JP2003008038A - Thin film solar battery and its manufacturing method - Google Patents

Thin film solar battery and its manufacturing method

Info

Publication number
JP2003008038A
JP2003008038A JP2001194241A JP2001194241A JP2003008038A JP 2003008038 A JP2003008038 A JP 2003008038A JP 2001194241 A JP2001194241 A JP 2001194241A JP 2001194241 A JP2001194241 A JP 2001194241A JP 2003008038 A JP2003008038 A JP 2003008038A
Authority
JP
Japan
Prior art keywords
semiconductor layer
interface
layer
type semiconductor
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001194241A
Other languages
Japanese (ja)
Inventor
Shinji Fujikake
伸二 藤掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP2001194241A priority Critical patent/JP2003008038A/en
Publication of JP2003008038A publication Critical patent/JP2003008038A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thin film solar battery having a good reproducibility and a high conversion efficiency by suppressing a deterioration of interface characteristics due to a thermal diffusion in a manufacturing process. SOLUTION: The thin film solar battery comprises at least one pin junction p-type semiconductor layer 7 or an n-type semiconductor layer 3 made of an amorphous silicon thin film containing a microcrystal phase, an amorphous semiconductor layer containing its microcrystal phase, an i-type semiconductor layer 4 made of an amorphous silicon film, and an interface semiconductor layer of the amorphous silicon film in which a band gap is wider than that of the layer 4 and same conductivity type impurity as that of the amorphous silicon film containing the microcrystal phase is added in a low concentration and interposed in a junction interface between the amorphous semiconductor layer and the semiconductor layer 4. In this battery, the interface semiconductor layer has at least two layers (5, 6). An adding amount of an impurity of the interface semiconductor layer (i-type side interface layer) 5 of the interface side to the i-type semiconductor layer is smaller than that of the interface semiconductor layer (non-i-type side interface layer) 6 of the interface side to the p-type semiconductor layer or the n-type semiconductor layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、非晶質シリコン
(a-Si)あるいは微結晶シリコン(μc-Si)を主材料と
した薄膜太陽電池、特にpin接合構造を複数積層して
なる薄膜太陽電池及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film solar cell whose main material is amorphous silicon (a-Si) or microcrystalline silicon (μc-Si), particularly a thin film solar cell having a plurality of pin junction structures laminated. The present invention relates to a battery and a manufacturing method thereof.

【0002】[0002]

【従来の技術】非単結晶膜を用いた光電変換装置、特に
シリコン系の非単結晶薄膜である非晶質シリコン(a-S
i)、および非晶質シリコンゲルマニウム(a-SiGe)等
の薄膜を、プラズマ放電によって形成した薄膜光電変換
装置は、単結晶シリコンデバイスと比較して、大面積
に、低温で、安価に作製できることから、電力用の大面
積薄膜太陽電池等への適用において特に期待されてい
る。
2. Description of the Related Art A photoelectric conversion device using a non-single-crystal film, especially amorphous silicon (aS) which is a silicon-based non-single-crystal thin film.
i) and thin-film photoelectric conversion devices formed by plasma discharge of thin films of amorphous silicon germanium (a-SiGe), etc., can be manufactured in a large area, at low temperature, and at low cost compared to single-crystal silicon devices. Therefore, it is particularly expected to be applied to large-area thin-film solar cells for electric power.

【0003】しかしながら、このa-Siやa-SiGe太陽電池
は、単結晶Siや多結晶Si等のバルク結晶型太陽電池に比
べて変換効率が低く、さらには、固有の問題として光照
射によって変換効率が1〜3割程度低下する光劣化とい
う問題を抱えている。これらの問題を解決して高効率、
高信頼性を実現する方法として複数のpin型セルを積層
してマルチ接合化したもの、即ち、多層型薄膜太陽電池
が知られている。
However, this a-Si or a-SiGe solar cell has a lower conversion efficiency than a bulk crystal type solar cell such as single crystal Si or polycrystal Si, and further has a unique problem of conversion by light irradiation. It has a problem of photodegradation that reduces efficiency by about 10 to 30%. High efficiency by solving these problems,
As a method of achieving high reliability, a multi-layer thin film solar cell in which a plurality of pin cells are stacked to form a multi-junction is known.

【0004】これは、p,i,n型の半導体層から成る
光電変換層を、基板上に複数積層したもので、光入射側
に、相対的に光学的禁制帯幅(以下、光学的バンドギャ
ップともいう。)の大きい非晶質シリコンを用い、光入
射側から遠い光電変換層に、光学的バンドギャップの小
さい非晶質シリコンゲルマニウムを用いて、非晶質シリ
コンでは吸収され難い赤外線領域の光も効率よく吸収し
て、変換効率の向上を図るものである。さらに、一つの
半導体層の膜厚方向の原子組成比を変化させることによ
り、光学的バンドギャップをその層内で変化させるグレ
ーデッド構成の採用により、さらに変換効率の向上を図
る技術も知られている。
This is a stack of a plurality of photoelectric conversion layers composed of p, i, and n type semiconductor layers on a substrate, and has an optical forbidden band width (hereinafter, optical band) relatively on the light incident side. (Also called a gap), and amorphous silicon germanium with a small optical bandgap is used for the photoelectric conversion layer far from the light incident side, and the infrared region of the infrared region that is difficult to be absorbed by amorphous silicon is used. The light is also efficiently absorbed to improve the conversion efficiency. Furthermore, there is also known a technique for further improving the conversion efficiency by adopting a graded structure in which the optical bandgap is changed within the layer by changing the atomic composition ratio in the film thickness direction of one semiconductor layer. There is.

【0005】前記光劣化の問題や多層化による変換効率
の向上について、さらに以下に詳述する。前記光劣化は
i層中に発生する光誘起欠陥に起因する。i層の膜厚を
薄くすれば内部電界が強くなるために、効率低下を抑え
ることが可能であるが光吸収量が減って初期効率が低下
してしまう。そこで、i層の膜厚が薄いセルを複数個積
層すれば、1個のときよりも光吸収量を増加させること
ができ、高効率と高信頼性の両立を図ることが可能とな
る。さらに、a-SiGeや薄膜多結晶シリコン等のナローギ
ャップ(光学的バンドギャップの小さい)材料をi層に
用いたセルをボトムあるいはミドルセルとして組み合わ
せればa-Siセルでは用いることができなかった波長800n
m以上の赤外光も吸収することが可能となり、高効率化
が達成される。
The problem of photo-deterioration and the improvement of conversion efficiency due to the multilayer structure will be described in more detail below. The photodegradation is caused by photoinduced defects generated in the i layer. If the film thickness of the i-layer is reduced, the internal electric field becomes stronger, so that it is possible to suppress the efficiency reduction, but the amount of light absorption is reduced and the initial efficiency is reduced. Therefore, by stacking a plurality of cells each having a thin i-layer, the amount of light absorption can be increased more than in the case of one cell, and both high efficiency and high reliability can be achieved. Furthermore, if a cell using a narrow gap (small optical bandgap) material such as a-SiGe or thin film polycrystalline silicon for the i-layer is combined as a bottom or middle cell, a wavelength that could not be used in the a-Si cell is obtained. 800n
Infrared light of m or more can be absorbed, and high efficiency can be achieved.

