WO2013125251A1 - Thin film solar cell - Google Patents

Thin film solar cell Download PDF

Info

Publication number
WO2013125251A1
WO2013125251A1 PCT/JP2013/050174 JP2013050174W WO2013125251A1 WO 2013125251 A1 WO2013125251 A1 WO 2013125251A1 JP 2013050174 W JP2013050174 W JP 2013050174W WO 2013125251 A1 WO2013125251 A1 WO 2013125251A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
layer
film
solar cell
thin film
Prior art date
Application number
PCT/JP2013/050174
Other languages
French (fr)
Japanese (ja)
Inventor
松山 秀昭
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Publication of WO2013125251A1 publication Critical patent/WO2013125251A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System
    • H01L31/03685Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System including microcrystalline silicon, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System including only AIVBIV alloys, e.g. SiGe
    • H01L31/1816Special manufacturing methods for microcrystalline layers, e.g. uc-SiGe, uc-SiC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a thin film solar cell in which at least two or more layers of cells are laminated on a film substrate.
  • a solar cell is a power generation device that converts light energy into electric power.
  • attempts have been made to make a multi-junction structure by stacking a plurality of cells having different absorption wavelength bands.
  • Patent Documents 1 and 2 disclose solar cells having a multi-junction structure in which amorphous silicon cells and microcrystalline silicon cells are stacked from the light incident side.
  • the amorphous silicon cell is a cell using amorphous silicon, amorphous silicon alloy such as silicon germanium or silicon carbide as a material.
  • the microcrystalline silicon cell is a cell using a thin film made of a microcrystalline silicon alloy such as microcrystalline silicon, silicon germanium, or silicon carbide.
  • the microcrystalline silicon cell has higher sensitivity to long wavelength light than the amorphous silicon cell, and can use long wavelength light that cannot be absorbed by the amorphous silicon cell for power generation. For this reason, power generation efficiency is further improved by stacking an amorphous silicon cell and a microcrystalline silicon cell in this order from the light incident side to form a multi-junction structure.
  • an object of the present invention is to provide a thin film solar cell excellent in power generation efficiency.
  • the thin film solar cell of the present invention was laminated on a film substrate, a back electrode laminated on the film substrate, a plurality of nip type cells laminated on the back electrode, and an outermost nip type cell.
  • the plurality of nip-type cells include at least one microcrystalline silicon-based cell, and at least one amorphous silicon-based cell disposed on the transparent electrode side of the microcrystalline silicon-based cell, In the microcrystalline silicon cell, the ratio (I 520 / I 480 ) of the peak height (I 520 ) of 520 cm ⁇ 1 and the peak height (I 480 ) of 480 cm ⁇ 1 in the Raman spectroscopy of the i layer is 2 or more.
  • the impurity concentration is 2 ⁇ 10 19 atoms / cm 3 or less
  • the current generated in the amorphous silicon cell is in the range of 95% to 115% with respect to the current generated in the microcrystalline silicon cell
  • the product of the film thickness and the refractive index of the transparent electrode is 100 nm or more and 200 nm or less.
  • a peak height of 520 cm -1 in Raman spectroscopy of the i layer, the ratio of the peak height of the 480cm -1 (I 520 / I 480 ) is at 2 to 9, the impurity concentration
  • the current generated in the amorphous silicon cell with stabilized power generation efficiency can be brought close to the current generated in the microcrystalline silicon cell. For this reason, the movement loss of the current generated in each nip type cell is reduced, and the power generation efficiency is excellent. And since the product of the film thickness and refractive index of a transparent electrode is 100 nm or more and 200 nm or less, the sunlight which penetrate
  • the p layer is preferably composed of a microcrystalline silicon film having a thickness of 10 nm to 30 nm. According to this aspect, a thin-film solar cell with more excellent power generation efficiency can be obtained.
  • the n layer is composed of an amorphous silicon film
  • the i layer is composed of a microcrystalline silicon film
  • the microcrystalline silicon is between the n layer and the i layer.
  • a seed layer made of a film is preferably inserted.
  • the initial growth layer of microcrystalline silicon formed on the n layer made of an amorphous silicon film becomes amorphous silicon.
  • the i layer of amorphous silicon is sandwiched between the n layer and the i layer, it is considered that electrons hardly flow into the n layer.
  • an interface layer made of an amorphous silicon film to which boron is added is preferably inserted between the i layer and the p layer. According to this aspect, the interface layer makes it difficult for electrons to move to the p-layer side, and the power generation efficiency is improved.
  • the boron concentration in the interface layer is preferably 1/1000 or more and 1/10 or less of the impurity concentration in the p layer.
  • the interface layer preferably has a thickness of 5 nm to 20 nm.
  • the thin film solar cell of the present invention it is possible to effectively use sunlight even though it is a thin layer, and the power generation efficiency is excellent.
  • the thin film solar cell of the present invention will be described by taking the thin film solar cell shown in FIG. 1 as an example.
  • a microcrystalline silicon cell ( ⁇ c-Si cell) is used as the microcrystalline silicon cell
  • an amorphous silicon cell (a-Si cell) is used as the amorphous silicon cell.
  • the microcrystalline silicon cell 30 is referred to as a ⁇ c-Si cell
  • the amorphous silicon cell 50 is referred to as an a-Si cell 50.
  • the material of the film substrate 10 is not particularly limited.
  • a polyimide film, a polyethylene terephthalate film, a polyethylene naphthalate film, a polyether sulfone film, an acrylic film, an aramid film, and the like can be given.
  • the film thickness of the film substrate 10 is not particularly limited. Considering flexibility, strength, and weight, it is preferably 15 ⁇ m or more and 200 ⁇ m or less.
  • the back electrode 20 is laminated on the film substrate 10.
  • the back electrode 20 is not particularly limited, and is made of a conductive metal such as Ag, Ag alloy, Ni, Ni alloy, Al, or Al alloy.
  • a layer formed of a transparent conductive oxide such as ITO, SnO, or ZnO may be stacked on the layer formed of these conductive metals.
  • the film thickness of the back electrode 20 is preferably 0.1 ⁇ m or more and 2 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 1 ⁇ m or less. If it is less than 0.1 ⁇ m, the electrical conductivity is low, and if it exceeds 2 ⁇ m, it takes time to form a film.
  • the ⁇ c-Si cell 30 is laminated on the back electrode 20.
  • the ⁇ c-Si cell 30 is composed of a nip type cell formed by joining an n layer, an i layer, and a p layer.
  • the n layer of the ⁇ c-Si cell 30 includes a microcrystalline silicon film (hereinafter referred to as ⁇ c-Si) containing n-type impurities such as phosphorus at a concentration of 1 ⁇ 10 19 atoms / cm 3 or more and 1 ⁇ 10 21 atoms / cm 3 or less. And an amorphous silicon film (hereinafter referred to as an a-Si film).
  • the thickness of the n layer is preferably 10 nm to 100 nm, and more preferably 10 nm to 50 nm. When the film thickness of the n layer is within the above range, good power generation efficiency can be obtained.
  • the i layer of the ⁇ c-Si cell 30 is composed of a ⁇ c-Si film having an impurity concentration of 2 ⁇ 10 19 atoms / cm 3 or less.
  • the impurity concentration is more preferably 1 ⁇ 10 19 atoms / cm 3 or less.
  • the impurity concentration is 2 ⁇ 10 19 atoms / cm 3 or less, the carrier mobility of electrons and holes is good, and excellent power generation efficiency is obtained.
  • the i layer has a ratio (I 520 / I 480 ) of a peak height (I 520 ) of 520 cm ⁇ 1 and a peak height (I 480 ) of 480 cm ⁇ 1 in Raman spectroscopy of 2 or more and 9 or less, 2 or more and 7 or less are more preferable. If the ratio is less than 2 or exceeds 9, the power generation efficiency decreases as shown in the examples described later. Note that a peak height of 520 cm ⁇ 1 means a peak attributed to crystalline silicon, and a peak height I 480 of 480 cm ⁇ 1 means a peak attributed to amorphous silicon. Therefore, when the value of the ratio is large, it means that the crystallinity of the i layer is high. In order to increase the value of the ratio, the silane concentration relative to the hydrogen gas in the raw material gas used for film formation may be increased.
  • the film thickness of the i layer is preferably 0.5 ⁇ m or more and 4 ⁇ m or less, and more preferably 1 ⁇ m or more and 3 ⁇ m or less. When the film thickness of the i layer is within the above range, good power generation efficiency can be obtained.
  • the p layer of the ⁇ c-Si cell 30 is a ⁇ c-Si film or an a-Si film containing p-type impurities such as boron at a concentration of 1 ⁇ 10 19 atoms / cm 3 or more and 1 ⁇ 10 21 atoms / cm 3 or less. Composed.
  • the thickness of the p layer is more preferably 10 nm or more and 30 nm or less. If it is less than 10 nm or exceeds 30 nm, the power generation efficiency tends to decrease as shown in the examples described later.
  • the n layer is composed of an a-Si film
  • a seed layer made of the ⁇ c-Si film is inserted between the n layer and the i layer.
  • the ⁇ c-Si film is difficult to form on the a-Si film and tends to be amorphous. For this reason, the film quality at the interface between the ⁇ c-Si film and the a-Si film may deteriorate, and the power generation efficiency may be impaired.
  • the unevenness at the interface between the n layer and the i layer can be reduced to 10 nm or less, and an i layer made of a ⁇ c-Si film with good film quality is formed. it can. As a result, excellent power generation efficiency can be obtained.
  • the film thickness of the seed layer is preferably 5 nm or more and 200 nm or less.
  • the film thickness of the seed layer is less than 5 nm, the effect of improving the film quality of the i layer may not be sufficient. If it exceeds 200 nm, it takes time to form a film.
  • the ⁇ c-Si cell 30 has an interfacial layer made of an a-Si film to which boron is added inserted between the i layer and the p layer.
  • the boron concentration of the interface layer is preferably 1/1000 or more and 1/10 or less of the impurity concentration of the p layer.
  • the thickness of the interface layer is preferably 5 nm or more and 20 nm or less. If the boron concentration and film thickness of the interface layer are within the above ranges, excellent power generation efficiency can be obtained.
  • the tunnel junction layer 40 is laminated on the ⁇ c-Si cell 30, and the ⁇ c-Si cell 30 and the a-Si cell 50 are joined via the tunnel junction layer 40.
  • the thickness of the tunnel junction layer 40 is preferably 0.5 ⁇ m or less, and more preferably 0.1 ⁇ m or less.
  • the material of the tunnel junction layer 40 is preferably a ⁇ c-Si film.
  • the ⁇ c-Si cell 30 and the a-Si cell 50 may be directly joined without providing the tunnel junction layer 40. However, by joining the two via the tunnel junction layer 40, more excellent power generation efficiency can be obtained. can get.
  • the a-Si cell 50 is laminated on the tunnel junction layer 40.
  • the a-Si cell 50 is composed of a nip type cell in which an n layer, an i layer, and a p layer are joined.
  • the n layer of the a-Si cell 50 is composed of an a-Si film containing n-type impurities such as phosphorus at a concentration of 1 ⁇ 10 19 atoms / cm 3 or more and 1 ⁇ 10 21 atoms / cm 3 or less.
  • the thickness of the n layer is preferably 5 nm to 50 nm, and more preferably 10 nm to 30 nm. When the film thickness is within the above range, good power generation efficiency can be obtained.
  • the i layer of the a-Si cell 50 is composed of an a-Si film having an impurity concentration of 2 ⁇ 10 19 atoms / cm 3 or less.
  • the film thickness of the i layer is preferably 100 nm or more and 1000 nm or less, and more preferably 100 nm or more and 300 nm or less.
  • good power generation efficiency can be obtained.
  • photodegradation increases.
  • the p-layer of the a-Si cell 50 is composed of an a-Si film containing p-type impurities such as boron at a concentration of 1 ⁇ 10 19 atoms / cm 3 or more and 1 ⁇ 10 21 atoms / cm 3 or less.
  • the thickness of the p layer is preferably 5 nm or more and 50 nm or less. When the film thickness is within the above range, good power generation efficiency can be obtained.
  • the current generated in the a-Si cell 50 is preferably in the range of 95% to 115% with respect to the current generated in the ⁇ c-Si cell 30.
  • the a-Si cell 50 is easily deteriorated by light irradiation and the power generation efficiency is easily lowered, and the power generation efficiency is reduced by about 10% compared to that immediately after film formation.
  • the current generated in the a-Si cell 50 can be 95% to 115% of the current generated in the ⁇ c-Si cell 30.
  • the current generated in the a-Si cell 50 in the performance after light irradiation can be reduced to ⁇ c-Si.
  • the current generated in the cell 30 can be approached. For this reason, the power generation efficiency of a thin film solar cell can be improved.
  • the current generated in each cell increases as the thickness of the cell (particularly the i layer) increases, and decreases as it decreases.
  • the current generated in the ⁇ c-Si cell 30 and the current generated in the a-Si cell 50 are evaluated by spectral sensitivity measurement.
  • the spectral sensitivity measurement is performed in a state in which the power generation of the ⁇ c-Si cell 30 is suppressed except for the long wavelength light in the excitation light.
  • spectral sensitivity measurement is performed in a state where power generation in the a-Si cell 50 is suppressed except for the short wavelength light in the excitation light.
  • a transparent electrode 60 is laminated on the a-Si cell 50.
  • the configuration of the transparent electrode 60 is not particularly limited, and examples thereof include transparent conductive oxides such as ITO, SnO, and ZnO.
  • the film thickness of the transparent electrode 60 is preferably 0.1 ⁇ m or more and 1 ⁇ m or less. When the thickness is less than 0.1 ⁇ m, the electrical conductivity decreases, and when it exceeds 1 ⁇ m, the light transmittance decreases. Further, the product of the film thickness and the refractive index of the transparent electrode 60 is preferably 100 nm or more and 200 nm or less.
  • the refractive index of the transparent electrode means the refractive index for light having a wavelength of 700 nm.
  • the thin film solar cell shown in FIG. 1 is a tandem thin film solar cell in which two layers of nip type cells are stacked, but may be a multi-junction type in which three or more layers of nip type cells are stacked. When three or more nip type cells are stacked, they are arranged in ascending order of the band gap, and a transparent electrode is stacked thereon.
  • a conductive metal such as Ag, Ag alloy, Ni, Ni alloy, Al, Al alloy is deposited on the film substrate 10 by sputtering, vacuum deposition, spray film forming, screen printing, ink jet printing, plating.
  • a conductive metal layer is formed by forming a film by a conventionally known method such as a method. If necessary, a transparent conductive oxide layer may be formed by forming a transparent conductive oxide such as ITO, SnO, or ZnO in the same manner on the conductive metal layer. In this way, the back electrode 20 is formed on the film substrate 10.
  • the film substrate 10 thus formed with the back electrode 20 is introduced into a plasma CVD apparatus, and a source gas containing a silicon-containing gas and hydrogen gas is introduced into the apparatus, and ⁇ c ⁇
  • a source gas containing a silicon-containing gas and hydrogen gas is introduced into the apparatus, and ⁇ c ⁇
  • the respective semiconductor layers constituting the Si cell 30, the tunnel junction layer 40, and the a-Si cell 50 are formed.
  • Examples of the silicon-containing gas used as the source gas include monosilane (SiH 4 ), disilane (Si 2 H 6 ), silicon tetrafluoride (SiF 4 ), silicon tetrachloride (SiCl 4 ), and dichlorosilane (SiH 2 Cl 2). ) Is an example.
  • examples of the dopant gas used when forming the p layer include diborane (B 2 H 6 ).
  • Examples of the dopant gas used for forming the n layer include phosphine (PH 3 ).
  • FIG. 2 is a schematic view showing an example of a plasma CVD apparatus that can be used for forming a semiconductor layer of the thin film solar cell of the present invention.
  • a cathode electrode 2 and an anode electrode 3, which are two parallel plate electrodes, are placed facing each other with a distance (interelectrode distance) therebetween.
  • a high frequency power source 6 is connected to the cathode electrode 2 via a matching unit 5 so that a high frequency can be applied between the electrodes.
  • the cathode electrode 2 is provided with a number of holes (not shown), and the source gas sent through the introduction pipe (not shown) is supplied in a shower shape from the cathode electrode 2 side toward the film substrate 10. ing.
  • the anode electrode 3 is provided with a heating device (not shown) so that the anode electrode 3 and the film substrate 10 can be heated to a predetermined temperature.
  • the exhaust system of the plasma CVD apparatus 1 is provided with a pressure control device (not shown) that keeps the pressure inside the apparatus constant.
  • each semiconductor layer may be formed using the same plasma CVD apparatus, or each semiconductor layer may be formed using a different plasma CVD apparatus by changing the plasma CVD apparatus for each semiconductor layer.
  • a transparent conductive oxide such as ITO, SnO, ZnO or the like is formed on the a-Si cell 50.
  • the transparent electrode 60 is formed by depositing an object by a conventionally known method such as a sputtering method, a vacuum deposition method, a spray film forming method, a screen printing method, an ink jet printing method, or a plating method.
  • Test Example 1 As the film substrate 10, a polyimide film having a film thickness of 50 ⁇ m was used. A 300 nm Ag film was formed on this polyimide film, and then a 30 nm ZnO film was formed on the Ag layer to form the back electrode 20. Then, using the plasma CVD apparatus shown in FIG. 2, various silicon films are formed by plasma CVD under the conditions shown in Table 1, using a mixed gas of SiH 4 and H 2 as a source gas, and a back electrode On the substrate 20, a ⁇ c-Si cell 30, a tunnel junction layer 40, and an a-Si cell 50 were formed.
  • the i layer of the ⁇ c-Si cell 30 has a ratio (I 520 / I 480 ) of a peak height (I 520 ) of 520 cm ⁇ 1 to a peak height (I 480 ) of 480 cm ⁇ 1 in Raman spectroscopy of 4.2.
  • the impurity concentration was 8 ⁇ 10 18 atoms / cm 3 .
  • the impurity concentration was measured by SIMS analysis (Secondary Ion-microprobe Mass Spectrometry). Nitrogen and carbon were detected as impurities in addition to oxygen, but they were very small, so the oxygen concentration was taken as the impurity concentration.
  • a thin film solar cell shown in FIG. 1 was manufactured by laminating an ITO film of 70 nm as a transparent electrode 60 on the a-Si cell 50 by DC sputtering under the condition of 200 ° C.
  • the product of the film thickness of the transparent electrode 60 and the refractive index for light having a wavelength of 700 nm was 140 nm.
  • the thin-film solar cell was measured with a solar simulator under a light of 100 mW / cm 2 to measure a current-voltage curve, and power generation efficiency (photoelectric conversion efficiency) was obtained.
  • the power generation efficiency immediately before irradiation with light was 11.2%, and the power generation efficiency after 300 hours of light irradiation was 9.7%.
  • Test Example 2 A thin film solar cell was manufactured in the same manner as in Test Example 1 except that the film thickness of the i layer of the a-Si cell 50 was changed in the range of 400 nm to 600 nm in Test Example 1.
  • the manufactured thin film solar cell was measured for the current (short circuit current density) of each cell with a spectral sensitivity measuring device. Moreover, after performing 100 mW / cm ⁇ 2 > light irradiation with a solar simulator for 300 hours, the short circuit current density of the thin film solar cell was measured.
  • the current ratio before light irradiation (current generated in the a-Si cell 50 / current generated in the ⁇ c-Si cell 30) and the short-circuit current density (Jsc) of the thin-film solar cell after light irradiation are shown in FIG. As shown in FIG. 3, it can be seen that the short-circuit current density after light irradiation is high when the current ratio is 95% or more and 115% or less.
  • the i layer of the ⁇ c-Si cell thus produced has a ratio (I 520 / I 480 ) of the peak height (I 520 ) of 520 cm ⁇ 1 and the peak height (I 480 ) of 480 cm ⁇ 1 in Raman spectroscopy. ) was in the range of 1 to 11.
  • the current-voltage curve was measured for the ⁇ c-Si cell under irradiation of 100 mW / cm 2 of light with a solar simulator to determine the power generation efficiency.
  • the results are shown in FIG. As shown in FIG. 4, it can be seen that excellent power generation efficiency is obtained when I 520 / I 480 is in the range of 2 to 9. If I 520 / I 480 is less than 2, it is considered that the power generation efficiency is lowered because it is close to an amorphous property.
  • Test Example 4 The impurity concentration in the i layer of the ⁇ c-Si cell was examined.
  • the deposition conditions for the i-layer of the ⁇ c-Si cell are as follows: power 120 W, pressure 480 Pa (3.6 Torr), SiH 4 gas flow rate 15 sccm, dilution rate 50 times, and the conditions for degassing treatment in the plasma CVD deposition apparatus are changed.
  • the impurity concentration of the i layer was changed.
  • each thin film was formed on the back electrode under the film forming conditions of the ⁇ c-Si cell shown in Table 1 of Test Example 1 to manufacture a ⁇ c-Si cell.
  • the impurity concentration of the i layer of the ⁇ c-Si cell was measured by the SIMS method. Nitrogen and carbon were detected as impurities in addition to oxygen, but they were very small, so the oxygen concentration was taken as the impurity concentration. Then, an ITO film of 70 nm was laminated on the surface layer of the ⁇ c-Si cell in the same manner as in Test Example 1.
  • the current-voltage curve was measured by irradiating 100 ⁇ W / cm 2 of light on the ⁇ c-Si cell with a solar simulator to determine the power generation efficiency. The results are shown in FIG. As shown in FIG. 5, when the impurity concentration exceeded 2 ⁇ 10 19 atoms / cm 3 , the power generation efficiency of the ⁇ c-Si cell was lowered.
  • Test Example 5 The film thickness of ITO was examined.
  • the conditions for forming the i layer of the ⁇ c-Si cell were as follows: power 300 W, pressure 2133 Pa (16 Torr), SiH 4 gas flow rate 33 sccm, and dilution rate 50 times. Except for the i layer, each thin film was formed on the back electrode under the film forming conditions of the ⁇ c-Si cell shown in Table 1 of Test Example 1 to manufacture a ⁇ c-Si cell.
  • the film formation time is adjusted to change the film thickness of ITO in the range of 25 nm to 125 nm, and the film thickness of ITO and the refractive index with respect to light having a wavelength of 700 nm are ⁇ c-Si cells having different product (hereinafter referred to as optical film thickness) were manufactured.
  • the current-voltage curve was measured by irradiating 100 ⁇ W / cm 2 of light on the ⁇ c-Si cell with a solar simulator to determine the power generation efficiency.
  • the results are shown in FIG.
  • high power generation efficiency was obtained when the optical film thickness of the transparent electrode was in the range of 100 nm to 200 nm.
  • Particularly high power generation efficiency was obtained when the optical film thickness was 140 nm.
  • Test Example 6 The thickness of the p layer of the ⁇ c-Si cell was examined. Except that the film thickness of the p layer of the ⁇ c-Si cell was changed in the range of 5 nm to 50 nm, the film was formed on the back electrode under the film formation conditions of the ⁇ c-Si cell shown in Table 1 of Test Example 1. Each thin film was formed into a ⁇ c-Si cell. The boron concentration in the p layer of this ⁇ c-Si cell was about 5 ⁇ 10 20 atoms / cm 3 . Then, an ITO film of 70 nm was laminated on the surface layer of the ⁇ c-Si cell in the same manner as in Test Example 1.
  • the produced ⁇ c-Si cell was measured with a solar simulator under irradiation of light of 100 mW / cm 2 to measure a current-voltage curve, and power generation efficiency was obtained.
  • the results are shown in Table 2.
  • high power generation efficiency was obtained when the thickness of the p layer was in the range of 10 nm to 30 nm.
  • Test Example 7 In Test Example 6, the film thickness of the p layer was 20 nm, and the film thickness of the n layer was changed in the range of 20 nm to 100 nm. The phosphorus concentration in the p layer of this ⁇ c-Si cell was about 5 ⁇ 10 20 atoms / cm 3 . Then, an ITO film of 70 nm was laminated on the surface layer of the ⁇ c-Si cell in the same manner as in Test Example 1.
  • the manufactured ⁇ c-Si cell was irradiated with 100 mW / cm 2 of light for 300 hours with a solar simulator, and then a current-voltage curve was measured under the same condition of light irradiation to determine the power generation efficiency.
  • the power generation efficiency of the ⁇ c-Si cell was almost the same. There was no significant difference in power generation efficiency when the thickness of the n layer was in the range of 20 nm to 100 nm.
  • the current-voltage curve was measured by irradiating 100 ⁇ W / cm 2 of light on the ⁇ c-Si cell with a solar simulator to determine the power generation efficiency.
  • the power generation efficiency of the ⁇ c-Si cell with the seed layer (Table 3) was 7.2%, whereas the power generation efficiency of the ⁇ c-Si cell without the seed layer (Table 4) was 6.2%. Power generation efficiency could be improved by inserting a seed layer between the n layer and i layer of the ⁇ c-Si cell.
  • the ⁇ c-Si cell with a seed layer (Table 3) was a ⁇ c-Si film in which the i layer was grown almost uniformly, and the n layer and the i layer.
  • the unevenness of the interface with was 10 nm or less.
  • the ⁇ c-Si cell without the seed layer (Table 4) has a structure in which the amorphous part of the n layer penetrates into the i layer and the part of the microcrystalline part enters into a saw shape, The unevenness at the interface between them was several hundred nm.
  • Test Example 9 In the ⁇ c-Si cell, an interface layer made of an a-Si film having a wide band gap was inserted as an interface layer between the i layer and the p layer.
  • the ⁇ c-Si cell deposition conditions were the same as the ⁇ c-Si cell deposition conditions shown in Table 1 of Test Example 1, and an interface layer composed of an a-Si film was inserted between the i layer and the p layer. .
  • the film formation conditions for the interface layer are as follows: substrate temperature 140 ° C., RF power 5 W, pressure 67 Pa (0.5 Torr), silane flow rate 4 sccm, hydrogen dilution rate 10 times, diborane gas concentration relative to silane (B 2 H 6 / SiH 4 concentration) ) was changed in the range of 0 ppm to 1000 ppm, and an interface layer having a film thickness changed in the range of 5 nm to 40 nm was formed. Then, an ITO film of 70 nm was laminated on the surface layer of the ⁇ c-Si cell in the same manner as in Test Example 1.
  • the current-voltage curve was measured by irradiating 100 ⁇ W / cm 2 of light on the ⁇ c-Si cell with a solar simulator to determine the power generation efficiency. The results are shown in Table 5.
  • the borane concentration of the p layer of the ⁇ c-Si cell is about 1% (Table of Test Example 1). 1). As shown in Table 5, excellent power generation efficiency was obtained when the borane concentration of the interface layer was in the concentration range of 1/1000 or more and 1/10 or less of the p layer. In particular, particularly excellent power generation efficiency was obtained when the thickness of the interface layer was in the range of 5 nm to 20 nm.
  • Plasma CVD apparatus 2 Cathode electrode 3: Anode electrode 5: Matching device 6: High frequency power supply 10: Film substrate 20: Back electrode 30: Microcrystalline silicon cell, ⁇ c-Si cell 40: Tunnel junction layer 50: Amorphous silicon Cell, a-Si cell 60: transparent electrode

Abstract

Provided is a thin film solar cell which has excellent power generation efficiency. A thin film solar cell which is provided with: a film substrate (10); a backside electrode (20) that is laminated on the film substrate (10); a plurality of nip type cells laminated on the backside electrode (20); and a transparent electrode (60) that is laminated on the outermost nip type cell. The nip type cells include a μc-Si cell (30) and an a-Si cell (50). The μc-Si cell (30) has a ratio of the peak height at 520 cm-1 to the peak height at 480 cm-1 of from 2 to 9 (inclusive) in Raman spectroscopy of the i-layer, while having an impurity concentration of 2 × 1019 atoms/cm3 or less. The current generated in the a-Si cell (50) is within the range from 95% to 115% (inclusive) of the current generated in the μc-Si cell (30). The product of the film thickness and the refractive index of the transparent electrode (60) is from 100 nm to 200 nm (inclusive).

Description

薄膜太陽電池Thin film solar cell
 本発明は、フィルム基板上に、少なくとも2層以上のセルが積層された薄膜太陽電池に関する。 The present invention relates to a thin film solar cell in which at least two or more layers of cells are laminated on a film substrate.
 太陽電池は、光エネルギーを電力に変換する発電装置である。太陽電池の発電効率を向上させるために、吸収波長帯域が異なるセルを複数積層して、多接合型構造とする試みが行われている。 A solar cell is a power generation device that converts light energy into electric power. In order to improve the power generation efficiency of solar cells, attempts have been made to make a multi-junction structure by stacking a plurality of cells having different absorption wavelength bands.
 例えば、特許文献1,2には、光入射側から、アモルファスシリコン系セル、微結晶シリコン系セルを積層して多接合型構造とした太陽電池が開示されている。アモルファスシリコン系セルは、アモルファスシリコン、シリコンゲルマニウムやシリコンカーバイドなどのアモルファスシリコン合金を材料として用いたセルである。微結晶シリコン系セルは微結晶シリコン、シリコンゲルマニウムやシリコンカーバイドなどの微結晶シリコン合金を材料とする薄膜を用いたセルである。 For example, Patent Documents 1 and 2 disclose solar cells having a multi-junction structure in which amorphous silicon cells and microcrystalline silicon cells are stacked from the light incident side. The amorphous silicon cell is a cell using amorphous silicon, amorphous silicon alloy such as silicon germanium or silicon carbide as a material. The microcrystalline silicon cell is a cell using a thin film made of a microcrystalline silicon alloy such as microcrystalline silicon, silicon germanium, or silicon carbide.
 微結晶シリコン系セルは、アモルファスシリコン系セルに比べて長波長光に対する感度が高く、アモルファスシリコン系セルでは吸収できない長波長光を発電に利用できる。このため、光入射側から、アモルファスシリコン系セル、微結晶シリコン系セルの順に積層して多接合型構造とすることで、発電効率がより向上する。 The microcrystalline silicon cell has higher sensitivity to long wavelength light than the amorphous silicon cell, and can use long wavelength light that cannot be absorbed by the amorphous silicon cell for power generation. For this reason, power generation efficiency is further improved by stacking an amorphous silicon cell and a microcrystalline silicon cell in this order from the light incident side to form a multi-junction structure.
特開2008-205063号公報JP 2008-205063 A 特開2009-200441号公報JP 2009-200441 A
 しかしながら、近年においては、更なる発電効率の向上が求められており、従来の薄膜太陽電池では十分ではなかった。 However, in recent years, further improvement in power generation efficiency has been demanded, and conventional thin film solar cells have not been sufficient.
 よって、本発明の目的は、発電効率に優れた薄膜太陽電池を提供することにある。 Therefore, an object of the present invention is to provide a thin film solar cell excellent in power generation efficiency.
 本発明の薄膜太陽電池は、フィルム基板と、該フィルム基板上に積層された裏面電極と、該裏面電極上に積層された複数のnip型セルと、最外層のnip型セル上に積層された透明電極とを備えた薄膜太陽電池において、
 前記複数のnip型セルとして、少なくとも1つの微結晶シリコン系セルと、該微結晶シリコン系セルよりも前記透明電極側に配置された、少なくとも1つのアモルファスシリコン系セルとを有し、
 前記微結晶シリコン系セルは、i層のラマン分光における520cm-1のピーク高さ(I520)と480cm-1のピーク高さ(I480)との比(I520/I480)が2以上9以下で、不純物濃度が2×1019原子/cm以下であり、
 前記アモルファスシリコン系セルで発生する電流が、前記微結晶シリコン系セルで発生する電流に対して、95%以上115%以下の範囲にあり、
 前記透明電極の膜厚と屈折率との積が100nm以上200nm以下であることを特徴とする。
The thin film solar cell of the present invention was laminated on a film substrate, a back electrode laminated on the film substrate, a plurality of nip type cells laminated on the back electrode, and an outermost nip type cell. In a thin film solar cell with a transparent electrode,
The plurality of nip-type cells include at least one microcrystalline silicon-based cell, and at least one amorphous silicon-based cell disposed on the transparent electrode side of the microcrystalline silicon-based cell,
In the microcrystalline silicon cell, the ratio (I 520 / I 480 ) of the peak height (I 520 ) of 520 cm −1 and the peak height (I 480 ) of 480 cm −1 in the Raman spectroscopy of the i layer is 2 or more. 9 or less, the impurity concentration is 2 × 10 19 atoms / cm 3 or less,
The current generated in the amorphous silicon cell is in the range of 95% to 115% with respect to the current generated in the microcrystalline silicon cell,
The product of the film thickness and the refractive index of the transparent electrode is 100 nm or more and 200 nm or less.
 本発明の薄膜太陽電池によれば、i層のラマン分光における520cm-1のピーク高さと、480cm-1のピーク高さとの比(I520/I480)が2以上9以下で、不純物濃度が2×1019原子/cm以下である微結晶シリコン系セルと、アモルファスシリコン系セルとを組み合わせて用いることにより、太陽光の有効利用が可能となり、発電効率に優れた太陽電池とすることができる。
 また、アモルファスシリコン系セルは、光照射により劣化し易いが、アモルファスシリコン系セルで発生する電流を、微結晶シリコン系セルで発生する電流の95%以上115%以下としたことで、光照射後の発電効率が安定化したアモルファスシリコン系セルで発生する電流を、微結晶シリコン系セルで発生する電流に近づけることができる。このため、各nip型セルで発生した電流の移動ロスが小さくなり、発電効率に優れる。
 そして、透明電極の膜厚と屈折率との積が100nm以上200nm以下であることにより、太陽電池内部に侵入した太陽光が、太陽電池内部に閉じ込められ易くなり、太陽光を有効利用できる。
According to the thin-film solar cell of the present invention, a peak height of 520 cm -1 in Raman spectroscopy of the i layer, the ratio of the peak height of the 480cm -1 (I 520 / I 480 ) is at 2 to 9, the impurity concentration By using a combination of a microcrystalline silicon cell that is 2 × 10 19 atoms / cm 3 or less and an amorphous silicon cell, solar light can be effectively used and a solar cell with excellent power generation efficiency can be obtained. it can.
In addition, although amorphous silicon cells are easily deteriorated by light irradiation, the current generated in the amorphous silicon cells is 95% to 115% of the current generated in the microcrystalline silicon cells. The current generated in the amorphous silicon cell with stabilized power generation efficiency can be brought close to the current generated in the microcrystalline silicon cell. For this reason, the movement loss of the current generated in each nip type cell is reduced, and the power generation efficiency is excellent.
And since the product of the film thickness and refractive index of a transparent electrode is 100 nm or more and 200 nm or less, the sunlight which penetrate | invaded the inside of a solar cell becomes easy to be confine | sealed inside a solar cell, and sunlight can be used effectively.
 本発明の薄膜太陽電池の前記微結晶シリコン系セルは、p層が厚さ10nm以上30nm以下の微結晶シリコン膜で構成されていることが好ましい。この態様によれば、より発電効率に優れた薄膜太陽電池とすることができる。 In the microcrystalline silicon cell of the thin film solar cell of the present invention, the p layer is preferably composed of a microcrystalline silicon film having a thickness of 10 nm to 30 nm. According to this aspect, a thin-film solar cell with more excellent power generation efficiency can be obtained.
 本発明の薄膜太陽電池の前記微結晶シリコン系セルは、n層がアモルファスシリコン膜で構成され、i層が微結晶シリコン膜で構成されており、n層とi層との間に微結晶シリコン膜からなるシード層が挿入されていることが好ましい。シード層がない場合は、アモルファスシリコン膜からなるn層上に形成した微結晶シリコンの初期成長層がアモルファスシリコンとなる。このため、n層とi層との間にアモルファスシリコンのi層が挟まれるため、電子がn層に流れ難くなると考えられる。 In the microcrystalline silicon cell of the thin film solar cell of the present invention, the n layer is composed of an amorphous silicon film, the i layer is composed of a microcrystalline silicon film, and the microcrystalline silicon is between the n layer and the i layer. A seed layer made of a film is preferably inserted. When there is no seed layer, the initial growth layer of microcrystalline silicon formed on the n layer made of an amorphous silicon film becomes amorphous silicon. For this reason, since the i layer of amorphous silicon is sandwiched between the n layer and the i layer, it is considered that electrons hardly flow into the n layer.
 本発明の薄膜太陽電池の前記微結晶シリコン系セルは、i層とp層との間に、ボロンが添加されたアモルファスシリコン膜からなる界面層が挿入されていることが好ましい。この態様によれば、界面層によって、電子がp層側に移動し難くなり、発電効率が向上する。 In the microcrystalline silicon cell of the thin film solar cell of the present invention, an interface layer made of an amorphous silicon film to which boron is added is preferably inserted between the i layer and the p layer. According to this aspect, the interface layer makes it difficult for electrons to move to the p-layer side, and the power generation efficiency is improved.
 本発明の薄膜太陽電池は、前記界面層のボロン濃度が、p層の不純物濃度の1/1000以上1/10以下であることが好ましい。 In the thin film solar cell of the present invention, the boron concentration in the interface layer is preferably 1/1000 or more and 1/10 or less of the impurity concentration in the p layer.
 本発明の薄膜太陽電池は、前記界面層の厚みが5nm以上20nm以下であることが好ましい。 In the thin film solar cell of the present invention, the interface layer preferably has a thickness of 5 nm to 20 nm.
 本発明の薄膜太陽電池によれば、薄層でありながら太陽光の有効利用が可能となり、発電効率に優れる。 According to the thin film solar cell of the present invention, it is possible to effectively use sunlight even though it is a thin layer, and the power generation efficiency is excellent.
本発明の薄膜太陽電池の一実施形態の概略構成図である。It is a schematic block diagram of one Embodiment of the thin film solar cell of this invention. 同薄膜太陽電池の半導体層の形成に用いることができるプラズマCVD装置の概略構成図である。It is a schematic block diagram of the plasma CVD apparatus which can be used for formation of the semiconductor layer of the thin film solar cell. a-Siセル50とμc-Siセル30との電流比と、安定化後の薄膜太陽電池の短絡電流密度との関係を示す図である。It is a figure which shows the relationship between the electric current ratio of the a-Si cell 50 and the μc-Si cell 30, and the short circuit current density of the thin film solar cell after stabilization. 微結晶シリコンセルのi層のI520/I480と、薄膜太陽電池の発電効率の関係を示す図である。And I 520 / I 480 of the i layer of microcrystalline silicon cell is a diagram showing the relationship between the power generation efficiency of a thin-film solar cell. 微結晶シリコンセルのi層の不純物濃度と、薄膜太陽電池の発電効率の関係を示す図である。It is a figure which shows the relationship of the impurity concentration of i layer of a microcrystal silicon cell, and the power generation efficiency of a thin film solar cell. 透明電極の光学膜厚と、薄膜太陽電池の発電効率の関係を示す図である。It is a figure which shows the relationship between the optical film thickness of a transparent electrode, and the electric power generation efficiency of a thin film solar cell.
 本発明の薄膜太陽電池について、図1に示す薄膜太陽電池を例に挙げて説明する。 The thin film solar cell of the present invention will be described by taking the thin film solar cell shown in FIG. 1 as an example.
 図1に示す薄膜太陽電池は、フィルム基板10に、裏面電極20、微結晶シリコン系セル30、トンネル接合層40、アモルファスシリコン系セル50、透明電極60が積層されて形成されている。この実施形態では、微結晶シリコン系セルとして微結晶シリコンセル(μc-Siセル)を用い、アモルファスシリコン系セルとしてアモルファスシリコンセル(a-Siセル)を用いた。以下、微結晶シリコン系セル30を、μc-Siセル30と記し、アモルファスシリコン系セル50を、a-Siセル50と記す。 1 is formed by laminating a back electrode 20, a microcrystalline silicon cell 30, a tunnel junction layer 40, an amorphous silicon cell 50, and a transparent electrode 60 on a film substrate 10. In this embodiment, a microcrystalline silicon cell (μc-Si cell) is used as the microcrystalline silicon cell, and an amorphous silicon cell (a-Si cell) is used as the amorphous silicon cell. Hereinafter, the microcrystalline silicon cell 30 is referred to as a μc-Si cell 30, and the amorphous silicon cell 50 is referred to as an a-Si cell 50.
 フィルム基板10の材質としては、特に限定されない。例えば、ポリイミドフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリエーテルスルホンフィルム、アクリルフィルム、アラミドフィルム等が挙げられる。 The material of the film substrate 10 is not particularly limited. For example, a polyimide film, a polyethylene terephthalate film, a polyethylene naphthalate film, a polyether sulfone film, an acrylic film, an aramid film, and the like can be given.
 フィルム基板10の膜厚は、特に限定はない。柔軟性、強度、重量を考慮すると、15μm以上200μm以下が好ましい。 The film thickness of the film substrate 10 is not particularly limited. Considering flexibility, strength, and weight, it is preferably 15 μm or more and 200 μm or less.
 フィルム基板10上に裏面電極20が積層されている。裏面電極20は、特に限定はなく、Ag、Ag合金、Ni、Ni合金、Al、Al合金などの導電性金属で構成される。また、これらの導電性金属で形成される層に、ITO、SnO、ZnOなどの透明導電性酸化物で形成される層が積層されていてもよい。裏面電極20を、導電性金属層と透明導電性酸化物層との積層体とすることで、電極金属のSi膜中への拡散の防止および光学的なマッチングによる反射率の向上を図ることができる。 The back electrode 20 is laminated on the film substrate 10. The back electrode 20 is not particularly limited, and is made of a conductive metal such as Ag, Ag alloy, Ni, Ni alloy, Al, or Al alloy. In addition, a layer formed of a transparent conductive oxide such as ITO, SnO, or ZnO may be stacked on the layer formed of these conductive metals. By making the back electrode 20 a laminate of a conductive metal layer and a transparent conductive oxide layer, it is possible to prevent diffusion of the electrode metal into the Si film and improve the reflectance by optical matching. it can.
 裏面電極20の膜厚は、0.1μm以上2μm以下が好ましく、0.1μm以上1μm以下がより好ましい。0.1μm未満であると電気導電性が低くなり、2μmを超えると製膜に時間を要する。 The film thickness of the back electrode 20 is preferably 0.1 μm or more and 2 μm or less, and more preferably 0.1 μm or more and 1 μm or less. If it is less than 0.1 μm, the electrical conductivity is low, and if it exceeds 2 μm, it takes time to form a film.
 裏面電極20上にμc-Siセル30が積層されている。μc-Siセル30は、n層とi層とp層とが接合してなるnip型セルで構成される。 The μc-Si cell 30 is laminated on the back electrode 20. The μc-Si cell 30 is composed of a nip type cell formed by joining an n layer, an i layer, and a p layer.
 μc-Siセル30のn層は、リンなどのn型不純物を1×1019原子/cm以上1×1021原子/cm以下の濃度で含む、微結晶シリコン膜(以下、μc-Si膜という)又はアモルファスシリコン膜(以下、a-Si膜という)で構成される。n層の膜厚は、10nm以上100nm以下が好ましく、10nm以上50nm以下がより好ましい。n層の膜厚が上記範囲内であると、良好な発電効率が得られる。 The n layer of the μc-Si cell 30 includes a microcrystalline silicon film (hereinafter referred to as μc-Si) containing n-type impurities such as phosphorus at a concentration of 1 × 10 19 atoms / cm 3 or more and 1 × 10 21 atoms / cm 3 or less. And an amorphous silicon film (hereinafter referred to as an a-Si film). The thickness of the n layer is preferably 10 nm to 100 nm, and more preferably 10 nm to 50 nm. When the film thickness of the n layer is within the above range, good power generation efficiency can be obtained.
 μc-Siセル30のi層は、不純物濃度が2×1019原子/cm以下のμc-Si膜で構成される。不純物濃度は、1×1019原子/cm以下がより好ましい。不純物濃度が2×1019原子/cm以下であれば、電子や正孔のキャリア移動度が良好であり、優れた発電効率が得られる。 The i layer of the μc-Si cell 30 is composed of a μc-Si film having an impurity concentration of 2 × 10 19 atoms / cm 3 or less. The impurity concentration is more preferably 1 × 10 19 atoms / cm 3 or less. When the impurity concentration is 2 × 10 19 atoms / cm 3 or less, the carrier mobility of electrons and holes is good, and excellent power generation efficiency is obtained.
 i層は、ラマン分光における520cm-1のピーク高さ(I520)と、480cm-1のピーク高さ(I480)との比(I520/I480)が、2以上9以下であり、2以上7以下がより好ましい。前記比が2未満であったり、9を超えると、後述する実施例に示すように発電効率が低下する。なお、520cm-1のピーク高さは、結晶シリコンに起因するピークを意味し、480cm-1のピーク高さI480は、アモルファスシリコンに起因するピークを意味する。したがって、前記比の値が大きい場合は、i層の結晶化度が高いことを意味する。上記比の値を大きくしたい場合は、製膜に用いる原料ガス中の水素ガスに対するシラン濃度を高めればよい。 The i layer has a ratio (I 520 / I 480 ) of a peak height (I 520 ) of 520 cm −1 and a peak height (I 480 ) of 480 cm −1 in Raman spectroscopy of 2 or more and 9 or less, 2 or more and 7 or less are more preferable. If the ratio is less than 2 or exceeds 9, the power generation efficiency decreases as shown in the examples described later. Note that a peak height of 520 cm −1 means a peak attributed to crystalline silicon, and a peak height I 480 of 480 cm −1 means a peak attributed to amorphous silicon. Therefore, when the value of the ratio is large, it means that the crystallinity of the i layer is high. In order to increase the value of the ratio, the silane concentration relative to the hydrogen gas in the raw material gas used for film formation may be increased.
 i層の膜厚は、0.5μm以上4μm以下が好ましく、1μm以上3μm以下がより好ましい。i層の膜厚が上記範囲内であると、良好な発電効率が得られる。 The film thickness of the i layer is preferably 0.5 μm or more and 4 μm or less, and more preferably 1 μm or more and 3 μm or less. When the film thickness of the i layer is within the above range, good power generation efficiency can be obtained.
 μc-Siセル30のp層は、ホウ素などのp型不純物を1×1019原子/cm以上1×1021原子/cm以下の濃度で含む、μc-Si膜又はa-Si膜で構成される。p層の膜厚は、10nm以上30nm以下がより好ましい。10nm未満であったり、30nmを超えると、後述する実施例に示すように、発電効率が低下する傾向にある。 The p layer of the μc-Si cell 30 is a μc-Si film or an a-Si film containing p-type impurities such as boron at a concentration of 1 × 10 19 atoms / cm 3 or more and 1 × 10 21 atoms / cm 3 or less. Composed. The thickness of the p layer is more preferably 10 nm or more and 30 nm or less. If it is less than 10 nm or exceeds 30 nm, the power generation efficiency tends to decrease as shown in the examples described later.
 本発明において、μc-Siセル30は、n層がa-Si膜で構成される場合、n層とi層との間にμc-Si膜からなるシード層が挿入されていることが好ましい。μc-Si膜はa-Si膜上に製膜し難く、アモルファスの性状になり易い。このため、μc-Si膜とa-Si膜との界面における膜品質が悪化して、発電効率が損なわれることがある。しかし、n層とi層との間にシード層を挿入することで、n層とi層との界面の凹凸を10nm以下にでき、膜品質の良好なμc-Si膜からなるi層を形成できる。その結果、優れた発電効率が得られる。 In the present invention, in the μc-Si cell 30, when the n layer is composed of an a-Si film, it is preferable that a seed layer made of the μc-Si film is inserted between the n layer and the i layer. The μc-Si film is difficult to form on the a-Si film and tends to be amorphous. For this reason, the film quality at the interface between the μc-Si film and the a-Si film may deteriorate, and the power generation efficiency may be impaired. However, by inserting a seed layer between the n layer and the i layer, the unevenness at the interface between the n layer and the i layer can be reduced to 10 nm or less, and an i layer made of a μc-Si film with good film quality is formed. it can. As a result, excellent power generation efficiency can be obtained.
 シード層の膜厚は、5nm以上200nm以下が好ましい。シード層の膜厚が5nm未満であると、i層の膜質の改善効果が十分でないことがある。200nmを超えると、製膜に時間を要する。 The film thickness of the seed layer is preferably 5 nm or more and 200 nm or less. When the film thickness of the seed layer is less than 5 nm, the effect of improving the film quality of the i layer may not be sufficient. If it exceeds 200 nm, it takes time to form a film.
 また、本発明において、μc-Siセル30は、i層とp層との間に、ボロンが添加されたa-Si膜からなる界面層が挿入されていることが好ましい。この界面層を挿入することで発電効率を向上できる。界面層のボロン濃度は、p層の不純物濃度の1/1000以上1/10以下が好ましい。界面層の厚みは、5nm以上20nm以下が好ましい。界面層のボロン濃度や膜厚が上記範囲内であれば、優れた発電効率が得られる。 In the present invention, it is preferable that the μc-Si cell 30 has an interfacial layer made of an a-Si film to which boron is added inserted between the i layer and the p layer. By inserting this interface layer, the power generation efficiency can be improved. The boron concentration of the interface layer is preferably 1/1000 or more and 1/10 or less of the impurity concentration of the p layer. The thickness of the interface layer is preferably 5 nm or more and 20 nm or less. If the boron concentration and film thickness of the interface layer are within the above ranges, excellent power generation efficiency can be obtained.
 この実施形態では、μc-Siセル30上にトンネル接合層40が積層されて、トンネル接合層40を介してμc-Siセル30とa-Siセル50とが接合している。トンネル接合層40の膜厚は0.5μm以下が好ましく、0.1μm以下がより好ましい。トンネル接合層40の材質としては、μc-Si膜が好ましい。なお、トンネル接合層40を設けず、μc-Siセル30とa-Siセル50を直接接合してもよいが、トンネル接合層40を介して両者を接合することで、より優れた発電効率が得られる。 In this embodiment, the tunnel junction layer 40 is laminated on the μc-Si cell 30, and the μc-Si cell 30 and the a-Si cell 50 are joined via the tunnel junction layer 40. The thickness of the tunnel junction layer 40 is preferably 0.5 μm or less, and more preferably 0.1 μm or less. The material of the tunnel junction layer 40 is preferably a μc-Si film. The μc-Si cell 30 and the a-Si cell 50 may be directly joined without providing the tunnel junction layer 40. However, by joining the two via the tunnel junction layer 40, more excellent power generation efficiency can be obtained. can get.
 トンネル接合層40上には、a-Siセル50が積層されている。a-Siセル50は、n層とi層とp層が接合してなるnip型セルで構成される。 An a-Si cell 50 is laminated on the tunnel junction layer 40. The a-Si cell 50 is composed of a nip type cell in which an n layer, an i layer, and a p layer are joined.
 a-Siセル50のn層は、リンなどのn型不純物を1×1019原子/cm以上1×1021原子/cm以下の濃度で含むa-Si膜で構成される。n層の膜厚は、5nm以上50nm以下が好ましく、10nm以上30nm以下がより好ましい。膜厚が上記範囲内であると、良好な発電効率が得られる。 The n layer of the a-Si cell 50 is composed of an a-Si film containing n-type impurities such as phosphorus at a concentration of 1 × 10 19 atoms / cm 3 or more and 1 × 10 21 atoms / cm 3 or less. The thickness of the n layer is preferably 5 nm to 50 nm, and more preferably 10 nm to 30 nm. When the film thickness is within the above range, good power generation efficiency can be obtained.
 a-Siセル50のi層は、不純物濃度が2×1019原子/cm以下のa-Si膜で構成される。i層の不純物濃度が2×1019原子/cm以下であれば、電子や正孔のキャリア移動度が良好であり、優れた発電効率が得られる。i層の膜厚は、100nm以上1000nm以下が好ましく、100nm以上300nm以下がより好ましい。i層の膜厚が上記範囲内であると、良好な発電効率が得られる。ただし、膜厚が厚いと光劣化が大きくなる。 The i layer of the a-Si cell 50 is composed of an a-Si film having an impurity concentration of 2 × 10 19 atoms / cm 3 or less. When the impurity concentration of the i layer is 2 × 10 19 atoms / cm 3 or less, the carrier mobility of electrons and holes is good, and excellent power generation efficiency is obtained. The film thickness of the i layer is preferably 100 nm or more and 1000 nm or less, and more preferably 100 nm or more and 300 nm or less. When the film thickness of the i layer is within the above range, good power generation efficiency can be obtained. However, when the film thickness is thick, photodegradation increases.
 a-Siセル50のp層は、ホウ素などのp型不純物を1×1019原子/cm以上1×1021原子/cm以下の濃度で含む、a-Si膜で構成される。p層の膜厚は5nm以上50nm以下が好ましい。膜厚が上記範囲内であると、良好な発電効率が得られる。 The p-layer of the a-Si cell 50 is composed of an a-Si film containing p-type impurities such as boron at a concentration of 1 × 10 19 atoms / cm 3 or more and 1 × 10 21 atoms / cm 3 or less. The thickness of the p layer is preferably 5 nm or more and 50 nm or less. When the film thickness is within the above range, good power generation efficiency can be obtained.
 本発明において、a-Siセル50で発生する電流は、μc-Siセル30で発生する電流に対して、95%以上115%以下の範囲にあることが好ましい。a-Siセル50は光照射により劣化して発電効率が低下し易く、製膜直後のものに比べて発電効率が10%程度低下する。a-Siセル50で発生する電流をμc-Siセル30で発生する電流の95%以上115%以下とすることで、光照射後の性能においてa-Siセル50で発生する電流をμc-Siセル30で発生する電流に近づけることができる。このため、薄膜太陽電池の発電効率を向上できる。 In the present invention, the current generated in the a-Si cell 50 is preferably in the range of 95% to 115% with respect to the current generated in the μc-Si cell 30. The a-Si cell 50 is easily deteriorated by light irradiation and the power generation efficiency is easily lowered, and the power generation efficiency is reduced by about 10% compared to that immediately after film formation. By setting the current generated in the a-Si cell 50 to 95% to 115% of the current generated in the μc-Si cell 30, the current generated in the a-Si cell 50 in the performance after light irradiation can be reduced to μc-Si. The current generated in the cell 30 can be approached. For this reason, the power generation efficiency of a thin film solar cell can be improved.
 各セルで発生する電流は、セル(特にi層)の厚みが大きいほど大きくなり、小さいほど小さくなる。a-Siセル50の厚みとμc-Siセル30の厚みとを調整することで、電流を上記範囲にできる。なお、本発明では、μc-Siセル30で発生する電流とa-Siセル50で発生する電流は分光感度測定で評価する。μc-Siセル30で発生する電流は、励起光の内の長波長光を除き、μc-Siセル30の発電を抑制した状態で分光感度測定を行う。a-Siセル50で発生する電流は、励起光の内の短波長光を除き、a-Siセル50の発電を抑制した状態で分光感度測定を行う。 The current generated in each cell increases as the thickness of the cell (particularly the i layer) increases, and decreases as it decreases. By adjusting the thickness of the a-Si cell 50 and the thickness of the μc-Si cell 30, the current can be in the above range. In the present invention, the current generated in the μc-Si cell 30 and the current generated in the a-Si cell 50 are evaluated by spectral sensitivity measurement. With respect to the current generated in the μc-Si cell 30, the spectral sensitivity measurement is performed in a state in which the power generation of the μc-Si cell 30 is suppressed except for the long wavelength light in the excitation light. With respect to the current generated in the a-Si cell 50, spectral sensitivity measurement is performed in a state where power generation in the a-Si cell 50 is suppressed except for the short wavelength light in the excitation light.
 a-Siセル50上には、透明電極60が積層されている。透明電極60の構成としては、特に限定はなく、ITO、SnO、ZnOなどの透明導電性酸化物が挙げられる。透明電極60の膜厚は、0.1μm以上1μm以下が好ましい。0.1μm未満であると、電気導電性が小さくなり、1μmを超えると光の透過率が低くなる。また、透明電極60の膜厚と屈折率との積は、100nm以上200nm以下が好ましい。膜厚と屈折率との積が上記範囲内であれば、太陽電池内部に侵入した太陽光が、太陽電池内部に閉じ込められ易くなり、太陽光を有効利用できる。なお、本発明において、透明電極の屈折率は、波長700nmの光に対する屈折率のことを意味する。 A transparent electrode 60 is laminated on the a-Si cell 50. The configuration of the transparent electrode 60 is not particularly limited, and examples thereof include transparent conductive oxides such as ITO, SnO, and ZnO. The film thickness of the transparent electrode 60 is preferably 0.1 μm or more and 1 μm or less. When the thickness is less than 0.1 μm, the electrical conductivity decreases, and when it exceeds 1 μm, the light transmittance decreases. Further, the product of the film thickness and the refractive index of the transparent electrode 60 is preferably 100 nm or more and 200 nm or less. If the product of the film thickness and the refractive index is within the above range, the sunlight that has entered the solar cell is easily confined inside the solar cell, and sunlight can be used effectively. In the present invention, the refractive index of the transparent electrode means the refractive index for light having a wavelength of 700 nm.
 なお、図1に示す薄膜太陽電池は、nip型セルを2層積層したタンデム型の薄膜太陽電池であるが、nip型セルを3層以上積層した多接合型としてもよい。nip型セルを3層以上積層する場合、そのバンドギャップが小さい順に配置し、その上に透明電極を積層する。 The thin film solar cell shown in FIG. 1 is a tandem thin film solar cell in which two layers of nip type cells are stacked, but may be a multi-junction type in which three or more layers of nip type cells are stacked. When three or more nip type cells are stacked, they are arranged in ascending order of the band gap, and a transparent electrode is stacked thereon.
 次に、上記薄膜太陽電池の製造方法について説明する。 Next, a method for manufacturing the thin film solar cell will be described.
 まず、フィルム基板10上に、Ag、Ag合金、Ni、Ni合金、Al、Al合金などの導電性金属を、スパッタリング法、真空蒸着法、スプレー製膜法、スクリーン印刷法、インクジェット印刷法、めっき法など従来公知の方法により製膜して、導電性金属層を形成する。必要に応じて、導電性金属層上に、ITO、SnO、ZnOなどの透明導電性酸化物を、同様にして製膜し、透明導電性酸化物層を形成してもよい。このようにしてフィルム基板10上に裏面電極20を形成する。 First, a conductive metal such as Ag, Ag alloy, Ni, Ni alloy, Al, Al alloy is deposited on the film substrate 10 by sputtering, vacuum deposition, spray film forming, screen printing, ink jet printing, plating. A conductive metal layer is formed by forming a film by a conventionally known method such as a method. If necessary, a transparent conductive oxide layer may be formed by forming a transparent conductive oxide such as ITO, SnO, or ZnO in the same manner on the conductive metal layer. In this way, the back electrode 20 is formed on the film substrate 10.
 次に、このようにして裏面電極20を形成したフィルム基板10を、プラズマCVD装置に導入し、装置内にシリコン含有ガスと水素ガスとを含む原料ガスを導入して、プラズマCVD法によりμc-Siセル30、トンネル接合層40、a-Siセル50を構成する各半導体層の製膜を行う。 Next, the film substrate 10 thus formed with the back electrode 20 is introduced into a plasma CVD apparatus, and a source gas containing a silicon-containing gas and hydrogen gas is introduced into the apparatus, and μc− The respective semiconductor layers constituting the Si cell 30, the tunnel junction layer 40, and the a-Si cell 50 are formed.
 原料ガスに用いるシリコン含有ガスとしては、例えば、モノシラン(SiH)、ジシラン(Si)、四フッ化シリコン(SiF)、四塩化シリコン(SiCl)、ジクロロシラン(SiHCl)などが一例として挙げられる。また、p層を形成する際に用いるドーパンドガスとしては、ジボラン(B)等が挙げられる。n層を形成する際に用いるドーパンドガスとしては、ホスフィン(PH)等が挙げられる。 Examples of the silicon-containing gas used as the source gas include monosilane (SiH 4 ), disilane (Si 2 H 6 ), silicon tetrafluoride (SiF 4 ), silicon tetrachloride (SiCl 4 ), and dichlorosilane (SiH 2 Cl 2). ) Is an example. In addition, examples of the dopant gas used when forming the p layer include diborane (B 2 H 6 ). Examples of the dopant gas used for forming the n layer include phosphine (PH 3 ).
 図2に、本発明の薄膜太陽電池の半導体層の形成に用いることができるプラズマCVD装置の一例を表す概略図を示す。このプラズマCVD装置1は、2つの平行平板電極であるカソード電極2とアノード電極3とが互いに間隔(電極間距離)を置いて対向して設置されている。そして、カソード電極2に整合器5を介して高周波電源6が接続され、電極間に高周波が印加できるようになっている。カソード電極2には、図示しないが多数の穴が設けられており、図示しない導入管を通して送られた原料ガスが、カソード電極2側からフィルム基板10に向けてシャワー状に供給されるようにされている。また、アノード電極3には、加熱装置(図示しない)が備えられ、アノード電極3、フィルム基板10を所定温度に昇温できるようになっている。プラズマCVD装置1の排気系には、装置内の圧力を一定に保つ圧力制御装置(図示しない)が備えられている。 FIG. 2 is a schematic view showing an example of a plasma CVD apparatus that can be used for forming a semiconductor layer of the thin film solar cell of the present invention. In this plasma CVD apparatus 1, a cathode electrode 2 and an anode electrode 3, which are two parallel plate electrodes, are placed facing each other with a distance (interelectrode distance) therebetween. A high frequency power source 6 is connected to the cathode electrode 2 via a matching unit 5 so that a high frequency can be applied between the electrodes. The cathode electrode 2 is provided with a number of holes (not shown), and the source gas sent through the introduction pipe (not shown) is supplied in a shower shape from the cathode electrode 2 side toward the film substrate 10. ing. The anode electrode 3 is provided with a heating device (not shown) so that the anode electrode 3 and the film substrate 10 can be heated to a predetermined temperature. The exhaust system of the plasma CVD apparatus 1 is provided with a pressure control device (not shown) that keeps the pressure inside the apparatus constant.
 製膜条件は特に限定は無く、従来公知の方法で行うことができる。また、各半導体層は、同一のプラズマCVD装置にて製膜してもよく、半導体層毎にプラズマCVD装置を変えて、各半導体層を異なるプラズマCVD装置にて製膜してもよい。 The film forming conditions are not particularly limited, and can be performed by a conventionally known method. In addition, each semiconductor layer may be formed using the same plasma CVD apparatus, or each semiconductor layer may be formed using a different plasma CVD apparatus by changing the plasma CVD apparatus for each semiconductor layer.
 裏面電極20上に各半導体層として、μc-Siセル30、トンネル接合層40、a-Siセル50を形成したのち、a-Siセル50上に、ITO、SnO、ZnOなどの透明導電性酸化物を、スパッタリング法、真空蒸着法、スプレー製膜法、スクリーン印刷法、インクジェット印刷法、めっき法など従来公知の方法により製膜して透明電極60を形成する。このようにして、本発明の薄膜太陽電池を製造できる。 After forming the μc-Si cell 30, the tunnel junction layer 40, and the a-Si cell 50 as the respective semiconductor layers on the back electrode 20, a transparent conductive oxide such as ITO, SnO, ZnO or the like is formed on the a-Si cell 50. The transparent electrode 60 is formed by depositing an object by a conventionally known method such as a sputtering method, a vacuum deposition method, a spray film forming method, a screen printing method, an ink jet printing method, or a plating method. Thus, the thin film solar cell of this invention can be manufactured.
 (試験例1)
 フィルム基板10として、膜厚50μmのポリイミドフィルムを用いた。このポリイミドフィルムに、Agを300nm製膜した後、Ag層上にZnOを30nm製膜して裏面電極20を形成した。
 そして、図2に示すプラズマCVD装置を用い、原料ガスとして、SiHとHとの混合ガスを用い、表1に示す条件にてプラズマCVD法により各種シリコン膜を製膜して、裏面電極20上に、μc-Siセル30、トンネル接合層40、a-Siセル50を形成した。μc-Siセル30のi層はラマン分光における520cm-1のピーク高さ(I520)と480cm-1のピーク高さ(I480)との比(I520/I480)が4.2であり、不純物濃度が8×1018原子/cmであった。不純物濃度はSIMS分析法(Secondary Ion-microprobe Mass Spectrometry)で測定した。不純物として酸素以外に窒素や炭素が検出されたが、ごく微量であったので酸素濃度を不純物濃度とした。
 そして、各半導体層が形成されたポリイミドフィルムをスパッタ装置に入れ、Ar-Oガス(O濃度6%)を流量20sccmでスパッタ装置に供給し、圧力400mPa(3mTorr)、パワー300W、基板温度200℃の条件で、直流スパッタ法によりa-Siセル50上に透明電極60としてITO膜を70nm積層し、図1に示す薄膜太陽電池を製造した。透明電極60の膜厚と波長700nmの光に対する屈折率との積は140nmであった。
(Test Example 1)
As the film substrate 10, a polyimide film having a film thickness of 50 μm was used. A 300 nm Ag film was formed on this polyimide film, and then a 30 nm ZnO film was formed on the Ag layer to form the back electrode 20.
Then, using the plasma CVD apparatus shown in FIG. 2, various silicon films are formed by plasma CVD under the conditions shown in Table 1, using a mixed gas of SiH 4 and H 2 as a source gas, and a back electrode On the substrate 20, a μc-Si cell 30, a tunnel junction layer 40, and an a-Si cell 50 were formed. The i layer of the μc-Si cell 30 has a ratio (I 520 / I 480 ) of a peak height (I 520 ) of 520 cm −1 to a peak height (I 480 ) of 480 cm −1 in Raman spectroscopy of 4.2. The impurity concentration was 8 × 10 18 atoms / cm 3 . The impurity concentration was measured by SIMS analysis (Secondary Ion-microprobe Mass Spectrometry). Nitrogen and carbon were detected as impurities in addition to oxygen, but they were very small, so the oxygen concentration was taken as the impurity concentration.
Then, the polyimide film on which each semiconductor layer is formed is put into a sputtering apparatus, Ar—O 2 gas (O 2 concentration 6%) is supplied to the sputtering apparatus at a flow rate of 20 sccm, pressure 400 mPa (3 mTorr), power 300 W, substrate temperature. A thin film solar cell shown in FIG. 1 was manufactured by laminating an ITO film of 70 nm as a transparent electrode 60 on the a-Si cell 50 by DC sputtering under the condition of 200 ° C. The product of the film thickness of the transparent electrode 60 and the refractive index for light having a wavelength of 700 nm was 140 nm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 この薄膜太陽電池を、ソーラーシミュレータで100mW/cmの光を照射の下、電流―電圧曲線を計測し、発電効率(光電変換効率)を求めた。光を照射直前の発電効率は11.2%で、光照射を300時間行った後の発電効率は9.7%であった。 The thin-film solar cell was measured with a solar simulator under a light of 100 mW / cm 2 to measure a current-voltage curve, and power generation efficiency (photoelectric conversion efficiency) was obtained. The power generation efficiency immediately before irradiation with light was 11.2%, and the power generation efficiency after 300 hours of light irradiation was 9.7%.
 (試験例2)
 試験例1において、a-Siセル50のi層の膜厚を400nm以上600nm以下の範囲で変化させて製膜した以外は、試験例1と同様にして薄膜太陽電池を製造した。
(Test Example 2)
A thin film solar cell was manufactured in the same manner as in Test Example 1 except that the film thickness of the i layer of the a-Si cell 50 was changed in the range of 400 nm to 600 nm in Test Example 1.
 製造した薄膜太陽電池を分光感度測定装置により、各セルの電流(短絡電流密度)を測定した。また、ソーラーシミュレータで100mW/cmの光照射を300時間行った後に、薄膜太陽電池の短絡電流密度を計測した。光照射前の電流比(a-Siセル50で発生する電流/μc-Siセル30で発生する電流)と光照射後の薄膜太陽電池の短絡電流密度(Jsc)を図3に示す。図3に示されるように、電流比が95%以上115%以下であると、光照射後の短絡電流密度が高いことが分かる。 The manufactured thin film solar cell was measured for the current (short circuit current density) of each cell with a spectral sensitivity measuring device. Moreover, after performing 100 mW / cm < 2 > light irradiation with a solar simulator for 300 hours, the short circuit current density of the thin film solar cell was measured. The current ratio before light irradiation (current generated in the a-Si cell 50 / current generated in the μc-Si cell 30) and the short-circuit current density (Jsc) of the thin-film solar cell after light irradiation are shown in FIG. As shown in FIG. 3, it can be seen that the short-circuit current density after light irradiation is high when the current ratio is 95% or more and 115% or less.
 (試験例3)
 μc-Siセルのi層の結晶化について検討した。μc-Siセルのi層の製膜条件における水素流量を1700sccmと一定にしてSiHガスの流量を12sccm以上20sccm以下の範囲で変化させた以外は、試験例の表1に示すμc-Siセルの製膜条件で、裏面電極上に各薄膜を製膜してμc-Siセルを製造した。そして、μc-Siセルの表層に、試験例1と同様にしてITO膜を70nm積層した。このようにして製造したμc-Siセルのi層は、ラマン分光における520cm-1のピーク高さ(I520)と480cm-1のピーク高さ(I480)との比(I520/I480)が1以上11以下の範囲のものであった。
(Test Example 3)
The crystallization of the i layer of the μc-Si cell was examined. The μc-Si cell shown in Table 1 of the test example, except that the flow rate of SiH 4 gas was changed in the range of 12 sccm to 20 sccm while the hydrogen flow rate was kept constant at 1700 sccm under the i-layer deposition conditions of the μc-Si cell. Under the film forming conditions, each thin film was formed on the back electrode to manufacture a μc-Si cell. Then, an ITO film of 70 nm was laminated on the surface layer of the μc-Si cell in the same manner as in Test Example 1. The i layer of the μc-Si cell thus produced has a ratio (I 520 / I 480 ) of the peak height (I 520 ) of 520 cm −1 and the peak height (I 480 ) of 480 cm −1 in Raman spectroscopy. ) Was in the range of 1 to 11.
 μc-Siセルを、ソーラーシミュレータで100mW/cmの光を照射の下で電流-電圧曲線を計測し、発電効率を求めた。結果を図4に記す。図4に示されるように、I520/I480が2以上9以下の範囲で優れた発電効率が得られることが分かる。I520/I480が2未満であると、アモルファスの性状に近くなったため発電効率が低下したものと考えられる。 The current-voltage curve was measured for the μc-Si cell under irradiation of 100 mW / cm 2 of light with a solar simulator to determine the power generation efficiency. The results are shown in FIG. As shown in FIG. 4, it can be seen that excellent power generation efficiency is obtained when I 520 / I 480 is in the range of 2 to 9. If I 520 / I 480 is less than 2, it is considered that the power generation efficiency is lowered because it is close to an amorphous property.
 (試験例4)
 μc-Siセルのi層中の不純物濃度について検討した。μc-Siセルのi層の製膜条件を、パワー120W、圧力480Pa(3.6Torr)、SiHガス流量15sccm、希釈率50倍とし、プラズマCVD製膜装置内の脱ガス処理の条件を変化させて、i層の不純物濃度を変化させた。p層とn層は、試験例1の表1に示すμc-Siセルの製膜条件で、裏面電極上に各薄膜を製膜してμc-Siセルを製造した。μc-Siセルのi層の不純物濃度をSIMS法により測定した。不純物として酸素以外に窒素や炭素が検出されたが、ごく微量であったので、酸素濃度を不純物濃度とした。そして、μc-Siセルの表層に、試験例1と同様にしてITO膜を70nm積層した。
(Test Example 4)
The impurity concentration in the i layer of the μc-Si cell was examined. The deposition conditions for the i-layer of the μc-Si cell are as follows: power 120 W, pressure 480 Pa (3.6 Torr), SiH 4 gas flow rate 15 sccm, dilution rate 50 times, and the conditions for degassing treatment in the plasma CVD deposition apparatus are changed. Thus, the impurity concentration of the i layer was changed. For the p layer and the n layer, each thin film was formed on the back electrode under the film forming conditions of the μc-Si cell shown in Table 1 of Test Example 1 to manufacture a μc-Si cell. The impurity concentration of the i layer of the μc-Si cell was measured by the SIMS method. Nitrogen and carbon were detected as impurities in addition to oxygen, but they were very small, so the oxygen concentration was taken as the impurity concentration. Then, an ITO film of 70 nm was laminated on the surface layer of the μc-Si cell in the same manner as in Test Example 1.
 μc-Siセルをソーラーシミュレータで100mW/cmの光を照射の下で電流―電圧曲線を計測し、発電効率を求めた。結果を図5に記す。図5に示されるように、不純物濃度が2×1019原子/cmを超えると、μc-Siセルの発電効率が低下した。 The current-voltage curve was measured by irradiating 100 μW / cm 2 of light on the μc-Si cell with a solar simulator to determine the power generation efficiency. The results are shown in FIG. As shown in FIG. 5, when the impurity concentration exceeded 2 × 10 19 atoms / cm 3 , the power generation efficiency of the μc-Si cell was lowered.
 (試験例5)
 ITOの膜厚について検討した。μc-Siセルのi層の製膜条件を、パワー300W、圧力2133Pa(16Torr)、SiHガス流量33sccm、希釈率50倍とした。i層以外は、試験例1の表1に示すμc-Siセルの製膜条件で、裏面電極上に各薄膜を製膜してμc-Siセルを製造した。そして、μc-Siセルの表層に、製膜時間を調整してITOの膜厚を25nm以上125nm以下の範囲で変化させて製膜し、ITOの膜厚と700nmの波長の光に対する屈折率との積(以下、光学膜厚という)が異なるμc-Siセルを製造した。
(Test Example 5)
The film thickness of ITO was examined. The conditions for forming the i layer of the μc-Si cell were as follows: power 300 W, pressure 2133 Pa (16 Torr), SiH 4 gas flow rate 33 sccm, and dilution rate 50 times. Except for the i layer, each thin film was formed on the back electrode under the film forming conditions of the μc-Si cell shown in Table 1 of Test Example 1 to manufacture a μc-Si cell. Then, on the surface layer of the μc-Si cell, the film formation time is adjusted to change the film thickness of ITO in the range of 25 nm to 125 nm, and the film thickness of ITO and the refractive index with respect to light having a wavelength of 700 nm are Μc-Si cells having different product (hereinafter referred to as optical film thickness) were manufactured.
 μc-Siセルをソーラーシミュレータで100mW/cmの光を照射の下で電流-電圧曲線を計測し、発電効率を求めた。結果を図6に記す。図6に示されるように、透明電極の光学膜厚が100nm以上200nm以下の範囲で高い発電効率が得られた。光学膜厚が140nmで特に高い発電効率が得られた。 The current-voltage curve was measured by irradiating 100 μW / cm 2 of light on the μc-Si cell with a solar simulator to determine the power generation efficiency. The results are shown in FIG. As shown in FIG. 6, high power generation efficiency was obtained when the optical film thickness of the transparent electrode was in the range of 100 nm to 200 nm. Particularly high power generation efficiency was obtained when the optical film thickness was 140 nm.
 (試験例6)
 μc-Siセルのp層の膜厚について検討した。μc-Siセルのp層の膜厚を5nm以上50nm以下の範囲で変化させて製膜させた以外は、試験例1の表1に示すμc-Siセルの製膜条件で、裏面電極上に各薄膜を製膜してμc-Siセルを製造した。このμc-Siセルのp層のボロン濃度は、5×1020原子/cm程度であった。そして、μc-Siセルの表層に、試験例1と同様にしてITO膜を70nm積層した。
(Test Example 6)
The thickness of the p layer of the μc-Si cell was examined. Except that the film thickness of the p layer of the μc-Si cell was changed in the range of 5 nm to 50 nm, the film was formed on the back electrode under the film formation conditions of the μc-Si cell shown in Table 1 of Test Example 1. Each thin film was formed into a μc-Si cell. The boron concentration in the p layer of this μc-Si cell was about 5 × 10 20 atoms / cm 3 . Then, an ITO film of 70 nm was laminated on the surface layer of the μc-Si cell in the same manner as in Test Example 1.
 製造したμc-Siセルをソーラーシミュレータで100mW/cmの光を照射の下で電流-電圧曲線を計測し、発電効率を求めた。結果を表2に記す。表2に示すようにp層の膜厚が10nm以上30nm以上の範囲で高い発電効率が得られた。 The produced μc-Si cell was measured with a solar simulator under irradiation of light of 100 mW / cm 2 to measure a current-voltage curve, and power generation efficiency was obtained. The results are shown in Table 2. As shown in Table 2, high power generation efficiency was obtained when the thickness of the p layer was in the range of 10 nm to 30 nm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 (試験例7)
 試験例6において、p層の膜厚を20nmとして、n層の膜厚を20nm以上100nm以下の範囲で変化させて製膜させた。このμc-Siセルのp層のリン濃度は、5×1020原子/cm程度であった。そして、μc-Siセルの表層に、試験例1と同様にしてITO膜を70nm積層した。
(Test Example 7)
In Test Example 6, the film thickness of the p layer was 20 nm, and the film thickness of the n layer was changed in the range of 20 nm to 100 nm. The phosphorus concentration in the p layer of this μc-Si cell was about 5 × 10 20 atoms / cm 3 . Then, an ITO film of 70 nm was laminated on the surface layer of the μc-Si cell in the same manner as in Test Example 1.
 製造したμc-Siセルにソーラーシミュレータで100mW/cmの光照射を300時間行った後に同条件の光照射の下で電流-電圧曲線を計測し、発電効率を求めた。μc-Siセルの発電効率はほぼ同じであった。n層の膜厚が20nm以上100nm以下の範囲では発電効率に大きな有意差がなかった。 The manufactured μc-Si cell was irradiated with 100 mW / cm 2 of light for 300 hours with a solar simulator, and then a current-voltage curve was measured under the same condition of light irradiation to determine the power generation efficiency. The power generation efficiency of the μc-Si cell was almost the same. There was no significant difference in power generation efficiency when the thickness of the n layer was in the range of 20 nm to 100 nm.
 (試験例8)
 μc-Siセルについて、n層がa-Si膜で構成されているときi層の製膜初期層(シード層)を挿入することで発電効率が向上することについて確認した。
(Test Example 8)
Regarding the μc-Si cell, it was confirmed that the power generation efficiency was improved by inserting an initial i-layer (seed layer) when the n-layer was composed of an a-Si film.
 表3,4に示す条件で、裏面電極上に各薄膜を製膜してμc-Siセルを製造した。そして、μc-Siセルの表層に、試験例1と同様にしてITO膜を70nm積層した。 Each thin film was formed on the back electrode under the conditions shown in Tables 3 and 4 to manufacture a μc-Si cell. Then, an ITO film of 70 nm was laminated on the surface layer of the μc-Si cell in the same manner as in Test Example 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

 μc-Siセルをソーラーシミュレータで100mW/cmの光を照射の下で電流-電圧曲線を計測し、発電効率を求めた。シード層ありのμc-Siセル(表3)は発電効率が7.2%であったのに対し、シード層なしμc-Siセル(表4)は発電効率が6.2%であった。μc-Siセルのn層とi層との間にシード層を挿入することで、発電効率を向上できた。また、μc-Siセルの断面を透過電子顕微鏡観察したところ、シード層ありのμc-Siセル(表3)は、i層がほぼ均一に成長したμc-Si膜であり、n層とi層との界面の凹凸が10nm以下であった。これに対してシード層なしのμc-Siセル(表4)はn層のアモルファスの性状の部分がi層に侵入し、微結晶の性状の部分が鋸状に入りこんだ構造をなしており、両者の界面の凹凸は数百nmであった。 The current-voltage curve was measured by irradiating 100 μW / cm 2 of light on the μc-Si cell with a solar simulator to determine the power generation efficiency. The power generation efficiency of the μc-Si cell with the seed layer (Table 3) was 7.2%, whereas the power generation efficiency of the μc-Si cell without the seed layer (Table 4) was 6.2%. Power generation efficiency could be improved by inserting a seed layer between the n layer and i layer of the μc-Si cell. Further, when a cross section of the μc-Si cell was observed with a transmission electron microscope, the μc-Si cell with a seed layer (Table 3) was a μc-Si film in which the i layer was grown almost uniformly, and the n layer and the i layer. The unevenness of the interface with was 10 nm or less. On the other hand, the μc-Si cell without the seed layer (Table 4) has a structure in which the amorphous part of the n layer penetrates into the i layer and the part of the microcrystalline part enters into a saw shape, The unevenness at the interface between them was several hundred nm.
 (試験例9)
 μc-Siセルにおいて、i層とp層との間に界面層としてバンドギャップの広いa-Si膜からなる界面層を挿入した。μc-Siセル製膜条件は、試験例1の表1に示すμc-Siセルの製膜条件とし、さらに、i層とp層との間に、a-Si膜からなる界面層を挿入した。界面層の製膜条件は、基板温度140℃、RFパワー5W、圧力67Pa(0.5Torr)、シラン流量4sccm、水素希釈率10倍、シランに対するジボランガスの濃度(B/SiHの濃度)を0ppm以上1000ppm以下の範囲で変え、5nm以上40nm以下の範囲で膜厚を変化させた界面層を製膜した。そして、μc-Siセルの表層に、試験例1と同様にしてITO膜を70nm積層した。
(Test Example 9)
In the μc-Si cell, an interface layer made of an a-Si film having a wide band gap was inserted as an interface layer between the i layer and the p layer. The μc-Si cell deposition conditions were the same as the μc-Si cell deposition conditions shown in Table 1 of Test Example 1, and an interface layer composed of an a-Si film was inserted between the i layer and the p layer. . The film formation conditions for the interface layer are as follows: substrate temperature 140 ° C., RF power 5 W, pressure 67 Pa (0.5 Torr), silane flow rate 4 sccm, hydrogen dilution rate 10 times, diborane gas concentration relative to silane (B 2 H 6 / SiH 4 concentration) ) Was changed in the range of 0 ppm to 1000 ppm, and an interface layer having a film thickness changed in the range of 5 nm to 40 nm was formed. Then, an ITO film of 70 nm was laminated on the surface layer of the μc-Si cell in the same manner as in Test Example 1.
 μc-Siセルをソーラーシミュレータで100mW/cmの光を照射の下で電流-電圧曲線を計測し、発電効率を求めた。結果を表5に示す。 The current-voltage curve was measured by irradiating 100 μW / cm 2 of light on the μc-Si cell with a solar simulator to determine the power generation efficiency. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

 界面層、p層のボラン濃度は、原料ガス中のB/SiH濃度とほぼ一致するので、μc-Siセルのp層のボラン濃度は約1%である(試験例1の表1参照)。表5に示すように、界面層のボラン濃度が、p層の1/1000以上1/10以下の濃度範囲で優れた発電効率が得られた。なかでも、界面層の膜厚が5nm以上20nm以下の範囲で特に優れた発電効率が得られた。 Since the borane concentrations of the interface layer and the p layer substantially coincide with the B 2 H 6 / SiH 4 concentration in the source gas, the borane concentration of the p layer of the μc-Si cell is about 1% (Table of Test Example 1). 1). As shown in Table 5, excellent power generation efficiency was obtained when the borane concentration of the interface layer was in the concentration range of 1/1000 or more and 1/10 or less of the p layer. In particular, particularly excellent power generation efficiency was obtained when the thickness of the interface layer was in the range of 5 nm to 20 nm.
符合の説明Explanation of sign
1:プラズマCVD装置
2:カソード電極
3:アノード電極
5:整合器
6:高周波電源
10:フィルム基板
20:裏面電極
30:微結晶シリコン系セル、μc-Siセル
40:トンネル接合層
50:アモルファスシリコン系セル、a-Siセル
60:透明電極
1: Plasma CVD apparatus 2: Cathode electrode 3: Anode electrode 5: Matching device 6: High frequency power supply 10: Film substrate 20: Back electrode 30: Microcrystalline silicon cell, μc-Si cell 40: Tunnel junction layer 50: Amorphous silicon Cell, a-Si cell 60: transparent electrode

Claims (7)

  1.  フィルム基板と、該フィルム基板上に積層された裏面電極と、該裏面電極上に積層された複数のnip型セルと、最外層のnip型セル上に積層された透明電極とを備えた薄膜太陽電池において、
     前記複数のnip型セルとして、少なくとも1つの微結晶シリコン系セルと、該微結晶シリコン系セルよりも前記透明電極側に配置された、少なくとも1つのアモルファスシリコン系セルとを有し、
     前記微結晶シリコン系セルは、i層のラマン分光における520cm-1のピーク高さ(I520)と480cm-1のピーク高さ(I480)との比(I520/I480)が2以上9以下で、不純物濃度が2×1019原子/cm以下であり、
     前記アモルファスシリコン系セルで発生する電流が、前記微結晶シリコン系セルで発生する電流に対して、95%以上115%以下の範囲にあり、
     前記透明電極の膜厚と屈折率との積が100nm以上200nm以下であることを特徴とする薄膜太陽電池。
    A thin film solar comprising a film substrate, a back electrode laminated on the film substrate, a plurality of nip cells laminated on the back electrode, and a transparent electrode laminated on the outermost nip cell In batteries,
    The plurality of nip-type cells include at least one microcrystalline silicon-based cell, and at least one amorphous silicon-based cell disposed on the transparent electrode side of the microcrystalline silicon-based cell,
    In the microcrystalline silicon cell, the ratio (I 520 / I 480 ) of the peak height (I 520 ) of 520 cm −1 and the peak height (I 480 ) of 480 cm −1 in the Raman spectroscopy of the i layer is 2 or more. 9 or less, the impurity concentration is 2 × 10 19 atoms / cm 3 or less,
    The current generated in the amorphous silicon cell is in the range of 95% to 115% with respect to the current generated in the microcrystalline silicon cell,
    The thin film solar cell, wherein the product of the film thickness and the refractive index of the transparent electrode is 100 nm or more and 200 nm or less.
  2.  前記微結晶シリコン系セルは、p層が厚さ10nm以上30nm以下の微結晶シリコン膜で構成されている、請求項1に記載の薄膜太陽電池。 The thin-film solar cell according to claim 1, wherein the microcrystalline silicon cell is composed of a microcrystalline silicon film having a p layer thickness of 10 nm to 30 nm.
  3.  前記微結晶シリコン系セルは、n層がアモルファスシリコン膜で構成され、i層が微結晶シリコン膜で構成されており、n層とi層との間に微結晶シリコン膜からなるシード層が挿入されている、請求項1又は2に記載の薄膜太陽電池。 In the microcrystalline silicon cell, the n layer is composed of an amorphous silicon film, the i layer is composed of a microcrystalline silicon film, and a seed layer composed of the microcrystalline silicon film is inserted between the n layer and the i layer. The thin film solar cell according to claim 1 or 2, wherein
  4.  前記微結晶シリコン系セルは、i層とp層との間にボロンが添加されたアモルファスシリコン膜からなる界面層が挿入されている、請求項1に記載の薄膜太陽電池。 The thin-film solar cell according to claim 1, wherein the microcrystalline silicon cell has an interface layer made of an amorphous silicon film to which boron is added inserted between the i layer and the p layer.
  5.  前記界面層のボロン濃度が、p層の不純物濃度の1/1000以上1/10以下である、請求項4に記載の薄膜太陽電池。 The thin film solar cell according to claim 4, wherein the boron concentration in the interface layer is 1/1000 or more and 1/10 or less of the impurity concentration in the p layer.
  6.  前記界面層の厚みが5nm以上20nm以下である、請求項4に記載の薄膜太陽電池。 The thin film solar cell according to claim 4, wherein the interface layer has a thickness of 5 nm to 20 nm.
  7.  前記界面層の厚みが5nm以上20nm以下である、請求項5に記載の薄膜太陽電池。 The thin film solar cell according to claim 5, wherein the interface layer has a thickness of 5 nm to 20 nm.
PCT/JP2013/050174 2012-02-23 2013-01-09 Thin film solar cell WO2013125251A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-037301 2012-02-23
JP2012037301 2012-02-23

Publications (1)

Publication Number Publication Date
WO2013125251A1 true WO2013125251A1 (en) 2013-08-29

Family

ID=49005445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050174 WO2013125251A1 (en) 2012-02-23 2013-01-09 Thin film solar cell

Country Status (1)

Country Link
WO (1) WO2013125251A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157714A (en) * 2014-07-08 2014-11-19 苏州大学 Amorphous / microcrystalline silicon laminating solar cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135037A (en) * 1995-11-10 1997-05-20 Canon Inc Photovoltaic device
JP2001358350A (en) * 2000-06-12 2001-12-26 Canon Inc Photovoltaic element
JP2003008038A (en) * 2001-06-27 2003-01-10 Fuji Electric Corp Res & Dev Ltd Thin film solar battery and its manufacturing method
JP2010114299A (en) * 2008-11-07 2010-05-20 Mitsubishi Heavy Ind Ltd Method of manufacturing photoelectric conversion device, and photoelectric conversion device
JP2011029625A (en) * 2009-07-03 2011-02-10 Semiconductor Energy Lab Co Ltd Photoelectric conversion device, and method of manufacturing the same
JP2011124474A (en) * 2009-12-14 2011-06-23 Fuji Electric Co Ltd Multi-junction solar cell, solar cell module equipped with multi-junction solar cell, and method of manufacturing multi-junction solar cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135037A (en) * 1995-11-10 1997-05-20 Canon Inc Photovoltaic device
JP2001358350A (en) * 2000-06-12 2001-12-26 Canon Inc Photovoltaic element
JP2003008038A (en) * 2001-06-27 2003-01-10 Fuji Electric Corp Res & Dev Ltd Thin film solar battery and its manufacturing method
JP2010114299A (en) * 2008-11-07 2010-05-20 Mitsubishi Heavy Ind Ltd Method of manufacturing photoelectric conversion device, and photoelectric conversion device
JP2011029625A (en) * 2009-07-03 2011-02-10 Semiconductor Energy Lab Co Ltd Photoelectric conversion device, and method of manufacturing the same
JP2011124474A (en) * 2009-12-14 2011-06-23 Fuji Electric Co Ltd Multi-junction solar cell, solar cell module equipped with multi-junction solar cell, and method of manufacturing multi-junction solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157714A (en) * 2014-07-08 2014-11-19 苏州大学 Amorphous / microcrystalline silicon laminating solar cell
CN104157714B (en) * 2014-07-08 2017-01-25 苏州大学 Amorphous / microcrystalline silicon laminating solar cell

Similar Documents

Publication Publication Date Title
JP4940290B2 (en) Photoelectric conversion device and manufacturing method thereof
JP4902779B2 (en) Photoelectric conversion device and manufacturing method thereof
US20150136210A1 (en) Silicon-based solar cells with improved resistance to light-induced degradation
JPWO2011007593A1 (en) Thin film solar cell and manufacturing method thereof
US20100307574A1 (en) Solar cell and manufacturing method thereof
US8759667B2 (en) Photoelectric conversion device
JP2008283075A (en) Manufacturing method of photoelectric conversion device
WO2013125251A1 (en) Thin film solar cell
EP2755241A1 (en) Thin film photoelectric conversion device and method for manufacturing same
WO2011114551A1 (en) Solar cell and method for manufacturing same
JP5770294B2 (en) Photoelectric conversion device and manufacturing method thereof
WO2011105166A1 (en) Photoelectric conversion module and method for manufacturing same
JP2011014618A (en) Solar cell and method of manufacturing the same
JP2009027160A (en) Silicon multiple solar cell, and method for manufacturing thereof
WO2013168515A1 (en) Photovoltaic device and method for producing same
US20100307573A1 (en) Solar cell and manufacturing method thereof
JP2010283162A (en) Solar cell and method for manufacturing the same
JP5373045B2 (en) Photoelectric conversion device
JP4642126B2 (en) Laminated photovoltaic device and method for producing laminated photovoltaic device
JP5763411B2 (en) Stacked photoelectric conversion device
JP2003142705A (en) Photovoltaic element
KR20130071528A (en) Method of manufacturing solar cell
WO2013080803A1 (en) Photovoltatic power device
WO2013065538A1 (en) Photoelectric conversion device
JP2010283160A (en) Solar cell and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13752227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13752227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP