WO2013020286A1 - Capteur de photons raman et rayleigh à fibre optique laser chaotique entièrement répartie - Google Patents

Capteur de photons raman et rayleigh à fibre optique laser chaotique entièrement répartie Download PDF

Info

Publication number
WO2013020286A1
WO2013020286A1 PCT/CN2011/078234 CN2011078234W WO2013020286A1 WO 2013020286 A1 WO2013020286 A1 WO 2013020286A1 CN 2011078234 W CN2011078234 W CN 2011078234W WO 2013020286 A1 WO2013020286 A1 WO 2013020286A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
laser
splitter
output
rayleigh
Prior art date
Application number
PCT/CN2011/078234
Other languages
English (en)
Chinese (zh)
Inventor
张在宣
王剑锋
余向东
Original Assignee
中国计量学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国计量学院 filed Critical 中国计量学院
Priority to PCT/CN2011/078234 priority Critical patent/WO2013020286A1/fr
Publication of WO2013020286A1 publication Critical patent/WO2013020286A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/319Reflectometers using stimulated back-scatter, e.g. Raman or fibre amplifiers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/324Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres using Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/083Testing mechanical properties by using an optical fiber in contact with the device under test [DUT]

Definitions

  • the invention relates to the field of optical fiber sensors, in particular to a chaotic laser-related high spatial resolution fully distributed optical fiber Rayleigh and Raman scattering strain and temperature sensor.
  • the fiber optic sensor network developed in recent years can realize safety and health monitoring and disaster prediction and monitoring of large civil engineering, electric power engineering, petrochemical industry, traffic bridges, tunnels, subway stations, dams, dykes and mining projects.
  • fiber optic sensors There are two types of fiber optic sensors: one is a fiber-optic grating (FBG) and a fiber-optic white (FP) point sensor that is "hanged” (layout) on the fiber, using a quasi-distributed fiber optic sensor network composed of optical time domain technology.
  • FBG fiber-optic grating
  • FP fiber-optic white
  • the main problem of the quasi-distributed fiber optic sensor network is that the fiber between the point sensors is only the transmission medium, so there is a detection "blind area"; the other type uses the intrinsic characteristics of the fiber, the fiber Rayleigh, Raman and Brillouin Scattering effect, using a fully distributed fiber optic sensor network consisting of optical time domain (0TDR) technology to measure strain and temperature.
  • TDR optical time domain
  • the optical fiber in the fully distributed optical fiber sensor network is both a transmission medium and a sensing medium, and there is no detection dead zone.
  • the object of the present invention is to provide a chaotic laser-related fully distributed fiber Raman and Rayleigh photon sensor according to the deficiencies of the prior art.
  • the invention has high spatial resolution, low cost, simple structure, good signal to noise ratio and reliability. High sexual characteristics.
  • a chaotic laser-related fully distributed fiber Rayleigh and Raman scattering sensor including a semi-conductive LD laser, a first polarization controller, a fiber circulator, and a first fiber Road, dimming attenuator second polarization controller, one-way, EDFA, second fiber splitter, fiber-optic wavelength division multiplexer, sensing fiber, fiber delay line, first optoelectronic reception Module, second optoelectronic receiving module digital signal processor and computer.
  • the first polarization controller is connected to an input port of the fiber circulator, and an output end of the fiber circulator is connected to the input end of the first fiber splitter, and an output end of the first fiber splitter and the dimmable attenuator
  • the input ends are connected, the output of the tunable optical attenuator is connected to one input end of the optical fiber circulator through the second polarization controller, and is fed back to the semiconductor LD laser via the first polarization controller; the other of the first optical fiber splitter
  • the output end is connected to the EDFA of the erbium-doped fiber amplifier via a one-way device, and the output end of the EDFA of the erbium-doped fiber amplifier is connected to the input end of the second fiber multiplexer, and an output end of the second fiber multiplexer and the fiber-optic wavelength division multiplexer
  • the input end is connected, one output end of the fiber-optic wavelength division multiplexer is connected to the sensing fiber, and the other output end of the second fiber
  • the chaotic laser-related fully distributed fiber Raman and Rayleigh photon sensor is a semiconductor LD laser connected to an input port of the fiber circulator through a first polarization controller, and one of the fiber circulators The output end is connected to the input end of the first fiber optic splitter, one output end of the first fiber optic splitter is connected to the input end of the dimmable optical attenuator, and the output end of the dimmable optical attenuator is passed through the second polarization controller and the optical fiber
  • the circulator is connected to one input and is fed back to the semiconductor LD laser via the first polarization controller.
