WO2013123656A1 - Capteur à fibres optiques entièrement distribuées pour déphaseur de fréquence raman à fibres optiques ayant un effet d'amplification raman fusionné - Google Patents

Capteur à fibres optiques entièrement distribuées pour déphaseur de fréquence raman à fibres optiques ayant un effet d'amplification raman fusionné Download PDF

Info

Publication number
WO2013123656A1
WO2013123656A1 PCT/CN2012/071484 CN2012071484W WO2013123656A1 WO 2013123656 A1 WO2013123656 A1 WO 2013123656A1 CN 2012071484 W CN2012071484 W CN 2012071484W WO 2013123656 A1 WO2013123656 A1 WO 2013123656A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
raman
optical fiber
frequency shifter
sensor
Prior art date
Application number
PCT/CN2012/071484
Other languages
English (en)
Chinese (zh)
Inventor
张在宣
康娟
张文平
李晨霞
余向东
王剑锋
张文生
金尚忠
Original Assignee
中国计量学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国计量学院 filed Critical 中国计量学院
Publication of WO2013123656A1 publication Critical patent/WO2013123656A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • G01D5/35364Sensor working in reflection using backscattering to detect the measured quantity using inelastic backscattering to detect the measured quantity, e.g. using Brillouin or Raman backscattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/324Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres using Raman scattering

Definitions

  • the invention belongs to the technical field of optical fiber sensing, and in particular relates to a fiber Raman temperature sensor.
  • the principle of (OTDR) is developed into a distributed fiber Raman temperature sensor, which can predict the temperature and temperature of the site in real time online, monitor the temperature change on site, and set the alarm temperature in a certain temperature range. It is an intrinsically safe type. Linear temperature sensing detectors, online monitoring sensor networks consisting of distributed fiber Raman temperature sensors have been successfully applied in the power industry, petrochemical enterprises, large civil engineering and online disaster monitoring.
  • the object of the present invention is to provide a fully distributed optical fiber sensor of a fiber Raman frequency shifter incorporating a Raman amplification effect in view of the deficiencies of the prior art.
  • a fully distributed optical fiber sensor of a fiber Raman frequency shifter incorporating a Raman amplification effect characterized by comprising a fiber pulse laser, a fiber splitter, and a single mode fiber Fiber Raman frequency shifter composed of 1660nm filter, delay fiber, fiber multiplexer, fiber wavelength division multiplexer, sensing fiber, fiber narrowband reflection filter, photoelectric receiving module, digital signal processor and Industrial computer.
  • the fiber pulsed laser emits laser pulses through the fiber splitter into two beams.
  • One of the 1550 nm lasers enters the fiber Raman frequency shifter and is frequency-shifted from 13.2 THz to 1660 nm as a broad-spectrum detection source through the fiber-optic combiner.
  • the output port enters the fiber-optic wavelength division multiplexer, and another laser beam of 1550 nm band acts as a pumping source.
  • the fiber-optic wavelength division multiplexer is accessed through the output port of the fiber-optic combiner.
  • the fiber-optic wavelength division multiplexer has Four ports, whose input port is connected to the probe light source output from the fiber Raman frequency shifter and another 1550 nm pump light source through the fiber multiplexer 15.
  • the COM output port is connected to the sensing fiber, and the wide-spectrum reverse Rayleigh scattered light of the 1660 nm band which generates Raman amplification in the sensing fiber is connected to an input port of the photoelectric receiving module through an output port of the fiber wavelength division multiplexer.
  • a port of the digital signal processor After photoelectric conversion amplification, input to a port of the digital signal processor; generate a Raman-amplified 1550 nm wide spectral reverse anti-Stokes Raman scattered light in the sensing fiber through another output of the fiber wavelength division multiplexer
  • the port is connected to the narrow-band reflection filter of the optical fiber, and is decoupled from the 1550 nm Rayleigh scattered light of the laser, and is connected to another input port of the photoelectric receiving module, and is photoelectrically converted and amplified and input to another port of the digital signal processor, the digital signal processor.
  • Connected to the industrial computer Connected to the industrial computer. After demodulation by the digital signal processor and the industrial computer, the temperature and strain information of each point of the sensing fiber is obtained.
  • the center wavelength of the pulsed laser is 1550 nm
  • the spectral width is 0.2 nm
  • the laser pulse width is adjustable from 10 to 30 ns
  • the peak power is adjustable from 1 to 100 W
  • the repetition frequency is adjustable from 500 Hz to 1.5 kHz.
  • the fiber wavelength of the 1660 nm filter in the fiber Raman frequency shifter is 1660 nm
  • the spectral bandwidth is 28 nm
  • the transmittance is 98%
  • the isolation of the 1550 nm laser is >45 dB.
  • the branch ratio of the optical fiber splitter is 80/20, and the branch ratio of the optical fiber combiner (15) is 60/40.
  • the length L of the delay fiber is 1.020 km > L > lkm G652 communication single mode fiber.
  • the center wavelength of the narrow-band reflection filter of the optical fiber is 1550 nm
  • the spectral width is 0.5 nm
  • the reflectance is 99%
  • the isolation to the 1550 nm laser is >45 dB.
  • the sensing fiber is a G652 communication single mode fiber or LEAF fiber having a length of 60 km.
  • the sensing fiber is both a transmission medium and a sensing medium. It is not charged at the temperature measurement site, and is resistant to electromagnetic interference, radiation, and corrosion.
  • the center wavelength of the narrow-band reflection filter of the optical fiber is 1550 nm
  • the spectral width is 0.5 nm
  • the reflectance is 99%
  • the isolation to the 1550 nm laser is >45 dB.
  • the fiber pulse laser emits laser pulses through the fiber splitter into two beams, one of which enters the fiber Raman frequency shifter in the 1550 nm band, and is frequency-shifted from 13.2 THz to 1660 nm as a broad spectrum detection source.
  • the output port of the wave device enters the fiber-optic wavelength division multiplexer, and another laser beam of 1550 nm band acts as a pumping light source.
  • the fiber-optic wavelength division multiplexer is accessed through the output port of the fiber-optic combiner.
  • the COM output port of the device is connected to the sensing fiber, and a Raman-amplified 1660 nm band wide spectral reverse Rayleigh scattered light is generated in the sensing fiber through an output port of the fiber wavelength division multiplexer and an input of the photoelectric receiving module.
  • the port is connected, and is input to a port of the digital signal processor after photoelectric conversion amplification; a wide-spectrum reverse anti-Stokes Raman scattered light of a 1550 nm band which generates Raman amplification in the sensing fiber is passed through the fiber wavelength division multiplexer
  • the other output port is connected to the fiber narrow-band reflection filter, after deducting the 1550nm laser Rayleigh scattered light, and the other input of the photoelectric receiving module
  • the input port is connected, and is photoelectrically converted and amplified, and then input to another port of the digital signal processor, and the digital signal processor is connected to the industrial computer. After demodulation by the digital signal processor and the industrial computer, the temperature and strain information of each point of the sensing fiber is obtained. The temperature measurement accuracy is ⁇ 2°C, and the on-line temperature monitoring is carried out in the range of 0°C-300°C.
  • the industrial computer transmits the remote network through the communication interface and communication protocol.
  • the fiber Raman frequency shifter consists of a single mode fiber and a wideband 1660 nm filter.
  • a 1550 nm pulsed laser is incident on a single-mode fiber, the nonlinear interaction between the laser and the fiber molecule, the incident photon is scattered by one fiber molecule into another Stokes photon or anti-Stokes photon, and the corresponding molecule completes two
  • the transition between vibrational dynamics, releasing a phonon called Stokes Raman scattered photon, the phonon frequency of the fiber molecule is 13.2 THz, and the 1660 nm Stokes with a frequency shift of 13.2 THZ is generated in the sensing fiber.
  • Raman light when the incident 1550nm laser power reaches a certain threshold, most of the incident light is converted into Stokes Raman light, when another 1550nm laser is separated from the incident laser source and 1660nm Stokes Raman When light is incident on the same sensing fiber, the two beams produce a nonlinear interaction at the intersection of the sensing fibers. After the incident power reaches a certain value, the amplified Stokes Raman scattered light is generated, and the fused Raman is obtained.
  • the wide-spectrum with amplifying effect has a 1660 nm band laser, and as a light source for a fully distributed fiber sensor, the gain is about 17 dB, which is equivalent to an extended sensing length of 40 km.
  • the fiber pulsed laser emits laser pulses into the sensing fiber through the integrated fiber-optic wavelength division multiplexer.
  • the interaction between the laser and the fiber molecules produces Rayleigh scattered light at the same frequency as the incident photons.
  • Rayleigh scattered light is transmitted in the fiber. Loss, exponentially decaying with the length of the fiber, the intensity of the reverse Rayleigh scattered light of the fiber is expressed by:
  • is the length of the fiber
  • / is the intensity of the reverse Rayleigh scattered light at the length of the fiber, ".
  • the phonon frequency of the fiber molecule It is 13.2 THz.
  • the heat distribution of the number of particles at the molecular level of the fiber obeys Boltzmann's law.
  • the anti-Stokes back Raman scattering intensity in the fiber is:
  • R a ⁇ T) [ ⁇ ( ⁇ ⁇ I kT) - ⁇ ⁇ ; (4) h is the Planck constant, ⁇ v is the phonon frequency of a fiber molecule, which is 13.2 THz, k is the wave The erzmann constant, T is the Kelvin absolute temperature.
  • the fiber Rayleigh channel is used as a reference signal, and the ratio of the anti-Stokes Raman scattered light to the Rayleigh scattered light intensity is used to detect the temperature:
  • the invention has the advantages of low cost, good signal-to-noise ratio, good stability and reliability, and is suitable for petrochemical pipelines, tunnels, large-scale civil engineering monitoring and disaster forecasting monitoring within a distance of 60 km.
  • FIG. 1 is a schematic diagram of a fully distributed fiber optic sensor of a fiber Raman frequency shifter incorporating a Raman amplification effect; in the figure, a fiber pulse laser 10, a fiber splitter 11, a single mode fiber 12, a 1660 nm filter 13, a delay The optical fiber 14, the optical fiber combiner 15, the optical fiber wavelength division multiplexer 16, the sensing optical fiber 17, the optical fiber narrow-band reflection filter 18, the photoelectric receiving module 19, the digital signal processor 20, and the industrial computer 21.
  • the fully distributed optical fiber sensor of the fiber Raman frequency shifter incorporating the Raman amplification effect of the present invention comprises: a fiber pulse laser 10, a fiber splitter 11, a single mode fiber 12, a 1660 nm filter 13, and a delay fiber. 14.
  • Fiber combiner 15, fiber-optic wavelength division multiplexer 16, sensing fiber 17, fiber narrow-band reflection filter 18, photoelectric receiving module 19, digital signal processor 20, and industrial computer 21.
  • the fiber Raman frequency shifter composed of the single mode fiber 12 and the 1660 nm filter 13
  • the fiber pulse laser 10 emits a laser pulse through the fiber splitter 11 into two beams, wherein a beam of 1550 nm laser enters the fiber Raman frequency Shifter, frequency shifting from 13.2THZ to 1660nm as a broad spectrum detection source, multiplexed by fiber
  • the output port of the device 15 enters the fiber-optic wavelength division multiplexer 16, and the other laser beam of the 1550 nm band acts as a pumping source, and passes through the delay fiber 14 to enter the fiber-optic wavelength division multiplexer 16 through the output port of the fiber-optic combiner 15 .
  • the fiber-optic wavelength division multiplexer 16 has four ports, and its input port is connected to the wide-spectrum detecting light source outputted by the fiber Raman frequency shifter and another 1550-nm pumping light source through the fiber multiplexer 15, and the COM output port is transmitted.
  • the sensing fibers 17 are connected, and the 1660 nm band wide spectral reverse Rayleigh scattered light which generates Raman amplification in the sensing fiber 17 is connected to an input port of the photo receiving module 19 via an output port of the fiber wavelength division multiplexer 16 through
  • the photoelectric conversion is amplified and input to a port of the digital signal processor 20; a Raman-amplified 1550 nm band wide spectral reverse anti-Stokes Raman scattered light is generated in the sensing fiber 17 via the fiber wavelength division multiplexer 16
  • An output port is connected to the optical fiber narrow-band reflection filter 18, and after being deducted by the 1550 nm laser Rayleigh scattered light, it is connected to another input port of the photoelectric receiving module 19, and is input by photoelectric conversion to input a digital signal.
  • Another port of the processor 20, the digital signal processor 20 is connected to the industrial computer 21.
  • the pulse laser has a center wavelength of 1550 nm, a spectral width of 0.1 nm, a laser pulse width of 10-30 ns, a peak power of 1-100 W, and a repetition rate of 500 Hz to 1.5 kHz.
  • the 1660 nm filter in the above-mentioned fiber Raman frequency shifter has a center wavelength of 1660 nm, a spectral bandwidth of 28 nm, a transmittance of 98%, and an isolation of 1545 nm for a 1550 nm laser.
  • the above-mentioned fiber splitter has a branch ratio of 80/20, and the fiber splitter has a branch ratio of 60/40.
  • the length of the delay fiber described above is 1.020km > L>lkm G652 communication single mode fiber.
  • the sensing fiber is a G652 communication single mode fiber or LEAF fiber with a length of 60 km.
  • the sensing fiber is both a transmission medium and a sensing medium. It is not charged at the temperature measurement site, and is resistant to electromagnetic interference, radiation, and corrosion.
  • the above-mentioned fiber narrow-band reflection filter has a center wavelength of 1550 nm, a spectral width of 0.5 nm, a reflectance of 99%, and an isolation of 1545 nm for a 1550 nm laser.
  • the above digital signal processor can use the HZOE-SP01 type signal processing card with dual channel 100MHz bandwidth and 250MS/S set rate of Hangzhou Ouyi Optoelectronics Technology Co., Ltd.

Abstract

La présente invention concerne un capteur à fibres optiques entièrement distribuées pour déphaseur de fréquence Raman à fibres optiques permettant d'obtenir un effet d'amplification Raman fusionné. Une lumière laser émise par un dispositif (10) à impulsion laser de 1 550 nm et à fibres optiques est divisée en deux faisceaux lumineux par un diviseur (11) à fibres optiques. Un faisceau lumineux est converti en lumière Raman Stokes à large spectre par le déphaseur de fréquence Raman à fibres optiques, tandis que l'autre faisceau lumineux, après son passage à travers une fibre optique de retardement (14), est passé à travers un combinateur (15) à fibres optiques conjointement avec la lumière Raman Stokes à bande large pour entrer dans un même fil de fibre optique de détection (17) ; les deux faisceaux lumineux, au moment où ils se rencontrent dans la fibre optique de détection (17), sont fusionnés l'un à l'autre par l'intermédiaire d'une interaction mutuelle non linéaire et donnent une lumière soumise à une diffusion Rayleigh inverse à large spectre de 1 660 nm et amplifiée par Raman. La lumière Raman anti-Stokes à large spectre de 1 550 nm possédant des informations de température et générée dans la fibre optique de détection (17) est passée à travers un filtre réfléchissant à bande étroite (18) et, après déduction de la diffusion de Rayleigh de la lumière laser à 1 550 nm, est entrée conjointement avec une lumière Rayleigh diffusée de 1 660 nm possédant des informations de déformation dans un module électronique de réception (19), un processeur de signal numérique (20) et un ordinateur industriel (21). Les informations de température et de déformation concernant la fibre optique de détection (17) sont acquises après démodulation. Le capteur à fibres optiques peut être utilisé pour surveiller des pipelines pétrochimiques, des tunnels et des projets d'ingénierie civile de grande dimension, ayant une longueur pouvant aller jusqu'à 60 kilomètres, et pour anticiper les catastrophes.
PCT/CN2012/071484 2012-02-21 2012-02-23 Capteur à fibres optiques entièrement distribuées pour déphaseur de fréquence raman à fibres optiques ayant un effet d'amplification raman fusionné WO2013123656A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210038827.2 2012-02-21
CN2012100388272A CN102564642B (zh) 2012-02-21 2012-02-21 融合拉曼放大效应的光纤拉曼频移器的全分布光纤传感器

Publications (1)

Publication Number Publication Date
WO2013123656A1 true WO2013123656A1 (fr) 2013-08-29

Family

ID=46410665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071484 WO2013123656A1 (fr) 2012-02-21 2012-02-23 Capteur à fibres optiques entièrement distribuées pour déphaseur de fréquence raman à fibres optiques ayant un effet d'amplification raman fusionné

Country Status (2)

Country Link
CN (1) CN102564642B (fr)
WO (1) WO2013123656A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110456410A (zh) * 2019-08-28 2019-11-15 之江实验室 基于超强抗弯多芯光纤柔性光缆的分布式水听器
EP3722755A1 (fr) * 2016-01-20 2020-10-14 Fotech Group Limited Capteurs de fibre optique répartis
CN114026393A (zh) * 2019-01-30 2022-02-08 沙特阿拉伯石油公司 混合分布式声学测试
CN114184302A (zh) * 2021-12-01 2022-03-15 山东微感光电子有限公司 一种分布式光纤测温装置、光伏板温度测量系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761235B2 (ja) * 2013-03-06 2015-08-12 横河電機株式会社 光ファイバ温度分布測定装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2145514A (en) * 1983-08-24 1985-03-27 Plessey Co Plc Optical detecting and/or measuring systems
GB2317230A (en) * 1996-09-13 1998-03-18 Ando Electric Fiber optic strain measurement
JPH11271028A (ja) * 1998-03-24 1999-10-05 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ歪測定装置
CN102080953A (zh) * 2010-11-26 2011-06-01 中国计量学院 融合光纤拉曼频移器的超远程全分布式光纤瑞利与拉曼散射传感器
CN201885827U (zh) * 2010-11-26 2011-06-29 中国计量学院 一种光纤拉曼频移器双波长光源自校正分布式光纤拉曼温度传感器
CN201885733U (zh) * 2010-11-26 2011-06-29 中国计量学院 一种融合光纤拉曼频移器的超远程全分布式光纤瑞利与拉曼散射传感器
CN102322976A (zh) * 2011-08-09 2012-01-18 中国计量学院 光纤拉曼频移器双波长脉冲编码光源自校正分布式光纤拉曼温度传感器
CN102322886A (zh) * 2011-08-09 2012-01-18 中国计量学院 融合光纤拉曼频移器的脉冲编码超远程全分布式光纤瑞利与拉曼散射传感器
CN102359830A (zh) * 2011-09-06 2012-02-22 中国计量学院 多拉曼散射效应融合的超远程光纤测温传感器
CN202453115U (zh) * 2012-02-21 2012-09-26 中国计量学院 一种拉曼放大效应的光纤拉曼频移器的全分布光纤传感器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5917969A (en) * 1998-02-17 1999-06-29 Polaroid Corporation Laser modulator
DE102007048135B4 (de) * 2007-10-05 2012-02-16 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Fluoreszenzlichtmikroskopisches Messen einer Probe mit rotverschobenen Stokes-Linien

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2145514A (en) * 1983-08-24 1985-03-27 Plessey Co Plc Optical detecting and/or measuring systems
GB2317230A (en) * 1996-09-13 1998-03-18 Ando Electric Fiber optic strain measurement
JPH11271028A (ja) * 1998-03-24 1999-10-05 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ歪測定装置
CN102080953A (zh) * 2010-11-26 2011-06-01 中国计量学院 融合光纤拉曼频移器的超远程全分布式光纤瑞利与拉曼散射传感器
CN201885827U (zh) * 2010-11-26 2011-06-29 中国计量学院 一种光纤拉曼频移器双波长光源自校正分布式光纤拉曼温度传感器
CN201885733U (zh) * 2010-11-26 2011-06-29 中国计量学院 一种融合光纤拉曼频移器的超远程全分布式光纤瑞利与拉曼散射传感器
CN102322976A (zh) * 2011-08-09 2012-01-18 中国计量学院 光纤拉曼频移器双波长脉冲编码光源自校正分布式光纤拉曼温度传感器
CN102322886A (zh) * 2011-08-09 2012-01-18 中国计量学院 融合光纤拉曼频移器的脉冲编码超远程全分布式光纤瑞利与拉曼散射传感器
CN102359830A (zh) * 2011-09-06 2012-02-22 中国计量学院 多拉曼散射效应融合的超远程光纤测温传感器
CN202453115U (zh) * 2012-02-21 2012-09-26 中国计量学院 一种拉曼放大效应的光纤拉曼频移器的全分布光纤传感器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3722755A1 (fr) * 2016-01-20 2020-10-14 Fotech Group Limited Capteurs de fibre optique répartis
US11015961B2 (en) 2016-01-20 2021-05-25 Fotech Group Limited Distributed optical fibre sensors
CN114026393A (zh) * 2019-01-30 2022-02-08 沙特阿拉伯石油公司 混合分布式声学测试
CN110456410A (zh) * 2019-08-28 2019-11-15 之江实验室 基于超强抗弯多芯光纤柔性光缆的分布式水听器
CN110456410B (zh) * 2019-08-28 2021-10-26 之江实验室 基于超强抗弯多芯光纤柔性光缆的分布式水听器
CN114184302A (zh) * 2021-12-01 2022-03-15 山东微感光电子有限公司 一种分布式光纤测温装置、光伏板温度测量系统及方法
CN114184302B (zh) * 2021-12-01 2024-04-05 山东微感光电子有限公司 一种分布式光纤测温装置、光伏板温度测量系统及方法

Also Published As

Publication number Publication date
CN102564642A (zh) 2012-07-11
CN102564642B (zh) 2013-08-07

Similar Documents

Publication Publication Date Title
CN107917738B (zh) 一种同时测量温度、应变和振动的分布式光纤传感系统
CN108303197B (zh) 基于后向散射增强光纤分布式温度和应变双参量传感装置及其解调方法
US9157811B2 (en) Dispersion and loss spectrum auto-correction distributed optical fiber raman temperature sensor
US10641622B2 (en) Method and system for optical fiber sensing
WO2013123655A1 (fr) Déphaseur de fréquence raman à fibres optiques fusionnées et capteur à fibres optiques entièrement distribuées pour amplificateur raman
GB2400906A (en) Distributed optical fibre measurements
CN102080954B (zh) 超远程100km全分布式光纤瑞利与拉曼散射传感器
CN105203228B (zh) 一种分布式光纤拉曼温度系统的解调方法及装置
CN102322806A (zh) 一种混沌激光相关布里渊光时域分析器
CN111896137B (zh) 一种厘米级空间分辨率的分布式光纤拉曼传感装置及方法
WO2013123656A1 (fr) Capteur à fibres optiques entièrement distribuées pour déphaseur de fréquence raman à fibres optiques ayant un effet d&#39;amplification raman fusionné
CN104697558A (zh) 光纤分布式多参量传感测量系统
CN103616091A (zh) 一种分布式光纤温度和应力传感装置
CN102359830B (zh) 多拉曼散射效应融合的超远程光纤测温传感器
WO2013020286A1 (fr) Capteur de photons raman et rayleigh à fibre optique laser chaotique entièrement répartie
CN201935670U (zh) 一种超远程100km全分布式光纤瑞利与拉曼散射传感器
CN102116684A (zh) 可自校正的全分布式光纤拉曼散射传感器
CN107727122B (zh) 双端探测的联合拉曼和布里渊散射的分布式光纤传感装置
CN104729751A (zh) 一种基于布里渊散射分布式光纤温度和应力传感器
CN104729750A (zh) 一种基于布里渊散射分布式光纤温度传感器
CN105352626B (zh) 一种串联式光纤拉曼温度系统的解调方法及装置
CN201637507U (zh) 一种色散与损耗光谱自校正分布式光纤拉曼温度传感器
CN202453115U (zh) 一种拉曼放大效应的光纤拉曼频移器的全分布光纤传感器
CN113091783B (zh) 基于二级布里渊散射的高灵敏传感装置及方法
Silva et al. Analytical investigation of the receiver for Raman-based distributed temperature sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869330

Country of ref document: EP

Kind code of ref document: A1