【0006】マルチ接合型a-Si太陽電池の一例として、
pin接合を三段積層したa-Si/a-SiGe/a-SiGe構造のトリ
プル接合型の太陽電池が知られている。トップ、ミド
ル、ボトムセルのi層膜厚は、例えばそれぞれ70〜100n
m、60〜150nm、50〜120nmである。この場合、各セルの
電流マッチングをとるためには、各層の膜厚およびバン
ドギャップの制御が重要となる。トップ、ミドル、ボト
ムの各i層の光学ギャップはそれぞれ1.75〜1.8eV、1.5
〜1.6eV、1.35〜1.5eVである。
As an example of a multi-junction a-Si solar cell,
A triple-junction solar cell with a-Si / a-SiGe / a-SiGe structure in which three pin junctions are stacked is known. The i-layer thickness of the top, middle, and bottom cells is, for example, 70 to 100 n, respectively.
m, 60-150 nm, 50-120 nm. In this case, it is important to control the film thickness and bandgap of each layer in order to obtain the current matching of each cell. The optical gaps of the top, middle, and bottom i layers are 1.75 to 1.8 eV and 1.5, respectively.
~ 1.6eV, 1.35 ~ 1.5eV.

【0007】このトリプルセルの高効率化技術として、
微結晶シリコン(μc-Si)のp層への適用が考えられ
る。μc-Siは2つの相をもつため、厳密なバンドギャッ
プは定義できないが、波長300〜800nmの光に対する吸収
係数は通常p層に用いられるアモルファスシリコンカー
バイド(a-SiC)と同等以下である。そこで、p層に適
用した場合、光吸収ロスが小さく短絡電流(Jsc)を増
加させることができる。
As a technique for improving the efficiency of this triple cell,
Application of microcrystalline silicon (μc-Si) to the p-layer is conceivable. Since μc-Si has two phases, the exact bandgap cannot be defined, but the absorption coefficient for light with a wavelength of 300 to 800 nm is equal to or less than that of amorphous silicon carbide (a-SiC) that is usually used for p-layers. Therefore, when applied to the p-layer, the light absorption loss is small and the short-circuit current (Jsc) can be increased.

【0008】本件発明者は、μc-Siのp層をミドルおよ
びボトムセルに適用する場合、微量のボロンを添加した
p/i界面層を挿入することが有効であることを見出し、
特願平11−346206号により提案した。この発明
の要旨は以下のとおりである。即ち、「非晶質薄膜から
なるp型半導体層、実質的に真性なi型半導体層、n型
半導体層を積層したpin接合を少なくとも一つ有する
非晶質薄膜太陽電池において、少なくともその一つの接
合のp型半導体層あるいはn型半導体層が微結晶相を含
む非晶質シリコン系膜(μc-Si系膜)からなり、その微
結晶相を含む半導体層と非晶質シリコン系膜(a-Si系
膜)からなるi型半導体層との接合界面において、バン
ドギャップがi型半導体層よりも広く、かつ、微結晶相
を含む非晶質シリコン系膜(μc-Si系膜)と同一導電型
の不純物を低濃度添加した非晶質シリコン系膜(a-Si系
膜)からなる界面半導体層が介在するものとする。」例
えばpin接合のp型半導体層が微結晶相を含むとき、
p型半導体層とi型半導体層との間に、低濃度のp型の
非晶質半導体層を挟むことにより、光照射後の効率(Ef
f)等を従来より向上させることができる。その理由
は、適量の不純物(B:ボロン)を加えたp/i界面層
を挟むと、p/i界面層に生じる内部電界が弱くなって
電圧ロスが小さくなり、その結果、拡散電位が増加して
Effが向上すると考えられる。
The inventors of the present invention added a trace amount of boron when the μc-Si p layer was applied to the middle and bottom cells.
found that inserting p / i interface layer was effective,
It was proposed by Japanese Patent Application No. 11-346206. The gist of the present invention is as follows. That is, “in an amorphous thin-film solar cell having at least one pin junction in which a p-type semiconductor layer made of an amorphous thin film, a substantially intrinsic i-type semiconductor layer, and an n-type semiconductor layer are stacked, The p-type semiconductor layer or the n-type semiconductor layer of the junction is composed of an amorphous silicon-based film (μc-Si-based film) containing a microcrystalline phase, and the semiconductor layer containing the microcrystalline phase and the amorphous silicon-based film (a -Si-based film) has a wider bandgap at the junction interface with the i-type semiconductor layer than the i-type semiconductor layer and is the same as the amorphous silicon-based film (μc-Si-based film) containing a microcrystalline phase. It is assumed that an interfacial semiconductor layer made of an amorphous silicon-based film (a-Si-based film) to which a conductivity type impurity is added at a low concentration is interposed. "For example, when the p-type semiconductor layer of the pin junction contains a microcrystalline phase ,
By sandwiching a low-concentration p-type amorphous semiconductor layer between the p-type semiconductor layer and the i-type semiconductor layer, the efficiency after light irradiation (Ef
f) etc. can be improved from the conventional one. The reason is that when a p / i interface layer containing an appropriate amount of impurities (B: boron) is sandwiched, the internal electric field generated in the p / i interface layer is weakened and voltage loss is reduced, resulting in an increase in diffusion potential. do it
Eff is considered to improve.

【0009】特に、微結晶シリコンが界面半導体層との
界面近傍から成長していることが重要である。微結晶相
を含む非晶質シリコン系膜(μc-Si系膜)の製膜条件に
よって、製膜の初期に薄い微結晶相を含まない遷移層が
形成されることがある。この層が存在すると、吸収係数
の増大や開放電圧(Voc)の低下といった悪影響を及ぼ
す。
In particular, it is important that the microcrystalline silicon grows near the interface with the interface semiconductor layer. Depending on the film forming conditions of the amorphous silicon-based film (μc-Si-based film) containing the microcrystalline phase, a thin transition layer containing no microcrystalline phase may be formed in the initial stage of film formation. The presence of this layer adversely affects the absorption coefficient and the open circuit voltage (Voc).

【0010】i型半導体層が非晶質シリコンゲルマニウ
ム(a‐SiGe)であるとき、界面半導体層は非晶質シリ
コン(a‐Si)であって、その好適な膜中不純物量は、3
×1O 17〜8×1O19原子/cm3である。
The i-type semiconductor layer is amorphous silicon germanium
Interface (a-SiGe), the interface semiconductor layer is amorphous
Con (a-Si), the preferred amount of impurities in the film is 3
× 1O 17~ 8 × 1O19Atom / cm3Is.

【0011】[0011]

【発明が解決しようとする課題】上記特願平11−34
6206号に記載された薄膜太陽電池においても、下記
のような問題があることが判明した。即ち、上述のよう
なp層とp/i界面層の組み合わせを、ミドルおよびボト
ムセルに適用してトリプルセルを作製した場合、得られ
る効率は単独のコンポーネントセルから見込まれる値よ
り低く、かつ、バラツキが大きいという問題があり、こ
の原因を詳細に調べたところ、ボトムセルの熱劣化によ
ることが判明した。
[Patent Document 1] Japanese Patent Application No. 11-34
It was found that the thin-film solar cell described in No. 6206 also has the following problems. That is, when the triple cell is manufactured by applying the combination of the p layer and the p / i interface layer as described above to the middle and bottom cells, the obtained efficiency is lower than the value expected from a single component cell, and the variation is small. However, when the cause was investigated in detail, it was found that the bottom cell was due to thermal deterioration.

【0012】ボトムセルはミドルセル製膜時に200℃
程度の高温に比較的長時間さらされるので、結果とし
て、p/i界面のボロンがi層中に熱拡散して界面特性を
劣化させたものと考えられる。
The bottom cell is 200 ° C. when forming the middle cell.
Since it is exposed to a high temperature for about a relatively long time, it is considered that as a result, boron at the p / i interface thermally diffuses into the i layer and deteriorates the interface characteristics.