  • the semiconductor LD laser is a semiconductor DFB laser with an operating wavelength of 1550 nm and an output power of 10 dBm.
  • the branch ratio of the first fiber splitter is 20:80.
  • the sensing fiber is a 30km G652 fiber or a DSF dispersion-shifted fiber or a carbon-coated single-mode fiber for communication.
  • the fiber delay line is composed of a length of single mode fiber for calibrating the zero point of the sensing system.
  • the other output end of the second fiber optic splitter is connected to the first optoelectronic receiving module (22) via a fiber delay line to form a reference optical path.
  • the branch ratio of the second fiber optic splitter is 5:95.
  • the first photo receiving module is composed of a broadband low-noise InGaAs photoelectric avalanche diode and a low-noise broadband preamplifier integrated chip and a three-stage main amplifier
  • the second optoelectronic receiving amplifying module adopts two-way broadband low-noise InGaAs opto-avalanche diode and low-noise broadband preamplifier integrated chip and three-stage main amplifier.
  • the digital signal processor is an associated processor that correlates the local reference signal with the 1550 nm Rayleigh signal of the sensing fiber echo and the 1450 nm anti-Stokes Raman signal, and is processed by the computer to display Temperature and strain information.
  • the chaotic laser emits a time-series laser pulse into the sensing fiber, creating a back-facing direction in the sensing fiber Rayleigh scattering, Stokes and anti-Stokes Raman scattering photon waves, back-reverse Rayleigh scattering, anti-Stokes Raman scattering photonic waves, split by fiber-optic wavelength division multiplexer, with strain
  • the back-scattered Rayleigh scattered light of the information and the anti-Stokes Raman scattering probe light with temperature information are respectively converted into analog electric signals by the photoelectric receiving amplifying module, and amplified, and collected and accumulated by the digital signal processor.
  • the strain information is obtained from the intensity ratio of Rayleigh scattered light, and the strain, strain change speed and direction of each strain detecting point on the sensing fiber are given;
  • the intensity ratio of Raman scattered light and Rayleigh scattered light, the temperature information of each segment of the fiber is obtained by subtracting the influence of strain, the temperature of each temperature sensing point, the temperature change speed and direction, and the cross-effect of strain and temperature detection are not utilized.
  • Optical time domain reflection is used to locate the detection points on the sensing fiber (Fiber Radar Positioning). In 60 seconds, the strain and temperature changes at each point on the 30km sensing fiber are obtained.
  • the temperature measurement accuracy is ⁇ 2° C
  • the spatial resolution is less than 15cm
  • the remote network transmission is performed by the computer communication interface and communication protocol.
  • the semiconductor laser continuously generates random fluctuations of broadband, low correlation noise chaotic laser, and its correlation curve has a ⁇ function shape.
  • the bandwidth of the nonlinear chaotic oscillation of the semiconductor laser can be greater than 15 GHz, which is independent of the measurement length. High resolution, high precision measurement.
  • the cross-correlation peak is related to the intensity of the probe light.
  • the temperature and strain on the sensing fiber are obtained by collecting, accumulating and correlating the probe light and the reference light by a digital signal processor and a computer.
  • the signal-to-noise ratio of the system determines the measurement length.
  • the fiber pulsed laser emits laser pulses into the sensing fiber through the integrated fiber-optic wavelength division multiplexer.
  • the interaction between the laser and the fiber molecules produces Rayleigh scattered light at the same frequency as the incident photons. Rayleigh scattered light is transmitted in the fiber. Loss, exponentially attenuated with the length of the fiber, and the back-end scattered light intensity of the fiber is expressed by:
  • is the length of the fiber
  • / is the intensity of the light that travels back to Rayleigh at the length of the fiber.
  • the relationship between deformation or crack size and fiber loss is calculated using a simulation model and simulated in the laboratory.
  • R a (T) [exp( hA v / kT ) - l]' 1 (5)
  • h is the Planck constant
  • ⁇ v is the phonon frequency of a fiber molecule, which is 13.2 THz
  • k is the wave
  • T is the Kelvin absolute temperature.
  • the fiber Rayleigh channel is used as a reference signal, and the ratio of the anti-Stokes Raman scattered light to the Rayleigh scattered light intensity is used to detect the temperature.
  • the sensing system can be temperature calibrated using a section of fiber placed in a thermostat.
  • the invention has the beneficial effects of: the chaotic laser-related fully distributed optical fiber Rayleigh and Raman scattering sensor of the invention adopts the chaotic laser correlation principle to effectively improve the reliability and spatial resolution of the sensor, and increases the access to the sensing fiber.
  • the number of pump photons increases the signal-to-noise ratio of the sensor system, increases the measurement length of the sensor, and measures the deformation, cracks, and temperature of the field while measuring the temperature of the field.
  • the sensing fiber laid on the disaster prevention site is insulated, uncharged, resistant to electromagnetic interference, radiation resistant, and corrosion resistant. It is intrinsically safe.
  • Optical fiber is both a transmission medium and a sensing medium. It is an intrinsic type. Sense optical fiber, there is no blind zone of measurement, and the life is long.
  • the invention is applicable to a 30km fully distributed optical fiber strain and temperature sensing network. It can be used for petrochemical pipelines, tunnels, large civil engineering monitoring and disaster forecast monitoring within 30 km of ultra-long-range.
  • Figure 1 is a schematic diagram of a chaotic laser-related fully distributed fiber-optic Rayleigh and Raman scattering sensor.
  • a chaotic laser-related fully distributed fiber Raman and Rayleigh photon sensor includes a semiconductor LD laser 10, a first polarization controller 11, a fiber circulator 12, a first fiber splitter 13, and a dimmable attenuator. 14. Second polarization controller 15, one-way device 16, erbium-doped fiber amplifier EDFA17, second fiber-optic splitter 18, fiber-optic wavelength division multiplexer 19, sensing fiber 20, fiber delay line 21, first photo-receiving The module 22, the second photo receiving module 23, the digital signal processor 24, and the computer 25.
  • the semiconductor LD laser 10 is connected to an input port of the fiber circulator 12 via the first polarization controller 11, and the output of the fiber circulator 12 is connected to the input end of the first fiber splitter 13, the first fiber splitter 13
  • One output is connected to the input of the tunable optical attenuator 14, and the output of the tunable optical attenuator 14 is connected to the other input of the optical circulator 12 via the second polarization controller 15, and then controlled by the first polarization.
  • the device 11 feeds back to the semiconductor LD laser 10; the other output of the first fiber splitter 13 is connected to the erbium-doped fiber amplifier EDFA 17 via the unidirectional device 16, and the output of the erbium-doped fiber amplifier EDFA 17 is split with the second fiber.
  • the input end of the second optical fiber splitter 18 is connected to the input end of the optical fiber wavelength division multiplexer 19, and an output end of the optical fiber wavelength division multiplexer 19 is connected to the sensing optical fiber 20,
  • the other output end of the second optical fiber splitter 18 is connected to the first photo receiving module 22 via the optical fiber delay line 21, and the output end of the first photo receiving module 22 is connected to the digital signal processor 24, and the optical fiber wave Multiplexing is 1550nm and 1450nm output port 19 is connected to the output port of the digital signal processor 24, respectively, coupled to the digital signal processor 24 and a computer 25.
  • the semiconductor LD laser 10, the first polarization controller 11, the fiber circulator 12, the first fiber splitter 13, the tunable optical attenuator 14, and the second polarization controller 15 constitute a chaotic laser, and the semiconductor LD laser 10 is a semiconductor DFB laser.
  • the working wavelength is 1550nm and the output power is 10dBm.
  • the branch ratio of the first fiber splitter 13 is 20:80.
  • the sensing fiber 20 is a 30km G652 fiber or DSF dispersion shifted fiber or a carbon coated single mode fiber for communication.
  • the fiber delay line 21 is composed of a length of single mode fiber used to calibrate the zero point of the sensing system.
  • the other output of the second fiber splitter 18 is coupled to the first optoelectronic receiving module 22 via a fiber delay line 21 to form a reference optical path of the second fiber splitter 18 having a branch ratio of 5:95.
  • the first photo receiving module 22 is composed of a broadband low noise InGaAs photoelectric avalanche diode and a low noise broadband preamplifier integrated chip and a three-stage main amplifier, and the second optoelectronic receiving amplifying module 23 is adopted. Two broadband low-noise InGaAs opto-avalanche diodes and a low-noise broadband preamplifier integrated chip and a three-stage main amplifier.
  • the digital signal processor 24 is an associated processor that correlates the local reference signal with the 1550 nm Rayleigh signal of the sensing fiber echo and the 1450 nm anti-Stokes Raman signal, and is processed by the computer to display temperature and strain information. .
  • the invention adopts a chaotic laser, and the random pulsed light pulse sequence in the time domain improves the spatial resolution of the sensor system by the correlation processing of the reverse detection light of the sensing fiber and the local reference light; effectively increasing the incident optical fiber.
  • the number of photons improves the signal-to-noise ratio of the sensor system, improves the measurement length and measurement accuracy of the sensor, and can measure the deformation and crack of the field while measuring the temperature of the field, and does not cross the measured temperature. It has the characteristics of low cost, long life, simple structure, high spatial resolution and good signal-to-noise ratio. It is suitable for high spatial resolution 15cm petrochemical pipelines, tunnels, large civil engineering monitoring and disaster forecasting monitoring within 30km.

Abstract

L'invention concerne un capteur de photons Raman et Rayleigh à fibre optique laser chaotique entièrement répartie, basé sur un principe de chaos laser et un principe de détection par diffusion à fusion de Rayleigh et Raman à fibre optique, et utilisant un principe de réflexion optique en domaine temporel pour réaliser le positionnement d'un point de mesure. Le capteur emploie une suite d'impulsions optiques provenant d'un laser chaotique et fluctuant aléatoirement dans le domaine temporel et, par un traitement de corrélation d'une lumière de rétro-sondage d'une fibre optique de détection avec une lumière de référence locale, permet d'améliorer la résolution spatiale du système de détection pour obtenir un nombre efficacement accru de photons d'une fibre incidente, un rapport signal-bruit amélioré du système de détection, une longueur de mesure et une précision de mesure améliorées du système de détection, et pour une mesure simultanée de la déformation sur site et de la fissuration pendant la mesure de la température sur site, tout en ne se croisant pas. Le capteur présente des caractéristiques de coûts réduits, de durée de vie en service prolongée, de structure simple, de résolution particulière de 15 cm en hauteur et d'excellent rapport signal-bruit, et est applicable dans les pipelines et tunnels pétrochimiques mesurés dans un rayon de 30 kilomètres, dans le contrôle de projets de génie civil à grande échelle et dans la surveillance de prédiction des catastrophes.
PCT/CN2011/078234 2011-08-10 2011-08-10 Capteur de photons raman et rayleigh à fibre optique laser chaotique entièrement répartie WO2013020286A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/078234 WO2013020286A1 (fr) 2011-08-10 2011-08-10 Capteur de photons raman et rayleigh à fibre optique laser chaotique entièrement répartie

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/078234 WO2013020286A1 (fr) 2011-08-10 2011-08-10 Capteur de photons raman et rayleigh à fibre optique laser chaotique entièrement répartie

Publications (1)

Publication Number Publication Date
WO2013020286A1 true WO2013020286A1 (fr) 2013-02-14

Family

ID=47667869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078234 WO2013020286A1 (fr) 2011-08-10 2011-08-10 Capteur de photons raman et rayleigh à fibre optique laser chaotique entièrement répartie

Country Status (1)

Country Link
WO (1) WO2013020286A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014183412A1 (fr) * 2013-05-17 2014-11-20 国家电网公司 Appareil de détection à répartition de fibre optique multi paramètre
CN108254062A (zh) * 2018-01-05 2018-07-06 太原理工大学 一种基于混沌调制的相位敏感光时域反射振动检测装置
CN108593622A (zh) * 2017-12-26 2018-09-28 武汉理工大学 一种用于石化生产过程的智能化集成光纤传感系统及其实时监测诊断方法
CN111307054A (zh) * 2020-02-29 2020-06-19 太原理工大学 基于无时延混沌激光的高精度动态应变监测装置及方法
CN111982189A (zh) * 2020-07-29 2020-11-24 电子科技大学 基于光子探测技术同时实现温度与应变的高精度传感方法
CN112880865A (zh) * 2021-03-25 2021-06-01 太原理工大学 超长距离的高空间分辨率拉曼光纤双参量传感系统和方法
CN113483914A (zh) * 2021-05-25 2021-10-08 太原理工大学 基于少模光纤的混沌bocda温度应变测量装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02201129A (ja) * 1989-01-30 1990-08-09 Tokyo Electric Power Co Inc:The 光ファイバ式分布形温度センサ
JPH02306131A (ja) * 1989-05-22 1990-12-19 Sumitomo Electric Ind Ltd 光ファイバ温度分布測定方法
US5765948A (en) * 1995-03-07 1998-06-16 Kabushiki Kaisha Toshiba Light-temperature distribution sensor using back scattering light produced by incident light pulse and temperature distribution measuring method
CN101226100A (zh) * 2008-01-31 2008-07-23 太原理工大学 混沌光时域反射仪及其测量方法
CN101592475A (zh) * 2009-06-08 2009-12-02 中国计量学院 全分布式光纤瑞利与拉曼散射光子应变、温度传感器
CN201417140Y (zh) * 2009-06-08 2010-03-03 中国计量学院 一种全分布式光纤瑞利与拉曼散射光子应变、温度传感器
US20100312512A1 (en) * 2009-06-08 2010-12-09 Ajgaonkar Mahesh U Single light source automatic calibration in distributed temperature sensing
CN102080953A (zh) * 2010-11-26 2011-06-01 中国计量学院 融合光纤拉曼频移器的超远程全分布式光纤瑞利与拉曼散射传感器
CN102080954A (zh) * 2010-11-26 2011-06-01 中国计量学院 超远程100km全分布式光纤瑞利与拉曼散射传感器
CN201876324U (zh) * 2010-11-12 2011-06-22 湖北擎宇科技有限公司 分布式光纤拉曼温度传感器的双光源光路结构
CN201885733U (zh) * 2010-11-26 2011-06-29 中国计量学院 一种融合光纤拉曼频移器的超远程全分布式光纤瑞利与拉曼散射传感器
CN102322811A (zh) * 2011-08-10 2012-01-18 中国计量学院 混沌激光相关全分布式光纤拉曼与瑞利光子传感器

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02201129A (ja) * 1989-01-30 1990-08-09 Tokyo Electric Power Co Inc:The 光ファイバ式分布形温度センサ
JPH02306131A (ja) * 1989-05-22 1990-12-19 Sumitomo Electric Ind Ltd 光ファイバ温度分布測定方法
US5765948A (en) * 1995-03-07 1998-06-16 Kabushiki Kaisha Toshiba Light-temperature distribution sensor using back scattering light produced by incident light pulse and temperature distribution measuring method
CN101226100A (zh) * 2008-01-31 2008-07-23 太原理工大学 混沌光时域反射仪及其测量方法
CN101592475A (zh) * 2009-06-08 2009-12-02 中国计量学院 全分布式光纤瑞利与拉曼散射光子应变、温度传感器
CN201417140Y (zh) * 2009-06-08 2010-03-03 中国计量学院 一种全分布式光纤瑞利与拉曼散射光子应变、温度传感器
US20100312512A1 (en) * 2009-06-08 2010-12-09 Ajgaonkar Mahesh U Single light source automatic calibration in distributed temperature sensing
CN201876324U (zh) * 2010-11-12 2011-06-22 湖北擎宇科技有限公司 分布式光纤拉曼温度传感器的双光源光路结构
CN102080953A (zh) * 2010-11-26 2011-06-01 中国计量学院 融合光纤拉曼频移器的超远程全分布式光纤瑞利与拉曼散射传感器
CN102080954A (zh) * 2010-11-26 2011-06-01 中国计量学院 超远程100km全分布式光纤瑞利与拉曼散射传感器
CN201885733U (zh) * 2010-11-26 2011-06-29 中国计量学院 一种融合光纤拉曼频移器的超远程全分布式光纤瑞利与拉曼散射传感器
CN102322811A (zh) * 2011-08-10 2012-01-18 中国计量学院 混沌激光相关全分布式光纤拉曼与瑞利光子传感器

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
WANG ZHONGDONG ET AL.: "Optical fiber pre-warning system for safety of oil pipelines.", OPTICAL TECHNIQUE., vol. 34, no. 4, July 2008 (2008-07-01), pages 579 - 582 *
WANG, ANBANG ET AL.: "Chaotic laser correlation method for optical time-domain reflectometry .", SCIENTIA SINICA(INFORMATIONIS)., vol. 40, no. 3, 2010, pages 512 - 518 *
WANG, YUNCAI ET AL.: "Correlation range finding with chaotic laser signal.", JOURNAL OF SHENZHEN UNIVERSITY: SCIENCE AND ENGINEERING., vol. 27, no. 4, October 2010 (2010-10-01) *
WANG, ZHONGDONG ET AL.: "A distributed optical fiber pre-warning system for safety monitoring of oil pipelines .", MICROCOMPUTER INFORMATION(CONTROL & AUTOMATION)., vol. 24, no. 11-3, 2008, pages 58 - 60 *
ZHENG, YAJUAN ET AL.: "Optical fiber pre-warning system for safety of oil pipe lines based on OTDR.", CONTROL AND INSTRUMENTS IN CHEMICAL INDUSTRY., vol. 35, no. 2, 2008, pages 45 - 49 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014183412A1 (fr) * 2013-05-17 2014-11-20 国家电网公司 Appareil de détection à répartition de fibre optique multi paramètre
CN108593622A (zh) * 2017-12-26 2018-09-28 武汉理工大学 一种用于石化生产过程的智能化集成光纤传感系统及其实时监测诊断方法
CN108254062A (zh) * 2018-01-05 2018-07-06 太原理工大学 一种基于混沌调制的相位敏感光时域反射振动检测装置
CN111307054A (zh) * 2020-02-29 2020-06-19 太原理工大学 基于无时延混沌激光的高精度动态应变监测装置及方法
CN111307054B (zh) * 2020-02-29 2021-03-30 太原理工大学 基于无时延混沌激光的高精度动态应变监测装置及方法
CN111982189A (zh) * 2020-07-29 2020-11-24 电子科技大学 基于光子探测技术同时实现温度与应变的高精度传感方法
CN111982189B (zh) * 2020-07-29 2022-04-29 电子科技大学 基于光子探测技术同时实现温度与应变的高精度传感方法
CN112880865A (zh) * 2021-03-25 2021-06-01 太原理工大学 超长距离的高空间分辨率拉曼光纤双参量传感系统和方法
CN113483914A (zh) * 2021-05-25 2021-10-08 太原理工大学 基于少模光纤的混沌bocda温度应变测量装置

Similar Documents

Publication Publication Date Title
US9157811B2 (en) Dispersion and loss spectrum auto-correction distributed optical fiber raman temperature sensor
WO2013020286A1 (fr) Capteur de photons raman et rayleigh à fibre optique laser chaotique entièrement répartie
CN101592475B (zh) 全分布式光纤瑞利与拉曼散射光子应变、温度传感器
CN102080954B (zh) 超远程100km全分布式光纤瑞利与拉曼散射传感器
CN103616089B (zh) 一种光纤温度振动传感器及综合监控系统和方法
CN201885733U (zh) 一种融合光纤拉曼频移器的超远程全分布式光纤瑞利与拉曼散射传感器
CN203605976U (zh) 一种分布式光纤温度和应力传感装置
WO2013123655A1 (fr) Déphaseur de fréquence raman à fibres optiques fusionnées et capteur à fibres optiques entièrement distribuées pour amplificateur raman
CN108180853B (zh) 一种基于混沌调制的布里渊光时域反射应变检测装置
CN103616091B (zh) 一种分布式光纤温度和应力传感装置
CN102322811B (zh) 混沌激光相关全分布式光纤拉曼与瑞利光子传感器
CN109595470B (zh) 一种分布式管道检测方法
CN202177385U (zh) 一种脉冲编码超远程全分布式光纤瑞利与拉曼散射传感器
CN202197280U (zh) 融合光时域反射计与分布式光纤拉曼温度传感器的系统
CN102080953A (zh) 融合光纤拉曼频移器的超远程全分布式光纤瑞利与拉曼散射传感器
CN105973501A (zh) 长距离高空间分辨率拉曼测温传感器及其实现方法
CN204087417U (zh) 光纤感温火灾探测器系统
CN201935670U (zh) 一种超远程100km全分布式光纤瑞利与拉曼散射传感器
CN203465033U (zh) 基于宽谱光源的布里渊分布型光纤温度传感器
CN101818640A (zh) 一种基于拉曼散射光时域反射计的油水井井下工况温度的全分布式监测装置及监测方法
CN102322809A (zh) 脉冲编码超远程全分布式光纤瑞利与拉曼散射传感器
KR101095590B1 (ko) 라만 otdr 온도센서에서의 온도 분포 측정 방법
WO2013123656A1 (fr) Capteur à fibres optiques entièrement distribuées pour déphaseur de fréquence raman à fibres optiques ayant un effet d'amplification raman fusionné
Li et al. R-DTS with heat transfer functional model for perceiving the surrounding temperature
CN107727122B (zh) 双端探测的联合拉曼和布里渊散射的分布式光纤传感装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870714

Country of ref document: EP

Kind code of ref document: A1