WO2013125164A1 - Conversion device, control device, control method, and power distribution system - Google Patents

Conversion device, control device, control method, and power distribution system Download PDF

Info

Publication number
WO2013125164A1
WO2013125164A1 PCT/JP2013/000603 JP2013000603W WO2013125164A1 WO 2013125164 A1 WO2013125164 A1 WO 2013125164A1 JP 2013000603 W JP2013000603 W JP 2013000603W WO 2013125164 A1 WO2013125164 A1 WO 2013125164A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
power
mode
unit
conversion
Prior art date
Application number
PCT/JP2013/000603
Other languages
French (fr)
Japanese (ja)
Inventor
岩▲崎▼ 利哉
久保 守
大樹 中津
之浩 稲葉
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013125164A1 publication Critical patent/WO2013125164A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current

Definitions

  • the present invention relates to a conversion technique, and more particularly to a conversion device, a control device, a control method, and a power distribution system that perform conversion from DC power to AC power.
  • the electric power generated in the solar battery is stored in the storage battery.
  • the generated power is lower than the power consumption required by the load, such as when it is cloudy or at night, the power consumption is satisfied by supplying the power stored in the storage battery to the load. With such a configuration, even when the power generated in the solar cell is insufficient, power is stably supplied to the load.
  • an interconnection protection device has been installed between the commercial power supply and the interconnection breaker.
  • the interconnection protection device detects whether there is an abnormality in voltage, frequency or the like on the commercial power supply side. If the commercial power supply side is normal, the power conversion device repeatedly performs charge / discharge operations corresponding to day and night time zones by performing grid connection operation. On the other hand, when the commercial power supply side fails, the interconnection breaker is shut off at high speed, and the operation control mode of the power converter is switched from current control to voltage control. As a result, the power converter performs a discharge operation (self-sustained operation), so that power is supplied without interruption (see, for example, Patent Document 1).
  • the present inventor has recognized the following problems.
  • the power conversion device stores the frequency, and uses the stored frequency during the independent operation. Therefore, the frequency of the commercial power source at the time of the shipping test is stored in the shipped power conversion device. For example, when the shipping test is performed in West Japan, 60 Hz is stored. If a power failure occurs when such a power conversion device is installed for the first time after the installation, the power conversion device performs a self-sustained operation at the frequency of the commercial power supply at the time of the shipping test. On the other hand, if the installation location is East Japan, the frequency of the commercial power supply is 50 Hz, so the frequency is different.
  • the frequency of power allowed for the load of the motor system is limited to the frequency of the commercial power supply in the installed area. For example, if a motor system load with 50 Hz AC power specifications is operated with 60 Hz AC power, there is a risk of ignition due to overload.
  • This invention is made
  • the objective is to provide the technique which reduces the influence which acts on a load, even when the frequency of a commercial power source and the frequency of a self-sustained operation differ. .
  • a converter includes a converter that generates AC power from DC power, a controller that controls the frequency of AC power to be generated in the converter, and a controller. And a display unit for displaying the control content.
  • the control unit executes, in the conversion unit, either a first mode for setting a frequency corresponding to a frequency in the AC power of the commercial power source or a second mode for setting a frequency independent of the frequency in the AC power of the commercial power source.
  • the frequency set when the conversion unit has executed the first mode in the past is displayed on the display unit as the frequency when the conversion unit executes the second mode.
  • This device is a control device that controls the frequency of AC power generated in a conversion unit that converts DC power into AC power, and includes a first mode that sets a frequency according to the frequency of AC power from a commercial power source, When causing the converter to execute one of the second mode for setting the frequency independent of the frequency of the AC power of the power source, and when starting the converter, when the converter executes the first mode in the past
  • the set frequency is displayed on the display unit as a frequency when the conversion unit executes the second mode.
  • Still another aspect of the present invention is a control method.
  • This method is a method of setting the frequency of AC power generated in a conversion unit that converts DC power into AC power, the first mode for setting the frequency according to the frequency of AC power of the commercial power source, and the commercial power source.
  • the converter is caused to execute any one of the second mode for setting the frequency independent of the frequency in the AC power of the power, and when the converter is started, the frequency set when the first mode is executed in the past is set.
  • the conversion unit displays the frequency on the display unit as the frequency for executing the second mode.
  • Still another aspect of the present invention is a power distribution system.
  • This power distribution system includes a generator, a conversion unit that converts DC power generated by the generator into AC power, a control unit that controls the frequency of AC power to be generated in the conversion unit, and control contents of the control unit
  • the display part which displays.
  • the control unit executes, in the conversion unit, either a first mode for setting a frequency corresponding to a frequency in the AC power of the commercial power source or a second mode for setting a frequency independent of the frequency in the AC power of the commercial power source.
  • the frequency set when the conversion unit has executed the first mode in the past is displayed on the display unit as the frequency when the conversion unit executes the second mode.
  • the influence on the load can be reduced.
  • FIGS. 1A to 1C are diagrams showing a configuration of a power distribution system according to an embodiment of the present invention. It is a figure which shows the structure of the conversion apparatus of Fig.1 (a)-(c). It is a figure which shows the transition of the screen by the process part of FIG. It is a figure which shows the screen displayed on the display part of FIG. It is a figure which shows the transition of the screen by the process part which concerns on the modification of this invention. It is a figure which shows the screen displayed on the display part which concerns on the modification of this invention. It is a figure which shows another screen displayed on the display part which concerns on the modification of this invention. It is a figure which shows another screen displayed on the display part which concerns on the modification of this invention. It is a figure which shows another screen displayed on the display part which concerns on the modification of this invention. It is a figure which shows another screen displayed on the display part which concerns on the modification of this invention. It is a figure which shows another screen displayed on the display part which concerns on the modification of this invention.
  • Embodiments of the present invention relate to a power distribution system that connects a solar cell in parallel with a commercial power system, supplies power from both the commercial power source and the solar cell to a load, and charges the storage battery.
  • the commercial power supply fails, power from the solar battery or storage battery is supplied to the load.
  • a converter converts direct-current power into alternating current power, and supplies alternating current power to load.
  • the conversion device may output AC power in order to reduce power consumption from the commercial power source even when the commercial power source has not failed.
  • the conversion device when the commercial power supply has not failed, the conversion device generates AC power from the DC power by using a frequency corresponding to the frequency of the power of the commercial power supply. This corresponds to the aforementioned grid interconnection operation.
  • the converter when the commercial power supply has a power failure, the converter generates AC power from the DC power by using a frequency that is independent of the frequency of the power of the commercial power supply. This corresponds to the above-described independent operation.
  • the conversion device is equipped with an LCD (Liquid Crystal Display). Further, the conversion device stores the frequency at which the autonomous operation is executed, that is, the frequency set at the time of the previous grid interconnection operation. When the conversion device is activated, it first displays on the LCD information relating to the frequency at which the autonomous operation is executed. For example, “The self-supporting frequency of this converter is 60 Hz. Please check if the frequency matches the area where you live. If it is different, please contact us (for example, contact the service)”. A message is displayed. By confirming this message, the power company employee or the user of the converter recognizes that the frequency of the power supplied from the converter to the load is different from the frequency allowed in the load. As a result, it is possible to prevent the AC power of the conversion device from being output to the load.
  • LCD Liquid Crystal Display
  • FIGS. 1A to 1C show a configuration of a power distribution system 100 according to an embodiment of the present invention.
  • the power distribution system 100 includes a solar cell 10, a storage battery 12, a conversion device 14, a management device 16, a first SW 18, a second SW 20, a specific load 24, and a general load 26.
  • the power distribution system 100 is connected to a commercial power source 22.
  • the commercial power source 22 is an AC power source for supplying power from an electric power company.
  • FIG. 1A corresponds to the configuration of the power distribution system 100 when the commercial power supply 22 is not out of power (hereinafter referred to as “normal time”).
  • the solar cell 10 is a power device that uses the photovoltaic effect to directly convert light energy into electric power.
  • a silicon solar cell a solar cell made of various compound semiconductors, a dye-sensitized type (organic solar cell), or the like is used.
  • the solar cell 10 outputs the generated power.
  • the storage battery 12 is charged with electric power generated based on a renewable energy source, that is, electric power generated in the solar battery 10 or electric power from the commercial power source 22.
  • the conversion device 14 connects the solar cell 10 to one end side.
  • route of the converter 14 and the solar cell 10 is branched on the way, and the storage battery 12 is connected to the branched path
  • the management device 16 outputs an instruction for controlling the operation of the storage battery 12 to the conversion device 14. Moreover, the converter 14 always monitors the voltage fluctuation on the path
  • the general load 26 is an AC drive type electric device.
  • the general load 26 is connected to a path branched from the path between the converter 14 and the commercial power supply 22.
  • a reverse power flow sensor and a distribution board are connected on the path between the converter 14 and the commercial power supply 22 and from the branch point to the commercial power supply 22 to the commercial power supply 22 side.
  • the reverse power flow sensor is installed between the distribution board and the commercial power supply 22 and detects electric power from the distribution board to the commercial power supply 22. This is to prevent power from going from the distribution board to the commercial power supply 22. Since a known technique may be used for the detection process in the reverse power flow sensor, description thereof is omitted here.
  • the first SW 18 and the second SW 20 are switches for changing a route in accordance with an instruction from the management device 16. On / off and switching of the first SW 18 and the second SW 20 are instructed by the conversion device 14. It may be instructed by the management device 16. In a normal state, the first SW 18 is turned on, and the second SW 20 is connected to the Y-side terminal. As a result, the Y-side terminal of the second SW 20 and the specific load 24 are connected.
  • the specific load 24 is an AC drive type electric device, like the general load 26. According to such a form, the normal (1) charge and (2) discharge are performed as follows.
  • the electricity rate at night time is set lower than the electricity rate at daytime.
  • the daytime time zone is defined as from 7:00 to 23:00
  • the nighttime zone is defined as from 23:00 to 7:00 on the next day. Therefore, the electric power supplied from the commercial power source 22 is charged to the storage battery 12 via the first SW 18 and the converter 14 in the night time zone.
  • the converter 14 converts the AC power input from the commercial power supply 22 into DC power, and outputs the DC power to the storage battery 12.
  • the electric power generated by the solar cell 10 is output to the conversion device 14 during the daytime.
  • surplus electric power is charged in the storage battery 12.
  • the converter 14 converts the DC power input from the solar cell 10 into AC power, and outputs the AC power to the first SW 18.
  • the conversion device 14 converts AC power into DC power, or converts DC power into AC power.
  • any known technique may be used for these conversion processes. The description is omitted here.
  • FIG. 1B corresponds to the configuration of the power distribution system 100 when the commercial power source 22 has a power failure (hereinafter referred to as “at the time of a power failure”).
  • the conversion device 14 detects a power failure.
  • the conversion device 14 controls the first SW 18 and the second SW 20. More specifically, during a power failure, the first SW 18 is turned off and the second SW 20 is connected to the X-side terminal.
  • the specific load 24 is connected to the conversion device 14, but the general load 26 is disconnected from the conversion device 14. Therefore, the power from the solar cell 10 is output to the conversion device 14, and the power from the conversion device 14 is supplied to the specific load 24.
  • the storage battery 12 may output electric power at the time of a power failure.
  • the discharged power is also output to the converter 14, and the power from the converter 14 is supplied to the specific load 24.
  • the specific load 24 can receive power from the solar cell 10, the storage battery 12, and the commercial power source 22 during normal times, and can also supply power from the solar cell 10 and the storage battery 12 during power outages. It is possible to receive.
  • the general load 26 can be supplied with power from the solar battery 10, the storage battery 12, and the commercial power source 22 at normal times, but cannot be supplied with power at the time of a power failure.
  • FIG. 1C corresponds to the configuration of the power distribution system 100 when the commercial power source 22 is restored from a power failure to a state where the power failure has not occurred (hereinafter referred to as “at the time of restoration”).
  • the converter 14 detects the recovery.
  • the conversion device 14 controls the second SW 20. More specifically, at the time of recovery, the first SW 18 is kept off, and the second SW 20 is connected to the Y-side terminal.
  • the specific load 24 and the general load 26 are disconnected from the conversion device 14 and connected to the commercial power supply 22.
  • the electric power from the commercial power supply 22 is supplied to the specific load 24 and the general load 26.
  • the converter 14 since the specific load 24 and the general load 26 are not connected to the converter 14, the converter 14 does not output alternating current power.
