WO2013124079A1 - Système et procédé de commande d'un dispositif accumulateur d'énergie - Google Patents

Système et procédé de commande d'un dispositif accumulateur d'énergie Download PDF

Info

Publication number
WO2013124079A1
WO2013124079A1 PCT/EP2013/050085 EP2013050085W WO2013124079A1 WO 2013124079 A1 WO2013124079 A1 WO 2013124079A1 EP 2013050085 W EP2013050085 W EP 2013050085W WO 2013124079 A1 WO2013124079 A1 WO 2013124079A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
modules
storage modules
storage device
electric machine
Prior art date
Application number
PCT/EP2013/050085
Other languages
German (de)
English (en)
Inventor
Peter Feuerstack
Erik Weissenborn
Martin Kessler
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201380010557.7A priority Critical patent/CN104114403B/zh
Publication of WO2013124079A1 publication Critical patent/WO2013124079A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to a system and a method for driving a
  • Energy storage device in particular in an energy storage device with a modular battery system for generating a stepped output voltage.
  • Electric vehicles increasingly electronic systems are used, which combine new energy storage technologies with electric drive technology.
  • DC voltage in a multi-phase AC voltage for example, a three-phase AC voltage to be reversed.
  • the DC link is fed by a string of serially connected battery modules.
  • multiple battery modules are often connected in series in a traction battery.
  • the publications DE 10 2010 027 857 A1 and DE 10 2010 027 861 A1 disclose modularly connected battery cells in energy storage devices, which can be selectively connected or disconnected via a suitable control of coupling units in the strand of serially connected battery cells. Systems of this type are known as the Battery Direct Converter (BDC).
  • BDC Battery Direct Converter
  • Such systems include DC sources in an energy storage module string connected to a DC link for supplying electrical power to an electrical machine or electrical network via a DC link
  • Pulse inverter can be connected.
  • the energy storage module string has in this case a plurality of energy storage modules connected in series, each energy storage module having at least one battery cell and an associated controllable coupling unit, which allows depending on control signals to bridge the respectively associated at least one battery cell or the respectively associated at least one battery cell to switch the respective energy storage module string.
  • the coupling unit can be designed such that it additionally allows the respectively associated at least one battery cell with inverse polarity in the respective
  • Coupling units can be switched out of the power supply line.
  • the total output voltage of the energy storage module string can be varied by appropriate activation of the coupling units and in particular be set in stages.
  • the gradation of the output voltage results from the voltage of a single energy storage module, the maximum possible
  • Energy storage modules of the energy storage module string is determined.
  • a pulse width modulated (PWM) control of the coupling units can take place. This makes it possible to output a desired mean value as energy storage module voltage by specific variation of the on or off times.
  • PWM pulse width modulated
  • Such BDCs have a need for control methods and control systems that can implement a control strategy that is optimal
  • the present invention in one aspect, provides a method of driving an energy storage device having a plurality of in one
  • Power supply string connected in series energy storage modules, each comprising an energy storage cell module, which has at least one energy storage cell, and a coupling device with coupling elements, which are adapted to selectively connect or bypass the energy storage cell module in the respective power supply line.
  • the method has the steps of detecting operating parameters of an electrical machine, a pulse inverter coupled to the electrical machine and the energy storage device, selecting a number of energy storage modules depending on at least one of the detected operating parameters, driving the coupling elements of
  • Coupling devices of the selected energy storage modules for switching the energy storage cell modules of the selected energy storage modules in the
  • the present invention provides a system comprising an energy storage device having a plurality of energy storage modules connected in series in a power supply string, each of which
  • Energy storage cell module which has at least one energy storage cell, and a coupling device with coupling elements, which are adapted to selectively switch the energy storage cell module in the respective power supply line or to bridge.
  • the system also has a
  • DC link which is coupled to the energy storage device
  • a pulse inverter which is coupled to the DC link, and which is fed from the DC link with an input voltage
  • an electric machine which is coupled to the pulse inverter, and which supplies from the pulse inverter with a phase voltage is
  • a control device which is coupled to the coupling means, and which is adapted to a method according to the invention for driving the
  • Power loss in the entire system, in individual system components or the state of charge of the battery cells of the energy storage device can be done by capturing various relevant operating parameters in the system and in the
  • the detection of operating parameters may comprise detecting the rotational speed of the electric machine and the torque of the electric machine, and selecting the number of energy storage modules depending on the detected rotational speed and the detected torque.
  • the recording of operating parameters can be the detection of the state of charge of
  • Energy storage cells include, and selecting the number of
  • the selection of a number of energy storage modules can be done by determining a number of energy storage modules
  • the method may further comprise the steps of detecting an operating mode of the electric machine, and limiting the selected number of energy storage modules to a maximum number depending on the detected operating mode.
  • the system the system according to the invention
  • Coupling devices have power MOSFET switches or IGBT switches.
  • FIG. 1 is a schematic representation of a system with a
  • Fig. 2 is a schematic representation of an embodiment of a
  • Energy storage module of an energy storage device according to Fig. 1; a schematic representation of another embodiment of an energy storage module of an energy storage device of FIG. 1; a schematic representation of a diagram for the efficiency of an energy storage device as a function of the number of connected energy storage modules; a schematic representation of a diagram for the power loss in a system with an energy storage device in dependence on the number of connected energy storage modules; a schematic representation of a map for the loss-optimal number switched energy storage modules a
  • Energy storage device according to another embodiment of the present invention.
  • a schematic representation of a method for driving an energy storage device according to another embodiment of the present invention.
  • the system 100 comprises an energy storage device 1 with energy storage modules 3, which are connected in series in a power supply train.
  • the power supply line is coupled between two output terminals 1a and 1b of the energy storage device 1, which are each coupled to a DC voltage intermediate circuit 2b.
  • the system 100 in FIG. 1 is used to supply a three-phase electrical machine 6.
  • the energy storage device 1 via a coupling inductance 2a with the
  • the coupling inductance 2a can be any suitable coupling inductance 2a coupled.
  • the coupling inductance 2a can be any suitable coupling inductance 2a.
  • the coupling inductance 2 a may be present through parasitic inductances in the interconnection that are present anyway
  • the DC voltage intermediate circuit 2b feeds a pulse inverter 4, which from the DC voltage of the DC intermediate circuit 2b a three-phase
  • the system 100 may further include a controller 8, which is connected to the energy storage device 1, and by means of which the
  • Energy storage device 1 can be controlled to the desired
  • Output terminals 1a, 1 b provide.
  • the control device 8 can be designed to charge the energy storage cells during charging
  • the power supply line of the energy storage device 1 has at least two energy storage modules 3 connected in series.
  • the number of energy storage modules 3 in FIG. 1 is four, but any other number of
  • Energy storage modules 3 is also possible.
  • the energy storage modules 3 each have two output terminals 3a and 3b, via which a
  • Module output voltage of the energy storage modules 3 can be provided. Since the energy storage modules 3 are primarily connected in series, add up the
  • the energy storage modules 3 each comprise a coupling device 7 with a plurality of coupling elements 7a, 7c and 7b and 7d.
  • Energy storage modules 3 furthermore each comprise an energy storage cell module 5 with one or more energy storage cells 5a to 5k connected in series.
  • the energy storage cell module 5 can, for example, have cells 5a to 5k connected in series, for example lithium-ion cells. In this case, the number of energy storage cells 5 a to 5 k in those shown in Fig. 2 and Fig. 3
  • Energy storage modules 3 exemplified two, but any other number of
  • Energy storage cells 5a to 5k is also possible.
  • the energy storage cell modules 5 have a terminal voltage of U M and are connected via connecting lines with input terminals of the associated coupling device 7. To the
  • Input terminals of the associated coupling device 7 is thus the voltage U M on.
  • the coupling device 7 is formed in Fig. 2 as a full bridge circuit with two coupling elements 7a, 7c and two coupling elements 7b, 7d.
  • Coupling elements 7a, 7b, 7c, 7d can each have an active switching element, for example a semiconductor switch, and a free-wheeling diode connected in parallel therewith. It may be provided that the coupling elements 7a, 7b, 7c, 7d are designed as MOSFET switches, which already have an intrinsic diode.
  • the coupling elements 7a, 7b, 7c, 7d can be controlled in such a way, for example with the aid of the control device 9 shown in FIG.
  • Energy storage cell module 5 is selectively connected between the output terminals 3a and 3b or that the energy storage cell module 5 is bridged.
  • the power storage cell module 5 may be connected in the forward direction between the output terminals 3a and 3b by putting the active switching element of the coupling element 7d and the active switching element of the coupling element 7a in a closed state, while the other two active switching elements of FIG Coupling elements 7b and 7c are set in an open state.
  • the voltage U M is present between the output terminals 3a and 3b of the coupling device 7.
  • a lock-up state can be set, for example, by putting the two active switching elements of the coupling elements 7a and 7b in the closed state, while keeping the two active switching elements of the coupling elements 7c and 7d in the open state.
  • a second lock-up state can be set, for example, by putting the two active switching elements of the coupling elements 7a and 7b in the closed state, while keeping the two active switching elements of the coupling elements 7c and 7d in the open
  • Bridging state for example, be set by the two active switches of the coupling elements 7c and 7d are placed in the closed state, while the active switching elements of the coupling elements 7a and 7b in open Condition are kept.
  • the voltage 0 is present between the two output terminals 3a and 3b of the coupling device 7.
  • the energy storage cell module 5 in the reverse direction between the
  • Output terminals 3a and 3b of the coupling device 7 are switched by the active switching elements of the coupling elements 7b and 7c are placed in the closed state, while the active switching elements of the coupling elements 7a and 7d are set in the open state.
  • the voltage -U M is applied between the two output terminals 3a and 3b of the coupling device 7.
  • a total output voltage can be provided, which depends on the individual output voltages of the energy storage cell modules 5 of the
  • Energy storage modules 3 is dependent.
  • the total output voltage can be set in each case in stages, wherein the number of stages with the number of
  • Energy storage modules 3 scaled. For a number of n energy storage modules 3, the total output voltage of the power supply string can be set in 2n + 1 stages between -n-U M , ..., 0, ..., + n ⁇ U M.
  • Fig. 3 shows a schematic representation of another exemplary
  • the coupling device 7 comprises only the coupling elements 7a and 7c, the half-bridge circuit as the
  • Energy storage cell module 5 can be switched either in a bridging state or a switching state in the forward direction in the power supply line. Incidentally, similar control rules apply as explained in connection with FIG. 3 for the energy storage module 3 shown in full bridge circuit.
  • the full voltage on the electric machine 6 is usually not required. Therefore, it is sufficient to set the voltage of the DC intermediate circuit 2b to a correspondingly lower value.
  • the lower value can be obtained, for example, by appropriately selecting a reduced number of energy storage modules 3 in the
  • FIG. 4 shows a schematic representation of a diagram 40 for the efficiency ⁇ of an energy storage device 1 as a function of the number N of connected energy storage modules 3.
  • two characteristic curves 41 and 42 for various operating parameters of the system 100 are entered in qualitative form.
  • Curve 41 now shows the decrease of the efficiency ⁇ with increasing number N of connected energy storage modules 3 at low speed D of the electric machine 6.
  • the speed D for the characteristic 41 may be about 500 rpm.
  • the characteristic 42 shows the increase of the efficiency ⁇ with increasing number N of connected energy storage modules 3 at high speed D of the electric machine 6.
  • the speed D for the characteristic 42 may be about 10000 rpm.
  • FIG. 5 shows a schematic representation of a diagram 50 for the power loss P in a system 100 with an energy storage device 1 in FIG
  • the characteristic curve 52 shows, by way of example, the switching losses of the pulse-controlled inverter 4, which increase as the number of connected energy storage modules 3 increases.
  • the shows Characteristic 51 the switching losses within the energy storage device 1, which decrease with increasing number of connected energy storage modules 3, since the current load on the coupling devices of the individual energy storage modules 3 by the distribution to several energy storage modules 3 decreases overall.
  • the characteristic curve 53 shows an exemplary overall switching loss curve, which depends inter alia on the sum of the characteristic curves 51 and 52. This characteristic 53 has a minimum for a certain number N of energy storage modules 3, in which the sum of all power losses in the system 100 is minimal. From this behavior can be a first driving strategy for the
  • Derive energy storage device 1 by, to minimize the system power loss or to optimize the system efficiency in each case depending on the instantaneous speed D, current load of the electric machine 6 and / or the
  • FIG. 6 shows a schematic representation of a map 60 for the
  • the map 60 can be formed, for example, depending on the two system parameters speed D and torque M (i.e., power consumption) of the electric machine 6. For each point of the map 60 can be an optimal number of zuzuthroughden energy storage modules 3 in the
  • Energy supply strand of the energy storage device 1 can be determined.
  • four areas 61, 62, 63 and 64 are entered in the map 60.
  • region 61 it may be optimal to switch on only two energy storage modules 3 while in region 64 it is optimal to switch on four energy storage modules 3.
  • FIG. 6 is merely exemplary in nature and actual map lines may differ from the selected illustration.
  • the determined map 60 with the corresponding drive strategy can then be carried out or rasterized by measurements, the map.
  • the determined map 60 with the corresponding drive strategy can then be carried out or rasterized by measurements, the map.
  • control device 8 It may also be possible to set up in the control device 8 a loss model in the form of functional relationships between operating parameters of the system 100, so that the calculation of the energy storage modules 3 to be switched on optimally in the Control device 8 at run time of the system 100, that is, online can be performed.
  • the control device 8 can determine the operating parameters of the respective system components, for example the energy storage device 1, the pulse-controlled inverter 4 and / or the electric machine 6, for example via sensor device or measuring devices.
  • DC intermediate circuit 2b be. This can be advantageous insofar as the design of the electric machine 6 is based on the minimum input voltage.
  • Output voltage of a single energy storage cell only about 60% of the maximum possible rated voltage.
  • the electric machine 6 is designed for a lower minimum voltage level, fewer turns are usually provided to keep the induced Polradbeginn low.
  • the total output voltage of the energy storage device 1 can be maintained at a constant, in particular higher level, the
  • Winding number of the electric machine 6 can not be reduced or the electric machine 6 can be designed for a higher minimum voltage level. As a result, the current load on the energy storage device 1, the
  • Pulse inverter 4 and all other electrical connection components such as plugs, leads, connections and the like.
  • the transition from the basic area to the field weakening area of the electric machine 6 can be kept independent of the state of charge of the energy storage device 1.
  • the voltage spread of the components that are fed by the DC voltage intermediate circuit 2b for example vehicle electrical system voltage converter or similar components, low, so that the design of these components can be made simpler or more efficient.
  • Energy storage device 1 is selected so that the total output voltage of the energy storage device 1 with respect to the state of charge of the
  • Energy storage modules 3 remains constant. Even at low charge state of Energy storage modules 3 to be able to offer a constant (high) voltage, the number of energy storage modules 3 can be selected to be higher. For example, the number of energy storage modules 3 can be selected such that when the charge state of all energy storage modules 3 is full, the total output voltage of the energy storage device 1 is higher than necessary for the operation of the pulse inverter 4. This can with decreasing charge state of
  • Energy storage modules 3 the number of zuzuschapenden energy storage modules 3 are successively increased by the energy storage modules 3 held in reserve. Finally, switching off energy storage modules 3 in operating modes of electric machine 6, in which only a low input voltage or a low rotational speed is required, brings about an advantage in terms of switching losses in pulse-controlled inverter 4. For example, in electric vehicles, an operating mode in which electric motor 6 has a low speed, starting on a slope. In these operating modes, the pulse-controlled inverter 4 limits the permissible maximum phase current.
  • a third driving strategy is therefore the number of zuzudiumden
  • Energy storage modules 3 in predetermined operating modes of the electric machine 6 to limit so that the input voltage to the pulse inverter 4 is reduced so much that it no longer limits the maximum permissible phase current.
  • the switching losses decrease, in particular in the pulse inverter 4, which leads in consequence to an improved design of the electric machine 6, since the axial length of the electric machine 6 for the realization of a sufficiently high torque, for example, for starting on the mountain, no longer to the limited phase current of the pulse inverter 4 must be adjusted.
  • FIG. 7 shows a schematic representation of a method 70 for activating an energy storage device, for example the energy storage device 1 in FIG. 1.
  • the method 70 can be implemented by the control device 8 in FIG. 1, for example.
  • control device 8 via
  • the method 70 may include, as a first step 71, detecting operating parameters of an electric machine coupled to the electric machine Pulse inverter and the energy storage device 1 have.
  • the operating parameters may include the speed of the electric machine and the torque of the electric machine.
  • the state of charge of the energy storage cells of the energy storage device 1 can be detected as an operating parameter.
  • a number is selected from
  • step 74 providing a total output voltage of the power supply string for one
  • Pulse inverter feeding DC voltage intermediate circuit done.
  • detection of an operating mode of the electric machine and limiting of the selected number of energy storage modules to a maximum number depending on the detected operating mode can continue to take place.
  • Limiting the maximum number may be prioritized over the number of energy storage modules selected in step 72, that is, the number of energy storage modules is capped over a maximum function depending on the detected operating mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Procédé de commande d'un dispositif accumulateur d'énergie comportant une pluralité de modules accumulateurs d'énergie montés en série dans une ligne d'alimentation en énergie qui comportent chacun un module d'éléments accumulateurs d'énergie comprenant au moins un élément accumulateur d'énergie, et un dispositif de couplage pourvu d'éléments de couplage qui sont conçus pour connecter sélectivement le module d'éléments accumulateurs d'énergie dans la ligne d'alimentation électrique concernée ou pour ponter ledit module. Ledit procédé comporte les étapes consistant à relever des paramètres de fonctionnement d'un moteur électrique, d'un onduleur à modulation de largeur d'impulsions couplé au moteur électrique et du dispositif accumulateur d'énergie, à sélectionner un nombre de modules accumulateurs d'énergie en fonction d'au moins un des paramètres de fonctionnement relevés, à commander les éléments de couplage des dispositifs de couplage des modules accumulateurs d'énergie sélectionnés pour connecter les modules d'éléments accumulateurs d'énergie des modules accumulateurs d'énergie sélectionnés dans la ligne d'alimentation en énergie, et à fournir une tension de sortie totale de la ligne d'alimentation en énergie pour un circuit intermédiaire à tension continue alimentant l'onduleur à modulation de largeur d'impulsions.
PCT/EP2013/050085 2012-02-24 2013-01-04 Système et procédé de commande d'un dispositif accumulateur d'énergie WO2013124079A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380010557.7A CN104114403B (zh) 2012-02-24 2013-01-04 用于操控能量存储装置的系统和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012202863A DE102012202863A1 (de) 2012-02-24 2012-02-24 System und Verfahren zum Ansteuern einer Energiespeichereinrichtung
DE102012202863.3 2012-02-24

Publications (1)

Publication Number Publication Date
WO2013124079A1 true WO2013124079A1 (fr) 2013-08-29

Family

ID=47563427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/050085 WO2013124079A1 (fr) 2012-02-24 2013-01-04 Système et procédé de commande d'un dispositif accumulateur d'énergie

Country Status (3)

Country Link
CN (1) CN104114403B (fr)
DE (1) DE102012202863A1 (fr)
WO (1) WO2013124079A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014004655A1 (de) 2014-03-29 2014-09-25 Daimler Ag Schaltungsanordnung für ein Kraftfahrzeug
DE102014004234A1 (de) 2014-03-25 2014-09-25 Daimler Ag Spannungssteller auf Basis einer Einzelzellschaltung

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2556914A (en) 2016-11-25 2018-06-13 Dyson Technology Ltd Battery system
DE102018106308B4 (de) * 2018-03-19 2020-02-13 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Modulationsindexverbesserung durch intelligente Batterie
CN110266029A (zh) * 2019-06-03 2019-09-20 杭州模储科技有限公司 一种模块化多电平储能系统
DE102020124737A1 (de) 2020-09-23 2022-03-24 Audi Aktiengesellschaft Erfassungseinrichtung, Messanordnung, Batteriezelleneinheit, Kraftfahrzeug und Verfahren zum Erfassen einer Spannung
DE102020126989A1 (de) 2020-10-14 2022-04-14 Audi Aktiengesellschaft Steuereinrichtung zum Steuern einer Batterie eines Bordnetzes für ein Kraftfahrzeug, Bordnetz, Kraftfahrzeug und Verfahren zum Steuern einer Batterie
CN114030388B (zh) * 2021-10-27 2024-02-27 智新控制系统有限公司 过流保护系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773962A (en) * 1995-01-17 1998-06-30 Norvik Traction Inc. Battery energy monitoring circuits
EP2056422A1 (fr) * 2007-11-01 2009-05-06 Honda Motor Co., Ltd. Système de commande de décharge d'une batterie
DE102010027861A1 (de) 2010-04-16 2011-10-20 Sb Limotive Company Ltd. Koppeleinheit und Batteriemodul mit integriertem Pulswechselrichter und im Betrieb austauschbaren Zellmodulen
DE102010027857A1 (de) 2010-04-16 2011-10-20 Sb Limotive Company Ltd. Koppeleinheit und Batteriemodul mit integriertem Pulswechselrichter und erhöhter Zuverlässigkeit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008001145A1 (de) * 2008-04-14 2009-10-15 Robert Bosch Gmbh Notenergieversorgungsvorrichtung für ein Hybridfahrzeug
KR101057547B1 (ko) * 2010-01-26 2011-08-17 에스비리모티브 주식회사 배터리 관리 시스템 및 그 구동 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773962A (en) * 1995-01-17 1998-06-30 Norvik Traction Inc. Battery energy monitoring circuits
EP2056422A1 (fr) * 2007-11-01 2009-05-06 Honda Motor Co., Ltd. Système de commande de décharge d'une batterie
DE102010027861A1 (de) 2010-04-16 2011-10-20 Sb Limotive Company Ltd. Koppeleinheit und Batteriemodul mit integriertem Pulswechselrichter und im Betrieb austauschbaren Zellmodulen
DE102010027857A1 (de) 2010-04-16 2011-10-20 Sb Limotive Company Ltd. Koppeleinheit und Batteriemodul mit integriertem Pulswechselrichter und erhöhter Zuverlässigkeit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014004234A1 (de) 2014-03-25 2014-09-25 Daimler Ag Spannungssteller auf Basis einer Einzelzellschaltung
DE102014004655A1 (de) 2014-03-29 2014-09-25 Daimler Ag Schaltungsanordnung für ein Kraftfahrzeug

Also Published As

Publication number Publication date
CN104114403B (zh) 2017-06-27
CN104114403A (zh) 2014-10-22
DE102012202863A1 (de) 2013-08-29

Similar Documents

Publication Publication Date Title
EP2795784B1 (fr) Dispositif de stockage d'énergie, système comprenant un dispositif de stockage d'énergie, et procédé de commande d'un dispositif de stockage d'énergie
WO2013124079A1 (fr) Système et procédé de commande d'un dispositif accumulateur d'énergie
DE102012205109B4 (de) Verfahren zum Betreiben einer Energiespeichereinrichtung, Energiespeichereinrichtung zum Erzeugen einer Versorgungsspannung für eine elektrische Maschine sowie Sytem mit einer Energiespeichereinrichtung
WO2013091951A2 (fr) Système et procédé de charge d'éléments d'un dispositif accumulateur d'énergie
DE102013212682B4 (de) Energiespeichereinrichtung mit Gleichspannungsversorgungsschaltung und Verfahren zum Bereitstellen einer Gleichspannung aus einer Energiespeichereinrichtung
WO2014086624A2 (fr) Procédé permettant de fournir une tension d'alimentation et système d'entraînement électrique
DE102011089297A1 (de) Energiespeichereinrichtung, System mit Energiespeichereinrichtung und Verfahren zum Ansteuern einer Energiespeichereinrichtung
EP2842214B1 (fr) Procédé de charge d'éléments accumulateurs d'un système d'accumulation d'énergie et système d'accumulation d'énergie chargeable
WO2013091938A2 (fr) Système et procédé de commande d'un dispositif de stockage d'énergie
WO2013185992A2 (fr) Circuit d'amortissement pour dispositif d'accumulation d'énergie et procédé d'amortissement des vibrations du courant de sortie d'un dispositif d'accumulation d'énergie
DE102012222337A1 (de) Photovoltaiksystem und Verfahren zum Betreiben eines Photovoltaiksystems
DE102012202867A1 (de) Ladeschaltung für eine Energiespeichereinrichtung und Verfahren zum Laden einer Energiespeichereinrichtung
WO2015062900A1 (fr) Circuit de charge pour dispositif d'accumulation d'énergie et procédé permettant de charger un dispositif d'accumulation d'énergie
DE102012210010A1 (de) Energiespeichereinrichtung, System mit Energiespeichereinrichtung und Verfahren zum Bereitstellen einer Versorgungsspannung
WO2014037157A1 (fr) Dispositif de commande et procédé pour déterminer l'état de charge de cellules d'accumulation d'énergie d'un dispositif d'accumulation d'énergie
DE102012202853A1 (de) Ladeschaltung für eine Energiespeichereinrichtung und Verfahren zum Laden einer Energiespeichereinrichtung
WO2014154495A1 (fr) Dispositif accumulateur d'énergie et système comprenant un dispositif accumulateur d'énergie
WO2014040787A2 (fr) Système d'alimentation en énergie et procédé de commande de dispositifs d'accouplement d'un dispositif d'accumulation d'énergie
WO2014127871A2 (fr) Alimentation interne en énergie de modules d'accumulation d'énergie pour un dispositif d'accumulation d'énergie et dispositif d'accumulateur d'énergie la comprenant
DE102012209179A1 (de) Energiespeichereinrichtung, System mit Energiespeichereinrichtung und Verfahren zum Bereitstellen einer Versorgungsspannung
DE102013201909A1 (de) Energiespeichereinrichtung und Verfahren zum Ansteuern einer Energiespeichereinrichtung bei einem Kommunikationsausfall
WO2013072107A1 (fr) Dispositif accumulateur d'énergie, système doté d'un dispositif accumulateur d'énergie et procédé de commande d'un dispositif accumulateur d'énergie
DE102012202855A1 (de) Gleichspannungsabgriffsanordnung für eine Energiespeichereinrichtung und Verfahren zum Erzeugen einer Gleichspannung aus einer Energiespeichereinrichtung
DE102012202868A1 (de) Gleichspannungsabgriffsanordnung für eine Energiespeichereinrichtung und Verfahren zum Erzeugen einer Gleichspannung aus einer Energiespeichereinrichtung
DE102012222333A1 (de) Energiespeichereinrichtung und System mit Energiespeichereinrichtung zum Bereitstellen einer Versorgungsspannung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13700481

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13700481

Country of ref document: EP

Kind code of ref document: A1