【0013】この発明は、上記の点に鑑みてなされたも
ので、本発明の課題は、製造プロセスにおける熱拡散に
よる界面特性の劣化を抑制し、再現性が良くかつ変換効
率が高い薄膜太陽電池を提供することにある。
The present invention has been made in view of the above points, and an object of the present invention is to suppress the deterioration of the interface characteristics due to thermal diffusion in the manufacturing process, to obtain a thin film solar cell having good reproducibility and high conversion efficiency. To provide.

【0014】[0014]

【課題を解決するための手段】前述の課題を達成するた
め、この発明は、p型半導体層、実質的に真性なi型半
導体層、n型半導体層を積層したpin接合を少なくと
も一つ有する薄膜太陽電池において、少なくとも一つの
pin接合のp型半導体層あるいはn型半導体層が微結
晶相を含む非晶質シリコン系薄膜からなり、その微結晶
相を含む非晶質半導体層と非晶質シリコン系膜からなる
i型半導体層との接合界面において、バンドギャップが
i型半導体層よりも広く、かつ、微結晶相を含む非晶質
シリコン系膜と同一導電型の不純物を低濃度添加した非
晶質シリコン系膜の界面半導体層を介在してなる薄膜太
陽電池であって、前記界面半導体層を少なくとも2層と
し、前記i型半導体層との界面側の界面半導体層(i側
界面層)の不純物添加量を、p型半導体層あるいはn型
半導体層との界面側の界面半導体層(非i側界面層)の
不純物添加量より小としてなるものとする(請求項1の
発明)。
In order to achieve the above object, the present invention has at least one pin junction in which a p-type semiconductor layer, a substantially intrinsic i-type semiconductor layer, and an n-type semiconductor layer are laminated. In a thin film solar cell, at least one p-type semiconductor layer or n-type semiconductor layer having a pin junction is made of an amorphous silicon-based thin film containing a microcrystalline phase, and an amorphous semiconductor layer containing the microcrystalline phase and an amorphous semiconductor layer. At the junction interface with the i-type semiconductor layer made of a silicon-based film, the bandgap is wider than that of the i-type semiconductor layer, and an impurity of the same conductivity type as the amorphous silicon-based film containing a microcrystalline phase is added at a low concentration. A thin-film solar cell having an interfacial semiconductor layer of an amorphous silicon film, wherein the interfacial semiconductor layer is at least two layers, and the interfacial semiconductor layer on the interface side with the i-type semiconductor layer (i-side interfacial layer). ) Impurity A pressurized quantity shall be made as small than the doping amount of the surface semiconductor layer at the interface side (non-i side interface layer) between the p-type semiconductor layer or n-type semiconductor layer (the first aspect of the present invention).

【0015】上記請求項1の発明の実施態様としては、
下記が好適である。即ち、前記請求項1に記載の薄膜太
陽電池において、pin接合を複数有する多層型薄膜太
陽電池の場合、前記2層の界面半導体層は、太陽電池の
反基板側のpin接合を除いた全てのpin接合におけ
る、p型半導体層とi型半導体層との界面に形成してな
るものとする(請求項2の発明)。
As an embodiment of the invention of claim 1,
The following are preferred: That is, in the thin-film solar cell according to claim 1, in the case of a multi-layer thin-film solar cell having a plurality of pin junctions, the two-layer interface semiconductor layers include all the pin junctions on the non-substrate side of the solar cell. It is formed at the interface between the p-type semiconductor layer and the i-type semiconductor layer in the pin junction (the invention of claim 2).

【0016】また、請求項2に記載の薄膜太陽電池にお
いて、前記2層の界面半導体層は、前記p型半導体層と
i型半導体層との界面に形成した界面半導体層(p/i
界面層)に加え、さらに、n型半導体層とi型半導体層
との界面に形成した界面半導体層(n/i界面層)を備
えるものとする(請求項3の発明)。
Further, in the thin-film solar cell according to claim 2, the two interface semiconductor layers are interface semiconductor layers (p / i) formed at an interface between the p-type semiconductor layer and the i-type semiconductor layer.
In addition to the interface layer), an interface semiconductor layer (n / i interface layer) formed at the interface between the n-type semiconductor layer and the i-type semiconductor layer is further provided (the invention of claim 3).

【0017】さらに、請求項1ないし3のいずれかに記
載の薄膜太陽電池において、前記i型半導体層は、アモ
ルファスシリコンゲルマニウム、微結晶シリコンあるい
は微結晶シリコンゲルマニウムのいずれかの層とする
(請求項4の発明)。
Further, in the thin-film solar cell according to any one of claims 1 to 3, the i-type semiconductor layer is any layer of amorphous silicon germanium, microcrystalline silicon, or microcrystalline silicon germanium. Invention of 4).

【0018】さらにまた、請求項1ないし4のいずれか
に記載の薄膜太陽電池において、前記pin接合におけ
る各半導体層の積層順序は、太陽電池の基板側からn,
i,pもしくはp,i,nとしてなるものとする(請求
項5の発明)。
Furthermore, in the thin-film solar cell according to any one of claims 1 to 4, the semiconductor layers in the pin junction are stacked in the order of n, from the substrate side of the solar cell.
i, p or p, i, n (the invention of claim 5).

【0019】即ち、上記発明によれば、p層あるいはn
層と、i層との間に挿入する界面半導体層(以下、単に
界面層ともいう。)の不純物添加量に分布をもたせ、i
層との界面側における不純物添加量をp層あるいはn層
との界面側よりも小さくする。
That is, according to the above invention, the p layer or the n layer is formed.
The distribution of the impurity addition amount of the interface semiconductor layer (hereinafter, also simply referred to as the interface layer) inserted between the layer and the i layer is given as i.
The amount of impurities added on the interface side with the layer is made smaller than that on the interface side with the p layer or the n layer.

【0020】例えば、μc-Siのp層を適用したセルにお
いて、p層とi層との間に挿入する界面層を2層構造と
し、i層側の層をボロン無添加、p層側の層をボロン添
加とする。より好ましくは、前記請求項3の発明のよう
に、p層とi層との間以外にn層とi層との間にも2層
の界面層を設ける。i層側のボロン無添加層(i側界面
層)が熱拡散をブロックし、界面特性の劣化が抑えられ
る。
For example, in a cell to which a p layer of μc-Si is applied, the interface layer inserted between the p layer and the i layer has a two-layer structure, the layer on the i layer side is boron-free, and the layer on the p layer side is The layer is boron added. More preferably, as in the third aspect of the invention, two interface layers are provided between the n layer and the i layer in addition to between the p layer and the i layer. The boron-free layer (i-side interface layer) on the i-layer side blocks thermal diffusion and suppresses deterioration of interface characteristics.

【0021】ここで、ボロン無添加層は厚みを2nm以
上とすれば十分な効果を発揮する。また、界面層のi層
側は、必ずしもボロン無添加でなくとも良く、主ガスに
対するドーピングガスの添加量を10ppm以下とすれ
ばよい。
Here, the boron-free layer exhibits a sufficient effect when the thickness is 2 nm or more. Further, the i-layer side of the interface layer does not necessarily need to be boron-free, and the amount of doping gas added to the main gas may be 10 ppm or less.

【0022】即ち、本発明の薄膜太陽電池の製造方法と
しては、下記請求項6の発明が好適である。請求項1な
いし5のいずれかに記載の薄膜太陽電池の製造方法にお
いて、前記i側界面層の不純物添加量は、主ガスに対す
るガス比で10ppm以下とし、その膜厚は2nm以上
とする(請求項6の発明)。
That is, as the method for producing a thin film solar cell of the present invention, the invention of claim 6 below is preferable. In the method for manufacturing a thin-film solar cell according to any one of claims 1 to 5, the amount of impurities added to the i-side interface layer is 10 ppm or less in terms of a gas ratio to the main gas, and the film thickness is 2 nm or more. Invention of Item 6).

【0023】また、請求項6に記載の薄膜太陽電池の製
造方法において、前記多層型太陽電池の基板側のpin
接合形成後、当該pin接合の上に形成するpin接合
または透明電極層の形成温度は、150〜200℃とす
る(請求項7の発明)。多層型薄膜太陽電池において
は、基板上にpin接合を形成し、この接合層の上にさ
らに、複数のpin接合を形成する。この場合、後に詳
述するように、下側のpin接合層は、薄膜の材質や処
理方法に依存する温度(150〜200℃)に晒される
が、この場合、界面特性劣化を防止する上で、前記本発
明に係る薄膜太陽電池とその製造方法が好適である。
Further, in the method for manufacturing a thin film solar cell according to claim 6, the pin on the substrate side of the multilayer solar cell is used.
After forming the junction, the formation temperature of the pin junction or the transparent electrode layer formed on the pin junction is 150 to 200 ° C. (invention of claim 7). In a multilayer thin-film solar cell, a pin junction is formed on a substrate, and a plurality of pin junctions are further formed on this junction layer. In this case, as will be described later in detail, the lower pin junction layer is exposed to a temperature (150 to 200 ° C.) depending on the material of the thin film and the processing method. The thin film solar cell according to the present invention and the method for manufacturing the same are suitable.

【0024】[0024]

【発明の実施の形態】この発明の実施例について以下に
述べる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0025】(実施例1:シングルセルによる予備実験
結果)界面構造が異なるa-SiGeシングルセルを多数試作
し、セルの耐熱性および光劣化特性を評価する実験を行
った。
Example 1 Results of Preliminary Experiment Using Single Cell A large number of a-SiGe single cells having different interface structures were manufactured, and experiments were conducted to evaluate the heat resistance and photodegradation characteristics of the cells.

【0026】まず、ガラス基板を用い、比較的小面積の
太陽電池を試作した。基板サイズは81mm×55mm
であり、その上に面積1cm2のセルを4個作製した。
First, a solar cell having a relatively small area was experimentally manufactured using a glass substrate. Substrate size is 81mm x 55mm
Then, four cells each having an area of 1 cm 2 were prepared.

【0027】図1はセル構造の断面図であり、a-Si/a-S
iGe/a-SiGeトリプルセルのボトムセルを模擬した構造と
した。以下にその製造工程について述べる。まず、81
mm×55mmのガラス基板1の上に、スパッタリング
法により銀(Ag)からなる金属電極層2を製膜した。そ
の後プラズマCVD法によりa-Si系膜3〜7の製膜を行
った。
FIG. 1 is a cross-sectional view of the cell structure, which shows a-Si / aS
The bottom cell of iGe / a-SiGe triple cell was simulated. The manufacturing process will be described below. First, 81
A metal electrode layer 2 made of silver (Ag) was formed on a glass substrate 1 of mm × 55 mm by a sputtering method. After that, the a-Si films 3 to 7 were formed by the plasma CVD method.

【0028】まず、基板温度200〜250℃で膜厚1
0〜20nmのa-Siのn層3を製膜し、次いで、モノシ
ラン(SiH4)およびゲルマン(GeH4)を主ガスとし、水
素(H2)を希釈ガスとして、膜厚80〜120nmのa-
Si0.6Ge0.4からなるi層4を製膜した。このときのi層
のバンドギャップは約1.4eVである。その後、基板温度
を180〜230℃としてSiH4を主ガス、H2を希釈ガ
ス、ジボラン(B2H6)をドーピングガスとして、2層構
造からなる第1p/i界面層(i側界面層)5および第2p/i
界面層(非i側界面層)6を製膜した。
First, at a substrate temperature of 200 to 250 ° C., a film thickness of 1
The n-layer 3 of a-Si having a thickness of 0 to 20 nm is formed, and then monosilane (SiH 4 ) and germane (GeH 4 ) are used as main gases and hydrogen (H 2 ) is used as a diluent gas to form a film having a thickness of 80 to 120 nm. a-
The i layer 4 made of Si 0.6 Ge 0.4 was formed. The band gap of the i layer at this time is about 1.4 eV. Then, the substrate temperature is set to 180 to 230 ° C., SiH 4 is used as a main gas, H 2 is used as a diluting gas, and diborane (B 2 H 6 ) is used as a doping gas. The first p / i interface layer (i-side interface layer) ) 5 and 2nd p / i
The interface layer (non-i side interface layer) 6 was formed into a film.

【0029】本実施例における一連の試作では、2層構
造のp/i界面層のトータル膜厚を12nmに固定し、ま
た、第2界面層(非i側界面層)6のB2H6添加量を50
ppmに固定した。その後、基板温度を80〜90℃と
し、SiH4を主ガス、H2を希釈ガス、B2H6をドーピングガ
スとして、μc-Siからなる膜厚10〜20nmのp層7
を製膜した。このときの水素希釈度(H2/SiH4)は20
0倍とし、ドーピング量はB2H6/SiH4=0.5%とした。この
ときの膜中ボロン濃度は、約5×1020原子/cm 3であ
る。μc-Siのp層7製膜後、スパッタリング法により透
明電極層17として厚さ60〜80nmの酸化インジウ
ム錫(ITO)の層を形成した。
In the series of trial manufacture in this embodiment, a two-layer structure is used.
The total film thickness of the p / i interface layer is fixed at 12 nm,
B of the second interface layer (non-i side interface layer) 62H6Add 50
It was fixed at ppm. Then, the substrate temperature is set to 80 to 90 ° C.
And SiHFourThe main gas, H2The diluent gas, B2H6The doping moth
The p-layer 7 is made of μc-Si and has a thickness of 10 to 20 nm.
Was formed into a film. Hydrogen dilution degree (H2/ SiHFour) Is 20
0 times and the doping amount is B2H6/ SiHFour= 0.5%. this
At this time, the boron concentration in the film is about 5 × 1020Atom / cm 3And
It After forming the p-layer 7 of μc-Si, it is permeable by the sputtering method.
The bright electrode layer 17 has a thickness of 60 to 80 nm.
A layer of mutin (ITO) was formed.

【0030】上記のように試作したセルを対象として、
加熱試験、次いで光照射試験を行い、各試験の前後でセ
ルの変換効率を測定した。実際のトリプルセルにおける
ボトムセルはミドルセル製膜時に、通常約40分間20
0℃の高温にさらされる。そこで、同等の熱履歴を実現
するために、オーブンを200℃に設定して40分間の
加熱試験を行った。その後、1sun光照射下で200時
間の光照射試験を実施した。また、変換効率はボトムセ
ルを想定して赤色フィルター光下(カットオン波長65
0nm)で測定した。
Targeting the cells prototyped as described above,
A heating test and then a light irradiation test were performed, and the conversion efficiency of the cell was measured before and after each test. The bottom cell in an actual triple cell is usually 20 minutes for about 40 minutes when forming a middle cell film.
Exposed to a high temperature of 0 ° C. Therefore, in order to realize an equivalent heat history, the oven was set to 200 ° C. and a heating test was performed for 40 minutes. Then, a light irradiation test was carried out for 200 hours under 1 sun light irradiation. The conversion efficiency is based on the assumption that the bottom cell is under red filter light (cut-on wavelength 65
0 nm).