  • the electric power generated in the solar cell 10 is supplied to the storage battery 12.
  • the conversion device 14 is executing the system linkage operation.
  • the converter 14 is performing a self-sustaining operation.
  • FIG. 2 shows the configuration of the conversion device 14.
  • the conversion device 14 includes a conversion unit 50, a detection unit 52, a display unit 58, an input unit 60, and a control unit 66.
  • the conversion unit 50 includes a DC side terminal 62 and an AC side terminal 64.
  • the control unit 66 includes a setting unit 54 and a processing unit 56.
  • the converter 50 connects the solar cell 10 and the storage battery 12 of FIGS. 1A to 1C to the DC side terminal 62, and connects the first SW 18 of FIGS. 1A to 1C to the AC side terminal 64. . Therefore, the DC side terminal 62 corresponds to the DC power side, and the AC side terminal 64 corresponds to the AC power side.
  • the converter 50 inputs DC power at the DC side terminal 62, generates AC power from the DC power, and outputs AC power from the AC side terminal 64.
  • the DC power input to the DC side terminal 62 is output from the solar cell 10 and the storage battery 12 shown in FIGS.
  • the converter 50 inputs AC power at the AC side terminal 64, generates DC power from the AC power, and outputs DC power from the DC side terminal 62.
  • the AC power input to the AC side terminal 64 is output from the commercial power supply 22 via the first SW 18 in FIGS.
  • the former corresponds to an inverter function, and the latter corresponds to a converter function. Since a known technique may be used for the inverter function and the converter function, description thereof is omitted here.
  • the setting unit 54 sets the frequency of AC power when generating AC power from DC power.
  • the detection unit 52 receives AC power from the first SW 18, that is, AC power from the commercial power source 22, and detects the frequency of the AC power. At the time of a power failure or recovery, the detection unit 52 does not input AC power from the commercial power supply 22 and therefore does not detect the frequency of AC power. When detecting the frequency, the detection unit 52 outputs information regarding the detected frequency to the setting unit 54, and when not detecting the frequency, the detection unit 52 outputs the information to the setting unit 54.
  • the setting unit 54 receives information about the frequency or information about not detecting the frequency from the detection unit 52.
  • the setting unit 54 sets the frequency according to the frequency, that is, the frequency in the AC power of the commercial power supply 22.
  • the same frequency as the frequency in the AC power of the commercial power supply 22 is set. This corresponds to the above-described grid interconnection operation, and the setting unit 54 refers to a grid interconnection mode.
  • the setting unit 54 When the setting unit 54 receives information regarding the fact that the frequency has not been detected, the setting unit 54 sets a frequency that is independent of the frequency of the AC power of the commercial power supply 22 and that has been set in the system linkage mode that has been executed in the past. To do. This corresponds to the above-described self-sustained operation, and the setting unit 54 refers to the self-sustained mode. As described above, the setting unit 54 sets the frequency of the AC power to be generated by the conversion unit 50.
  • the processing unit 56 controls various operations of the conversion device 14, on / off of the first SW 18, and switching of the second SW 20. Further, the processing unit 56 controls the operation of the storage battery 12 based on an instruction from the management device 16. Since the inverter function and the converter function are performed by the conversion unit 50, the detection unit 52, and the setting unit 54, the processing unit 56 executes other processes in the conversion device 14. For example, the activation processing of the conversion device 14, the recording processing of various data, and the screen generation processing on the display unit 58. Here, in particular, a startup process and a screen generation process will be described. In order to cause the processing unit 56 to execute processing, the input unit 60 receives an instruction. An example of the instruction is an activation instruction.
  • FIG. 3 shows the transition of the screen displayed on the display unit 58 by the processing unit 56.
  • the processing unit 56 When the input unit 60 receives an instruction to start the conversion device 14, the processing unit 56 generates a start screen. Here, on the startup screen, “This converter's self-supporting frequency is 60 Hz. Please check if the frequency matches the area where you live. Message) "is also displayed.
  • the processing unit 56 makes a transition to the default main display screen.
  • the processing unit 56 transitions to the default main display screen after a predetermined time has elapsed after the startup screen is displayed.
  • the processing unit 56 displays the default main display screen, generally, the conversion device 14 has been activated.
  • the processing unit 56 (1) a setting state display screen, (2) each measured value display screen, and (3) PCS abnormality factor based on the input in the input unit 60
  • the display screen, (4) cumulative data display screen, (5) failure history all display screen, failure history system abnormality display screen, failure history PCS abnormality display screen, and failure history DC display screen are switched and displayed. Further, the processing unit 56 makes a transition from the PCS abnormality factor display screen to any one of the PCS abnormality factor detailed system abnormality display screen, the PCS abnormality factor detailed PCS abnormality display screen, and the PCS abnormality factor detailed DC abnormality display screen. Is also possible.
  • the processing unit 56 (1) accepts the password via the input unit 60 after transitioning from the setting state display screen to the password screen. If the password is correct, the processing unit 56 transitions to a set value / independent frequency setting screen and a time setting screen. Further, the processing unit 56 makes a transition from the set value / independent frequency setting screen and the time setting screen to (1) the setting state display screen.
  • the processing unit 56 In the case of a failure, if the no-operation state continues for a predetermined period, for example, 10 minutes or more, the processing unit 56 automatically transitions to the PCS abnormality factor display screen. At that time, the backlight is turned red. In a normal state, when the no-operation state continues for a predetermined period, for example, 10 minutes or more, the processing unit 56 makes a transition to the default main display screen. At that time, the backlight is made white. Further, when the no-operation state continues for a longer period of time, for example, 20 minutes or more, at normal times, the processing unit 56 turns off the backlight. In case of failure, it remains red and does not turn off. However, when the set value change screen and the time setting screen are displayed, the no-operation state is not detected. Returning to FIG.
  • the display unit 58 displays various screens according to the processing in the processing unit 56. Various screens displayed on the display unit 58 are as shown in FIG. Therefore, the display unit 58 displays the setting contents in the setting unit 54. In particular, the display unit 58 displays the frequency set for the self-supporting mode on the startup screen when starting up. This frequency is the frequency set for the grid link mode when the conversion device 14 was started up last time.
  • FIG. 4 shows a screen displayed on the display unit 58. This corresponds to the above-described startup screen. As shown, the frequency set for the self-supporting mode is displayed.
  • the display unit 58 displays the default main display screen, and displays the default main display screen even if the no-operation state continues for a certain period. That is, the display unit 58 displays the frequency when an input is made during the display of the frequency set for the self-supporting mode, or when a certain period of time has elapsed since the display of the frequency set for the self-supporting mode. Erase.
  • This configuration can be realized in terms of hardware by a CPU, memory, or other LSI of any computer, and in terms of software, it can be realized by a program loaded in the memory, but here it is realized by their cooperation.
  • Draw functional blocks Accordingly, those skilled in the art will understand that these functional blocks can be realized in various forms only by hardware, or by a combination of hardware and software.
  • This modification also relates to a conversion device in a power distribution system including a solar battery, a commercial power source, and a storage battery, as in the embodiment.
  • the converter in an Example cannot set the frequency in a self-supporting mode during starting
  • the converter in the modification can change the frequency in a self-supporting mode during starting.
  • Such frequency setting is set by a software program.
  • the conversion device is activated after being installed by a service person. At that time, the conversion device displays the initial frequency value in the independent mode on the startup screen.
  • the service person checks the start-up screen to compare the frequency of the commercial power source in the installed area with the initial frequency value of the self-sustained mode and determine whether they match. If they do not match, it is determined that the change is necessary, and the service person authenticates with the password and then changes the initial frequency value in the independent mode. It should be noted that password authentication is required so that a general user cannot change the initial frequency value of the independent mode.
  • the power distribution system 100 according to the modification is the same type as that shown in FIGS. 1A to 1C, and the conversion device 14 according to the modification is the same type as that shown in FIG. Here, the difference will be mainly described.
  • the setting part 54 sets the frequency used in the conversion part 50 similarly to the embodiment.
  • the frequency in the self-supporting mode may be any frequency that is independent of the frequency of the AC power of the commercial power supply 22, and does not have to be the frequency set in the system linkage mode executed in the past.
  • the frequency in the self-supporting mode is also set by an input from the input unit 60 at startup.
  • FIG. 5 shows screen transitions by the processing unit 56 according to a modification of the present invention.
  • FIG. 5 is similar to FIG. If an input from the input unit 60 is received while the startup screen is displayed, the processing unit 56 displays a password screen. If the password received via the input unit 60 is correct, the processing unit 56 transitions to the independent frequency setting screen. When the independent frequency setting screen is displayed and the input from the input unit 60 is received, the processing unit 56 outputs the received frequency to the setting unit 54. The setting unit 54 sets the received frequency as the frequency of the independent mode. The processing unit 56 makes a transition from the independent frequency setting screen to the default main display screen.
  • the display unit 58 displays the frequency set for the independent mode on the startup screen.
  • FIG. 6 shows a screen displayed on the display unit 58 according to the modification of the present invention. This corresponds to a start-up screen, and a self-supporting frequency is shown as in FIG.
  • a confirmation button 202 and a change button 204 are also displayed.
  • the display unit 58 displays a default main display screen.
  • the change button 204 is selected via the input unit 60
  • the display unit 58 displays a password screen.
  • FIG. 7 shows another screen displayed on the display unit 58 according to the modification of the present invention. This corresponds to the default main display screen. As shown, a main screen button 206, each measured value button 208, an abnormality factor button 210, an accumulated data button 212, and a failure history button 214 are displayed. When any button is selected via the input unit 60, the display unit 58 displays a screen corresponding to the button.
  • FIG. 8 shows still another screen displayed on the display unit 58 according to the modification of the present invention. This corresponds to a password screen, and corresponds to a screen after the frequency of the independent mode is displayed on the startup screen.
  • a numeric button 216 As shown in the figure, a numeric button 216, an enter button 218, and a return button 220 are displayed. By selecting the number of the number button 216, the input unit 60 receives the password input. When the enter button 218 is selected via the input unit 60 after the password is input, the processing unit 56 performs password authentication.
  • FIG. 9 shows still another screen displayed on the display unit 58 according to the modification of the present invention.
  • This corresponds to an independent frequency setting screen and corresponds to a screen after receiving a password.
  • a 50.0 Hz button 222, a 60.0 Hz button 224, an enter button 226, and a return button 228 are displayed.
  • the 50.0 Hz button 222 and the 60.0 Hz button 224 are frequency candidates that can be set as frequencies in the self-supporting mode.
  • the input unit 60 receives the frequency input. Thereafter, when the input unit 60 accepts the selection of the decision button 226, the processing unit 56 and the setting unit 54 set the frequency in the independent mode.
  • the input unit 60 transitions from the startup screen in which the display unit 58 displays the frequency to the state in which the display unit 58 displays the independent frequency setting screen, the input unit 60 should set the autonomous mode. Accept frequency input.
  • the frequency set for the self-sustained mode is displayed at the time of start-up, so that it can be notified that the frequency of the commercial power supply is different from the frequency of the self-sustaining operation. Further, since it is notified that the frequency of the commercial power supply is different from the frequency of the independent operation, it is possible to avoid supply of AC power by the independent operation. Further, since the supply of AC power by the self-sustained operation is avoided, the influence on the load can be reduced even when the frequency of the commercial power supply is different from the frequency of the self-sustained operation. Further, since the transition is made from the startup screen to the default main display screen, necessary information can be displayed.
  • the frequency set for the independent mode is displayed, and when transitioning from the state displaying the frequency to the state displaying the independent frequency setting screen, the mode is set for the independent mode. Since the input of the frequency to be received is accepted, the frequency in the independent mode can be set. In addition, since the frequency in the independent mode is set at the time of startup, the influence on the load can be reduced even when the frequency of the commercial power supply and the frequency of the independent operation are different. In addition, since the self-supporting frequency setting screen is displayed after accepting the password input, the risk that the frequency in the self-supporting mode is easily changed can be reduced. In addition, since the settable frequency candidates are displayed as the independent frequency setting screen, the risk of setting an incorrect frequency can be reduced.
  • a solar cell 10 is provided to generate power.
  • the present invention is not limited thereto, and for example, a device for generating electric power based on a renewable energy source may be provided in addition to the solar battery 10.
  • a wind power generator for example, a wind power generator. According to this modification, the degree of freedom of the configuration of the power distribution system 100 can be improved.
  • control unit 66 including the setting unit 54 and the processing unit 56 is provided inside the conversion device 14.
  • control unit 66 may be provided outside the conversion device 14.
  • the influence on the load can be reduced.

