JPH0939179A - Thermally shrinking cylindrical multilayer film - Google Patents

Thermally shrinking cylindrical multilayer film

Info

Publication number
JPH0939179A
JPH0939179A JP7189277A JP18927795A JPH0939179A JP H0939179 A JPH0939179 A JP H0939179A JP 7189277 A JP7189277 A JP 7189277A JP 18927795 A JP18927795 A JP 18927795A JP H0939179 A JPH0939179 A JP H0939179A
Authority
JP
Japan
Prior art keywords
layer
heat
film
melting point
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7189277A
Other languages
Japanese (ja)
Other versions
JP3596947B2 (en
Inventor
Takayasu Watanabe
孝恭 渡辺
Masahide Yoshimoto
雅秀 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP18927795A priority Critical patent/JP3596947B2/en
Publication of JPH0939179A publication Critical patent/JPH0939179A/en
Application granted granted Critical
Publication of JP3596947B2 publication Critical patent/JP3596947B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to thermally seal or vacuum-seal bags stacked by setting the difference in the melting points of both layers one layer consisting of a copolymer of methylene and olefin with the density and the melting point of an outer surface resin layer falling within a specified range, and the other consisting of a copolymer of ethylene and olefin with the density and the melting point of a thermally sealable resin layer falling within a specified range, to a specified value or higher. SOLUTION: This thermally shrinking cylindrical multilayer film consists of an outer surface resin layer S1 with the gel fraction x of the outermost surface part of 35-70wt.% and an adhesive and thermally shrinking resin layer T1 with the innermost gel fraction y of an adhesive and thermally shrinking resin layer 71 of 10-40wt.%, the gel fraction gradient of 0.6 or less expressed by y/x, the junction part modified by an electron beam between T1 and a vinylidene chloride resin layer C, and a thermally sealable resin layer S which is substantially noncrosslinked. In addition, the thermally shrinking cylindrical multilayer film is composed of an ethylene-α-olefin copolymer with (1) the SI density of 0.900-0.915g/cm<3> and the melting point of 115-125 deg.C and an ethylene.α-olefin copolymer with (2) the S2 density of 0.895-0.915g/cm<3> , and the melting point of 94-108 deg.C, and with the difference of the melting point between S1 and S2 of 10 deg.C or higher.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、生肉、加工肉等の
脂肪性不規則形状の食品類を内容物とし、これを熱収縮
包装して包装体にする用途に利用する熱収縮性筒状多層
フィルムの改良技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-shrinkable tubular product used for the purpose of heat-shrink-wrapping a food containing fat-irregular foods such as raw meat and processed meat as a content. The present invention relates to a technique for improving a multilayer film.

【0002】[0002]

【従来の技術】従来、例えば特公平4−4149号公報
には筒の外側から筒の内側に向け、外表面樹脂層(S1
層)、接着性熱収縮性樹脂層(T1層)、塩化ビニリデ
ン系樹脂層(C層)、接着性熱収縮性樹脂層(T2
層)、熱シール性樹脂層(S2層)の順番に積層された
少なくとも5層からなる積層フィルムであって、S1層
の最外部(C層から離れた側)のゲル分率(X)が25
〜70重量%、T1層の最内部(C層側)のゲル分率
(Y)が5%以上40重量%以下、(Y/X)で示され
るゲル分率勾配が0.6以下の状態であり、かつ上記T
1層とC層の接合部は電子線変性された状態の接合部で
あり、かつ熱シール性樹脂層(S2層)は実質的に未架
橋である熱収縮性筒状多層フィルムが開示されていて公
知である。
2. Description of the Related Art Conventionally, for example, in Japanese Examined Patent Publication No. 4-4149, an outer surface resin layer (S1
Layer), adhesive heat-shrinkable resin layer (T1 layer), vinylidene chloride resin layer (C layer), adhesive heat-shrinkable resin layer (T2)
Layer) and a heat-sealable resin layer (S2 layer) are laminated in this order, and the gel fraction (X) of the outermost part of the S1 layer (the side away from the C layer) is X. 25
˜70 wt%, the gel fraction (Y) of the innermost portion of the T1 layer (C layer side) is 5% or more and 40 wt% or less, and the gel fraction gradient represented by (Y / X) is 0.6 or less. And the above T
Disclosed is a heat-shrinkable tubular multi-layer film in which the joint between the first layer and the C layer is a joint in the state of being modified with an electron beam, and the heat-sealing resin layer (S2 layer) is substantially uncrosslinked. Is known.

【0003】この公報の記載によれば、上記の積層フィ
ルムの製法は端的には、共押出法で筒状積層体を形成
し、次にその筒状物の外面から電子線を照射し、その後
延伸して、架橋延伸効果を活用する架橋ー延伸方法であ
るが、その特長的なことは、照射された電子線が筒表面
側の層(S1、T1層)に架橋(ゲル分率)勾配を与え
るように通過させてS1、T1層に十分な架橋を施し、
さらに該T1層とC層との接合界面にも電子線変性を与
えているが、減衰されてC層への照射線量は小さいもの
になっていて、さらに熱シール性樹脂層(S2層)は実
質的に架橋変性がなされていないという特質を備えてい
る。
According to the description of this publication, the above-mentioned method for producing a laminated film is simply to form a tubular laminate by a coextrusion method, then irradiate an electron beam from the outer surface of the tubular article, and thereafter, This is a cross-linking / stretching method that stretches and utilizes the cross-linking and stretching effect. The characteristic is that the irradiated electron beam cross-links (gel fraction) gradient to the layers (S1, T1 layers) on the cylinder surface side. To give sufficient cross-linkage to the S1 and T1 layers,
Further, electron beam modification is also applied to the joint interface between the T1 layer and the C layer, but the irradiation dose to the C layer is reduced due to the attenuation, and the heat-sealing resin layer (S2 layer) is further reduced. It has the characteristic that it is not substantially crosslinked.

【0004】外表面樹脂層(S1)としては、エチレン
酢酸ビニル共重合体樹脂、線状低密度ポリエチレン樹
脂、超低密度ポリエチレン樹脂と称されるものが用いら
れ、その役割は内容物が乱暴に取り扱われる際の耐酷使
性を与えるものである。熱シール性樹脂層(S2層)と
しては、線状低密度ポリエチレン樹脂、超低密度ポリエ
チレン樹脂、エチレン酢酸ビニル共重合体樹脂と称され
るものが用いられ、その役割は熱接着性を与えるもので
ある。接着性熱収縮性樹脂層(T1、T2)としては、
エチレン酢酸ビニル共重合体樹脂、エチレン−エチルア
クリレート共重合体樹脂(EEA)、エチレン−アクリ
ル酸共重合体樹脂(EAA)等と称されるものが用いら
れ、芯層(C層)、外表面樹脂層(S1)及び熱シール
性樹脂層(S2層)との接着力を高める役割を与えるも
のである。芯層(C層)に用いられる塩化ビニリデン系
樹脂としては、塩化ビニリデンと塩化ビニル、メチルア
クリレート、ブチルアクリレートとの共重合体樹脂が用
いられ、積層フィルムに酸素遮断性を付与し、内容物の
腐敗を防ぐ役割を持つ。
As the outer surface resin layer (S1), what is called an ethylene vinyl acetate copolymer resin, a linear low density polyethylene resin or an ultra low density polyethylene resin is used, and its role is to roughly change the contents. It provides abuse resistance when handled. As the heat-sealable resin layer (S2 layer), those called linear low-density polyethylene resin, ultra-low-density polyethylene resin, and ethylene-vinyl acetate copolymer resin are used, and their role is to provide heat-adhesiveness. Is. As the adhesive heat-shrinkable resin layer (T1, T2),
What is called ethylene vinyl acetate copolymer resin, ethylene-ethyl acrylate copolymer resin (EEA), ethylene-acrylic acid copolymer resin (EAA), etc. is used, and the core layer (C layer), outer surface It serves to enhance the adhesive force between the resin layer (S1) and the heat-sealing resin layer (S2 layer). As the vinylidene chloride-based resin used for the core layer (C layer), a copolymer resin of vinylidene chloride and vinyl chloride, methyl acrylate or butyl acrylate is used, which imparts oxygen barrier properties to the laminated film, Has the role of preventing corruption.

【0005】上記方法によって作られたフィルムの第一
の特長は、表面架橋樹脂層と実質的に未架橋のシール性
樹脂層の組み合わせで発揮するシール性能の向上効果で
ある。具体的には、シール完了までに要する時間が短縮
でき、包装能力の向上要求に対処できる効果、及びシー
ル適性温度領域を拡大し、実用時のシール不良発生率を
大幅に低減する効果である。
The first feature of the film produced by the above method is the effect of improving the sealing performance exhibited by the combination of the surface crosslinked resin layer and the substantially uncrosslinked sealing resin layer. Specifically, it is an effect that the time required until the completion of sealing can be shortened, that the demand for improvement in packaging capacity can be met, and that the temperature range suitable for sealing can be expanded to significantly reduce the occurrence rate of defective sealing during practical use.

【0006】一方、最近、新たなポリオレフィン系樹脂
として、いわゆるシングルサイト触媒(メタロセン触
媒、カミンスキー触媒とも呼ばれる)によって得られる
エチレンとブテン−1、ヘキセン−1、4−メチルペン
テン−1、オクテン−1等の超低密度で分子量分布の狭
いエチレン−α・オレフィンの線状共重合体が市場に紹
介され(例えば、Modern Plastics I
nternation−al,October、199
3、P.99)、ガスバリア性樹脂を芯層とした多層フ
ィルムにおける利用が考えられている(特開平6−32
0685号公報、EP0597502−A2、EP06
34433−A2)。
On the other hand, recently, as new polyolefin resins, ethylene and butene-1, hexene-1,4-methylpentene-1, octene-obtained by so-called single-site catalysts (also called metallocene catalysts and Kaminsky catalysts) have been obtained. A linear copolymer of ethylene-α-olefin having a very low density such as 1 and a narrow molecular weight distribution is introduced to the market (for example, Modern Plastics I).
international-al, October, 199
3, p. 99), it is considered to be used in a multilayer film having a gas barrier resin as a core layer (JP-A-6-32).
0685, EP0597502-A2, EP06
34433-A2).

【0007】特開平6−320685号公報には、ガス
バリア性樹脂からなる芯層(C層)と、オレフィン系樹
脂からなる層を含む多層フィルムにおいて、少なくとも
最内層にメタロセン触媒によって得られる超低密度で分
子量分布の狭いエチレン−α・オレフィンの線状共重合
体を用いることによりフィルムの臭気が改善されるとし
ている。またEP0597502−A2には、ガスバリ
ア性樹脂からなる芯層を含む多層フィルムにおいてシン
グルサイト触媒を用いて重合されてなる超低密度で分子
量分布の狭いエチレン−α・オレフィンの線状共重合体
をヒートシール性内層あるいは他の層に用いる構成の積
層フィルムが開示されており、積層フィルムの耐衝撃性
が高められるとしている。また、EP0634433−
A2には、ガスバリア性樹脂からなる芯層を含む多層フ
ィルムにおいてシングルサイト触媒を用いて重合されて
なる分子量分布が狭く、低融点のエチレン−α・オレフ
ィンの線状共重合体をヒートシール性内層あるいは他の
層に用いる構成の積層フィルムが開示されており、積層
フィルムの熱収縮性が高められ、かつ耐衝撃性も向上す
るとしている。
JP-A-6-320685 discloses an ultra-low density obtained by a metallocene catalyst in at least the innermost layer in a multilayer film including a core layer (C layer) made of a gas barrier resin and a layer made of an olefin resin. The use of a linear copolymer of ethylene-α / olefin having a narrow molecular weight distribution improves the odor of the film. Further, in EP0597502-A2, a linear copolymer of ethylene-α-olefin having a very low density and a narrow molecular weight distribution, which is polymerized by using a single-site catalyst in a multilayer film including a core layer made of a gas barrier resin, is heated. A laminated film configured to be used as a sealing inner layer or another layer is disclosed, and it is said that the impact resistance of the laminated film is enhanced. In addition, EP0634433-
A2 is a heat-sealable inner layer of a linear copolymer of ethylene-α-olefin having a narrow molecular weight distribution and a low melting point obtained by polymerizing using a single-site catalyst in a multilayer film including a core layer made of a gas barrier resin. Alternatively, a laminated film having a configuration used for another layer is disclosed, and it is stated that the heat shrinkability of the laminated film is improved and the impact resistance is also improved.

【0008】一方、本発明の関わる包装材の主たる使わ
れ方は、肉加工業者(ミートパッカーと呼ばれる)にお
いて、牛、馬、豚類を各部位に分割し、分割された肉塊
を筒状のバッグに入れて緊縮包装し、スーパーマーケッ
ト等の最終小売店に流通される際に用いられるものであ
る。以下に、実際の肉加工業者における使用実態につい
て述べる。
On the other hand, the main use of the packaging material according to the present invention is that a meat processor (called a meat packer) divides beef, horses and pigs into respective parts, and divides the divided chunks of meat into a tubular shape. It is used when placed in a bag, tightly packed and distributed to final retail stores such as supermarkets. The actual usage conditions of meat processors are described below.

【0009】まず、肉加工業者においては、屠殺冷蔵さ
れた牛、馬、豚類を各部位に分割し、その肉塊を筒状の
バッグに入れて開口部のヒートシールを減圧室内で、袋
の中も減圧になる状態下で行い、その後減圧室は常圧に
戻される。次に、上記の真空包装された肉塊に70℃か
ら90℃程度の温水を噴霧するか、あるいは上記真空包
装された肉塊を70℃から90℃程度の温水にディッピ
ングするなどして、フィルムを熱収縮させ、タイトな包
装感を与え、また血液・肉汁等の滲出を防ぎ、腐敗防止
効果を与える。この時の温水温度は、高温の条件では肉
表面に”焼け”と呼ばれる変色が生じるので、80℃位
のものが好まれ、従ってフィルムに対しては80℃位で
高収縮するものが好まれる。熱処理された袋は、次に約
5℃の冷水に漬けられて冷却される。
First, in a meat processing company, slaughtered and refrigerated cattle, horses, and pigs are divided into respective parts, and the lumps of meat are put in a cylindrical bag, and a heat seal at the opening is put in a decompression chamber in a bag. The inside of the chamber is also depressurized, and then the decompression chamber is returned to normal pressure. Next, by spraying hot water of about 70 ° C. to 90 ° C. onto the vacuum-packed meat block or dipping the vacuum-packed meat block into hot water of about 70 ° C. to 90 ° C., a film is formed. Heat shrinks to give a tight packing feeling, and prevents the exudation of blood, gravy, etc. to give an anti-rot effect. The hot water temperature at this time is preferably about 80 ° C because the discoloration called "burning" occurs on the surface of the meat under high temperature conditions, and therefore the film that highly shrinks at about 80 ° C is preferred. . The heat treated bag is then dipped in cold water at about 5 ° C. to cool.