【0031】図2に、ボロン無添加の第1p/i界面層(i
側界面層)とボロン添加(B2H6添加量50ppm)の第2p/i
界面層(非i側界面層)のトータル膜厚を12nmと
し、第1p/i界面層(i側界面層)の膜厚を変化させたと
きのセルの変換効率の測定結果を示す。各条件につき1
cm2セルとしては4個ずつ試作し、表中の変換効率の欄
にはその平均値を示した。なお、i側界面層の膜厚0n
mおよび12nmは、それぞれ、ボロン添加(B2H6添加
量50ppm)およびボロン無添加の単層構造の場合を示し
ている。
FIG. 2 shows the first p / i interface layer (i
Second p / i of side interface layer) and boron addition (B 2 H 6 addition amount 50ppm)
The measurement result of the conversion efficiency of the cell when the total thickness of the interface layer (non-i side interface layer) is set to 12 nm and the thickness of the first p / i interface layer (i side interface layer) is changed is shown. 1 for each condition
Four cells were prepared as cm 2 cells, and the average value is shown in the column of conversion efficiency in the table. The film thickness of the i-side interface layer is 0n
m and 12 nm show the cases of a single layer structure with boron added (B 2 H 6 added amount 50 ppm) and without boron, respectively.

【0032】図2に示す結果から、i側界面層が0nm
のセルは、加熱試験後に2割以上効率が低下している
が、i側界面層の膜厚を2nm以上にすると、効率が殆
んど変化していないことが分かる。これは、i側界面層
(第1p/i界面層)が拡散ブロック層として働いたためと
考えられ、2nm以上の膜厚があれば十分に機能すると
みなすことができる。
From the results shown in FIG. 2, the i-side interface layer has a thickness of 0 nm.
It is understood that the efficiency of cell No. 2 is reduced by 20% or more after the heating test, but the efficiency is hardly changed when the thickness of the i-side interface layer is 2 nm or more. This is considered to be because the i-side interface layer (first p / i interface layer) worked as a diffusion block layer, and it can be considered that a film thickness of 2 nm or more would be sufficient.

【0033】図2において、光照射試験後に着目する
と、i側界面層が0nmのセルは加熱試験直後よりもむ
しろ効率が増加している。これは、光誘起欠陥によりp/
i界面近傍の電界プロファイルが変化したためと考えら
れる。一方、i側界面層が12nm(非i側界面層が0
nm)のセルの場合、劣化が大きくなっているが、ボロ
ン無添加の場合の前記特願平11−346206号に記
載した問題点に関わる現象として理解できる。結果的
に、変換効率の絶対値という点では1〜6nmのi側界
面層を挿入したセルが高くなっており、図2により、2
層化構造が有効であることが明らかである。
In FIG. 2, when attention is paid after the light irradiation test, the efficiency of the cell having the i-side interface layer of 0 nm is increased rather than immediately after the heating test. This is due to photo-induced defects p /
This is probably because the electric field profile near the i interface changed. On the other hand, the i-side interface layer is 12 nm (the non-i-side interface layer is 0 nm).
In the case of the cell of (nm), the deterioration is large, but it can be understood as a phenomenon related to the problem described in the above-mentioned Japanese Patent Application No. 11-346206 when boron is not added. As a result, in terms of the absolute value of the conversion efficiency, the cell in which the i-side interface layer of 1 to 6 nm is inserted is high.
It is clear that the layered structure is effective.

【0034】次に、図3は、i側界面層のボロン添加量
とセルの変換効率との関係を測定した結果を示す。i側
界面層と非i側界面層の膜厚をそれぞれ4nmおよび8
nmに固定し、i側界面層のボロン添加量を変化させ
た。加熱試験による特性低下はB2H6添加量10ppmで
現れ始め、25ppm以下で著しく大きくなっている。
光照射後の効率も考慮すると、i側界面層のB2H6添加量
は10ppm以下であることが望ましいといえる。
Next, FIG. 3 shows the result of measurement of the relationship between the amount of boron added to the i-side interface layer and the conversion efficiency of the cell. The thicknesses of the i-side interface layer and the non-i-side interface layer are 4 nm and 8 respectively.
The thickness was fixed to nm and the amount of boron added to the i-side interface layer was changed. The deterioration of properties due to the heating test begins to appear when the amount of B 2 H 6 added is 10 ppm, and becomes significantly large at 25 ppm or less.
Considering the efficiency after light irradiation, it can be said that the amount of B 2 H 6 added to the i-side interface layer is preferably 10 ppm or less.

【0035】(実施例2:トリプルセルの実施例とその
実験結果)前述のシングルセルでの検討結果をもとに、
a-Si/a-SiGe/a-SiGe構造のトリプル型太陽電池を試作し
た。試作したセルの構造を図4に示す。基板1にはガラ
ス基板を用い、面積1cm2のセルを1枚の基板につき
4個ずつ作製した。ボトムセルの各層3〜7は実施例1
とほぼ同様であるので、詳細説明を省略する。ただし、
第1、第2p/iの界面層膜厚はそれぞれ4nm、8nmと
し、ボロン添加量はそれぞれ0ppm、50ppmとし
た。
(Example 2: Example of triple cell and its experimental result) Based on the above-mentioned examination result in the single cell,
A prototype triple-type solar cell with a-Si / a-SiGe / a-SiGe structure was fabricated. The structure of the prototype cell is shown in FIG. A glass substrate was used as the substrate 1, and four cells each having an area of 1 cm 2 were prepared for each substrate. The layers 3 to 7 of the bottom cell are the same as in Example 1.
The detailed description is omitted because it is almost the same. However,
The film thicknesses of the first and second p / i interface layers were 4 nm and 8 nm, respectively, and the amounts of boron added were 0 ppm and 50 ppm, respectively.

【0036】ミドルセル各層もボトムセルとほぼ同様で
あるが、i層の組成はa-Si0.75Ge0. 25であり、バンドギ
ャップは1.5〜1.6eVと広くした。また、i層膜厚は10
0〜150nmであり、製膜時の基板温度は180〜2
30℃とし、ボトムセルのi層よりも若干低くした。n
層8は、μc-Si/a-SiOとした。ミドルセルはボトムセル
ほどの熱履歴は受けないが、p/i界面層の構造はボトム
セルと同様の二層構造とした。
[0036] Although the middle cell layers are also substantially the same as the bottom cell, the composition of the i layer is a-Si 0.75 Ge 0. 25, the band gap was large and 1.5~1.6EV. Further, the i-layer film thickness is 10
0 to 150 nm, and the substrate temperature during film formation is 180 to 2
The temperature was set to 30 ° C. and was slightly lower than the i layer of the bottom cell. n
Layer 8 was μc-Si / a-SiO. The middle cell does not receive the thermal history as much as the bottom cell, but the structure of the p / i interface layer is a two-layer structure similar to the bottom cell.