Abstract

A conversion unit (50) generates alternating-current electric power from direct-current electric power. A control unit (66) controls the frequency of the alternating-current electric power to be generated. A display unit (58) displays control specifics. A control unit (66) causes the conversion unit (50) to execute either of a first mode for setting a frequency that is in accordance with the frequency of the alternating-current electric power of a commercial power source, and a second mode for setting a frequency that is independent of the frequency of the alternating-current electric power of the commercial power source, and during startup, the control unit (66) causes the display unit (58) to display the frequency that was set when the conversion unit (50) was previously caused to execute the first mode as the frequency for when the conversion unit (50) executes the second mode.

Description

変換装置、制御装置、制御方法、配電システムConversion device, control device, control method, power distribution system
 本発明は、変換技術に関し、特に直流電力から交流電力への変換を実行する変換装置、制御装置、制御方法、配電システムに関する。 The present invention relates to a conversion technique, and more particularly to a conversion device, a control device, a control method, and a power distribution system that perform conversion from DC power to AC power.
 太陽電池を用いた配電システムに蓄電池が接続される場合、太陽電池において発電された電力は、蓄電池に蓄えられる。曇りや夜間など、発電された電力が負荷の要求する消費電力を下回る場合、蓄電池に蓄えられた電力が、負荷に供給されることによって、消費電力が満たされる。このような構成によって、太陽電池において発電される電力が不足した場合にも、負荷に安定的に電力が供給される。 When a storage battery is connected to a power distribution system using a solar battery, the electric power generated in the solar battery is stored in the storage battery. When the generated power is lower than the power consumption required by the load, such as when it is cloudy or at night, the power consumption is satisfied by supplying the power stored in the storage battery to the load. With such a configuration, even when the power generated in the solar cell is insufficient, power is stably supplied to the load.
 このような配電システムが、商用電源とも接続される場合、商用電源の異常時においても負荷に無停電で確実に電力を供給することが望まれる。これまでは、商用電源と連系遮断器との間に、連系保護装置が設置されている。連系保護装置は、商用電源側に電圧、周波数等の異常がないかどうかを検出する。商用電源側が正常であれば、電力変換装置は系統連系運転を行なうことによって、昼、夜の時間帯に対応して充・放電運転を繰り返し実行する。一方、商用電源側が停電した場合、連系遮断器が高速に遮断されるとともに、電力変換装置の運転制御モードは、電流制御から電圧制御に切りかえられる。その結果、電力変換装置は、放電運転(自立運転)を実行するので、無瞬断で電力の供給がなされる(例えば、特許文献1参照)。 When such a power distribution system is also connected to a commercial power supply, it is desirable to reliably supply power to the load without a power failure even when the commercial power supply is abnormal. Until now, an interconnection protection device has been installed between the commercial power supply and the interconnection breaker. The interconnection protection device detects whether there is an abnormality in voltage, frequency or the like on the commercial power supply side. If the commercial power supply side is normal, the power conversion device repeatedly performs charge / discharge operations corresponding to day and night time zones by performing grid connection operation. On the other hand, when the commercial power supply side fails, the interconnection breaker is shut off at high speed, and the operation control mode of the power converter is switched from current control to voltage control. As a result, the power converter performs a discharge operation (self-sustained operation), so that power is supplied without interruption (see, for example, Patent Document 1).
特開平9-182316号公報JP-A-9-182316
 このような系統連携運転と自立運転とを選択的に実行可能な電力変換装置を起動する状況において、本発明者は、以下の課題を認識するに至った。ここで、電力変換装置は、一度、系統連系運転を実行すると、その周波数を記憶し、自立運転の際に、記憶した周波数を使用する。そのため、出荷される電力変換装置には、出荷試験時の商用電源の周波数が記憶されている。例えば、出荷試験が西日本でなされた場合、60Hzが記憶される。このような電力変換装置を設置後、初めて起動したときに停電が生じれば、電力変換装置は、出荷試験時の商用電源の周波数にて自立運転を実行する。一方、設置された場所が東日本であれば、商用電源の周波数は50Hzであるので、周波数が相違する。モータ系の負荷に対して許容される電力の周波数が、設置された地域での商用電源の周波数に制限される場合がある。例えば、50Hzの交流電力仕様のモータ系の負荷を60Hzの交流電力で動作させると、過負荷による発火等の恐れがある。 In the situation of starting a power conversion device that can selectively execute such grid-linked operation and independent operation, the present inventor has recognized the following problems. Here, once the grid conversion operation is executed, the power conversion device stores the frequency, and uses the stored frequency during the independent operation. Therefore, the frequency of the commercial power source at the time of the shipping test is stored in the shipped power conversion device. For example, when the shipping test is performed in West Japan, 60 Hz is stored. If a power failure occurs when such a power conversion device is installed for the first time after the installation, the power conversion device performs a self-sustained operation at the frequency of the commercial power supply at the time of the shipping test. On the other hand, if the installation location is East Japan, the frequency of the commercial power supply is 50 Hz, so the frequency is different. In some cases, the frequency of power allowed for the load of the motor system is limited to the frequency of the commercial power supply in the installed area. For example, if a motor system load with 50 Hz AC power specifications is operated with 60 Hz AC power, there is a risk of ignition due to overload.
 本発明はこうした状況に鑑みてなされたものであり、その目的は、商用電源の周波数と自立運転の周波数とが異なる場合であっても、負荷に与える影響を低減する技術を提供することにある。 This invention is made | formed in view of such a condition, The objective is to provide the technique which reduces the influence which acts on a load, even when the frequency of a commercial power source and the frequency of a self-sustained operation differ. .
 上記課題を解決するために、本発明のある態様の変換装置は、直流電力から交流電力を生成する変換部と、変換部において生成すべき交流電力の周波数を制御する制御部と、制御部での制御内容を表示する表示部とを備える。制御部は、商用電源の交流電力における周波数に応じた周波数を設定する第1モードと、商用電源の交流電力における周波数に非依存の周波数を設定する第2モードとのいずれかを変換部に実行させ、起動する際に、過去に変換部に第1モードを実行させた際に設定した周波数を、変換部が第2モードを実行する際の周波数として表示部に表示させる。 In order to solve the above problems, a converter according to an aspect of the present invention includes a converter that generates AC power from DC power, a controller that controls the frequency of AC power to be generated in the converter, and a controller. And a display unit for displaying the control content. The control unit executes, in the conversion unit, either a first mode for setting a frequency corresponding to a frequency in the AC power of the commercial power source or a second mode for setting a frequency independent of the frequency in the AC power of the commercial power source. When starting up, the frequency set when the conversion unit has executed the first mode in the past is displayed on the display unit as the frequency when the conversion unit executes the second mode.
 本発明の別の態様は、制御装置である。この装置は、直流電力を交流電力に変換する変換部において生成する交流電力の周波数を制御する制御装置であって、商用電源の交流電力における周波数に応じた周波数を設定する第1モードと、商用電源の交流電力における周波数に非依存の周波数を設定する第2モードとのいずれかを変換部に実行させるとともに、変換部を起動する際に、過去に変換部が第1モードを実行する際に設定した周波数を、変換部が第2モードを実行する際の周波数として表示部に表示させる。 Another aspect of the present invention is a control device. This device is a control device that controls the frequency of AC power generated in a conversion unit that converts DC power into AC power, and includes a first mode that sets a frequency according to the frequency of AC power from a commercial power source, When causing the converter to execute one of the second mode for setting the frequency independent of the frequency of the AC power of the power source, and when starting the converter, when the converter executes the first mode in the past The set frequency is displayed on the display unit as a frequency when the conversion unit executes the second mode.
 本発明のさらに別の態様は、制御方法である。この方法は、直流電力を交流電力に変換する変換部において生成する交流電力の周波数を設定する方法であって、商用電源の交流電力における周波数に応じた周波数を設定する第1モードと、商用電源の交流電力における周波数に非依存の周波数を設定する第2モードとのいずれかを変換部に実行させるとともに、変換部を起動する際に、過去に第1モードを実行する際に設定した周波数を、変換部が第2モードを実行する際の周波数として表示部に表示させる。 Still another aspect of the present invention is a control method. This method is a method of setting the frequency of AC power generated in a conversion unit that converts DC power into AC power, the first mode for setting the frequency according to the frequency of AC power of the commercial power source, and the commercial power source. When the converter is caused to execute any one of the second mode for setting the frequency independent of the frequency in the AC power of the power, and when the converter is started, the frequency set when the first mode is executed in the past is set. The conversion unit displays the frequency on the display unit as the frequency for executing the second mode.
 本発明のさらに別の態様は、配電システムである。この配電システムは、発電機と、発電機において発電された直流電力を交流電力に変換する変換部と、変換部において生成すべき交流電力の周波数を制御する制御部と、制御部での制御内容を表示する表示部とを備える。制御部は、商用電源の交流電力における周波数に応じた周波数を設定する第1モードと、商用電源の交流電力における周波数に非依存の周波数を設定する第2モードとのいずれかを変換部に実行させ、起動する際に、過去に変換部に第1モードを実行させた際に設定した周波数を、変換部が第2モードを実行する際の周波数として表示部に表示させる。 Still another aspect of the present invention is a power distribution system. This power distribution system includes a generator, a conversion unit that converts DC power generated by the generator into AC power, a control unit that controls the frequency of AC power to be generated in the conversion unit, and control contents of the control unit The display part which displays. The control unit executes, in the conversion unit, either a first mode for setting a frequency corresponding to a frequency in the AC power of the commercial power source or a second mode for setting a frequency independent of the frequency in the AC power of the commercial power source. When starting up, the frequency set when the conversion unit has executed the first mode in the past is displayed on the display unit as the frequency when the conversion unit executes the second mode.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。 It should be noted that an arbitrary combination of the above-described components and a conversion of the expression of the present invention between a method, an apparatus, a system, a recording medium, a computer program, etc. are also effective as an aspect of the present invention.
 本発明によれば、商用電源の周波数と自立運転の周波数とが異なる場合であっても、負荷に与える影響を低減できる。 According to the present invention, even if the frequency of the commercial power supply and the frequency of the independent operation are different, the influence on the load can be reduced.
図1(a)-(c)は、本発明の実施例に係る配電システムの構成を示す図である。FIGS. 1A to 1C are diagrams showing a configuration of a power distribution system according to an embodiment of the present invention. 図1(a)-(c)の変換装置の構成を示す図である。It is a figure which shows the structure of the conversion apparatus of Fig.1 (a)-(c). 図2の処理部による画面の遷移を示す図である。It is a figure which shows the transition of the screen by the process part of FIG. 図2の表示部に表示される画面を示す図である。It is a figure which shows the screen displayed on the display part of FIG. 本発明の変形例に係る処理部による画面の遷移を示す図である。It is a figure which shows the transition of the screen by the process part which concerns on the modification of this invention. 本発明の変形例に係る表示部に表示される画面を示す図である。It is a figure which shows the screen displayed on the display part which concerns on the modification of this invention. 本発明の変形例に係る表示部に表示される別の画面を示す図である。It is a figure which shows another screen displayed on the display part which concerns on the modification of this invention. 本発明の変形例に係る表示部に表示されるさらに別の画面を示す図である。It is a figure which shows another screen displayed on the display part which concerns on the modification of this invention. 本発明の変形例に係る表示部に表示されるさらに別の画面を示す図である。It is a figure which shows another screen displayed on the display part which concerns on the modification of this invention.
 本発明を具体的に説明する前に、概要を述べる。本発明の実施例は、太陽電池を商用電力系統と並列に接続し、商用電源および太陽電池の両方から負荷へ電力を供給するとともに、蓄電池を充電する配電システムに関する。商用電源が停電した場合、太陽電池や蓄電池からの電力が負荷に供給される。ここで、太陽電池や蓄電池からの電力は、直流電力であるので、変換装置が、直流電力を交流電力に変換し、交流電力を負荷に供給する。なお、変換装置は、商用電源が停電していない場合にも、商用電源からの電力の消費を低減させるために、交流電力を出力することもある。ここで、商用電源が停電していない場合、変換装置は、商用電源の電力の周波数に応じた周波数を使用することによって、直流電力から交流電力を生成する。これが前述の系統連系運転に相当する。一方、商用電源が停電している場合、変換装置は、商用電源の電力の周波数に非依存の周波数を使用することによって、直流電力から交流電力を生成する。これが前述の自立運転に相当する。 An outline will be given before concretely explaining the present invention. Embodiments of the present invention relate to a power distribution system that connects a solar cell in parallel with a commercial power system, supplies power from both the commercial power source and the solar cell to a load, and charges the storage battery. When the commercial power supply fails, power from the solar battery or storage battery is supplied to the load. Here, since the electric power from a solar cell or a storage battery is direct-current power, a converter converts direct-current power into alternating current power, and supplies alternating current power to load. Note that the conversion device may output AC power in order to reduce power consumption from the commercial power source even when the commercial power source has not failed. Here, when the commercial power supply has not failed, the conversion device generates AC power from the DC power by using a frequency corresponding to the frequency of the power of the commercial power supply. This corresponds to the aforementioned grid interconnection operation. On the other hand, when the commercial power supply has a power failure, the converter generates AC power from the DC power by using a frequency that is independent of the frequency of the power of the commercial power supply. This corresponds to the above-described independent operation.
 ここでは、変換装置に関して、次の前提を想定する。(i)自立運転の際の周波数の初期値をソフトウエアプログラムによって変更することは不可能である。つまり、一度、実際に系統連系運転を実施させることによって、自立運転の際の周波数が決定される。(ii)原則として、最初は、電力会社職員の立会いのもと、変換装置に系統連系運転を開始させる。そのため、最初から自立運転によって起動される可能性が低い。(iii)施工マニュアルには、最初から変換装置を自立運転させず、系統連系運転させてから、自立運転させる旨が記載されている。(ii)や(iii)にもかかわらず、変換装置を起動する際に、商用電源が停電した場合、変換装置から負荷に供給される電力の周波数と、負荷において許容されている周波数とが相違することがあり得る。このような状況の発生を低減するために、本実施例は、次の処理を実行する。 Here, the following assumptions are assumed for the converter. (I) It is impossible to change the initial value of the frequency during the self-sustaining operation by a software program. That is, once the system interconnection operation is actually performed, the frequency for the independent operation is determined. (Ii) As a general rule, first, in the presence of an electric power company employee, the converter starts grid connection operation. Therefore, there is a low possibility of being started from the beginning by the independent operation. (Iii) In the construction manual, it is described that the converter is not operated independently from the beginning, but is connected to the grid, and is then operated independently. Regardless of (ii) or (iii), when the commercial power supply fails when starting the converter, the frequency of the power supplied from the converter to the load is different from the frequency allowed in the load. Can be. In order to reduce the occurrence of such a situation, the present embodiment executes the following processing.
 変換装置には、LCD(Liquid Crystal Display)が備えられている。また、変換装置は、自立運転を実行する際の周波数、すなわち前回系統連系運転の際に設定された周波数を記憶している。変換装置は、起動する際に、まず、自立運転を実行する際の周波数に関する情報をLCDに表示する。例えば、「本変換装置の自立周波数は60Hzとなっています。あなたがお住まいの地域と周波数が合っているかご確認下さい。異なる場合は・・・・(例えばサービスまで連絡下さい)」のようなメッセージが表示される。電力会社職員や変換装置の使用者は、このメッセージを確認することによって、変換装置から負荷に供給される電力の周波数と、負荷において許容されている周波数とが相違することを認識する。その結果、変換装置の交流電力を負荷に出力させないようにすることが可能になる。 The conversion device is equipped with an LCD (Liquid Crystal Display). Further, the conversion device stores the frequency at which the autonomous operation is executed, that is, the frequency set at the time of the previous grid interconnection operation. When the conversion device is activated, it first displays on the LCD information relating to the frequency at which the autonomous operation is executed. For example, “The self-supporting frequency of this converter is 60 Hz. Please check if the frequency matches the area where you live. If it is different, please contact us (for example, contact the service)”. A message is displayed. By confirming this message, the power company employee or the user of the converter recognizes that the frequency of the power supplied from the converter to the load is different from the frequency allowed in the load. As a result, it is possible to prevent the AC power of the conversion device from being output to the load.
 図1(a)-(c)は、本発明の実施例に係る配電システム100の構成を示す。図1(a)において配電システム100は、太陽電池10、蓄電池12、変換装置14、管理装置16、第1SW18、第2SW20、特定負荷24、一般負荷26を含む。配電システム100は、商用電源22に接続されている。商用電源22は、電力会社からの電力を供給するための交流電源である。図1(a)は、商用電源22が停電していない場合(以下、「通常時」という)における配電システム100の構成に相当する。 FIGS. 1A to 1C show a configuration of a power distribution system 100 according to an embodiment of the present invention. In FIG. 1A, the power distribution system 100 includes a solar cell 10, a storage battery 12, a conversion device 14, a management device 16, a first SW 18, a second SW 20, a specific load 24, and a general load 26. The power distribution system 100 is connected to a commercial power source 22. The commercial power source 22 is an AC power source for supplying power from an electric power company. FIG. 1A corresponds to the configuration of the power distribution system 100 when the commercial power supply 22 is not out of power (hereinafter referred to as “normal time”).
 太陽電池10は、光起電力効果を利用し、光エネルギーを直接電力に変換する電力機器である。太陽電池10として、シリコン太陽電池、さまざまな化合物半導体などを素材にした太陽電池、色素増感型(有機太陽電池)等が使用される。太陽電池10は、発電した電力を出力する。蓄電池12は、再生可能エネルギー源をもとに発電した電力、つまり太陽電池10において発電した電力、あるいは商用電源22からの電力によって充電される。 The solar cell 10 is a power device that uses the photovoltaic effect to directly convert light energy into electric power. As the solar cell 10, a silicon solar cell, a solar cell made of various compound semiconductors, a dye-sensitized type (organic solar cell), or the like is used. The solar cell 10 outputs the generated power. The storage battery 12 is charged with electric power generated based on a renewable energy source, that is, electric power generated in the solar battery 10 or electric power from the commercial power source 22.
 変換装置14は、一端側に太陽電池10を接続する。変換装置14と太陽電池10との経路は、途中で分岐されており、分岐された経路には、蓄電池12が接続される。つまり、変換装置14の一端側には、分岐点を介して、太陽電池10と蓄電池12とが並列に接続される。また、変換装置14は、他端側に商用電源22を接続する。変換装置14の動作は後述する。管理装置16は、蓄電池12の動作を制御するための指示を変換装置14に出力する。また、変換装置14は、第1SW18と商用電源22との間の経路上における電圧変動を常時監視しており、検出された電圧変動に基づき、商用電源22が停電か通電かを判断する。 The conversion device 14 connects the solar cell 10 to one end side. The path | route of the converter 14 and the solar cell 10 is branched on the way, and the storage battery 12 is connected to the branched path | route. That is, the solar cell 10 and the storage battery 12 are connected in parallel to one end side of the converter 14 via the branch point. Moreover, the converter 14 connects the commercial power source 22 to the other end side. The operation of the conversion device 14 will be described later. The management device 16 outputs an instruction for controlling the operation of the storage battery 12 to the conversion device 14. Moreover, the converter 14 always monitors the voltage fluctuation on the path | route between 1st SW18 and the commercial power supply 22, and judges whether the commercial power supply 22 is a power failure or electricity supply based on the detected voltage fluctuation.
 一般負荷26は、交流駆動型の電気機器である。一般負荷26は、変換装置14と商用電源22との間の経路から分岐された経路に接続される。なお、変換装置14と商用電源22との間の経路上であって、かつ商用電源22への分岐点から商用電源22側には、図示しない逆潮流センサ、分電盤が接続される。逆潮流センサは、分電盤と商用電源22との間に設置され、分電盤から商用電源22に向かう電力を検出する。これは、電力が分電盤から商用電源22に向かうことを防止するためである。逆潮流センサにおける検出処理には、公知の技術が使用されればよいので、ここでは、説明を省略する。 The general load 26 is an AC drive type electric device. The general load 26 is connected to a path branched from the path between the converter 14 and the commercial power supply 22. Note that a reverse power flow sensor and a distribution board (not shown) are connected on the path between the converter 14 and the commercial power supply 22 and from the branch point to the commercial power supply 22 to the commercial power supply 22 side. The reverse power flow sensor is installed between the distribution board and the commercial power supply 22 and detects electric power from the distribution board to the commercial power supply 22. This is to prevent power from going from the distribution board to the commercial power supply 22. Since a known technique may be used for the detection process in the reverse power flow sensor, description thereof is omitted here.
 第1SW18、第2SW20は、管理装置16からの指示に応じて経路を変更するためのスイッチである。第1SW18、第2SW20のオン/オフや切替は、変換装置14によって指示される。なお、管理装置16によって指示されてもよい。通常時において、第1SW18は、オンされ、第2SW20は、Y側の端子に接続される。その結果、第2SW20のY側の端子と特定負荷24とが接続される。なお、特定負荷24は、一般負荷26と同様に、交流駆動型の電気機器である。このような形態によって、通常時の(1)充電と(2)放電は、次のようになされる。 The first SW 18 and the second SW 20 are switches for changing a route in accordance with an instruction from the management device 16. On / off and switching of the first SW 18 and the second SW 20 are instructed by the conversion device 14. It may be instructed by the management device 16. In a normal state, the first SW 18 is turned on, and the second SW 20 is connected to the Y-side terminal. As a result, the Y-side terminal of the second SW 20 and the specific load 24 are connected. The specific load 24 is an AC drive type electric device, like the general load 26. According to such a form, the normal (1) charge and (2) discharge are performed as follows.
 (1)通常時の充電
 電力会社が時間帯別電気料金制度を採用している場合、夜間の時間帯の電気料金は、昼間の時間帯の電気料金よりも低く設定される。また、一例として、昼間の時間帯は7時から23時であり、夜間の時間帯は23時から翌日の7時というように規定される。そのため、夜間の時間帯において、商用電源22から供給される電力は、第1SW18、変換装置14を介して蓄電池12に充電される。その際、変換装置14は、商用電源22から入力した交流電力を直流電力に変換し、直流電力を蓄電池12に出力する。また、昼間の時間帯において、太陽電池10が発電した電力は、変換装置14に出力される。太陽電池10が発電した電力が、特定負荷24、一般負荷26において消費される電力よりも多い場合、余剰の電力が蓄電池12に充電される。
(1) Charging at normal time When the electric power company adopts a time-based electricity rate system, the electricity rate at night time is set lower than the electricity rate at daytime. Further, as an example, the daytime time zone is defined as from 7:00 to 23:00, and the nighttime zone is defined as from 23:00 to 7:00 on the next day. Therefore, the electric power supplied from the commercial power source 22 is charged to the storage battery 12 via the first SW 18 and the converter 14 in the night time zone. At that time, the converter 14 converts the AC power input from the commercial power supply 22 into DC power, and outputs the DC power to the storage battery 12. In addition, the electric power generated by the solar cell 10 is output to the conversion device 14 during the daytime. When the electric power generated by the solar cell 10 is larger than the electric power consumed by the specific load 24 and the general load 26, surplus electric power is charged in the storage battery 12.
 (2)通常時の放電
 特定負荷24、一般負荷26において消費される電力が多くなる時間帯において、商用電源22からの電力の消費を低減するために、蓄電池12に蓄えられた電力が放電される。放電された電力は、変換装置14、第1SW18を介して、特定負荷24、一般負荷26に供給される。その際、変換装置14は、蓄電池12から入力された直流電力を交流電力に変換し、交流電力を第1SW18に出力する。さらに、通常時において、商用電源22からの電力が特定負荷24、一般負荷26に供給されるとともに、太陽電池10からの電力も特定負荷24、一般負荷26に供給される。その際、変換装置14は、太陽電池10から入力した直流電力を交流電力に変換し、交流電力を第1SW18に出力する。以上の説明のように、変換装置14は、交流電力を直流電力に変換したり、直流電力を交流電力に変換したりするが、これらの変換処理として公知の技術が使用されればよいので、ここでは説明を省略する。
(2) Discharge at normal time In order to reduce the power consumption from the commercial power source 22 in the time zone when the power consumed by the specific load 24 and the general load 26 increases, the power stored in the storage battery 12 is discharged. The The discharged power is supplied to the specific load 24 and the general load 26 via the conversion device 14 and the first SW 18. In that case, the converter 14 converts the direct-current power input from the storage battery 12 into alternating current power, and outputs alternating current power to 1st SW18. Furthermore, during normal times, power from the commercial power supply 22 is supplied to the specific load 24 and the general load 26, and power from the solar cell 10 is also supplied to the specific load 24 and the general load 26. At that time, the converter 14 converts the DC power input from the solar cell 10 into AC power, and outputs the AC power to the first SW 18. As described above, the conversion device 14 converts AC power into DC power, or converts DC power into AC power. However, any known technique may be used for these conversion processes. The description is omitted here.
 図1(b)は、商用電源22が停電している場合(以下、「停電時」という)における配電システム100の構成に相当する。商用電源22からの電力の供給がなくなった場合、変換装置14は、停電を検出する。停電を検出した場合、変換装置14は、第1SW18、第2SW20とを制御する。具体的に説明すると、停電時において、第1SW18がオフされ、第2SW20は、X側の端子に接続される。その結果、特定負荷24は、変換装置14に接続されるが、一般負荷26は、変換装置14から切り離される。そのため、太陽電池10からの電力は、変換装置14に出力され、変換装置14からの電力が、特定負荷24に供給される。なお、太陽電池10からの電力よりも、特定負荷24において消費される電力が少ない場合、余剰の電力が蓄電池12に充電される。なお、停電時において、蓄電池12は、電力を出力してもよい。放電した電力も、変換装置14に出力され、変換装置14からの電力が、特定負荷24に供給される。 FIG. 1B corresponds to the configuration of the power distribution system 100 when the commercial power source 22 has a power failure (hereinafter referred to as “at the time of a power failure”). When the supply of power from the commercial power supply 22 is lost, the conversion device 14 detects a power failure. When a power failure is detected, the conversion device 14 controls the first SW 18 and the second SW 20. More specifically, during a power failure, the first SW 18 is turned off and the second SW 20 is connected to the X-side terminal. As a result, the specific load 24 is connected to the conversion device 14, but the general load 26 is disconnected from the conversion device 14. Therefore, the power from the solar cell 10 is output to the conversion device 14, and the power from the conversion device 14 is supplied to the specific load 24. In addition, when the electric power consumed in the specific load 24 is less than the electric power from the solar battery 10, surplus electric power is charged in the storage battery 12. In addition, the storage battery 12 may output electric power at the time of a power failure. The discharged power is also output to the converter 14, and the power from the converter 14 is supplied to the specific load 24.
 このように、特定負荷24は、通常時において、太陽電池10、蓄電池12、商用電源22から電力の供給を受けることが可能であり、停電時においても太陽電池10、蓄電池12から電力の供給を受けることが可能である。一方、一般負荷26は、通常時において太陽電池10、蓄電池12、商用電源22から電力の供給を受けることが可能であるが、停電時において電力の供給を受けることができない。 As described above, the specific load 24 can receive power from the solar cell 10, the storage battery 12, and the commercial power source 22 during normal times, and can also supply power from the solar cell 10 and the storage battery 12 during power outages. It is possible to receive. On the other hand, the general load 26 can be supplied with power from the solar battery 10, the storage battery 12, and the commercial power source 22 at normal times, but cannot be supplied with power at the time of a power failure.
 図1(c)は、停電時から、商用電源22が停電していない状態に復旧した場合(以下、「復旧時」という)における配電システム100の構成に相当する。停電時において、商用電源22からの電力の供給が回復した場合、変換装置14は、復旧を検出する。復旧を検出した場合、変換装置14は、第2SW20を制御する。具体的に説明すると、復旧時において、第1SW18のオフが維持され、第2SW20は、Y側の端子に接続される。その結果、特定負荷24および一般負荷26は、変換装置14から切り離され、商用電源22に接続される。その結果、商用電源22からの電力は、特定負荷24、一般負荷26に供給される。なお、変換装置14には、特定負荷24および一般負荷26が接続されていないので、変換装置14は、交流電力を出力しない。太陽電池10において発電された電力は、蓄電池12に供給される。 FIG. 1C corresponds to the configuration of the power distribution system 100 when the commercial power source 22 is restored from a power failure to a state where the power failure has not occurred (hereinafter referred to as “at the time of restoration”). When the supply of power from the commercial power supply 22 is restored at the time of a power failure, the converter 14 detects the recovery. When the recovery is detected, the conversion device 14 controls the second SW 20. More specifically, at the time of recovery, the first SW 18 is kept off, and the second SW 20 is connected to the Y-side terminal. As a result, the specific load 24 and the general load 26 are disconnected from the conversion device 14 and connected to the commercial power supply 22. As a result, the electric power from the commercial power supply 22 is supplied to the specific load 24 and the general load 26. In addition, since the specific load 24 and the general load 26 are not connected to the converter 14, the converter 14 does not output alternating current power. The electric power generated in the solar cell 10 is supplied to the storage battery 12.
 ここで、図1(a)の通常時において、変換装置14は、系統連携運転を実行している。一方、図1(b)の停電時、図1(c)の復旧時において、変換装置14は、自立運転を実行している。 Here, at the normal time of FIG. 1A, the conversion device 14 is executing the system linkage operation. On the other hand, at the time of the power failure shown in FIG. 1B and at the time of recovery shown in FIG. 1C, the converter 14 is performing a self-sustaining operation.
 図2は、変換装置14の構成を示す。変換装置14は、変換部50、検出部52、表示部58、入力部60、制御部66を含む。また、変換部50は、直流側端子62、交流側端子64を含む。制御部66は、設定部54、処理部56を含む。 FIG. 2 shows the configuration of the conversion device 14. The conversion device 14 includes a conversion unit 50, a detection unit 52, a display unit 58, an input unit 60, and a control unit 66. The conversion unit 50 includes a DC side terminal 62 and an AC side terminal 64. The control unit 66 includes a setting unit 54 and a processing unit 56.
 変換部50は、直流側端子62に図1(a)-(c)の太陽電池10および蓄電池12を接続し、交流側端子64に図1(a)-(c)の第1SW18を接続する。そのため、直流側端子62が直流電力側に相当し、交流側端子64が交流電力側に相当する。変換部50は、直流側端子62において直流電力を入力し、直流電力から交流電力を生成し、交流側端子64から交流電力を出力する。直流側端子62に入力される直流電力は、図1(a)-(c)の太陽電池10および蓄電池12から出力されている。 The converter 50 connects the solar cell 10 and the storage battery 12 of FIGS. 1A to 1C to the DC side terminal 62, and connects the first SW 18 of FIGS. 1A to 1C to the AC side terminal 64. . Therefore, the DC side terminal 62 corresponds to the DC power side, and the AC side terminal 64 corresponds to the AC power side. The converter 50 inputs DC power at the DC side terminal 62, generates AC power from the DC power, and outputs AC power from the AC side terminal 64. The DC power input to the DC side terminal 62 is output from the solar cell 10 and the storage battery 12 shown in FIGS.
 また、変換部50は、交流側端子64において交流電力を入力し、交流電力から直流電力を生成し、直流側端子62から直流電力を出力する。交流側端子64に入力される交流電力は、図1(a)-(b)の第1SW18を介して商用電源22から出力されている。前者は、インバータ機能に相当し、後者は、コンバータ機能に相当する。インバータ機能とコンバータ機能には、公知の技術が使用されればよいので、ここでは説明を省略する。なお、直流電力から交流電力を生成する際の交流電力の周波数は、設定部54によって設定される。 Further, the converter 50 inputs AC power at the AC side terminal 64, generates DC power from the AC power, and outputs DC power from the DC side terminal 62. The AC power input to the AC side terminal 64 is output from the commercial power supply 22 via the first SW 18 in FIGS. The former corresponds to an inverter function, and the latter corresponds to a converter function. Since a known technique may be used for the inverter function and the converter function, description thereof is omitted here. Note that the setting unit 54 sets the frequency of AC power when generating AC power from DC power.
 検出部52は、第1SW18からの交流電力、つまり商用電源22からの交流電力を入力し、交流電力の周波数を検出する。停電時や復旧時において、検出部52は、商用電源22からの交流電力を入力しないので、交流電力の周波数を検出しない。検出部52は、周波数を検出した場合、検出した周波数に関する情報を設定部54に出力し、周波数を検出しなかった場合、その旨を設定部54に出力する。 The detection unit 52 receives AC power from the first SW 18, that is, AC power from the commercial power source 22, and detects the frequency of the AC power. At the time of a power failure or recovery, the detection unit 52 does not input AC power from the commercial power supply 22 and therefore does not detect the frequency of AC power. When detecting the frequency, the detection unit 52 outputs information regarding the detected frequency to the setting unit 54, and when not detecting the frequency, the detection unit 52 outputs the information to the setting unit 54.
 設定部54は、検出部52から、周波数に関する情報あるいは周波数を検出しなかったことに関する情報を受けつける。設定部54は、周波数に関する情報を受けつけた場合、当該周波数、つまり商用電源22の交流電力における周波数に応じた周波数を設定する。ここでは、商用電源22の交流電力における周波数と同一の周波数が設定される。これは、前述の系統連系運転に相当し、設定部54では、系統連系モードという。 The setting unit 54 receives information about the frequency or information about not detecting the frequency from the detection unit 52. When the setting unit 54 receives information about the frequency, the setting unit 54 sets the frequency according to the frequency, that is, the frequency in the AC power of the commercial power supply 22. Here, the same frequency as the frequency in the AC power of the commercial power supply 22 is set. This corresponds to the above-described grid interconnection operation, and the setting unit 54 refers to a grid interconnection mode.
 設定部54は、周波数を検出しなかったことに関する情報を受けつけた場合、商用電源22の交流電力における周波数に非依存の周波数であり、かつ過去に実行した系統連携モードにて設定した周波数を設定する。これは、前述の自立運転に相当し、設定部54では、自立モードという。このように、設定部54は、変換部50において生成すべき交流電力の周波数を設定する。 When the setting unit 54 receives information regarding the fact that the frequency has not been detected, the setting unit 54 sets a frequency that is independent of the frequency of the AC power of the commercial power supply 22 and that has been set in the system linkage mode that has been executed in the past. To do. This corresponds to the above-described self-sustained operation, and the setting unit 54 refers to the self-sustained mode. As described above, the setting unit 54 sets the frequency of the AC power to be generated by the conversion unit 50.
 処理部56は、変換装置14の各種動作、第1SW18のオン/オフ、第2SW20の切替を制御する。また、処理部56は、管理装置16からの指示に基づき、蓄電池12の動作を制御する。インバータ機能およびコンバータ機能は、変換部50、検出部52、設定部54によってなされるので、処理部56は、変換装置14におけるそれ以外の処理を実行する。例えば、変換装置14の起動処理、各種データの記録処理、表示部58での画面の生成処理である。ここでは、特に、起動処理、画面の生成処理を説明する。処理部56に対して処理を実行させるために、入力部60が指示を受けつける。指示の一例は、起動の指示である。 The processing unit 56 controls various operations of the conversion device 14, on / off of the first SW 18, and switching of the second SW 20. Further, the processing unit 56 controls the operation of the storage battery 12 based on an instruction from the management device 16. Since the inverter function and the converter function are performed by the conversion unit 50, the detection unit 52, and the setting unit 54, the processing unit 56 executes other processes in the conversion device 14. For example, the activation processing of the conversion device 14, the recording processing of various data, and the screen generation processing on the display unit 58. Here, in particular, a startup process and a screen generation process will be described. In order to cause the processing unit 56 to execute processing, the input unit 60 receives an instruction. An example of the instruction is an activation instruction.
 図3は、処理部56によって表示部58に表示させる画面の遷移を示す。変換装置14の起動の指示が入力部60によって受けつけられると、処理部56は、起動画面を生成する。ここで、起動画面には、「本変換装置の自立周波数は60Hzとなっています。あなたがお住まいの地域と周波数が合っているかご確認下さい。異なる場合は・・・・(例えばサービスまで連絡下さい)」などのメッセージも表示される。この状態において、入力部60がOKの入力を受けつけた場合、処理部56は、デフォルトメイン表示画面に遷移させる。あるいは、起動画面が表示されてから一定時間経過後に、処理部56は、デフォルトメイン表示画面に遷移させる。処理部56がデフォルトメイン表示画面を表示させる場合、一般的に、変換装置14の起動が完了している。 FIG. 3 shows the transition of the screen displayed on the display unit 58 by the processing unit 56. When the input unit 60 receives an instruction to start the conversion device 14, the processing unit 56 generates a start screen. Here, on the startup screen, “This converter's self-supporting frequency is 60 Hz. Please check if the frequency matches the area where you live. Message) "is also displayed. In this state, when the input unit 60 receives an OK input, the processing unit 56 makes a transition to the default main display screen. Alternatively, the processing unit 56 transitions to the default main display screen after a predetermined time has elapsed after the startup screen is displayed. When the processing unit 56 displays the default main display screen, generally, the conversion device 14 has been activated.
 処理部56は、デフォルトメイン表示画面を表示させている場合に、入力部60における入力をもとに、(1)設定状態表示画面、(2)各計測値表示画面、(3)PCS異常要因表示画面、(4)累積データ表示画面、(5)故障履歴すべて表示画面、故障履歴系統異常表示画面、故障履歴PCS異常表示画面、故障履歴直流表示画面を切りかえて表示させる。さらに、処理部56は、(3)PCS異常要因表示画面から、PCS異常要因詳細系統異常表示画面、PCS異常要因詳細PCS異常表示画面、PCS異常要因詳細直流異常表示画面のいずれかに遷移させることも可能である。 When the default main display screen is displayed, the processing unit 56 (1) a setting state display screen, (2) each measured value display screen, and (3) PCS abnormality factor based on the input in the input unit 60 The display screen, (4) cumulative data display screen, (5) failure history all display screen, failure history system abnormality display screen, failure history PCS abnormality display screen, and failure history DC display screen are switched and displayed. Further, the processing unit 56 makes a transition from the PCS abnormality factor display screen to any one of the PCS abnormality factor detailed system abnormality display screen, the PCS abnormality factor detailed PCS abnormality display screen, and the PCS abnormality factor detailed DC abnormality display screen. Is also possible.
 また、処理部56は、(1)設定状態表示画面からパスワード画面に遷移した後、入力部60を介してパスワードを受けつける。パスワードが正しければ、処理部56は、整定値/自立周波数設定画面、時刻設定画面に遷移させる。さらに、処理部56は、整定値/自立周波数設定画面、時刻設定画面から(1)設定状態表示画面に遷移させる。 The processing unit 56 (1) accepts the password via the input unit 60 after transitioning from the setting state display screen to the password screen. If the password is correct, the processing unit 56 transitions to a set value / independent frequency setting screen and a time setting screen. Further, the processing unit 56 makes a transition from the set value / independent frequency setting screen and the time setting screen to (1) the setting state display screen.
 なお、故障時に、無操作状態が所定期間、例えば10分以上継続した場合、処理部56は、PCS異常要因表示画面に自動的に遷移させる。その際、バックライトは赤にされる。通常時に、無操作状態が所定期間、例えば10分以上継続した場合、処理部56は、デフォルトメイン表示画面に遷移させる。その際、バックライトは白にされる。さらに、通常時に、無操作状態がさらに長い期間、例えば20分以上継続した場合、処理部56は、バックライトを消灯する。なお、故障時は赤のままで消灯しない。ただし、整定値変更画面、時刻設定画面が表示されている場合には、無操作状態の検出がなされない。図2に戻る。 In the case of a failure, if the no-operation state continues for a predetermined period, for example, 10 minutes or more, the processing unit 56 automatically transitions to the PCS abnormality factor display screen. At that time, the backlight is turned red. In a normal state, when the no-operation state continues for a predetermined period, for example, 10 minutes or more, the processing unit 56 makes a transition to the default main display screen. At that time, the backlight is made white. Further, when the no-operation state continues for a longer period of time, for example, 20 minutes or more, at normal times, the processing unit 56 turns off the backlight. In case of failure, it remains red and does not turn off. However, when the set value change screen and the time setting screen are displayed, the no-operation state is not detected. Returning to FIG.
 表示部58は、処理部56での処理にしたがって各種画面を表示する。表示部58に表示される各種画面は、図3に示したとおりである。そのため、表示部58は、設定部54での設定内容を表示する。特に、表示部58は、起動する際の起動画面において、自立モードに対して設定された周波数を表示する。この周波数は、変換装置14の前回起動時に、系統連係モードに対して設定された周波数である。図4は、表示部58に表示される画面を示す。これは、前述の起動画面に相当する。図示のごとく、自立モードに対して設定された周波数が表示される。なお、OKボタン200が選択されると、表示部58は、デフォルトメイン表示画面を表示し、無操作状態が一定期間継続してもデフォルトメイン表示画面を表示する。つまり、表示部58は、自立モードに対して設定された周波数の表示中に入力がなされた場合、あるいは自立モードに対して設定された周波数を表示してから一定期間経過した場合、周波数の表示を消去する。 The display unit 58 displays various screens according to the processing in the processing unit 56. Various screens displayed on the display unit 58 are as shown in FIG. Therefore, the display unit 58 displays the setting contents in the setting unit 54. In particular, the display unit 58 displays the frequency set for the self-supporting mode on the startup screen when starting up. This frequency is the frequency set for the grid link mode when the conversion device 14 was started up last time. FIG. 4 shows a screen displayed on the display unit 58. This corresponds to the above-described startup screen. As shown, the frequency set for the self-supporting mode is displayed. When the OK button 200 is selected, the display unit 58 displays the default main display screen, and displays the default main display screen even if the no-operation state continues for a certain period. That is, the display unit 58 displays the frequency when an input is made during the display of the frequency set for the self-supporting mode, or when a certain period of time has elapsed since the display of the frequency set for the self-supporting mode. Erase.
 この構成は、ハードウエア的には、任意のコンピュータのCPU、メモリ、その他のLSIで実現でき、ソフトウエア的にはメモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ハードウエアとソフトウエアの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。 This configuration can be realized in terms of hardware by a CPU, memory, or other LSI of any computer, and in terms of software, it can be realized by a program loaded in the memory, but here it is realized by their cooperation. Draw functional blocks. Accordingly, those skilled in the art will understand that these functional blocks can be realized in various forms only by hardware, or by a combination of hardware and software.
 次に、本発明の変形例を説明する。本変形例も、実施例と同様に、太陽電池、商用電源、蓄電池が含まれた配電システムにおける変換装置に関する。実施例における変換装置は、起動中に自立モードでの周波数を設定できないが、変形例における変換装置は、起動中に自立モードでの周波数を変更可能である。このような周波数の設定は、ソフトウエアプログラムによって設定される。まず、変換装置は、サービスマンによって設置された後に、起動される。その際、変換装置は、起動画面に、自立モードの周波数初期値を表示する。サービスマンは、起動画面を確認することによって、設置した地域における商用電源の周波数と、自立モードの周波数初期値とを比較し、一致しているか否かを判断する。一致していない場合、変更が必要と判断され、サービスマンが、パスワードで認証後、自立モードの周波数初期値を変更する。なお、一般のユーザが、自立モードの周波数初期値を変更できないよう、パスワード認証が必要とされる。 Next, a modification of the present invention will be described. This modification also relates to a conversion device in a power distribution system including a solar battery, a commercial power source, and a storage battery, as in the embodiment. Although the converter in an Example cannot set the frequency in a self-supporting mode during starting, the converter in the modification can change the frequency in a self-supporting mode during starting. Such frequency setting is set by a software program. First, the conversion device is activated after being installed by a service person. At that time, the conversion device displays the initial frequency value in the independent mode on the startup screen. The service person checks the start-up screen to compare the frequency of the commercial power source in the installed area with the initial frequency value of the self-sustained mode and determine whether they match. If they do not match, it is determined that the change is necessary, and the service person authenticates with the password and then changes the initial frequency value in the independent mode. It should be noted that password authentication is required so that a general user cannot change the initial frequency value of the independent mode.
 変形例に係る配電システム100は、図1(a)-(c)と同様のタイプであり、変形例に係る変換装置14は、図2と同様のタイプである。ここでは、差異を中心に説明する。設定部54は、実施例と同様に、変換部50において使用される周波数を設定する。なお、自立モードでの周波数は、商用電源22の交流電力における周波数に非依存の周波数であればよく、過去に実行した系統連携モードにて設定した周波数である必要はない。自立モードでの周波数は、起動時に、入力部60からの入力によっても設定される。 The power distribution system 100 according to the modification is the same type as that shown in FIGS. 1A to 1C, and the conversion device 14 according to the modification is the same type as that shown in FIG. Here, the difference will be mainly described. The setting part 54 sets the frequency used in the conversion part 50 similarly to the embodiment. Note that the frequency in the self-supporting mode may be any frequency that is independent of the frequency of the AC power of the commercial power supply 22, and does not have to be the frequency set in the system linkage mode executed in the past. The frequency in the self-supporting mode is also set by an input from the input unit 60 at startup.
 処理部56は、実施例での処理に加えて、起動時における自立モードの周波数の変更処理を実行する。図5は、本発明の変形例に係る処理部56による画面の遷移を示す。図5は、図3と類似している。起動画面が表示されている場合に、入力部60における入力を受けつけると、処理部56は、パスワード画面を表示させる。入力部60を介して受けつけたパスワードが正しければ、処理部56は、自立周波数設定画面に遷移させる。自立周波数設定画面が表示されている場合に、入力部60における入力を受けつけると、処理部56は、受けつけた周波数を設定部54に出力する。設定部54は、受けつけた周波数を自立モードの周波数として設定する。処理部56は、自立周波数設定画面からデフォルトメイン表示画面に遷移させる。図2に戻る。 In addition to the processing in the embodiment, the processing unit 56 executes frequency change processing in the independent mode at the time of startup. FIG. 5 shows screen transitions by the processing unit 56 according to a modification of the present invention. FIG. 5 is similar to FIG. If an input from the input unit 60 is received while the startup screen is displayed, the processing unit 56 displays a password screen. If the password received via the input unit 60 is correct, the processing unit 56 transitions to the independent frequency setting screen. When the independent frequency setting screen is displayed and the input from the input unit 60 is received, the processing unit 56 outputs the received frequency to the setting unit 54. The setting unit 54 sets the received frequency as the frequency of the independent mode. The processing unit 56 makes a transition from the independent frequency setting screen to the default main display screen. Returning to FIG.
 表示部58は、起動画面において、自立モードに対して設定された周波数を表示する。図6は、本発明の変形例に係る表示部58に表示される画面を示す。これは、起動画面に相当し、図4と同様に、自立周波数が示される。また、確認ボタン202、変更ボタン204も表示させる。入力部60を介して確認ボタン202が選択されると、表示部58は、デフォルトメイン表示画面を表示する。一方、入力部60を介して変更ボタン204が選択されると、表示部58は、パスワード画面を表示する。 The display unit 58 displays the frequency set for the independent mode on the startup screen. FIG. 6 shows a screen displayed on the display unit 58 according to the modification of the present invention. This corresponds to a start-up screen, and a self-supporting frequency is shown as in FIG. A confirmation button 202 and a change button 204 are also displayed. When the confirmation button 202 is selected via the input unit 60, the display unit 58 displays a default main display screen. On the other hand, when the change button 204 is selected via the input unit 60, the display unit 58 displays a password screen.
 図7は、本発明の変形例に係る表示部58に表示される別の画面を示す。これは、デフォルトメイン表示画面に相当する。図示のごとく、メイン画面ボタン206、各計測値ボタン208、異常要因ボタン210、累積データボタン212、故障履歴ボタン214が表示される。入力部60を介していずれかのボタンが選択されると、表示部58は、当該ボタンに対応した画面を表示する。 FIG. 7 shows another screen displayed on the display unit 58 according to the modification of the present invention. This corresponds to the default main display screen. As shown, a main screen button 206, each measured value button 208, an abnormality factor button 210, an accumulated data button 212, and a failure history button 214 are displayed. When any button is selected via the input unit 60, the display unit 58 displays a screen corresponding to the button.
 図8は、本発明の変形例に係る表示部58に表示されるさらに別の画面を示す。これは、パスワード画面に相当し、起動画面において自立モードの周波数が表示された後の画面に相当する。図示のごとく、数字ボタン216、決定ボタン218、戻るボタン220が表示される。数字ボタン216の数字を選択することによって、入力部60は、パスワードの入力を受けつける。パスワードの入力後、入力部60を介して決定ボタン218が選択されると、処理部56は、パスワード認証を実行する。 FIG. 8 shows still another screen displayed on the display unit 58 according to the modification of the present invention. This corresponds to a password screen, and corresponds to a screen after the frequency of the independent mode is displayed on the startup screen. As shown in the figure, a numeric button 216, an enter button 218, and a return button 220 are displayed. By selecting the number of the number button 216, the input unit 60 receives the password input. When the enter button 218 is selected via the input unit 60 after the password is input, the processing unit 56 performs password authentication.
 図9は、本発明の変形例に係る表示部58に表示されるさらに別の画面を示す。これは、自立周波数設定画面に相当し、パスワードを受けつけた後の画面に相当する。図示のごとく、50.0Hzボタン222、60.0Hzボタン224、決定ボタン226、戻るボタン228が表示される。50.0Hzボタン222、60.0Hzボタン224は、自立モードの周波数として設定可能な周波数の候補である。50.0Hzボタン222あるいは60.0Hzボタン224が選択されることによって、入力部60は、周波数の入力を受けつける。その後、決定ボタン226の選択を入力部60が受けつけると、処理部56、設定部54は、自立モードでの周波数を設定する。このように、入力部60は、表示部58が周波数を表示している起動画面から、表示部58が自立周波数設定画面を表示している状態に遷移した場合、自立モードに対して設定すべき周波数の入力を受けつける。 FIG. 9 shows still another screen displayed on the display unit 58 according to the modification of the present invention. This corresponds to an independent frequency setting screen and corresponds to a screen after receiving a password. As shown, a 50.0 Hz button 222, a 60.0 Hz button 224, an enter button 226, and a return button 228 are displayed. The 50.0 Hz button 222 and the 60.0 Hz button 224 are frequency candidates that can be set as frequencies in the self-supporting mode. When the 50.0 Hz button 222 or the 60.0 Hz button 224 is selected, the input unit 60 receives the frequency input. Thereafter, when the input unit 60 accepts the selection of the decision button 226, the processing unit 56 and the setting unit 54 set the frequency in the independent mode. As described above, when the input unit 60 transitions from the startup screen in which the display unit 58 displays the frequency to the state in which the display unit 58 displays the independent frequency setting screen, the input unit 60 should set the autonomous mode. Accept frequency input.
 本発明の実施例によれば、起動する際に、自立モードに対して設定された周波数を表示するので、商用電源の周波数と自立運転の周波数とが異なることを通知できる。また、商用電源の周波数と自立運転の周波数とが異なることが通知されるので、自立運転による交流電力の供給を回避できる。また、自立運転による交流電力の供給が回避されるので、商用電源の周波数と自立運転の周波数とが異なる場合であっても、負荷に与える影響を低減できる。また、起動画面からデフォルトメイン表示画面に遷移するので、必要な情報を表示できる。 According to the embodiment of the present invention, the frequency set for the self-sustained mode is displayed at the time of start-up, so that it can be notified that the frequency of the commercial power supply is different from the frequency of the self-sustaining operation. Further, since it is notified that the frequency of the commercial power supply is different from the frequency of the independent operation, it is possible to avoid supply of AC power by the independent operation. Further, since the supply of AC power by the self-sustained operation is avoided, the influence on the load can be reduced even when the frequency of the commercial power supply is different from the frequency of the self-sustained operation. Further, since the transition is made from the startup screen to the default main display screen, necessary information can be displayed.
 また、起動する際に、自立モードに対して設定された周波数を表示し、周波数を表示している状態から、自立周波数設定画面を表示している状態に遷移した場合、自立モードに対して設定すべき周波数の入力を受けつけるので、自立モードでの周波数を設定できる。また、起動時に自立モードでの周波数が設定されるので、商用電源の周波数と自立運転の周波数とが異なる場合であっても、負荷に与える影響を低減できる。また、パスワードの入力を受けつけてから、自立周波数設定画面を表示するので、自立モードでの周波数が簡易に変更される危険性を低減できる。また、自立周波数設定画面として、設定可能な周波数の候補を表示するので、誤った周波数が設定される危険性を低減できる。 In addition, when starting up, the frequency set for the independent mode is displayed, and when transitioning from the state displaying the frequency to the state displaying the independent frequency setting screen, the mode is set for the independent mode. Since the input of the frequency to be received is accepted, the frequency in the independent mode can be set. In addition, since the frequency in the independent mode is set at the time of startup, the influence on the load can be reduced even when the frequency of the commercial power supply and the frequency of the independent operation are different. In addition, since the self-supporting frequency setting screen is displayed after accepting the password input, the risk that the frequency in the self-supporting mode is easily changed can be reduced. In addition, since the settable frequency candidates are displayed as the independent frequency setting screen, the risk of setting an incorrect frequency can be reduced.
 以上、本発明を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described based on the embodiments. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to the combination of each component and each processing process, and such modifications are also within the scope of the present invention. .
 本発明の実施例において、発電するために太陽電池10が設けられている。しかしながらこれに限らず例えば、太陽電池10以外に、再生可能エネルギー源をもとした電力を生成するための装置が設けられてもよい。例えば、風力発電機である。本変形例によれば、配電システム100の構成の自由度を向上できる。 In the embodiment of the present invention, a solar cell 10 is provided to generate power. However, the present invention is not limited thereto, and for example, a device for generating electric power based on a renewable energy source may be provided in addition to the solar battery 10. For example, a wind power generator. According to this modification, the degree of freedom of the configuration of the power distribution system 100 can be improved.
 本発明の実施例において、設定部54および処理部56を含んだ制御部66は、変換装置14の内部に設けられている。しかしながらこれに限らず例えば、制御部66は変換装置14の外部に設けられていてもよい。 In the embodiment of the present invention, the control unit 66 including the setting unit 54 and the processing unit 56 is provided inside the conversion device 14. However, the present invention is not limited to this. For example, the control unit 66 may be provided outside the conversion device 14.
 10 太陽電池、 12 蓄電池、 14 変換装置、 16 管理装置、 18 第1SW、 20 第2SW、 22 商用電源、 24 特定負荷、 26 一般負荷、 50 変換部、 52 検出部、 54 設定部、 56 処理部、 58 表示部、 60 入力部、 66 制御部、 100 配電システム。 10 solar cell, 12 storage battery, 14 conversion device, 16 management device, 18 1st SW, 20 2nd SW, 22 commercial power supply, 24 specific load, 26 general load, 50 conversion unit, 52 detection unit, 54 setting unit, 56 processing unit , 58 display unit, 60 input unit, 66 control unit, 100 power distribution system.
 本発明によれば、商用電源の周波数と自立運転の周波数とが異なる場合であっても、負荷に与える影響を低減できる。 According to the present invention, even if the frequency of the commercial power supply and the frequency of the independent operation are different, the influence on the load can be reduced.

Claims (8)

  1.  直流電力から交流電力を生成する変換部と、
     前記変換部において生成すべき交流電力の周波数を制御する制御部と、
     前記制御部での制御内容を表示する表示部とを備え、
     前記制御部は、商用電源の交流電力における周波数に応じた周波数を設定する第1モードと、商用電源の交流電力における周波数に非依存の周波数を設定する第2モードとのいずれかを前記変換部に実行させ、起動する際に、過去に前記変換部に第1モードを実行させた際に設定した周波数を、前記変換部が第2モードを実行する際の周波数として前記表示部に表示させることを特徴とする変換装置。
    A converter that generates AC power from DC power;
    A control unit for controlling the frequency of the AC power to be generated in the conversion unit;
    A display unit for displaying control contents in the control unit,
    The control unit selects either the first mode for setting a frequency according to the frequency in the AC power of the commercial power source or the second mode for setting a frequency independent of the frequency in the AC power of the commercial power source. The frequency set when the conversion unit is caused to execute the first mode in the past is displayed on the display unit as the frequency when the conversion unit executes the second mode. A conversion device characterized by.
  2.  ユーザの指示を受け付ける入力部をさらに備え、
     前記制御部は、起動時に第2モードの周波数を前記表示部に表示させている間に前記入力部を介して入力がなされた場合、あるいは第2モードの周波数を表示させてから一定期間経過した場合、周波数の表示を消去させることを特徴とする請求項1に記載の変換装置。
    It further includes an input unit for receiving user instructions,
    When the control unit receives an input through the input unit while displaying the frequency of the second mode on the display unit at the time of start-up, or a certain period of time has elapsed after displaying the frequency of the second mode The conversion apparatus according to claim 1, wherein the frequency display is erased.
  3.  前記制御部は、起動時に第2モードの周波数を前記表示部に表示させた後、前記変換部が第2モードを実行する際の周波数の入力を前記入力部を介して受けつけるために、周波数入力画面を表示させることを特徴とする請求項2に記載の変換装置。 The control unit displays the frequency of the second mode on the display unit at startup, and then receives a frequency input when the conversion unit executes the second mode via the input unit. The conversion apparatus according to claim 2, wherein a screen is displayed.
  4.  前記制御部は、起動時に第2モードの周波数を前記表示部に表示させた後、前記変換部が第2モードを実行する際の周波数の入力を受け付ける前に、パスワードの入力を前記入力部を介して受け付けるために、パスワード入力画面を表示させることを特徴とする請求項3に記載の変換装置。 The control unit displays the frequency of the second mode on the display unit at the time of activation, and then inputs the password to the input unit before accepting the input of the frequency when the conversion unit executes the second mode. The conversion apparatus according to claim 3, wherein a password input screen is displayed to accept the password.
  5.  前記制御部は、前記周波数入力画面として、設定可能な周波数の候補を前記表示部に表示させることを特徴とする請求項3または4に記載の変換装置。 The conversion device according to claim 3 or 4, wherein the control unit displays a settable frequency candidate on the display unit as the frequency input screen.
  6.  直流電力を交流電力に変換する変換部において生成する交流電力の周波数を制御する制御装置であって、
     商用電源の交流電力における周波数に応じた周波数を設定する第1モードと、商用電源の交流電力における周波数に非依存の周波数を設定する第2モードとのいずれかを変換部に実行させるとともに、変換部を起動する際に、過去に変換部が第1モードを実行する際に設定した周波数を、変換部が第2モードを実行する際の周波数として表示部に表示させることを特徴とする制御装置。
    A control device that controls the frequency of AC power generated in a converter that converts DC power into AC power,
    The converter is caused to execute either the first mode for setting a frequency corresponding to the frequency in the AC power of the commercial power supply or the second mode for setting a frequency independent of the frequency in the AC power of the commercial power supply. When starting the unit, the control unit displays a frequency set in the past when the conversion unit executes the first mode on the display unit as a frequency when the conversion unit executes the second mode. .
  7.  直流電力を交流電力に変換する変換部において生成する交流電力の周波数を制御する制御方法であって、
     商用電源の交流電力における周波数に応じた周波数を設定する第1モードと、商用電源の交流電力における周波数に非依存の周波数を設定する第2モードとのいずれかを変換部に実行させるとともに、変換部を起動する際に、過去に第1モードを実行する際に設定した周波数を、変換部が第2モードを実行する際の周波数として表示部に表示させることを特徴とする制御方法。
    A control method for controlling the frequency of AC power generated in a converter that converts DC power into AC power,
    The converter is caused to execute either the first mode for setting a frequency corresponding to the frequency in the AC power of the commercial power supply or the second mode for setting a frequency independent of the frequency in the AC power of the commercial power supply. When starting a part, the control method of displaying on a display part the frequency set at the time of performing a 1st mode in the past as a frequency when a conversion part performs a 2nd mode.
  8.  発電機と、
     前記発電機において発電された直流電力を交流電力に変換する変換部と、
     前記変換部において生成すべき交流電力の周波数を制御する制御部と、
     前記制御部での制御内容を表示する表示部とを備え、
     前記制御部は、商用電源の交流電力における周波数に応じた周波数を設定する第1モードと、商用電源の交流電力における周波数に非依存の周波数を設定する第2モードとのいずれかを前記変換部に実行させ、前記変換部を起動する際に、過去に前記変換部に第1モードを実行させた際に設定した周波数を、前記変換部が第2モードを実行する際の周波数として前記表示部に表示させることを特徴とする配電システム。
    A generator,
    A converter that converts the DC power generated by the generator into AC power;
    A control unit for controlling the frequency of the AC power to be generated in the conversion unit;
    A display unit for displaying control contents in the control unit,
    The control unit selects either the first mode for setting a frequency according to the frequency in the AC power of the commercial power source or the second mode for setting a frequency independent of the frequency in the AC power of the commercial power source. When the conversion unit is activated, the display unit uses the frequency set when the conversion unit has executed the first mode in the past as the frequency when the conversion unit executes the second mode. Power distribution system characterized by being displayed on the screen.
PCT/JP2013/000603 2012-02-22 2013-02-04 Conversion device, control device, control method, and power distribution system WO2013125164A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012036805A JP2013172624A (en) 2012-02-22 2012-02-22 Conversion device, control device, control method, and power distribution system
JP2012-036805 2012-02-22

Publications (1)

Publication Number Publication Date
WO2013125164A1 true WO2013125164A1 (en) 2013-08-29

Family

ID=49005364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000603 WO2013125164A1 (en) 2012-02-22 2013-02-04 Conversion device, control device, control method, and power distribution system

Country Status (2)

Country Link
JP (1) JP2013172624A (en)
WO (1) WO2013125164A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3637573B1 (en) 2017-06-08 2021-06-02 Mitsubishi Electric Corporation Power control system and control device
JP6913871B2 (en) * 2017-12-27 2021-08-04 パナソニックIpマネジメント株式会社 Control command system and power converter
US20230155520A1 (en) * 2020-04-06 2023-05-18 Kabushiki Kaisha Toshiba Power conversion device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029711A1 (en) * 2006-09-05 2008-03-13 Toshiba Carrier Corporation Sequence-linked inverter device
JP2010028977A (en) * 2008-07-18 2010-02-04 Toshiba Carrier Corp Power supply unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029711A1 (en) * 2006-09-05 2008-03-13 Toshiba Carrier Corporation Sequence-linked inverter device
JP2010028977A (en) * 2008-07-18 2010-02-04 Toshiba Carrier Corp Power supply unit

Also Published As

Publication number Publication date
JP2013172624A (en) 2013-09-02

Similar Documents

Publication Publication Date Title
EP2911272A1 (en) Power source control system, control device and control method
JP2013179767A (en) Electric storage control device, control method of the same, program, and electric storage system
US20140132073A1 (en) Power conditioner, control method and power generation system
JP5648121B2 (en) Distributed power generation system and operation method thereof
JP5919566B2 (en) Control method and control device using the same
JP6024929B2 (en) Control device and power distribution system
EP2626971A1 (en) Power supply system and method for controlling same
JP2012147621A (en) Blackout relief system
JP2007202266A (en) Detecting method for isolated operation, controller for detection of isolated operation in dispersed power system, isolated operation detector, and dispersed power system
WO2013125164A1 (en) Conversion device, control device, control method, and power distribution system
JP5861128B2 (en) Battery management device
JP2010142076A (en) Independent operation system utilizing generation power supply unit for energy storage and emergency
WO2013179358A1 (en) Controller, battery control unit, and power distribution system
JP5820984B2 (en) Power distribution system
KR101744119B1 (en) Apparatus and method for controlling process to supply power
JP5847599B2 (en) Power supply system, control device, and program
EP2755292A1 (en) Distributed power generation system and method for operating same
JP5338831B2 (en) Power control apparatus and power control method
JP2013176190A (en) Secondary battery control device
JP6249356B2 (en) Storage battery control device, storage battery control system
JP5661889B1 (en) Engine power generation system
JP6507294B2 (en) POWER CONTROL DEVICE, POWER CONTROL METHOD, AND POWER CONTROL SYSTEM
JP5266891B2 (en) Fuel cell power generator and control method of fuel cell power generator
WO2013125156A1 (en) Power distribution system
JP2008193827A (en) Isolated operation detecting method, controller for detecting isolated operation of distributed power supply, isolated operation detecting apparatus, and distributed power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13751711

Country of ref document: EP

Kind code of ref document: A1