JP2008193827A - Isolated operation detecting method, controller for detecting isolated operation of distributed power supply, isolated operation detecting apparatus, and distributed power supply - Google Patents

Isolated operation detecting method, controller for detecting isolated operation of distributed power supply, isolated operation detecting apparatus, and distributed power supply Download PDF

Info

Publication number
JP2008193827A
JP2008193827A JP2007026463A JP2007026463A JP2008193827A JP 2008193827 A JP2008193827 A JP 2008193827A JP 2007026463 A JP2007026463 A JP 2007026463A JP 2007026463 A JP2007026463 A JP 2007026463A JP 2008193827 A JP2008193827 A JP 2008193827A
Authority
JP
Japan
Prior art keywords
power
fluctuation
isolated operation
operation detection
power system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007026463A
Other languages
Japanese (ja)
Other versions
JP4835453B2 (en
Inventor
Yasuhiro Tsubota
康弘 坪田
Masao Mabuchi
雅夫 馬渕
Shinichi Hosomi
伸一 細見
Kazuyoshi Imamura
和由 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2007026463A priority Critical patent/JP4835453B2/en
Publication of JP2008193827A publication Critical patent/JP2008193827A/en
Application granted granted Critical
Publication of JP4835453B2 publication Critical patent/JP4835453B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

<P>PROBLEM TO BE SOLVED: To control the level of power fluctuation and to prevent the power fluctuation from becoming so excessive as to cause problem of flickering, and thereby eliminate or reduce flickering. <P>SOLUTION: A method is used to detect whether a dispersed power supply is isolated from a power system and is operating in an isolated manner, based on the power fluctuations injected into a power system. The method includes a first step of injecting power fluctuation into the power system; a second step of detecting the state of power of the power system; and a third step of reducing the level of power fluctuation to a fixed upper limit or lower, according to the result of the detection. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、分散型電源が電力系統から切り離され単独運転しているか否かを電力系統に注入した無効電力等の各種の電力変動に基づいて検出する単独運転検出方法、分散型電源の単独運転検出用制御装置、単独運転検出装置および分散型電源に関する。   The present invention relates to an isolated operation detection method for detecting whether or not a distributed power source is isolated from a power system based on various power fluctuations such as reactive power injected into the power system, and an isolated operation of the distributed power source. The present invention relates to a detection control device, an isolated operation detection device, and a distributed power source.

単独運転とは、電力系統に事故等が発生して停止した状態で局所的な系統負荷に分散型電源が電力を供給している状態である。分散型電源とは、需要地あるいはその近辺に電源を設置して発電するものである。このような分散型電源は、現在、ガスタービン、ガスエンジン、太陽光、等を用いたコージェネレーションシステムが主流となっている。今後は、それらシステムに加えて、風力、小規模水力、バイオマス、等の再生可能なエネルギあるいは廃棄物等を利用した発電システムや技術的に開発途上にあるマイクロガスタービンや燃料電池の普及が期待されている。それらの中で、燃料電池は分散型電源の主流と期待も高いものであり、工場等の大規模施設だけでなく、一般住宅等の小規模施設への導入も進められるものと考えられる。   Independent operation is a state in which a distributed power source supplies power to a local system load in a state where an accident or the like has occurred in the power system and stopped. A distributed power source is one that generates power by installing a power source at or near a demand location. Currently, such distributed power sources are mainly cogeneration systems using gas turbines, gas engines, sunlight, and the like. In the future, in addition to these systems, power generation systems that use renewable energy such as wind power, small-scale hydropower, biomass, etc., or waste, and micro gas turbines and fuel cells that are technically under development are expected to become popular. Has been. Among them, fuel cells are expected to be the mainstream of distributed power sources, and are expected to be introduced not only to large-scale facilities such as factories but also to small-scale facilities such as ordinary houses.

代表的な小型の分散型電源としてはガスエンジン、ガスタービン、マイクロガスタービン、太陽光、燃料電池等を例示することができる。これまで電力会社は需要地から離れた場所に膨大な設備投資を行って発電所を建設し、需要地まで送電してきたために、送電損失等があり、発電効率は30%前後にとどまっている。   Typical small distributed power sources include gas engines, gas turbines, micro gas turbines, sunlight, fuel cells, and the like. Until now, electric power companies have invested enormously in a place far from the demand area to construct a power plant and transmit power to the demand area, so there is a transmission loss and the power generation efficiency is only around 30%.

以上説明した分散型電源に対してその単独運転を検出する単独運転検出装置においてその単独運転の検出方式としては、詳しい説明は略するが、電力変動の注入方式により、無効電力変動方式、有効電力変動方式、高調波注入方式、等の各種方式(電力変動方式)が既に提案されている。   In the isolated operation detection device for detecting the isolated operation of the distributed power source described above, the detailed description of the isolated operation detection method is omitted, but the reactive power variation method, the active power is determined by the power variation injection method. Various methods (power fluctuation method) such as a fluctuation method and a harmonic injection method have already been proposed.

このような電力変動方式での単独運転検出において、多数台の単独運転検出装置が電力変動を不定期に電力系統に注入すると、電力系統内でそれら電力変動が相互に打ち消し合うことがあり、単独運転検出に影響が生じる。そのため、多数台の単独運転検出装置において、標準時刻電波信号等に同期させて一斉に電力変動を電力系統に注入した際には、それら電力変動が注入されている電力系統に接続されている負荷、例えば、蛍光灯のちらつき、マイクロコンピュータの誤動作、モータの回転制御不能を発生させる原因となるフリッカ(電圧の周期的変動)問題を発生するおそれがある。もちろん、単独運転検出装置が多数台ではなく、1台ないし数台でも、電力変動のレベルが過大であれば、多数台と同様なフリッカ問題が発生する。なお、単独運転に関する技術は多数有り、以下にその特許文献の代表を挙げる。   In isolated operation detection using such a power fluctuation method, if a large number of isolated operation detectors inject power fluctuations into the power system irregularly, the power fluctuations may cancel each other out in the power system. Operation detection is affected. Therefore, when a large number of isolated operation detection devices inject power fluctuations into the power system all at once in synchronization with a standard time radio signal etc., the load connected to the power system into which these power fluctuations are injected For example, flickering of a fluorescent lamp, malfunction of a microcomputer, and flicker (periodic fluctuation of voltage) that may cause motor rotation control failure may occur. Of course, even if one or several independent operation detection devices are used, if the level of power fluctuation is excessive, the same flicker problem as in the case of multiple units occurs. There are many techniques related to isolated operation, and representatives of the patent documents are listed below.

一方、従来、電圧系統における電圧実効値の変動による照明のちらつき、いわゆるフリッカは電力品質上の重要な問題であるが、その管理指標の1つとして式(1)で示されるようなΔV10がある。   On the other hand, flickering of lighting due to fluctuations in the effective voltage value in the voltage system, so-called flicker, is an important problem in power quality, and there is ΔV10 as shown in the equation (1) as one of the management indexes. .

Figure 2008193827
Figure 2008193827

式(1)において、ΔVnは例えば図1で示すように、電圧動揺を周波数分析した結果得られる変動周波数fnの電圧変動成分の振れ(実効値)を示し、anは図2で示すちらつき視感度曲線における10Hzを1としたときの変動周波数fnに対応するちらつき視感度係数を示す。ΔV10はちらつき視感度曲線における10Hzの変動値である。このΔV10は所定の許容値と比較され、許容値以下ならば電力品質良好と判断し、許容値以上ならば不良と判断する。
特開平08−98411号公報 特許3397912号公報 特許3424443号公報
In equation (1), ΔVn represents the fluctuation (effective value) of the voltage fluctuation component of the fluctuation frequency fn obtained as a result of frequency analysis of the voltage fluctuation, for example, as shown in FIG. 1, and an represents the flicker visibility shown in FIG. The flicker visibility coefficient corresponding to the fluctuation frequency fn when 10 Hz in the curve is set to 1 is shown. ΔV10 is a fluctuation value of 10 Hz in the flicker visibility curve. This ΔV10 is compared with a predetermined allowable value, and if it is equal to or smaller than the allowable value, it is determined that the power quality is good, and if it is equal to or larger than the allowable value, it is determined as defective.
Japanese Patent Laid-Open No. 08-98411 Japanese Patent No. 3397912 Japanese Patent No. 3424443

したがって、本発明により解決すべき課題は、フリッカ問題を発生させる程度に電力変動が過大とならないよう電力変動のレベルを制御してフリッカを無くすか小さく抑制処理する一方、このフリッカ問題の解決に際してΔV10の規定を充足することである。   Therefore, the problem to be solved by the present invention is that the level of power fluctuation is controlled so that the power fluctuation does not become excessive to the extent that the flicker problem occurs, and the flicker is eliminated or suppressed to a small level. To satisfy the provisions of

本発明による単独運転検出方法は、分散型電源が電力系統から切り離されて単独運転しているか否かを電力系統に注入した電力変動に基づいて検出する方法において、電力系統の各変動周波数fnにおける電圧変動分ΔVnを計測する第1ステップと、上記電圧変動分ΔVnをちらつき視感度曲線により10Hzの変動値ΔV10に換算する第2ステップと、上記換算した変動値ΔV10がフリッカ対策の判定基準である許容値を超えないように電力系統に電力変動を注入する第3ステップとを備えることを特徴とするものである。   An isolated operation detection method according to the present invention is a method for detecting whether or not a distributed power source is isolated from an electric power system based on electric power fluctuations injected into the electric power system at each fluctuation frequency fn of the electric power system. The first step of measuring the voltage fluctuation ΔVn, the second step of converting the voltage fluctuation ΔVn to the fluctuation value ΔV10 of 10 Hz by the flickering visibility curve, and the converted fluctuation value ΔV10 are determination criteria for flicker countermeasures. And a third step of injecting power fluctuations into the power system so as not to exceed the allowable value.

上記において電力変動の注入は周期的、不定期、等の任意でもよい。   In the above, the injection of the power fluctuation may be arbitrary such as periodic or irregular.

電力変動は、無効電力変動、有効電力変動、高調波電力変動、等であり、特に限定されない。   The power fluctuation includes reactive power fluctuation, active power fluctuation, harmonic power fluctuation, and the like, and is not particularly limited.

上記許容値は、新規発電機設備では0.23V(202V換算では0.46V)、連系前の電圧フリッカを考慮した場合では0.45V(202V換算では0.9V)である。   The allowable value is 0.23V (0.46V in 202V conversion) for new generator equipment, and 0.45V (0.9V in 202V conversion) when considering voltage flicker before interconnection.

本発明によると、電力変動を電力系統に注入する場合、変動値ΔV10がフリッカ対策の判定基準である許容値を超えないようにするので、多数台の単独運転検出装置が例えば標準時刻電波信号等に同期させて一斉に電力変動を電力系統に注入したとしても、その電力変動はフリッカが問題とならない値以下に抑制されて、上記フリッカ問題を発生するおそれがなくなると同時に、ΔV10規定を充足することができる。   According to the present invention, when the power fluctuation is injected into the power system, the fluctuation value ΔV10 is prevented from exceeding the allowable value which is a criterion for countermeasures against flicker. Even when power fluctuations are injected into the power system all at once, the power fluctuations are suppressed to a value that does not cause flickering problems, and there is no possibility of causing the flickering problems, and at the same time, the ΔV10 regulation is satisfied. be able to.

本発明の好適な一態様は、第3ステップで注入する電力変動が、電力変動の量である。   In a preferred aspect of the present invention, the power fluctuation injected in the third step is the amount of power fluctuation.

本発明の好適な一態様は、第3ステップで注入する電力変動が、変動周波数の変化である。   In a preferred aspect of the present invention, the power fluctuation injected in the third step is a change in the fluctuation frequency.

本発明の好適な一態様は、第3ステップで注入する電力変動が、系統電圧の変動が小さい場合は変動周波数を上げ、系統電圧の変動が大きい場合は電力変動の量である。   According to a preferred aspect of the present invention, when the power fluctuation injected in the third step is small, the fluctuation frequency is increased, and when the fluctuation of the system voltage is large, the amount of power fluctuation.

本発明の好適な一態様は、ΔV10が一定値を超えるまでは電力変動(量、変動周波数の変化)を一定の上限に抑制しΔV10が一定値を超えた後はΔV10の増減に対して電力変動のレベルをヒステリシスを持つサイクル制御をすることである。   One preferred aspect of the present invention is that power fluctuations (changes in quantity and fluctuation frequency) are suppressed to a certain upper limit until ΔV10 exceeds a certain value, and after ΔV10 exceeds a certain value, power is increased or decreased with respect to ΔV10. The level of fluctuation is to be cycle controlled with hysteresis.

本発明によれば、ΔV10規定を充足しつつフリッカを検出処理することができる。   According to the present invention, flicker can be detected while satisfying the ΔV10 rule.

以下、添付した図面を参照して、本発明の実施の形態に係る単独運転検出方法、その制御装置、単独運転検出装置および分散型電源を説明する。   Hereinafter, an isolated operation detection method, its control device, an isolated operation detection device, and a distributed power supply according to embodiments of the present invention will be described with reference to the accompanying drawings.

図3は分散型電源と単独運転検出装置とを備えた電力制御システムの構成を示す。図3を参照して、10は太陽光、風力、マイクロガスタービン、燃料電池等の分散型電源、15はパワーコンディショナ、20は単独運転検出装置、30は電力系統である。電力系統30の詳細は本実施の形態では特に説明を要しないので略する。また、負荷の図示等は略している。単独運転検出装置20は、連系リレー21,25と、制御装置22と、インバータ制御部23と、インバータ24と、電流検出器26とを備える。   FIG. 3 shows a configuration of a power control system including a distributed power source and an isolated operation detection device. Referring to FIG. 3, 10 is a distributed power source such as sunlight, wind power, micro gas turbine, and fuel cell, 15 is a power conditioner, 20 is an independent operation detection device, and 30 is a power system. The details of the power system 30 are omitted because they do not require any particular explanation in the present embodiment. Also, the illustration of the load is omitted. The isolated operation detection device 20 includes interconnection relays 21 and 25, a control device 22, an inverter control unit 23, an inverter 24, and a current detector 26.

制御装置22は、マイクロコンピュータを内蔵しそのマイクロコンピュータのソフトウエアプログラムにより制御動作を実行することができるようになっている。この場合、制御装置22をマイクロコンピュータ以外のハードウエアで構成することもできる。   The control device 22 has a built-in microcomputer and can execute a control operation by a software program of the microcomputer. In this case, the control device 22 can be configured by hardware other than the microcomputer.

(実施の形態1)
図4に制御装置22の実施の形態1に関わる主要な機能をブロック構成で示す。図4において、29は標準時刻電波信号で作動する電波時計、31は電波時計29に同期して定期的に電力系統30の電力を微小に変動(電力変動)制御するための電力定期変動信号S3´を出力する電力定期変動部である。
(Embodiment 1)
FIG. 4 shows the main functions of the control device 22 relating to the first embodiment in a block configuration. In FIG. 4, reference numeral 29 denotes a radio timepiece that operates with a standard time radio signal, and reference numeral 31 denotes a periodic power fluctuation signal S 3 for controlling minute fluctuations (power fluctuation) of the electric power system 30 periodically in synchronization with the radio timepiece 29. It is an electric power regular fluctuation part which outputs'.

32は電力系統30における電力変動のフリッカを検出処理しフリッカ検出信号(電力変動量)S3´´を出力するフリッカ検出処理部である。   Reference numeral 32 denotes a flicker detection processing unit for detecting flicker of power fluctuation in the power system 30 and outputting a flicker detection signal (power fluctuation amount) S3 ″.

33は定期変動部31からの電力定期変動信号S3´とフリッカ検出処理部32からのフリッカ検出信号(電力変動量)S3´´とを乗算しその乗算結果を電力変動指令信号S3(無効電流そのものではなくインバータ制御部23への制御信号として)としてインバータ制御部23に出力する乗算器である。   33 is a product of the periodic power fluctuation signal S3 ′ from the periodic fluctuation section 31 and the flicker detection signal (amount of power fluctuation) S3 ″ from the flicker detection processing section 32, and the result is multiplied by the power fluctuation command signal S3 (the reactive current itself). Rather than as a control signal to the inverter controller 23).

34は電力ライン27の電力変動を信号S5に基づいて監視する電力変動監視部である。   Reference numeral 34 denotes a power fluctuation monitoring unit that monitors the power fluctuation of the power line 27 based on the signal S5.

35は電力変動監視部34からの監視信号に基づいて分散型電源10が電力系統30から切り離されて単独運転しているか否かを判定し、その判定に対応して制御信号S1,S2,S6を連系リレー21,25とインバータ制御部23に出力する単独運転判定部である。   35 determines based on the monitoring signal from the power fluctuation monitoring unit 34 whether the distributed power source 10 is disconnected from the power system 30 and is operating independently, and the control signals S1, S2, S6 corresponding to the determination. Is an independent operation determination unit that outputs to the interconnection relays 21 and 25 and the inverter control unit 23.

電波時計29と電力定期変動部31は、乗算器33に電力定期変動信号S3´を出力し、乗算器33から電力変動指令信号S3を出力させ、この電力変動指令信号S3に応答して、インバータ制御部23およびインバータ24を通じて、電力系統30に電力変動を注入する電力変動注入手段を構成することができる。   The radio clock 29 and the periodic power fluctuation unit 31 output a periodic power fluctuation signal S3 ′ to the multiplier 33, and output a power fluctuation command signal S3 from the multiplier 33. In response to the power fluctuation command signal S3, the inverter Through the control unit 23 and the inverter 24, a power fluctuation injection unit that injects a power fluctuation into the power system 30 can be configured.

フリッカ検出処理部32において、32aは図1に示す系統電圧の動揺を周波数分析して電力系統の変動周波数fnにおける電圧変動分ΔVn(系統電圧の実効値の振れ)を計測する計測部、32bは、上記電圧変動分ΔVnを図2で示すちらつき視感度曲線により10Hzの変動値ΔV10に換算処理(フィルタ処理)する換算処理部(フィルタ処理部)、32cは上記換算した変動値ΔV10の数秒間、実施の形態では5秒間の実効値を算出する実効値処理部、32dは上記実効変動値ΔV10がフリッカ対策の判定基準である許容値を超えないよう図5に従う電力変動量を演算しフリッカ検出信号S3´´として出力する演算部である。この許容値は、系統連系規定(JEAC9701-2006)に基づいて定めることができ、例えば新規発電機設備では0.23V(202V換算では0.46V)、連系前の電圧フリッカを考慮した場合では0.45V(202V換算では0.9V)である。図5において、横軸は電圧偏差(V)(ΔV10)、縦軸は注入電力変動量(Var)である。   In the flicker detection processing unit 32, 32a is a measurement unit that analyzes the fluctuation of the system voltage shown in FIG. 1 and measures the voltage fluctuation ΔVn (fluctuation of the effective value of the system voltage) at the fluctuation frequency fn of the power system, 32b A conversion processing unit (filter processing unit) that converts (filters) the voltage fluctuation amount ΔVn into a fluctuation value ΔV10 of 10 Hz according to the flicker visibility curve shown in FIG. 2, and 32c is a few seconds of the converted fluctuation value ΔV10. In the embodiment, an effective value processing unit for calculating an effective value for 5 seconds, 32d calculates a power fluctuation amount according to FIG. 5 so that the effective fluctuation value ΔV10 does not exceed an allowable value that is a criterion for countermeasures against flicker, and detects a flicker detection signal. It is a calculating part which outputs as S3 ''. This permissible value can be determined based on the grid connection regulations (JEAC9701-2006). For example, 0.23V (0.46V in 202V conversion) for new generator equipment, and voltage flicker before connection is taken into consideration Then, it is 0.45V (0.9V in terms of 202V). In FIG. 5, the horizontal axis represents the voltage deviation (V) (ΔV10), and the vertical axis represents the injected power fluctuation amount (Var).

実効値処理部32cは、図5の横軸の実効値処理を行ないその実効値処理結果を演算部32dに出力するようになっている。図5の横軸に関して、実効値処理部32cでは、5秒間の実効値演算を図5の横軸の電圧偏差(ΔV10)として求める。   The effective value processing unit 32c performs effective value processing on the horizontal axis in FIG. 5 and outputs the effective value processing result to the calculation unit 32d. With respect to the horizontal axis in FIG. 5, the effective value processing unit 32 c calculates the effective value calculation for 5 seconds as the voltage deviation (ΔV10) on the horizontal axis in FIG. 5.

演算部32dにおいては、図5の一点鎖線で示すヒステリシス曲線W1では電圧偏差(ΔV10)が0〜0.45の間で増減しても電力変動量を40(Var)の上限に維持し、電圧偏差(ΔV10)が0.45〜0.9の間で増減するときは電力変動量を0〜40(Var)の範囲で増減に変動することにより、現在の電力変動量が、W1を上回るとW1にクリップさせる。そして、電圧偏差(ΔV10)が一旦0.9になると、電圧偏差(ΔV10)が低下するときは、電力変動量を0に維持する。そして、電圧偏差(ΔV10)が0.85になると、電圧偏差(ΔV10)が増減するときは電力変動量を0〜40で増減させる。すなわち、現在の電力変動量が、点線で示すヒステリシス曲線W2を下回るとW2にクリップするというヒステリシス動作で制御する。   In the calculation part 32d, even if the voltage deviation (ΔV10) increases or decreases between 0 and 0.45 in the hysteresis curve W1 indicated by the one-dot chain line in FIG. 5, the power fluctuation amount is maintained at the upper limit of 40 (Var), When the deviation (ΔV10) increases or decreases between 0.45 and 0.9, when the current power fluctuation amount exceeds W1, the power fluctuation amount fluctuates in the range of 0 to 40 (Var). Clip to W1. Then, once the voltage deviation (ΔV10) becomes 0.9, when the voltage deviation (ΔV10) decreases, the power fluctuation amount is maintained at zero. When the voltage deviation (ΔV10) becomes 0.85, when the voltage deviation (ΔV10) increases or decreases, the power fluctuation amount is increased or decreased by 0 to 40. That is, control is performed by a hysteresis operation in which the current power fluctuation amount is clipped to W2 when it falls below the hysteresis curve W2 indicated by the dotted line.

上記において、演算部32d出力が乗算器33にフリッカ検出信号S3´´として出力されるので、電力変動量を図5で示す関数に従って40(Var)以下に抑制することができ、乗算器33からインバータ制御部23には電力変動量を40(Var)以下に抑制する電力変動指令信号S3がインバータ制御部23に出力されるので、フリッカが抑制される。   In the above, since the output of the calculation unit 32d is output to the multiplier 33 as the flicker detection signal S3 ″, the power fluctuation amount can be suppressed to 40 (Var) or less according to the function shown in FIG. Since the power fluctuation command signal S3 for suppressing the power fluctuation amount to 40 (Var) or less is output to the inverter control section 23 to the inverter control section 23, flicker is suppressed.

図6に上記によって注入電力変動が抑制されるイメージを示す。図6(a)では定期的に注入される電力変動を示す、図6(b)では実施の形態1により注入電力変動が抑制されている状態を示す。   FIG. 6 shows an image in which injection power fluctuation is suppressed by the above. FIG. 6A shows the fluctuation of power injected periodically, and FIG. 6B shows the state where the fluctuation of injected power is suppressed by the first embodiment.

なお、演算部32dは図7で示すヒステリシス曲線で電力変動量を制御してもよい。図5のヒステリシス曲線と比較して電圧偏差(ΔV10)が小さい、すなわち、電力系統の電力変動が小さい場合は、大きい電力変動量の注入が可能であり、負荷電力と発電電力との完全バランス状態を急速に崩して単独運転検出を高速に行うことができる。   Note that the calculation unit 32d may control the power fluctuation amount with a hysteresis curve shown in FIG. When the voltage deviation (ΔV10) is small compared to the hysteresis curve of FIG. 5, that is, when the power fluctuation of the power system is small, a large amount of power fluctuation can be injected, and the load power and the generated power are perfectly balanced. It is possible to detect the single operation at a high speed by rapidly breaking.

(実施の形態2)
図8に実施の形態2に係る制御装置22のブロック構成を示す。この図8で示す制御装置22では乗算器33が省略され、フリッカ検出処理部32出力が電力定期変動部31に、直接、入力されるようになっていると共に、フリッカ検出処理部32の演算部32dが図9で示すヒステリシス曲線に従い演算を行うようになっていることである。図9の縦軸は注入電力変動周波数(Hz)になっている。
(Embodiment 2)
FIG. 8 shows a block configuration of the control device 22 according to the second embodiment. In the control device 22 shown in FIG. 8, the multiplier 33 is omitted, and the output of the flicker detection processing unit 32 is directly input to the periodic power fluctuation unit 31, and the calculation unit of the flicker detection processing unit 32. 32d is that the calculation is performed according to the hysteresis curve shown in FIG. The vertical axis in FIG. 9 represents the injection power fluctuation frequency (Hz).

上記における演算部32dでは、図9の一点鎖線で示すヒステリシス曲線W1では電圧偏差(ΔV10)が0〜0.45の間で増減しても電力変動周波数を2(Hz)の上限に維持し、電圧偏差(ΔV10)が0.45〜0.9の間で増減するときは電力変動周波数を0.1〜2(Hz)の範囲で増減に変動することにより、現在の電力変動量が、W1を上回るとW1にクリップさせる。そして、電圧偏差(ΔV10)が一旦0.9になると、電圧偏差(ΔV10)が低下するときは、電力変動周波数を0.1に維持する。そして、電圧偏差(ΔV10)が0.85になると、電圧偏差(ΔV10)が増減するときは電力変動周波数を0.1〜2で増減させる。すなわち、現在の電力変動量が、点線で示すヒステリシス曲線W2を下回るとW2にクリップするというヒステリシス動作で制御する。   In the calculation unit 32d described above, in the hysteresis curve W1 shown by the one-dot chain line in FIG. 9, even if the voltage deviation (ΔV10) increases or decreases between 0 and 0.45, the power fluctuation frequency is maintained at the upper limit of 2 (Hz). When the voltage deviation (ΔV10) increases or decreases between 0.45 and 0.9, by changing the power fluctuation frequency in the range of 0.1 to 2 (Hz), the current power fluctuation amount becomes W1. If it exceeds, W1 is clipped. Once the voltage deviation (ΔV10) reaches 0.9, the power fluctuation frequency is maintained at 0.1 when the voltage deviation (ΔV10) decreases. When the voltage deviation (ΔV10) becomes 0.85, when the voltage deviation (ΔV10) increases or decreases, the power fluctuation frequency is increased or decreased by 0.1 to 2. That is, control is performed by a hysteresis operation in which the current power fluctuation amount is clipped to W2 when it falls below the hysteresis curve W2 indicated by the dotted line.

先に説明した実施の形態1では電圧フリッカをΔV10を満足させるため、系統電圧のΔV10を算出し、定期的な電力変動量を抑制しているのに対して、図8、図9で示す実施の形態2ではΔV10への影響が図2で示すように10Hzが最大であり、10Hzから離れるほど、影響が少なくなることに着目し、算出したΔV10により、注入する電力変動周波数を変化させることにより、電圧フリッカを許容値以内に収めるようにした。   In the first embodiment described above, in order to satisfy the voltage flicker ΔV10, the system voltage ΔV10 is calculated and the periodic power fluctuation amount is suppressed, whereas the implementation shown in FIGS. 8 and 9 is performed. In form 2, the effect on ΔV10 is the maximum at 10 Hz as shown in FIG. 2, and the effect decreases as the distance from 10 Hz decreases. By changing the power fluctuation frequency to be injected by the calculated ΔV10, The voltage flicker was kept within the allowable value.

この場合、注入電力変動周波数が低くなって電力変動の周期が長くなっても、系統電圧に変動がある場合は、発電電力と負荷電力との完全バランス状態を崩すことが可能であり、単独運転検出の検出時間に影響を与えることはない。   In this case, even if the injected power fluctuation frequency is low and the period of power fluctuation is long, if there is fluctuation in the system voltage, it is possible to break the perfect balance between the generated power and the load power, The detection time of detection is not affected.

図10に上記によって注入電力変動が抑制されるイメージを示す。図10(a)は定期的な電力変動注入を示し、図10(b)は注入電力変動の周期が伸びて電力変動が抑制されている状態を示す。   FIG. 10 shows an image in which injection power fluctuation is suppressed by the above. FIG. 10A shows periodic power fluctuation injection, and FIG. 10B shows a state in which the power fluctuation is suppressed by extending the cycle of the injected power fluctuation.

(実施の形態3)
図11に実施の形態3に係る制御装置22のブロック構成を示す。この図11で示す制御装置22では、フリッカ検出処理部32出力が乗算器33と電力定期変動部31とに入力されるようになっていると共に、フリッカ検出処理部32の演算部32dが図12(a)(b)で示すヒステリシス曲線に従いそれぞれ演算を行ない、乗算器33には図12(a)で対応する電力変動量で、電力定期変動部31には図12(b)で対応する変動周波数変化で、それぞれフリッカー検出信号S3´´を出力するようになっていることである。図12(a)は図5に対応し、図12(b)は図9に対応する。これらの説明は略する。
(Embodiment 3)
FIG. 11 shows a block configuration of the control device 22 according to the third embodiment. In the control device 22 shown in FIG. 11, the output of the flicker detection processing unit 32 is input to the multiplier 33 and the periodic power fluctuation unit 31, and the calculation unit 32d of the flicker detection processing unit 32 is shown in FIG. (A) The calculation is performed in accordance with the hysteresis curves shown in (b), the multiplier 33 has the corresponding power fluctuation amount in FIG. 12 (a), and the power periodic fluctuation unit 31 has the fluctuation corresponding in FIG. 12 (b). This means that the flicker detection signal S3 ″ is output for each frequency change. 12A corresponds to FIG. 5, and FIG. 12B corresponds to FIG. These descriptions are omitted.

図11に示す制御装置22では、ΔV10が0〜0.4では電力変動周波数を図12(b)で示すヒステリシス曲線に従い変化させ、ΔV10が0.4〜0.9では注入電力変動量を図12(a)で示すヒステリシス曲線に従い変化させて、電圧フリッカをΔV10の許容値以内に収めるようにしている。実施の形態1では系統電圧変動が小さい場合では、大きい電力変動を注入するので、負荷電力と発電電力との完全バランス状態を急速に崩して単独運転検出を高速に行うことができる。しかしながら、大きい電力変動を注入するため装置が大型化し、高価となるうえ、損失も大きくなる。そこで、実施の形態3では系統電圧変動が小さい場合は、注入電力変動の変動周波数をあげることにより、負荷電力と発電電力との完全バランス状態を急速に崩すことを可能にしているので実施の形態1と比較して装置のサイズ小、コスト低減、損失小という観点から有利となる。   In the control device 22 shown in FIG. 11, when ΔV10 is 0 to 0.4, the power fluctuation frequency is changed according to the hysteresis curve shown in FIG. 12B, and when ΔV10 is 0.4 to 0.9, the injected power fluctuation amount is shown. The voltage flicker is kept within the allowable value of ΔV10 by changing according to the hysteresis curve indicated by 12 (a). In the first embodiment, when the system voltage fluctuation is small, a large power fluctuation is injected, so that the complete balance state between the load power and the generated power can be rapidly broken to perform the isolated operation detection at high speed. However, since the large power fluctuation is injected, the apparatus becomes large and expensive, and the loss also increases. Therefore, in the third embodiment, when the system voltage fluctuation is small, it is possible to rapidly collapse the perfect balance state between the load power and the generated power by increasing the fluctuation frequency of the injected power fluctuation. Compared to 1, it is advantageous from the viewpoints of a small device size, cost reduction, and small loss.

なお、図13(a)(b)にΔV10が0.4〜0.9の場合、図13(c)(d)にΔV10が0〜0.4の場合を示す。図13(a)(c)は共に定期電力変動の注入されている場合であり、図13(b)は電力変動量、図13(d)は変動周波数の変化による場合である。いずれも注入電力変動が抑制されている。   FIGS. 13A and 13B show the case where ΔV10 is 0.4 to 0.9, and FIGS. 13C and 13D show the case where ΔV10 is 0 to 0.4. FIGS. 13 (a) and 13 (c) are cases where periodic power fluctuations are injected, FIG. 13 (b) is a case where the power fluctuation amount and FIG. 13 (d) are cases where the fluctuation frequency is changed. In both cases, fluctuations in injected power are suppressed.

以上により実施の形態1〜3の単独運転検出装置20では、制御装置22から電力系統に電力変動が注入される結果、多数台の単独運転検出装置が一斉に電力変動を電力系統に注入したとしても、その電力変動はΔV10を満足しつつ、フリッカの問題を起こさないように抑制することができる。   As described above, in the isolated operation detection device 20 of the first to third embodiments, the power fluctuation is injected from the control device 22 into the power system. As a result, a large number of isolated operation detection devices inject the power fluctuation into the power system all at once. However, the power fluctuation can be suppressed so as not to cause the problem of flicker while satisfying ΔV10.

図3に戻って、分散型電源10に外付けされている単独運転検出装置20においては、制御装置22からインバータ制御部23に電力系統に周期的に電力変動を注入するための制御指令S3が入力される。これにより、インバータ制御部23は制御信号S4をインバータ24に出力してインバータ24を駆動させて電力ライン27に電力変動を注入する。なお、制御装置22により連系リレー21、25は閉じている。   Returning to FIG. 3, in the isolated operation detection device 20 externally attached to the distributed power source 10, a control command S <b> 3 for periodically injecting power fluctuations from the control device 22 to the inverter control unit 23 into the power system is provided. Entered. As a result, the inverter control unit 23 outputs the control signal S4 to the inverter 24 to drive the inverter 24 and inject power fluctuation into the power line 27. Note that the interconnection relays 21 and 25 are closed by the control device 22.

制御装置22は、電力ライン27からの電力変動を系統からの信号S5により電力変動監視部34で監視している。電力変動監視部34は電力変動の監視データを単独運転判定部35に入力している。単独運転判定部35においてはその監視データから単独運転であると判定すると、連系リレー21,25をオフ駆動する制御信号S1,S2とインバータ制御部23にインバータ24の動作を停止させる制御信号S6とを出力する。これにより単独運転が停止される。   The control device 22 monitors the power fluctuation from the power line 27 by the power fluctuation monitoring unit 34 by the signal S5 from the system. The power fluctuation monitoring unit 34 inputs monitoring data of power fluctuations to the isolated operation determination unit 35. If the isolated operation determination unit 35 determines that the operation is independent from the monitoring data, the control signals S1 and S2 for turning off the interconnection relays 21 and 25 and the control signal S6 for causing the inverter control unit 23 to stop the operation of the inverter 24. Is output. Thereby, the independent operation is stopped.

一方、制御装置22のフリッカ検出処理部32では単独運転判定のための電力変動レベルが一定値以上にならないよう系統の電圧と周波数とを検出し、電力変動をレベル制御し、フリッカの発生を抑制する。   On the other hand, the flicker detection processing unit 32 of the control device 22 detects the voltage and frequency of the system so that the power fluctuation level for the independent operation determination does not exceed a certain value, controls the level of power fluctuation, and suppresses the occurrence of flicker. To do.

図14は単独運転検出装置を内蔵したパワーコンディショナーを示す。この分散型電源は太陽電池や燃料電池等の電源本体50と、パワーコンディショナー60とから構成されている。パワーコンディショナー60は、インバータ61と、電流検出器62と、連系リレー63と、インバータ制御部64と、実施の形態の制御装置65とを備える。   FIG. 14 shows a power conditioner incorporating a stand-alone operation detection device. This distributed power source includes a power source body 50 such as a solar cell or a fuel cell, and a power conditioner 60. The power conditioner 60 includes an inverter 61, a current detector 62, an interconnection relay 63, an inverter control unit 64, and the control device 65 of the embodiment.

以上の構成において、パワーコンディショナー60においては、制御装置65からインバータ制御部64に電力系統に周期的に電力変動を注入するための制御指令が入力される。これにより、インバータ制御部64はインバータ61を駆動して電力ライン66に電力変動を注入する。なお、制御装置65により連系リレー63は閉じている。   In the above configuration, in the power conditioner 60, a control command for periodically injecting power fluctuations into the power system is input from the control device 65 to the inverter control unit 64. Thereby, the inverter control unit 64 drives the inverter 61 to inject power fluctuations into the power line 66. Note that the interconnection relay 63 is closed by the control device 65.

制御装置65は、電力ライン66からの電力変動を電力変動監視部34で監視している。電力変動監視部34は電力変動の監視データを単独運転判定部35に入力している。単独運転判定部35においてはその監視データから単独運転であると判定すると、連系リレー63をオフ駆動する制御信号とインバータ制御部64にインバータ64の動作を停止させる制御信号とを出力する。これにより単独運転が停止される。   The control device 65 monitors the power fluctuation from the power line 66 by the power fluctuation monitoring unit 34. The power fluctuation monitoring unit 34 inputs monitoring data of power fluctuations to the isolated operation determination unit 35. When it is determined from the monitoring data that the islanding operation determination unit 35 is the islanding operation, it outputs a control signal for driving the interconnection relay 63 off and a control signal for causing the inverter control unit 64 to stop the operation of the inverter 64. Thereby, the independent operation is stopped.

一方、制御装置65のフリッカ検出処理部32では単独運転判定のための電力変動のレベルが一定値以上にならないよう系統の電圧と周波数とを検出し、電力変動のレベルを制御し、フリッカの発生を抑制する。   On the other hand, the flicker detection processing unit 32 of the control device 65 detects the voltage and frequency of the system so that the power fluctuation level for the independent operation determination does not exceed a certain value, controls the power fluctuation level, and generates flicker. Suppress.

図1はフリッカ変動電圧の説明に供する図である。FIG. 1 is a diagram for explaining the flicker fluctuation voltage. 図2はちらつき視感度係数の説明に供する図である。FIG. 2 is a diagram for explaining the flicker visibility coefficient. 図3は本発明の実施の形態1に係る単独運転検出方法が適用される分散型電源と単独運転検出装置とからなる電力制御システムの構成を示す図である。FIG. 3 is a diagram showing a configuration of a power control system including a distributed power source and an isolated operation detection device to which the isolated operation detection method according to Embodiment 1 of the present invention is applied. 図4は図3の制御装置のブロック図である。FIG. 4 is a block diagram of the control device of FIG. 図5は図3の制御装置の動作説明に供するもので電圧偏差(ΔV10)と注入電力変動量との関係を示す図である。FIG. 5 is a diagram for explaining the operation of the control device of FIG. 図6は定期的電力変動注入と実施の形態1により注入電力変動が抑制されるイメージ図である。FIG. 6 is an image diagram in which the injection power fluctuation is suppressed by the periodic power fluctuation injection and the first embodiment. 図7は実施の形態1の演算部の演算の変形例を示す図である。FIG. 7 is a diagram illustrating a modification of the calculation of the calculation unit according to the first embodiment. 図8は実施の形態2の制御装置のブロック図である。FIG. 8 is a block diagram of the control device of the second embodiment. 図9は図8の制御装置の動作説明に供するもので電圧偏差(ΔV10)と注入電力変動量との関係を示す図である。FIG. 9 is provided for explaining the operation of the control device of FIG. 8, and is a diagram showing the relationship between the voltage deviation (ΔV10) and the injected power fluctuation amount. 図10は定期的電力変動注入と実施の形態1により注入電力変動が抑制されるイメージ図である。FIG. 10 is an image diagram in which injected power fluctuation is suppressed by the periodic power fluctuation injection and the first embodiment. 図11は実施の形態3の制御装置のブロック図である。FIG. 11 is a block diagram of the control device according to the third embodiment. 図12(a)は図11の制御装置の動作説明に供するもので電圧偏差(ΔV10)と注入電力変動量との関係を示す図、図12(b)は図11の制御装置の動作説明に供するもので電圧偏差(ΔV10)と注入電力変動周波数との関係を示す図である。FIG. 12A is a diagram for explaining the operation of the control device in FIG. 11 and shows a relationship between the voltage deviation (ΔV10) and the amount of fluctuation in injected power. FIG. 12B is a diagram for explaining the operation of the control device in FIG. It is a figure which provides and shows the relationship between voltage deviation ((DELTA) V10) and injection | pouring electric power fluctuation frequency. 図13は定期的電力変動注入と実施の形態3により注入電力変動が抑制されるイメージ図である。FIG. 13 is an image diagram in which the injection power fluctuation is suppressed by the periodic power fluctuation injection and the third embodiment. 図14は本発明の実施の形態に係る単独運転検出方法が適用される分散型電源と単独運転検出装置とからなる他の電力制御システムの構成を示す図である。FIG. 14 is a diagram showing a configuration of another power control system including a distributed power source and an isolated operation detection device to which the isolated operation detection method according to the embodiment of the present invention is applied.

符号の説明Explanation of symbols

10 分散型電源
20 単独運転検出装置
30 電力系統
DESCRIPTION OF SYMBOLS 10 Distributed type power supply 20 Independent operation detection apparatus 30 Electric power system

Claims (8)

分散型電源が電力系統から切り離されて単独運転しているか否かを電力系統に注入した電力変動に基づいて検出する方法において、
電力系統の各変動周波数fnにおける電圧変動分ΔVnを計測する第1ステップと、
上記電圧変動分ΔVnをちらつき視感度曲線における10Hzの変動値ΔV10に換算する第2ステップと、
上記換算した変動値ΔV10がフリッカ対策の判定基準である許容値を超えないように電力系統に電力変動を注入する第3ステップと、
を備えることを特徴とする単独運転検出方法。
In a method for detecting whether a distributed power source is disconnected from a power system and operating independently based on power fluctuations injected into the power system,
A first step of measuring a voltage variation ΔVn at each variation frequency fn of the power system;
A second step of converting the voltage fluctuation ΔVn into a fluctuation value ΔV10 of 10 Hz in the flicker visibility curve;
A third step of injecting power fluctuations into the power system so that the converted fluctuation value ΔV10 does not exceed an allowable value that is a criterion for flicker countermeasures;
An islanding operation detection method comprising:
第3ステップで注入する電力変動が、電力変動の量であることを特徴とする請求項1に記載の単独運転検出方法。   The islanding operation detection method according to claim 1, wherein the power fluctuation injected in the third step is an amount of power fluctuation. 第3ステップで注入する電力変動が、変動周波数の変化であることを特徴とする請求項1に記載の単独運転検出方法。   The isolated operation detection method according to claim 1, wherein the power fluctuation injected in the third step is a change in a fluctuation frequency. 第3ステップで注入する電力変動が、系統電圧の変動が小さい場合は変動周波数の変化により、系統電圧の変動が大きい場合は電力変動の量による、ことを特徴とする請求項1に記載の単独運転検出方法。   2. The single power supply according to claim 1, wherein the power fluctuation injected in the third step depends on a fluctuation frequency when the fluctuation of the system voltage is small, and depends on an amount of the power fluctuation when the fluctuation of the system voltage is large. Driving detection method. 分散型電源が電力系統から切り離されて単独運転しているか否かを検出する単独運転検出装置に対してその検出動作を制御する制御装置において、
電力系統の各変動周波数fnにおける電圧変動分ΔVnを計測する第1手段と、
上記電圧変動分ΔVnをちらつき視感度曲線により10Hzの変動値ΔV10に換算する第2手段と、
上記換算した変動値ΔV10がフリッカ対策の判定基準である許容値を超えないように電力系統に電力変動を注入する第3手段と、
を具備したことを特徴とする制御装置。
In the control device that controls the detection operation for the single operation detection device that detects whether the distributed power source is disconnected from the power system and is operating alone,
A first means for measuring a voltage variation ΔVn at each variation frequency fn of the power system;
A second means for converting the voltage fluctuation ΔVn into a fluctuation value ΔV10 of 10 Hz by a flickering visibility curve;
Third means for injecting power fluctuations into the power system so that the converted fluctuation value ΔV10 does not exceed an allowable value that is a criterion for countermeasures against flicker;
A control device comprising:
分散型電源が電力系統から切り離されて単独運転しているか否かを検出する単独運転検出装置に対してその検出動作を制御する制御装置において、当該制御装置は、マイクロコンピュータを内蔵しており、請求項1に記載の方法を実行するソフトウエアプログラムを備えたマイクロコンピュータにより構成されている、ことを特徴とする制御装置。   In the control device that controls the detection operation with respect to the single operation detection device that detects whether or not the distributed power source is disconnected from the power system and is operating alone, the control device includes a microcomputer, A control device comprising a microcomputer provided with a software program for executing the method according to claim 1. 分散型電源が電力系統から切り離されて単独運転しているか否かを検出する単独運転検出装置において、請求項5または6に記載の制御装置を備える、ことを特徴とする単独運転検出装置。   An isolated operation detection device for detecting whether or not a distributed power source is disconnected from an electric power system and operated independently, comprising the control device according to claim 5 or 6. 電力系統から切り離されて単独運転しているか否かを検出する単独運転検出装置を内蔵する分散型電源において、この単独運転検出装置が請求項7に記載の単独運転検出装置である、ことを特徴とする分散型電源。

In the distributed power supply which incorporates the isolated operation detection device which detects whether or not the isolated operation is performed from the electric power system, the isolated operation detection device is the isolated operation detection device according to claim 7. Distributed power supply.

JP2007026463A 2007-02-06 2007-02-06 Isolated operation detection method, distributed power supply isolated operation detection control device, isolated operation detection device, and distributed power supply Active JP4835453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007026463A JP4835453B2 (en) 2007-02-06 2007-02-06 Isolated operation detection method, distributed power supply isolated operation detection control device, isolated operation detection device, and distributed power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007026463A JP4835453B2 (en) 2007-02-06 2007-02-06 Isolated operation detection method, distributed power supply isolated operation detection control device, isolated operation detection device, and distributed power supply

Publications (2)

Publication Number Publication Date
JP2008193827A true JP2008193827A (en) 2008-08-21
JP4835453B2 JP4835453B2 (en) 2011-12-14

Family

ID=39753384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007026463A Active JP4835453B2 (en) 2007-02-06 2007-02-06 Isolated operation detection method, distributed power supply isolated operation detection control device, isolated operation detection device, and distributed power supply

Country Status (1)

Country Link
JP (1) JP4835453B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003743A (en) * 2012-06-15 2014-01-09 Toshiba It & Control Systems Corp Islanding operation detection method and islanding operation detection device
JP2017143670A (en) * 2016-02-10 2017-08-17 一般財団法人電力中央研究所 Control system for distributed power supply converter
JP2019090878A (en) * 2017-11-13 2019-06-13 株式会社リコー Voltage detection processing apparatus, image forming apparatus, voltage detection processing method, and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284579A (en) * 1993-03-30 1994-10-07 Tohoku Electric Power Co Inc Method for measuring flicker deltav10 value
JPH07212979A (en) * 1994-01-12 1995-08-11 Nissin Electric Co Ltd Controller of flicker handling equipment
JPH0870534A (en) * 1994-08-26 1996-03-12 Sanyo Electric Co Ltd Single-operation detector
JPH11127542A (en) * 1997-10-21 1999-05-11 Omron Corp Method and device for detecting isolated operation of inverter and power conditioner
JP2001298865A (en) * 2000-04-12 2001-10-26 Nissin Electric Co Ltd Operation monitoring device for dispersed power source
JP2006204069A (en) * 2005-01-24 2006-08-03 Kansai Electric Power Co Inc:The Individual operation detecting method and individual operation detecting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284579A (en) * 1993-03-30 1994-10-07 Tohoku Electric Power Co Inc Method for measuring flicker deltav10 value
JPH07212979A (en) * 1994-01-12 1995-08-11 Nissin Electric Co Ltd Controller of flicker handling equipment
JPH0870534A (en) * 1994-08-26 1996-03-12 Sanyo Electric Co Ltd Single-operation detector
JPH11127542A (en) * 1997-10-21 1999-05-11 Omron Corp Method and device for detecting isolated operation of inverter and power conditioner
JP2001298865A (en) * 2000-04-12 2001-10-26 Nissin Electric Co Ltd Operation monitoring device for dispersed power source
JP2006204069A (en) * 2005-01-24 2006-08-03 Kansai Electric Power Co Inc:The Individual operation detecting method and individual operation detecting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003743A (en) * 2012-06-15 2014-01-09 Toshiba It & Control Systems Corp Islanding operation detection method and islanding operation detection device
JP2017143670A (en) * 2016-02-10 2017-08-17 一般財団法人電力中央研究所 Control system for distributed power supply converter
JP2019090878A (en) * 2017-11-13 2019-06-13 株式会社リコー Voltage detection processing apparatus, image forming apparatus, voltage detection processing method, and program

Also Published As

Publication number Publication date
JP4835453B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4807085B2 (en) Isolated operation detection method, distributed power supply isolated operation detection control device, isolated operation detection device, and distributed power supply
JP3948487B1 (en) Isolated operation detection method, distributed power supply isolated operation detection control device, isolated operation detection device, and distributed power supply
JP4759587B2 (en) Wind farm
US10186867B2 (en) Method and apparatus for the operation of a power station of fluctuating performance connected, besides a system former and at least one load, to a limited AC system
WO2011151938A1 (en) Electric power system
JP5614626B2 (en) Power system
AU2011355888B2 (en) Photovoltaic system and power supply system
CN103650282A (en) A method in an electric power system, controller, computer programs, computer program products and electric power system
JP5418079B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP4967539B2 (en) Isolated operation detection device, power conditioner, and isolated operation detection method
JP4661856B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP5050723B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP4835453B2 (en) Isolated operation detection method, distributed power supply isolated operation detection control device, isolated operation detection device, and distributed power supply
US20170279281A1 (en) Power generation assembly, management system and method
JP2019161840A (en) Predictive detection method of sudden change of renewable energy power generator
US20120147506A1 (en) Method of detecting an unintentional island condition of a distributed resource of a utility grid, and protective apparatus and controller including the same
JP2008035619A (en) Determination method for individual operation of dispersed power system
JP4872826B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP5876374B2 (en) Power control method, power control system, and power control apparatus
WO2013125164A1 (en) Conversion device, control device, control method, and power distribution system
JP5857206B2 (en) Grid interconnection device and grid interconnection system
ES2656387T3 (en) A method for the control of a wind turbine including the inversion of an energy flow through a generator
US20230369889A1 (en) Power control device, power control method, and power control program
JP5468883B2 (en) Micro grid system
KR102181774B1 (en) Power plant linked multi-purpose energy storage system and method for operating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4835453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250