WO2013122113A1 - Rudder device for marine vessel, and marine vessel provided with same - Google Patents

Rudder device for marine vessel, and marine vessel provided with same Download PDF

Info

Publication number
WO2013122113A1
WO2013122113A1 PCT/JP2013/053431 JP2013053431W WO2013122113A1 WO 2013122113 A1 WO2013122113 A1 WO 2013122113A1 JP 2013053431 W JP2013053431 W JP 2013053431W WO 2013122113 A1 WO2013122113 A1 WO 2013122113A1
Authority
WO
WIPO (PCT)
Prior art keywords
rudder
bearing
bearing bush
ship
hole
Prior art date
Application number
PCT/JP2013/053431
Other languages
French (fr)
Japanese (ja)
Inventor
智 宮崎
佐藤 毅
小柳 雅人
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201380009396.XA priority Critical patent/CN104114446B/en
Priority to KR1020147022236A priority patent/KR101648655B1/en
Publication of WO2013122113A1 publication Critical patent/WO2013122113A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/38Rudders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/18Sliding surface consisting mainly of wood or fibrous material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/30Ships, e.g. propelling shafts and bearings therefor

Definitions

  • the present invention relates to a rudder device of a ship and a ship equipped with the same.
  • the rudder of the ship is pivotally supported by a rudder horn fixed to the stern.
  • a metal cylindrical liner is fixed to a vertically extending bearing hole formed in the rudder horn by welding or the like, and a resin material is poured into the inner diameter hole of the cylindrical liner and cured to form a bearing bush.
  • the rudder is rotatably attached to the rudder horn around the rudder horn by rotatably inserting the rudder shaft provided on the rudder into the bearing bush.
  • Patent Document 3 discloses that the lower end of the rudder shaft fixed to the rudder horn is fitted and fixed by cooling with liquid nitrogen or the like.
  • a metal cylindrical liner is interposed between the bearing hole of the rudder horn and the bearing bush made of resin is that the center line of the bearing hole of the rudder horn is determined on the side of the hull due to the assembly accuracy of the hull.
  • the positional relationship of the misalignment is precisely measured, and the cylindrical liner is machined in a single state according to this, and the misalignment is corrected.
  • the inner diameter hole of the cylindrical liner is made eccentric to the outer diameter surface.
  • the bearing hole of the rudder horn in fact, that is, the inner diameter hole of the bearing bush is made to coincide with the rudder turning reference line defined on the hull side, the water flow resistance due to the displacement of the rudder position is reduced and accurate steering Performance can be demonstrated.
  • the cylindrical liner in order to mount the cylindrical liner in the bearing hole of the rudder horn, it is necessary to increase the inner diameter of the bearing hole by the thickness of the cylindrical liner. Since the cylindrical liner is not recognized as a strength member when calculating the strength of the rudder horn, it is necessary to increase the width (thickness) of the rudder horn to secure a predetermined strength by an increase in the inner diameter of the bearing hole. However, if this is done, the width of the rudder horn becomes thicker than the width of the rudder, and a step is formed between the two members, and the water flow separates from the surface of the rudder during navigation, adversely affecting the steering performance.
  • the width of the rudder must be increased according to the width of the rudder horn, and by increasing the width of the rudder horn and the rudder in this way, the flow resistance and the weight of the ship increase, and the propulsion performance of the ship Since the fuel efficiency was deteriorated, it was difficult to put the method of Patent Document 1 into practical use in view of strength.
  • the present invention has been made in view of the above circumstances, and a ship rudder device capable of accurately attaching a rudder to a hull with a simple and durable configuration not using a cylindrical liner, and a ship equipped with the same Intended to provide.
  • the present invention adopts the following means. That is, the first aspect of the ship rudder device according to the present invention includes a rudder horn fixed to the stern, a rudder rotatably supported around a pivot reference line, a bearing hole of the rudder horn, and the rudder And a bearing bush interposed between the shafts, wherein the bearing bush is formed by cutting an outer diameter surface thereof so that the central axis of the inner diameter hole coincides with the rotation reference line.
  • the width (thickness) of the rudder horn and rudder can be reduced by the thickness of the cylindrical liner, reducing the flow resistance and reducing the weight of the vessel during navigation, and promoting the vessel Performance and fuel consumption can be improved.
  • the bearing bush hardens a core material in which a flat fiber material is wound in a roll shape a plurality of times.
  • the outer diameter surface is processed into a cylindrical shape so that the laminated center axis of the core material is formed to coincide with the center axis of the inner diameter hole, and the center axis of the outer diameter surface is formed. It is formed to be decentered with respect to the stacking central axis.
  • the fibers of the fiber material are not cut at the inner peripheral surface of the inner diameter hole.
  • the outer diameter surface is pressed into the bearing hole of the rudder horn and does not slide against the inner circumferential surface of the bearing hole, The end of the fiber material will not be rubbed off. Therefore, there is no concern that the end portion of the cut fiber material is exposed on the inner peripheral surface of the inner diameter hole and it is twisted by the rotating rudder shaft and peeled off. Therefore, the decrease in the durability of the bearing bush can be prevented.
  • the bearing bush has a rotation restricting means for restricting rotation of the bearing bush inside the bearing hole.
  • the bearing bush is prevented from pivoting in the bearing hole of the rudder horn, the axial center position of the rudder can be prevented from being deviated with respect to the hull.
  • the rotation restricting means is configured to prevent the bearing bush from being pulled out from the bearing hole in the axial direction. Between the end face of the bearing bush and at least one of the flange members fixed to the opposite end portions of the bearing hole, there is provided an uneven fitting portion which is fitted to each other to restrict the rotation of the bearing bush .
  • the rotation of the bearing bush can be effectively restricted only by subjecting the flange member and the bearing bush which are conventionally used to prevent the removal of the bearing bush, and the bearing bush can be effectively restricted.
  • the low cost configuration allows the rudder to be accurately attached to the hull.
  • the ship according to an aspect of the present invention includes the rudder device according to any one of the first to fourth aspects.
  • a rudder can be correctly attached to a hull by simple and highly durable composition which does not use a cylindrical liner.
  • the rudder device of the ship and the ship provided with the same according to the present invention the rudder can be accurately attached to the hull by the simple and high-durability configuration without using a cylindrical liner.
  • the width of the rudder horn and the rudder is reduced to reduce the flow resistance and the weight of the vessel during navigation, improve the propulsion performance of the vessel, improve the fuel efficiency, shorten the construction period of the vessel and manufacture cost As a result, the safety of ship manufacturing workers can be further improved, and the maintainability around the rudder axis can be improved.
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG.
  • FIG.1 and FIG.8 is a side view which shows an example of the rudder apparatus 1 of the ship which can apply this invention.
  • a rudder 4 rudder
  • the ladder horn 3 is provided with a pair of upper and lower projections 5 and 6, and bearing holes 8 and 9 are formed in the projections 5 and 6 in the vertical direction, respectively.
  • the bearing bushes 11 and 12 are fitted in the bearing holes 8 and 9, and the rudder shafts 16 and 17 fixed to the rudder 4 by the nuts 14 and 15 are inserted into the inner diameter holes of the bearing bushes 11 and 12, 4 is rotatably supported with respect to the rudder horn 3 (gaugeons 5, 6).
  • the bearing holes 8 and 9 and the rudder shafts 16 and 17 need to have their axes aligned with a rotation reference line CL defined on the hull 2 side.
  • the rotation reference line CL is generally a vertical line.
  • the steering shaft 19 fixed to the upper portion of the rudder 4 is turned by a steering device (not shown), whereby the steering of the rudder 4 is performed.
  • the rudder horn 3 is rotatably supported with respect to the rudder horn 3 as well.
  • the rudder shaft 17 (16) is taper-fitted to the casing 4 a of the rudder 4 and fastened by the aforementioned nut 15 (14).
  • the rudder shaft 17 (16) is covered with a sleeve 21 formed of a material that improves wear resistance and slidability.
  • the bearing bush 12 (11) fitted in the bearing hole 9 (8) of the gudgeon 6 (5) is press-fitted and fixed to the bearing hole 9 (8) by cold fitting etc.
  • the bearing hole 9 (8) In order to prevent removal in the axial direction from the above, flange members 23 and 24 which are plate members in the shape of a donut disk are fixed by welding, bolting or the like at both ends of the bearing hole 9 (8).
  • the bearing bushes 11 and 12 have an inner diameter hole 25 into which the rudder shafts 16 and 17 are inserted and an outer diameter surface 26, and the central axis 26 a of the outer diameter surface 26. Are eccentric with respect to the central axis 25 a of the bore 25.
  • the amount of eccentricity E is, for example, the amount of positional deviation when the center line of the bearing holes 8 and 9 of the rudder horn 3 deviates with respect to the rotation reference line CL due to the assembly accuracy of the hull 2. It is set together. That is, the positional relationship between the center lines of the bearing holes 8 and 9 with respect to the rotation reference line CL is precisely measured, and the bearing bushes 11 and 12 are eccentrically machined in a single state accordingly.
  • the bearing bushes 11 and 12 are press-fit into the bearing holes 8 and 9 of the rudder horn 3 by cold fitting or the like in a direction in which the displacement is eliminated (cancelled).
  • the bearing bushes 11 and 12 harden the core material 29 in which a flat fiber material 28 (such as canvas) is wound a plurality of times in a roll shape and laminated, and the outer diameter surface 26 is processed thereon And it has a cylindrical shape.
  • the laminated central axis 29 a of the core member 29, that is, the roll central axis of the fiber material 28 forming the core member 29 is formed to coincide with the central axis 25 a of the inner diameter hole 25.
  • the central axis 26a of the second embodiment is formed to be decentered by an eccentricity E with respect to the laminated central axis 29a. For this reason, the end portion of the fiber material 28 forming the core material 29 is not exposed on the inner peripheral surface of the inner diameter hole 25.
  • the bearing bushes 11 and 12 eccentrically processed in this way rotate within the bearing holes 8 and 9 even if they are used for a long time after being pressed into the bearing holes 8 and 9 of the rudder horn 3. Is not allowed. For this reason, as shown in FIG. 6, an uneven fitting portion 30 is provided as a rotation restricting means for restricting the rotation of the bearing bushes 11 and 12 inside the bearing holes 8 and 9.
  • the uneven fitting portion 30 is formed, for example, in a notch 31 formed on at least one of upper and lower end faces of the bearing bushes 11 and 12 and at least one of the flange members 23 and 24. It is comprised from the projection part 32 closely fitted.
  • the notch 31 may be provided on the inner peripheral portion of the flange members 23 and 24 or the like, and the protrusion 32 may be formed on the end face of the bearing bush 11 or 12.
  • this rudder device 1 is press-fitted into the bearing holes 8 and 9 of the rudder horn 3 to center the axial line 26 of the outer diameter surface 26 of the bearing bushes 11 and 12 for supporting the rudder shafts 16 and 17 of the rudder 4.
  • the bearing bushes 11 and 12 are offset by the position deviation.
  • the outer diameter surface 26 may be processed so that the central axis 26 a of the outer diameter surface 26 is eccentric to the central axis 25 a of the inner diameter hole 25.
  • the positional deviation of the bearing holes 8 and 9 of the rudder horn 3 is corrected by the bearing bushes 11 and 12 themselves, and the rudder 4 is accurately attached to the hull 2 be able to. That is, the rotation reference line CL of the rudder horn 3 becomes the rotation reference line of the rudder 4, and the central axis 25a of the inner diameter hole 25 of the bearing bushes 11, 12 coincides with the rotation reference line CL.
  • the conventionally used cylindrical liner 35 can be eliminated, whereby the width (thickness) W of the rudder horn 3 and the rudder 4 can be increased by the thickness of the cylindrical liner 35. It is possible to make it thinner, reduce the flow resistance at the time of navigation, reduce the weight of the vessel, and improve the propulsion performance and fuel efficiency of the vessel S. Furthermore, the construction period of the ship S can be shortened, the manufacturing cost can be reduced, and the maintainability around the rudder shafts 16 and 17 can be improved.
  • the bearing bushes 11 and 12 are formed into a cylindrical shape by curing the core material 29 in which the flat fiber material 28 is wound in a roll shape a plurality of times and laminated, and the outer diameter surface 26 is processed thereon.
  • the center axis line 29a of the core member 29 is formed to coincide with the center axis ship 25a of the inner diameter hole 25, and the center axis line 26a of the outer diameter surface 26 is formed to be eccentric to the center axis line 29a.
  • the inner diameter hole 25 is formed in advance, and in the inner diameter surface 25, the end of the fiber material 28 cut to the inner peripheral surface is There is no concern that the end portion of the fiber material 28 will be unfolded and peeled off by the rudder shafts 16 and 17 which are rotated. Therefore, the deterioration of the durability of the bearing bushes 11, 12 can be prevented.
  • the end of the cut fiber material 28 is exposed at the outer diameter surface 26 of the bearing bushes 11 and 12, but the outer diameter surface 26 is press-fit into the bearing holes 8 and 9 of the rudder horn 3. Since it does not slide relative to the inner circumferential surface, the end of the fiber material 28 is not rubbed and curled.
  • the uneven fitting portion 30 that restricts the bearing bushes 11 and 12 from rotating inside the bearing holes 8 and 9 is provided, the installation position of the rudder 4 is prevented from being deviated with respect to the hull 2 can do.
  • the uneven fitting portion 30 is a flange member 23 which is conventionally fixed to both ends of the bearing holes 8 and 9 in order to prevent the bearing bushes 11 and 12 from being pulled out from the bearing holes 8 and 9 in the axial direction.
  • the projection 32 formed on at least one of the portions 24 and the notch 31 formed on the end faces of the bearing bushes 11 and 12 are engaged with each other to restrict rotation of the bearing bushes 11 and 12. Since the flange members 23, 24 used from the above and the bearing bushes 11, 12 can be provided only by small processing, the rotation of the bearing bushes 11, 12 is effectively restricted by a simple and inexpensive configuration.
  • the rudder 4 can be attached to the hull 2 accurately.
  • the rudder 4 can be accurately attached to the hull 2 by the simple and highly durable configuration that does not use a cylindrical liner.
  • the width of the rudder horn 3 and the rudder 4 is reduced to reduce the flow resistance and the weight of the vessel during navigation, improve the propulsion performance of the vessel S, improve the fuel efficiency, and shorten the construction period of the vessel S Therefore, the manufacturing cost can be reduced, and the maintainability around the rudder shafts 16 and 17 can be improved to reduce the maintenance cost.
  • the welding and attaching the cylindrical liner to the rudder horn 3 is not necessary, the welding operation at high places can be eliminated to further improve the safety of the operator.
  • the present invention is not limited to only the configuration of the above embodiment, and modifications and improvements can be made as appropriate without departing from the scope of the present invention, and such modifications and improvements can be made.
  • the form is also included in the scope of the present invention.
  • the central axis of the outer diameter surface 26 is parallel to the central axis 25 a of the inner diameter hole 25 of the bearing bushes 11 and 12 in the above embodiment, depending on the attachment state of the rudder horn 3 to the hull 2,
  • the central axis 26a may be inclined with respect to the central axis 25a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Sliding-Contact Bearings (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

 This rudder device for marine vessel (1) comprises: a rudder horn (3) fixed to the stern of a vessel; a rudder (4) rotatably supported on a shaft that corresponds with the rotation reference line (CL); and bearing bushes (11, 12) that are interposed between the bearing holes (8, 9) of the rudder horn (3) and the rudder shafts (16, 17). The bearing bushes (11, 12) have the outer radial surfaces (26) thereof formed by machining in such a manner that the central axis (25a) of the inner radial hole (25) thereof is in alignment with the rotation reference line (CL).

Description

船舶の舵装置およびこれを備えた船舶Ship rudder device and ship equipped with the same
 本発明は、船舶の舵装置およびこれを備えた船舶に関するものである。 The present invention relates to a rudder device of a ship and a ship equipped with the same.
 特許文献1,2等に開示されているように、船舶の舵(ラダー)は、船尾に固定されたラダーホーンに軸支されている。具体的には、ラダーホーンに形成された鉛直方向に延びる軸受穴に金属製の円筒ライナーが溶接等により固定され、この円筒ライナーの内径穴に樹脂材を流し込み、硬化させ、軸受ブッシュを形成し、舵に設けられた舵軸が軸受ブッシュに回転自在に挿入されることにより、舵がラダーホーンに対して舵軸回りに回動可能に取り付けられる。また、特許文献3には、ラダーホーンに固設される舵軸の下端を液体窒素等で冷却する冷やし嵌めにより嵌合固着することが開示されている。 As disclosed in Patent Literatures 1 and 2, the rudder of the ship is pivotally supported by a rudder horn fixed to the stern. Specifically, a metal cylindrical liner is fixed to a vertically extending bearing hole formed in the rudder horn by welding or the like, and a resin material is poured into the inner diameter hole of the cylindrical liner and cured to form a bearing bush. The rudder is rotatably attached to the rudder horn around the rudder horn by rotatably inserting the rudder shaft provided on the rudder into the bearing bush. Patent Document 3 discloses that the lower end of the rudder shaft fixed to the rudder horn is fitted and fixed by cooling with liquid nitrogen or the like.
 ラダーホーンの軸受穴と樹脂製の軸受ブッシュとの間に金属製の円筒ライナーが介装される理由は、船体の組立精度の都合でラダーホーンの軸受穴の中心線が船体側に定められた舵回動基準線に対して前後左右にずれている場合に、その位置ずれの位置関係を精密に計測し、これに合わせて円筒ライナーを単体状態で機械加工し、上記位置ずれが補正されるように円筒ライナーの内径穴を外径面に対して偏心させるためである。これにより、事実上のラダーホーンの軸受穴、つまり軸受ブッシュの内径穴を、船体側に定められた舵回動基準線に合致させ、舵位置のずれによる水流抵抗を少なくするとともに、正確な操舵性能を発揮させることができる。 The reason why a metal cylindrical liner is interposed between the bearing hole of the rudder horn and the bearing bush made of resin is that the center line of the bearing hole of the rudder horn is determined on the side of the hull due to the assembly accuracy of the hull. In the case of misalignment in the front, rear, left, and right with respect to the rudder pivot reference line, the positional relationship of the misalignment is precisely measured, and the cylindrical liner is machined in a single state according to this, and the misalignment is corrected. Thus, the inner diameter hole of the cylindrical liner is made eccentric to the outer diameter surface. Thereby, the bearing hole of the rudder horn in fact, that is, the inner diameter hole of the bearing bush is made to coincide with the rudder turning reference line defined on the hull side, the water flow resistance due to the displacement of the rudder position is reduced and accurate steering Performance can be demonstrated.
特開昭60-163798号公報Japanese Patent Application Laid-Open No. 60-163798 特開2005-247122号公報JP 2005-247122 A 実開平4-90493号公報Japanese Utility Model Application Publication No. 4-90493
 ところで、ラダーホーンの軸受穴に円筒ライナーを装着するには、円筒ライナーの肉厚の分だけ軸受穴の内径を大きくする必要がある。ラダーホーンの強度計算の際、円筒ライナーは強度部材として認定されないため、軸受穴の内径を大きくした分、ラダーホーンの幅(厚み)を増して所定の強度を確保しなければならない。しかし、そうするとラダーホーンの幅が舵の幅に対して厚くなり、両部材間に段差ができて航行時に舵の表面から水流が剥離し、操舵性能に悪影響を及ぼす。このため、ラダーホーンの幅に合わせて舵の幅も厚くせざるを得ず、このようにラダーホーンと舵の幅が厚くなることにより、水流抵抗と船舶重量が増大し、船舶の推進性能と燃費を悪化させていたため、特許文献1記載の工法を実用することは強度の関係上、困難であった。 By the way, in order to mount the cylindrical liner in the bearing hole of the rudder horn, it is necessary to increase the inner diameter of the bearing hole by the thickness of the cylindrical liner. Since the cylindrical liner is not recognized as a strength member when calculating the strength of the rudder horn, it is necessary to increase the width (thickness) of the rudder horn to secure a predetermined strength by an increase in the inner diameter of the bearing hole. However, if this is done, the width of the rudder horn becomes thicker than the width of the rudder, and a step is formed between the two members, and the water flow separates from the surface of the rudder during navigation, adversely affecting the steering performance. Therefore, the width of the rudder must be increased according to the width of the rudder horn, and by increasing the width of the rudder horn and the rudder in this way, the flow resistance and the weight of the ship increase, and the propulsion performance of the ship Since the fuel efficiency was deteriorated, it was difficult to put the method of Patent Document 1 into practical use in view of strength.
 また、円筒ライナーをラダーホーンの軸受穴に溶接等により固定した後、この円筒ライナーの内径穴に樹脂製の軸受ブッシュを冷やし嵌め等により圧入するという二段階の組立工程を必要とし、これにより船舶の建造工期が長引いて製造コストが嵩むという点と、船舶の円筒ライナー周りの防錆対策等の保守が必須であり、メンテナンスコストが嵩むという点が問題視されていた。さらに、高所に取り付けられたラダーホーンに円筒ライナーを溶接により取り付ける作業が困難であり、溶接作業者の安全面の更なる向上が望まれていた。 In addition, after fixing the cylindrical liner to the bearing hole of the rudder horn by welding etc., a two-step assembly process is required to press fit the resin bearing bush into the inner diameter hole of this cylindrical liner by cold fitting etc. The construction period was long and the manufacturing cost increased, and maintenance such as anti-corrosion measures around the cylindrical liner of the ship was essential, and the point that the maintenance cost increased was considered as a problem. Furthermore, it is difficult to attach the cylindrical liner to a high-placed rudder horn by welding, and further improvement of the safety of the welder has been desired.
 本発明は、上記事情に鑑みてなされたもので、円筒ライナーを用いない簡素かつ耐久性の高い構成により、舵を船体に対して正確に取り付けることのできる船舶の舵装置およびこれを備えた船舶を提供することを目的とする。 The present invention has been made in view of the above circumstances, and a ship rudder device capable of accurately attaching a rudder to a hull with a simple and durable configuration not using a cylindrical liner, and a ship equipped with the same Intended to provide.
 上記課題を解決するために、本発明は以下の手段を採用する。
 即ち、本発明に係る船舶の舵装置の第1の態様は、船尾に固定されたラダーホーンと、回動基準線を軸に回転自在に支持される舵と、前記ラダーホーンの軸受穴と舵軸の間に介装される軸受ブッシュとを備え、前記軸受ブッシュは、その内径穴の中心軸線が前記回動基準線に合致するように、その外径面が切削形成されたものである。
In order to solve the above-mentioned subject, the present invention adopts the following means.
That is, the first aspect of the ship rudder device according to the present invention includes a rudder horn fixed to the stern, a rudder rotatably supported around a pivot reference line, a bearing hole of the rudder horn, and the rudder And a bearing bush interposed between the shafts, wherein the bearing bush is formed by cutting an outer diameter surface thereof so that the central axis of the inner diameter hole coincides with the rotation reference line.
 上記構成によれば、ラダーホーンの軸受穴の中心線が、船体側に定められた回動基準線に対してずれている場合に、その位置ずれの分だけ軸受ブッシュの内径穴の中心軸線を回動基準線側に偏心させるように外径面を切削加工することにより、従来設けられていた金属製の円筒ライナーに代わり、軸受ブッシュ自体によってラダーホーン軸受穴の位置ずれを補正し、舵を船体に対して正確に取り付けることができる。このため、円筒ライナーを廃止することができる。 According to the above configuration, when the center line of the bearing hole of the rudder horn is shifted with respect to the rotation reference line defined on the hull side, the center axis of the inner diameter hole of the bearing bush is shifted by the position shift. By cutting the outer diameter surface so as to make it eccentric to the rotation reference line side, instead of the metal cylindrical liner conventionally provided, the displacement of the rudder horn bearing hole is corrected by the bearing bush itself, and the rudder It can be attached correctly to the hull. Therefore, the cylindrical liner can be eliminated.
 円筒ライナーを廃止することにより、円筒ライナーの肉厚の分だけラダーホーンおよび舵の幅(厚み)を薄くすることができ、航行時における水流抵抗の減少と船舶重量の軽減を図り、船舶の推進性能と燃費を向上させることができる。しかも、円筒ライナーをラダーホーンに溶接して取り付ける作業が不要になり、これによって船舶の建造工期を短縮し、高所における溶接作業を廃止して作業者の安全性をより向上させ、かつ船舶の製造コストを低減させるとともに、舵軸周りの保守性を向上させることができる。 By eliminating the cylindrical liner, the width (thickness) of the rudder horn and rudder can be reduced by the thickness of the cylindrical liner, reducing the flow resistance and reducing the weight of the vessel during navigation, and promoting the vessel Performance and fuel consumption can be improved. Moreover, there is no need to weld and attach the cylindrical liner to the rudder horn, thereby shortening the construction period of the ship, eliminating welding work at high places, and improving the safety of the worker, and the ship It is possible to reduce the manufacturing cost and improve the maintainability around the rudder axis.
 また、本発明に係る船舶の舵装置の第2の態様は、前記第1の態様において、前記軸受ブッシュが、平面状の繊維材をロール状に複数回巻いて積層させた芯材を硬化させ、これに前記外径面を加工して円筒状に形成したものであり、前記芯材の積層中心軸線が前記内径穴の中心軸線と一致するように形成され、前記外径面の中心軸線が前記積層中心軸線に対して偏心するように形成されている。 Further, according to a second aspect of the ship rudder device according to the present invention, in the first aspect, the bearing bush hardens a core material in which a flat fiber material is wound in a roll shape a plurality of times. The outer diameter surface is processed into a cylindrical shape so that the laminated center axis of the core material is formed to coincide with the center axis of the inner diameter hole, and the center axis of the outer diameter surface is formed. It is formed to be decentered with respect to the stacking central axis.
 上記構成によれば、軸受ブッシュの外径面を切削加工するにあたり、予め内径穴が形成されているため、内径穴の内周面において繊維材の繊維が切断されてしまうことがない。軸受ブッシュの外径面では切断された繊維材の端部が露出するが、外径面はラダーホーンの軸受穴に圧入され、軸受穴の内周面に対して摺動することがないため、繊維材の端部が擦られて捲れることがない。そのため、内径穴の内周面に切断された繊維材の端部が露出して、これが回動する舵軸により捲られて剥離してしまう懸念がない。したがって、軸受ブッシュの耐久性の低下を防止できる。 According to the above configuration, when cutting the outer diameter surface of the bearing bush, since the inner diameter hole is formed in advance, the fibers of the fiber material are not cut at the inner peripheral surface of the inner diameter hole. Although the end of the cut fiber material is exposed on the outer diameter surface of the bearing bush, the outer diameter surface is pressed into the bearing hole of the rudder horn and does not slide against the inner circumferential surface of the bearing hole, The end of the fiber material will not be rubbed off. Therefore, there is no concern that the end portion of the cut fiber material is exposed on the inner peripheral surface of the inner diameter hole and it is twisted by the rotating rudder shaft and peeled off. Therefore, the decrease in the durability of the bearing bush can be prevented.
 また、本発明に係る船舶の舵装置の第3の態様は、前記第1または第2の態様において、前記軸受ブッシュが前記軸受穴の内部で回動することを規制する回動規制手段を有する。 Further, according to a third aspect of the ship rudder device according to the present invention, in the first or second aspect, the bearing bush has a rotation restricting means for restricting rotation of the bearing bush inside the bearing hole. .
 上記構成によれば、軸受ブッシュがラダーホーンの軸受穴の中で回動することが防止されるため、舵の軸心位置が船体に対して狂うことを防止することができる。 According to the above configuration, since the bearing bush is prevented from pivoting in the bearing hole of the rudder horn, the axial center position of the rudder can be prevented from being deviated with respect to the hull.
 また、本発明に係る船舶の舵装置の第4の態様は、前記第3の態様において、前記回動規制手段に、前記軸受ブッシュが前記軸受穴から軸方向に抜脱することを防止するために、前記軸受穴の両端部に固定されるフランジ部材の少なくとも一方と前記軸受ブッシュの端面との間に、互いに嵌合して前記軸受ブッシュの回動を規制する凹凸嵌合部を設けている。 Further, according to a fourth aspect of the ship rudder device according to the present invention, in the third aspect, the rotation restricting means is configured to prevent the bearing bush from being pulled out from the bearing hole in the axial direction. Between the end face of the bearing bush and at least one of the flange members fixed to the opposite end portions of the bearing hole, there is provided an uneven fitting portion which is fitted to each other to restrict the rotation of the bearing bush .
 上記構成によれば、従来から軸受ブッシュの抜脱防止に用いられているフランジ部材と軸受ブッシュに小加工を施すだけで、軸受ブッシュの回動を効果的に規制することができるため、簡素かつ安価な構成により、舵を船体に対して正確に取り付けることができる。 According to the above configuration, the rotation of the bearing bush can be effectively restricted only by subjecting the flange member and the bearing bush which are conventionally used to prevent the removal of the bearing bush, and the bearing bush can be effectively restricted. The low cost configuration allows the rudder to be accurately attached to the hull.
 また、本発明の一態様に係る船舶は、前記第1から第4のいずれかの態様の舵装置を備えている。これにより、円筒ライナーを用いない簡素かつ耐久性の高い構成により、舵を船体に対して正確に取り付けることができる。 Moreover, the ship according to an aspect of the present invention includes the rudder device according to any one of the first to fourth aspects. Thereby, a rudder can be correctly attached to a hull by simple and highly durable composition which does not use a cylindrical liner.
 以上のように、本発明に係る船舶の舵装置およびこれを備えた船舶によれば、円筒ライナーを用いない簡素かつ耐久性の高い構成により、舵を船体に対して正確に取り付けることができ、ラダーホーンおよび舵の幅を薄くして、航行時における水流抵抗の減少と船舶重量の軽減を図り、船舶の推進性能を向上させ、燃費を改善するとともに、船舶の建造工期を短縮し、製造コストを低減させ、船舶製造作業員の安全性をより向上させ、舵軸周りの保守性を向上させることができる。 As described above, according to the rudder device of the ship and the ship provided with the same according to the present invention, the rudder can be accurately attached to the hull by the simple and high-durability configuration without using a cylindrical liner. The width of the rudder horn and the rudder is reduced to reduce the flow resistance and the weight of the vessel during navigation, improve the propulsion performance of the vessel, improve the fuel efficiency, shorten the construction period of the vessel and manufacture cost As a result, the safety of ship manufacturing workers can be further improved, and the maintainability around the rudder axis can be improved.
本発明を適用可能な船舶の舵装置の一例を示す側面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a side view which shows an example of the rudder apparatus of the ship which can apply this invention. 図1のII部拡大した縦断面図である。It is the longitudinal cross-sectional view which expanded the II section of FIG. 図1のIII-III線に沿う横断面図である。FIG. 3 is a cross-sectional view taken along the line III-III of FIG. ラダーホーンの軸受穴に軸受ブッシュが嵌合される前の状態を示す分解斜視図である。It is an exploded perspective view showing a state before a bearing bush is fitted in a bearing hole of a rudder horn. 軸受ブッシュ単体の平面図である。It is a top view of bearing bush single-piece | unit. 回動規制手段の構造を示す軸受ブッシュとフランジ部材の分解斜視図である。It is a disassembled perspective view of a bearing bush and a flange member which shows the structure of a rotation control means. 本発明の効果を示す舵の横断面図である。It is a cross-sectional view of a rudder which shows the effect of the present invention. 本発明を適用可能な船舶の舵装置の別な例を示す側面図である。It is a side view which shows another example of the rudder apparatus of the ship which can apply this invention.
 以下に、本発明の一実施形態について、図1~図8を参照しながら説明する。
 図1及び図8は、本発明を適用可能な船舶の舵装置1の一例を示す側面図である。この舵装置1は、船舶Sの船体2の船尾に溶接により固定されたラダーホーン3に舵4(ラダー)が回動自在に軸支されている。ラダーホーン3には上下一対のガジョン5,6が設けられ、これらのガジョン5,6にそれぞれ鉛直方向に軸受穴8,9が形成されている。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 8.
FIG.1 and FIG.8 is a side view which shows an example of the rudder apparatus 1 of the ship which can apply this invention. In the rudder device 1, a rudder 4 (rudder) is pivotally supported by a rudder horn 3 fixed to the stern of a hull 2 of a ship S by welding. The ladder horn 3 is provided with a pair of upper and lower projections 5 and 6, and bearing holes 8 and 9 are formed in the projections 5 and 6 in the vertical direction, respectively.
 軸受穴8,9には軸受ブッシュ11,12が嵌合され、舵4にナット14,15で固定された舵軸16,17が軸受ブッシュ11,12の内径穴に挿入されることにより、舵4がラダーホーン3(ガジョン5,6)に対して回動自在に軸支される。軸受穴8,9および舵軸16,17は、その軸心が船体2側に定められた回動基準線CLに合致している必要がある。この回動基準線CLは一般に鉛直線である。なお、舵4の上部に固定された操舵軸19が図示しない操舵装置により回動操作されることにより舵4の操舵が行われる。なお、舵4と、舵4に固定された舵軸16,17が一体である場合も同様にラダーホーン3に対して回転自在に軸支される。 The bearing bushes 11 and 12 are fitted in the bearing holes 8 and 9, and the rudder shafts 16 and 17 fixed to the rudder 4 by the nuts 14 and 15 are inserted into the inner diameter holes of the bearing bushes 11 and 12, 4 is rotatably supported with respect to the rudder horn 3 (gaugeons 5, 6). The bearing holes 8 and 9 and the rudder shafts 16 and 17 need to have their axes aligned with a rotation reference line CL defined on the hull 2 side. The rotation reference line CL is generally a vertical line. The steering shaft 19 fixed to the upper portion of the rudder 4 is turned by a steering device (not shown), whereby the steering of the rudder 4 is performed. In the case where the rudder 4 and the rudder shafts 16 and 17 fixed to the rudder 4 are integrated, the rudder horn 3 is rotatably supported with respect to the rudder horn 3 as well.
 図2に拡大断面図で示すように、舵軸17(16)は、舵4のケーシング4aに対してテーパー嵌合され、前述のナット15(14)により締結されている。舵軸17(16)には、耐摩耗性および摺動性を向上させる材質で形成されたスリーブ21が被装されている。また、ガジョン6(5)の軸受穴9(8)に嵌合される軸受ブッシュ12(11)は、冷やし嵌め等により軸受穴9(8)に圧入固定されるが、軸受穴9(8)から軸方向に抜脱することを防止するために、軸受穴9(8)の両端部にドーナツ円板状の板材であるフランジ部材23,24が溶接やボルト止め等により固定されている。 As shown in an enlarged sectional view in FIG. 2, the rudder shaft 17 (16) is taper-fitted to the casing 4 a of the rudder 4 and fastened by the aforementioned nut 15 (14). The rudder shaft 17 (16) is covered with a sleeve 21 formed of a material that improves wear resistance and slidability. Also, the bearing bush 12 (11) fitted in the bearing hole 9 (8) of the gudgeon 6 (5) is press-fitted and fixed to the bearing hole 9 (8) by cold fitting etc. However, the bearing hole 9 (8) In order to prevent removal in the axial direction from the above, flange members 23 and 24 which are plate members in the shape of a donut disk are fixed by welding, bolting or the like at both ends of the bearing hole 9 (8).
 図3および図4に示すように、軸受ブッシュ11,12は、舵軸16,17が挿入される内径穴25と、外径面26とを有しており、外径面26の中心軸線26aが内径穴25の中心軸線25aに対して偏心している。その偏心量Eは、例えば船体2の組立精度の都合により、回動基準線CLに対してラダーホーン3の軸受穴8,9の中心線がずれてしまった場合に、その位置ずれの量に合わせて設定される。即ち、回動基準線CLに対する軸受穴8,9の中心線のずれの位置関係が精密に計測され、これに合わせて軸受ブッシュ11,12が単体状態で機械加工により偏心加工され、上記の位置ずれが解消(相殺)される向きで軸受ブッシュ11,12がラダーホーン3の軸受穴8,9に冷やし嵌め等により圧入される。 As shown in FIGS. 3 and 4, the bearing bushes 11 and 12 have an inner diameter hole 25 into which the rudder shafts 16 and 17 are inserted and an outer diameter surface 26, and the central axis 26 a of the outer diameter surface 26. Are eccentric with respect to the central axis 25 a of the bore 25. The amount of eccentricity E is, for example, the amount of positional deviation when the center line of the bearing holes 8 and 9 of the rudder horn 3 deviates with respect to the rotation reference line CL due to the assembly accuracy of the hull 2. It is set together. That is, the positional relationship between the center lines of the bearing holes 8 and 9 with respect to the rotation reference line CL is precisely measured, and the bearing bushes 11 and 12 are eccentrically machined in a single state accordingly. The bearing bushes 11 and 12 are press-fit into the bearing holes 8 and 9 of the rudder horn 3 by cold fitting or the like in a direction in which the displacement is eliminated (cancelled).
 図5に示すように、軸受ブッシュ11,12は、平面状の繊維材28(帆布等)をロール状に複数回巻いて積層させた芯材29を硬化させ、これに外径面26を加工して円筒状に形成したものである。ここで、芯材29の積層中心軸線29a、即ち芯材29を形成している繊維材28のロール中心軸線が内径穴25の中心軸線25aと一致するように形成される一方、外径面26の中心軸線26aが積層中心軸線29aに対して偏心量Eだけ偏心するように形成されている。このため、内径穴25の内周面には芯材29を形成する繊維材28の端部が露呈していない。 As shown in FIG. 5, the bearing bushes 11 and 12 harden the core material 29 in which a flat fiber material 28 (such as canvas) is wound a plurality of times in a roll shape and laminated, and the outer diameter surface 26 is processed thereon And it has a cylindrical shape. Here, the laminated central axis 29 a of the core member 29, that is, the roll central axis of the fiber material 28 forming the core member 29 is formed to coincide with the central axis 25 a of the inner diameter hole 25. The central axis 26a of the second embodiment is formed to be decentered by an eccentricity E with respect to the laminated central axis 29a. For this reason, the end portion of the fiber material 28 forming the core material 29 is not exposed on the inner peripheral surface of the inner diameter hole 25.
 このように偏心加工された軸受ブッシュ11,12は、ラダーホーン3の軸受穴8,9に圧入された後に長期間に亘って使用されても、軸受穴8,9の内部で回動することは許されない。このため、軸受ブッシュ11,12が軸受穴8,9の内部で回動することを規制する回動規制手段として、図6に示すように、凹凸嵌合部30が設けられている。 The bearing bushes 11 and 12 eccentrically processed in this way rotate within the bearing holes 8 and 9 even if they are used for a long time after being pressed into the bearing holes 8 and 9 of the rudder horn 3. Is not allowed. For this reason, as shown in FIG. 6, an uneven fitting portion 30 is provided as a rotation restricting means for restricting the rotation of the bearing bushes 11 and 12 inside the bearing holes 8 and 9.
 凹凸嵌合部30は、例えば軸受ブッシュ11,12の上下少なくとも一方の端面に形成された切欠部31と、フランジ部材23,24の少なくとも一方に形成されて軸受ブッシュ11,12の切欠部31に密に嵌合する突起部32とから構成されている。反対に、切欠部31をフランジ部材23,24の内周部等に設け、突起部32を軸受ブッシュ11,12の端面に形成してもよい。切欠部31と突起部32が嵌合することにより、軸受ブッシュ11,12がラダーホーン3の軸受穴8,9の内部で回動することが規制される。なお、変形例として、軸受ブッシュ11,12とフランジ部材23,24との間をボルト止めして互いに固定することも考えられる。 The uneven fitting portion 30 is formed, for example, in a notch 31 formed on at least one of upper and lower end faces of the bearing bushes 11 and 12 and at least one of the flange members 23 and 24. It is comprised from the projection part 32 closely fitted. Conversely, the notch 31 may be provided on the inner peripheral portion of the flange members 23 and 24 or the like, and the protrusion 32 may be formed on the end face of the bearing bush 11 or 12. By fitting the notch 31 and the protrusion 32, the bearing bushes 11 and 12 are restricted from rotating inside the bearing holes 8 and 9 of the rudder horn 3. As a modification, bolting between the bearing bushes 11, 12 and the flange members 23, 24 and securing them to each other is also conceivable.
 以上のように、この舵装置1は、ラダーホーン3の軸受穴8,9に圧入されて舵4の舵軸16,17を軸支する軸受ブッシュ11,12の外径面26の中心軸線26が、内径穴25の中心軸線25aに対して偏心している。このため、ラダーホーン3の軸受穴8,9の中心線が、船体2側に定められた回動基準線CLに対してずれている場合には、その位置ずれの分だけ軸受ブッシュ11,12の外径面26の中心軸線26aを内径穴25の中心軸線25aに対して偏心させるように外径面26を加工すればよい。これにより、従来設けられていた金属製の円筒ライナーに代わり、軸受ブッシュ11,12自体によってラダーホーン3の軸受穴8,9の位置ずれを補正し、舵4を船体2に対して正確に取り付けることができる。即ち、ラダーホーン3の回動基準線CLが舵4の回動基準線となり、軸受ブッシュ11,12の内径穴25の中心軸線25aが回動基準線CL上に合致することになる。 As described above, this rudder device 1 is press-fitted into the bearing holes 8 and 9 of the rudder horn 3 to center the axial line 26 of the outer diameter surface 26 of the bearing bushes 11 and 12 for supporting the rudder shafts 16 and 17 of the rudder 4. Are eccentric to the central axis 25 a of the bore 25. For this reason, when the center lines of the bearing holes 8 and 9 of the rudder horn 3 are deviated with respect to the rotation reference line CL defined on the hull 2 side, the bearing bushes 11 and 12 are offset by the position deviation. The outer diameter surface 26 may be processed so that the central axis 26 a of the outer diameter surface 26 is eccentric to the central axis 25 a of the inner diameter hole 25. Thus, instead of the metal cylindrical liner conventionally provided, the positional deviation of the bearing holes 8 and 9 of the rudder horn 3 is corrected by the bearing bushes 11 and 12 themselves, and the rudder 4 is accurately attached to the hull 2 be able to. That is, the rotation reference line CL of the rudder horn 3 becomes the rotation reference line of the rudder 4, and the central axis 25a of the inner diameter hole 25 of the bearing bushes 11, 12 coincides with the rotation reference line CL.
 このため、図7に示すように、従来使用されていた円筒ライナー35を廃止することができ、これにより、円筒ライナー35の肉厚の分だけラダーホーン3および舵4の幅(厚み)Wを薄くすることができ、航行時における水流抵抗の減少と船舶重量の軽減を図り、船舶Sの推進性能と燃費を向上させることができる。その上、船舶Sの建造工期を短縮し、製造コストを低減させ、舵軸16,17周りの保守性を向上させることができる。 For this reason, as shown in FIG. 7, the conventionally used cylindrical liner 35 can be eliminated, whereby the width (thickness) W of the rudder horn 3 and the rudder 4 can be increased by the thickness of the cylindrical liner 35. It is possible to make it thinner, reduce the flow resistance at the time of navigation, reduce the weight of the vessel, and improve the propulsion performance and fuel efficiency of the vessel S. Furthermore, the construction period of the ship S can be shortened, the manufacturing cost can be reduced, and the maintainability around the rudder shafts 16 and 17 can be improved.
 また、軸受ブッシュ11,12は、平面状の繊維材28をロール状に複数回巻いて積層させた芯材29を硬化させ、これに外径面26を加工して円筒状に形成したものであり、芯材29の積層中心軸線29aが内径穴25の中心軸船25aと一致するように形成され、外径面26の中心軸線26aが積層中心軸線29aに対して偏心するように形成されている。 Further, the bearing bushes 11 and 12 are formed into a cylindrical shape by curing the core material 29 in which the flat fiber material 28 is wound in a roll shape a plurality of times and laminated, and the outer diameter surface 26 is processed thereon. The center axis line 29a of the core member 29 is formed to coincide with the center axis ship 25a of the inner diameter hole 25, and the center axis line 26a of the outer diameter surface 26 is formed to be eccentric to the center axis line 29a. There is.
 このため、軸受ブッシュ11,12の外径面26を切削加工するにあたり、予め内径穴25が形成されており、内径面25においては、その内周面に切断された繊維材28の端部が露出することがなく、繊維材28の端部が回動する舵軸16,17により捲られて剥離してしまう懸念がない。したがって、軸受ブッシュ11,12の耐久性の低下を防止できる。軸受ブッシュ11,12の外径面26においては切断された繊維材28の端部が露出するが、外径面26はラダーホーン3の軸受穴8,9に圧入され、軸受穴8,9の内周面に対して摺動することがないため、繊維材28の端部が擦られて捲れることがない。 For this reason, when cutting the outer diameter surface 26 of the bearing bushes 11, 12, the inner diameter hole 25 is formed in advance, and in the inner diameter surface 25, the end of the fiber material 28 cut to the inner peripheral surface is There is no concern that the end portion of the fiber material 28 will be unfolded and peeled off by the rudder shafts 16 and 17 which are rotated. Therefore, the deterioration of the durability of the bearing bushes 11, 12 can be prevented. The end of the cut fiber material 28 is exposed at the outer diameter surface 26 of the bearing bushes 11 and 12, but the outer diameter surface 26 is press-fit into the bearing holes 8 and 9 of the rudder horn 3. Since it does not slide relative to the inner circumferential surface, the end of the fiber material 28 is not rubbed and curled.
 さらに、軸受ブッシュ11,12が軸受穴8,9の内部で回動することを規制する凹凸嵌合部30が設けられているため、舵4の取り付け位置が船体2に対して狂うことを防止することができる。 Furthermore, since the uneven fitting portion 30 that restricts the bearing bushes 11 and 12 from rotating inside the bearing holes 8 and 9 is provided, the installation position of the rudder 4 is prevented from being deviated with respect to the hull 2 can do.
 凹凸嵌合部30は、軸受ブッシュ11,12が軸受穴8,9から軸方向に抜脱することを防止するために従来から軸受穴8,9の両端部に固定されているフランジ部材23,24の少なくとも一方に形成された突起部32と、軸受ブッシュ11,12の端面に形成された切欠部31とを互いに嵌合させて軸受ブッシュ11,12の回動を規制する構成であり、従来から使用されているフランジ部材23,24と軸受ブッシュ11,12に小加工を施すだけで設けることができるため、簡素かつ安価な構成により軸受ブッシュ11,12の回動を効果的に規制して舵4を船体2に対して正確に取り付けることができる。 The uneven fitting portion 30 is a flange member 23 which is conventionally fixed to both ends of the bearing holes 8 and 9 in order to prevent the bearing bushes 11 and 12 from being pulled out from the bearing holes 8 and 9 in the axial direction. The projection 32 formed on at least one of the portions 24 and the notch 31 formed on the end faces of the bearing bushes 11 and 12 are engaged with each other to restrict rotation of the bearing bushes 11 and 12. Since the flange members 23, 24 used from the above and the bearing bushes 11, 12 can be provided only by small processing, the rotation of the bearing bushes 11, 12 is effectively restricted by a simple and inexpensive configuration. The rudder 4 can be attached to the hull 2 accurately.
 以上のように構成された舵装置1およびこれを備えた船舶Sによれば、円筒ライナーを用いない簡素かつ耐久性の高い構成により、舵4を船体2に対して正確に取り付けることができ、ラダーホーン3および舵4の幅を薄くして、航行時における水流抵抗の減少と船舶重量の軽減を図り、船舶Sの推進性能を向上させ、燃費を改善するとともに、船舶Sの建造工期を短縮し、製造コストを低減させ、かつ舵軸16,17周りの保守性を向上させてメンテナンスコストを低減させることができる。しかも、円筒ライナーをラダーホーン3に溶接して取り付ける作業が不要になるため、高所における溶接作業を廃止して作業者の安全性をより向上させることができる。 According to the rudder device 1 configured as described above and the ship S including the same, the rudder 4 can be accurately attached to the hull 2 by the simple and highly durable configuration that does not use a cylindrical liner. The width of the rudder horn 3 and the rudder 4 is reduced to reduce the flow resistance and the weight of the vessel during navigation, improve the propulsion performance of the vessel S, improve the fuel efficiency, and shorten the construction period of the vessel S Therefore, the manufacturing cost can be reduced, and the maintainability around the rudder shafts 16 and 17 can be improved to reduce the maintenance cost. Moreover, since the operation of welding and attaching the cylindrical liner to the rudder horn 3 is not necessary, the welding operation at high places can be eliminated to further improve the safety of the operator.
 なお、本発明は上記の実施形態の構成のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更や改良を加えることができ、このように変更や改良を加えた実施形態も本発明の権利範囲に含まれるものとする。
 例えば、上記実施形態では外径面26の中心軸線が、軸受ブッシュ11,12の内径穴25の中心軸線25aに対して平行になっているが、船体2に対するラダーホーン3の取り付け状態によっては、中心軸線26aを中心軸線25aに対して傾斜させてもよい。
The present invention is not limited to only the configuration of the above embodiment, and modifications and improvements can be made as appropriate without departing from the scope of the present invention, and such modifications and improvements can be made. The form is also included in the scope of the present invention.
For example, although the central axis of the outer diameter surface 26 is parallel to the central axis 25 a of the inner diameter hole 25 of the bearing bushes 11 and 12 in the above embodiment, depending on the attachment state of the rudder horn 3 to the hull 2, The central axis 26a may be inclined with respect to the central axis 25a.
1 舵装置
2 船舶
3 ラダーホーン
4 舵
5,6 ガジョン
8,9 軸受穴
11,12 軸受ブッシュ
16,17 舵軸
23,24 フランジ部材
25 軸受ブッシュの内径穴
25a 内径穴の中心軸線
26 外径面
26a 外径面の中心軸線
28 繊維材
29 芯材
29a 芯材の積層中心軸線
30 凹凸嵌合部(回動規制手段)
31 切欠部
32 突起部
CL 回動基準線
E 内径穴の中心軸線と外径面の中心軸線の偏心量
S 船舶
Reference Signs List 1 rudder device 2 ship 3 rudder horn 4 rudder 5, 6 girdle 8, 9 bearing hole 11, 12 bearing bush 16, 17 rudder shaft 23, 24 flange member 25 inner diameter hole 25a of bearing bush central axis 26 of outer diameter hole outer diameter surface 26a Center axis 28 of outer diameter surface Fiber material 29 Core material 29a Lamination center axis 30 of core material Concave and convex fitting portion (rotation control means)
31 Notched part 32 Protrusion CL Rotational reference line E Eccentricity S of central axis of inner diameter hole and central axis of outer diameter surface S Vessel

Claims (5)

  1.  船尾に固定されたラダーホーンと、回動基準線を軸に回転自在に支持される舵と、前記ラダーホーンの軸受穴と舵軸の間に介装される軸受ブッシュとを備え、前記軸受ブッシュは、その内径穴の中心軸線が前記回動基準線に合致するように、その外径面が切削形成されたものである船舶の舵装置。 The rudder horn includes a rudder horn fixed to the stern, a rudder rotatably supported around a pivot reference line, and a bearing bush interposed between a bearing hole of the rudder horn and the rudder shaft, the bearing bush The rudder device of a ship, wherein the outer diameter surface is formed by cutting so that the central axis of the inner diameter hole coincides with the rotation reference line.
  2.  前記軸受ブッシュは、平面状の繊維材をロール状に複数回巻いて積層させた芯材を硬化させ、これに前記外径面を加工して円筒状に形成したものであり、前記芯材の積層中心軸線が前記内径穴の中心軸線と一致するように形成され、前記外径面の中心軸線が前記積層中心軸線に対して偏心するように形成されている請求項1に記載の船舶の舵装置。 The bearing bush is a core material formed by winding a flat fiber material in a roll shape a plurality of times and laminating them and curing the core material, and processing the outer diameter surface on the core material to form a cylindrical shape. The rudder of the vessel according to claim 1, wherein a lamination center axis line is formed to coincide with a center axis line of the inner diameter hole, and a center axis line of the outer diameter surface is formed eccentrically with respect to the lamination center axis line. apparatus.
  3.  前記軸受ブッシュが前記軸受穴の内部で回動することを規制する回動規制手段を有する請求項1または2に記載の船舶の舵装置。 The ship rudder apparatus according to claim 1 or 2, further comprising a rotation restriction means for restricting the rotation of the bearing bush inside the bearing hole.
  4.  前記回動規制手段に、前記軸受ブッシュが前記軸受穴から軸方向に抜脱することを防止するために、前記軸受穴の両端部に固定されるフランジ部材の少なくとも一方と前記軸受ブッシュの端面との間に、互いに嵌合して前記軸受ブッシュの回動を規制する凹凸嵌合部を設けた請求項3に記載の船舶の舵装置。 In the rotation restricting means, at least one of the flange members fixed to both ends of the bearing hole and the end face of the bearing bush in order to prevent the bearing bush from being pulled out in the axial direction from the bearing hole The ship rudder device according to claim 3, further comprising a concavo-convex fitting portion which is engaged with each other to restrict rotation of the bearing bush.
  5.  請求項1から4のいずれかに記載の舵装置を備えた船舶。 The ship provided with the rudder apparatus in any one of Claims 1-4.
PCT/JP2013/053431 2012-02-15 2013-02-13 Rudder device for marine vessel, and marine vessel provided with same WO2013122113A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380009396.XA CN104114446B (en) 2012-02-15 2013-02-13 The rudder for ship device of boats and ships and possess the boats and ships of this rudder for ship device
KR1020147022236A KR101648655B1 (en) 2012-02-15 2013-02-13 Rudder device for marine vessel, and marine vessel provided with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-030774 2012-02-15
JP2012030774A JP5943631B2 (en) 2012-02-15 2012-02-15 Ship rudder apparatus, ship equipped with the same, and method of manufacturing rudder apparatus

Publications (1)

Publication Number Publication Date
WO2013122113A1 true WO2013122113A1 (en) 2013-08-22

Family

ID=48984222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053431 WO2013122113A1 (en) 2012-02-15 2013-02-13 Rudder device for marine vessel, and marine vessel provided with same

Country Status (4)

Country Link
JP (1) JP5943631B2 (en)
KR (1) KR101648655B1 (en)
CN (1) CN104114446B (en)
WO (1) WO2013122113A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180027301A (en) 2016-09-06 2018-03-14 재팬 마린 유나이티드 코포레이션 Rudder for ship

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201803107WA (en) * 2015-12-09 2018-05-30 Japan Marine United Corp Rudder for ships, steering method, and ship
CN105599889B (en) * 2016-01-12 2019-12-27 中国人民解放军海军工程大学 High-rigidity light solid composite rudder blade
CN105783639B (en) * 2016-04-15 2018-04-20 广州文冲船厂有限责任公司 Rudder horn and rudder blade matching detection device and the production method of rudder horn and rudder blade
KR102410643B1 (en) * 2021-11-18 2022-06-23 동양메탈공업 주식회사 Method for manufacturing stern tube bearing using centrifugal casting and stern tube bearing manufactured using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332597B2 (en) * 1972-01-06 1978-09-08
JPS60163798A (en) * 1984-02-02 1985-08-26 Mitsubishi Heavy Ind Ltd Production method of bushing for rudder pintle
JP2005247122A (en) * 2004-03-04 2005-09-15 Oshima Shipbuilding Co Ltd Rudder device and its mounting method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0490493A (en) 1990-08-01 1992-03-24 Fuji Electric Co Ltd Method of degasing vacuum induction furnace
JPH0872797A (en) * 1994-08-31 1996-03-19 Mitsubishi Heavy Ind Ltd Two-shaft two-rudder ship
JP3438988B2 (en) * 1995-03-23 2003-08-18 三菱重工業株式会社 Propeller device with ship stator
JP2003340320A (en) * 2002-05-29 2003-12-02 Mitsubishi Heavy Ind Ltd Coating apparatus for rudder inner surface due to loading of charge
JP2005036692A (en) * 2003-07-18 2005-02-10 Mitsubishi Heavy Ind Ltd Bearing device for pump
ATE538647T1 (en) * 2008-07-08 2012-01-15 Shimano Kk BRAKE MECHANISM FOR DOUBLE BEARING FISHING REEL
JP5332597B2 (en) * 2008-12-25 2013-11-06 株式会社ジェイテクト Grinding wheel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332597B2 (en) * 1972-01-06 1978-09-08
JPS60163798A (en) * 1984-02-02 1985-08-26 Mitsubishi Heavy Ind Ltd Production method of bushing for rudder pintle
JP2005247122A (en) * 2004-03-04 2005-09-15 Oshima Shipbuilding Co Ltd Rudder device and its mounting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180027301A (en) 2016-09-06 2018-03-14 재팬 마린 유나이티드 코포레이션 Rudder for ship

Also Published As

Publication number Publication date
CN104114446B (en) 2016-10-12
JP2013166454A (en) 2013-08-29
KR20140110075A (en) 2014-09-16
CN104114446A (en) 2014-10-22
JP5943631B2 (en) 2016-07-05
KR101648655B1 (en) 2016-08-16

Similar Documents

Publication Publication Date Title
WO2013122113A1 (en) Rudder device for marine vessel, and marine vessel provided with same
KR101961612B1 (en) Propeller for ship
KR101535439B1 (en) Bearing device for wheel
JP2010530319A (en) Composite flange, duct incorporating flange, and flange manufacturing method
JP2009540240A (en) Shaft with fixed components
JP5483466B2 (en) Coupling
JP5628277B2 (en) Manufacturing process of cylindrical parts
US7802492B2 (en) Cast crankshaft damper assembly
EP2468528B1 (en) Connection of a flanged ring of a hub bearing unit to a motor vehicle wheel or suspension standard of a motor vehicle
US10689073B2 (en) Apparatus and system for marine propeller blade dovetail stress reduction
WO2013094320A1 (en) Cast metal component for internal combustion engine, bearing cap, and manufacturing method therefor
US20130318765A1 (en) Universal Mounting Bracket for Outboard Marine Equipment
JP3650183B2 (en) Screw rotor processing method
US11731685B2 (en) Steering gear of a vehicle steering system
KR102111984B1 (en) Rudder carrier assembly for a ship and the ship having it
KR20120105302A (en) Installation method of simplex rudder trunk
JP5765571B2 (en) Worm wheel
US20170335893A1 (en) Universal joint yoke and intermediate shaft
KR20170056205A (en) Light weight propeller for ship and manufacturing method of this propeller
KR20180006395A (en) Modular propulsion unit nozzle
JP2003335292A (en) Mounting means for stator fin
WO2010044344A1 (en) Wheel bearing apparatus
JP5891079B2 (en) Guide vanes and guide vane recipes
KR102673013B1 (en) Bearing clearance adjust device of steering knuckle
JP7339476B1 (en) Arm member and robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749798

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147022236

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13749798

Country of ref document: EP

Kind code of ref document: A1