WO2013121874A1 - Heat-shrinkable multilayer film - Google Patents

Heat-shrinkable multilayer film Download PDF

Info

Publication number
WO2013121874A1
WO2013121874A1 PCT/JP2013/051849 JP2013051849W WO2013121874A1 WO 2013121874 A1 WO2013121874 A1 WO 2013121874A1 JP 2013051849 W JP2013051849 W JP 2013051849W WO 2013121874 A1 WO2013121874 A1 WO 2013121874A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heat
seal
multilayer film
gas barrier
Prior art date
Application number
PCT/JP2013/051849
Other languages
French (fr)
Japanese (ja)
Inventor
隆久 上山
忠良 伊藤
伊藤 大輔
裕太 関谷
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to JP2014500158A priority Critical patent/JP6054364B2/en
Publication of WO2013121874A1 publication Critical patent/WO2013121874A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/002Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers in shrink films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging

Definitions

  • the present invention relates to a heat-shrinkable multilayer film that enables efficient packaging of raw meat, processed meat, and the like.
  • a film used for shrink wrapping is formed of a multilayer having at least a surface layer forming an outer surface, a gas barrier layer having gas barrier properties, and a seal layer forming an inner surface, and has a good appearance and freshness depending on the properties of each layer.
  • heat shrinkability, transparency, gas barrier property, or heat sealability is imparted.
  • shrink film having gas barrier properties examples include polypropylene or a polypropylene-based copolymer as a surface layer, ethylene vinyl alcohol copolymer (EVOH) or nylon 6,12 copolymer or nylon 6,66 copolymer as a gas barrier layer, and ethylene as a sealing layer.
  • EVOH ethylene vinyl alcohol copolymer
  • nylon 6,12 copolymer or nylon 6,66 copolymer as a gas barrier layer
  • ethylene as a sealing layer.
  • a film in which an ⁇ -olefin copolymer is laminated is disclosed (see, for example, Patent Documents 1 to 3).
  • Overlap sealability means that when a packaging bag is formed with a multilayer film with the sealing layer facing inward, and the packaging bags are stacked and heat sealed, the sealing layers of each packaging bag are heat-sealed, and the surface It refers to the property that the layers are not heat-sealed or heat-sealed only to such an extent that they can be peeled off.
  • heat sealing can be performed in a state where a part of the packaging bag is overlapped. Therefore, the number of packaging bags that can be heat sealed at a time can be increased, and the operation becomes efficient. Moreover, it becomes unnecessary to arrange so that packaging bags may not overlap, and workability
  • a film having a lap seal property is disclosed by crosslinking a surface layer forming an outer surface and uncrosslinking a seal layer forming an inner surface.
  • the outer surface is made of a resin having a relatively high melting temperature such as a polyamide resin or a polyester resin
  • the inner surface is formed of a resin having a relatively low melting temperature such as a polyolefin resin.
  • a film provided with an overlap seal by providing a temperature difference see, for example, Patent Documents 5 to 8).
  • the excess portion of the film after shrinkage of the bag or pouch (hereinafter referred to as the “ear part”) is poor in appearance. I can't go wrong.
  • the fact that the sealing layers of the bag or pouch ears are fused by heat treatment does not stand out the gravy (hereinafter referred to as drip) generated from raw or processed meat after packaging. That is why it is preferred by consumers.
  • the self-weld property is inferior, that is, when there is no fusion of the ears after heat treatment, or when there is almost no fusion, the drip accumulates in the ears during storage after packaging, and the appearance becomes poor.
  • the heat treatment here refers to heat treatment such as heat shrinkage, heat sterilization, and cooking at a specific temperature.
  • a packaging laminate having self-weld properties is disclosed (see, for example, Patent Document 9).
  • JP 2007-152570 A Japanese Patent Laid-Open No. 10-80984 JP-A-10-29283 Japanese Patent Laid-Open No. 9-39179 International Publication No. 2008/099799 European Patent No. 1131205 European Patent Application Publication No. 1985443 European Patent Application Publication No. 2147783 International Publication No. 2000/47406
  • the temperature range in which the inner surfaces can be heat-sealed without heat-sealing the outer surfaces is narrow, and the overlap sealability is insufficient.
  • resins having a high melting temperature such as polyamide resin and polyester resin must naturally have a high extrusion temperature.
  • PVDC polyvinylidene chloride resin
  • the processing temperature cannot be increased considering the decomposition of PVDC.
  • the die temperature cannot be increased, and a resin having a high melting temperature such as a polyamide resin or a polyester resin cannot be stably extruded. Therefore, the smoothness of the film surface may be deteriorated and appearance defects may occur.
  • An object of the present invention is to provide a heat-shrinkable multilayer film which is excellent in lap sealability and self-weld property and has heat shrinkability, gas barrier properties and heat sealability.
  • the heat-shrinkable multilayer film according to the present invention has a multilayer structure having a surface layer, an intermediate layer T1, a gas barrier layer, and a seal layer, and the multilayer structure has the surface layer disposed on one surface, And in the heat-shrinkable multilayer film formed by arranging the seal layer on the other surface, the surface layer contains a propylene-ethylene copolymer, and the gas barrier layer contains a polyvinylidene chloride resin.
  • the difference in melting temperature between the surface layer and the sealing layer is 35 to 60 ° C.
  • the multilayer structure preferably further includes an intermediate layer T2 between the gas barrier layer and the seal layer. It works as a reinforcing layer of the seal layer and can improve the seal strength. Moreover, stretchability can be improved.
  • the seal layer contains at least one of an ionomer and an ethylene-vinyl acetate copolymer. It can be set as the film excellent in extending
  • the heat-shrinkable multilayer film according to the present invention preferably has a self-weld property by heat treatment. Appearance after vacuum packaging can be improved.
  • the present invention can provide a heat-shrinkable multilayer film that is excellent in lap sealability and self-weld property and has heat shrinkability, gas barrier properties, and heat sealability.
  • the heat-shrinkable multilayer film according to this embodiment includes a multilayer structure having a surface layer, an intermediate layer T1, a gas barrier layer, and a seal layer, and the multilayer structure has the surface layer disposed on one surface.
  • the surface layer contains a propylene-ethylene copolymer
  • the gas barrier layer is a polyvinylidene chloride resin.
  • the difference in melting temperature between the surface layer and the sealing layer is 35 to 60 ° C.
  • the surface layer is a layer that is disposed on one surface of the multilayer structure and becomes the outer surface of the bag, and has a role of imparting heat resistance and gloss.
  • the surface layer contains a propylene-ethylene copolymer.
  • the propylene-ethylene copolymer include a propylene-ethylene random copolymer, a propylene-ethylene block copolymer, and a propylene-ethylene-butene terpolymer. These may be used alone or in combination of two or more. Among these, a propylene-ethylene random copolymer is particularly preferable from the viewpoints of stretchability and transparency.
  • the propylene-ethylene copolymer is preferably a copolymer of 60 to 99.9% by mass of propylene and 0.1 to 40% by mass of another monomer (comonomer). More preferably, the proportion of propylene in the propylene-ethylene copolymer is 75 to 99.5% by mass.
  • the density of the resin used for the surface layer is preferably 0.880 g / cm 3 or more and 0.940 g / cm 3 or less. More preferably, it is 0.890 g / cm 3 or more and 0.925 g / cm 3 or less.
  • the melt flow rate (MFR) (230 ° C., 2.16 kg) of the resin used for the surface layer is preferably 1.0 g / 10 min or more and 25 g / 10 min or less. More preferably, it is 2.0 g / 10 min or more and 20 g / 10 min.
  • the melting temperature of the resin used for the surface layer is preferably 130 ° C. or higher and 170 ° C. or lower. More preferably, it is 135 degreeC or more and 160 degrees C or less. Especially preferably, it is 140 degreeC or more and 155 degrees C or less. If it is less than 130 ° C., the heat resistance is insufficient, and the surface layer may melt during thermal processing such as sealing. If it exceeds 170 ° C., the extrusion processing temperature becomes high, so that the PVDC in the gas barrier layer may be decomposed. Moreover, the smoothness of the surface may be inferior or the stretchability may be hindered.
  • the surface layer may contain various additives such as a crystal nucleating agent, a lubricant, an antistatic agent, a softening agent, a heat stabilizer, a plasticizer, and an antioxidant.
  • Crystal nucleating agents improve transparency, heat resistance, moldability, and the like.
  • sorbitol compounds such as dibenzylidene sorbitol; organophosphate compounds; rosinate compounds; Aliphatic dicarboxylic acid or metal salt thereof; aromatic carboxylic acid or metal salt thereof.
  • the lubricant reduces the boundary friction between the film and the machine surface of the bag making machine or the packaging machine.
  • hydrocarbon lubricants such as liquid paraffin and polyethylene wax
  • aliphatic systems such as stearic acid and lauric acid Lubricants
  • aliphatic amide-based lubricants such as stearamide and erucamide
  • ester-based lubricants such as ethylene glycol monostearate and monoglyceride stearate
  • metal soaps such as zinc stearate and calcium stearate.
  • fatty acid amide lubricants and metal soaps are preferably used from the viewpoint of excellent compatibility with polyolefin resins.
  • Antistatic agents cause static electricity damage, such as the product sticking to rolls due to static electricity, reducing the mechanical suitability of bags, etc., and the product sticking to each other, reducing the workability when taking out one product at a time.
  • an anionic surfactant such as ethylene- ⁇ olefin copolymer and propylene- ⁇ olefin copolymer; ethylene-vinyl acetate copolymer, etc.
  • the thickness of the surface layer is preferably 0.5 ⁇ m or more and 40 ⁇ m or less. More preferably, they are 1 micrometer or more and 10 micrometers or less.
  • ⁇ Powder can be applied to the surface of the surface layer.
  • the powder has a role of expanding the temperature range in which the layers can be sealed.
  • the powder is, for example, starch.
  • the average particle size of the powder is preferably 5 to 50 ⁇ m. Further, a plurality of kinds of powders having different particle sizes may be blended to have a distribution in the average particle size.
  • the mid layer T1 preferably contains a polyolefin resin.
  • the polyolefin resin include low density polyethylene (LDPE); medium density polyethylene (MDPE); polypropylene (PP); a copolymer of propylene and an ⁇ -olefin having 2 or 4 to 8 carbon atoms; an ethylene- ⁇ -olefin copolymer.
  • Polymer ethylene-vinyl acetate copolymer (EVA), ethylene-alkyl acrylate having 1 to 4 carbon atoms, ethylene-methacrylic acid copolymer, ethylene-methacrylic acid-unsaturated carboxylic acid copolymer, etc.
  • the ethylene- ⁇ olefin copolymer includes a copolymer obtained using a Ziegler-Natta catalyst and a copolymer obtained using a metallocene catalyst.
  • the ⁇ -olefin as a comonomer used for the polymerization of the ethylene- ⁇ -olefin copolymer is, for example, butene-1, having 4 carbon atoms, pentene-1, 5 carbon atoms, 4-methylpentene-1 having 6 carbon atoms, or Hexene-1 or octene-1 having 8 carbon atoms.
  • the density is 0.900g / cm 3 ⁇ 0.909g / cm 3 very low density polyethylene (VLDPE), density of 0.910g / cm 3 ⁇ 0.925g It is a linear low density polyethylene (LLDPE) that is / cm 3 .
  • VLDPE very low density polyethylene
  • LLDPE linear low density polyethylene
  • EVA ethylene-alkyl acrylate having 1 to 4 carbon atoms
  • ethylene-methacrylic acid copolymer ethylene-methacrylic acid-unsaturated carboxylic acid in terms of stretchability, adhesion to the surface layer and transparency.
  • Particularly preferred are ethylene-polar comonomer copolymers such as acid copolymers; ionomers.
  • the resins used for the intermediate layer T1 may be used alone or in combination of two or more.
  • the intermediate layer T1 may contain various additives such as a lubricant, an antistatic agent, a heat stabilizer, a plasticizer, an antioxidant, and a softening agent. In this, it is more preferable to contain a softening agent at the point which can suppress the bending phenomenon of the film at the time of shrinkage
  • softener examples include polyolefin elastomers such as ethylene- ⁇ olefin copolymers and propylene- ⁇ olefin copolymers; ethylene copolymers such as ethylene-vinyl acetate copolymers; polyisobutylenes; polybutenes; polybutadienes; Butadiene-styrene copolymer; neoprene; natural rubber.
  • polyolefin elastomers such as ethylene- ⁇ olefin copolymers and propylene- ⁇ olefin copolymers
  • ethylene copolymers such as ethylene-vinyl acetate copolymers
  • polyisobutylenes polybutenes
  • polybutadienes butadiene-styrene copolymer
  • Butadiene-styrene copolymer butadiene-styrene copolymer
  • neoprene natural
  • the melting temperature of the resin used for the intermediate layer T1 is not particularly limited, but is preferably 70 ° C. or higher and 120 ° C. or lower. More preferably, it is 80 degreeC or more and 100 degrees C or less.
  • Density of the resin used for the intermediate layer T1 is preferably less 0.880 g / cm 3 or more 0.960 g / cm 3. More preferably, the 0.900 g / cm 3 or more 0.940 g / cm 3 or less.
  • the MFR (190 ° C., 2.16 kg) of the resin used for the intermediate layer T1 is preferably 0.5 g / 10 min or more and 20 g / 10 min or less. More preferably, it is 1.0 g / 10 min or more and 15 g / 10 min or less.
  • the thickness of the intermediate layer T1 is preferably 5 ⁇ m or more and 50 ⁇ m or less. More preferably, they are 10 micrometers or more and 40 micrometers or less.
  • the intermediate layer T1 may be formed of one layer or two or more layers. When the intermediate layer T1 is formed of two or more layers, the layers may have the same composition, or the layers may have different compositions.
  • An adhesive layer S1 may be further provided between the intermediate layer T1 and the gas barrier layer.
  • the adhesive layer S1 is a layer adjacent to the gas barrier layer, and has a role of improving adhesion to the gas barrier layer.
  • the adhesive layer S1 preferably contains an adhesive resin such as an ethylene-polar comonomer copolymer or an acid-modified polyolefin.
  • ethylene-polar comonomer copolymers include ethylene-vinyl acetate copolymers, ethylene-alkyl acrylates having 1 to 4 carbon atoms, ethylene-methacrylic acid copolymers, and ethylene-methacrylic acid-unsaturated carboxylic acid copolymers.
  • the acid-modified polyolefin is, for example, a reaction product of an olefin homo- or copolymer and an unsaturated carboxylic acid such as maleic acid or fumaric acid, an acid anhydride, an ester, or a metal salt.
  • the resins used for the adhesive layer S1 may be used alone or in combination of two or more.
  • adhesive layer S1 may contain various additives, such as a heat stabilizer, a plasticizer, and antioxidant other than adhesive resin.
  • the melting temperature of the resin used for the adhesive layer S1 is not particularly limited, but is preferably 70 ° C or higher and 130 ° C or lower. More preferably, it is 80 degreeC or more and 120 degrees C or less.
  • Density of the resin used in the adhesive layer S1 is preferably not more than 0.880 g / cm 3 or more 0.960 g / cm 3. More preferably, the 0.900 g / cm 3 or more 0.940 g / cm 3 or less.
  • the MFR (190 ° C., 2.16 kg) of the resin used for the adhesive layer S1 is preferably 0.5 g / 10 min or more and 20 g / 10 min or less. More preferably, it is 1.0 g / 10 min or more and 15 g / 10 min or less.
  • the thickness of the adhesive layer S1 is preferably 0.5 ⁇ m or more and 10 ⁇ m or less. More preferably, they are 1 micrometer or more and 5 micrometers or less.
  • the gas barrier layer has a role of preventing deterioration of contents by suppressing permeation of oxygen, water vapor and the like.
  • the gas barrier layer contains a polyvinylidene chloride (PVDC) resin as a gas barrier resin.
  • PVDC polyvinylidene chloride
  • the polyvinylidene chloride resin is, for example, a copolymer of 2 to 40% by mass of another monomer (comonomer) copolymerizable with 60 to 98% by mass of vinylidene chloride (VDC).
  • VDC vinylidene chloride
  • Examples of the comonomer include vinyl chloride; alkyl acrylate esters such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, stearyl acrylate (alkyl group having 1 to 18 carbon atoms).
  • Alkyl methacrylates such as methyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, stearyl methacrylate (alkyl group having 1 to 18 carbon atoms); vinyl cyanide such as acrylonitrile and methacrylonitrile; Aromatic vinyl such as styrene; vinyl ester of aliphatic carboxylic acid having 1 to 18 carbon atoms such as vinyl acetate; alkyl vinyl ether having 1 to 18 carbon atoms; acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, etc.
  • Vinyl polymerizable unsaturated carboxylic acids alkyl esters of vinyl polymerizable unsaturated carboxylic acids such as maleic acid, fumaric acid and itaconic acid (including partial esters, having 1 to 18 carbon atoms in the alkyl group); Body, functional group-containing monomer, polyfunctional monomer and the like.
  • comonomers can be used alone or in combination of two or more.
  • vinyl chloride, methyl acrylate or lauryl acrylate is preferable.
  • the copolymerization ratio of the comonomer is preferably 3 to 35% by mass, more preferably 10 to 25% by mass.
  • the reduced viscosity ( ⁇ sp / C) of the polyvinylidene chloride-based resin is preferably 0.035 to 0.070, more preferably from the viewpoint of processability when molded into a film, suitability for packaging machinery, cold resistance, and the like. It is 0.040 to 0.065, and particularly preferably 0.045 to 0.063. If the reduced viscosity of the polyvinylidene chloride-based resin is too low, the processability is deteriorated, and if it is too high, a tendency toward coloring is exhibited, so neither is preferred. Two or more types of polyvinylidene chloride resins having different reduced viscosities can be used in combination, thereby improving workability. When two or more kinds of polyvinylidene chloride resins are used in combination, the reduced viscosity of the mixed resin is preferably within the above range.
  • the polyvinylidene chloride resin can be blended with other resins as desired.
  • Other resins include, for example, ethylene-vinyl acetate copolymer, (meth) acrylic acid ester, preferably (co) polymer of alkyl group (meth) acrylic acid alkyl ester having 1 to 18 carbon atoms [for example, (Methyl (meth) acrylate- (meth) butyl acrylate copolymer), methyl methacrylate-butadiene-styrene copolymer, and the like.
  • These other resins can be blended when preparing the polyvinylidene chloride resin composition, or can be contained in the coloring resin composition blended with the polyvinylidene chloride resin.
  • the other resin is usually used at a ratio of 20 parts by mass or less with respect to 100 parts by mass of the polyvinylidene chloride resin.
  • the gas barrier resins may be used alone or in combination of two or more.
  • the gas barrier resin and the polyolefin-based resin can obtain good adhesiveness by interposing the adhesive layer S1 and the adhesive layer S2 described later.
  • the gas barrier layer may contain various additives such as a heat stabilizer, a plasticizer, and an antioxidant in addition to the gas barrier resin.
  • the thickness of the gas barrier layer is preferably 1 ⁇ m or more and 40 ⁇ m or less. More preferably, they are 3 micrometers or more and 30 micrometers or less, Especially preferably, they are 4 micrometers or more and 10 micrometers or less.
  • the gas barrier layer may be formed of one layer or two or more layers. When two or more gas barrier layers are formed, each layer may have the same composition, or each layer may have a different composition.
  • the sealing layer is disposed on the surface opposite to the surface layer, becomes the inner surface of the bag, and has a role of sealing the bag by heat sealing.
  • the sealing layer preferably contains a polyolefin resin.
  • polyolefin resins include low-density polyethylene (LDPE); ethylene- ⁇ olefin copolymer; ethylene-vinyl acetate copolymer (EVA), ethylene-alkyl acrylate having 1 to 4 carbon atoms, and ethylene-methacrylic acid copolymer.
  • LDPE low-density polyethylene
  • EVA ethylene-vinyl acetate copolymer
  • the ethylene- ⁇ olefin copolymer includes a copolymer obtained using a Ziegler-Natta catalyst and a copolymer obtained using a metallocene catalyst.
  • the ⁇ -olefin as a comonomer used for the polymerization of the ethylene- ⁇ -olefin copolymer is, for example, butene-1, having 4 carbon atoms, pentene-1, 5 carbon atoms, 4-methylpentene-1 having 6 carbon atoms, or Hexene-1 or octene-1 having 8 carbon atoms.
  • the density is 0.900 g / cm 3 or more 0.909 g / cm 3 or less very low density polyethylene (VLDPE), density of 0.910 g / cm 3 or more zero. It is a linear low density polyethylene (LLDPE) that is 925 g / cm 3 or less.
  • VLDPE very low density polyethylene
  • an ionomer uses, as a base polymer, an ethylene-unsaturated carboxylic acid copolymer or an ethylene-ethylenically unsaturated carboxylic acid-ethylenically unsaturated carboxylic acid ester terpolymer, and carboxyls in these copolymers.
  • the unsaturated carboxylic acid is preferably, for example, methacrylic acid or acrylic acid.
  • the copolymerization ratio of unsaturated carboxylic acid is preferably 3 to 20% by mass. More preferably, it is 5 to 15% by mass, and particularly preferably 7 to 13% by mass. When the copolymerization ratio of the unsaturated carboxylic acid is too large, the sealing strength tends to decrease.
  • the unsaturated carboxylic acid ester is preferably an alkyl ester of (meth) acrylic acid having 1 to 6 carbon atoms.
  • the copolymerization ratio of the unsaturated carboxylic acid ester is preferably 3 to 30% by mass.
  • the copolymerization ratio of the unsaturated carboxylic acid ester is 4 to 15% by mass, and particularly preferably 5 to 10% by mass. If the copolymerization ratio of the unsaturated carboxylic acid ester is too large, the bag-making property tends to deteriorate due to excessive flexibility and stickiness, and the sealing strength tends to decrease.
  • the cation used for neutralization include Na + , K + , Li + , Cs + , Ag + , Hg + , Cu + , Mg 2+ , Zn 2+ , Be 2+ , Ca 2+ , Ba 2+ and Cu 2+.
  • the ratio of the metal or organic amine content in the resin to the acid content in the resin is preferably 1 to 15%. More preferably, it is 3 to 15%. If it exceeds 15%, there may be a case where a practically required level of sealing strength cannot be obtained.
  • An ionomer having a neutralization degree of 15% or less may be prepared by blending two or more ionomers having different ionization degrees.
  • the ionomer can be used by blending with, for example, an ethylene-methacrylic acid copolymer, an ethylene-methacrylic acid-acrylic acid ester terpolymer, etc.
  • the blend ratio of the ionomer is 50% by mass or more. Preferably there is.
  • EVA and ionomer are particularly preferable in terms of stretchability, low temperature sealability and self-weldability.
  • the vinyl acetate content of EVA is preferably 5 to 30% by mass.
  • the resins used for the seal layer may be used alone or in combination of two or more.
  • the seal layer may contain various additives such as a heat stabilizer, a plasticizer, and an antioxidant in addition to the polyolefin resin.
  • the density of the resin used for the seal layer is preferably 0.880 g / cm 3 or more and 0.940 g / cm 3 or less. More preferably, the 0.900 g / cm 3 or more 0.925 g / cm 3 or less.
  • the MFR (190 ° C., 2.16 kg) of the resin used for the seal layer is preferably 0.5 g / 10 min or more and 20 g / 10 min or less. More preferably, it is 1.0 g / 10 min or more and 15 g / 10 min or less.
  • the melting temperature of the resin used for the seal layer is preferably 80 ° C. or higher and 130 ° C. or lower. More preferably, it is 85 degreeC or more and 100 degrees C or less, Most preferably, it is 85 degreeC or more and 95 degrees C or less. If it is less than 80 degreeC, blocking generate
  • the melting temperature of resin used for a sealing layer is 80 degreeC or more and 100 degrees C or less. More preferably, it is 80 degreeC or more and 95 degrees C or less, Most preferably, it is 85 degreeC or more and 95 degrees C or less.
  • the melting temperature of the seal layer is lower than the melting temperature of the surface layer, and the difference in melting temperature is 35 ° C. or more and 60 ° C. or less. More preferably, it is 40 degreeC or more and 60 degrees C or less, Most preferably, it is 45 degreeC or more and 60 degrees C or less.
  • the difference in melting temperature between the surface layer and the sealing layer is less than 35 ° C., the temperature range in which the overlapping sealing property is exhibited is narrow, and the practicality is lacking.
  • the difference in melting temperature between the surface layer and the seal layer exceeds 60 ° C., the difference in processing temperature increases, and when the melting temperature of the seal layer is relatively high, the melting temperature of the surface layer becomes relatively high.
  • the PVDC of the gas barrier layer may be decomposed or the smoothness of the surface may be inferior.
  • the melting temperature of the surface layer is relatively low, the melting temperature of the seal layer is relatively low. In this case, blocking of the seal layer may occur.
  • the thickness of the seal layer is preferably 3 ⁇ m or more and 50 ⁇ m or less. More preferably, they are 5 micrometers or more and 30 micrometers or less, Especially preferably, they are 8 micrometers or more and 20 micrometers or less.
  • An intermediate layer T2 may be further provided between the gas barrier layer and the seal layer.
  • the intermediate layer T2 functions as a reinforcing layer of the seal layer and has a role of improving the seal strength. Also, it has a role of improving stretchability and shrinkage.
  • the mid layer T2 preferably contains a polyolefin resin.
  • the polyolefin-based resin those exemplified in the intermediate layer T1 can be used, and EVA, ethylene-alkyl acrylate having 1 to 4 carbon atoms, ethylene-methacrylic acid in terms of stretchability, adhesion to the seal layer and transparency.
  • ethylene-polar comonomer copolymers such as ethylene-methacrylic acid-unsaturated carboxylic acid copolymers; ionomers are particularly preferred.
  • the resins used for the intermediate layer T2 may be used alone or in combination of two or more.
  • the intermediate layer T2 may contain various additives such as a heat stabilizer, a plasticizer, and an antioxidant in addition to the polyolefin resin.
  • the melting temperature of the resin used for the intermediate layer T2 is not particularly limited, but is preferably 70 ° C or higher and 120 ° C or lower. More preferably, it is 80 degreeC or more and 100 degrees C or less.
  • Density of the resin used for the intermediate layer T2 is preferably less 0.880 g / cm 3 or more 0.960 g / cm 3. More preferably, the 0.900 g / cm 3 or more 0.940 g / cm 3 or less.
  • the MFR (190 ° C., 2.16 kg) of the resin used for the intermediate layer T2 is preferably 0.5 g / 10 min or more and 20 g / 10 min or less. More preferably, it is 1.0 g / 10 min or more and 15 g / 10 min or less.
  • the thickness of the intermediate layer T2 is preferably 3 ⁇ m or more and 50 ⁇ m or less. More preferably, they are 5 micrometers or more and 30 micrometers or less, Especially preferably, they are 8 micrometers or more and 20 micrometers or less.
  • the intermediate layer T2 may be formed of one layer or two or more layers. When the intermediate layer T2 is formed of two or more layers, the layers may have the same composition, or the layers may have different compositions.
  • An adhesive layer S2 may be further provided between the gas barrier layer and the intermediate layer T2.
  • the adhesive layer S2 is a layer adjacent to the gas barrier layer, and has a role of improving the adhesion to the gas barrier layer.
  • the adhesive resin exemplified in the adhesive layer S1 can be used, and each of them can be used alone or in combination of two or more.
  • the adhesive layer S2 may contain various additives such as a heat stabilizer, a plasticizer, and an antioxidant in addition to the adhesive resin.
  • the melting temperature of the resin used for the adhesive layer S2 is not particularly limited, but is preferably 70 ° C or higher and 130 ° C or lower. More preferably, it is 80 degreeC or more and 120 degrees C or less.
  • Density of the resin used in the adhesive layer S2 is preferably not more than 0.880 g / cm 3 or more 0.960 g / cm 3. More preferably, the 0.900 g / cm 3 or more 0.940 g / cm 3 or less.
  • the MFR (190 ° C., 2.16 kg) of the resin used for the adhesive layer S2 is preferably 0.5 g / 10 min or more and 20 g / 10 min or less. More preferably, it is 1.0 g / 10 min or more and 15 g / 10 min or less.
  • the thickness of the adhesive layer S2 is preferably 0.5 ⁇ m or more and 10 ⁇ m or less. More preferably, they are 1 micrometer or more and 5 micrometers or less.
  • the heat-shrinkable multilayer film according to the present embodiment has a multilayer structure having at least a surface layer, an intermediate layer T1, a gas barrier layer, and a seal layer.
  • the multilayer structure may be formed in various forms depending on the use as long as a surface layer is disposed on one surface and a seal layer is disposed on the other surface. Examples of the multilayer structure include a four-layer structure in which a surface layer, an intermediate layer T1, a gas barrier layer, and a seal layer are sequentially stacked, and five layers in which a surface layer, an intermediate layer T1, a gas barrier layer, an intermediate layer T2, and a seal layer are sequentially stacked.
  • the thickness of the heat-shrinkable multilayer film according to this embodiment is preferably 20 ⁇ m or more and 150 ⁇ m or less. More preferably, they are 30 micrometers or more and 120 micrometers or less, Most preferably, they are 40 micrometers or more and 80 micrometers or less. If it is less than 20 ⁇ m, the mechanical strength may be insufficient. If it exceeds 150 ⁇ m, the time required for heat sealing becomes long, and the packaging suitability may be inferior. Further, the stretch processability may be inferior.
  • the heat-shrinkable multilayer film according to this embodiment preferably has a self-weld property.
  • the self-weld property refers to the property that the sealing layers are fused together by heat at the ear portion after shrinkage of the bag or pouch when heat treatment such as heat shrinkage, heat sterilization, cooking, etc. is performed at a specific temperature.
  • heat treatment such as heat shrinkage, heat sterilization, cooking, etc.
  • heat sterilization may be performed at 95 ° C.
  • contraction is 1 N / 15mm or more.
  • it is 3N / 15mm or more, Most preferably, it is 5N / 15mm or more. If it is less than 1 N / 15 mm, it does not have a substantial self-weld property, and drip accumulates in the ear during storage after packaging, which may deteriorate the appearance.
  • the heat-shrinkable multilayer film according to this embodiment has a hot-water shrinkage rate of at least 30% at 80 ° C. in at least one of the machine direction of the film (MD direction) or the direction perpendicular to the machine direction of the film (TD direction). It is preferable that it is 60% or less. More preferably, it is 35% or more and 55% or less. Particularly preferably, it is 45% or more and 55% or less.
  • the hot water shrinkage rate is less than 30%, the shrinkage amount is insufficient and the appearance of the package may deteriorate. If the hot water shrinkage rate exceeds 60%, the contents may be deformed by excessive shrinkage.
  • the hot water shrinkage ratio is obtained by immersing the difference between the length in the MD direction or the TD direction of the film before being immersed in hot water (80 ° C.) and the length of the film after being immersed in hot water in hot water. It is expressed as a percentage divided by the length in the MD direction or TD direction of the previous film.
  • the heat-shrinkable multilayer film according to this embodiment has a lap seal.
  • the lap sealing property is a multilayer film with a sealing layer facing inward to form a packaging bag, and when the packaging bags are stacked and heat sealed, the sealing layers of each packaging bag are heat-sealed, And the surface layer does not heat-seal or refers to the property of heat-sealable to such an extent that it can be peeled off.
  • the fusion strength between the seal layers (also referred to as seal strength) is preferably 10 N / 15 mm or more. More preferably, it is 15 N / 15 mm or more.
  • the fusion strength between the sealing layers of each packaging bag is less than 10 N / 15 mm, the sealing performance is insufficient, and air may enter the bag during the packaging process or during transportation.
  • the fusion strength between the surface layers is preferably 1.5 N / 15 mm or less, and more preferably 1.0 N / 15 mm or less.
  • the measuring method of seal strength is as having described in the Example.
  • the method for producing a heat-shrinkable multilayer film comprises at least a resin composition for forming a surface layer, a resin composition for forming an intermediate layer T1, a resin composition for forming a gas barrier layer, and a resin composition for forming a seal layer.
  • Each has a lamination step of forming a laminate having a multilayer structure and a stretching step of stretching the laminate.
  • the method for forming a multilayer structure is not particularly limited, but is preferably a melt extrusion method.
  • the melt extrusion method is, for example, an inflation method or a T-die method. Among these, the inflation method is more preferable.
  • a description will be given by taking as an example a method of manufacturing by an inflation method.
  • an unstretched laminate having a multilayer structure is formed.
  • a resin composition for forming a surface layer a resin composition for forming an intermediate layer T1
  • a resin composition for forming a gas barrier layer a resin composition for forming a seal layer
  • an intermediate layer T2 a resin composition for forming resin composition
  • the resin composition for forming each layer of the resin composition for forming the adhesive layer S1 and the resin composition for forming the adhesive layer S2 is put into an extruder and melted.
  • a surface layer is disposed on one surface and a seal layer is disposed on the other surface, and then melt-bonded and coextruded into a tubular shape.
  • the obtained flat tubular unstretched laminate is stretched to form a stretched film.
  • a flat tubular unstretched laminate is heated by, for example, passing through a hot water bath, and then air is blown into the tubular to form a bubble-shaped tubular film, which is cooled with a cold air ring.
  • simultaneous biaxial stretching is performed in the MD direction and the TD direction.
  • the temperature for heat-treating the unstretched laminate is preferably 70 to 95 ° C, more preferably 75 to 90 ° C.
  • the temperature of the cold air ring is preferably 5 to 25 ° C.
  • the stretching ratio is preferably 2 to 4 times in each of the MD direction and the TD direction.
  • the draw ratio in the MD direction and the draw ratio in the TD direction may be the same or different.
  • the method for producing a heat-shrinkable multilayer film according to this embodiment preferably further includes a radiation irradiation step.
  • a radiation irradiation step In the case of irradiation with radiation, stretch film-forming properties, mechanical strength, and the like are improved by the appropriate crosslinking effect.
  • the radiation is, for example, ⁇ rays, ⁇ rays, electron beams (EB), ⁇ rays, and X rays.
  • EB electron beams
  • ⁇ rays X rays.
  • an electron beam and a ⁇ -ray are preferable from the viewpoint of a crosslinking effect before and after irradiation, and an electron beam is particularly preferable from the viewpoints of workability in manufacturing a molded product or high production capacity.
  • the electron beam irradiation conditions may be appropriately set according to the intended use.
  • the electron beam irradiation conditions are preferably an acceleration voltage in the range of 150 to 500 kV and an absorbed dose of 50 to 250 kGy (kilogrey), and more preferably 80 to 200 kGy.
  • the radiation irradiation process may be performed between the lamination process and the stretching process, or may be performed after the stretching process. Further, the irradiation of radiation may be in-line performed after the laminating process or after the stretching process and without the winding process, or may be performed offline after the laminating process or after the stretching process and after the winding process.
  • Table 1 shows the types of resin used. Hereinafter, the abbreviated names shown in Table 1 are used.
  • Table 2 shows the layer configurations of the examples and comparative examples, and Table 3 shows the difference in melting temperature between the surface layer and the seal layer.
  • the measuring method of the melting temperature of resin, a surface layer, and a sealing layer is as follows.
  • the melting temperature of each layer was prepared by peeling or scraping each layer. Moreover, when it was thought that there was no influence on the melting temperature of each layer even if it measured in the state laminated
  • Tm melting temperature
  • DSC8500 differential scanning calorimeter
  • Tm was the endothermic peak of (second temperature increase) in (5) of the temperature program shown below. In addition, when it had a some peak, let the maximum melting peak temperature be Tm.
  • Temperature program (1) Temperature rise at -30 to 200 ° C at 20 ° C / min (2) Hold at 200 ° C for 1 minute (3) Temperature drop from 200 to -30 ° C at 20 ° C / min (4) Hold at -30 ° C for 1 minute (5 ) -30 ⁇ 200 °C Heating at 20 °C / min
  • Example 1 PP-Et-1 as surface layer, EVA-1 as intermediate layer T1, EMA as adhesive layer S1, PVDC as gas barrier layer, EMA as adhesive layer S2, EVA-2 as intermediate layer T2, and Ionomer as seal layer
  • PP-Et-1 as surface layer
  • EVA-1 as intermediate layer T1
  • EMA as adhesive layer S1
  • PVDC as gas barrier layer
  • EMA adhesive layer S2
  • Ionomer as seal layer
  • melt-bonding was performed in order of PP-Et-1 / EVA-1 / EMA / PVDC / EMA / EVA-2 / Ionomer, and coextrusion was performed.
  • the molten tubular body flowing out from the die outlet was cooled by a cold water shower ring at 10 to 20 ° C.
  • the flat tubular body was irradiated with an electron beam in-line in an electron beam irradiation apparatus having an acceleration voltage of 275 kV to give an irradiation dose of 100 kGy.
  • an electron beam irradiation apparatus having an acceleration voltage of 275 kV to give an irradiation dose of 100 kGy.
  • After passing the flat tubular body through a hot water bath at 82 ° C. it is converted into a bubble-shaped tubular body film, and is cooled in a longitudinal direction (MD) by an inflation method while cooling with a cold air ring of 5 to 20 ° C. Simultaneous biaxial stretching was performed at a stretching ratio of 3.4 times in the transverse direction (TD) 4 times.
  • MD longitudinal direction
  • the biaxially stretched film was thermally relaxed to produce a biaxially stretched film (heat-shrinkable multilayer film).
  • the flat width of the obtained heat-shrinkable multilayer film was 340 mm.
  • the layer composition ratio (the value in parentheses is the thickness of each layer) is PP-Et-1 (2.0 ⁇ m) / EVA-1 (22 ⁇ m) / EMA (1.5 ⁇ m) / PVDC (7 ⁇ m) / EMA (1. 5 ⁇ m) / EVA-2 (10 ⁇ m) / Ionomer (10 ⁇ m).
  • the total thickness of the film was 54 ⁇ m.
  • Example 2 PP-Et-1 as surface layer, EVA-1 as intermediate layer T1, EMA as adhesive layer S1, PVDC as gas barrier layer, EMA as adhesive layer S2, EVA-2 as intermediate layer T2, and Ionomer as seal layer
  • melt-bonding was performed in order of PP-Et-1 / EVA-1 / EMA / PVDC / EMA / EVA-2 / Ionomer, and coextrusion was performed.
  • the molten tubular body flowing out from the die outlet was cooled by a cold water shower ring at 10 to 20 ° C.
  • the flat tubular body was irradiated with an electron beam in-line in an electron beam irradiation apparatus having an acceleration voltage of 275 kV to give an irradiation dose of 120 kGy.
  • an electron beam irradiation apparatus having an acceleration voltage of 275 kV to give an irradiation dose of 120 kGy.
  • After passing the flat tubular body through a hot water bath at 82 ° C. it is converted into a bubble-shaped tubular body film, and is cooled in a longitudinal direction (MD) by an inflation method while cooling with a cold air ring of 5 to 20 ° C. Simultaneous biaxial stretching was performed at a draw ratio of 3.2 times in the transverse direction (TD) 7 times.
  • the biaxially stretched film was thermally relaxed to produce a biaxially stretched film (heat-shrinkable multilayer film).
  • the flat width of the obtained heat-shrinkable multilayer film was 380 mm.
  • the layer composition ratio (the value in parentheses is the thickness of each layer) is PP-Et-1 (4.2 ⁇ m) / EVA-1 (35 ⁇ m) / EMA (2.1 ⁇ m) / PVDC (5.6 ⁇ m) / EMA ( 2.1 ⁇ m) / EVA-2 (14 ⁇ m) / Ionomer (14 ⁇ m).
  • the total thickness of the film was 77 ⁇ m.
  • Example 3 Layer composition ratio (numbers in parentheses are the thickness of each layer) PP-Et-1 (2.0 ⁇ m) / Ionomer (22 ⁇ m) / EMA (1.5 ⁇ m) / PVDC (7 ⁇ m) / EMA (in order from the outside to the inside)
  • PP-Et-1 2.0 ⁇ m
  • Ionomer 22 ⁇ m
  • EMA 1.5 ⁇ m
  • PVDC 7 ⁇ m
  • EMA in order from the outside to the inside
  • a heat-shrinkable multilayer film was produced in the same manner as in Example 1 except that the temperature was 1.5 ⁇ m) / EVA-3 (10 ⁇ m) / EVA-2 (10 ⁇ m) and the temperature of the hot water bath was 83 ° C.
  • Example 4 Layer composition ratio (numbers in parentheses are the thickness of each layer) PP-Et-1 (2.0 ⁇ m) / Ionomer (22 ⁇ m) / EMA (1.5 ⁇ m) / PVDC (7 ⁇ m) / EMA (in order from the outside to the inside) 1.5 ⁇ m) / EVA-3 (10 ⁇ m) / EVA-4 (10 ⁇ m) A heat-shrinkable multilayer film was produced in the same manner as in Example 1 except that the temperature of the hot water bath was 83 ° C.
  • Example 5 A heat-shrinkable multilayer film was produced in the same manner as in Example 1 except that the surface layer was changed to PP-Et-2.
  • Example 6 A heat-shrinkable multilayer film was produced in the same manner as in Example 1 except that the surface layer was changed to PP-Et-3.
  • Example 7 A heat-shrinkable multilayer film was produced in the same manner as in Example 1 except that the surface layer was changed to a blend of PP-Et-2 and PP-Et-3 and the blend ratios were 50 wt% and 50 wt%, respectively. did.
  • Example 8 A heat-shrinkable multilayer film was produced in the same manner as in Example 1 except that the surface layer was changed to a blend of PP-Et-4 and PP-Et-5, and the blend ratios were 75 wt% and 25 wt%, respectively. did.
  • Example 2 The layer composition ratio (the values in parentheses are the thickness of each layer) in order from the outside to the inside, LLDPE (2.0 ⁇ m) / EVA-1 (22 ⁇ m) / EMA (1.5 ⁇ m) / PVDC (7 ⁇ m) / EMA (1.
  • a heat-shrinkable multilayer film was produced in the same manner as in Example 1 except that 5 ⁇ m) / EVA-2 (10 ⁇ m) / Ionomer (10 ⁇ m).
  • a film sample marked with a distance of 10 cm in each of the machine direction (longitudinal direction, MD direction) and the direction perpendicular to the machine direction (lateral direction, TD direction) is 80 After being immersed in hot water adjusted to ° C. for 10 seconds, it was taken out and immediately cooled with water at room temperature. Thereafter, the marked distance was measured, and the decrease value from 10 cm was displayed as a percentage as the ratio to the original length of 10 cm. The test was performed 5 times, and the average value in the MD direction and the TD direction was taken as the hot water shrinkage rate.
  • the seal between the seal layers in the film on the side in contact with the seal bar is referred to as an inner surface (upper), and the seal between the seal layers in the film on the side not in contact with the seal bar is referred to as an inner surface (lower).
  • sticker of the surface layers of the overlapping part of two sets of films is called an outer surface.
  • the seal strength of each part was measured using a universal tensile tester (Tensilon RTM-100, manufactured by Orientec Corp.). At this time, the distance between chucks was 20 mm, and the test speed was 300 mm / min. Table 4 shows the seal strength of the inner surface (upper), inner surface (lower), and outer surface at each temperature as the seal strength.
  • the overlap sealability was judged from the seal strengths of the inner surface (upper), inner surface (lower), and outer surface as follows.
  • The seal strength of the inner surface (upper) and the inner surface (lower) is 10 N / 15 mm or more, and the strength of the outer surface is 1.5 N / 15 mm or less, indicating a lap seal property (practical level).
  • X The seal strength of the outer surface exceeds 1.5 N / 15 mm, and does not show the overlap sealability (practical level).
  • ⁇ Self-weld property evaluation> (inner self-weld property)
  • the obtained cylindrical film was processed into a bag shape, the inside was evacuated, the opening was sealed, and the ear part when packaging the contents was simulated.
  • the obtained sample was immersed in hot water at 85 ° C. or 95 ° C. for 1 second to shrink, then taken out and immediately cooled in normal temperature water.
  • the contracted sample is left in a constant temperature and humidity chamber at 23 ° C. and 50% relative humidity for 24 hours or more, and then the portion where the inner surfaces of the seal layers are fused is cut to a width of 15 mm, and the length of the fused portion is 30 mm.
  • a sample piece was obtained.
  • the integral average fusing force of the obtained sample pieces was measured for self-weld property at 85 ° C. and self-weld property at 95 ° C. using a universal tensile tester (Tensilon RTM-100, manufactured by Orientec Corp.). At this time, the distance between chucks was 20 mm, and the test speed was 200 mm / min. If the integrated average fusing force is 1 N / 15 mm or more, the self-weldability is at a practical level.
  • Comparative Examples 1, 2, and 3 did not have a propylene-ethylene copolymer in the surface layer, they did not have lap sealing properties.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)

Abstract

The purpose of the present invention is to provide a heat-shrinkable multilayer film which ensures excellent multiple sealing and excellent self-welding and which combines heat shrinkability, gas barrier properties and heat sealability. This heat-shrinkable multilayer film is provided with a multilayer structure which comprises a surface layer, an intermediate layer (T1), a gas barrier layer and a sealing layer and in which the surface layer is arranged on one surface with the sealing layer on the other surface, wherein: the surface layer comprises a propylene-ethylene copolymer; the gas barrier layer is a polyvinylidene chloride-based resin; and the melting point difference between the surface layer and the sealing layer is 35 to 60°C.

Description

熱収縮性多層フィルムHeat shrinkable multilayer film
 本発明は、生肉、加工肉などの効率的な包装を可能とする熱収縮性多層フィルムに関する。 The present invention relates to a heat-shrinkable multilayer film that enables efficient packaging of raw meat, processed meat, and the like.
 生肉、加工肉などは、その形状が不規則であるため、外観性及び鮮度保持の観点から、通常、収縮包装が行われる。収縮包装に用いられるフィルムは、少なくとも、外面を形成する表面層と、ガスバリア性を有するガスバリア層と、内面を形成するシール層とを有する多層で形成され、各層の性質によって、良好な外観及び鮮度保持を実現するための特性として、熱収縮性、透明性、ガスバリア性又はヒートシール性が付与されている。ガスバリア性を有する収縮フィルムとしては、表面層としてポリプロピレン又はポリプロピレン系共重合体とガスバリア層としてエチレンビニルアルコール共重合体(EVOH)又はナイロン6,12コポリマー又はナイロン6,66コポリマーとシール層としてエチレン-α-オレフィン系共重合体とを積層したフィルムが開示されている(例えば、特許文献1~3を参照。)。 Since raw meat, processed meat, etc. are irregular in shape, they are usually shrink-wrapped from the viewpoint of appearance and freshness. A film used for shrink wrapping is formed of a multilayer having at least a surface layer forming an outer surface, a gas barrier layer having gas barrier properties, and a seal layer forming an inner surface, and has a good appearance and freshness depending on the properties of each layer. As a characteristic for realizing the retention, heat shrinkability, transparency, gas barrier property, or heat sealability is imparted. Examples of the shrink film having gas barrier properties include polypropylene or a polypropylene-based copolymer as a surface layer, ethylene vinyl alcohol copolymer (EVOH) or nylon 6,12 copolymer or nylon 6,66 copolymer as a gas barrier layer, and ethylene as a sealing layer. A film in which an α-olefin copolymer is laminated is disclosed (see, for example, Patent Documents 1 to 3).
 さらに、収縮包装に用いられるフィルムには、作業性向上を目的として、重ねシール性が求められる。重ねシール性とは、多層フィルムでシール層を内側に向けて包装袋を形成し、該包装袋同士を重ねてヒートシールしたとき、各包装袋のシール層同士が熱融着し、かつ、表面層同士が熱融着しない又は剥離可能な程度にしか熱融着しない性質をいう。この重ねシール性を有することで、包装袋の一部を重ねた状態でヒートシールできるため、一度にヒートシールできる包装袋の個数を増やすことができ、作業が効率化する。また、包装袋同士が重ならないように配置する必要が無くなり、作業員の作業性を向上することができる。 Furthermore, a film used for shrink wrapping is required to have a lap seal for the purpose of improving workability. Overlap sealability means that when a packaging bag is formed with a multilayer film with the sealing layer facing inward, and the packaging bags are stacked and heat sealed, the sealing layers of each packaging bag are heat-sealed, and the surface It refers to the property that the layers are not heat-sealed or heat-sealed only to such an extent that they can be peeled off. By having this overlap sealability, heat sealing can be performed in a state where a part of the packaging bag is overlapped. Therefore, the number of packaging bags that can be heat sealed at a time can be increased, and the operation becomes efficient. Moreover, it becomes unnecessary to arrange so that packaging bags may not overlap, and workability | operativity of an operator can be improved.
 重ねシール性を有する熱収縮性多層フィルムとしては、外面を形成する表面層を架橋させ、かつ、内面を形成するシール層を未架橋とすることで、重ねシール性を付与したフィルムが開示されている(例えば、特許文献4を参照。)。また、外面をポリアミド樹脂、ポリエステル樹脂などの融解温度の比較的高い樹脂で形成し、内面をポリオレフィン樹脂などの融解温度の比較的低い樹脂で形成して、外面と内面とで素材の融解温度に温度差を設けることで、重ねシール性を付与したフィルムが開示されている(例えば、特許文献5~8を参照。)。 As a heat-shrinkable multilayer film having a lap seal property, a film having a lap seal property is disclosed by crosslinking a surface layer forming an outer surface and uncrosslinking a seal layer forming an inner surface. (For example, refer to Patent Document 4). In addition, the outer surface is made of a resin having a relatively high melting temperature such as a polyamide resin or a polyester resin, and the inner surface is formed of a resin having a relatively low melting temperature such as a polyolefin resin. Disclosed is a film provided with an overlap seal by providing a temperature difference (see, for example, Patent Documents 5 to 8).
 さらに、生肉、加工肉などの不定形食品を熱収縮性多層フィルムで包装する場合、袋又はパウチの収縮後のフィルムの余剰部分(以降、耳部という。)の見栄えが悪いと消費者に好まれない。袋又はパウチの耳部のシール層同士が、熱処理によって融着すること(以降、セルフウェルドという。)は、包装後の生肉又は加工肉から発生する肉汁(以降、ドリップという。)を目立たせないという点から消費者に好まれている。セルフウェルド性が劣る場合、すなわち熱処理後に耳部の融着がない場合、又はほとんど融着しない場合には、包装後の保存中にドリップが耳部に溜まり、見栄えが悪くなることが問題となる。なお、ここでいう熱処理とは、ある特定温度で熱収縮、熱殺菌、クッキング等の熱処理を指す。セルフウェルド性を有する包装用積層体が開示されている(例えば、特許文献9を参照。)。 Furthermore, when packaging irregular shaped foods such as raw meat and processed meat with a heat-shrinkable multilayer film, consumers may prefer that the excess portion of the film after shrinkage of the bag or pouch (hereinafter referred to as the “ear part”) is poor in appearance. I can't go wrong. The fact that the sealing layers of the bag or pouch ears are fused by heat treatment (hereinafter referred to as self-weld) does not stand out the gravy (hereinafter referred to as drip) generated from raw or processed meat after packaging. That is why it is preferred by consumers. When the self-weld property is inferior, that is, when there is no fusion of the ears after heat treatment, or when there is almost no fusion, the drip accumulates in the ears during storage after packaging, and the appearance becomes poor. . The heat treatment here refers to heat treatment such as heat shrinkage, heat sterilization, and cooking at a specific temperature. A packaging laminate having self-weld properties is disclosed (see, for example, Patent Document 9).
特開2007-152570号公報JP 2007-152570 A 特開平10-80984号公報Japanese Patent Laid-Open No. 10-80984 特開平10-29283号公報JP-A-10-29283 特開平9-39179号公報Japanese Patent Laid-Open No. 9-39179 国際公開第2008/099799号公報International Publication No. 2008/099799 欧州特許第1131205号公報European Patent No. 1131205 欧州特許出願公開第1985443号公報European Patent Application Publication No. 1985443 欧州特許出願公開第2147783号公報European Patent Application Publication No. 2147783 国際公開第2000/47406号公報International Publication No. 2000/47406
 特許文献4に記載されたフィルムでは、外面同士を熱融着させずに、内面をヒートシールすることができる温度範囲が狭く、重ねシール性が不十分である。特許文献5~8に記載されたフィルムは、優れた重ねシール性を有するが、ポリアミド樹脂、ポリエステル樹脂などの融解温度の高い樹脂は、押出加工の温度も当然に高くする必要がある。しかし、ガスバリア性の付与を目的として、ポリ塩化ビニリデン樹脂(PVDC)を中間層に用いる場合、PVDCの分解を考慮すると、加工温度を高くすることができない。そのため、ダイス温度を高温にできず、ポリアミド樹脂、ポリエステル樹脂などの融解温度の高い樹脂を安定的に押し出すことができないため、フィルム表面の平滑性が悪化して外観不良が発生する場合がある。 In the film described in Patent Document 4, the temperature range in which the inner surfaces can be heat-sealed without heat-sealing the outer surfaces is narrow, and the overlap sealability is insufficient. Although the films described in Patent Documents 5 to 8 have excellent lap sealing properties, resins having a high melting temperature such as polyamide resin and polyester resin must naturally have a high extrusion temperature. However, when polyvinylidene chloride resin (PVDC) is used for the intermediate layer for the purpose of imparting gas barrier properties, the processing temperature cannot be increased considering the decomposition of PVDC. For this reason, the die temperature cannot be increased, and a resin having a high melting temperature such as a polyamide resin or a polyester resin cannot be stably extruded. Therefore, the smoothness of the film surface may be deteriorated and appearance defects may occur.
 本発明の目的は、重ねシール性及びセルフウェルド性に優れ、熱収縮性、ガスバリア性及びヒートシール性を兼ね備えた熱収縮性多層フィルムを提供することである。 An object of the present invention is to provide a heat-shrinkable multilayer film which is excellent in lap sealability and self-weld property and has heat shrinkability, gas barrier properties and heat sealability.
 本発明に係る熱収縮性多層フィルムは、表面層と、中間層T1と、ガスバリア層と、シール層とを有する多層構造を備え、該多層構造は、一方の表面に前記表面層を配置し、かつ、他方の表面に前記シール層を配置してなる熱収縮性多層フィルムにおいて、前記表面層が、プロピレン‐エチレン系共重合体を含有し、前記ガスバリア層が、ポリ塩化ビニリデン系樹脂を含有し、前記表面層と前記シール層との融解温度差が、35~60℃であることを特徴とする。 The heat-shrinkable multilayer film according to the present invention has a multilayer structure having a surface layer, an intermediate layer T1, a gas barrier layer, and a seal layer, and the multilayer structure has the surface layer disposed on one surface, And in the heat-shrinkable multilayer film formed by arranging the seal layer on the other surface, the surface layer contains a propylene-ethylene copolymer, and the gas barrier layer contains a polyvinylidene chloride resin. The difference in melting temperature between the surface layer and the sealing layer is 35 to 60 ° C.
 本発明に係る熱収縮性多層フィルムでは、前記多層構造は、前記ガスバリア層と前記シール層との間に、中間層T2を更に備えることが好ましい。シール層の補強層として働き、シール強度を向上させることができる。また、延伸性を高めることができる。 In the heat-shrinkable multilayer film according to the present invention, the multilayer structure preferably further includes an intermediate layer T2 between the gas barrier layer and the seal layer. It works as a reinforcing layer of the seal layer and can improve the seal strength. Moreover, stretchability can be improved.
 本発明に係る熱収縮性多層フィルムでは、前記シール層が、少なくともアイオノマー又はエチレン‐酢酸ビニル共重合体のいずれか一方を含有することが好ましい。延伸性及び低温シール性に優れたフィルムとすることができる。 In the heat-shrinkable multilayer film according to the present invention, it is preferable that the seal layer contains at least one of an ionomer and an ethylene-vinyl acetate copolymer. It can be set as the film excellent in extending | stretching property and low temperature sealing property.
 本発明に係る熱収縮性多層フィルムは、熱処理によって、セルフウェルド性を有することが好ましい。真空包装後の外観を良好にすることができる。 The heat-shrinkable multilayer film according to the present invention preferably has a self-weld property by heat treatment. Appearance after vacuum packaging can be improved.
 本発明は、重ねシール性及びセルフウェルド性に優れ、熱収縮性、ガスバリア性及びヒートシール性を兼ね備えた熱収縮性多層フィルムを提供することができる。 The present invention can provide a heat-shrinkable multilayer film that is excellent in lap sealability and self-weld property and has heat shrinkability, gas barrier properties, and heat sealability.
 次に、本発明について実施形態を示して詳細に説明するが本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。 Next, the present invention will be described in detail with reference to embodiments, but the present invention is not construed as being limited to these descriptions. As long as the effect of the present invention is exhibited, the embodiment may be variously modified.
 本実施形態に係る熱収縮性多層フィルムは、表面層と、中間層T1と、ガスバリア層と、シール層とを有する多層構造を備え、該多層構造は、一方の表面に前記表面層を配置し、かつ、他方の表面に前記シール層を配置してなる熱収縮性多層フィルムにおいて、前記表面層が、プロピレン‐エチレン系共重合体を含有し、前記ガスバリア層が、ポリ塩化ビニリデン系樹脂であり、前記表面層と前記シール層との融解温度差が、35~60℃である。 The heat-shrinkable multilayer film according to this embodiment includes a multilayer structure having a surface layer, an intermediate layer T1, a gas barrier layer, and a seal layer, and the multilayer structure has the surface layer disposed on one surface. And in the heat-shrinkable multilayer film formed by disposing the seal layer on the other surface, the surface layer contains a propylene-ethylene copolymer, and the gas barrier layer is a polyvinylidene chloride resin. The difference in melting temperature between the surface layer and the sealing layer is 35 to 60 ° C.
(表面層)
 表面層は、多層構造の一方の表面に配置されて、袋の外面となる層であり、耐熱性及び光沢性を付与する役割をもつ。本実施形態に係る熱収縮性多層フィルムでは、表面層はプロピレン‐エチレン系共重合体を含有する。プロピレン‐エチレン系共重合体は、例えば、プロピレン‐エチレンランダム共重合体、プロピレン‐エチレンブロック共重合体、プロピレン‐エチレン‐ブテン三元共重合体である。これらは、それぞれ単独で使用するか、又は2種以上を併用してもよい。これらの中で、延伸性及び透明性の観点から、プロピレン‐エチレンランダム共重合体が特に好ましい。
(Surface layer)
The surface layer is a layer that is disposed on one surface of the multilayer structure and becomes the outer surface of the bag, and has a role of imparting heat resistance and gloss. In the heat-shrinkable multilayer film according to the present embodiment, the surface layer contains a propylene-ethylene copolymer. Examples of the propylene-ethylene copolymer include a propylene-ethylene random copolymer, a propylene-ethylene block copolymer, and a propylene-ethylene-butene terpolymer. These may be used alone or in combination of two or more. Among these, a propylene-ethylene random copolymer is particularly preferable from the viewpoints of stretchability and transparency.
 プロピレン‐エチレン系共重合体は、プロピレン60~99.9質量%と他の単量体(コモノマー)0.1~40質量%との共重合体であることが好ましい。より好ましくは、プロピレン‐エチレン系共重合体中のプロピレンの割合が75~99.5質量%である。 The propylene-ethylene copolymer is preferably a copolymer of 60 to 99.9% by mass of propylene and 0.1 to 40% by mass of another monomer (comonomer). More preferably, the proportion of propylene in the propylene-ethylene copolymer is 75 to 99.5% by mass.
 表面層に用いる樹脂の密度は、0.880g/cm以上0.940g/cm以下であることが好ましい。より好ましくは、0.890g/cm以上0.925g/cm以下である。 The density of the resin used for the surface layer is preferably 0.880 g / cm 3 or more and 0.940 g / cm 3 or less. More preferably, it is 0.890 g / cm 3 or more and 0.925 g / cm 3 or less.
 表面層に用いる樹脂のメルトフローレート(MFR)(230℃、2.16kg)は、1.0g/10分以上25g/10分以下であることが好ましい。より好ましくは、2.0g/10分以上20g/10分である。 The melt flow rate (MFR) (230 ° C., 2.16 kg) of the resin used for the surface layer is preferably 1.0 g / 10 min or more and 25 g / 10 min or less. More preferably, it is 2.0 g / 10 min or more and 20 g / 10 min.
 表面層に用いる樹脂の融解温度は、130℃以上170℃以下であることが好ましい。より好ましくは、135℃以上160℃以下である。特に好ましくは、140℃以上155℃以下である。130℃未満では、耐熱性が不足して、シールなどの熱加工時に表面層が溶融する場合がある。170℃を超えると、押出し加工温度が高くなるため、ガスバリア層のPVDCが分解する場合がある。また、表面の平滑性が劣る場合又は延伸性が阻害される場合がある。 The melting temperature of the resin used for the surface layer is preferably 130 ° C. or higher and 170 ° C. or lower. More preferably, it is 135 degreeC or more and 160 degrees C or less. Especially preferably, it is 140 degreeC or more and 155 degrees C or less. If it is less than 130 ° C., the heat resistance is insufficient, and the surface layer may melt during thermal processing such as sealing. If it exceeds 170 ° C., the extrusion processing temperature becomes high, so that the PVDC in the gas barrier layer may be decomposed. Moreover, the smoothness of the surface may be inferior or the stretchability may be hindered.
 表面層は、結晶核剤、滑剤、帯電防止剤、柔軟剤、熱安定剤、可塑剤、酸化防止剤など各種添加剤を含有してもよい。結晶核剤は、透明性、耐熱性、成形性などを改良するものであり、例えば、ジベンジリデンソルビトールなどのソルビトール化合物;有機リン酸エステル系化合物;ロジン酸塩系化合物;炭素数4~12の脂肪族ジカルボン酸又はその金属塩;芳香族カルボン酸又はその金属塩である。滑剤は、フィルムと製袋機又は包装機械などの機械表面との境界摩擦を小さくするものであり、例えば、流動パラフィン、ポリエチレンワックスなどの炭化水素系滑剤;ステアリン酸、ラウリル酸などの脂肪族系滑剤;ステアリン酸アミド、エルカ酸アミドなどの脂肪族アミド系滑剤;エチレングリコールモノステアレート、ステアリン酸モノグリセライドなどのエステル系滑剤;ステアリン酸亜鉛、ステアリン酸カルシウムなどの金属石鹸類である。これらの滑剤の中で、ポリオレフィン樹脂との相溶性が優れるという点から脂肪酸アミド系滑剤、金属石鹸類が好ましく用いられる。帯電防止剤は、静電気によって、製品がロールなどに粘着して製袋などの機械適性を低下させることや製品同士が粘着し、製品を1枚ずつ取り出す時の作業性を低下させるなどの静電気障害を抑制するものであり、例えば、アニオン性界面活性剤、カチオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤又はこれらの混合物である。柔軟剤は、収縮時のフィルムの折れ曲がり現象を抑制するものであり、例えば、エチレン‐αオレフィン共重合体、プロピレン‐αオレフィン共重合体などのポリオレフィン系エラストマー;エチレン‐酢酸ビニル共重合体などのエチレン系共重合体;ポリイソブチレン;ポリブテン;ポリブタジエン;ブタジエン‐スチレン共重合体;ネオプレン;天然ゴムである。 The surface layer may contain various additives such as a crystal nucleating agent, a lubricant, an antistatic agent, a softening agent, a heat stabilizer, a plasticizer, and an antioxidant. Crystal nucleating agents improve transparency, heat resistance, moldability, and the like. For example, sorbitol compounds such as dibenzylidene sorbitol; organophosphate compounds; rosinate compounds; Aliphatic dicarboxylic acid or metal salt thereof; aromatic carboxylic acid or metal salt thereof. The lubricant reduces the boundary friction between the film and the machine surface of the bag making machine or the packaging machine. For example, hydrocarbon lubricants such as liquid paraffin and polyethylene wax; aliphatic systems such as stearic acid and lauric acid Lubricants; aliphatic amide-based lubricants such as stearamide and erucamide; ester-based lubricants such as ethylene glycol monostearate and monoglyceride stearate; metal soaps such as zinc stearate and calcium stearate. Of these lubricants, fatty acid amide lubricants and metal soaps are preferably used from the viewpoint of excellent compatibility with polyolefin resins. Antistatic agents cause static electricity damage, such as the product sticking to rolls due to static electricity, reducing the mechanical suitability of bags, etc., and the product sticking to each other, reducing the workability when taking out one product at a time. For example, an anionic surfactant, a cationic surfactant, a nonionic surfactant, an amphoteric surfactant, or a mixture thereof. The softening agent suppresses the bending phenomenon of the film at the time of shrinkage. For example, polyolefin elastomer such as ethylene-α olefin copolymer and propylene-α olefin copolymer; ethylene-vinyl acetate copolymer, etc. Polyethylene, polyisobutylene, polybutene, polybutadiene, butadiene-styrene copolymer, neoprene, natural rubber.
 表面層の厚さは、0.5μm以上40μm以下であることが好ましい。より好ましくは、1μm以上10μm以下である。 The thickness of the surface layer is preferably 0.5 μm or more and 40 μm or less. More preferably, they are 1 micrometer or more and 10 micrometers or less.
 表面層の表面には、パウダーを塗布することができる。パウダーは、重ねシール可能な温度幅を拡張する役割をもつ。パウダーは、例えば、澱粉である。パウダーの平均粒子径は、5~50μmであることが好ましい。また、異なる粒子径を有するパウダーを複数種配合して平均粒子径に分布をもたせてもよい。 ¡Powder can be applied to the surface of the surface layer. The powder has a role of expanding the temperature range in which the layers can be sealed. The powder is, for example, starch. The average particle size of the powder is preferably 5 to 50 μm. Further, a plurality of kinds of powders having different particle sizes may be blended to have a distribution in the average particle size.
(中間層T1)
 中間層T1は、ポリオレフィン系樹脂を含有することが好ましい。ポリオレフィン系樹脂は、例えば、低密度ポリエチレン(LDPE);中密度ポリエチレン(MDPE);ポリプロピレン(PP);プロピレンと炭素数が2若しくは4~8のαオレフィンとの共重合体;エチレン‐αオレフィン共重合体;エチレン‐酢酸ビニル共重合体(EVA)、炭素数が1~4のエチレン‐アルキルアクリレート、エチレン‐メタクリル酸共重合体、エチレン‐メタクリル酸‐不飽和カルボン酸共重合体などのエチレン‐極性コモノマー共重合体;アイオノマーである。エチレン‐αオレフィン共重合体は、チーグラー‐ナッタ触媒を用いて得た共重合体、メタロセン触媒を用いて得た共重合体を包含する。エチレン‐αオレフィン共重合体の重合に用いるコモノマーとしてのαオレフィンは、例えば、炭素数が4のブテン‐1、炭素数が5のペンテン‐1、炭素数が6の4‐メチルペンテン‐1若しくはヘキセン‐1又は炭素数が8のオクテン‐1である。エチレン‐αオレフィン共重合体の具体例としては、密度が0.900g/cm~0.909g/cmである超低密度ポリエチレン(VLDPE)、密度が0.910g/cm~0.925g/cmである直鎖状低密度ポリエチレン(LLDPE)である。この中で、延伸性、表面層との接着性及び透明性の点で、EVA、炭素数が1~4のエチレン‐アルキルアクリレート、エチレン‐メタクリル酸共重合体、エチレン‐メタクリル酸‐不飽和カルボン酸共重合体などのエチレン‐極性コモノマー共重合体;アイオノマーが特に好ましい。中間層T1に用いる樹脂は、それぞれ単独で使用するか、又は2種以上を併用してもよい。なお、中間層T1は、ポリオレフィン系樹脂以外に、滑剤、帯電防止剤、熱安定剤、可塑剤、酸化防止剤、柔軟剤など各種添加剤を含有してもよい。この中で、収縮時のフィルムの折れ曲がり現象を抑制することができる点で柔軟剤を含有することがより好ましい。柔軟剤としては、例えば、エチレン‐αオレフィン共重合体、プロピレン‐αオレフィン共重合体などのポリオレフィン系エラストマー;エチレン‐酢酸ビニル共重合体などのエチレン系共重合体;ポリイソブチレン;ポリブテン;ポリブタジエン;ブタジエン‐スチレン共重合体;ネオプレン;天然ゴムである。
(Intermediate layer T1)
The mid layer T1 preferably contains a polyolefin resin. Examples of the polyolefin resin include low density polyethylene (LDPE); medium density polyethylene (MDPE); polypropylene (PP); a copolymer of propylene and an α-olefin having 2 or 4 to 8 carbon atoms; an ethylene-α-olefin copolymer. Polymer: ethylene-vinyl acetate copolymer (EVA), ethylene-alkyl acrylate having 1 to 4 carbon atoms, ethylene-methacrylic acid copolymer, ethylene-methacrylic acid-unsaturated carboxylic acid copolymer, etc. Polar comonomer copolymer; ionomer. The ethylene-α olefin copolymer includes a copolymer obtained using a Ziegler-Natta catalyst and a copolymer obtained using a metallocene catalyst. The α-olefin as a comonomer used for the polymerization of the ethylene-α-olefin copolymer is, for example, butene-1, having 4 carbon atoms, pentene-1, 5 carbon atoms, 4-methylpentene-1 having 6 carbon atoms, or Hexene-1 or octene-1 having 8 carbon atoms. Specific examples of the ethylene -α-olefin copolymer, the density is 0.900g / cm 3 ~ 0.909g / cm 3 very low density polyethylene (VLDPE), density of 0.910g / cm 3 ~ 0.925g It is a linear low density polyethylene (LLDPE) that is / cm 3 . Among them, EVA, ethylene-alkyl acrylate having 1 to 4 carbon atoms, ethylene-methacrylic acid copolymer, ethylene-methacrylic acid-unsaturated carboxylic acid in terms of stretchability, adhesion to the surface layer and transparency. Particularly preferred are ethylene-polar comonomer copolymers such as acid copolymers; ionomers. The resins used for the intermediate layer T1 may be used alone or in combination of two or more. In addition to the polyolefin-based resin, the intermediate layer T1 may contain various additives such as a lubricant, an antistatic agent, a heat stabilizer, a plasticizer, an antioxidant, and a softening agent. In this, it is more preferable to contain a softening agent at the point which can suppress the bending phenomenon of the film at the time of shrinkage | contraction. Examples of the softener include polyolefin elastomers such as ethylene-α olefin copolymers and propylene-α olefin copolymers; ethylene copolymers such as ethylene-vinyl acetate copolymers; polyisobutylenes; polybutenes; polybutadienes; Butadiene-styrene copolymer; neoprene; natural rubber.
 中間層T1に用いる樹脂の融解温度は、特に制限はないが、70℃以上120℃以下であることが好ましい。より好ましくは、80℃以上100℃以下である。 The melting temperature of the resin used for the intermediate layer T1 is not particularly limited, but is preferably 70 ° C. or higher and 120 ° C. or lower. More preferably, it is 80 degreeC or more and 100 degrees C or less.
 中間層T1に用いる樹脂の密度は、0.880g/cm以上0.960g/cm以下であることが好ましい。より好ましくは、0.900g/cm以上0.940g/cm以下である。 Density of the resin used for the intermediate layer T1 is preferably less 0.880 g / cm 3 or more 0.960 g / cm 3. More preferably, the 0.900 g / cm 3 or more 0.940 g / cm 3 or less.
 中間層T1に用いる樹脂のMFR(190℃、2.16kg)は、0.5g/10分以上20g/10分以下であることが好ましい。より好ましくは、1.0g/10分以上15g/10分以下である。 The MFR (190 ° C., 2.16 kg) of the resin used for the intermediate layer T1 is preferably 0.5 g / 10 min or more and 20 g / 10 min or less. More preferably, it is 1.0 g / 10 min or more and 15 g / 10 min or less.
 中間層T1の厚さは、5μm以上50μm以下であることが好ましい。より好ましくは、10μm以上40μm以下である。中間層T1は、1層で形成するか、又は2層以上で形成してもよい。中間層T1を2層以上で形成する場合には、各層を同一の組成とするか、又は各層を異なる組成としてもよい。 The thickness of the intermediate layer T1 is preferably 5 μm or more and 50 μm or less. More preferably, they are 10 micrometers or more and 40 micrometers or less. The intermediate layer T1 may be formed of one layer or two or more layers. When the intermediate layer T1 is formed of two or more layers, the layers may have the same composition, or the layers may have different compositions.
(接着層S1)
 中間層T1とガスバリア層の間に、接着層S1を更に設けてもよい。接着層S1は、ガスバリア層に隣接する層であり、ガスバリア層に対する接着性を向上させる役割をもつ。接着層S1は、例えば、エチレン‐極性コモノマー共重合体、酸変性ポリオレフィンなどの接着性樹脂を含有することが好ましい。エチレン‐極性コモノマー共重合体は、例えば、エチレン‐酢酸ビニル共重合体、炭素数1~4のエチレン‐アルキルアクリレート、エチレン‐メタクリル酸共重合体、エチレン‐メタクリル酸‐不飽和カルボン酸共重合体、エチレン‐アクリル酸共重合体である。酸変性ポリオレフィンは、例えば、オレフィン類の単独若しくは共重合体とマレイン酸若しくはフマル酸などの不飽和カルボン酸、酸無水物、エステル又は金属塩との反応物である。接着層S1に用いる樹脂は、それぞれ単独で使用するか、又は2種以上を併用してもよい。なお、接着層S1は、接着性樹脂以外に、熱安定剤、可塑剤、酸化防止剤など各種添加剤を含有してもよい。
(Adhesive layer S1)
An adhesive layer S1 may be further provided between the intermediate layer T1 and the gas barrier layer. The adhesive layer S1 is a layer adjacent to the gas barrier layer, and has a role of improving adhesion to the gas barrier layer. The adhesive layer S1 preferably contains an adhesive resin such as an ethylene-polar comonomer copolymer or an acid-modified polyolefin. Examples of ethylene-polar comonomer copolymers include ethylene-vinyl acetate copolymers, ethylene-alkyl acrylates having 1 to 4 carbon atoms, ethylene-methacrylic acid copolymers, and ethylene-methacrylic acid-unsaturated carboxylic acid copolymers. , An ethylene-acrylic acid copolymer. The acid-modified polyolefin is, for example, a reaction product of an olefin homo- or copolymer and an unsaturated carboxylic acid such as maleic acid or fumaric acid, an acid anhydride, an ester, or a metal salt. The resins used for the adhesive layer S1 may be used alone or in combination of two or more. In addition, adhesive layer S1 may contain various additives, such as a heat stabilizer, a plasticizer, and antioxidant other than adhesive resin.
 接着層S1に用いる樹脂の融解温度は、特に制限はないが、70℃以上130℃以下であることが好ましい。より好ましくは、80℃以上120℃以下である。 The melting temperature of the resin used for the adhesive layer S1 is not particularly limited, but is preferably 70 ° C or higher and 130 ° C or lower. More preferably, it is 80 degreeC or more and 120 degrees C or less.
 接着層S1に用いる樹脂の密度は、0.880g/cm以上0.960g/cm以下であることが好ましい。より好ましくは、0.900g/cm以上0.940g/cm以下である。 Density of the resin used in the adhesive layer S1 is preferably not more than 0.880 g / cm 3 or more 0.960 g / cm 3. More preferably, the 0.900 g / cm 3 or more 0.940 g / cm 3 or less.
 接着層S1に用いる樹脂のMFR(190℃、2.16kg)は、0.5g/10分以上20g/10分以下であることが好ましい。より好ましくは、1.0g/10分以上15g/10分以下である。 The MFR (190 ° C., 2.16 kg) of the resin used for the adhesive layer S1 is preferably 0.5 g / 10 min or more and 20 g / 10 min or less. More preferably, it is 1.0 g / 10 min or more and 15 g / 10 min or less.
 接着層S1の厚さは、0.5μm以上10μm以下であることが好ましい。より好ましくは、1μm以上5μm以下である。 The thickness of the adhesive layer S1 is preferably 0.5 μm or more and 10 μm or less. More preferably, they are 1 micrometer or more and 5 micrometers or less.
(ガスバリア層)
 ガスバリア層は、酸素、水蒸気などの透過を抑制して、内容物の劣化を防止する役割をもつ。ガスバリア層は、ガスバリア性樹脂として、ポリ塩化ビニリデン(PVDC)系樹脂を含有する。
(Gas barrier layer)
The gas barrier layer has a role of preventing deterioration of contents by suppressing permeation of oxygen, water vapor and the like. The gas barrier layer contains a polyvinylidene chloride (PVDC) resin as a gas barrier resin.
 ポリ塩化ビニリデン系樹脂は、例えば、塩化ビニリデン(VDC)60~98質量%と共重合可能な他の単量体(コモノマー)2~40質量%との共重合体である。 The polyvinylidene chloride resin is, for example, a copolymer of 2 to 40% by mass of another monomer (comonomer) copolymerizable with 60 to 98% by mass of vinylidene chloride (VDC).
 コモノマーとしては、例えば、塩化ビニル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2‐エチルヘキシル、アクリル酸ラウリル、アクリル酸ステアリルなどのアクリル酸アルキルエステル(アルキル基の炭素数1~18);メタクリル酸メチル、メタクリル酸ブチル、メタクリル酸2‐エチルヘキシル、メタクリル酸ラウリル、メタクリル酸ステアリルなどのメタクリル酸アルキルエステル(アルキル基の炭素数1~18);アクリロニトリル、メタクリロニトリルなどのシアン化ビニル;スチレンなどの芳香族ビニル;酢酸ビニルなどの炭素数1~18の脂肪族カルボン酸のビニルエステル;炭素数1~18のアルキルビニルエーテル;アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸などのビニル重合性不飽和カルボン酸;マレイン酸、フマル酸、イタコン酸などのビニル重合性不飽和カルボン酸のアルキルエステル(部分エステルを含み、アルキル基の炭素数1~18);その他、ジエン系単量体、官能基含有単量体、多官能性単量体などを挙げることができる。 Examples of the comonomer include vinyl chloride; alkyl acrylate esters such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, stearyl acrylate (alkyl group having 1 to 18 carbon atoms). Alkyl methacrylates such as methyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, stearyl methacrylate (alkyl group having 1 to 18 carbon atoms); vinyl cyanide such as acrylonitrile and methacrylonitrile; Aromatic vinyl such as styrene; vinyl ester of aliphatic carboxylic acid having 1 to 18 carbon atoms such as vinyl acetate; alkyl vinyl ether having 1 to 18 carbon atoms; acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, etc. Vinyl polymerizable unsaturated carboxylic acids; alkyl esters of vinyl polymerizable unsaturated carboxylic acids such as maleic acid, fumaric acid and itaconic acid (including partial esters, having 1 to 18 carbon atoms in the alkyl group); Body, functional group-containing monomer, polyfunctional monomer and the like.
 これらのコモノマーは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。これらのコモノマーの中でも、塩化ビニル、アクリル酸メチル又はアクリル酸ラウリルが好ましい。コモノマーの共重合割合が小さすぎると、内部可塑化が不充分となって、溶融加工性が低下する。コモノマーの共重合割合が大きすぎると、ガスバリア性が低下する。コモノマーの共重合割合は、好ましくは3~35質量%、より好ましくは10~25質量%である。 These comonomers can be used alone or in combination of two or more. Among these comonomers, vinyl chloride, methyl acrylate or lauryl acrylate is preferable. When the copolymerization ratio of the comonomer is too small, the internal plasticization becomes insufficient and the melt processability is lowered. When the copolymerization ratio of the comonomer is too large, the gas barrier property is lowered. The copolymerization ratio of the comonomer is preferably 3 to 35% by mass, more preferably 10 to 25% by mass.
 ポリ塩化ビニリデン系樹脂の還元粘度(ηsp/C)は、フィルムに成形する場合の加工性、包装機械適性、耐寒性などの観点から、好ましくは0.035~0.070であり、より好ましくは0.040~0.065であり、特に好ましくは0.045~0.063である。ポリ塩化ビニリデン系樹脂の還元粘度が低すぎると、加工性が低下し、高すぎると、着色傾向を示すようになるので、いずれも好ましくない。還元粘度が異なる2種以上のポリ塩化ビニリデン系樹脂を併用することができ、それによって、加工性を向上させることができる。2種以上のポリ塩化ビニリデン系樹脂を併用した場合、混合樹脂の還元粘度は、上記範囲内にあることが好ましい。 The reduced viscosity (ηsp / C) of the polyvinylidene chloride-based resin is preferably 0.035 to 0.070, more preferably from the viewpoint of processability when molded into a film, suitability for packaging machinery, cold resistance, and the like. It is 0.040 to 0.065, and particularly preferably 0.045 to 0.063. If the reduced viscosity of the polyvinylidene chloride-based resin is too low, the processability is deteriorated, and if it is too high, a tendency toward coloring is exhibited, so neither is preferred. Two or more types of polyvinylidene chloride resins having different reduced viscosities can be used in combination, thereby improving workability. When two or more kinds of polyvinylidene chloride resins are used in combination, the reduced viscosity of the mixed resin is preferably within the above range.
 ポリ塩化ビニリデン系樹脂は、所望により他の樹脂とブレンドすることができる。他の樹脂としては、例えば、エチレン‐酢酸ビニル共重合体、(メタ)アクリル酸エステル、好ましくはアルキル基の炭素数1~18の(メタ)アクリル酸アルキルエステルの(共)重合体〔例えば、(メタ)アクリル酸メチル‐(メタ)アクリル酸ブチル共重合体〕、メタクリル酸メチル‐ブタジエン‐スチレン共重合体などを挙げることができる。これらの他の樹脂は、ポリ塩化ビニリデン系樹脂組成物を調製する際にブレンドするか、ポリ塩化ビニリデン系樹脂にブレンドする着色用樹脂組成物中に含有させることができる。その他の樹脂は、ポリ塩化ビニリデン系樹脂100質量部に対して、通常、20質量部以下の割合で用いられる。 The polyvinylidene chloride resin can be blended with other resins as desired. Other resins include, for example, ethylene-vinyl acetate copolymer, (meth) acrylic acid ester, preferably (co) polymer of alkyl group (meth) acrylic acid alkyl ester having 1 to 18 carbon atoms [for example, (Methyl (meth) acrylate- (meth) butyl acrylate copolymer), methyl methacrylate-butadiene-styrene copolymer, and the like. These other resins can be blended when preparing the polyvinylidene chloride resin composition, or can be contained in the coloring resin composition blended with the polyvinylidene chloride resin. The other resin is usually used at a ratio of 20 parts by mass or less with respect to 100 parts by mass of the polyvinylidene chloride resin.
 ガスバリア性樹脂は、それぞれ単独で使用するか、又は2種以上を併用してもよい。ガスバリア性樹脂とポリオレフィン系樹脂とは、前記した接着層S1及び後述する接着層S2を介在させることで、良好な接着性を得ることができる。なお、ガスバリア層は、ガスバリア性樹脂以外に、熱安定剤、可塑剤、酸化防止剤など各種添加剤を含有してもよい。 The gas barrier resins may be used alone or in combination of two or more. The gas barrier resin and the polyolefin-based resin can obtain good adhesiveness by interposing the adhesive layer S1 and the adhesive layer S2 described later. The gas barrier layer may contain various additives such as a heat stabilizer, a plasticizer, and an antioxidant in addition to the gas barrier resin.
 ガスバリア層の厚さは、1μm以上40μm以下であることが好ましい。より好ましくは、3μm以上30μm以下であり、特に好ましくは、4μm以上10μm以下である。ガスバリア層は、1層で形成するか、又は2層以上で形成してもよい。ガスバリア層を2層以上で形成する場合には、各層を同一の組成とするか、又は各層を異なる組成としてもよい。 The thickness of the gas barrier layer is preferably 1 μm or more and 40 μm or less. More preferably, they are 3 micrometers or more and 30 micrometers or less, Especially preferably, they are 4 micrometers or more and 10 micrometers or less. The gas barrier layer may be formed of one layer or two or more layers. When two or more gas barrier layers are formed, each layer may have the same composition, or each layer may have a different composition.
(シール層)
 シール層は、表面層とは反対側の表面に配置されて、袋の内面となり、ヒートシールされて袋を密封する役割をもつ。シール層は、ポリオレフィン系樹脂を含有することが好ましい。ポリオレフィン系樹脂は、例えば、低密度ポリエチレン(LDPE);エチレン‐αオレフィン共重合体;エチレン‐酢酸ビニル共重合体(EVA)、炭素数が1~4のエチレン‐アルキルアクリレート、エチレン‐メタクリル酸共重合体、エチレン‐メタクリル酸‐不飽和カルボン酸共重合体などのエチレン‐極性コモノマー共重合体;アイオノマーである。エチレン‐αオレフィン共重合体は、チーグラー‐ナッタ触媒を用いて得た共重合体、メタロセン触媒を用いて得た共重合体を包含する。エチレン‐αオレフィン共重合体の重合に用いるコモノマーとしてのαオレフィンは、例えば、炭素数が4のブテン‐1、炭素数が5のペンテン‐1、炭素数が6の4‐メチルペンテン‐1若しくはヘキセン‐1又は炭素数が8のオクテン‐1である。エチレン‐αオレフィン共重合体の具体例としては、密度が0.900g/cm以上0.909g/cm以下である超低密度ポリエチレン(VLDPE)、密度が0.910g/cm以上0.925g/cm以下である直鎖状低密度ポリエチレン(LLDPE)である。アイオノマーは、例えば、ベースポリマーとして、エチレン‐不飽和カルボン酸共重合体又はエチレン‐エチレン性不飽和カルボン酸‐エチレン性不飽和カルボン酸エステル三元共重合体を用い、これら共重合体中のカルボキシル基を陽イオンで中和した樹脂を挙げることができる。不飽和カルボン酸は、例えば、メタクリル酸、アクリル酸であることが好ましい。不飽和カルボン酸の共重合割合は、3~20質量%であることが好ましい。より好ましくは5~15質量%であり、特に好ましくは7~13質量%である。不飽和カルボン酸の共重合割合が大き過ぎると、シール強度が低下する傾向を示す。不飽和カルボン酸エステルとしては、(メタ)アクリル酸の炭素数1~6のアルキルエステルが好ましい。不飽和カルボン酸エステルの共重合割合は、3~30質量%であることが好ましい。より好ましくは4~15質量%であり、特に好ましくは5~10質量%である。不飽和カルボン酸エステルの共重合割合が大き過ぎると過剰な柔軟性とベトツキにより製袋性が悪化したり、シール強度が低下したりする傾向を示す。中和に使用する陽イオンとしては、例えば、Na、K、Li、Cs、Ag、Hg、Cu、Mg2+、Zn2+、Be2+、Ca2+、Ba2+、Cu2+、Cd2+、Hg2+、Sn2+、Pb2+、Fe2+、Co2+、Ni2+、Al3+、Sc3+、Fe3+、Y3+などの金属イオン、有機アミンを挙げることが出来る。これらの中で、Na、K、Ca2+、Zn2+などが好ましく用いられる。樹脂中の酸含量に対する樹脂中の金属又は有機アミン含量の割合(中和度)は、1~15%であることが好ましい。より好ましくは3~15%である。15%を超えると、実用上要求される水準のシール強度を得られることができない場合がある。中和度が15%以下のアイオノマーは、2種以上のイオン化度の異なるアイオノマーをブレンドして調製してもよい。また、アイオノマーは、例えば、エチレン‐メタクリル酸共重合体、エチレン‐メタクリル酸‐アクリル酸エステル三元共重合体などとブレンドして用いることができるが、アイオノマーのブレンド割合は、50質量%以上であることが好ましい。これらシール層に用いられる樹脂の中で、延伸性、低温シール性およびセルフウェルド性の点で、EVA、アイオノマーが特に好ましい。EVAの酢酸ビニル含量は、5~30質量%であることが好ましい。より好ましくは10~25質量%であり、特に好ましくは12~18質量%である。シール層に用いる樹脂は、それぞれ単独で使用するか、又は2種以上を併用してもよい。なお、シール層は、ポリオレフィン系樹脂以外に、熱安定剤、可塑剤、酸化防止剤など各種添加剤を含有してもよい。
(Seal layer)
The sealing layer is disposed on the surface opposite to the surface layer, becomes the inner surface of the bag, and has a role of sealing the bag by heat sealing. The sealing layer preferably contains a polyolefin resin. Examples of polyolefin resins include low-density polyethylene (LDPE); ethylene-α olefin copolymer; ethylene-vinyl acetate copolymer (EVA), ethylene-alkyl acrylate having 1 to 4 carbon atoms, and ethylene-methacrylic acid copolymer. Polymers, ethylene-polar comonomer copolymers such as ethylene-methacrylic acid-unsaturated carboxylic acid copolymers; ionomers. The ethylene-α olefin copolymer includes a copolymer obtained using a Ziegler-Natta catalyst and a copolymer obtained using a metallocene catalyst. The α-olefin as a comonomer used for the polymerization of the ethylene-α-olefin copolymer is, for example, butene-1, having 4 carbon atoms, pentene-1, 5 carbon atoms, 4-methylpentene-1 having 6 carbon atoms, or Hexene-1 or octene-1 having 8 carbon atoms. Specific examples of the ethylene -α-olefin copolymer, the density is 0.900 g / cm 3 or more 0.909 g / cm 3 or less very low density polyethylene (VLDPE), density of 0.910 g / cm 3 or more zero. It is a linear low density polyethylene (LLDPE) that is 925 g / cm 3 or less. For example, an ionomer uses, as a base polymer, an ethylene-unsaturated carboxylic acid copolymer or an ethylene-ethylenically unsaturated carboxylic acid-ethylenically unsaturated carboxylic acid ester terpolymer, and carboxyls in these copolymers. A resin in which the group is neutralized with a cation can be mentioned. The unsaturated carboxylic acid is preferably, for example, methacrylic acid or acrylic acid. The copolymerization ratio of unsaturated carboxylic acid is preferably 3 to 20% by mass. More preferably, it is 5 to 15% by mass, and particularly preferably 7 to 13% by mass. When the copolymerization ratio of the unsaturated carboxylic acid is too large, the sealing strength tends to decrease. The unsaturated carboxylic acid ester is preferably an alkyl ester of (meth) acrylic acid having 1 to 6 carbon atoms. The copolymerization ratio of the unsaturated carboxylic acid ester is preferably 3 to 30% by mass. More preferably, it is 4 to 15% by mass, and particularly preferably 5 to 10% by mass. If the copolymerization ratio of the unsaturated carboxylic acid ester is too large, the bag-making property tends to deteriorate due to excessive flexibility and stickiness, and the sealing strength tends to decrease. Examples of the cation used for neutralization include Na + , K + , Li + , Cs + , Ag + , Hg + , Cu + , Mg 2+ , Zn 2+ , Be 2+ , Ca 2+ , Ba 2+ and Cu 2+. , Cd 2+ , Hg 2+ , Sn 2+ , Pb 2+ , Fe 2+ , Co 2+ , Ni 2+ , Al 3+ , Sc 3+ , Fe 3+ , Y 3+ , and organic amines. Among these, Na + , K + , Ca 2+ , Zn 2+ and the like are preferably used. The ratio of the metal or organic amine content in the resin to the acid content in the resin (degree of neutralization) is preferably 1 to 15%. More preferably, it is 3 to 15%. If it exceeds 15%, there may be a case where a practically required level of sealing strength cannot be obtained. An ionomer having a neutralization degree of 15% or less may be prepared by blending two or more ionomers having different ionization degrees. The ionomer can be used by blending with, for example, an ethylene-methacrylic acid copolymer, an ethylene-methacrylic acid-acrylic acid ester terpolymer, etc. The blend ratio of the ionomer is 50% by mass or more. Preferably there is. Of these resins used for the seal layer, EVA and ionomer are particularly preferable in terms of stretchability, low temperature sealability and self-weldability. The vinyl acetate content of EVA is preferably 5 to 30% by mass. More preferably, it is 10 to 25% by mass, and particularly preferably 12 to 18% by mass. The resins used for the seal layer may be used alone or in combination of two or more. The seal layer may contain various additives such as a heat stabilizer, a plasticizer, and an antioxidant in addition to the polyolefin resin.
 シール層に用いる樹脂の密度は、0.880g/cm以上0.940g/cm以下であることが好ましい。より好ましくは、0.900g/cm以上0.925g/cm以下である。 The density of the resin used for the seal layer is preferably 0.880 g / cm 3 or more and 0.940 g / cm 3 or less. More preferably, the 0.900 g / cm 3 or more 0.925 g / cm 3 or less.
 シール層に用いる樹脂のMFR(190℃、2.16kg)は、0.5g/10分以上20g/10分以下であることが好ましい。より好ましくは、1.0g/10分以上15g/10分以下である。 The MFR (190 ° C., 2.16 kg) of the resin used for the seal layer is preferably 0.5 g / 10 min or more and 20 g / 10 min or less. More preferably, it is 1.0 g / 10 min or more and 15 g / 10 min or less.
 シール層に用いる樹脂の融解温度は、80℃以上130℃以下であることが好ましい。より好ましくは、85℃以上100℃以下であり、特に好ましくは、85℃以上95℃以下である。80℃未満では、延伸時にブロッキングが発生して、延伸製膜性が劣る場合がある。130℃を超えると、内面のシール開始温度が高温側にシフトするため、重ねシール可能な温度幅が狭くなる場合がある。また、セルフウェルド性を発現させるためには、シール層に用いる樹脂の融解温度は、80℃以上100℃以下であることが好ましい。より好ましくは、80℃以上95℃以下であり、特に好ましくは、85℃以上95℃以下である。 The melting temperature of the resin used for the seal layer is preferably 80 ° C. or higher and 130 ° C. or lower. More preferably, it is 85 degreeC or more and 100 degrees C or less, Most preferably, it is 85 degreeC or more and 95 degrees C or less. If it is less than 80 degreeC, blocking generate | occur | produces at the time of extending | stretching, and extending | stretching film forming property may be inferior. If the temperature exceeds 130 ° C., the temperature at which the inner surface of the seal starts is shifted to the high temperature side, and therefore the temperature range in which the double seal can be performed may be narrowed. Moreover, in order to express self-weld property, it is preferable that the melting temperature of resin used for a sealing layer is 80 degreeC or more and 100 degrees C or less. More preferably, it is 80 degreeC or more and 95 degrees C or less, Most preferably, it is 85 degreeC or more and 95 degrees C or less.
 シール層の融解温度は、表面層の融解温度よりも低く、その融解温度差は、35℃以上60℃以下である。より好ましくは40℃以上60℃以下であり、特に好ましくは45℃以上60℃以下である。表面層とシール層との融解温度差が35℃未満では、重ねシール性を発現する温度範囲が狭く、実用性に欠ける。表面層とシール層との融解温度差が60℃を超えると、加工温度差が大きくなり、シール層の融解温度が比較的高い場合には、表面層の融解温度が相対的に高くなる。この場合、押出加工温度が高くなるため、結果としてガスバリア層のPVDCが分解したり、表面の平滑性が劣ったりする場合がある。また、表面層の融解温度が比較的低い場合には、シール層の融解温度が相対的に低くなる。この場合、シール層のブロッキングが発生する場合がある。 The melting temperature of the seal layer is lower than the melting temperature of the surface layer, and the difference in melting temperature is 35 ° C. or more and 60 ° C. or less. More preferably, it is 40 degreeC or more and 60 degrees C or less, Most preferably, it is 45 degreeC or more and 60 degrees C or less. When the difference in melting temperature between the surface layer and the sealing layer is less than 35 ° C., the temperature range in which the overlapping sealing property is exhibited is narrow, and the practicality is lacking. When the difference in melting temperature between the surface layer and the seal layer exceeds 60 ° C., the difference in processing temperature increases, and when the melting temperature of the seal layer is relatively high, the melting temperature of the surface layer becomes relatively high. In this case, since the extrusion temperature becomes high, as a result, the PVDC of the gas barrier layer may be decomposed or the smoothness of the surface may be inferior. Moreover, when the melting temperature of the surface layer is relatively low, the melting temperature of the seal layer is relatively low. In this case, blocking of the seal layer may occur.
 シール層の厚さは、3μm以上50μm以下であることが好ましい。より好ましくは、5μm以上30μm以下であり、特に好ましくは、8μm以上20μm以下である。 The thickness of the seal layer is preferably 3 μm or more and 50 μm or less. More preferably, they are 5 micrometers or more and 30 micrometers or less, Especially preferably, they are 8 micrometers or more and 20 micrometers or less.
(中間層T2)
 ガスバリア層とシール層との間に、中間層T2を更に設けてもよい。中間層T2は、シール層の補強層として働き、シール強度を向上させる役割をもつ。また、延伸性及び収縮性を向上させる役割をもつ。中間層T2は、ポリオレフィン系樹脂を含有することが好ましい。ポリオレフィン系樹脂は、中間層T1で例示したものを使用でき、延伸性、シール層との接着性及び透明性の点で、EVA、炭素数が1~4のエチレン‐アルキルアクリレート、エチレン‐メタクリル酸共重合体、エチレン‐メタクリル酸‐不飽和カルボン酸共重合体などのエチレン‐極性コモノマー共重合体;アイオノマーが特に好ましい。中間層T2に用いる樹脂は、それぞれ単独で使用するか、又は2種以上を併用してもよい。なお、中間層T2は、ポリオレフィン系樹脂以外に、熱安定剤、可塑剤、酸化防止剤など各種添加剤を含有してもよい。
(Intermediate layer T2)
An intermediate layer T2 may be further provided between the gas barrier layer and the seal layer. The intermediate layer T2 functions as a reinforcing layer of the seal layer and has a role of improving the seal strength. Also, it has a role of improving stretchability and shrinkage. The mid layer T2 preferably contains a polyolefin resin. As the polyolefin-based resin, those exemplified in the intermediate layer T1 can be used, and EVA, ethylene-alkyl acrylate having 1 to 4 carbon atoms, ethylene-methacrylic acid in terms of stretchability, adhesion to the seal layer and transparency. Copolymers, ethylene-polar comonomer copolymers such as ethylene-methacrylic acid-unsaturated carboxylic acid copolymers; ionomers are particularly preferred. The resins used for the intermediate layer T2 may be used alone or in combination of two or more. The intermediate layer T2 may contain various additives such as a heat stabilizer, a plasticizer, and an antioxidant in addition to the polyolefin resin.
 中間層T2に用いる樹脂の融解温度は、特に制限はないが、70℃以上120℃以下であることが好ましい。より好ましくは、80℃以上100℃以下である。 The melting temperature of the resin used for the intermediate layer T2 is not particularly limited, but is preferably 70 ° C or higher and 120 ° C or lower. More preferably, it is 80 degreeC or more and 100 degrees C or less.
 中間層T2に用いる樹脂の密度は、0.880g/cm以上0.960g/cm以下であることが好ましい。より好ましくは、0.900g/cm以上0.940g/cm以下である。 Density of the resin used for the intermediate layer T2 is preferably less 0.880 g / cm 3 or more 0.960 g / cm 3. More preferably, the 0.900 g / cm 3 or more 0.940 g / cm 3 or less.
 中間層T2に用いる樹脂のMFR(190℃、2.16kg)は、0.5g/10分以上20g/10分以下であることが好ましい。より好ましくは、1.0g/10分以上15g/10分以下である。 The MFR (190 ° C., 2.16 kg) of the resin used for the intermediate layer T2 is preferably 0.5 g / 10 min or more and 20 g / 10 min or less. More preferably, it is 1.0 g / 10 min or more and 15 g / 10 min or less.
 中間層T2の厚さは、3μm以上50μm以下であることが好ましい。より好ましくは、5μm以上30μm以下であり、特に好ましくは、8μm以上20μm以下である。中間層T2は、1層で形成するか、又は2層以上で形成してもよい。中間層T2を2層以上で形成する場合には、各層を同一の組成とするか、又は各層を異なる組成としてもよい。 The thickness of the intermediate layer T2 is preferably 3 μm or more and 50 μm or less. More preferably, they are 5 micrometers or more and 30 micrometers or less, Especially preferably, they are 8 micrometers or more and 20 micrometers or less. The intermediate layer T2 may be formed of one layer or two or more layers. When the intermediate layer T2 is formed of two or more layers, the layers may have the same composition, or the layers may have different compositions.
(接着層S2)
 ガスバリア層と中間層T2との間に、接着層S2を更に設けてもよい。接着層S2は、ガスバリア層に隣接する層であり、ガスバリア層に対する接着性をより良好とする役割をもつ。接着層S2は、接着層S1で例示した接着性樹脂を使用でき、それぞれ単独で使用するか、又は2種以上を併用してもよい。また、接着層S2は、接着性樹脂以外に、熱安定剤、可塑剤、酸化防止剤など各種添加剤を含有してもよい。
(Adhesive layer S2)
An adhesive layer S2 may be further provided between the gas barrier layer and the intermediate layer T2. The adhesive layer S2 is a layer adjacent to the gas barrier layer, and has a role of improving the adhesion to the gas barrier layer. As the adhesive layer S2, the adhesive resin exemplified in the adhesive layer S1 can be used, and each of them can be used alone or in combination of two or more. The adhesive layer S2 may contain various additives such as a heat stabilizer, a plasticizer, and an antioxidant in addition to the adhesive resin.
 接着層S2に用いる樹脂の融解温度は、特に制限はないが、70℃以上130℃以下であることが好ましい。より好ましくは、80℃以上120℃以下である。 The melting temperature of the resin used for the adhesive layer S2 is not particularly limited, but is preferably 70 ° C or higher and 130 ° C or lower. More preferably, it is 80 degreeC or more and 120 degrees C or less.
 接着層S2に用いる樹脂の密度は、0.880g/cm以上0.960g/cm以下であることが好ましい。より好ましくは、0.900g/cm以上0.940g/cm以下である。 Density of the resin used in the adhesive layer S2 is preferably not more than 0.880 g / cm 3 or more 0.960 g / cm 3. More preferably, the 0.900 g / cm 3 or more 0.940 g / cm 3 or less.
 接着層S2に用いる樹脂のMFR(190℃、2.16kg)は、0.5g/10分以上20g/10分以下であることが好ましい。より好ましくは、1.0g/10分以上15g/10分以下である。 The MFR (190 ° C., 2.16 kg) of the resin used for the adhesive layer S2 is preferably 0.5 g / 10 min or more and 20 g / 10 min or less. More preferably, it is 1.0 g / 10 min or more and 15 g / 10 min or less.
 接着層S2の厚さは、0.5μm以上10μm以下であることが好ましい。より好ましくは、1μm以上5μm以下である。 The thickness of the adhesive layer S2 is preferably 0.5 μm or more and 10 μm or less. More preferably, they are 1 micrometer or more and 5 micrometers or less.
(熱収縮性多層フィルム)
 本実施形態に係る熱収縮性多層フィルムは、少なくとも表面層と、中間層T1と、ガスバリア層と、シール層とを有する多層構造を備える。多層構造は、一方の表面に表面層を配置し、かつ、他方の表面にシール層を配置していればよく、用途に応じて様々な形態とすることができる。多層構造の形態例としては、表面層、中間層T1、ガスバリア層及びシール層を順次積層した4層構造、表面層、中間層T1、ガスバリア層、中間層T2及びシール層を順次積層した5層構造、表面層、中間層T1、接着層S1、ガスバリア層、中間層T2及びシール層を順次積層した6層構造、表面層、中間層T1、接着層S1、ガスバリア層、接着層S2、中間層T2及びシール層を順次積層した7層構造である。ただし、これらはあくまでも例示であって、本発明はこれらのみに限定されるものではない。
(Heat-shrinkable multilayer film)
The heat-shrinkable multilayer film according to the present embodiment has a multilayer structure having at least a surface layer, an intermediate layer T1, a gas barrier layer, and a seal layer. The multilayer structure may be formed in various forms depending on the use as long as a surface layer is disposed on one surface and a seal layer is disposed on the other surface. Examples of the multilayer structure include a four-layer structure in which a surface layer, an intermediate layer T1, a gas barrier layer, and a seal layer are sequentially stacked, and five layers in which a surface layer, an intermediate layer T1, a gas barrier layer, an intermediate layer T2, and a seal layer are sequentially stacked. Structure, surface layer, intermediate layer T1, adhesive layer S1, gas barrier layer, intermediate layer T2, and 6-layer structure in which a seal layer is sequentially laminated, surface layer, intermediate layer T1, adhesive layer S1, gas barrier layer, adhesive layer S2, intermediate layer It has a seven-layer structure in which T2 and a seal layer are sequentially laminated. However, these are merely examples, and the present invention is not limited to these.
 本実施形態に係る熱収縮性多層フィルムの厚さは、20μm以上150μm以下であることが好ましい。より好ましくは30μm以上120μm以下であり、特に好ましくは、40μm以上80μm以下である。20μm未満では、機械的強度が不足する場合がある。150μmを超えると、ヒートシールに要する時間が長くなり、包装適性が劣る場合がある。また、延伸加工性が劣る場合がある。 The thickness of the heat-shrinkable multilayer film according to this embodiment is preferably 20 μm or more and 150 μm or less. More preferably, they are 30 micrometers or more and 120 micrometers or less, Most preferably, they are 40 micrometers or more and 80 micrometers or less. If it is less than 20 μm, the mechanical strength may be insufficient. If it exceeds 150 μm, the time required for heat sealing becomes long, and the packaging suitability may be inferior. Further, the stretch processability may be inferior.
 本実施形態に係る熱収縮性多層フィルムはセルフウェルド性を有することが好ましい。セルフウェルド性とは、ある特定温度で熱収縮、熱殺菌、クッキング等の熱処理した際に袋又はパウチの収縮後の耳部において、シール層同士が熱によって融着する性質をいう。例えば、生肉包装の場合では85℃にて熱収縮をさせたり、加工肉の場合では95℃にて熱殺菌させたりすることがある。このとき、袋又は収縮後の耳部におけるシール層同士の積分平均融着力は、1N/15mm以上であることが好ましい。より好ましくは3N/15mm以上であり、特に好ましくは、5N/15mm以上である。1N/15mm未満では、実質的なセルフウェルド性を有さず、包装後の保存中にドリップが耳部に溜まり、見栄えが悪くなる場合がある。 The heat-shrinkable multilayer film according to this embodiment preferably has a self-weld property. The self-weld property refers to the property that the sealing layers are fused together by heat at the ear portion after shrinkage of the bag or pouch when heat treatment such as heat shrinkage, heat sterilization, cooking, etc. is performed at a specific temperature. For example, in the case of raw meat packaging, heat shrinkage may be performed at 85 ° C., and in the case of processed meat, heat sterilization may be performed at 95 ° C. At this time, it is preferable that the integral average fusion | bonding force of the sealing layers in the bag or the ear | edge part after shrinkage | contraction is 1 N / 15mm or more. More preferably, it is 3N / 15mm or more, Most preferably, it is 5N / 15mm or more. If it is less than 1 N / 15 mm, it does not have a substantial self-weld property, and drip accumulates in the ear during storage after packaging, which may deteriorate the appearance.
 本実施形態に係る熱収縮性多層フィルムは、フィルムの機械方向(MD方向)又はフィルムの機械方向に垂直な方向(TD方向)の少なくともいずれか一方の80℃における熱水収縮率が30%以上60%以下であることが好ましい。より好ましくは35%以上55%以下である。特に好ましくは、45%以上55%以下である。熱水収縮率が30%未満では、収縮量が不足して包装体の見栄えが悪くなる場合がある。熱水収縮率が60%を超えると、過度の収縮によって内容物が変形するおそれがある。ここで、熱水収縮率は、熱水(80℃)に浸漬する前のフィルムのMD方向又はTD方向の長さと熱水に浸漬した後のフィルムの長さとの差を、熱水に浸漬する前のフィルムのMD方向又はTD方向の長さで除して百分率で表したものである。 The heat-shrinkable multilayer film according to this embodiment has a hot-water shrinkage rate of at least 30% at 80 ° C. in at least one of the machine direction of the film (MD direction) or the direction perpendicular to the machine direction of the film (TD direction). It is preferable that it is 60% or less. More preferably, it is 35% or more and 55% or less. Particularly preferably, it is 45% or more and 55% or less. When the hot water shrinkage rate is less than 30%, the shrinkage amount is insufficient and the appearance of the package may deteriorate. If the hot water shrinkage rate exceeds 60%, the contents may be deformed by excessive shrinkage. Here, the hot water shrinkage ratio is obtained by immersing the difference between the length in the MD direction or the TD direction of the film before being immersed in hot water (80 ° C.) and the length of the film after being immersed in hot water in hot water. It is expressed as a percentage divided by the length in the MD direction or TD direction of the previous film.
 本実施形態に係る熱収縮性多層フィルムは、重ねシール性を有する。ここで、重ねシール性とは、多層フィルムでシール層を内側に向けて包装袋を形成し、該包装袋同士を重ねてヒートシールしたとき、各包装袋のシール層同士が熱融着し、かつ、表面層同士が熱融着しない又は剥離可能な程度にしか熱融着しない性質をいう。このとき、シール層同士の融着強度(シール強度ともいう。)は、10N/15mm以上であることが好ましい。より好ましくは、15N/15mm以上である。各包装袋のシール層同士の融着強度が10N/15mm未満では、密閉性が不足して、包装工程時又は輸送時に袋内に空気が入る場合がある。一方、表面層同士の融着強度は、1.5N/15mm以下であることが好ましく、1.0N/15mm以下であることがより好ましい。表面層同士の融着強度が1.5N/15mmを超えると、包装袋同士を引き離す時に抵抗が大きく、実用的な重ねシール性を有するとはいいがたい。また、シール強度の測定方法は、実施例で記載したとおりである。 The heat-shrinkable multilayer film according to this embodiment has a lap seal. Here, the lap sealing property is a multilayer film with a sealing layer facing inward to form a packaging bag, and when the packaging bags are stacked and heat sealed, the sealing layers of each packaging bag are heat-sealed, And the surface layer does not heat-seal or refers to the property of heat-sealable to such an extent that it can be peeled off. At this time, the fusion strength between the seal layers (also referred to as seal strength) is preferably 10 N / 15 mm or more. More preferably, it is 15 N / 15 mm or more. When the fusion strength between the sealing layers of each packaging bag is less than 10 N / 15 mm, the sealing performance is insufficient, and air may enter the bag during the packaging process or during transportation. On the other hand, the fusion strength between the surface layers is preferably 1.5 N / 15 mm or less, and more preferably 1.0 N / 15 mm or less. When the fusion strength between the surface layers exceeds 1.5 N / 15 mm, it is difficult to say that when the packaging bags are separated from each other, the resistance is large and the layer has a practical overlap seal. Moreover, the measuring method of seal strength is as having described in the Example.
 次に、本実施形態に係る熱収縮性多層フィルムの製造方法について説明する。 Next, a method for manufacturing the heat-shrinkable multilayer film according to this embodiment will be described.
 本実施形態に係る熱収縮性多層フィルムの製造方法は、少なくとも、表面層形成用樹脂組成物、中間層T1形成用樹脂組成物、ガスバリア層形成用樹脂組成物及びシール層形成用樹脂組成物をそれぞれ押し出して、多層構造を有する積層体を形成する積層工程と積層体を延伸する延伸工程とを有する。 The method for producing a heat-shrinkable multilayer film according to this embodiment comprises at least a resin composition for forming a surface layer, a resin composition for forming an intermediate layer T1, a resin composition for forming a gas barrier layer, and a resin composition for forming a seal layer. Each has a lamination step of forming a laminate having a multilayer structure and a stretching step of stretching the laminate.
 本実施形態に係る熱収縮性多層フィルムでは、多層構造を形成する方法は特に制限はないが、溶融押出法であることが好ましい。溶融押出法は、例えば、インフレーション法、Tダイ法である。この中で、インフレーション法であることがより好ましい。次に、インフレーション法で製造する方法を例にとって説明する。 In the heat-shrinkable multilayer film according to this embodiment, the method for forming a multilayer structure is not particularly limited, but is preferably a melt extrusion method. The melt extrusion method is, for example, an inflation method or a T-die method. Among these, the inflation method is more preferable. Next, a description will be given by taking as an example a method of manufacturing by an inflation method.
(積層工程)
 積層工程では、多層構造を有する未延伸の積層体を形成する。まず、少なくとも、表面層形成用樹脂組成物、中間層T1形成用樹脂組成物、ガスバリア層形成用樹脂組成物及びシール層形成用樹脂組成物と、必要に応じて、中間層T2形成樹脂組成物、接着層S1形成用樹脂組成物及び接着層S2形成用樹脂組成物との各層を形成するための樹脂組成物をそれぞれ押出機に投入して溶融する。次に、環状ダイで、一方の表面に表面層を配置し、かつ、他方の表面にシール層を配置してなる多層構造に溶融接合して管状に共押出する。このとき、管状の外側に表面層を配置し、かつ、内側にシール層を配置することがより好ましい。これを、冷却水で冷却して、偏平管状で未延伸の積層体を得る。
(Lamination process)
In the lamination step, an unstretched laminate having a multilayer structure is formed. First, at least a resin composition for forming a surface layer, a resin composition for forming an intermediate layer T1, a resin composition for forming a gas barrier layer, and a resin composition for forming a seal layer, and if necessary, an intermediate layer T2 forming resin composition The resin composition for forming each layer of the resin composition for forming the adhesive layer S1 and the resin composition for forming the adhesive layer S2 is put into an extruder and melted. Next, with a circular die, a surface layer is disposed on one surface and a seal layer is disposed on the other surface, and then melt-bonded and coextruded into a tubular shape. At this time, it is more preferable to arrange the surface layer on the outside of the tube and arrange the seal layer on the inside. This is cooled with cooling water to obtain a flat tubular unstretched laminate.
(延伸工程)
 延伸工程では、得られた偏平管状の未延伸の積層体を延伸して、延伸フィルムを形成する。まず、偏平管状の未延伸の積層体を、例えば、温水浴中を通過させることで加熱処理した後、管状の内部に空気を吹き込み、バブル形状の管状フィルムを形成し、冷風エアリングで冷却しながら、MD方向及びTD方向に同時二軸延伸する。延伸工程において、未延伸の積層体を加熱処理する温度は、70~95℃であることが好ましく、75~90℃であることがより好ましい。また、冷風エアリングの温度は、5~25℃であることが好ましい。延伸倍率は、MD方向及びTD方向に、それぞれ2~4倍であることが好ましい。MD方向の延伸倍率とTD方向の延伸倍率とは、同じとするか、又は異なるものとしてもよい。
(Stretching process)
In the stretching step, the obtained flat tubular unstretched laminate is stretched to form a stretched film. First, a flat tubular unstretched laminate is heated by, for example, passing through a hot water bath, and then air is blown into the tubular to form a bubble-shaped tubular film, which is cooled with a cold air ring. However, simultaneous biaxial stretching is performed in the MD direction and the TD direction. In the stretching step, the temperature for heat-treating the unstretched laminate is preferably 70 to 95 ° C, more preferably 75 to 90 ° C. The temperature of the cold air ring is preferably 5 to 25 ° C. The stretching ratio is preferably 2 to 4 times in each of the MD direction and the TD direction. The draw ratio in the MD direction and the draw ratio in the TD direction may be the same or different.
 本実施形態では、寸法安定性の点で、延伸後に、熱緩和処理を行うことが好ましい。 In this embodiment, it is preferable to perform a thermal relaxation treatment after stretching in terms of dimensional stability.
(放射線照射工程)
 本実施形態に係る熱収縮性多層フィルムの製造方法は、放射線照射工程を更に有することが好ましい。放射線照射では、その適度な架橋効果によって、延伸成膜性、機械的強度などが改善される。特に表面層に放射線照射することで、重ねシール可能な温度幅をより広くすることができる。放射線は、例えば、α線、β線、電子線(EB、electron beam)、γ線、X線である。この中で、照射前後での架橋効果の観点から電子線、γ線が好ましく、成形物を製造する上での作業性又は生産能力の高さなどの観点から電子線が特に好ましい。
(Radiation irradiation process)
The method for producing a heat-shrinkable multilayer film according to this embodiment preferably further includes a radiation irradiation step. In the case of irradiation with radiation, stretch film-forming properties, mechanical strength, and the like are improved by the appropriate crosslinking effect. In particular, by irradiating the surface layer with radiation, it is possible to further widen the temperature range that can be overlaid. The radiation is, for example, α rays, β rays, electron beams (EB), γ rays, and X rays. Among these, an electron beam and a γ-ray are preferable from the viewpoint of a crosslinking effect before and after irradiation, and an electron beam is particularly preferable from the viewpoints of workability in manufacturing a molded product or high production capacity.
 前述の放射線の照射条件は、目的とする用途に応じて、適宜設定すればよい。例えば、電子線の照射条件は、加速電圧が150~500kVの範囲で、吸収線量が50~250kGy(キログレイ)であることが好ましく、80~200kGyであることがより好ましい。 The above-mentioned radiation irradiation conditions may be appropriately set according to the intended use. For example, the electron beam irradiation conditions are preferably an acceleration voltage in the range of 150 to 500 kV and an absorbed dose of 50 to 250 kGy (kilogrey), and more preferably 80 to 200 kGy.
 放射線照射工程は、積層工程と延伸工程との間で行うか、又は延伸工程後に行ってもよい。また、放射線の照射は、積層工程後又は延伸工程後、巻取り工程を経ずに行うインラインとするか、又は積層工程後又は延伸工程後、巻取り工程を経てから行うオフラインとしてもよい。 The radiation irradiation process may be performed between the lamination process and the stretching process, or may be performed after the stretching process. Further, the irradiation of radiation may be in-line performed after the laminating process or after the stretching process and without the winding process, or may be performed offline after the laminating process or after the stretching process and after the winding process.
 次に、本発明の実施例を挙げて説明するが、本発明はこれらの例に限定されるものではない。 Next, examples of the present invention will be described. However, the present invention is not limited to these examples.
 使用した樹脂の種類は、表1のとおりである。以降、表1に示す略称名を用いる。また、実施例及び比較例の層構成を表2に、表面層とシール層との融解温度差を表3に示す。 Table 1 shows the types of resin used. Hereinafter, the abbreviated names shown in Table 1 are used. Table 2 shows the layer configurations of the examples and comparative examples, and Table 3 shows the difference in melting temperature between the surface layer and the seal layer.
 なお、樹脂、表面層及びシール層の融解温度の測定方法は次のとおりである。各層の融解温度は、各層を剥離するか、又は削り出すことでサンプルを準備した。また、他層と積層した状態で測定しても各層の融解温度に影響がないと考えられる場合には、他層と積層した状態で各層の融解温度を求めた。 In addition, the measuring method of the melting temperature of resin, a surface layer, and a sealing layer is as follows. The melting temperature of each layer was prepared by peeling or scraping each layer. Moreover, when it was thought that there was no influence on the melting temperature of each layer even if it measured in the state laminated | stacked with the other layer, the melting temperature of each layer was calculated | required in the state laminated | stacked with the other layer.
<融解温度(Tm)>
 示差走査熱量測定装置(DSC8500、パーキンエルマー社製)を用いて、次に示す温度プログラムで融解温度(Tm)を測定した。Tmは、次に示す温度プログラムの(5)における(2回目の昇温)の吸熱ピークとした。なお、複数のピークを有する場合には、最大の融解ピーク温度をTmとした。
温度プログラム;
(1)-30~200℃ 20℃/minで昇温
(2)200℃で1分保持
(3)200~-30℃ 20℃/minで降温
(4)-30℃で1分保持
(5)-30~200℃ 20℃/minで昇温
<Melting temperature (Tm)>
Using a differential scanning calorimeter (DSC8500, manufactured by PerkinElmer), the melting temperature (Tm) was measured with the following temperature program. Tm was the endothermic peak of (second temperature increase) in (5) of the temperature program shown below. In addition, when it had a some peak, let the maximum melting peak temperature be Tm.
Temperature program;
(1) Temperature rise at -30 to 200 ° C at 20 ° C / min (2) Hold at 200 ° C for 1 minute (3) Temperature drop from 200 to -30 ° C at 20 ° C / min (4) Hold at -30 ° C for 1 minute (5 ) -30 ~ 200 ℃ Heating at 20 ℃ / min
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(実施例1)
 表面層としてPP-Et-1、中間層T1としてEVA-1、接着層S1としてEMA、ガスバリア層としてPVDC、接着層S2としてEMA、中間層T2としてEVA-2及びシール層としてIonomerを複数の押出機でそれぞれ押出し、溶融した樹脂を環状ダイに導入した。ここで、外側から内側へ順にPP-Et-1/EVA-1/EMA/PVDC/EMA/EVA-2/Ionomerとなるように溶融接合し、共押出した。ダイ出口から流出した溶融管状体を10~20℃の冷水シャワーリングによって冷却し、偏平幅113mmの管状体とした。該扁平管状体にインラインで加速電圧275kVの電子線照射装置中で電子線照射して、100kGyの照射線量を与えた。次いで、該偏平管状体を82℃の温水浴中を通過させた後、バブル形状の管状体フィルムとし、5~20℃の冷風エアリングで冷却しながらインフレーション法により縦方向(MD)に3.4倍、横方向(TD)に3.4倍の延伸倍率で同時二軸延伸した。次いで該二軸延伸フィルムを、熱緩和させ、二軸延伸フィルム(熱収縮性多層フィルム)を製造した。得られた熱収縮性多層フィルムの偏平幅は340mmであった。層構成比(カッコ内の数値は各層の厚さ)は、PP-Et-1(2.0μm)/EVA-1(22μm)/EMA(1.5μm)/PVDC(7μm)/EMA(1.5μm)/EVA-2(10μm)/Ionomer(10μm)であった。フィルムの総厚さは54μmであった。
(Example 1)
PP-Et-1 as surface layer, EVA-1 as intermediate layer T1, EMA as adhesive layer S1, PVDC as gas barrier layer, EMA as adhesive layer S2, EVA-2 as intermediate layer T2, and Ionomer as seal layer Each was extruded with a machine and the molten resin was introduced into an annular die. Here, from the outside to the inside, melt-bonding was performed in order of PP-Et-1 / EVA-1 / EMA / PVDC / EMA / EVA-2 / Ionomer, and coextrusion was performed. The molten tubular body flowing out from the die outlet was cooled by a cold water shower ring at 10 to 20 ° C. to obtain a tubular body having a flat width of 113 mm. The flat tubular body was irradiated with an electron beam in-line in an electron beam irradiation apparatus having an acceleration voltage of 275 kV to give an irradiation dose of 100 kGy. Next, after passing the flat tubular body through a hot water bath at 82 ° C., it is converted into a bubble-shaped tubular body film, and is cooled in a longitudinal direction (MD) by an inflation method while cooling with a cold air ring of 5 to 20 ° C. Simultaneous biaxial stretching was performed at a stretching ratio of 3.4 times in the transverse direction (TD) 4 times. Next, the biaxially stretched film was thermally relaxed to produce a biaxially stretched film (heat-shrinkable multilayer film). The flat width of the obtained heat-shrinkable multilayer film was 340 mm. The layer composition ratio (the value in parentheses is the thickness of each layer) is PP-Et-1 (2.0 μm) / EVA-1 (22 μm) / EMA (1.5 μm) / PVDC (7 μm) / EMA (1. 5 μm) / EVA-2 (10 μm) / Ionomer (10 μm). The total thickness of the film was 54 μm.
(実施例2)
 表面層としてPP-Et-1、中間層T1としてEVA-1、接着層S1としてEMA、ガスバリア層としてPVDC、接着層S2としてEMA、中間層T2としてEVA-2及びシール層としてIonomerを複数の押出機でそれぞれ押出し、溶融した樹脂を環状ダイに導入した。ここで、外側から内側へ順にPP-Et-1/EVA-1/EMA/PVDC/EMA/EVA-2/Ionomerとなるように溶融接合し、共押出した。ダイ出口から流出した溶融管状体を10~20℃の冷水シャワーリングによって冷却し、偏平幅120mmの管状体とした。該扁平管状体にインラインで加速電圧275kVの電子線照射装置中で電子線照射して、120kGyの照射線量を与えた。次いで、該偏平管状体を82℃の温水浴中を通過させた後、バブル形状の管状体フィルムとし、5~20℃の冷風エアリングで冷却しながらインフレーション法により縦方向(MD)に3.7倍、横方向(TD)に3.2倍の延伸倍率で同時二軸延伸した。次いで該二軸延伸フィルムを、熱緩和させ、二軸延伸フィルム(熱収縮性多層フィルム)を製造した。得られた熱収縮性多層フィルムの偏平幅は380mmであった。層構成比(カッコ内の数値は各層の厚さ)は、PP-Et-1(4.2μm)/EVA-1(35μm)/EMA(2.1μm)/PVDC(5.6μm)/EMA(2.1μm)/EVA-2(14μm)/Ionomer(14μm)であった。フィルムの総厚さは77μmであった。
(Example 2)
PP-Et-1 as surface layer, EVA-1 as intermediate layer T1, EMA as adhesive layer S1, PVDC as gas barrier layer, EMA as adhesive layer S2, EVA-2 as intermediate layer T2, and Ionomer as seal layer Each was extruded with a machine and the molten resin was introduced into an annular die. Here, from the outside to the inside, melt-bonding was performed in order of PP-Et-1 / EVA-1 / EMA / PVDC / EMA / EVA-2 / Ionomer, and coextrusion was performed. The molten tubular body flowing out from the die outlet was cooled by a cold water shower ring at 10 to 20 ° C. to obtain a tubular body having a flat width of 120 mm. The flat tubular body was irradiated with an electron beam in-line in an electron beam irradiation apparatus having an acceleration voltage of 275 kV to give an irradiation dose of 120 kGy. Next, after passing the flat tubular body through a hot water bath at 82 ° C., it is converted into a bubble-shaped tubular body film, and is cooled in a longitudinal direction (MD) by an inflation method while cooling with a cold air ring of 5 to 20 ° C. Simultaneous biaxial stretching was performed at a draw ratio of 3.2 times in the transverse direction (TD) 7 times. Next, the biaxially stretched film was thermally relaxed to produce a biaxially stretched film (heat-shrinkable multilayer film). The flat width of the obtained heat-shrinkable multilayer film was 380 mm. The layer composition ratio (the value in parentheses is the thickness of each layer) is PP-Et-1 (4.2 μm) / EVA-1 (35 μm) / EMA (2.1 μm) / PVDC (5.6 μm) / EMA ( 2.1 μm) / EVA-2 (14 μm) / Ionomer (14 μm). The total thickness of the film was 77 μm.
(実施例3)
 層構成比(カッコ内の数値は各層の厚さ)を外側から内側へ順にPP-Et-1(2.0μm)/Ionomer(22μm)/EMA(1.5μm)/PVDC(7μm)/EMA(1.5μm)/EVA-3(10μm)/EVA-2(10μm)とし、温水浴の温度を83℃とした以外は、実施例1と同様にして熱収縮性多層フィルムを製造した。
(Example 3)
Layer composition ratio (numbers in parentheses are the thickness of each layer) PP-Et-1 (2.0 μm) / Ionomer (22 μm) / EMA (1.5 μm) / PVDC (7 μm) / EMA (in order from the outside to the inside) A heat-shrinkable multilayer film was produced in the same manner as in Example 1 except that the temperature was 1.5 μm) / EVA-3 (10 μm) / EVA-2 (10 μm) and the temperature of the hot water bath was 83 ° C.
(実施例4)
 層構成比(カッコ内の数値は各層の厚さ)を外側から内側へ順にPP-Et-1(2.0μm)/Ionomer(22μm)/EMA(1.5μm)/PVDC(7μm)/EMA(1.5μm)/EVA-3(10μm)/EVA-4(10μm)とし、温水浴の温度を83℃とした以外は、実施例1と同様にして熱収縮性多層フィルムを製造した。
(Example 4)
Layer composition ratio (numbers in parentheses are the thickness of each layer) PP-Et-1 (2.0 μm) / Ionomer (22 μm) / EMA (1.5 μm) / PVDC (7 μm) / EMA (in order from the outside to the inside) 1.5 μm) / EVA-3 (10 μm) / EVA-4 (10 μm) A heat-shrinkable multilayer film was produced in the same manner as in Example 1 except that the temperature of the hot water bath was 83 ° C.
(実施例5)
 表面層をPP-Et-2に変更した以外は、実施例1と同様にして熱収縮性多層フィルムを製造した。
(Example 5)
A heat-shrinkable multilayer film was produced in the same manner as in Example 1 except that the surface layer was changed to PP-Et-2.
(実施例6)
 表面層をPP-Et-3に変更した以外は、実施例1と同様にして熱収縮性多層フィルムを製造した。
(Example 6)
A heat-shrinkable multilayer film was produced in the same manner as in Example 1 except that the surface layer was changed to PP-Et-3.
(実施例7)
 表面層をPP-Et-2とPP-Et-3とのブレンド物に変更し、ブレンド比をそれぞれ50wt%と50wt%とした以外は、実施例1と同様にして熱収縮性多層フィルムを製造した。
(Example 7)
A heat-shrinkable multilayer film was produced in the same manner as in Example 1 except that the surface layer was changed to a blend of PP-Et-2 and PP-Et-3 and the blend ratios were 50 wt% and 50 wt%, respectively. did.
(実施例8)
 表面層をPP-Et-4とPP-Et-5とのブレンド物に変更し、ブレンド比をそれぞれ75wt%と25wt%とした以外は、実施例1と同様にして熱収縮性多層フィルムを製造した。
(Example 8)
A heat-shrinkable multilayer film was produced in the same manner as in Example 1 except that the surface layer was changed to a blend of PP-Et-4 and PP-Et-5, and the blend ratios were 75 wt% and 25 wt%, respectively. did.
(比較例1)
 層構成比(カッコ内の数値は各層の厚さ)を外側から内側へ順にVLDPE(2.0μm)/EVA-1(22μm)/EMA(1.5μm)/PVDC(7μm)/EMA(1.5μm)/EVA-2(10μm)/Ionomer(10μm)とした以外は、実施例1と同様にして熱収縮性多層フィルムを製造した。
(Comparative Example 1)
Layer composition ratios (numerical values in parentheses are the thickness of each layer) VLDPE (2.0 μm) / EVA-1 (22 μm) / EMA (1.5 μm) / PVDC (7 μm) / EMA (1. A heat-shrinkable multilayer film was produced in the same manner as in Example 1 except that 5 μm) / EVA-2 (10 μm) / Ionomer (10 μm).
(比較例2)
 層構成比(カッコ内の数値は各層の厚さ)を外側から内側へ順にLLDPE(2.0μm)/EVA-1(22μm)/EMA(1.5μm)/PVDC(7μm)/EMA(1.5μm)/EVA-2(10μm)/Ionomer(10μm)とした以外は、実施例1と同様にして熱収縮性多層フィルムを製造した。
(Comparative Example 2)
The layer composition ratio (the values in parentheses are the thickness of each layer) in order from the outside to the inside, LLDPE (2.0 μm) / EVA-1 (22 μm) / EMA (1.5 μm) / PVDC (7 μm) / EMA (1. A heat-shrinkable multilayer film was produced in the same manner as in Example 1 except that 5 μm) / EVA-2 (10 μm) / Ionomer (10 μm).
(比較例3)
 層構成比(カッコ内の数値は各層の厚さ)を外側から内側へ順にVLDPE(2μm)/Ionomer(22μm)/EMA(1.5μm)/PVDC(7.0μm)/EMA(1.5μm)/EVA-2(15μm)/VLDPE(5μm)とし、温水浴の温度を85℃とした以外は、実施例1と同様にして熱収縮性多層フィルムを製造した。
(Comparative Example 3)
Layer composition ratio (numbers in parentheses are the thickness of each layer) VLDPE (2 μm) / Ionomer (22 μm) / EMA (1.5 μm) / PVDC (7.0 μm) / EMA (1.5 μm) in order from the outside to the inside A heat-shrinkable multilayer film was produced in the same manner as in Example 1 except that / EVA-2 (15 μm) / VLDPE (5 μm) was used and the temperature of the hot water bath was 85 ° C.
 得られた実施例及び比較例の熱収縮性多層フィルムについて、次の評価を行った。評価結果を表4に示す。 The following evaluation was performed on the heat-shrinkable multilayer films of the obtained Examples and Comparative Examples. The evaluation results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<熱水収縮率>
 ASTM D-2732に準拠して、フィルムの機械方向(縦方向、MD方向)及び機械方向に垂直な方向(横方向、TD方向)に、それぞれ10cmの距離で印をつけたフィルム試料を、80℃に調整した熱水に10秒間浸漬した後取り出し、直ちに常温の水で冷却した。その後、印をつけた距離を測定し、10cmからの減少値を原長10cmに対する割合として百分率で表示した。5回試験を行い、MD方向及びTD方向のそれぞれの平均値を熱水収縮率とした。
<Hot water shrinkage>
In accordance with ASTM D-2732, a film sample marked with a distance of 10 cm in each of the machine direction (longitudinal direction, MD direction) and the direction perpendicular to the machine direction (lateral direction, TD direction) is 80 After being immersed in hot water adjusted to ° C. for 10 seconds, it was taken out and immediately cooled with water at room temperature. Thereafter, the marked distance was measured, and the decrease value from 10 cm was displayed as a percentage as the ratio to the original length of 10 cm. The test was performed 5 times, and the average value in the MD direction and the TD direction was taken as the hot water shrinkage rate.
<重ねシール性>
 得られた筒状のフィルムを2組重ね合わせ、真空包装機(AGW、Multivac社製)を用いて、真空タイマー3.0に固定し、シールバー温度を145℃、155℃及び165℃と変化させ、各温度においてTD方向とシール線とが平行になるようシールした。なお、シールバー温度の測定は、サーモラベル(5E、日油技研工業社製)をシールバーに貼り付けて行った。2組のフィルムを重ね合わせた状態のまま、その重なり部分を15mm幅にカットし、試料片とした。以降、便宜上、シールバーに接する側のフィルムにおけるシール層同士のシールを内面(上)といい、シールバーに接していない側のフィルムにおけるシール層同士のシールを内面(下)という。また、2組のフィルムの重なり部分の表面層同士のシールを外面という。それぞれの部分のシール強度を、万能型引張試験機(テンシロンRTM-100、オリエンテック社製)を用いて測定した。このとき、チャック間距離は20mm、試験速度は300mm/分とした。各温度における内面(上)、内面(下)及び外面の各シール強度をシール強度として表4に示した。また、内面(上)、内面(下)及び外面の各シール強度から重ねシール性を次のように判断した。
○:内面(上)及び内面(下)のシール強度が10N/15mm以上であり、かつ、外面の強度が1.5N/15mm以下であり、重ねシール性を示す(実用レベル)。
×:外面のシール強度が1.5N/15mmを超え、重ねシール性を示さない(実用不可レベル)。
<Overlap sealability>
Two sets of the obtained cylindrical films are stacked and fixed to a vacuum timer 3.0 using a vacuum packaging machine (AGW, manufactured by Multivac), and the seal bar temperature is changed to 145 ° C, 155 ° C and 165 ° C. The TD direction and the seal line were sealed in parallel at each temperature. The measurement of the seal bar temperature was performed by attaching a thermolabel (5E, manufactured by NOF Corporation) to the seal bar. While the two sets of films were superposed, the overlapping portion was cut to a width of 15 mm to obtain a sample piece. Hereinafter, for convenience, the seal between the seal layers in the film on the side in contact with the seal bar is referred to as an inner surface (upper), and the seal between the seal layers in the film on the side not in contact with the seal bar is referred to as an inner surface (lower). Moreover, the seal | sticker of the surface layers of the overlapping part of two sets of films is called an outer surface. The seal strength of each part was measured using a universal tensile tester (Tensilon RTM-100, manufactured by Orientec Corp.). At this time, the distance between chucks was 20 mm, and the test speed was 300 mm / min. Table 4 shows the seal strength of the inner surface (upper), inner surface (lower), and outer surface at each temperature as the seal strength. Further, the overlap sealability was judged from the seal strengths of the inner surface (upper), inner surface (lower), and outer surface as follows.
○: The seal strength of the inner surface (upper) and the inner surface (lower) is 10 N / 15 mm or more, and the strength of the outer surface is 1.5 N / 15 mm or less, indicating a lap seal property (practical level).
X: The seal strength of the outer surface exceeds 1.5 N / 15 mm, and does not show the overlap sealability (practical level).
<重ねシール性の総合評価>
 重ねシール性評価において、次のとおり総合評価を行った。
+++:重ねシール性評価で○が3個であった(実用レベル)。
++:重ねシール性評価で○が2個であった(実用レベル)。
+:重ねシール性評価で○が1個であった(実用下限レベル)。
-:重ねシール性評価で○が0個であった(実用不可レベル)。
<Overall evaluation of overlap sealability>
In the overlap sealability evaluation, comprehensive evaluation was performed as follows.
++++: Three circles were evaluated in the overlap sealability evaluation (practical level).
++: The evaluation of the overlap sealability was 2 (practical level).
+: One in the evaluation of overlap sealability was 1 (practical lower limit level).
-: The evaluation of the overlap sealability was 0 (no practical level).
<セルフウェルド性評価>(内面セルフウェルド性)
 得られた筒状のフィルムを袋状に加工し、内部を真空にした後、開口部をシールして内容物を包装した時の耳部を擬似的に作製した。得られた試料を85℃又は95℃の熱水の中に1秒浸漬して収縮させた後、取り出し、直ちに常温の水中で冷却した。収縮させた試料を23℃、50%相対湿度の恒温恒湿室中に24時間以上放置した後、シール層内面同士が融着した部分を15mm幅にカットして、融着部の長さ30mmの試料片とした。得られた試料片の積分平均融着力を万能型引張試験機(テンシロンRTM-100、オリエンテック社製)を用いて、85℃におけるセルフウェルド性及び95℃におけるセルフウェルド性をそれぞれ測定した。このとき、チャック間距離は20mm、試験速度は200mm/分とした。積分平均融着力が1N/15mm以上であれば、セルフウェルド性が実用レベルである。
<Self-weld property evaluation> (inner self-weld property)
The obtained cylindrical film was processed into a bag shape, the inside was evacuated, the opening was sealed, and the ear part when packaging the contents was simulated. The obtained sample was immersed in hot water at 85 ° C. or 95 ° C. for 1 second to shrink, then taken out and immediately cooled in normal temperature water. The contracted sample is left in a constant temperature and humidity chamber at 23 ° C. and 50% relative humidity for 24 hours or more, and then the portion where the inner surfaces of the seal layers are fused is cut to a width of 15 mm, and the length of the fused portion is 30 mm. A sample piece was obtained. The integral average fusing force of the obtained sample pieces was measured for self-weld property at 85 ° C. and self-weld property at 95 ° C. using a universal tensile tester (Tensilon RTM-100, manufactured by Orientec Corp.). At this time, the distance between chucks was 20 mm, and the test speed was 200 mm / min. If the integrated average fusing force is 1 N / 15 mm or more, the self-weldability is at a practical level.
 表4に示すとおり、実施例の熱収縮性多層フィルムは、いずれも、熱水収縮性に優れ、実用的な重ねシール性及びセルフウェルド性を有していた。 As shown in Table 4, all of the heat-shrinkable multilayer films of the examples were excellent in hot water shrinkage and had practical lap sealing properties and self-weld properties.
 一方、比較例1、2、3は、いずれも表面層がプロピレン‐エチレン系共重合体を含有しなかったため、重ねシール性を有さなかった。 On the other hand, since Comparative Examples 1, 2, and 3 did not have a propylene-ethylene copolymer in the surface layer, they did not have lap sealing properties.

Claims (4)

  1.  表面層と、中間層T1と、ガスバリア層と、シール層とを有する多層構造を備え、該多層構造は、一方の表面に前記表面層を配置し、かつ、他方の表面に前記シール層を配置してなる熱収縮性多層フィルムにおいて、
     前記表面層が、プロピレン‐エチレン系共重合体を含有し、
     前記ガスバリア層が、ポリ塩化ビニリデン系樹脂を含有し、
     前記表面層と前記シール層との融解温度差が、35~60℃であることを特徴とする熱収縮性多層フィルム。
    A multilayer structure having a surface layer, an intermediate layer T1, a gas barrier layer, and a seal layer is provided. The multilayer structure has the surface layer disposed on one surface and the seal layer disposed on the other surface. In the heat shrinkable multilayer film formed,
    The surface layer contains a propylene-ethylene copolymer,
    The gas barrier layer contains a polyvinylidene chloride resin,
    A heat-shrinkable multilayer film, wherein a difference in melting temperature between the surface layer and the sealing layer is 35 to 60 ° C.
  2.  前記多層構造は、前記ガスバリア層と前記シール層との間に、中間層T2を更に備えることを特徴とする請求項1に記載の熱収縮性多層フィルム。 The heat-shrinkable multilayer film according to claim 1, wherein the multilayer structure further includes an intermediate layer T2 between the gas barrier layer and the seal layer.
  3.  前記シール層が、少なくともアイオノマー又はエチレン‐酢酸ビニル共重合体のいずれか一方を含有することを特徴とする請求項1又は2に記載の熱収縮性多層フィルム。 The heat-shrinkable multilayer film according to claim 1 or 2, wherein the seal layer contains at least one of an ionomer and an ethylene-vinyl acetate copolymer.
  4.  熱処理によってセルフウェルド性を有することを特徴とする請求項1~3のいずれか一つに記載の熱収縮性多層フィルム。 The heat-shrinkable multilayer film according to any one of claims 1 to 3, wherein the heat-shrinkable multilayer film has self-weld property by heat treatment.
PCT/JP2013/051849 2012-02-16 2013-01-29 Heat-shrinkable multilayer film WO2013121874A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014500158A JP6054364B2 (en) 2012-02-16 2013-01-29 Heat shrinkable multilayer film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012031579 2012-02-16
JP2012-031579 2012-02-16

Publications (1)

Publication Number Publication Date
WO2013121874A1 true WO2013121874A1 (en) 2013-08-22

Family

ID=48983990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051849 WO2013121874A1 (en) 2012-02-16 2013-01-29 Heat-shrinkable multilayer film

Country Status (2)

Country Link
JP (1) JP6054364B2 (en)
WO (1) WO2013121874A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143661A1 (en) * 2015-03-09 2016-09-15 株式会社クレハ Food package and manufacturing method for same
WO2018016281A1 (en) * 2016-07-20 2018-01-25 株式会社クレハ Heat-shrinkable multilayer film
EP3437833A4 (en) * 2016-03-31 2019-04-03 Kureha Corporation Heat-shrinkable film and method for producing heat-shrinkable film
WO2023210213A1 (en) 2022-04-28 2023-11-02 株式会社クレハ Thermally shrinkable multilayer film and method for producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0939179A (en) * 1995-07-25 1997-02-10 Asahi Chem Ind Co Ltd Thermally shrinking cylindrical multilayer film
WO2000047406A1 (en) * 1999-02-12 2000-08-17 Kureha Chemical Industry Co., Ltd. Packaging laminate
JP2003523290A (en) * 1999-12-15 2003-08-05 スポロス・エス・エイ Multilayer heat shrinkable film
WO2007032401A1 (en) * 2005-09-13 2007-03-22 Asahi Kasei Chemicals Corporation Multilayer film for use in top seal
JP2007296842A (en) * 2006-04-05 2007-11-15 Kureha Corp Heat shrinkable multilayer film for deep draw molding, and its manufacturing process
WO2008099799A1 (en) * 2007-02-14 2008-08-21 Asahi Kasei Chemicals Corporation Stretched laminated film and bag
JP2011178160A (en) * 2010-02-02 2011-09-15 Asahi Kasei Chemicals Corp Heat shrinkable oriented laminated film and method of manufacturing the same, and top seal package and pillow shrink package

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160573A (en) * 2005-12-09 2007-06-28 Kureha Corp Heat-shrinkable stretched multilayered film, packaging material using it and package

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0939179A (en) * 1995-07-25 1997-02-10 Asahi Chem Ind Co Ltd Thermally shrinking cylindrical multilayer film
WO2000047406A1 (en) * 1999-02-12 2000-08-17 Kureha Chemical Industry Co., Ltd. Packaging laminate
JP2003523290A (en) * 1999-12-15 2003-08-05 スポロス・エス・エイ Multilayer heat shrinkable film
WO2007032401A1 (en) * 2005-09-13 2007-03-22 Asahi Kasei Chemicals Corporation Multilayer film for use in top seal
JP2007296842A (en) * 2006-04-05 2007-11-15 Kureha Corp Heat shrinkable multilayer film for deep draw molding, and its manufacturing process
WO2008099799A1 (en) * 2007-02-14 2008-08-21 Asahi Kasei Chemicals Corporation Stretched laminated film and bag
JP2011178160A (en) * 2010-02-02 2011-09-15 Asahi Kasei Chemicals Corp Heat shrinkable oriented laminated film and method of manufacturing the same, and top seal package and pillow shrink package

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143661A1 (en) * 2015-03-09 2016-09-15 株式会社クレハ Food package and manufacturing method for same
EP3437833A4 (en) * 2016-03-31 2019-04-03 Kureha Corporation Heat-shrinkable film and method for producing heat-shrinkable film
WO2018016281A1 (en) * 2016-07-20 2018-01-25 株式会社クレハ Heat-shrinkable multilayer film
JP2018012253A (en) * 2016-07-20 2018-01-25 株式会社クレハ Heat-shrinkable multilayer film
CN109328137A (en) * 2016-07-20 2019-02-12 株式会社吴羽 Heat shrinkable multilayer film
EP3489012A4 (en) * 2016-07-20 2019-07-17 Kureha Corporation Heat-shrinkable multilayer film
AU2017300427B2 (en) * 2016-07-20 2020-02-27 Kureha Corporation Heat-shrinkable multilayer film
WO2023210213A1 (en) 2022-04-28 2023-11-02 株式会社クレハ Thermally shrinkable multilayer film and method for producing same

Also Published As

Publication number Publication date
JP6054364B2 (en) 2016-12-27
JPWO2013121874A1 (en) 2015-05-11

Similar Documents

Publication Publication Date Title
AU2009202976B2 (en) Stack sealable heat shrinkable film
EP2111979B1 (en) Stack sealable heat shrinkable film
WO2019131168A1 (en) Multilayer film and food-packaging bag
JP6791728B2 (en) Polypropylene-based stretched sealant film and film laminate using this
US20100086711A1 (en) Stretched laminated film and bag
JP2008531343A (en) Thermoformable packaging material with shrinkage properties
US11179920B2 (en) Multilayer non-cross-linked heat-shrinkable packaging films
JP6054364B2 (en) Heat shrinkable multilayer film
KR20200098621A (en) Shrink film capable of overlapping heat sealing, manufacturing method thereof, and packaging bag manufactured using the same
JP6656356B2 (en) Heat shrinkable film for food packaging and method for producing heat shrinkable film for food packaging
JP2019018435A (en) Polypropylene vertically uniaxially stretched film and film laminate, and bag-like object
JP4906085B2 (en) Stretch shrink laminated film and manufacturing method thereof
JP5855005B2 (en) Easy peelable laminated film and its use
JP4721933B2 (en) Stretch shrink laminated film and manufacturing method thereof
JP7063028B2 (en) Heat-sealing multilayer film and medical packaging
JPH1034800A (en) Thermoplastic multi-layer film
JP2014533612A (en) Heat-shrinkable multilayer film and method for producing the same
JP4889075B2 (en) Multilayer film for deep drawing packaging and container for deep drawing packaging comprising the same
JP4721925B2 (en) Stretch shrink laminated film and manufacturing method thereof
JPH11207886A (en) Thermoplastic multilayer film
JP2015030171A (en) Heat-shrinkable multilayered film
JP6922070B2 (en) Laminated film, packaging material, packaging body and manufacturing method of laminated film
JP2005104151A (en) Heat-sealable laminated polypropylene resin film and package
JP2024111754A (en) Polyolefin-based multilayer film, package, and packaging method thereof
JP2019166830A (en) Biaxially oriented polypropylene-based resin film and package using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749110

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500158

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13749110

Country of ref document: EP

Kind code of ref document: A1