【0037】次に、μc-Siの第2p層製膜後、トータ
ル膜厚を15〜20nmとしたμc-Si/a-SiO構造のトッ
プn層13を製膜した。その後、膜厚70〜100nm
のa-Siのトップi層14、a-SiOのトップp/i界面層15
とa-SiOのトップp層16を順次製膜し、最後に透明電
極17としてITOをスパッタリング法により形成し
た。
Next, after forming the second p-layer of μc-Si, a top n layer 13 having a μc-Si / a-SiO structure having a total film thickness of 15 to 20 nm was formed. After that, film thickness 70-100 nm
A-Si top i-layer 14, a-SiO top p / i interface layer 15
And a top p layer 16 of a-SiO 2 were sequentially formed, and finally ITO was formed as a transparent electrode 17 by a sputtering method.

【0038】図4に示すトリプルセルにおける各形成層
に関し、基板温度(℃)と製膜時間(分)の一例を図5
に示す。図5に示すように、基板側のpin接合形成
後、当該pin接合の上に形成するpin接合または透
明電極層の形成温度は、150〜200℃であり、この
場合、界面層を前記2層構造とすることにより、熱劣化
のない良好なトリプルセルが製作できる。
An example of the substrate temperature (° C.) and the film forming time (min) for each forming layer in the triple cell shown in FIG. 4 is shown in FIG.
Shown in. As shown in FIG. 5, after the formation of the pin junction on the substrate side, the formation temperature of the pin junction or the transparent electrode layer formed on the pin junction is 150 to 200 ° C. In this case, the interface layer is the above-mentioned two layers. With the structure, a good triple cell without thermal deterioration can be manufactured.

【0039】上記のように製作したセルの評価を行なう
ため、比較実験用セルとして、ボトムおよびミドルp/i
界面層をそれぞれ単層構造(B2H650ppm添加)としたセ
ルを準備し、特性比較を行なった。図6は、トリプルセ
ルの特性評価結果を示し、(a)は、実施例に係る特性
を示し、(b)は、比較セルに係る特性を示す。試作し
たセル数は二種類の構造について8個ずつとした。図6
において、Vocは開放端電圧、Jscは短絡電流、FFは曲
線因子、Effは変換効率を示す。
In order to evaluate the cell manufactured as described above, the bottom and middle p / i were used as cells for comparison experiments.
A cell having a single layer structure (B 2 H 6 50 ppm added) was prepared for each interface layer, and the characteristics were compared. 6A and 6B show the evaluation results of the characteristics of the triple cell, FIG. 6A shows the characteristics according to the example, and FIG. 6B shows the characteristics of the comparative cell. The number of prototype cells was set to 8 for each of the two types of structures. Figure 6
In, Voc is the open circuit voltage, Jsc is the short circuit current, FF is the fill factor, and Eff is the conversion efficiency.

【0040】図6(a),(b)から明らかなように、
本実施例による二層構造のp/i界面層を適用したセル
は、比較例に比べて平均変換効率が高く、かつ、バラツ
キが小さい。通常、セル特性の低下要因としてはリーク
が考えられるが、今回試作したセル全数について問題無
いレベルであることを確認している。従って、比較例の
効率が低いこととバラツキが大きいことは、明らかにボ
ロンの熱拡散による界面特性の劣化によると考えられ、
本実施例のセルにおいては、劣化現象が抑制されている
と考えられる。
As is apparent from FIGS. 6 (a) and 6 (b),
The cell to which the p / i interface layer having a two-layer structure according to this example is applied has a higher average conversion efficiency and a smaller variation than the comparative example. Normally, leakage is considered as a factor that deteriorates the cell characteristics, but it has been confirmed that all prototype cells produced this time are at a level that poses no problem. Therefore, it is considered that the low efficiency and the large variation in the comparative example are apparently due to the deterioration of the interface characteristics due to the thermal diffusion of boron,
It is considered that the deterioration phenomenon is suppressed in the cell of the present embodiment.

【0041】さらに、本実施例のセル特性はトップ、ミ
ドル、ボトムセルをそれぞれシングルセルとして作製・
評価し、I−V特性を合成して得られる特性とほぼ一致
していることがわかった。従って本実施例によるトリプ
ルセルの熱の影響による特性低下は無視できると考えら
れる。
Further, the cell characteristics of this embodiment are the same as that of the top, middle, and bottom cells produced as single cells.
It was evaluated and found to be almost the same as the characteristic obtained by combining the IV characteristics. Therefore, it is considered that the deterioration of the characteristics of the triple cell according to this embodiment due to the influence of heat can be ignored.

【0042】次に、本実施例によるセルの光安定性を確
認するために、メタルハライドランプを用いて1sunの
連続光照射試験を実施した。その結果を図7に示す。図
7はセル電流(縦軸)とセル電圧(横軸)との関係を示
すセル特性で、図7におけるAは初期特性を、Bは23
2時間連続光照射後の特性を示す。また、図7中の表
は、初期および光照射後の開放端電圧(Voc),短絡電
流(Jsc),曲線因子(FF),変換効率(Eff)を示す。
図7に示すとおり、光照射232時間後で11%という
高い安定化効率が得られ、本実施例の有効性が確認でき
た。
Next, in order to confirm the light stability of the cell according to this embodiment, a continuous light irradiation test for 1 sun was carried out using a metal halide lamp. The result is shown in FIG. 7. FIG. 7 is a cell characteristic showing the relationship between the cell current (vertical axis) and the cell voltage (horizontal axis). In FIG. 7, A is the initial characteristic and B is 23.
The characteristics after continuous irradiation for 2 hours are shown. Further, the table in FIG. 7 shows the open circuit voltage (Voc), the short circuit current (Jsc), the fill factor (FF), and the conversion efficiency (Eff) at the initial stage and after the light irradiation.
As shown in FIG. 7, a high stabilization efficiency of 11% was obtained after 232 hours of light irradiation, confirming the effectiveness of this example.

【0043】以上、本実施例ではp/i界面層に2層構造
を採用する例について述べたが、さらに、n/i界面にも
適用することにより、さらに熱劣化の抑制効果は向上す
る。また、i層材料としてはa-SiGeを例にとって説明し
たが、微結晶シリコンあるいは微結晶シリコンゲルマニ
ウムといったナローギャップ材料を用いることもでき
る。
As described above, in the present embodiment, the example in which the two-layer structure is adopted for the p / i interface layer has been described, but by further applying it to the n / i interface, the effect of suppressing thermal deterioration is further improved. Further, although a-SiGe has been described as an example of the i layer material, a narrow gap material such as microcrystalline silicon or microcrystalline silicon germanium can also be used.

【0044】図8は、2層の界面半導体層として、p型
半導体層とi型半導体層との界面に形成した界面半導体
層(p/i界面層)に加え、さらに、n型半導体層とi
型半導体層との界面に形成した界面半導体層(n/i界
面層)を備えるトリプルセルに関し、各層形成時の基板
温度(℃)と製膜時間(分)の一例を示す。
FIG. 8 shows two interface semiconductor layers, an interface semiconductor layer (p / i interface layer) formed at the interface between a p-type semiconductor layer and an i-type semiconductor layer, and an n-type semiconductor layer. i
Regarding a triple cell including an interface semiconductor layer (n / i interface layer) formed at the interface with the type semiconductor layer, an example of the substrate temperature (° C.) and the film forming time (minute) at the time of forming each layer is shown.

【0045】図8においては、図5の実施例に対して、
第1n/i層(非i側界面層),第2n/i層(i側界面層)
を、ボトムおよびミドルセルに追加しており、これらの
n/i界面層においても、i側界面層の不純物添加量
を、非i側界面層の不純物添加量より小としている。
In FIG. 8, in contrast to the embodiment of FIG.
1st n / i layer (non-i side interface layer), 2nd n / i layer (i side interface layer)
Is added to the bottom and middle cells, and the amount of impurities added to the i-side interface layer is smaller than the amount of impurities added to the non-i-side interface layer also in these n / i interface layers.

【0046】[0046]

【発明の効果】上記のとおり、この発明によれば、p型
半導体層、実質的に真性なi型半導体層、n型半導体層
を積層したpin接合を少なくとも一つ有する薄膜太陽
電池において、少なくとも一つのpin接合のp型半導
体層あるいはn型半導体層が微結晶相を含む非晶質シリ
コン系薄膜からなり、その微結晶相を含む非晶質半導体
層と非晶質シリコン系膜からなるi型半導体層との接合
界面において、バンドギャップがi型半導体層よりも広
く、かつ、微結晶相を含む非晶質シリコン系膜と同一導
電型の不純物を低濃度添加した非晶質シリコン系膜の界
面半導体層を介在してなる薄膜太陽電池であって、前記
界面半導体層を少なくとも2層とし、前記i型半導体層
との界面側の界面半導体層(i側界面層)の不純物添加
量を、p型半導体層あるいはn型半導体層との界面側の
界面半導体層(非i側界面層)の不純物添加量より小と
し、また、前記i側界面層の不純物添加量は、主ガスに
対するガス比で10ppm以下とし、その膜厚は2nm
以上としたので、例えば、a-Si/a-SiGe/a-SiGeトリプル
セルのような、マルチジャンクションセルのミドルセル
およびボトムセルの、p/i界面層へのボロン添加量に適
切な分布を持たせることができ、製造プロセスにおける
界面の熱劣化を抑えることができる。これにより、再現
性良く変換効率が高い太陽電池を製造することが可能と
なる。
As described above, according to the present invention, at least a thin film solar cell having at least one pin junction in which a p-type semiconductor layer, a substantially intrinsic i-type semiconductor layer, and an n-type semiconductor layer are laminated is provided. One p-type semiconductor layer or n-type semiconductor layer having a pin junction is made of an amorphous silicon-based thin film containing a microcrystalline phase, and is made of an amorphous semiconductor layer containing the microcrystalline phase and an amorphous silicon-based film. Amorphous silicon-based film having a wider bandgap at the junction interface with the i-type semiconductor layer than the i-type semiconductor layer and having a low concentration of impurities of the same conductivity type as the amorphous silicon-based film containing a microcrystalline phase Of the interface semiconductor layer, wherein the interface semiconductor layer is at least two layers, and the amount of impurities added to the interface semiconductor layer on the interface side with the i-type semiconductor layer (i-side interface layer) is , P-type semiconductor Alternatively, it may be smaller than the amount of impurities added to the interface semiconductor layer (non-i-side interface layer) on the interface side with the n-type semiconductor layer, and the amount of impurities added to the i-side interface layer may be 10 ppm or less in terms of gas ratio to the main gas. , Its film thickness is 2 nm
As described above, for example, in a middle cell and a bottom cell of a multi-junction cell such as an a-Si / a-SiGe / a-SiGe triple cell, an appropriate amount of boron is added to the p / i interface layer. It is possible to suppress thermal deterioration of the interface in the manufacturing process. This makes it possible to manufacture a solar cell with good reproducibility and high conversion efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に関わるシングルセルの
断面構造図
FIG. 1 is a sectional structural view of a single cell according to a first embodiment of the present invention.

【図2】第1の実施例に関わるi側界面層膜厚とセルの
変換効率との関係を示す図
FIG. 2 is a diagram showing a relationship between an i-side interface layer film thickness and cell conversion efficiency according to the first embodiment.

【図3】第1の実施例に関わるi側界面層ボロン添加量
とセルの変換効率との関係を示す図
FIG. 3 is a diagram showing the relationship between the i-side interface layer boron addition amount and the cell conversion efficiency in the first embodiment.

【図4】本発明の第2の実施例に関わるトリプルセルの
断面構造図
FIG. 4 is a sectional structural view of a triple cell according to a second embodiment of the present invention.

【図5】本発明のトリプルセルの各層形成時の基板温度
と製膜時間の一例を示す図
FIG. 5 is a diagram showing an example of a substrate temperature and a film formation time when each layer of the triple cell of the present invention is formed.

【図6】本発明のトリプルセルの特性評価結果に関し従
来セルと比較して示す図
FIG. 6 is a diagram showing a characteristic evaluation result of a triple cell of the present invention in comparison with a conventional cell.

【図7】本実施例によるトリプルセルの光照射試験前後
のI−V特性を示す図
FIG. 7 is a diagram showing IV characteristics before and after the light irradiation test of the triple cell according to the present embodiment.

【図8】本発明の異なるトリプルセルの各層形成時の基
板温度と製膜時間の一例を示す図
FIG. 8 is a diagram showing an example of a substrate temperature and a film formation time when forming each layer of different triple cells of the present invention.

【符号の説明】[Explanation of symbols]

