conversion part 25 and the 3rd electrode layer 26 were divided
  • Al was deposited as a first electrode layer 42 with a thickness of 500 nm, and Al was deposited as a third electrode layer 46 on the other surface with a thickness of 500 nm.
  • a first through hole 47 penetrating the polyimide film, the first electrode layer 42 and the third electrode layer 46 was formed.
  • an n layer made of an amorphous silicon film to which a group 5 element is added is 20 nm
  • an i layer made of an amorphous silicon film is 500 nm
  • a group 3 A p-layer made of an amorphous silicon film to which an element was added was sequentially formed to a thickness of about 15 nm to form a semiconductor layer 43.
  • both ends of the semiconductor layer 43 were covered with a mask, and an ITO film of about 100 nm was formed on the semiconductor layer 43 as the second electrode layer 44.
  • Ni was again deposited on the third electrode layer 46 to a thickness of 100 nm.
  • the diode portion 45 and the third electrode layer 46 were divided into predetermined shapes, and the SCAF structure diode assembly shown in FIG. 3 was manufactured.
  • a diode assembly 40 is disposed on the non-light-receiving surface side of the solar cell assembly 20 via an insulating layer 60. Then, the third electrode layer 26 of the solar cell assembly 20 and the third electrode layer 46 of the diode assembly are connected with the conductive adhesive tape 70, and the periphery is sealed with a sealing resin.
  • the solar cell module shown was manufactured.
  • the reverse voltage was applied using the semiconductor parameter analyzer, and when the leakage current of the diode assembly was measured, the leakage current after 250 hours was 0.01 mA / cm 2 or less. .
  • the change with time of the leakage current is shown in FIG.
  • a diode assembly was manufactured in the same manner as in the example except that the first electrode layer of the diode assembly 40 was formed by forming 200 nm of Ag instead of Al. And the solar cell module was manufactured like the Example using the same photovoltaic cell assembly as the Example.
  • the reverse voltage was applied using the semiconductor parameter analyzer, and when the leakage current of the diode assembly was measured, the leakage current after 250 hours was 80 mA / cm 2 .
  • the leakage current was 1000 times higher than that of the diode.
  • the change with time of the leakage current is shown in FIG.
  • Solar cell module 20 Solar cell assembly 200, 201, 202, 211, 212, 213: Solar cell unit cell 21: Substrate 22: First electrode layer 23: Photoelectric conversion layer 24: Second electrode layer 25: Photoelectric conversion unit 26: third electrode layer 27: first through hole 28: conductor layer 29: second through hole 30: conductor layer 40: diode assembly 400, 401, 402, 411, 412, 413: diode unit cell 41 : Substrate 42: first electrode layer 43: semiconductor layer 44: second electrode layer 45: diode part 45 a: connection part 46: third electrode layer 47: first through hole 48: conductor layer 49: second through hole 50: Conductor layer 60: Insulating layer 70: Conductive adhesive tape 80: Sealing material

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 長期にわたって効率よく安定して発電できる太陽電池モジュールを提供する。 この太陽電池モジュールは、隣接する太陽電池単位セル200どうしが電気的に直列接続している太陽電池セル集合体20と、ダイオードが取り付けられる太陽電池単位セルの配列と整合する配列で複数に分割されてダイオード単位セル400を形成しているダイオード集合体40とを備える。ダイオード集合体40の、第一電極層42及び第二電極層44のいずれか一方の電極層は、Al又はAl合金で形成され、他方の電極層は、導電性酸化物で形成されている。そして、ダイオード集合体40は、太陽電池セル集合体20に配設されて、各ダイオード単位セルと太陽電池単位セルとが電気的に逆並列接続している。

Description

太陽電池モジュール
 本発明は、バイパスダイオードを備えた太陽電池モジュールに関する。
 太陽電池モジュールは、複数の太陽電池セルを電気的に直列接続して、所定の出力が得られるように設計している。
 ところで、太陽電池セルは、発電しない状態(太陽電池への太陽光が遮光された状態)では、逆電圧が印可され、その発熱によって、熱損傷等が発生する可能性がある。そのため、ダイオードを太陽電池セルに対して電気的に逆並列接続し、太陽電池セルに部分的に影となる箇所が生じるなどの不具合が発生した時は、電流を該ダイオードからバイパスさせて、太陽電池セルの損傷を防止することが行われている。このように結線したダイオードは、バイパスダイオードと呼ばれている。
 バイパスダイオードとしては、モールドタイプのダイオードを、太陽電池セルの外側に接続してなるものが一般的である。しかしながら、モールドタイプのダイオードの場合、ダイオードを一つずつ太陽電池セルに配設する必要があるので、取り付け作業性が悪いという問題点があった。また、ダイオードを太陽電池セルの外側に配設しているので、太陽電池モジュールの発電に寄与しない部分の面積が増加し、面積当たりの発電量が低くなるという問題があった。
 また、特許文献1には、可撓性薄膜上に金属電極、アモルファスシリコン層、金属電極の順に積層してなるダイオードの金属電極の露出部を、太陽電池セルの金属電極に、導電ペースト等の接着剤で接着して配設することが開示されている。
 また、特許文献2には、樹脂材料からなるフィルム基板の表面に下電極層としての第1電極層、光電変換層、透明電極層(第2電極層)を順次積層してなる光電変換部を備える薄膜太陽電池において、第1電極層を、Ag、Al、Cu、Ti等の金属をスパッタまたは電子ビームにより製膜してもよく、金属酸化物と金属の多層膜を電極層としてもよいとの記載がある。
特開昭59-94881号公報 特許第4432236号公報
 特許文献1のダイオードは、アモルファスシリコン層を一対の金属電極で挟持してなるものであるが、ダイオードとして機能するアモルファスシリコン層の膜厚が薄いため、アモルファスシリコン層に金属が拡散してリークパスが発生し易く、ダイオードとしての機能を果たさない可能性があった。
 一方、特許文献2では、薄膜太陽電池の第2電極層を、Ag、Al、Cu、Ti等の金属を用いて製膜してもよいとされているが、特許文献2の薄膜太陽電池はダイオードを備えるものではない。また、特許文献2には、ダイオードに関する記載はない。
 本発明の目的は、長期にわたって効率よく安定して発電できる太陽電池モジュールを提供することにある。
 上記目的を達成するため、本発明の太陽電池モジュールは、
 第一基板の一面上に、第一電極層、光電変換層、第二電極層を順次積層して構成された光電変換部を有する太陽電池セルが、前記第一基板面上で複数に分割されて太陽電池単位セルを形成し、隣接する前記太陽電池単位セルどうしが電気的に直列接続している太陽電池セル集合体と、
 第二基板の一面上に、第一電極層、半導体層、第二電極層を順次積層して構成されたダイオード部を有するダイオードが、前記太陽電池単位セルの配列と整合する配列で複数に分割されてダイオード単位セルを形成しているダイオード集合体とを備え、
 前記ダイオード集合体は、前記太陽電池セル集合体に配設されて、前記各ダイオード単位セルと前記太陽電池単位セルとが電気的に逆並列接続しており、
 前記ダイオード集合体の、前記第一電極層及び前記第二電極層のいずれか一方の電極層がAl又はAl合金で形成され、他方の電極層が導電性酸化物で形成されていることを特徴とする。
 本発明の太陽電池モジュールは、前記ダイオード集合体が前記太陽電池セルの非受光面側に配設されていることが好ましい。
 本発明の太陽電池モジュールは、前記ダイオード集合体の面積が前記太陽電池セル集合体の面積以下であり、該太陽電池セル集合体の外周からはみ出さないように前記ダイオード集合体が前記太陽電池セル集合体に配設されていることが好ましい。
 本発明の太陽電池モジュールは、ダイオード集合体の第一電極層及び第二電極層のいずれか一方の電極層をAl又はAl合金で形成し、他方の電極層を導電性酸化物で形成したことにより、ダイオード部でのリークパスが生じ難くい。このため、このダイオード集合体は、リーク電流が極めて小さく、逆方向電圧耐性に優れる。よって、本発明の太陽電池モジュールは、長期にわたって効率よく安定して発電できる。
本発明の太陽電池モジュールの一実施形態の概略図である。 同太陽電池モジュールの底面図である。 同太陽電池モジュールの太陽電池セル集合体とダイオード集合体との分解斜視図である。 同太陽電池モジュールの太陽電池セル集合体(ダイオード集合体)の透明電極層(第二電極層)側の平面図である。 同太陽電池モジュールの太陽電池セル集合体(ダイオード集合体)の背面電極層(第三電極層)側の平面図である。 同太陽電池モジュールの太陽電池セル集合体とダイオード集合体との接合状態を示す状態図である。 同太陽電池モジュールの特定の太陽電池単位セルの発電が停止した時の電流の流れを示す状態図である。 実施例及び比較例のパイパスダイオードのリーク電流の経時変化を示した図である。
 本発明の太陽電池モジュールの一実施形態について、図1~6を用いて説明する。
 図1には、太陽電池モジュール10を断面方向からみたときの概略図を示す。また、図2には、太陽電池モジュール10を底面方向からみたときの概略図を示す。
 図1に示されるように、この太陽電池モジュール10は、太陽電池セル集合体20とダイオード集合体40とで主に構成される。ダイオード集合体40は、太陽電池セル集合体20の非受光面側20bに配設され、絶縁層60を介して両者が接合している。また、粘着部にも導電性を有した導電性粘着テープ70を介して、太陽電池セル集合体20の第三電極層26と、ダイオード集合体40の第三電極層46とが電気的に接続している。そして、封止材80で全体が封止されて一体化している。
 絶縁層60としては、絶縁性を有するものであれば特に限定は無い。例えば、エチレン-酢酸ビニル共重合樹脂(EVA)、エポキシ樹脂、フッ素樹脂等の樹脂材料が挙げられる。
 導電性粘着テープ70としては、導電性基材上に、導電性粘着剤層が形成されたもの等が挙げられる。導電性基板としては、銅箔、アルミニウム箔等が挙げられる。導電性粘着層としては、金属粉末を含有する接着剤を用いて形成したもの等が挙げられる。
 封止材80としては、特に限定は無い。封止樹脂と表面保護材とで構成されていることが好ましい。封止樹脂としては、エチレン酢酸ビニル共重合体(EVA)、エポキシ樹脂、ウレタン樹脂、シリコン樹脂、アクリル樹脂、又はポリイソブチレン等の樹脂材料からなるフィルムで、ある程度の接着性を有しているものが好ましい。表面保護材としては、4フッ化エチレン-エチレン共重合体、フッ化ビニリデン樹脂、3フッ化塩化エチレン樹脂、ETFE(ethylene tetrafluoroethylene)、アクリル樹脂、3フッ化塩化エチレン樹脂コートアクリル樹脂、又はポリエステル樹脂等の耐熱性、耐候性に優れた材料からなるフィルムが好ましい。
 太陽電池セル集合体20は、図3に示されるように、同一基板上に形成された複数の太陽電池単位セル200が、電気的に直列接続している。
 図3を合わせて参照すると、この実施形態では、太陽電池セル集合体20は、基板21の受光面側20aに、第一電極層22、光電変換層23、第二電極層24を順次積層して構成された光電変換部25と、基板21の非受光面20bに形成された第三電極層26とを有する太陽電池セルが、複数の太陽電池単位セル200に分割されている。そして、隣接する太陽電池単位セル200どうしが、電気的に直列接続している。
 光電変換部25の両端部には、基板21上に第一電極層22、光電変換層23が順次積層され、第二電極層24が設けられていない接続部25a,25aが設けられている。また、第三電極層26は、太陽電池単位セル200の光電変換部とほぼ同じ間隔で、かつ、隣接する一方の太陽電池単位セルの光電変換部側にずれて分割されている。
 図3~5を合わせて参照すると、各太陽電池単位セル200には、第三電極層26、基板21、第一電極層22、光電変換層23、第二電極層24を貫通して形成された第一貫通孔27が、所定間隔で複数形成されている。図3に示すように、第一貫通孔27内において、第二電極層24と第三電極層26とが、導体層28により電気的に接続している。また、第一電極層22は、光電変換層23で覆われて、第二電極層24、導体層28及び第三電極層26と絶縁されている。
 接続部25aには、第三電極層26、基板21、第一電極層22、光電変換層23を貫通して形成された第二貫通孔29が形成されている。第二貫通孔29内において、第三電極層26と第一電極層22とが、導体層30により電気的に接続している。
 光電変換部25での発電により生じた電流は、第一貫通孔27を通って、太陽電池単位セル200の第三電極層26へと移動する。第三電極層26に移動した電流は、接続部25aへ移動し、第二貫通孔29を通って、隣接する太陽電池単位セル200の第一電極層22へと移動する。このように、この太陽電池セル集合体20は、第一貫通孔27、第二貫通孔29を介して、それぞれの太陽電池単位セル200が直列接続している。このような構造は、SCAF(Series Connection through Apertures formed on Film)構造と呼ばれており、各電極層と光電変換層の製膜と、各層のパターニングおよびそれらの組み合わせ手順により製造でき、例えば、特許第3237621号に記載の方法により製造することができる。
 この太陽電池セル集合体20の製造方法の一例を説明すると、第二貫通孔29が開けられた基板21の受光面側に第一電極層22を形成し、非受光面側に第三電極層26を形成する。こうすることで、第二貫通孔29の内壁で、第一電極層22と第三電極層26が電気的に接続する。次に、基板21、第一電極層22及び第三電極層26を貫通する第一貫通孔27を開ける。次に、基板21の受光面側の全面に光電変換層23を形成する。そして、両端部にはマスクをかぶせ、第二電極層24を形成する。次に、基板21の第三電極層26上に、再度第三電極層26を形成する。こうすることで、第一貫通孔27の内壁で、第二電極層24と第三電極層26とが電気的に接続する。そして、光電変換部25、第三電極層26を、所定の形状に分断することで、上記SCAF構造の太陽電池セル集合体が製造される。
 基板21は、耐熱性に優れるものが好ましく用いることができる。例えば、ガラス基板、表面に絶縁処理を施した金属基板、樹脂基板等が挙げられる。なかでも、ポリイミド、ポリエチレンナフタレート、ポリエーテルサルフォン、ポリエチレンテレフタレート、アラミドなどからなる可撓性フィルム基板が好ましく用いることができる。可撓性フィルム基板を用いることで、フレキシブルな太陽電池セル集合体とすることができる。基板21の膜厚は、特に限定はないが、柔軟性、強度、重量を考慮すると、15~200μm程度が好ましい。
 第一電極層22、第二電極層24、第三電極層26のうち、光入射側に配置される電極層(この実施形態では、第二電極層24)は、ITO、SnO、ZnOなどの透明導電性酸化物で形成される(以下、透明電極層ともいう)。また、光入射側とは反対に配置される電極層(この実施形態では、第一電極層22、第三電極層26)は、Ag、Ag合金、Ni、Ni合金、Al、Al合金などの導電性金属で形成される。また、これらの導電性金属で形成される層(以下、導電性金属層という)に、ITO、SnO、ZnOなどの透明導電性酸化物で形成される層(以下、透明導電性酸化物層という)が積層されていてもよい。
 各電極層の形成方法は特に限定は無い。各種電極材料を、蒸着法、スパッタ法、鍍金など当該技術において知られている任意の製膜方法で製膜して形成できる。
 光電変換層23としては、特に限定は無い。pin接合構造又はnip接合構造の半導体セル、CIS系半導体セル、CZTS系半導体セル、CdTe系半導体セル等が挙げられる。
 pin接合構造又はnip接合構造の半導体セルの具体例としては、微結晶シリコン系セル(以下、μc-Si系セルという)、アモルファスシリコン系セル(以下、a-Si系セルという)、アモルファスシリコンゲルマニウム系セル(以下、a-SiGe系セルという)等が挙げられる。本発明において、μc-Si系セルとは、n層、i層及びp層の内、少なくともi層に微結晶シリコン膜が含まれる光電変換セルを意味する。また、a-Si系セルとは、n層、i層及びp層が主にアモルファスシリコン系膜で形成される光電変換セルを意味する。また、a-SiGe系セルとは、i層がアモルファスシリコンゲルマニウム系膜で形成される光電変換セルを意味する。これらの半導体セルは、プラズマCVD法等、従来公知の方法で、p層、i層、n層およびそれら各層の界面層をそれぞれ製膜して形成できる。
 CIS系半導体セルとしては、CuInSe、CuGaSe、Cu(In,Ga)Se、Cu(In,Ga)(S,Se)等のCIS系半導体化合物で構成された半導体セルが挙げられる。この半導体層は、多元蒸着法、セレン化法等、従来公知の方法により形成できる。
 CZTS系半導体セルとしては、CuZnSnSe、CuZnSn(S,Se)等のCZTS系半導体化合物で構成された半導体セルが挙げられる。この半導体層は、多元蒸着法、セレン化法等、従来公知の方法により形成できる。
 CdTe系半導体セルとしては、CdTe,CdZnTe等のCdTe系半導体化合物で構成された半導体セルが挙げられる。この半導体層は、近接昇華法等、従来公知の方法により形成できる。
 ダイオード集合体40は、太陽電池セル集合体20に配設されている。この実施形態では、図1,2に示されるように、ダイオード集合体40の面積は、太陽電池セル集合体20の面積以下で、かつ、太陽電池セル集合体20の外周からはみ出さないように、太陽電池セル集合体の非受光面側20bに配設されている。ダイオード集合体40の面積が、太陽電池セル集合体20の面積よりも大きかったり、太陽電池セル集合体20の外周からはみ出していると、太陽電池モジュールの発電に寄与しない部分が増加することになるので、太陽電池モジュールの面積当たりの発電効率が低下する。
 図3に示されるように、この実施形態では、ダイオード集合体40は、基板41の一面上に、第一電極層42、半導体層43、第二電極層44を順次積層して構成されたダイオード部45を有するダイオードが、該ダイオードが取り付けられる太陽電池単位セル200の配列と整合する配列で、複数のダイオード単位セル400に分割されている。
 ここで、「ダイオードが取り付けられる太陽電池単位セルの配列と整合する配列」とは、図6(a)に示すように、各太陽電池単位セル201に対してそれぞれダイオード単位セル401を取り付ける場合(太陽電池単位セル1個に対してダイオード単位セルを1個取り付ける場合)は、太陽電池単位セル201の光電変換部25の幅寸法W1aとダイオード単位セル401のダイオード部45の幅寸法W2a、太陽電池単位セル201の光電変換部25の配列間隔W1bとダイオード単位セル401のダイオード部45の配列間隔W2bがほぼ同じであることを意味し、図6(b)に示すように、複数(図6(b)では3個)の太陽電池単位セル202に対してダイオード単位セル402を1個取り付ける場合は、1個のダイオード単位セル402のダイオード部45が取り付けられる一群の太陽電池単位セルの光電変換部の幅寸法W3aとダイオード単位セル402のダイオード部45の幅寸法W4a、一群の太陽電池セル単位セルの光電変換部の配列間隔W3bとダイオード単位セル402のダイオード部45の配列間隔W4bとがほぼ同じであることを意味する。また、図6(a)の様な形式でも、太陽電池単セルとダイオード単位セルの電気的接続位置が、例えば3個の太陽電池単位セル毎に設ければ、実質的に図6(b)と同様のダイオード配線状況となる。
 図3を合わせて参照すると、このダイオード集合体40は、上述した太陽電池セル集合体20とおなじSCAF構造をなしている。
 すなわち、基板41の一方の面に、第一電極層42、半導体層43、第二電極層44の順に積層して構成されたダイオード部45と、基板41の他方の面に形成された第三電極層46とを有するダイオードが、複数のダイオード単位セル400に分割されている。この実施形態では、ダイオード単位セル400の幅方向の寸法及び配列間隔は、太陽電池単位セル200の幅方向の寸法及び配列間隔とほぼ同じとされている。
 各ダイオード部45の両端部には、第一電極層42、半導体層43の順に積層して形成され、第二電極層44が設けられていない接続部45a,45aが設けられている。また、第三電極層46は、ダイオード単位セル400のダイオード部とほぼ同じ間隔で、かつ、隣接する一方のダイオード単位セルのダイオード部側にずれて分割されている。
 図3~5を合わせて参照すると、各ダイオード単位セル400には、第三電極層46、基板41、第一電極層42、半導体層43、第二電極層44を貫通して形成された第一貫通孔47が、所定間隔で複数形成されている。第一貫通孔47内において、第二電極層44と第三電極層46とが、導体層48により電気的に接続している。また、第一電極層42は、半導体層43で覆われて、第二電極層44、導体層48及び第三電極層46と絶縁されている。
 接続部45aには、第三電極層46、基板41、第一電極層42、半導体層43を貫通して形成された第二貫通孔49が形成されている。第二貫通孔49内において、第三電極層46と第一電極層42とが、導体層50により電気的に接続している。
 このダイオード集合体40の製造方法の一例を説明すると、第二貫通孔49が開けられた基板41の一方の面に第一電極層42を形成し、他方の面に第三電極層46を形成する。こうすることで、第二貫通孔49の内壁で、第一電極層42と第三電極層46が電気的に接続する。次に、基板41、第一電極層42及び第三電極層46を貫通する第一貫通孔47を開ける。次に、基板41の第一電極層側の全面に半導体層43を形成する。そして、両端部にはマスクをかぶせ、第二電極層44を形成する。次に、基板41の第三電極層46上に、再度第三電極層を形成する。こうすることで、第一貫通孔47の内壁で、第二電極層44と第三電極層46とが電気的に接続する。そして、ダイオード部45、第三電極層46を、所定の形状に分断することで、上記SCAF構造のダイオード集合体が製造される。
 ダイオード集合体40は、そのダイオード部45側を太陽電池セル集合体20に向けて、絶縁層60を介して太陽電池セル集合体20の非受光面20bに接合されている。そして、ダイオード集合体40の第三電極層46と、太陽電池セル集合体20の対応する第三電極層26との間に導電性粘着テープ70が貼り付けられて、ダイオード集合体40の第三電極層46と、太陽電池セル集合体20の第三電極層26とが電気的に接続されている。
 ダイオード集合体40の基板41は、例えば、ガラス基板、表面に絶縁処理を施した金属基板、樹脂基板等が挙げられ、太陽電池セル集合体20の基板21と同じ材質のものを選択することが好ましい。なかでも、ポリイミド、ポリエチレンナフタレート、ポリエーテルサルフォン、ポリエチレンテレフタレート、アラミドなどからなる可撓性フィルム基板が好ましく用いることができる。可撓性フィルム基板を用いることで、ダイオード集合体の柔軟性を良好にでき、太陽電池セル集合体の柔軟性を損なうことがない。また、太陽電池セル集合体20の基板21と同じ材質のものを選択することで、太陽電池セル集合体20とバイパスダイオード集合体40との熱膨張率がほぼ等しくなり、両者の界面における剥離や変形を少なくできる。基板41の膜厚は、特に限定はないが、柔軟性、強度、重量を考慮すると、15~200μm程度が好ましい。
 本発明において、ダイオード集合体40の第一電極層及び第二電極層は、いずれか一方の電極層をAl又はAl合金で形成し、他方の電極層をITO、SnO、ZnOなどの導電性酸化物で形成する。Al合金としては、AlSi、AlSiCu等が挙げられる。以下、Al又はAl合金で形成される電極層をAl電極層といい、導電性酸化物で形成される電極層を導電性酸化物電極層という。
 Al、Al合金、導電性酸化物は、Siとの相互拡散が起こりづらい。このため、第一電極層及び第二電極層のいずれか一方をAl電極層とし、他方の電極層を導電性酸化物電極層とすることで、後述する実施例に示すように、ダイオード部45において、リークパスの発生を抑制できる。その結果、リーク電流が小さく、逆方向電圧耐性に優れたバイパスダイオードとすることができる。
 本発明において、Al電極層には、Siを固溶度程度含有させてもよい。Siを含有させることで、半導体層のSiが拡散してAl電極層がスパイクすることを防止できる。
 また、Al電極層には、Cuを含有させてもよい。Cuを含有させることで、Al原子が電子の衝突による力学的な力を受けて電流の逆側に移動する(エレクトロマイグレーション)ことを防止できる。Cuの含有量は、0.1~5質量%が好ましい。
 Al電極層の膜厚は、ダイオード部45のシート抵抗が、太陽電池セル集合体20の光電変換部25のシート抵抗と同程度となるように設計することが好ましい。一般に、シート抵抗と膜厚は反比例の関係にある。例えば、0℃におけるAgの電気伝導率は66.7×10s/mであり、0℃におけるAlの電気伝導率は40.0×10s/mである。このため、例えば、太陽電池セル集合体20の第一電極層22をAgで形成し、ダイオード集合体40のAl電極層をAlで形成した場合においては、Al電極層は、第一電極層22の1.5~2.0倍の膜厚とすることが好ましい。
 Al電極層の形成方法は、特に限定は無く、従来公知の方法で形成できる。Al又はAl合金を電極材料として、蒸着法、スパッタ法、鍍金など当該技術において知られている任意の製膜方法で製膜して形成できる。
 なお、製膜温度を高くするほど平均面粗さの大きい電極層を形成できるが、ダイオード集合体40では、光閉じ込めに必要な電極のテクスチャ構造は不要である。このため、製膜温度を低く設定することが可能である。ただし、製膜温度を下げると基板41への電極材料の付着力が低下するので、付着力の許容値範囲での製膜温度の最適化を行う必要がある。また、過度のテクスチャ構造はダイオード部45のリークの増大につながるため、基板41への電極材料の付着力を確保しつつ、形成される電極層表面の平滑性も確保する必要がある。その手法として、製膜初期は、基板41への電極材料の付着力を確保できる水準まで製膜温度を高め、その後製膜温度を下げる方法が挙げられる。また、基板41としてポリイミドフィルムを用いた場合、Alはポリイミドフィルムに付着し易いものの、形成される電極層は表面が凹凸になり易い。このため、製膜初期は、基板41への電極材料の付着力を確保できる水準まで製膜温度を高め、その後製膜温度を下げる方法が好ましく用いられる。このような製膜を実現する装置構成としては、高温製膜チャンバと低温製膜チャンバの少なくとも2チャンバを使う方式、1つのチャンバで、最初高温で、徐々に温度が低くなるように温度勾配が付けられるようにする方式などが挙げられる。
 導電性酸化物電極層の膜厚は、太陽電池セル集合体の透明電極層(この実施形態では、第二電極層24)の膜厚とほぼ同じにすることが好ましく、1.5~2倍がより好ましい。
 導電性酸化物電極層の形成方法は、特に限定は無く、従来公知の方法で形成できる。導電性酸化物を電極材料とし、蒸着法、スパッタ法、鍍金など当該技術において知られている任意の製膜方法で製膜して形成できる。
 ダイオード集合体40の第三電極層46は、特に限定は無い。例えば、Ag、Ag合金、Ni、Ni合金、Al、Al合金などが挙げられる。これらの電極材料を用い、蒸着法、スパッタ法、鍍金など当該技術において知られている任意の製膜方法で製膜して形成できる。
 半導体層43としては、特に限定はなく、pin接合構造の半導体セル、pn接合構造の半導体セル、nip接合構造の半導体セル、np接合構造の半導体セル、CIS系半導体セル、CZTS系半導体セル、CdTe系半導体セル等が挙げられる。pin接合構造の半導体セル、pn接合構造の半導体セル、nip接合構造の半導体セル、np接合構造の半導体セルの具体例としては、微結晶シリコン系セル、アモルファスシリコンゲルマニウム系セル等が挙げられる。これらは、プラズマCVD法等、従来公知の方法で、p層、i層、n層およびそれらの界面層をそれぞれ製膜して形成できる。また、CIS系半導体セル、CZTS系半導体セル、CdTe系半導体セルとしては、光電変換層23で説明したものと同様のものを用いることができる。
 ダイオード単位セル400は、太陽電池単位セル200に対して、電気的に逆並列接続しているので、ダイオード単位セル400が取り付けられた太陽電池単位セル200が正常に発電している間は、その発電電流はダイオードに対して逆電流となるため、ダイオード単位セル400には電流が流れない。
 以下、半導体層43にpin接合構造の半導体セルを用いたバイパスダイオードの場合について説明する。
 太陽電池単位セル200は、発電時においては、裏面電極層22側から透明電極層24側に向かって電界が生じており、ダイオード単位セル400は、第二電極層44側から第一電極層42側に向かって電界が生じている。
 一方、図7に示すように、特定の太陽電池単位セル212が、例えば日影に入って発電しなくなった時は、該太陽電池単位セル212と電気的に逆並列接続するダイオード単位セル412は、第一電極層42側から第二電極層44側に向かって電界が生じる。このため、隣接する太陽電池単位セル211の第三電極層26から電子が、導電性粘着テープ70を通って、対応するダイオード単位セル412の第三電極層46へと移動する。対応するダイオード単位セル412の第三電極層46に移動した電子は、第二貫通孔49を通って第一電極層42へと移動する。第一電極層42に移動した電子は、半導体層43を通って第二電極層44へと移動する。そして、第一貫通孔47にて、第二電極層44から第3電極層46へ移動し、隣接するダイオード単位セル413の第三電極層46へと移動する。そして、導電性粘着テープ70を通って、反対側に隣接する太陽電池単位セル213の第三電極層26へと電子が移動する。
 このように、太陽電池モジュールの一部が日影に入るなどして、一部の太陽電池単位セルへの太陽光が遮光されたとしても、発電していない太陽電池単位セルを迂回して、次の太陽電池単位セルに電流が流れるので、安定した太陽電池特性を得ることができる。
 また、ダイオード単位セルに電流が流れていない時は、ダイオード単位セルには、第二電極層44側から第一電極層42側に向かって電界が生じる(図7の破線矢印の方向)。このダイオード集合体40は、第一電極層42及び第二電極層44のいずれか一方の電極層がAl又はAl合金で形成され、他方の電極層がITO、SnO、ZnOなどの導電性酸化物で形成されているので、電極材料が半導体層43に拡散し難く、リークパスが生じ難いため、リーク電流をより低減できる。このため、ダイオード集合体のバイパスダイオードとしての機能が経時劣化し難く、長期にわたって安定した太陽電池特性を得ることができる。
 また、この実施形態では、ダイオード集合体40が太陽電池セル集合体20の非受光面側に配設されているので、発電性能を損なうことなく、一部の太陽電池単位セルへの太陽光が遮光されても、安定した太陽電池特性を得ることができる。また、ダイオード集合体40として、フィルム状のもの、すなわち基板41として可撓性フィルム基板を用いた場合においては、ダイオード集合体40が薄膜で、かつ、柔軟性を有しているので、太陽電池モジュール全体の厚み、重量がそれほど増大することがない。更には、太陽電池セル集合体20が柔軟性を有する場合であっても、その柔軟性を損なうことがない。
 そして、このダイオード集合体40は、基板41上に、複数のダイオード単位セル400が、該ダイオード単位セル400が取り付けられる太陽電池単位セル200の配列と整合する配列で形成されている。このため、位置合わせが容易で、目的の太陽電池単位セル200に対してダイオード単位セル400を確実かつ作業性よく取り付けることができる。
 なお、この実施形態では、ダイオード集合体40が、太陽電池セル集合体20に導電性粘着テープ70で貼り付けられて、ダイオード単位セル400と太陽電池単位セル200とが電気的に接続している。ダイオード単位セル400と太陽電池単位セル200とを電気的に接続する手段としては、導電性粘着テープに限らず、導電性ペースト、はんだ付け等従来公知の方法を用いて接続してもよい。なかでも、導電性粘着テープは、作業性が良好で、加熱プロセスではないため、熱による太陽電池へのダメージ等が無く特に好ましい。また、絶縁層60の一部に穴開けて、ダイオード単位セル400と太陽電池単位セル200とを電気的に接続してもよい。この場合、絶縁層の無い部分で太陽電池セル集合体20の第三電極層26とダイオード集合体40の第二電極層44が電気的に導通することになるので、必ずしも導電性テープを貼り付ける必要が無くなり、材料費の低減や作業工程の短縮に寄与することができる。また、太陽電池セル集合体20とダイオード集合体40との間の絶縁層60をなくし、太陽電池セル集合体20の第三電極層26とダイオード集合体40の第二電極層44を直接接触させることもできる。その場合には、モジュール全体の薄膜化、軽量化に寄与すると共に、必ずしも導電性粘着テープを貼り付ける必要が無くなり、材料費の低減や作業工程の短縮に寄与することができる。
 また、この実施形態では、太陽電池セル集合体20及びダイオード集合体40は、いずれもSCAF構造をなすものを用いたが、いずれか一方のみがSCAF構造をなすものを用いてもよく、いずれもSCAF構造以外のものを用いてもよい。太陽電池セル集合体20とダイオード集合体40の両者を同じ構造、例えば両者を同じSCAF構造とした場合、太陽電池セル集合体20とダイオード集合体40とを、同一の製造工程で製造することが可能となり、製造装置の有効利用が可能となる。
 SCAF構造以外の太陽電池セル集合体としては、例えば、次のような構造が一例として挙げられる。基板の受光面側に太陽電池セルが複数形成され、個々の太陽電池セルが結線されて直列接続してなる構造。導電性基板上に、光電変換層、透明電極層等が形成され、更に、透明電極層上の一部に集電電極が所定間隔で複数設けられてなる構造。また、基板自体が光電変換層の一部になっており、受光面の反対側に電極層が形成されている構造体が複数直列に接続されている構造。
 また、SCAF構造以外のダイオード集合体としては、例えば、基板の一面上にバイパスダイオードが複数形成され、個々のダイオードが結線されて直列接続してなる構造等が挙げられる。
 また、この実施形態では、太陽電池セル集合体は、サブストレート構造であるが、スーパーストレート構造であってもよい。
 また、この実施形態では、ダイオード集合体40の第二電極層44を太陽電池セル集合体に向けて、ダイオード集合体40を太陽電池セル集合体20の非受光面側20bに配設している。ダイオード集合体40の第三電極層46を太陽電池セル集合体に向けて、太陽電池セル集合体20の非受光面側20bに配設してもよい。すなわち、ダイオード集合体40の第三電極層46と、太陽電池セル集合体20の第三電極層26とを接合して、両者を電気的に接続してもよい。
 (実施例)
 (太陽電池セル集合の製造)
 第二貫通孔29が開けられたポリイミドフィルムの受光面側に、第一電極層22としてAgを200nm製膜し、非受光面側に第三電極層26としてAgを200nm製膜した。次に、ポリイミドフィルム、第一電極層22及び第三電極層26を貫通する第一貫通孔27を形成した。次に、ポリイミドフィルムの受光面側の全面に、プラズマCVD法にて、5族元素を添加したアモルファスシリコン膜からなるn層を20nm、アモルファスシリコン膜からなるi層を500nm、3族元素を添加したアモルファスシリコン膜からなるp層を15nmを順次製膜し、光電変換層23を形成した。そして、光電変換層23の両端部にマスクをかぶせ、光電変換層23上に、第二電極層24としてITOを100nm程度製膜した。次に、第三電極層26上に、再度Niを100nm程度製膜した。そして、光電変換部25、第三電極層26を、所定の形状に分断して、図3に示すSCAF構造の太陽電池セル集合体を製造した。
 (ダイオード集合体の製造)
 第二貫通孔49が開けられたポリイミドフィルムの一方の面に、第一電極層42としてAlを500nm製膜し、他方の面に第三電極層46として同じくAlを500nm製膜した。
 次に、ポリイミドフィルム、第一電極層42及び第三電極層46を貫通する第一貫通孔47を形成した。次に、ポリイミドフィルムの第一電極層42側の全面に、プラズマCVD法にて、5族元素を添加したアモルファスシリコン膜からなるn層を20nm、アモルファスシリコン膜からなるi層を500nm、3族元素を添加したアモルファスシリコン膜からなるp層を15nm程度を順次製膜し、半導体層43を形成した。そして、半導体層43の両端部にマスクをかぶせ、半導体層43上に、第二電極層44としてITOを100nm程度製膜した。次に、第三電極層46上に、再度Niを100nm製膜した。そして、ダイオード部45、第三電極層46を、所定の形状に分断して、図3に示すSCAF構造のダイオード集合体を製造した。
 (太陽電池モジュールの製造)
 上記太陽電池集合体20の非受光面側に、絶縁層60を介してダイオード集合体40を配設した。そして、太陽電池集合体20の第三電極層26と、ダイオード集合体の第三電極層46とを、導電性粘着テープ70で接続し、周囲を封止樹脂で封止して、図1に示す太陽電池モジュールを製造した。
 得られた太陽電池モジュールについて、半導体パラメータアナライザーを使用して逆電圧を印可し、ダイオード集合体のリーク電流を測定したところ、250時間経過後のリーク電流は0.01mA/cm以下であった。リーク電流の経時変化を図8に記す。
 (比較例)
 実施例において、ダイオード集合体40の第一電極層として、Alの代わりにAgを200nm製膜して形成した以外は、実施例と同様にして、ダイオード集合体を製造した。そして、実施例と同じ太陽電池セル集合体を用い、実施例と同様にして太陽電池モジュールを製造した。
 得られた太陽電池モジュールについて、半導体パラメータアナライザーを使用して逆電圧を印可し、ダイオード集合体のリーク電流を測定したところ、250時間経過後のリーク電流は80mA/cmであり、実施例のダイオードに比べて1000倍以上リーク電流が高かった。リーク電流の経時変化を図8に記す。
10:太陽電池モジュール
20:太陽電池セル集合体
200、201、202、211、212、213:太陽電池単位セル
21:基板
22:第一電極層
23:光電変換層
24:第二電極層
25:光電変換部
26:第三電極層
27:第一貫通孔
28:導体層
29:第二貫通孔
30:導体層
40:ダイオード集合体
400、401、402、411、412、413:ダイオード単位セル
41:基板
42:第一電極層
43:半導体層
44:第二電極層
45:ダイオード部
45a:接続部
46:第三電極層
47:第一貫通孔
48:導体層
49:第二貫通孔
50:導体層
60:絶縁層
70:導電性粘着テープ
80:封止材

Claims (3)

  1.  第一基板の一面上に、第一電極層、光電変換層、第二電極層を順次積層して構成された光電変換部を有する太陽電池セルが、前記第一基板面上で複数に分割されて太陽電池単位セルを形成し、隣接する前記太陽電池単位セルどうしが電気的に直列接続している太陽電池セル集合体と、
     第二基板の一面上に、第一電極層、半導体層、第二電極層を順次積層して構成されたダイオード部を有するダイオードが、前記太陽電池単位セルの配列と整合する配列で複数に分割されてダイオード単位セルを形成しているダイオード集合体とを備え、
     前記ダイオード集合体は、前記太陽電池セル集合体に配設されて、前記各ダイオード単位セルと前記太陽電池単位セルとが電気的に逆並列接続しており、
     前記ダイオード集合体の、前記第一電極層及び前記第二電極層のいずれか一方の電極層がAl又はAl合金で形成され、他方の電極層が導電性酸化物で形成されていることを特徴とする太陽電池モジュール。
  2.  前記ダイオード集合体が前記太陽電池セルの非受光面側に配設されている、請求項1に記載の太陽電池モジュール。
  3.  前記ダイオード集合体の面積が前記太陽電池セル集合体の面積以下であり、該太陽電池セル集合体の外周からはみ出さないように前記ダイオード集合体が前記太陽電池セル集合体に配設されている、請求項1又は2に記載の太陽電池モジュール。
PCT/JP2013/053303 2012-02-20 2013-02-13 太陽電池モジュール WO2013125397A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012033635 2012-02-20
JP2012-033635 2012-02-20

Publications (1)

Publication Number Publication Date
WO2013125397A1 true WO2013125397A1 (ja) 2013-08-29

Family

ID=49005584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053303 WO2013125397A1 (ja) 2012-02-20 2013-02-13 太陽電池モジュール

Country Status (1)

Country Link
WO (1) WO2013125397A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5994880A (ja) * 1982-11-24 1984-05-31 Fuji Electric Corp Res & Dev Ltd 太陽電池
JPS63228766A (ja) * 1987-03-18 1988-09-22 Komatsu Ltd 太陽電池
US6013870A (en) * 1998-01-29 2000-01-11 Angewandte Solarenergie--ASE GmbH Thin-film solar module
JP2003037280A (ja) * 2001-05-17 2003-02-07 Kanegafuchi Chem Ind Co Ltd 集積型薄膜光電変換モジュール
JP2008153429A (ja) * 2006-12-18 2008-07-03 Sharp Corp 太陽電池およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5994880A (ja) * 1982-11-24 1984-05-31 Fuji Electric Corp Res & Dev Ltd 太陽電池
JPS63228766A (ja) * 1987-03-18 1988-09-22 Komatsu Ltd 太陽電池
US6013870A (en) * 1998-01-29 2000-01-11 Angewandte Solarenergie--ASE GmbH Thin-film solar module
JP2003037280A (ja) * 2001-05-17 2003-02-07 Kanegafuchi Chem Ind Co Ltd 集積型薄膜光電変換モジュール
JP2008153429A (ja) * 2006-12-18 2008-07-03 Sharp Corp 太陽電池およびその製造方法

Similar Documents

Publication Publication Date Title
US10164127B2 (en) Module fabrication of solar cells with low resistivity electrodes
US10074755B2 (en) High efficiency solar panel
US10115839B2 (en) Module fabrication of solar cells with low resistivity electrodes
EP3095139B1 (en) High efficiency solar panel
US20160225931A1 (en) Bifacial photovoltaic module using heterojunction solar cells
US20120000510A1 (en) Laminated solar cell interconnection system
US20180019349A1 (en) Gridless photovoltaic cells and methods of producing a string using the same
US20120152327A1 (en) Method of manufacturing solar modules
US8664512B2 (en) Photovoltaic module
US20120132246A1 (en) Photovoltaic modules with improved electrical characteristics and methods thereof
US10644181B2 (en) Photovoltaic module
JP6709981B2 (ja) 太陽電池セル、太陽電池モジュール、および太陽電池セルの製造方法
WO2013011707A1 (ja) 太陽電池モジュール
WO2014050193A1 (ja) 光電変換モジュール
US20120024339A1 (en) Photovoltaic Module Including Transparent Sheet With Channel
WO2013125397A1 (ja) 太陽電池モジュール
JP2013191588A (ja) 太陽電池モジュール
CN113611762B (zh) 双面受光的机械叠层太阳能电池、电池组件和光伏系统
JP2000196128A (ja) 光起電力素子モジュ―ルおよび太陽電池モジュ―ル、並びに太陽電池モジュ―ルと一体構造の建材
WO2023144866A1 (ja) 太陽電池および太陽電池の製造方法
JP2011192864A (ja) 光電変換装置
KR20150083346A (ko) 태양 전지 모듈 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13752345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13752345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP