WO2013124878A1 - 通信装置、システム、制御プログラム、および制御方法 - Google Patents

通信装置、システム、制御プログラム、および制御方法 Download PDF

Info

Publication number
WO2013124878A1
WO2013124878A1 PCT/JP2012/001124 JP2012001124W WO2013124878A1 WO 2013124878 A1 WO2013124878 A1 WO 2013124878A1 JP 2012001124 W JP2012001124 W JP 2012001124W WO 2013124878 A1 WO2013124878 A1 WO 2013124878A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
vibration
communication
state
earthquake
Prior art date
Application number
PCT/JP2012/001124
Other languages
English (en)
French (fr)
Inventor
由美 酒見
伊豆 哲也
良信 下川
忠重 岩尾
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2012/001124 priority Critical patent/WO2013124878A1/ja
Publication of WO2013124878A1 publication Critical patent/WO2013124878A1/ja
Priority to US14/459,387 priority patent/US9760717B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/78Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure storage of data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/71Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information
    • G06F21/74Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information operating in dual or compartmented mode, i.e. at least one secure mode
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/88Detecting or preventing theft or loss
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/10Alarms for ensuring the safety of persons responsive to calamitous events, e.g. tornados or earthquakes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/12Detection or prevention of fraud
    • H04W12/126Anti-theft arrangements, e.g. protection against subscriber identity module [SIM] cloning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/01Measuring or predicting earthquakes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2137Time limited access, e.g. to a computer or data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2143Clearing memory, e.g. to prevent the data from being stolen

Definitions

  • the technology disclosed in this specification relates to a security technology for information included in a communication device.
  • An ad hoc network is a type of self-configuring network that is linked by wireless or wired communication.
  • An ad hoc network is composed of a plurality of devices having a communication function.
  • a device having a communication function in an ad hoc network is called a node.
  • Each node in the ad hoc network transmits and receives packets by multi-hop communication.
  • Multi-hop communication is a technology that enables communication even between nodes that are not within the communication range of each other, via another node that is within the communication range of each node.
  • a meter-reading system that collects the power consumption of each home via the ad hoc network by incorporating a node capable of wireless communication into the power meter of each home.
  • a packet including the power consumption amount of each home detected by each electric meter is transferred from each node included in each home electric meter to the system of the electric power company.
  • Each node in such a meter-reading system stores personal information relating to the power usage of each household in its own storage area.
  • each node stores an encryption key for encrypting personal information in its own storage area.
  • the mobile terminal device when it detects a predetermined vibration, it enables a terminal protection function that disables operations other than the predetermined release operation, and when a release operation from an authorized user is input, There is a technique for invalidating a terminal protection function (for example, Patent Document 1).
  • the secret information is personal information or information (eg, an encryption key) for ensuring network security.
  • a function for preventing leakage of secret information may be a function of deleting secret information after a predetermined time has elapsed after detecting a predetermined vibration.
  • an acceleration sensor is often used as a means for detecting vibration, but the acceleration sensor may also detect vibration other than theft. It is not appropriate to enable a function for preventing leakage of confidential information in response to various vibrations including vibrations other than theft.
  • the present invention aims to cancel the function if the function is not necessary even if the node activates the function for preventing leakage of secret information.
  • one communication device among a plurality of communication devices constituting a communication network includes a detection unit that detects vibration of the communication device and another communication among the plurality of communication devices.
  • a communication unit that receives a notification indicating that vibration is detected in the other communication device from the device, and information that manages the state of the communication device when the detection unit detects vibration
  • a control unit that cancels the warning state when it is determined that the vibration is a vibration caused by an earthquake based on the notification.
  • the communication device can be canceled when the abnormal state is to be canceled after shifting from the normal state to the abnormal state due to vibration.
  • FIG. 1 is an explanatory diagram of an example of the network system according to the embodiment.
  • FIG. 2 is a functional block diagram of the communication apparatus.
  • FIG. 3 is a functional block diagram of the management apparatus.
  • FIG. 4 is a process flowchart executed by the communication device 1 in the first embodiment.
  • FIG. 5 is a data configuration example of a transition notification.
  • FIG. 6 is a process flowchart executed by the management apparatus 2 in the first embodiment.
  • FIG. 7 is a data configuration example of the management table.
  • FIG. 8 is a data configuration example of a control command.
  • FIG. 9 is a functional block diagram of the communication apparatus according to the second embodiment.
  • FIG. 10 is a process flow diagram executed by the communication device 3 in the second embodiment.
  • FIG. 11 is a hardware configuration example of the communication device 1 and the communication device 3.
  • FIG. 12 is a hardware configuration example of the management apparatus 2.
  • FIG. 1 is an explanatory diagram of an example of the network system according to the embodiment.
  • the network system includes a plurality of communication devices and a management device.
  • FIG. 1 shows a system configuring an ad hoc network as an example of the network system according to the present embodiment. First, an ad hoc network and normal packet transfer in the ad hoc network will be described with reference to FIG.
  • the ad hoc network system includes a management server S, a sink node SN, and nodes Na to Nh.
  • Nodes Na to Nh are examples of communication devices.
  • at least one of the management server S and the sink node SN is an example of a management device.
  • the management server S and the sink node SN are connected via a normal network 101 such as the Internet, LAN, or WAN.
  • the sink node SN and the nodes Na to Nh are connected via the ad hoc network 100.
  • the sink node SN is a relay device that connects the ad hoc network 100 and the normal network 101.
  • the sink node SN can transmit and receive both the protocol format information of the ad hoc network 100 and the protocol format information of the normal network 101.
  • the sink node SN performs communication transfer by performing protocol conversion of information between the ad hoc network 100 and the normal network 101. For example, a packet transmitted from each node in the ad hoc network 100 to the management server S is subjected to protocol conversion at the sink node SN. Thereafter, the sink node SN forwards the packet to the normal network 101, so that each packet reaches the management server S.
  • data transmitted from the management server S and the sink node SN to each node is subjected to protocol conversion at the sink node SN and transferred as a packet from the sink node SN to each node in the ad hoc network 100.
  • the sink node SN grasps whether or not communication between the nodes is possible by using a routing table. Then, the sink node SN autonomously generates a packet transfer route based on the information in the routing table. Each node sets a transfer source and a transfer destination when performing multi-hop communication by routing of the sink node SN.
  • the transfer source is its own node, and the transfer destination is another node.
  • each node may generate a routing table individually.
  • Each node exchanges information regarding the current communication status with surrounding nodes. And each node produces
  • nodes Na to Nh are shown as representatives.
  • Each node is a device capable of multi-hop communication with other nodes that can communicate within a predetermined communication range.
  • nodes that can directly communicate with the sink node SN are nodes Na and Nd.
  • the network system according to the present embodiment is applied to a system that collects the power consumption of each household, for example.
  • each node is installed in a power meter in each home for detecting the amount of power used in each home.
  • the management server S can collect the power usage of each household.
  • Each node transmits the power and usage of each home detected by each node to the management server S via the ad hoc network 100.
  • each node stores the detected power usage amount in its own storage area.
  • the sink node SN transmits the power and usage of each home received from each node in the ad hoc network 100 to the management server S of the power company via the normal network 101. Thereby, the amount of electric power used can be collected without a worker going to the site.
  • the packet is encrypted using the encryption key. Further, a message authentication code (MAC) may be generated and added to each packet. When generating the MAC, a key for generating the MAC is used. Thereby, secure communication of the ad hoc network 100 is ensured.
  • the encryption key and the MAC generation key are stored in the storage area of each node.
  • one sink node SN is provided in the ad hoc network 100, but a plurality of sink nodes SN may be provided in one ad hoc network 100.
  • each of the plurality of ad hoc networks includes at least one sink node, and the management server S is connected to the sink node via the normal network.
  • this network system can also be used for surveying the environment, for example, by providing each node with a sensor function that detects temperature, humidity, light quantity, etc. .
  • the route R1 is a route including the node Nc, the node Nb, the node Na, and the sink node SN.
  • the route R2 is a route including the node Ne, the node Nd, and the sink node SN.
  • the route R3 is a route including the node Ng, the node Nf, the node Nd, and the sink node SN.
  • the route R4 is a route including the node Nh, the node Nf, the node Nd, and the sink node SN. Note that the node Na and the node Nd are nodes that directly communicate with the sink node.
  • the node close to the sink node SN is called the upstream node.
  • the node Nb and the node Ne are also upstream nodes.
  • each of the nodes Na to Nh transmits the detected data to the sink node SN along the routed paths R1 to R4.
  • FIG. 2 is a functional block diagram of the communication apparatus.
  • the communication device 1 includes a communication unit 11, a detection unit 12, a control unit 13, an acquisition unit 14, and a storage device 15.
  • the communication unit 11 is a processing unit that communicates with other communication devices. For example, the communication unit 11 exchanges packets with other communication devices. Further, the communication unit 11 in some communication apparatuses 1 communicates with the sink node SN in FIG. For example, the communication unit 11 receives a control command described later directly or indirectly from the management device.
  • the detection unit 12 is a processing unit that detects vibration of the communication device 1. For example, the detection unit 12 receives an output from an acceleration sensor included in the communication device 1 and detects vibration. In addition, you may make it detect a vibration, when the output from an acceleration sensor is more than predetermined value.
  • the control unit 13 is a processing unit that controls the state of the communication device 1. For example, when the detection unit 12 detects vibration, the state transits to a state for protecting the secret information stored in the storage device 15. Moreover, the control part 13 cancels
  • the state for protecting the secret information stored in the storage device 15 is called a warning state.
  • the alert state is a state in which some measures are taken in order to prevent leakage of confidential information stored in the storage device 15.
  • An example of the alert state includes a state in which a countermeasure for setting the security for access to the storage device higher than the normal state is taken. Another example is a state in which the elapsed time since the vibration was detected is monitored. In addition, when the elapsed time after the vibration is detected becomes a predetermined threshold or more, the confidential information is erased to prevent the confidential information from being leaked.
  • the alert state is described as a state in which the control unit 13 monitors the elapsed time since the vibration was detected. That is, the control unit 13 starts monitoring elapsed time when the detection unit 12 detects vibration. Then, the control unit 13 erases the secret information after a predetermined time has elapsed. On the other hand, when a control command is received before the predetermined time has elapsed, the control unit 13 cancels the alert state by stopping monitoring the elapsed time. That is, since the elapsed time measurement is stopped, the secret information is not erased.
  • the acquisition unit 14 acquires an output value from a sensor or device included in the communication device 1 or an external sensor or device. Then, the acquisition unit 14 stores the output value in the storage device 15.
  • the storage device 15 is a storage device that stores output values. Note that at least a part of the output value is treated as confidential information. Furthermore, the storage device 15 is a storage device that stores information about security such as an encryption key.
  • the management device is either the sink node SN or the management server S in FIG.
  • FIG. 3 is a functional block diagram of the management apparatus.
  • the management device 2 includes a communication unit 21, a generation unit 22, and a storage device 23.
  • the communication unit 21 communicates directly or indirectly with the communication device 1.
  • the communication unit 21 outputs a control command.
  • the management device 2 when the management device 2 is the sink node SN, the management device 2 transmits a control command to the upstream communication device.
  • the management device 2 when the management device 2 is a management server, the management device 2 transmits a control command to each communication device via the sink node SN.
  • control command is transferred from the upstream communication device to the downstream communication device.
  • a control command is transmitted from an upstream communication device to a downstream communication device, a packet related to the control command may be broadcast without following the routing.
  • the generation unit 22 is a processing unit that generates a control command.
  • the control command is a signal that instructs each communication device to cancel the alert state.
  • the control command is a signal for preventing each communication device from transitioning to a warning state or a signal for preventing transition to a warning state.
  • the generation unit 22 may generate identification information for designating a communication device that receives a control command together with the control command.
  • the identification information may be a device ID or an address of each communication device. Further, the identification information may be information for identifying a network. For example, when the management apparatus 2 is a management server, the sink node SN is designated. A network managed by the designated sink node SN is designated. A control command is transmitted to a plurality of communication devices included in each network. On the other hand, when the management device 2 is the sink node SN, each communication device under the sink node SN receives the control command even when there is no identification information.
  • FIG. 4 is a process flowchart executed by the communication device 1 in the first embodiment.
  • the detection unit 12 receives the acceleration detected by the acceleration sensor from the acceleration sensor (Op. 1).
  • the detection unit 12 determines whether or not the received acceleration is equal to or greater than a threshold value (Op. 2).
  • Op. 2 is a process aimed at detecting vibrations that may be stolen. Therefore, an acceleration value that can estimate the possibility of theft is set as the threshold value.
  • the communication device 1 determines that the communication device 1 has shaken above the threshold. That is, it is determined that the communication device 1 may have been stolen. If the acceleration is equal to or higher than the threshold (Op. 2 YES), the communication device 1 determines that the Op. Proceed to step 3. On the other hand, if the acceleration is less than the threshold (Op. 2 NO), the communication device 1 determines that the Op. Return to 1.
  • the control command is generated by the management device 2 by a process described later.
  • the control command is a command for canceling the warning state or a command for preventing transition to the warning state.
  • control unit 13 transmits a transition notification having the management device 2 as the final transmission destination based on the route routed in advance (Op. 4). Note that the transition notification may be transmitted after being encrypted.
  • Op. Return to 1. That is, the communication device 1 does not transition to the alert state.
  • the transition notification is a packet for notifying other devices that the communication device has detected a vibration of a threshold value or more.
  • a data configuration example of the transition notification will be described.
  • FIG. 5 is a data configuration example of a transition notification.
  • FIG. 5 is an example in which the same configuration as that of a normal packet is adopted for the transition notification.
  • a normal packet is a packet used for multihop transfer of information detected by each communication device.
  • a normal packet has a header part and a body part, includes information related to transfer in the header part, and includes information detected in the body part.
  • the transition notification may not have the same configuration as that of a normal packet but may have a predetermined configuration.
  • FIG. 5A is a data configuration example of the first transition notification.
  • the transition notification includes a header part 50 and a body part 51.
  • the header part 50 includes a local source address, a local destination address, a global source address, and a global destination address.
  • the local transmission source address is an address of a communication device that is a packet transfer source for one of the multi-hop transfers when the packet is transferred by multi-hop. That is, the local transmission source address included in the transition notification is the address of the communication device that transfers the transition notification.
  • the local destination address is the address of the communication device that is the packet transfer destination for the one transfer. That is, the local destination address included in the transition notification is the address of the communication device designated as the transfer destination of the transition notification. As described above, the local transmission source address and the local destination address are rewritten in each communication device at each transfer.
  • the global source address is the address of the communication device that is the starting point of multihop transfer when a packet is multihop transferred. That is, the global transmission source address included in the transition notification is the address of the communication device that has detected the vibration.
  • the global destination address is the address of a device that is the end point of multihop transfer when a packet is multihop transferred. That is, the global destination address included in the transition notification is the address of the management device.
  • the global source address and global destination address cannot be rewritten.
  • the body unit 51 includes a communication device ID, a status flag, and time information.
  • the communication device ID is information for identifying the communication device. That is, the communication device ID included in the transition notification is the communication device ID of the communication device that has detected the vibration.
  • the status flag is information indicating the status of the communication device with the communication device ID.
  • the state flag included in the transition notification is a flag indicating that the state is in the alert state. For example, “1” indicating that the device is in the alert state is set.
  • the time information is information related to the time when the communication device with the communication device ID detects vibration.
  • FIG. 5B is a data configuration example of the second transition notification.
  • the transition notification includes a header part 52 and a body part 53.
  • the header part 52 includes a local transmission source address, a local destination address, a global transmission source address, and a global destination address, as in the first transition notification. Furthermore, the header part 52 also includes packet type information.
  • the packet type is information indicating that the packet is a transition notification. For example, “9” is set.
  • each communication device and management device can determine that the packet is a transition notification.
  • the body part 53 includes a communication device ID and time information, as in the first transition notification. However, the status flag may not be included.
  • transitioning to the alert state means starting measuring elapsed time.
  • the control unit 13 starts the timer count after resetting it once.
  • Op. 4 and Op. 5 may be in the reverse order.
  • the control unit 13 determines whether the elapsed time exceeds the threshold (Op. 6).
  • the threshold is set in advance by the administrator. Further, the threshold value is set to a value that is longer than the time required for the communication device 1 to receive the control command after the management device 2 generates the control command and is not long enough to acquire the secret information. It is possible.
  • control unit 13 erases at least a part of the secret information stored in the storage device (Op. 9). Note that the control unit 13 may erase all the information stored in the storage device without identifying the secret information.
  • control unit 13 determines whether the communication unit 11 has received a control command (Op. 7).
  • the control command will be described later.
  • the communication unit 11 receives a control command from another communication device, a sink node, or a management device.
  • the control unit 13 Return to 6.
  • the alert state is released (Op. 8).
  • releasing the alert state means stopping the measurement of elapsed time. For example, the control unit 13 stops counting up the timer. And the communication apparatus 1 complete
  • the control unit 13 maintains the alert state until a control command is received. And the control part 13 cancels
  • FIG. 6 is a process flowchart executed by the management apparatus 2 according to the first embodiment.
  • the communication unit 21 and the generation unit 22 in the management device 2 execute an earthquake detection process (Op. 10). A plurality of methods will be described as the earthquake detection process.
  • the first method includes a case where the management device 2 inquires about the earthquake information to the disaster management device and a case where the disaster management device actively transmits the earthquake information to the management device 2.
  • the disaster management apparatus is a computer that manages earthquake information.
  • the disaster management apparatus may be an external computer that is not included in the network system.
  • the earthquake information is information including the area where the earthquake occurred, the magnitude of the earthquake (the seismic intensity of each area), and the date and time of occurrence.
  • the generation unit 22 refers to the management table 70 stored in the storage device 23 included in the management device 2. And the production
  • the management device 2 is a sink node, each sink node knows the network area in advance, and therefore processing for specifying the area is not necessary.
  • the communication part 21 transmits the information provision request
  • the communication unit 21 receives the earthquake information.
  • the management device 2 detects the occurrence of an earthquake.
  • FIG. 7 is a data configuration example of the management table 70. Further, as described above, the management table 70 is used when the management device 2 is the management server S.
  • the management table 70 stores a sink node ID and an area ID in association with each other.
  • the sink node ID is a value that uniquely identifies each sink node.
  • the area ID is a value uniquely given for each area.
  • a sink node ID of a sink node that aggregates packets from communication devices in each area and an area ID of each area are stored in association with each other.
  • the sink node corresponding to the sink node ID “SN1” aggregates the packets from the communication apparatuses existing in the area A.
  • the sink node corresponding to the sink node ID “SN1” transfers the packet from the management server to the communication device existing in area A. That is, the sink node corresponding to the sink node ID “SN1” transmits a transition notification from the communication device existing in the area A to the management server S that is the management device 2. Further, the sink node corresponding to the sink node ID “SN1” transfers a control command from the management server S which is the management apparatus 2 to the communication apparatus existing in the area A.
  • the management server S when the management server S that is the management device 2 receives the transition notification from the sink node having the sink node ID “SN1”, the management server S is an area where the communication device that generated the transition notification exists.
  • the area ID “A” is specified.
  • the management device may convert the area ID into information such as an address, and include information about the converted area in the information provision request.
  • the management apparatus further includes a table for converting the area ID into an address.
  • the management apparatus 2 can access the disaster management apparatus in response to any of a plurality of managed communication apparatuses transitioning to a warning state. Then, when necessary, the disaster management apparatus can be inquired about earthquake information of a necessary area.
  • the communication unit 21 acquires the earthquake information at a timing when the disaster management device delivers the earthquake information. It may be set so that earthquake information is sent from the disaster management apparatus to the management apparatus when an earthquake of a magnitude larger than a preset magnitude occurs.
  • the management device 2 stores the earthquake information in the storage device 23.
  • the earthquake information may be stored in another storage device different from the storage device 23.
  • the management device 2 determines whether an earthquake has occurred based on the earthquake information stored in the storage device 23. Through the above processing, the management device 2 detects the occurrence of an earthquake.
  • the management device 2 since the earthquake information is autonomously transmitted from the disaster management device, the management device 2 can detect the occurrence of the earthquake in a shorter time. Therefore, the management device 2 can further shorten the time required for processing related to generation of the subsequent control command.
  • the management device 2 detects the occurrence of an earthquake based on transition notifications received from a plurality of communication devices 1.
  • the communication unit 21 receives transition notifications from the plurality of communication devices 1.
  • the generation unit 22 counts the number of received transition notifications. The number of transition notifications is counted for each area or network.
  • the management device 2 may count the number of received transition notifications, or may identify the communication device ID included in the transition notification and count the number of transition notifications by eliminating duplication.
  • the generation unit 22 detects that an earthquake has occurred in the corresponding area.
  • the management device 2 can detect the occurrence of an earthquake without communicating with an external device such as a disaster management device. That is, the management apparatus 2 can detect the occurrence of an earthquake using transition notifications transmitted from a plurality of communication apparatuses managed by the management apparatus 2.
  • the predetermined number may be set to an individual value for each area. For example, when the communication device 1 is provided in an electric meter, the number of subscribing households is different for each ad hoc network area. Therefore, a large value may be set for an area where the number of subscribed households is large, and a small value may be set for an area where the number of subscribed households is small. In addition to the absolute number, a ratio may be set.
  • the management device 2 executes processing for detecting the occurrence of an earthquake by various methods.
  • the generation unit 22 determines whether an earthquake has occurred based on the result of the earthquake detection process. In addition, you may determine for every area.
  • the generation unit 22 Return processing to 10. For example, when the earthquake information is not received from the disaster management device, the generation unit 22 determines that an earthquake has not occurred. As another method, when the predetermined number or more of transition notifications are not received, the generation unit 22 determines that an earthquake has not occurred. That is, the generation unit 22 does not generate a control command.
  • the generation unit 22 when an earthquake occurs (Op. 11 YES), the generation unit 22 generates a control command (Op. 12). The generation unit 22 may further encrypt the control signal.
  • the control command is a packet for causing the communication device to release the warning state or a packet for preventing a transition to the warning state in the communication device.
  • a data configuration example of the control command will be described.
  • FIG. 8 is a data configuration example of a control command.
  • FIG. 8 shows an example in which the same configuration as that of a normal packet is adopted as a control command.
  • FIG. 8A is a data configuration example of the first control command.
  • the control instruction includes a header part 80 and a body part 81.
  • the header portion 80 includes a local source address, a local destination address, a global source address, and a global destination address.
  • the local source address included in the control command is the address of the communication device that transfers the control command.
  • the management device sets the address of the management device as the local transmission source address.
  • the local destination address included in the control command is the address of the communication device designated as the transfer destination of the control command. However, in the process in which the control command is transferred in multihop, the local transmission source address is rewritten to an address related to the transfer source communication device in each transfer.
  • the global transmission source address included in the control command is the address of the management device.
  • the global destination address included in the transition notification is the address of the communication device corresponding to the communication device ID included in the transition notification.
  • the body unit 81 includes a communication device ID, a control flag, and time information.
  • the communication device ID included in the transition notification is the communication device ID of the communication device that is the target of the control command.
  • the control flag is information indicating that the alert state in the communication device with the communication device ID should be released. For example, “2” for releasing the alert state is set.
  • Each communication device refers to the control flag in the body part and cancels the alert state as necessary.
  • the time information is information related to the time when the management device generates the control command.
  • FIG. 8B is a data configuration example of the second control command.
  • the second control command is an example when the management server functions as a management device.
  • the control command includes a header part 82 and a body part 83.
  • the header part 82 is the same as the header part 80 in the first control instruction.
  • the body part 83 has a sink node ID instead of the communication device ID of the body part 81 in the first control command.
  • the sink node ID is information for designating a range in which the control command is broadcast. That is, a plurality of communication devices existing under each sink node receive the control command.
  • a sink node ID of a specific sink node is set in the body part 83.
  • the specific sink node is a sink node ID corresponding to the area where the earthquake occurred.
  • FIG. 8C is a data configuration example of the third control instruction.
  • the control command includes a header part 84 and a body part 85.
  • the header portion 84 includes a local transmission source address, a local destination address, a global transmission source address, and a global destination address, like the first control command. Furthermore, the header part 84 also includes packet type information.
  • the packet type is information indicating that the packet is a control command. For example, “8” is set.
  • Each communication device can determine that the packet is a control command by referring to the header portion 84.
  • the body unit 85 includes a communication device ID and time information.
  • the third control command may include a sink node ID instead of the communication device ID illustrated in FIG. 8C.
  • the communication part 21 outputs a control command (Op.13).
  • the management device 2 is a sink node
  • the communication unit 21 transmits a control command to at least a part of the communication device.
  • the management device 2 is a management server
  • the communication unit 21 transmits a control command to the sink node.
  • the management apparatus 2 complete
  • the communication device 1 can transition to a warning state when the possibility of theft is detected. That is, it is possible to reduce the possibility that secret information is acquired by the theft. Moreover, when the vibration at the time of determining that there is a possibility of theft is not the vibration due to theft, it can autonomously return to the normal state. For example, the secret information is prevented from being erased when it is not stolen.
  • the communication device 1 is in a warning state when it is unnecessary without determining whether or not the vibration detected by the acceleration sensor is a vibration due to theft, for example, by the processor of the communication device statistically processing the output from the acceleration sensor. Can be released. Furthermore, even if the acceleration sensor is not a sensor having a high processing capability, according to the communication device of the present invention, the alert state can be canceled when unnecessary.
  • a simple acceleration sensor cannot distinguish shaking caused by an earthquake and shaking caused by theft. Therefore, even if a predetermined vibration is detected, it is not appropriate to keep the alert state uniformly. For example, if the vibration is an earthquake vibration, the confidential information should not be erased. According to the present embodiment, even if the communication device transitions to a warning state due to vibration caused by an earthquake, the warning state can be canceled.
  • the management apparatus 2 can transmit a control command to the communication apparatus 1 when an earthquake is detected. That is, the management device 2 can cancel an unnecessary alert state in the communication device 1.
  • Example 2 The configuration of the network system in the second embodiment is the same as that in FIG. That is, the ad hoc network system includes the management server S, the sink node SN, and the nodes Na to Nh. Similarly to the first embodiment, the nodes Na to Nh are examples of communication devices, and at least one of the management server S and the sink node SN is an example of a management device.
  • FIG. 9 is a functional block diagram of the communication apparatus according to the second embodiment.
  • the communication device 3 includes a communication unit 11, a detection unit 12, a control unit 13, an acquisition unit 14, a storage device 15, and a determination unit 31.
  • the same reference numerals are assigned to the processing units that perform the same processing as in the first embodiment.
  • the control unit 13 does not release the warning state based on the control command from the management device 2 but releases the warning state based on the determination result of the determination unit 31.
  • the communication unit 11 receives a transition notification generated by another communication device from another communication device, and transmits the transition notification generated by the own device to the other communication device.
  • the transition notification is a notification indicating that vibration has been detected in another communication device.
  • the data structure of the transition notification is the same as that in the first embodiment.
  • the determination unit 31 determines whether the detected vibration is an earthquake vibration. For example, the determination unit 31 determines whether or not the detected vibration is an earthquake based on the number of transition notifications received from another communication device. When the number of transition notifications equal to or greater than the threshold is received, it is determined that the detected vibration is an earthquake-induced vibration.
  • the determination part 31 notifies the determination result to the control part 13, when it determines with the detected vibration being a vibration by an earthquake.
  • the control unit 13 releases the alert state with the notification of the determination result.
  • FIG. 10 is a process flow diagram executed by the communication device 3 in the second embodiment.
  • the detection unit 12 receives the acceleration detected by the acceleration sensor from the acceleration sensor (Op.21). The detection unit 12 determines whether or not the received acceleration is equal to or greater than a threshold value (Op.22). If the acceleration is equal to or greater than the threshold (Op. 22 YES), the communication device 1 determines that the Op. The process proceeds to 23. On the other hand, if the acceleration is less than the threshold (Op. 22 NO), the communication device 1 determines that the acceleration is Op. Return to 21.
  • the control unit 13 broadcasts a transition notification to other surrounding communication devices (Op.23). Subsequently, the control unit 13 transitions from the normal state to the alert state (Op.24). In the present embodiment, transitioning to the alert state means starting measuring elapsed time. The control unit 13 determines whether the elapsed time exceeds the threshold (Op. 25).
  • the control unit 13 erases at least a part of the secret information stored in the storage device (Op. 28).
  • the determination unit 31 determines whether the detected vibration is a vibration due to an earthquake (Op. 26).
  • the Op. 21 to Op. 23 processing is executed. That is, each communication device broadcasts a transition notification. Therefore, the communication device 3 receives a transition notification broadcast from another communication device.
  • the communication unit 11 of the communication device 3 receives a transition notification every time a transition notification is broadcast from another communication device. Execute the process.
  • the other communication devices are one or more communication devices existing in the communicable range of the own device. Then, the determination unit 31 counts the number of transition notifications received.
  • the determination unit 31 determines whether or not the number of received transition notifications is equal to or greater than a threshold value. If the number of transition notifications equal to or greater than the threshold is received, Op. It is determined that the vibration detected at 22 is an earthquake-induced vibration. On the other hand, if the received transition notification is less than the threshold, Op. It is determined that the vibration detected at 22 is not an earthquake vibration.
  • each communication device periodically communicates with another communication device for routing, thereby grasping the communication status with the other communication device. Therefore, the communication device is called Op.
  • the communication device is called Op.
  • the number of other communication devices that exchanged packets for the construction of the transfer route during the past 10 minutes can be grasped. Therefore, for example, a value corresponding to 80% is employed as the threshold value with respect to the number of other communication devices that can communicate.
  • the transfer route is constructed by a conventional method.
  • the control unit 13 releases the alert state (Op. 27).
  • releasing the alert state means stopping the measurement of elapsed time. For example, the control unit 13 stops the timer count. And the communication apparatus 1 complete
  • the control unit 13 determines that the Op. The process is returned to 25 (Op. 27).
  • the control unit 13 when the alert state is a state in which the security of access to the secret information is increased, the control unit 13 maintains the alert state until a control command is received. And the control part 13 cancels
  • the state in which the security of access to the secret information is increased may be maintained for a predetermined time, and then the secret information may be deleted.
  • each communication device can release the alert state as necessary. That is, it is possible to detect the occurrence of an earthquake and cancel the alert state without communicating with the management device.
  • the management device 2 is the management server S in FIG. 1, the sink node SN and the management server S are connected by a normal network. In the event of an earthquake, some kind of failure may occur in this network. Therefore, each communication device can detect the occurrence of an earthquake only by communication within the ad hoc network 100. And each communication apparatus can cancel
  • FIG. 11 is a hardware configuration example of the communication device 1 and the communication device 3. Note that the node 200 in FIG. 11 functions as the communication device 1 or the communication device 3.
  • the node 200 includes a CPU (Central Processing Unit) 201, a RAM (Random Access Memory) 202, a flash memory 203, an interface (I / F) 204, an encryption circuit 205, a sensor 206, and a bus 207.
  • I have.
  • the CPU 201 to the sensor 206 are connected by a bus 207, respectively.
  • the CPU 201 controls the entire communication device.
  • the CPU 201 functions as the communication unit 11, the detection unit 12, the control unit 13, the acquisition unit 14, the determination unit 31, and the like by executing the program expanded in the RAM 202.
  • the RAM 202 is used as a work area for the CPU 201.
  • the flash memory 203 stores a program, information detected by a sensor, and key information such as an encryption key.
  • the flash memory 203 is an example of the storage device 15.
  • the I / F 204 transmits and receives packets by multi-hop communication.
  • the program includes, for example, a program for executing each process in the communication apparatus shown in the flowchart.
  • the encryption circuit 205 is a circuit that encrypts data using an encryption key when encrypting data. For example, when encrypting and transferring a packet, the encryption circuit 205 functions. When encryption is executed by software, the encryption circuit 205 is not necessary by storing a program corresponding to the encryption circuit 205 in the flash memory 203.
  • the sensor 206 detects data unique to the sensor 206. For example, data suitable for the measurement target is detected, such as temperature, humidity, water level, precipitation, air volume, volume, power consumption, time, time, and acceleration.
  • the communication device 1 or 3 may be a general-purpose computer. That is, the communication device 1 or 3 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a communication device, an HDD (Hard Disk Drive), an input device, a display device, a medium reading device, and the like. It may be a computer having Each unit is connected to each other via a bus.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • the management server of the organization functions as a management device, and each of the plurality of PCs functions as a communication device.
  • Each PC has an acceleration sensor, and detects the occurrence of vibration based on the output of the acceleration sensor.
  • Each PC then transitions to a warning state.
  • the PC When the management server determines that the detected vibration is a vibration caused by an earthquake, the PC releases the alert state based on the control command. On the other hand, if the PC determines that the detected vibration is a vibration caused by an earthquake through communication with another PC, the PC releases the alert state.
  • each PC can autonomously shift to a warning state that prevents information leakage from the PC when the possibility of theft is detected. Furthermore, each PC can prevent the warning state from being continued unnecessarily, and can release the warning state.
  • FIG. 12 is a hardware configuration example of the management device 2.
  • the computer 1000 functions as the management device 2.
  • the computer 1000 includes a CPU (Central Processing Unit) 1001, a ROM (Read Only Memory) 1002, a RAM (Random Access Memory) 1003, a communication device 1004, an HDD (Hard Disk Drive) 1005, an input device 1006, a display device 1007, and a medium reading device. 1009, and each part is connected to each other via a bus 1008. Data can be transmitted and received with each other under the control of the CPU 1001. Note that the management apparatus 2 does not have to have all the configurations shown in FIG.
  • the management program for executing each process of the management apparatus shown in the flowchart is recorded on a computer-readable recording medium.
  • the computer-readable recording medium include a magnetic recording device, an optical disk, a magneto-optical recording medium, and a semiconductor memory.
  • the magnetic recording device include an HDD, a flexible disk (FD), and a magnetic tape (MT).
  • Optical discs include DVD (Digital Versatile Disc), DVD-RAM, CD-ROM (Compact Disc-Read Only Memory), CD-R (Recordable) / RW (ReWriteable), and the like.
  • Magneto-optical recording media include MO (Magneto-Optical disk). When this program is distributed, for example, a portable recording medium such as a DVD or CD-ROM in which the program is recorded may be sold.
  • the medium reading device 1009 reads the program from a recording medium on which the program is recorded.
  • the CPU 1001 stores the read program in the HDD 1005, the ROM 1002, or the RAM 1003.
  • the CPU 1001 is a central processing unit that controls operation of the entire management apparatus.
  • the communication device 1004 receives a signal from a communication device, a sink node, or the like via a network and passes the content of the signal to the CPU 1001. Further, the communication device 1004 transmits a signal to the communication device or the like in response to an instruction from the CPU 1001.
  • the HDD 1005 stores a program for causing a computer to execute each process shown in the flowchart.
  • the CPU 1001 functions as the communication unit 21 and the generation unit 22 illustrated in FIG. 3 by reading the program from the HDD 1005 and executing the program.
  • the program may be stored in the ROM 1002 or the RAM 1003 that can be accessed by the CPU 1001.
  • information is stored in the HDD 1005 under the control of the CPU 1001. Similar to the program, information may be stored in the ROM 1002 or the RAM 1003 accessible to the CPU 1001. That is, the data table of the storage unit is stored in a storage device such as the HDD 1005, the ROM 1002, or the RAM 1003.
  • the input device 1006 receives data input under the control of the CPU 1001.
  • the display device 1007 outputs each piece of information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Bioethics (AREA)
  • General Health & Medical Sciences (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】 通信装置に記憶された秘密情報の漏えいを防止する為の機能を有効にした場合であっても、当該機能が不要な場合の振動であれば、当該機能を解除することを目的とする。 【解決手段】 通信ネットワークを構成する複数の通信装置の中の一つの通信装置であって、前記通信装置の振動を検出する検出部と、前記複数の通信装置のうちの他の通信装置から、該他の通信装置において振動が検出されたことを示す通知を受信する通信部と、前記検出部で振動を検出した場合に、前記通信装置の状態を、該通信装置が管理する情報を保護する警戒状態へ遷移させ、前記通知に基づいて前記振動が地震による振動であると判断した場合に、前記警戒状態を解除する制御部とを有することを特徴とする通信装置。

Description

通信装置、システム、制御プログラム、および制御方法
 本明細書に開示する技術は、通信装置が有する情報に対するセキュリティ技術に関する。
 アドホックネットワークとは、無線又は有線通信によってリンクする自己構成型のネットワークの一種である。アドホックネットワークは、通信機能を有する複数の装置により構成される。なお、アドホックネットワークにおける、通信機能を有する装置は、ノードと呼ばれる。また、アドホックネットワーク内の各ノードは、マルチホップ通信によりパケットを送受信する。マルチホップ通信は、互いの通信圏内に存在しないノード同士であっても、各ノードの通信圏内に存在する別のノードを介して通信を可能にする技術である。
 例えば、アドホックネットワークを利用したシステムとして、各家庭の電力メータに無線通信可能なノードを組み込むことにより、アドホックネットワーク経由で各家庭の消費電力量などを収集する検針システムがある。検針システムでは、各電気メータが検出した各家庭の消費電力量を含むパケットが、各家庭の電気メータが備える各ノードから電力会社のシステムまで転送される。このような検針システムにおける各ノードは、自身の記憶領域に、各家庭の電力使用に係る個人情報を記憶する。
 また、秘匿性、改ざん防止などの観点から、アドホックネットワークを利用した通信では、セキュアな通信を行うことが要求される。セキュアな通信の一例としては、パケットの全体または一部を暗号化して転送する手法などが用いられる。セキュアな通信を行う為に、各ノードは、自身の記憶領域に、個人情報を暗号化する暗号鍵などを記憶する。
 一方、携帯端末装置が、所定の振動を検知した場合に、所定の解除操作以外の操作を無効にする端末保護機能を有効にするとともに、正規の利用者からの解除操作が入力されると、端末保護機能を無効にする技術がある(例えば、特許文献1)。
特開2011-30054号公報
 各ノードが盗難された場合、各ノードの記憶領域に記憶された秘密情報が漏えいする可能性がある。ここで、秘密情報は、個人情報やネットワークのセキュリティを確保するための情報(例えば暗号鍵など)である。
 そこで、携帯端末装置に関する従来技術を流用し、ノードが、所定の振動を検知した場合に、秘密情報が漏えいを防止する為の機能を有効にすることで、盗難により秘密情報が漏えいすることを防ぐことが考えられる。例えば、秘密情報が漏えいを防止する為の機能は、所定の振動を検知してから所定時間経過後に、秘密情報を消去する機能などが考えられる。
 ここで、振動を検知する手段としては加速度センサがよく利用されるが、加速度センサは、盗難以外による振動も検知する事がある。盗難以外の振動を含む種々の振動に応じて、秘密情報の漏えいを防止する為の機能を有効にすることは、適切ではない。
 本発明は、ノードが、秘密情報の漏えいを防止する為の機能を有効にした場合であっても、当該機能が不要な場合の振動であれば、当該機能を解除することを目的とする。
 本発明の一観点によれば、通信ネットワークを構成する複数の通信装置の中の一つの通信装置は、前記通信装置の振動を検出する検出部と、前記複数の通信装置のうちの他の通信装置から、該他の通信装置において振動が検出されたことを示す通知を受信する通信部と、前記検出部で振動を検出した場合に、前記通信装置の状態を、該通信装置が管理する情報を保護する警戒状態へ遷移させ、前記通知に基づいて前記振動が地震による振動であると判断した場合に、前記警戒状態を解除する制御部とを有する。
 本発明の一観点によれば、通信装置は、振動により通常状態から異常状態へ移行した後、異常状態を解除すべき場合に、解除することが可能になる。
図1は、実施の形態にかかるネットワークシステムの一実施例を示す説明図である。 図2は、通信装置の機能ブロック図である。 図3は、管理装置の機能ブロック図である。 図4は、実施例1において、通信装置1により実行される処理フローチャートである。 図5は、遷移通知のデータ構成例である。 図6は、実施例1において、管理装置2により実行される処理フローチャートである。 図7は、管理テーブルのデータ構成例である。 図8は、制御命令のデータ構成例である。 図9は、実施例2における通信装置の機能ブロック図である。 図10は、実施例2において、通信装置3により実行される処理フロー図である。 図11は、通信装置1および通信装置3のハードウェア構成例である。 図12は、管理装置2のハードウェア構成例である。
 以下に添付図面を参照して、この発明にかかる通信装置、通信方法、およびシステムの実施の形態を詳細に説明する。
(実施例1)
[ネットワークシステム]
 図1は、実施の形態にかかるネットワークシステムの一実施例を示す説明図である。ネットワークシステムは、複数の通信装置と、管理装置とを含む。なお、図1は、本実施の形態にかかるネットワークシステムの一例として、アドホックネットワークを構成するシステムを示す。まず、図1を用いて、アドホックネットワークおよび、アドホックネットワークにおける通常のパケット転送について、説明する。
 アドホックネットワークシステムは、管理サーバSと、シンクノードSNと、ノードNa~Nhとを含む。なお、ノードNa~Nhは、通信装置の一例である。また、管理サーバSと、シンクノードSNとの少なくとも一方は、管理装置の一例である。
 管理サーバSとシンクノードSNとはインターネット、LAN、WANなどの通常ネットワーク101を介して接続されている。シンクノードSNとノードNa~Nhとは、アドホックネットワーク100を介して接続されている。
 シンクノードSNは、アドホックネットワーク100と通常ネットワーク101とを接続する中継機器である。シンクノードSNは、アドホックネットワーク100のプロトコルの形式の情報と通常ネットワーク101のプロトコルの形式の情報の両方を送受信可能である。
 また、シンクノードSNは、アドホックネットワーク100と通常ネットワーク101との間で情報をプロトコル変換することにより、通信の転送を行う。例えば、アドホックネットワーク100内の各ノードから管理サーバS宛に送信されたパケットは、シンクノードSNにてプロトコル変換される。その後、シンクノードSNが、当該パケットを、通常ネットワーク101に転送することで、各パケットは管理サーバSに到達する。
 また、管理サーバSやシンクノードSNからそれぞれのノード宛てに送信されたデータは、シンクノードSNにてプロトコル変換され、シンクノードSNからアドホックネットワーク100内の各ノードにパケットとして転送される。
 なお、シンクノードSNは、各ノード間の通信の可否をルーティングテーブルにより把握する。そして、シンクノードSNは、ルーティングテーブルの情報を元に、パケットの転送ルートを、自律的に生成する。各ノードは、シンクノードSNのルーティングにより、マルチホップ通信を行う際の転送元と転送先を設定する。なお、転送元は、自ノードであり、転送先は、他ノードである。
 また、各ノードは、個別にルーティングテーブルを生成してもよい。各ノードは、周囲のノードと現在の通信状況に関する情報を交換する。そして、各ノードは、通信状況に関する情報に基づいて、ルーティングテーブルを生成する。例えば、あるノードが通信不能となり途中の経路が通信できなくなった場合でも、その情報を加味した転送経路の設定が可能となる。
 アドホックネットワーク100内には、複数のノードが設けられている。図1では、代表としてノードNa~Nhを示している。
 各ノードは、所定の通信圏内で通信可能な他ノードとマルチホップ通信が可能な装置である。アドホックネットワーク100では、すべてのノードNa~Nhが直接シンクノードSNと通信できる必要はなく、他のノードを経由する事で、各ノードNa~Nhは、シンクノードSNと通信する。
 このため、アドホックネットワーク100では、一部のノードがシンクノードSNと通信可能であればよい。図1では、シンクノードSNと直接通信可能なノードは、ノードNa,Ndであるとする。
 本実施例のネットワークシステムは、たとえば各家庭の電力の使用量を収集するシステムに適用される。このようなシステムの場合、各ノードは、各家庭の電力の使用量を検出するための各家庭の電力メータに設置される。各ノードが検出した電力の使用量を、管理サーバSに送信することで、管理サーバSは、各家庭の電力の使用量を収集することが可能になる。
 具体的には、例えば、各家庭の電力メータにそれぞれノードが組み込まれているとする。各ノードは、各ノードが検出した各家庭の電力や使用量を、アドホックネットワーク100を介して管理サーバSに送信する。
 なお、各家庭の電力の使用量は、各ノードが計測してもよく、また、各ノードが電力メータから取得してもよい。また、各ノードは、自身の記憶領域に、検出した電力使用量を記憶する。シンクノードSNは、アドホックネットワーク100内の各ノードから受信した各家庭の電力や使用量を、通常ネットワーク101を介して電力会社の管理サーバSに送信する。これにより、作業員が現地に出向くことなく電力の使用量を収集することができる。
 また、本実施形態のネットワークシステムでは、暗号鍵を用いてパケットを暗号化する。なお、さらに、メッセージ認証コード(MAC)を生成し、各パケットに付加してもよい。MACを生成する際には、MAC生成用の鍵が使用される。これにより、アドホックネットワーク100のセキュア通信を確保する。なお、暗号鍵やMAC生成用の鍵は、各ノードの記憶領域に記憶されている。
 なお、図1の例では、アドホックネットワーク100内に1台のシンクノードSNを設ける構成としたが、一つのアドホックネットワーク100内に複数台のシンクノードSNを設ける構成としてもよい。
 また、図1ではアドホックネットワーク100は一つであるが、複数のアドホックネットワークを含む場合もある。複数のアドホックネットワークを含む場合、複数のアドホックネットワークにはそれぞれ少なくとも一つのシンクノードが含まれており、管理サーバSは当該シンクノードと通常ネットワークを介して接続する。この構成により、管理サーバSと全てのノードとのデータ送受信が可能になる。
 また、本ネットワークシステムは、電力の使用量の収集だけでなく、各ノードに温度,湿度,光量などを検知するセンサ機能を持たせて、例えば、環境などの調査に使用することも可能である。
 図1では、アドホックネットワーク100を構成するノードNa~Nhにより、4つの経路R1~R4が設定されているものとする。具体的には、経路R1は、ノードNcとノードNbとノードNaとシンクノードSNとを含むルートである。経路R2は、ノードNeとノードNdとシンクノードSNとを含むルートである。経路R3は、ノードNgとノードNfとノードNdとシンクノードSNとを含むルートである。経路R4は、ノードNhとノードNfとノードNdとシンクノードSNとを含むルートである。なお、ノードNaやノードNdはシンクノードと直接通信するノードである。
 シンクノードSNに近いノードを上流側のノードと呼ぶ。なお、アドホックネットワーク100の規模によっては、ノードNbやノードNeも上流側のノードとなる。各ノードNa~Nhから管理サーバSへデータが送信される場合は、各ノードNa~Nhは、各々検出したデータをルーティングされた経路R1~R4に従ってシンクノードSNに送信する。
 次に、通信装置の機能的構成について説明する。なお、図1におけるノードNを、以下通信装置として説明する。図2は、通信装置の機能ブロック図である。
 通信装置1は、通信部11、検出部12、制御部13、取得部14、記憶装置15を有する。通信部11は、他の通信装置と通信を行う処理部である。例えば、通信部11は、他の通信装置とパケットの授受を行う。また、一部の通信装置1における通信部11は、図1のシンクノードSNと通信を行う。例えば、通信部11は、直接または間接的に管理装置から後述する制御命令を受信する。
 検出部12は、通信装置1の振動を検出する処理部である。例えば、検出部12は、通信装置1が備える加速度センサからの出力を受けて、振動を検知する。なお、加速度センサからの出力が、所定値以上である場合に、振動を検出するようにしてもよい。
 制御部13は、通信装置1の状態を制御する処理部である。例えば、検出部12が振動を検知した場合に、記憶装置15が記憶する秘密情報を保護する為の状態へ遷移する。また、制御部13は、管理サーバからの制御命令を受信した場合に、記憶装置15が記憶する秘密情報を保護する為の状態を解除する。制御命令の詳細については、後述する。
 記憶装置15が記憶する秘密情報を保護する為の状態は、警戒状態と称される。なお、警戒状態とは、記憶装置15が記憶する秘密情報が漏えいすることを防ぐために、何らかの対策がなされた状態である。
 警戒状態の一例には、記憶装置へのアクセスに対するセキュリティを通常状態よりも高く設定する対策がなされた状態が含まれる。また、他の例としては、振動を検知してからの経過時間を監視する状態である。なお、振動を検知してからの経過時間が所定の閾値以上となった場合は、秘密情報を消去することで、秘密情報の流出を防ぐ。
 以下、警戒状態は、振動を検知してからの経過時間を、制御部13が、監視する状態であるとして説明する。つまり、制御部13は、検出部12が振動を検知した場合に、経過時間の監視を開始する。そして、制御部13は、所定時間経過後に、秘密情報を消去する。一方、所定時間経過前に、制御命令を受信した場合は、制御部13は、経過時間の監視を中止することで警戒状態を解除する。つまり、経過時間の計測が停止されるため、秘密情報は消去されない。
 取得部14は、通信装置1が有するセンサや装置、または外部のセンサまたは装置からの出力値を取得する。そして、取得部14は、出力値を、記憶装置15へ記憶する。
 記憶装置15は、出力値を記憶する記憶装置である。なお、出力値の少なくとも一部は、秘密情報として扱われる。さらに、記憶装置15は、暗号鍵等のセキュリティに関する情報を記憶する記憶装置である。
 次に、管理装置について説明する。管理装置は、図1におけるシンクノードSNまたは管理サーバSのいずれかである。図3は、管理装置の機能ブロック図である。
 管理装置2は、通信部21と生成部22と記憶装置23とを有する。通信部21は、通信装置1と直接的または間接的に通信する。例えば、通信部21は、制御命令を出力する。例えば、管理装置2がシンクノードSNである場合は、管理装置2は、上流の通信装置に対して、制御命令を送信する。一方、管理装置2が管理サーバである場合は、管理装置2は、シンクノードSNを介して、制御命令 を各通信装置に送信する。
 そして、上流の通信装置から下流の通信装置に制御命令が転送される。なお、上流の通信装置から下流の通信装置に制御命令が送信される際には、ルーティングに従わずに、制御命令に関するパケットをブロードキャストするとしても良い。
 生成部22は、制御命令を生成する処理部である。制御命令は、各通信装置に対して、警戒状態の解除を指示する信号である。また、制御命令は、各通信装置が、警戒状態へ遷移することを防止する信号または、警戒状態に遷移することを防止する信号である。
 生成部22は、制御命令を受信する通信装置を指定する識別情報を、制御命令と共に生成してもよい。識別情報は、各通信装置の装置IDやアドレスであってもよい。また、識別情報として、ネットワークを識別する情報であってもよい。例えば、管理装置2が管理サーバである場合は、シンクノードSNを指定する。指定されたシンクノードSNが管理するネットワークが指定される。各ネットワークに含まれる複数の通信装置に、制御命令が送信される。一方、管理装置2が、シンクノードSNである場合は、識別情報がない状態でも、シンクノードSN配下の各通信装置が、制御命令を受信する。
 次に、通信装置1の処理を説明する。図4は、実施例1において、通信装置1により実行される処理フローチャートである。
 検出部12は、加速度センサから、加速度センサが検出した加速度を受信する(Op.1)。検出部12は、受信した加速度が、閾値以上であるか否かを判定する(Op.2)。なお、Op.2は、盗難の可能性がある振動を検知することを目的とした処理である。そこで、閾値としては、盗難の可能性を推定可能な加速度の値が設定される。
 閾値以上の加速度であれば、閾値以上の揺れが通信装置1に発生したと判定する。つまり、通信装置1が盗難された可能性があると判断する。閾値以上の加速度であれば(Op.2YES)、通信装置1は、Op.3へ処理を進める。一方、閾値未満の加速度であれば(Op.2NO)、通信装置1は、Op.1へ戻る。
 次に、管理装置2から制御命令を受信しているか否かを判定する(Op.3)。制御命令は、後述の処理によって、管理装置2で生成される。なお、制御命令は、警戒状態を解除する命令または、警戒状態に遷移することを防止する命令である。
 制御命令を受信していない場合(Op.3NO)、制御部13は、予めルーティングされたルートに基づいて、管理装置2を最終的な送信先とする遷移通知を送信する(Op.4)。なお、遷移通知は、暗号化されて送信されてもよい。制御命令を受信している場合(Op.3YES)、Op.1に戻る。つまり、通信装置1は、警戒状態へ遷移しない。
 ここで、遷移通知について、説明する。遷移通知は、通信装置が、閾値以上の振動を検知したことを、他の装置に知らせる為のパケットである。遷移通知のデータ構成例を説明する。図5は、遷移通知のデータ構成例である。
 なお、図5は、通常のパケットと、同様の構成を遷移通知に採用した例である。通常のパケットとは、各通信装置が検出した情報をマルチホップ転送する際のパケットである。通常のパケットは、ヘッダ部とボディ部とを有し、ヘッダ部に転送に関する情報を含み、ボディ部に検出した情報を含む。ただし、遷移通知は、通常のパケットと同様の構成でなくとも、予めきめられた構成であってもよい。
 図5Aは、第一の遷移通知のデータ構成例である。遷移通知は、ヘッダ部50とボディ部51とを含む。ヘッダ部50には、ローカル送信元アドレス、ローカル宛先アドレス、グローバル送信元アドレス、グローバル宛先アドレスを含む。
 ローカル送信元アドレスは、パケットをマルチホップ転送する際、当該マルチホップ転送のうちの一つの転送に関して、パケットの転送元となる通信装置のアドレスである。つまり、遷移通知に含まれる、ローカル送信元アドレスは、遷移通知を転送する通信装置のアドレスである。
 次に、ローカル宛先アドレスは、当該一つの転送に関して、パケットの転送先となる通信装置のアドレスである。つまり、遷移通知に含まれる、ローカル宛先アドレスは、遷移通知の転送先として指定された通信装置のアドレスである。以上のように、ローカル送信元アドレスとローカル宛先アドレスは、転送の都度、各通信装置において書き換えられる。
 グローバル送信元アドレスは、パケットをマルチホップ転送する際、マルチホップ転送の始点となる通信装置のアドレスである。つまり、遷移通知に含まれる、グローバル送信元アドレスは、振動を検知した通信装置のアドレスである。
 グローバル宛先アドレスは、パケットをマルチホップ転送する際、マルチホップ転送の終点となる装置のアドレスである。つまり、遷移通知に含まれる、グローバル宛先アドレスは、管理装置のアドレスである。グローバル送信元アドレスとグローバル宛先アドレスは、書き換えられない。
 さらに、ボディ部51には、通信装置ID、状態フラグ、時刻情報を含む。通信装置IDは、通信装置を識別する情報である。つまり、遷移通知に含まれる通信装置IDは、振動を検知した通信装置の通信装置IDである。
 状態フラグは、通信装置IDの通信装置における状態を表す情報である。遷移通知に含まれる状態フラグは、警戒状態にあることを示すフラグである。例えば、警戒状態にあることを示す「1」が設定される。時刻情報は、通信装置IDの通信装置が、振動を検知した時刻に関する情報である。
 また、図5Bは、第二の遷移通知のデータ構成例である。遷移通知は、ヘッダ部52とボディ部53とを含む。ヘッダ部52には、第一の遷移通知と同様に、ローカル送信元アドレス、ローカル宛先アドレス、グローバル送信元アドレス、グローバル宛先アドレスを含む。さらに、ヘッダ部52は、パケットタイプの情報も含む。
 パケットタイプは、当該パケットが、遷移通知であることを示す情報である。例えば「9」が設定される。ヘッダ部52を参照する事で、各通信装置および管理装置は、当該パケットは遷移通知であることを判別できる。
 ボディ部53は、第一の遷移通知と同様に、通信装置ID、時刻情報を含む。ただし、状態フラグは含まれないとしても良い。
 処理の説明に戻る。続いて、制御部13は、通常状態から警戒状態に遷移する(Op.5)。本実施例においては、警戒状態に遷移するとは、経過時間の計測を開始することを意味する。例えば、制御部13は、タイマのカウントを、一旦リセットした後に開始する。なお、Op.4とOp.5は逆の順序であってもよい。
 制御部13は、経過時間が閾値を越えたかを判定する(Op.6)。閾値は、管理者により予め設定される。さらに、管理装置2が制御命令を生成してから、通信装置1が制御命令を受信するまでに要する時間よりも大きな値であって、秘密情報を取得できる程度に長くない値を閾値として設定することが考えられる。
 経過時間が閾値を超えた場合(Op.6YES)は、制御部13は、記憶装置に記憶されている秘密情報の少なくとも一部を消去する(Op.9)。なお、制御部13は、秘密情報を識別せずとも、記憶装置に記憶されている全ての情報を消去してもよい。
 経過時間が閾値を超えていない場合は(Op.6NO)、制御部13は、通信部11が制御命令を受信したか否かを判定する(Op.7)。制御命令については、後述する。なお、通信部11は、他の通信装置、シンクノード、または管理装置から制御命令を受信する。
 制御命令を受信していない場合(Op.7NO)は、制御部13は、Op.6に戻る。一方、制御命令を受信した場合は(Op.7YES)、警戒状態を解除する(Op.8)。本実施例においては、警戒状態を解除するとは、経過時間の計測を停止することを意味する。例えば、制御部13はタイマのカウントアップを停止する。そして、通信装置1は一連の処理を終了する。
 なお、警戒状態が、秘密情報に対するアクセスのセキュリティを高めた状態である場合は、制御部13は、制御命令を受信するまで警戒状態を維持する。そして、制御部13は、制御命令の受信をもって、警戒状態を解除する。また、秘密情報に対するアクセスのセキュリティを高めた状態を、所定時間維持し、その後、制御命令を受信しなかった場合に、秘密情報を消去するとしても良い。
 次に、管理装置2の処理を説明する。図6は、実施例1における、管理装置2により実行される処理フローチャートである。
 管理装置2における通信部21と、生成部22は、地震検知処理を実行する(Op.10)。地震検知処理として、複数の手法を説明する。
 第一の手法としては、管理装置2と災害管理装置とが通信することで自身を検知する手法がある。そして、第一の手法には、管理装置2が災害管理装置へ地震情報を問い合わせる場合と、災害管理装置が管理装置2へ地震情報を能動的に送信する場合とが含まれる。なお、災害管理装置は、地震情報を管理するコンピュータである。なお、災害管理装置は、ネットワークシステムには含まれない外部のコンピュータであってもよい。地震情報は、地震が発生したエリアと、地震の規模(各エリアの震度)、さらには発生日時等を含む情報である。
 まず、第一の手法における、管理装置2が災害管理装置へ地震情報を問い合わせる場合の方法を説明する。管理装置2の通信部21が遷移通知を受信した場合に、生成部22は、管理装置2が有する記憶装置23に記憶された管理テーブル70を参照する。そして、生成部22は、遷移通知遷移通知を生成した通信装置が存在するエリアを特定する。なお、管理装置2が、シンクノードである場合は、各シンクノードは、ネットワークのエリアを予め把握している為、エリアを特定する処理は不要である。
 そして、通信部21は、当該エリアを識別するエリア情報を含む情報提供要求を、災害管理装置へ送信する。通信部21は、災害管理装置から、エリア情報に対応する地震情報がある場合、当該地震情報を受信する。以上の処理によって、管理装置2は、地震の発生を検知する。
 ここで、管理テーブル70のデータ構成例について、説明する。図7は、管理テーブル70のデータ構成例である。また、上述のとおり、管理テーブル70は、管理装置2が管理サーバSである場合に、利用される。
 管理テーブル70は、シンクノードIDとエリアIDとを対応付けて記憶する。シンクノードIDは、各シンクノードを一意に識別する値である。エリアIDは、各エリアについて一意に付与される値である。管理テーブルには、各エリアの通信装置からのパケットを集約するシンクノードのシンクノードIDと、各エリアのエリアIDとが対応付けて記憶される。
 例えば、図7の例では、シンクノードID「SN1」に対応するシンクノードは、エリアAに存在する通信装置からのパケットを集約する。または、シンクノードID「SN1」に対応するシンクノードは、管理サーバからのパケットをエリアAに存在する通信装置へ転送する。つまり、シンクノードID「SN1」に対応するシンクノードは、エリアAに存在する通信装置からの遷移通知を管理装置2である管理サーバSへ送信する。また、シンクノードID「SN1」に対応するシンクノードは、管理装置2である管理サーバSからの制御命令をエリアAに存在する通信装置へ転送する。
 管理テーブルを参照する事で、管理装置2である管理サーバSは、例えば、シンクノードID「SN1」であるシンクノードより遷移通知を受信した場合、遷移通知を生成した通信装置が存在するエリアとして、エリアID「A」を特定する。
 また、管理装置は、エリアIDを住所等の情報へ変換し、変換後のエリアに関する情報を、情報提供要求に含めるようにしてもよい。この場合、管理装置は、エリアIDを住所に変換する為のテーブルをさらに有する。
 本方法によれば、管理装置2は、管理下の複数の通信の装置のいずれかが警戒状態へ遷移したことを受けて、災害管理装置へアクセスすることができる。そして、必要な時に、必要なエリアの地震情報を、災害管理装置に問合せることができる。
 次に、第一の手法における、災害管理装置が管理装置2へ地震情報を能動的に送信する場合の方法を説明する。通信部21は、地震が発生した場合、災害管理装置が地震情報を配信するタイミングで、地震情報を取得する。なお、予め設定した規模以上の地震が発生した場合に、災害管理装置から管理装置へ地震情報が送られるように設定されてもよい。管理装置2は、地震情報を記憶装置23に記憶する。なお、記憶装置23とは異なる他の記憶装置に、地震情報を記憶してもよい。
 そして、管理装置2は、地震が発生しているかを、記憶装置23に記憶された地震情報に基づいて判断する。以上の処理によって、管理装置2は、地震の発生を検知する。
 本方法によれば、災害管理装置から地震情報が自律的に送信される為、管理装置2は、より短い時間で地震の発生を検知することができる。したがって、管理装置2は、続く制御命令の生成に関する処理までに要する時間を、より短くすることができる。
 一方、第二の手法としては、管理装置2は複数の通信装置1から受信した遷移通知に基づいて、地震の発生を検知する手法がある。通信部21は、複数の通信装置1から遷移通知を受信する。そして、生成部22は、受信した遷移通知の数を計数する。なお、遷移通知の数は、エリアやネットワーク毎に計数される。
 また、管理装置2は、受信した遷移通知数をカウントしてもよいし、遷移通知に含まれる通信装置IDを識別し、重複を排除して遷移通知の数をカウントしてもよい。そして、遷移通知の数が所定数以上となった場合に、生成部22は、該当するエリアに地震が発生したことを検知する。
 本方法によれば、管理装置2は、災害管理装置のような外部の装置と通信することなく、地震の発生を検知することができる。つまり、管理装置2が管理する複数の通信装置から送信される遷移通知を用いて、管理装置2は地震の発生を検知することができる。
 なお、所定数は、エリアごとに個別の値を設定してもよい。例えば、通信装置1が、電気メータに備えられる場合、アドホックネットワークエリアごとに、加入世帯の数が異なる。よって、加入世帯数が多いエリアには大きな値を、加入世帯数が小さなエリアには小さな値を設定してもよい。また、絶対数以外にも、割合が設定されてもよい。
 以上のように、管理装置2は、種々の方法で地震の発生を検知する処理を実行する。図6におけるOp.11では、地震検知処理の結果に基づいて、生成部22は、地震が発生したかを判定する。なお、エリアごとに判定しても構わない。
 地震が発生していない場合(Op.11NO)、生成部22は、Op.10に処理を戻す。例えば、災害管理装置から地震情報を受信していない場合は、生成部22は、地震が発生していないと判断する。他の方法として、所定数以上の遷移通知を受信していない場合は、生成部22は、地震は発生していないと判断する。つまり、生成部22は、制御命令を生成することはない。
 一方、地震が発生した場合(Op.11YES)、生成部22は、制御命令を生成する(Op.12)。なお、生成部22は、さらに、制御信号を暗号化してもよい。
 ここで、制御命令について、説明する。制御命令は、通信装置に警戒状態を解除させる為のパケットあるいは通信装置における警戒状態への遷移を防止するパケットである。制御命令のデータ構成例を説明する。図8は、制御命令のデータ構成例である。なお、図8は、通常のパケットと、同様の構成を制御命令に採用した例である。
 図8Aは、第一の制御命令のデータ構成例である。制御命令は、ヘッダ部80とボディ部81とを含む。ヘッダ部80には、ローカル送信元アドレス、ローカル宛先アドレス、グローバル送信元アドレス、グローバル宛先アドレスを含む。
 制御命令に含まれる、ローカル送信元アドレスは、制御命令を転送する通信装置のアドレスである。管理装置は、管理装置のアドレスを、ローカル送信元アドレスに設定する。   
 制御命令に含まれる、ローカル宛先アドレスは、制御命令の転送先として指定された通信装置のアドレスである。ただし、制御命令がマルチホップ転送される過程で、ローカル送信元アドレスは、各転送における転送元の通信装置に関するアドレスに書き換えられる。
 制御命令に含まれる、グローバル送信元アドレスは、管理装置のアドレスである。遷移通知に含まれる、グローバル宛先アドレスは、遷移通知に含まれる通信装置IDに対応する通信装置のアドレスである。
 さらに、ボディ部81には、通信装置ID、制御フラグ、時刻情報を含む。遷移通知に含まれる通信装置IDは、制御命令の対象となる通信装置の通信装置IDである。
 制御フラグは、通信装置IDの通信装置における警戒状態を解除すべきことを示す情報である。例えば、警戒状態を解除させる「2」が設定される。各通信装置は、ボディ部の制御フラグを参照し、必要に応じて警戒状態を解除する。時刻情報は、管理装置が制御命令を生成した時刻に関する情報である。
 図8Bは、第二の制御命令のデータ構成例である。第二の制御命令は、管理サーバが管理装置として機能する場合の例である。制御命令は、ヘッダ部82とボディ部83とを含む。ヘッダ部82は、第一の制御命令におけるヘッダ部80と同様である。
 ボディ部83は、第一の制御命令におけるボディ部81の通信装置IDに変わり、シンクノードIDを有する。シンクノードIDは、制御命令をブロードキャストする範囲を指定する情報である。つまり、各シンクノードの配下に存在する複数の通信装置が、制御命令を受信する。特定のシンクノードのシンクノードIDを、ボディ部83に設定する。特定のシンクノードとは、地震が発生したエリアに対応づいたシンクノードIDである。管理装置2が管理サーバSである場合、図7の管理テーブルを参照することで、制御命令に設定するシンクノードIDを決定する。
 また、図8Cは、第三の制御命令のデータ構成例である。制御命令は、ヘッダ部84とボディ部85とを含む。ヘッダ部84には、第一の制御命令等と同様に、ローカル送信元アドレス、ローカル宛先アドレス、グローバル送信元アドレス、グローバル宛先アドレスを含む。さらに、ヘッダ部84は、パケットタイプの情報も含む。
 パケットタイプは、当該パケットが、制御命令であることを示す情報である。例えば「8」が設定される。各通信装置は、ヘッダ部84を参照することで、当該パケットが制御命令であることを判別できる。
 また、ボディ部85は、通信装置ID、時刻情報を含む。なお、第三の制御命令は、図8Cに示した通信装置IDの代わりに、シンクノードIDを含んでもよい。
 そして、通信部21は、制御命令を出力する(Op.13)。管理装置2が、シンクノードである場合は、通信部21は、通信装置の少なくとも一部へ制御命令を送信する。一方、管理装置2が管理サーバである場合は、通信部21は、シンクノードへ制御命令を送信する。そして、管理装置2は、一連の処理を終了する。
 以上の処理によって、通信装置1は、盗難の可能性を検知した場合に、警戒状態に遷移することができる。つまり、盗難者によって、秘密情報が取得される可能性を低減することができる。また、盗難の可能性があると判断した際の振動が、盗難による振動でなかった場合に、自律的に通常状態へ復帰することができる。例えば、盗難でなかった場合に、秘密情報が消去されることを防ぐ。
 通信装置のプロセッサが加速度センサからの出力を統計処理すること等によって、加速度センサが検出した振動が盗難による振動であるのか否かを判別することなく、通信装置1は、不要な場合に警戒状態を解除することができる。さらに、加速度センサが高度な処理能力を有するセンサでない場合であっても、本発明の通信装置によれば、不要な場合に、警戒状態を解除することができる。
 例えば、簡易な加速度センサでは、地震による揺れと、盗難による揺れとを区別できない。したがって、所定の振動を検知したとして、一律に警戒状態を保持することは適当ではない。例えば、振動が地震による振動である場合、秘密情報は消去されるべきではない。本実施例によれば、地震による振動によって、通信装置が警戒状態に遷移したとしても、警戒状態を解除することができる。
 また、管理装置2は、地震を検知した場合に、通信装置1に制御命令を送信することができる。つまり、管理装置2は、通信装置1における不要な警戒状態を解除することができる。
(実施例2)
 実施例2におけるネットワークシステムの構成は、図1と同様である。つまり、アドホックネットワークシステムは、管理サーバSと、シンクノードSNと、ノードNa~Nhとを含む。また、実施例1と同様に、ノードNa~Nhは、通信装置の一例であって、管理サーバSと、シンクノードSNとの少なくとも一方は、管理装置の一例である。
 実施例2における通信装置の機能的構成を説明する。図9は、実施例2における通信装置の機能ブロック図である。通信装置3は、通信部11と、検出部12と、制御部13と、取得部14と、記憶装置15と、判定部31とを含む。なお、図9において、実施例1と同様の処理を行う処理部には、同じ符号を付す。
 ただし、実施例2においては、制御部13は、管理装置2からの制御命令に基づいて、警戒状態を解除するのではなく、判定部31の判定結果に基づいて、警戒状態を解除する。また、通信部11は、他の通信装置から、他の通信装置が生成した遷移通知を受信するとともに、他の通信装置へ自装置で生成した遷移通知を送信する。なお、遷移通知は、他の通信装置において、振動が検出されたことを示す通知である。なお、遷移通知のデータ構成は、実施例1と同様である。
 判定部31は、検知した振動が、地震による振動であるか否かを判定する。例えば、判定部31は、他の通信装置から受信した遷移通知の数に基づいて、検知した振動が地震であるか否かを判定する。閾値以上の数の遷移通知を受信した場合は、検知した振動は地震による振動であると判定する。
 そして、判定部31は、検知した振動が地震による振動であると判定した場合は、判定結果を制御部13へ通知する。制御部13は、判定結果の通知を持って、警戒状態を解除する。
 実施例2における通信装置の処理フローを説明する。図10は、実施例2において、通信装置3により実行される処理フロー図である。
 検出部12は、加速度センサから加速度センサが検出した加速度を受信する(Op.21)。検出部12は、受信した加速度が、閾値以上であるか否かを判定する(Op.22)。閾値以上の加速度であれば(Op.22YES)、通信装置1は、Op.23へ処理を進める。一方、閾値未満の加速度であれば(Op.22NO)、通信装置1は、Op.21へ戻る。
 制御部13は、周囲の他の通信装置に対して、遷移通知をブロードキャストする(Op.23)。続いて、制御部13は、通常状態から警戒状態に遷移する(Op.24)。本実施例においては、警戒状態に遷移するとは、経過時間の計測を開始することを意味する。 制御部13は、経過時間が閾値を越えたかを判定する(Op.25)。
 経過時間が閾値を超えた場合(Op.25YES)は、制御部13は、記憶装置に記憶されている秘密情報の少なくとも一部を消去する(Op.28)。経過時間が閾値を超えていない場合は(Op.25NO)、判定部31は、検知した振動が地震による振動であるか判定する(Op.26)。
 通信装置3群を含むネットワークが形成されるエリアに地震が発生した場合、各通信装置において、Op.21乃至Op.23の処理が実行される。つまり、各通信装置は、遷移通知をブロードキャストする。したがって、通信装置3は、他の通信装置からブロードキャストされた遷移通知を受信する。 
 つまり、他の通信装置において振動が検知された場合、図10の処理に加えて、通信装置3の通信部11は、他の通信装置から遷移通知がブロードキャストされるたびに、遷移通知を受信する処理を実行する。なお、他の通信装置は、自装置の通信可能範囲に存在する1以上の通信装置である。そして、判定部31は、遷移通知の受信数を、カウントする。
 図10のOp.26において、判定部31は、受信した遷移通知の個数が、閾値以上であるか否かを判定する。そして、閾値以上の個数の遷移通知を受信している場合は、Op.22で検知した振動は、地震による振動であると判定する。一方、受信した遷移通知が閾値未満である場合は、Op.22で検知した振動は、地震による振動ではないと判定する。
 閾値の設定について、説明する。まず、通常、各通信装置は、ルーティングのために、定期的に他の通信装置と通信を行うことで、他の通信装置との通信状況を把握する。したがって、通信装置は、Op.26において、過去10分の間に、転送ルート構築のためにパケットのやり取りを行った他の通信装置の数を把握することができる。よって、通信可能な他の通信装置の数に対し、例えば、80%に相当する値を閾値として採用する。なお、転送ルートの構築は、従来の手法で行われる。
 判定部31が、検出部12により検出された振動が、地震による振動であると判定した場合は(Op.26YES)、制御部13は、警戒状態を解除する(Op.27)。本実施例においては、警戒状態を解除するとは、経過時間の計測を停止することを意味する。例えば、制御部13はタイマのカウントを停止する。そして、通信装置1は一連の処理を終了する。
 一方、判定部31が地震による振動ではないと判定した場合は(Op.26NO)、制御部13は、Op.25に処理を戻す(Op.27)。
 なお、実施例1と同様に、警戒状態が、秘密情報に対するアクセスのセキュリティを高めた状態である場合は、制御部13は、制御命令を受信するまで警戒状態を維持する。そして、制御部13は、判定部31が地震による振動であると判定した場合に、警戒状態を解除する。また、秘密情報に対するアクセスのセキュリティを高めた状態を、所定時間維持し、その後、秘密情報を消去するとしても良い。
 以上の処理によって、各通信装置が警戒状態を必要に応じて解除することができる。つまり、管理装置と通信することなく、地震の発生を検知し、警戒状態を解除することができる。管理装置2が、図1における管理サーバSである場合は、シンクノードSNと管理サーバSとの間は通常のネットワークで接続される。地震が発生した場合は、このネットワークに何らかの障害が発生する可能性がある。よって、アドホックネットワーク100内の通信のみで、各通信装置は地震の発生を検知することができる。そして、各通信装置は、不要な警戒状態を解除することができる。
(実施例3)
 図11は、通信装置1および通信装置3のハードウェア構成例である。なお、図11におけるノード200は、通信装置1または通信装置3として機能する。ノード200は、CPU(Central Processing Unit)201と、RAM(Random Access Memory)202と、フラッシュメモリ203と、インターフェース(I/F)204と、暗号化回路205と、センサ206と、バス207とを備えている。CPU201乃至センサ206は、バス207よってそれぞれ接続されている。
 CPU201は、通信装置の全体の制御を司る。CPU201は、RAM202に展開されたプログラムを実行することにより、通信部11、検出部12、制御部13、取得部14、判定部31などとして機能する。
 RAM202は、CPU201のワークエリアとして使用される。フラッシュメモリ203は、プログラムや、センサが検出した情報、暗号鍵などの鍵情報を記憶している。なお、フラッシュメモリ203は、記憶装置15の一例である。I/F204は、マルチホップ通信によりパケットを送受信する。プログラムには、例えば、フローチャートに示した通信装置における各処理を実行させる為のプログラムが含まれる。
 暗号化回路205は、データを暗号化する場合に暗号鍵によりデータを暗号化する回路である。例えば、パケットを暗号化して転送する場合は、暗号化回路205が機能する。暗号化をソフトウェア的に実行する場合は、暗号化回路205に相当するプログラムをフラッシュメモリ203に記憶させておくことで、暗号化回路205は不要となる。センサ206は、センサ206固有のデータを検出する。たとえば、温度、湿度、水位、降水量、風量、音量、電力使用量、時間、時刻、加速度など、測定対象にあったデータを検出する。
 なお、図11では、通信装置1がアドホックネットワークを構成するノード200である例を説明したが、通信装置1または3は、汎用コンピュータであってもよい。つまり、通信装置1または3は、CPU(Central Processing Unit)、ROM(Read Only Memory),RAM(Random Access Memory),通信装置、HDD(Hard Disk Drive)、入力装置、表示装置、媒体読取装置などを有するコンピュータであってもよい。なお、各部は、バスを介して相互に接続されている。
 例えば、ある組織において、複数のPC(Personal Computer)を管理している場合、組織の管理サーバが、管理装置として機能し、複数のPC各々が、通信装置として機能する。各PCは、加速度センサを有し、加速度センサの出力に基づいて、振動の発生を検知する。そして、各PCは警戒状態へ遷移する。
 管理サーバにより、検知した振動が地震による振動であることが判定された場合には、PCは、制御命令に基づいて、警戒状態を解除する。一方、PCにおいて、他のPCとの通信により、検知した振動が地震による振動であることを判定した場合は、PCは警戒状態を解除する。
 したがって、各PCは、盗難の可能性を検知した時点で、PCからの情報漏洩を防止する警戒状態に、自律的に遷移することができる。さらに、各PCは、不要に警戒状態が継続されることを防ぎ、警戒状態を解除することができる。
 図12は、管理装置2のハードウェア構成例である。コンピュータ1000は、管理装置2として機能する。コンピュータ1000はCPU(Central Processing Unit)1001、ROM(Read Only Memory)1002,RAM(Random Access Memory)1003,通信装置1004、HDD(Hard Disk Drive)1005、入力装置1006、表示装置1007、媒体読取装置1009を有しており、各部はバス1008を介して相互に接続されている。そしてCPU1001による管理下で相互にデータの送受を行うことができる。なお、管理装置2は、図12に示す全ての構成を備える必要はない。
 フローチャートに示した管理装置の各処理を実行させる為の管理プログラムは、コンピュータが読み取り可能な記録媒体に記録される。コンピュータが読み取り可能な記録媒体には、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリなどがある。磁気記録装置には、HDD、フレキシブルディスク(FD)、磁気テープ(MT)などがある。
 光ディスクには、DVD(Digital Versatile Disc)、DVD-RAM、CD-ROM(Compact Disc - Read Only Memory)、CD-R(Recordable)/RW(ReWritable)などがある。光磁気記録媒体には、MO(Magneto - Optical disk)などがある。このプログラムを流通させる場合には、例えば、そのプログラムが記録されたDVD、CD-ROMなどの可搬型記録媒体が販売されることが考えられる。
 そしてコンピュータ1000は、例えば媒体読取装置1009が、プログラムを記録した記録媒体から、該プログラムを読み出す。CPU1001は、読み出されたプログラムをHDD1005若しくはROM1002、RAM1003に格納する。
 CPU1001は、管理装置全体の動作制御を司る中央処理装置である。通信装置1004はネットワークを介して通信装置やシンクノードなどからの信号を受信し、その信号の内容をCPU1001に渡す。さらに通信装置1004はCPU1001からの指示に応じて、通信装置などに信号を送信する。
 HDD1005には、フローチャートに示す各処理をコンピュータに実行させるプログラムが記憶されている。
 そして、CPU1001が、当該プログラムをHDD1005から読み出して実行することで、図3に示す通信部21、生成部22として機能する。また、当該プログラムはCPU1001とアクセス可能なROM1002またはRAM1003に格納されていても良い。
 さらにHDD1005にはCPU1001の管理下で、情報が記憶される。プログラム同様、情報はCPU1001とアクセス可能なROM1002またはRAM1003に格納されても良い。つまり、記憶部のデータテーブルは、HDD1005や、ROM1002またはRAM1003などの記憶装置に格納される。そして入力装置1006はCPU1001の管理下でデータの入力を受付ける。表示装置1007は、各情報を出力する。
S    管理サーバ
SN   シンクノード
N    ノード
1    通信装置
11   通信部
12   検出部
13   制御部
14   取得部
15   記憶装置
2    管理装置
21   通信部
22   生成部
23   記憶装置
3    通信装置
31   判定部

Claims (14)

  1.  通信ネットワークを構成する複数の通信装置の中の一つの通信装置であって、
     前記通信装置の振動を検出する検出部と、
     前記複数の通信装置のうちの他の通信装置から、該他の通信装置において振動が検出されたことを示す通知を受信する通信部と、
     前記検出部で振動を検出した場合に、前記通信装置の状態を、該通信装置が管理する情報を保護する警戒状態へ遷移させ、前記通知に基づいて前記振動が地震による振動であると判断した場合に、前記警戒状態を解除する制御部とを有することを特徴とする通信装置。
     
  2.  複数の前記他の装置から各々受信した前記通知の個数が、閾値以上となった場合に、前記振動は前記地震による振動であると判定する判定部をさらに有することを特徴とする請求項1記載の通信装置。
     
  3.  前記警戒状態は、前記振動を検知してからの経過時間を監視する状態であって、
     前記制御部は、前記経過時間が閾値以上となった場合に、前記情報の少なくとも一部を消去することを特徴とする請求項1または2のいずれか一項に記載の通信装置。
     
  4.  前記警戒状態は、前記通信装置が備える、前記情報を記憶する記憶領域へのアクセスに対するセキュリティを、該警戒状態が解除された場合と比較して、より高めた状態であることを特徴とする請求項1または2のいずれか一項に記載の通信装置。
     
  5.  前記検出部は、閾値以上の大きさの振動を検出することを特徴とする請求項1乃至4のいずれか一項に記載の通信装置。
     
  6.  通信ネットワークを構成する複数の通信装置と、該通信装置を管理する管理装置とを有するシステムであって、
     前記管理装置は、
     地震の発生を検知した場合に、該地震が発生したエリアに存在する前記通信装置の状態を制御する制御命令を生成する生成部と、
     前記制御命令を出力する通信部とを有し、
     前記通信装置は、
     前記通信装置における振動を検出する検出部と、
     前記管理装置が生成した前記制御命令を受信する通信部と、
     前記振動を検出した場合に、前記通信装置の状態を、該通信装置により管理される情報を保護する警戒状態へ遷移させるとともに、前記制御命令に基づいて、前記警戒状態を解除する制御部とを有することを特徴とするシステム。
     
  7.  前記管理装置において、
     前記通信部は、複数の前記通信装置から、振動を検知した旨の通知を受信し、
     前記生成部は、前記通知の受信数に基づいて、前記地震の発生を検知することを特徴とする請求項6記載のシステム。
           
  8.  管理装置により管理される通信装置であって、
     前記通信装置の振動を検出する検出部と、
     前記管理装置から、該管理装置が地震の発生を検知した場合に生成する制御命令を受信する通信部と、
     前記振動を検出した場合に、前記通信装置の状態を、該通信装置が管理する情報を保護する警戒状態へ遷移させるとともに、前記制御命令に基づいて、前記警戒状態を解除する制御部とを有することを特徴とする通信装置。
     
  9.  通信ネットワークを構成する複数の通信装置の中の一つの通信装置に処理を実行させる為の制御プログラムであって、
     前記通信装置に
     前記通信装置の振動を検出し、
     前記振動を検出した場合に、前記通信装置の状態を、該通信装置が管理する情報を保護する警戒状態へ遷移させ、
     他の通信装置から、該他の通信装置において振動が検出されたことを示す通知を受信し、
     前記通知に基づいて前記振動が地震による振動であると判断した場合に、前記警戒状態を解除する処理を実行させることを特徴とする制御プログラム。
     
  10.  通信ネットワークを構成する複数の通信装置の中の一つの通信装置が実行する制御方法であって、
     前記通信装置が、
     前記通信装置の振動を検出し、
     前記振動を検出した場合に、前記通信装置の状態を、前記情報を保護する警戒状態へ遷移させ、
     他の通信装置から、該他の通信装置において振動が検出されたことを示す通知を受信し、
     前記通知に基づいて前記振動が地震による振動であると判断した場合に、前記警戒状態を解除する処理を実行することを特徴とする制御方法。
  11.  前記通信装置は、前記警戒状態を解除する処理において、
     複数の前記他の装置から各々受信した前記通知の個数が、閾値以上となった場合に、前記検出する処理で検出した前記振動は、前記地震による振動であると判断し、前記警戒状態を解除することを特徴とする請求項10記載の制御方法。
  12.  前記通信装置は、
     前記警戒状態に遷移させる処理において、前記通信装置の状態を、前記振動を検知してからの経過時間を監視する前記警戒状態に遷移させるとともに、
     さらに、前記警戒状態に遷移する処理の後に、前記経過時間が、閾値以上となった場合に、前記情報の少なくとも一部を消去する処理を実行することを特徴とする請求項10または11のいずれか一項に記載の制御方法。
  13.  前記通信装置は、前記警戒状態に遷移させる処理において、前記通信装置の状態を、前記通信装置が備える、前記情報を記憶する記憶領域へのアクセスに対するセキュリティを、より高めた前記警戒状態に遷移させる処理を実行することを特徴とする請求項10または11のいずれか一項に記載の制御方法。
  14.  前記通信装置は、前記振動を検出する処理において、
     閾値以上の大きさの前記振動を検出することを特徴とする請求項10乃至13のいずれか一項に記載の制御方法。
     
PCT/JP2012/001124 2012-02-20 2012-02-20 通信装置、システム、制御プログラム、および制御方法 WO2013124878A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/001124 WO2013124878A1 (ja) 2012-02-20 2012-02-20 通信装置、システム、制御プログラム、および制御方法
US14/459,387 US9760717B2 (en) 2012-02-20 2014-08-14 Communication device, system, and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/001124 WO2013124878A1 (ja) 2012-02-20 2012-02-20 通信装置、システム、制御プログラム、および制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/459,387 Continuation US9760717B2 (en) 2012-02-20 2014-08-14 Communication device, system, and control method

Publications (1)

Publication Number Publication Date
WO2013124878A1 true WO2013124878A1 (ja) 2013-08-29

Family

ID=49005108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001124 WO2013124878A1 (ja) 2012-02-20 2012-02-20 通信装置、システム、制御プログラム、および制御方法

Country Status (2)

Country Link
US (1) US9760717B2 (ja)
WO (1) WO2013124878A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6413311B2 (ja) * 2014-04-11 2018-10-31 株式会社村田製作所 蓄電装置、制御方法、制御装置、蓄電システム、電動車両および電子機器
DE102016207238A1 (de) 2016-04-28 2017-11-02 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Löschen von sicherheitsrelevanter Information in einem Gerät
US11728991B2 (en) 2019-05-28 2023-08-15 International Business Machines Corporation Privacy-preserving leakage-deterring public-key encryption from attribute-based encryptions
CN113865696B (zh) * 2021-09-29 2023-05-26 苏州浪潮智能科技有限公司 一种基于振动感知的机房设备保护方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003067866A (ja) * 2001-08-28 2003-03-07 Matsushita Electric Works Ltd 地震報知機能付き集合住宅管理システム
JP2006065590A (ja) * 2004-08-26 2006-03-09 Fuji Heavy Ind Ltd 車両の監視システム
WO2008117467A1 (ja) * 2007-03-27 2008-10-02 Mitsubishi Electric Corporation 秘密情報記憶装置及び秘密情報の消去方法及び秘密情報の消去プログラム
JP2011044037A (ja) * 2009-08-21 2011-03-03 Yupiteru Corp 防犯装置、プログラム

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5929753A (en) * 1997-03-05 1999-07-27 Montague; Albert Vehicle/aircraft security system based on vehicle displacement profile, with optional GPS/cellular discrimination indicator
JP3603825B2 (ja) * 2001-08-27 2004-12-22 オムロン株式会社 監視システム、中央監視装置、および車載監視装置
JP4256178B2 (ja) 2003-02-27 2009-04-22 リコーエレメックス株式会社 ガスメータ管理システム及びガスメータ
JP4734986B2 (ja) * 2005-03-23 2011-07-27 日本電気株式会社 外部記憶媒体管理システム、及び、外部記憶媒体の管理方法
DE602006003634D1 (de) * 2005-04-13 2008-12-24 Toyota Motor Co Ltd Diebstahlschutzsystem für ein Fahrzeug
JP4887670B2 (ja) 2005-06-14 2012-02-29 パナソニック株式会社 通信システム
US7368935B2 (en) * 2005-10-18 2008-05-06 Honeywell International Inc. Tamper response system for integrated circuits
JP4835114B2 (ja) 2005-11-07 2011-12-14 パナソニック株式会社 通信端末及び安否情報送信方法
US7432823B2 (en) * 2005-11-09 2008-10-07 Distribution Control Systems, Inc. Tamper detection apparatus for electrical meters
US7872574B2 (en) * 2006-02-01 2011-01-18 Innovation Specialists, Llc Sensory enhancement systems and methods in personal electronic devices
US7693663B2 (en) * 2007-04-27 2010-04-06 International Business Machines Corporation System and method for detection of earthquakes and tsunamis, and hierarchical analysis, threat classification, and interface to warning systems
WO2008144943A1 (en) * 2007-05-29 2008-12-04 Absolute Software Corporation Offline data delete with false trigger protection
CN101568119A (zh) * 2008-04-24 2009-10-28 鸿富锦精密工业(深圳)有限公司 具防盗功能的移动终端及其防盗方法
US8289130B2 (en) * 2009-02-19 2012-10-16 Apple Inc. Systems and methods for identifying unauthorized users of an electronic device
JP2010219752A (ja) 2009-03-16 2010-09-30 Sharp Corp 通信システムおよび端末網制御装置
JP2011030054A (ja) 2009-07-28 2011-02-10 Nec Corp 携帯端末装置および制御方法
US20120039117A1 (en) * 2010-08-16 2012-02-16 Gary Edward Webb Destruction of data stored in phase change memory
US8495256B2 (en) * 2011-01-14 2013-07-23 International Business Machines Corporation Hard disk drive availability following transient vibration
US8773263B2 (en) * 2011-09-01 2014-07-08 Ecolink Intelligent Technology, Inc. Security apparatus and method
US8930775B2 (en) * 2011-11-28 2015-01-06 International Business Machines Corporation Preventing disturbance induced failure in a computer system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003067866A (ja) * 2001-08-28 2003-03-07 Matsushita Electric Works Ltd 地震報知機能付き集合住宅管理システム
JP2006065590A (ja) * 2004-08-26 2006-03-09 Fuji Heavy Ind Ltd 車両の監視システム
WO2008117467A1 (ja) * 2007-03-27 2008-10-02 Mitsubishi Electric Corporation 秘密情報記憶装置及び秘密情報の消去方法及び秘密情報の消去プログラム
JP2011044037A (ja) * 2009-08-21 2011-03-03 Yupiteru Corp 防犯装置、プログラム

Also Published As

Publication number Publication date
US20140351950A1 (en) 2014-11-27
US9760717B2 (en) 2017-09-12

Similar Documents

Publication Publication Date Title
Islam et al. Wireless sensor network reliability and security in factory automation: A survey
Jiang et al. An efficient distributed trust model for wireless sensor networks
JP4645049B2 (ja) コンテンツ送信装置およびコンテンツ送信方法
US20160173511A1 (en) Network protection
WO2013124878A1 (ja) 通信装置、システム、制御プログラム、および制御方法
JP2006323707A (ja) コンテンツ送信装置、コンテンツ受信装置、コンテンツ送信方法及びコンテンツ受信方法
US20150163053A1 (en) Relay apparatus, method, and system
US20090141899A1 (en) Dual-mode wireless sensor network system and key establishing method and event processing method thereof
JP2012155495A (ja) 情報処理装置、電力使用量計算システム及びプログラム
JP5839125B2 (ja) ノードおよび通信方法
JP5949909B2 (ja) ゲートウェイおよび地震検知方法
JP2002108945A (ja) データ収集システムおよびデータ収集方法
Suryadevara et al. Secured multimedia authentication system for wireless sensor network data related to Internet of Things
JPWO2013124878A1 (ja) 通信装置、システム、制御プログラム、および制御方法
Abdullah et al. Attacks, vulnerabilities and security requirements in smart metering networks.
JP2019213131A (ja) 中央処理装置、検針システムおよび不正アクセス検出方法
WO2013145026A1 (ja) ネットワークシステム、ノード、検証ノードおよび通信方法
CN102822840A (zh) 使用管理系统和使用管理方法
JP5839124B2 (ja) ノードおよび通信方法
JP2020136793A (ja) 制御装置、産業用制御システムおよび暗号鍵寿命延長方法
JP6628120B2 (ja) 通信監視装置及び通信監視システム
CN109743733A (zh) 一种无线信号控制方法及设备
CN111131200B (zh) 网络安全性检测方法及装置
TWI670671B (zh) 基於區塊鏈的環境偵測方法及其系統
Gajbhiye et al. Attacks and Security Issues in IoT Communication: A Survey

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500548

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869229

Country of ref document: EP

Kind code of ref document: A1