1:ガラス基板、2:金属電極層、3,8,13:n
層、4,9,14:i層、5,10:i側界面層、6,
11:非i側界面層、7,12,16:p層、15:p
/i層、17:透明電極層。
1: glass substrate, 2: metal electrode layer, 3, 8, 13: n
Layer, 4, 9, 14: i layer, 5, 10: i side interface layer, 6,
11: non-i side interface layer, 7, 12, 16: p layer, 15: p
/ I layer, 17: transparent electrode layer.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 p型半導体層、実質的に真性なi型半導
体層、n型半導体層を積層したpin接合を少なくとも
一つ有する薄膜太陽電池において、少なくとも一つのp
in接合のp型半導体層あるいはn型半導体層が微結晶
相を含む非晶質シリコン系薄膜からなり、その微結晶相
を含む非晶質半導体層と非晶質シリコン系膜からなるi
型半導体層との接合界面において、バンドギャップがi
型半導体層よりも広く、かつ、微結晶相を含む非晶質シ
リコン系膜と同一導電型の不純物を低濃度添加した非晶
質シリコン系膜の界面半導体層を介在してなる薄膜太陽
電池であって、 前記界面半導体層を少なくとも2層とし、前記i型半導
体層との界面側の界面半導体層(i側界面層)の不純物
添加量を、p型半導体層あるいはn型半導体層との界面
側の界面半導体層(非i側界面層)の不純物添加量より
小としてなることを特徴とする薄膜太陽電池。
1. A thin film solar cell having at least one pin junction in which a p-type semiconductor layer, a substantially intrinsic i-type semiconductor layer, and an n-type semiconductor layer are stacked, and at least one p-type semiconductor layer is provided.
The in-junction p-type semiconductor layer or n-type semiconductor layer is made of an amorphous silicon-based thin film containing a microcrystalline phase, and is made of an amorphous semiconductor layer containing the microcrystalline phase and an amorphous silicon-based film.
At the junction interface with the type semiconductor layer, the band gap is i
A thin-film solar cell that is wider than the type semiconductor layer and has an interfacial semiconductor layer of an amorphous silicon-based film in which an impurity of the same conductivity type as the amorphous silicon-based film containing a microcrystalline phase is added at a low concentration. The interface semiconductor layer is at least two layers, and the impurity addition amount of the interface semiconductor layer on the interface side with the i-type semiconductor layer (i-side interface layer) is the interface with the p-type semiconductor layer or the n-type semiconductor layer. The thin film solar cell is characterized in that it is smaller than the amount of impurities added to the side interface semiconductor layer (non-i side interface layer).
【請求項2】 請求項1に記載の薄膜太陽電池におい
て、pin接合を複数有する多層型薄膜太陽電池の場
合、前記2層の界面半導体層は、太陽電池の反基板側の
pin接合を除いた全てのpin接合における、p型半
導体層とi型半導体層との界面に形成してなることを特
徴とする薄膜太陽電池。
2. The thin-film solar cell according to claim 1, wherein in the case of a multi-layer thin-film solar cell having a plurality of pin junctions, the two-layer interface semiconductor layers exclude the pin junction on the side opposite to the substrate of the solar cell. A thin-film solar cell, which is formed at the interface between a p-type semiconductor layer and an i-type semiconductor layer in all pin junctions.
【請求項3】 請求項2に記載の薄膜太陽電池におい
て、前記2層の界面半導体層は、前記p型半導体層とi
型半導体層との界面に形成した界面半導体層(p/i界
面層)に加え、さらに、n型半導体層とi型半導体層と
の界面に形成した界面半導体層(n/i界面層)を備え
ることを特徴とする薄膜太陽電池。
3. The thin film solar cell according to claim 2, wherein the two interface semiconductor layers are the p-type semiconductor layer and the i-type semiconductor layer.
In addition to the interface semiconductor layer (p / i interface layer) formed at the interface with the n-type semiconductor layer, an interface semiconductor layer (n / i interface layer) formed at the interface between the n-type semiconductor layer and the i-type semiconductor layer is further added. A thin-film solar cell comprising.
【請求項4】 請求項1ないし3のいずれかに記載の薄
膜太陽電池において、前記i型半導体層は、アモルファ
スシリコンゲルマニウム、微結晶シリコンあるいは微結
晶シリコンゲルマニウムのいずれかの層とすることを特
徴とする薄膜太陽電池。
4. The thin-film solar cell according to claim 1, wherein the i-type semiconductor layer is any layer of amorphous silicon germanium, microcrystalline silicon or microcrystalline silicon germanium. Thin film solar cell.
【請求項5】 請求項1ないし4のいずれかに記載の薄
膜太陽電池において、前記pin接合における各半導体
層の積層順序は、太陽電池の基板側からn,i,pもし
くはp,i,nとしてなることを特徴とする薄膜太陽電
池。
5. The thin-film solar cell according to claim 1, wherein the semiconductor layers in the pin junction are stacked in the order of n, i, p or p, i, n from the substrate side of the solar cell. The thin film solar cell is characterized by:
【請求項6】 請求項1ないし5のいずれかに記載の薄
膜太陽電池の製造方法において、前記i側界面層の不純
物添加量は、主ガスに対するドーピングガス比で10p
pm以下とし、その膜厚は2nm以上とすることを特徴
とする薄膜太陽電池の製造方法。
6. The method for manufacturing a thin film solar cell according to claim 1, wherein the amount of impurities added to the i-side interface layer is 10 p in terms of a doping gas ratio to a main gas.
pm or less and the film thickness is 2 nm or more, The manufacturing method of the thin film solar cell characterized by the above-mentioned.
【請求項7】 請求項6に記載の薄膜太陽電池の製造方
法において、前記多層型太陽電池の基板側のpin接合
形成後、当該pin接合の上に形成するpin接合また
は透明電極層の形成温度は、150〜200℃とするこ
とを特徴とする薄膜太陽電池の製造方法。
7. The method for manufacturing a thin film solar cell according to claim 6, wherein after forming a pin junction on the substrate side of the multilayer solar cell, a formation temperature of a pin junction or a transparent electrode layer formed on the pin junction. Is 150 to 200 ° C., a method of manufacturing a thin film solar cell.
JP2001194241A 2001-06-27 2001-06-27 Thin film solar battery and its manufacturing method Pending JP2003008038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001194241A JP2003008038A (en) 2001-06-27 2001-06-27 Thin film solar battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001194241A JP2003008038A (en) 2001-06-27 2001-06-27 Thin film solar battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003008038A true JP2003008038A (en) 2003-01-10

Family

ID=19032411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001194241A Pending JP2003008038A (en) 2001-06-27 2001-06-27 Thin film solar battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003008038A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008537846A (en) * 2005-03-21 2008-09-25 コナルカ テクノロジーズ インコーポレイテッド Polymer photovoltaic cell
DE112009000498T5 (en) 2008-03-07 2011-02-24 National University Corporation Tohoku University, Sendai Photoelectric transducer element structure and solar cell
KR20110074238A (en) * 2009-12-24 2011-06-30 엘지디스플레이 주식회사 Solar cell and method for fabricaitng the same
WO2013125251A1 (en) * 2012-02-23 2013-08-29 富士電機株式会社 Thin film solar cell
KR101359401B1 (en) 2007-06-21 2014-02-10 주성엔지니어링(주) High efficiency thin film solar cell and manufacturing method and apparatus thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008537846A (en) * 2005-03-21 2008-09-25 コナルカ テクノロジーズ インコーポレイテッド Polymer photovoltaic cell
KR101359401B1 (en) 2007-06-21 2014-02-10 주성엔지니어링(주) High efficiency thin film solar cell and manufacturing method and apparatus thereof
DE112009000498T5 (en) 2008-03-07 2011-02-24 National University Corporation Tohoku University, Sendai Photoelectric transducer element structure and solar cell
KR20110074238A (en) * 2009-12-24 2011-06-30 엘지디스플레이 주식회사 Solar cell and method for fabricaitng the same
KR101644056B1 (en) * 2009-12-24 2016-08-01 엘지디스플레이 주식회사 Solar cell and method for fabricaitng the same
WO2013125251A1 (en) * 2012-02-23 2013-08-29 富士電機株式会社 Thin film solar cell

Similar Documents

Publication Publication Date Title
Shah et al. Material and solar cell research in microcrystalline silicon
Rath et al. Incorporation of p-type microcrystalline silicon films in amorphous silicon based solar cells in a superstrate structure
US8030120B2 (en) Hybrid window layer for photovoltaic cells
US6383898B1 (en) Method for manufacturing photoelectric conversion device
US7238545B2 (en) Method for fabricating tandem thin film photoelectric converter
JPS6249672A (en) Amorphous photovoltaic element
JP4284582B2 (en) Multi-junction thin film solar cell and manufacturing method thereof
Van Cleef et al. Performance of heterojunction p+ microcrystalline silicon n crystalline silicon solar cells
JP5898062B2 (en) Solar cell
Shah Thin-film silicon solar cells
JP2012520563A (en) Solar cell
US6534334B2 (en) Method of manufacturing a non-single-crystal thin film solar cell
JPWO2005109526A1 (en) Thin film photoelectric converter
JP2003008038A (en) Thin film solar battery and its manufacturing method
JP2000269528A (en) Non-monocrystal solar battery
US7122736B2 (en) Method and apparatus for fabricating a thin-film solar cell utilizing a hot wire chemical vapor deposition technique
Yan et al. High efficiency amorphous and nanocrystalline silicon thin film solar cells on flexible substrates
JP4110718B2 (en) Manufacturing method of multi-junction thin film solar cell
JPH11274527A (en) Photovoltaic device
JP4441377B2 (en) Photoelectric conversion device and manufacturing method thereof
JPWO2006049003A1 (en) Method for manufacturing thin film photoelectric conversion device
JP4441298B2 (en) Photoelectric conversion device and manufacturing method thereof
JPH0282655A (en) Manufacture of photovolatic device
JP4253966B2 (en) Amorphous thin film solar cell
JP2003258286A (en) Thin film solar battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090428