【0010】近年、スーパーマーケット等の最終小売店
においては、省力化・人件費削減に対する要求は非常に
強く、肉加工業者に対して冷蔵生肉等をより小さなサイ
ズに小割化して納入することを要請している。そのた
め、肉加工業者においては、屠殺冷蔵された牛、馬、豚
類を各部位に分割する際に、従来よりもより小さいサイ
ズに分割し、多数の肉塊を多数の小袋に緊縮包装して、
出荷することが必要となってきている。その時に問題と
なるのは、上記の生肉包装過程において、減圧室内にて
開口部を封鎖する工程である。すなわち、バッグを真空
包装機にセットし、減圧室を密閉状態にし、真空ポンプ
でフィルムが肉塊にぴったりと密着する状態まで十分減
圧し、次に減圧室内でヒートシールを行い、減圧室を大
気圧に戻し、減圧室を開放してバッグを取り出すという
手間のかかる工程である。したがって、真空包装する時
に、バッグ同士に一部重なる部分がある状態で、一度に
多数のバッグをセットして処理できることができれば、
効率的な真空包装が行えるようになり、そのような積層
フィルムの出現が期待されていた。
In recent years, in the final retail stores such as supermarkets, there is a strong demand for labor saving and labor cost reduction, and it is requested that meat processors subdivide chilled raw meat into smaller pieces and deliver them. are doing. Therefore, in the meat processor, when dividing slaughtered and refrigerated cattle, horses, and pigs into individual parts, they are divided into smaller sizes than before, and many meat chunks are tightly packed in many sachets. ,
Shipping is needed. A problem at that time is a step of closing the opening in the decompression chamber in the above-mentioned raw meat packaging process. That is, the bag is set in a vacuum packaging machine, the decompression chamber is hermetically closed, and the vacuum pump sufficiently depressurizes the film until it comes into close contact with the meat block. This is a troublesome process of returning to atmospheric pressure, opening the decompression chamber, and taking out the bag. Therefore, if it is possible to set and process a large number of bags at a time when vacuum packaging, there is a portion where the bags overlap each other,
It became possible to carry out efficient vacuum packaging, and the appearance of such a laminated film was expected.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、上記の
特公平4−4149号公報に記載の如く、塩化ビニリデ
ン系樹脂層(C層)をガスバリア性芯層として、その表
面層(S1層、T1層)が特定のゲル分率範囲であり、
かつ特定のゲル分率の勾配をもち、かつ実質的にシール
層樹脂が未架橋の多層フィルムにおいては、ヒートシー
ル所要時間の短縮や、シール不良発生率の低減には効果
はあるものの、異なるバッグ同士が重なりあった場合に
は、良好なシールを行うことができない。すなわち、シ
ールを良好に行おうとすれば、バッグの重なりあった部
分も熱融着して剥がれなくなり、無理に剥がそうとする
とバッグが破れてしまい真空包装の意味をなさず、また
バッグ同士の熱融着を防ごうとして熱融着条件を調整し
て、低温でヒートシールしようとすると内面のシールの
不良が発生する結果となり、適切なシール条件を選ぶこ
とができないのである。
However, as described in Japanese Patent Publication No. 4-4149, the vinylidene chloride resin layer (C layer) is used as a gas barrier core layer and its surface layer (S1 layer, T1 layer). ) Is a specific gel fraction range,
And with a specific gel fraction gradient, and in the multilayer film in which the sealing layer resin is substantially uncrosslinked, it is effective in reducing the time required for heat-sealing and reducing the defective sealing rate, but different bags If they overlap each other, good sealing cannot be performed. In other words, if you try to make a good seal, the overlapping parts of the bag will not be peeled by heat fusion, and if you try to peel it forcibly, the bag will break and it will not make sense of vacuum packaging, and the heat between the bags If heat fusion conditions are adjusted to prevent fusion and heat sealing is attempted at a low temperature, the inner surface will be poorly sealed, and appropriate sealing conditions cannot be selected.

【0012】また、特開平6−320685号公報、E
P0597502−A2、EP0634433−A2に
は、一度に多数のバッグを真空包装やヒートシールした
場合でも、重なり合った異なるバッグの熱融着が防が
れ、かつ内層のヒートシールを完全に行わせしめるとい
う発想がそもそもないものである。すなわち、上記公報
に記載の実施例の積層フィルムは、従来の熱収縮性筒状
多層フィルムのもつ基本特性を兼備しつつ、異なるバッ
グ同士の熱融着を防ぎ、かつ内層のヒートシールを完全
に行うことが不可能なものである。
Further, JP-A-6-320685, E
P0597502-A2 and EP0634433-A2 have the idea that even if a large number of bags are vacuum-packed or heat-sealed at the same time, thermal fusion of different overlapping bags can be prevented and the inner layer can be heat-sealed completely. There is nothing in the first place. That is, the laminated film of the example described in the above publication, while also having the basic characteristics of the conventional heat-shrinkable tubular multilayer film, prevents heat fusion between different bags, and complete heat seal of the inner layer. It is impossible to do.

【0013】本発明の目的は従来の熱収縮性筒状多層フ
ィルムのもつ低温熱収縮性、内面耐油性などの基本特性
を兼備しつつ、バッグが重なり合った状態でヒートシー
ルや真空包装処理を可能にする熱収縮性筒状多層フィル
ムを提供することである。
The object of the present invention is to combine heat-shrinkability and vacuum-packing treatment in a state in which bags are overlapped with each other while having basic characteristics such as low-temperature heat-shrinkability and oil resistance on the inner surface of a conventional heat-shrinkable tubular multilayer film. To provide a heat-shrinkable tubular multilayer film.

【0014】[0014]

【課題を解決するための手段】すなわち、本発明は、筒
の外側から筒の内側に向け、外表面樹脂層(S1層)、
接着性熱収縮性樹脂層(T1層)、塩化ビニリデン系樹
脂層(C層)、接着性熱収縮性樹脂層(T2層)、熱シ
ール性樹脂層(S2層)の順番に積層された少なくとも
5層からなり、該S1層の最外表面部のゲル分率(X)
が35重量%〜70重量%、該T1層の最内部(該C層
に隣接する部分)のゲル分率(Y)が10重量%〜40
重量%、(Y/X)で示されるゲル分率勾配が0.6以
下であり、該T1層と該C層との接合部は電子線変性さ
れており、かつ該S2層が実質的に未架橋である熱収縮
性筒状多層フィルムにおいて、(1)上記外表面樹脂層
(S1層)の密度が0.900g/cm3 〜0.915
g/cm3 であり、かつ融点が115℃〜125℃であ
るエチレン−α・オレフィンの共重合体からなり、
(2)上記熱シール性樹脂層(S2層)の密度が0.8
95g/cm3 〜0.915g/cm3 であり、かつ融
点が94℃〜108℃であるエチレン−α・オレフィン
の共重合体からなり、(3)上記外表面樹脂層(S1
層)と上記熱シール性樹脂層(S2層)との融点の差が
10℃以上であることを特徴とする熱収縮性筒状多層フ
ィルムである。
That is, according to the present invention, an outer surface resin layer (S1 layer) is provided from the outside of the cylinder toward the inside of the cylinder.
At least an adhesive heat-shrinkable resin layer (T1 layer), a vinylidene chloride resin layer (C layer), an adhesive heat-shrinkable resin layer (T2 layer), and a heat-sealable resin layer (S2 layer) are laminated in this order. It consists of 5 layers, and the gel fraction (X) of the outermost surface of the S1 layer
Is 35% by weight to 70% by weight, and the gel fraction (Y) of the innermost portion of the T1 layer (a portion adjacent to the C layer) is 10% by weight to 40% by weight.
% By weight, the gel fraction gradient represented by (Y / X) is 0.6 or less, the junction between the T1 layer and the C layer is electron beam modified, and the S2 layer is substantially In the non-crosslinked heat-shrinkable tubular multilayer film, (1) the outer surface resin layer (S1 layer) has a density of 0.900 g / cm 3 to 0.915.
g / cm 3 and and made of a copolymer of ethylene-.alpha. · olefin a melting point of 115 ° C. to 125 ° C.,
(2) The heat-sealable resin layer (S2 layer) has a density of 0.8.
Was 95g / cm 3 ~0.915g / cm 3 , and a melting point is a copolymer of ethylene-.alpha. · olefin is 94 ℃ ~108 ℃, (3) the outer surface resin layer (S1
Layer) and the heat-sealing resin layer (S2 layer) have a melting point difference of 10 ° C. or more, which is a heat-shrinkable tubular multilayer film.

【0015】以下、本発明の内容を詳述する。まず本発
明の積層フィルムと従来技術の積層フィルムとの相違点
は、(イ) 外表面樹脂層(S1層)の最外表面部のゲ
ル分率(X)が35重量%〜70重量%、密度が0.9
00g/cm3 〜0.915g/cm3 、融点が115
℃〜125℃のエチレン−α・オレフィンの共重合体で
あり、熱シール性樹脂層(S2層)が実質的に未架橋の
状態で、その密度が0.895g/cm3 〜0.915
g/cm3 、融点が94℃〜108℃であるエチレン−
α・オレフィンの共重合体であり、(ロ) 外表面樹脂
層(S1層)と熱シール性樹脂層(S2層)との融点の
差が10℃以上であることに集約される。
The details of the present invention will be described below. First, the difference between the laminated film of the present invention and the laminated film of the prior art is that (a) the gel fraction (X) of the outermost surface portion of the outer surface resin layer (S1 layer) is 35% by weight to 70% by weight, Density is 0.9
00 g / cm 3 to 0.915 g / cm 3 , melting point 115
° C. a copolymer of to 125 ° C. ethylene-.alpha. · olefin, the heat-sealable resin layer (S2 layer) in a state of substantially uncrosslinked, its density 0.895g / cm 3 ~0.915
g / cm 3 , ethylene having a melting point of 94 ° C to 108 ° C-
It is a copolymer of α-olefin, and is summarized in that (b) the difference in melting point between the outer surface resin layer (S1 layer) and the heat-sealing resin layer (S2 layer) is 10 ° C or more.

【0016】上記の(イ)と(ロ)の役割について、図
1を用いて説明する。図1は、本発明でいうバッグ同士
を重ね合せてヒートーシール可能な温度領域を表す実験
図である。図の横軸には温度を目盛っており、温度はサ
ーモラベルにて測定したシールバーの温度である。縦軸
には下記の3種のフィルムそれぞれの内面シール可能温
度域、重ね合せシール可能温度域、重ね合せシール不可
能温度域を順に示している。
The roles of (a) and (b) above will be described with reference to FIG. FIG. 1 is an experimental view showing a temperature range in which bags according to the present invention can be heat-sealed by overlapping them. The horizontal axis of the figure indicates the temperature, and the temperature is the temperature of the seal bar measured by the thermo label. The vertical axis shows the temperature range in which the inner surface can be sealed, the temperature range in which the overlap can be sealed, and the temperature range in which the overlap cannot be sealed, in the order of the following three types of films.

【0017】(A)本発明のフィルム(実施例1のフィ
ルムNo.1に対応) S1層の最外表面部のゲル分率(X)が52重量% S1層の密度0.905g/cm3 、融点123℃のエ
チレン−α・オレフィンの共重合体 S2層は、実質的に未架橋で、その密度が0.895g
/cm3 で、融点が94℃のエチレン−α・オレフィン
の共重合体 (B)従来のフィルム(比較例1のフィルムNo.2に
対応) S1層の最外表面部のゲル分率(X)が52重量% S1層、S2層が共に、密度0.895g/cm3 、融
点94℃のエチレン−α・オレフィンの共重合体 (C)従来のフィルム(比較例2のフィルムNo.3に
対応) S1層の最外表面部のゲル分率(X)が52重量% S1層、S2層が共に、密度0.905g/cm3 、融
点123℃のエチレン−α・オレフィンの共重合体 図1によると、本発明のフィルム(A)は、内面のヒー
トシールは約90℃から可能であり、バッグの外表面同
士が熱融着してしまう温度は約150℃からである。そ
の理由は、S1層は最外表面部のゲル分率(X)が52
重量%であること、溶融したときに流動し難くいこと、
S2層は実質的に未架橋の状態であり外表面同士を比べ
ると熱融着し易い状態であること、そしてS1層とS2
層の融点の差が29℃であることであり、それらの組み
合せ効果によるものである。
(A) Film of the present invention (corresponding to film No. 1 of Example 1) The gel fraction (X) of the outermost surface of the S1 layer is 52% by weight. The density of the S1 layer is 0.905 g / cm 3. , Ethylene-α-olefin copolymer having a melting point of 123 ° C. The S2 layer is substantially uncrosslinked and has a density of 0.895 g.
/ Cm 3 and a melting point of 94 ° C. ethylene-α · olefin copolymer (B) Conventional film (corresponding to Film No. 2 of Comparative Example 1) Gel fraction (X ) Is an ethylene-α-olefin copolymer having a density of 0.895 g / cm 3 and a melting point of 94 ° C. (C) Conventional film (Comparative Example 2 film No. 3) Correspondence) The gel fraction (X) of the outermost surface portion of the S1 layer is 52% by weight. Both the S1 layer and the S2 layer have a density of 0.905 g / cm 3 and a melting point of 123 ° C. An ethylene-α-olefin copolymer diagram. According to 1, the film (A) of the present invention can be heat-sealed on the inner surface from about 90 ° C., and the temperature at which the outer surfaces of the bag are heat-sealed is from about 150 ° C. The reason is that the S1 layer has a gel fraction (X) of 52 at the outermost surface.
% By weight, difficult to flow when melted,
The S2 layer is in a substantially uncrosslinked state and is in a state of being easily heat-bonded when the outer surfaces are compared with each other.
The difference in the melting points of the layers is 29 ° C., which is due to their combined effect.

【0018】そして、バッグの重ね合せシール可能温度
域は、約90℃から150℃で、その幅(以下、重ね合
せシール可能温度幅)は約60℃である。本発明者らの
実験解析によると、異なるバッグ同士が重なり合った状
態で、ヒートシール可能となるためには、上記の重ね合
せシール可能温度幅は、40℃以上必要である。なぜな
らば、真空包装機の細長いシールバーには、場所による
温度のムラがあったり、バッグの重なり部分は、熱の伝
達に遅れを生じたりするために、重ね合せシール可能温
度幅が、40℃未満であると内面のシールが不完全にな
ったり、あるいは逆にバッグ同士が熱融着して離れなく
なる不良の発生率が非常に高くなり、実用に適さないも
のとなってしまうためである。
The temperature range in which the bag can be overlapped and sealed is about 90 ° C. to 150 ° C., and its width (hereinafter, the temperature range in which the overlap and seal can be made) is about 60 ° C. According to the experimental analysis by the present inventors, the above-mentioned temperature range capable of overlapping and sealing is required to be 40 ° C. or more in order to enable heat sealing in a state where different bags overlap each other. This is because the long and narrow seal bar of the vacuum packaging machine has uneven temperature depending on the location, and the overlapping portion of the bag has a delay in heat transfer, so that the temperature range that can be overlap-sealed is 40 ° C. If it is less than the above range, the inner surface will be incompletely sealed, or conversely, the rate of occurrence of defects in which the bags are heat-sealed and cannot be separated becomes extremely high, which is not suitable for practical use.

【0019】一方、従来のフィルム(B)は、バッグの
外表面同士の熱融着(重ね合せシール不可能温度域)
が、約110℃から始まり、バッグの重ね合せシール可
能温度域が、約90℃から110℃のものである。理由
は、S1層がS2層と同じく融点94℃のエチレン−α
・オレフィンの共重合体だからである。したがって、重
ね合せシール可能温度幅が20℃程度と狭く、実際的に
バッグの重ね合せシールが不可能なものである。
On the other hand, in the case of the conventional film (B), the outer surfaces of the bag are heat-sealed to each other (temperature range in which overlapping and sealing is impossible).
However, the temperature range in which the bag can be overlap-sealed is about 90 ° C to 110 ° C. The reason is that the S1 layer has the same melting point of 94 ° C as ethylene-α as the S2 layer.
・ Because it is a copolymer of olefins. Therefore, the temperature range in which superposition sealing is possible is as narrow as about 20 ° C., and superposition sealing of bags is practically impossible.

【0020】また、従来のフィルム(C)は、バッグ内
面のヒートシールが可能になるのが(内面シール可能温
度域)約130℃からで、バッグの重ね合せシール可能
温度域は、約130℃から150℃のものである。理由
は、S2層がS1層と同じく融点123℃のエチレン−
α・オレフィンの共重合体だからである。したがって、
重ね合せシール可能温度幅が20℃程度と狭く、実際的
にバッグの重ね合せシールが不可能なものである。
The conventional film (C) is capable of heat-sealing the inner surface of the bag (inner surface sealable temperature range) from about 130 ° C., and the overlapping sealable temperature range of the bag is about 130 ° C. To 150 ° C. The reason is that the S2 layer is ethylene-
This is because it is a copolymer of α-olefin. Therefore,
The temperature range that can be overlap-sealed is as narrow as about 20 ° C, and it is practically impossible to overlap-seal the bag.

【0021】すなわち、本発明のフィルムはS1層の最
外表面部のゲル分率(X)が35重量%〜70重量%で
あり、S2層が実質的に未架橋であることにより、フィ
ルムがヒートシールされたときに外表面(S1層)は流
動し難く、バッグ同士が熱融着し難くなること、一方、
実質的に未架橋であるヒートシール層(S2層)同士
は、外表面(S1層)同士に比べると熱融着し易い状態
であること、S1層は低密度で比較的融点の高い線状低
密度ポリエチレン樹脂であり、S2層は低密度で比較的
に融点の低い線状超低密度ポリエチレン樹脂であって、
S1層とS2層との融点の差が10℃以上であること、
さらに、S2層の密度が0.895g/cm3 〜0.9
15g/cm3 、融点が94℃〜108℃であるエチレ
ン−α・オレフィンの共重合体は実際の融点から考えら
れるよりもヒートシール開始温度が低いという特質を有
すること、そして、それらの組み合わせ効果によって、
従来の熱収縮性筒状多層フィルムの持つ基本特性は兼備
しつつ、バッグが重なり合った状態でヒートシール、真
空包装処理を可能にする熱収縮性筒状多層フィルムとす
ることができる。
That is, the film of the present invention has a gel fraction (X) of 35% to 70% by weight at the outermost surface of the S1 layer, and since the S2 layer is substantially uncrosslinked, the film is When heat-sealed, the outer surface (S1 layer) is less likely to flow, and the bags are less likely to be heat-sealed.
The heat-sealing layers (S2 layers) that are substantially uncrosslinked are in a state in which they are more easily heat-sealed than the outer surfaces (S1 layers), and the S1 layers are linear with a low density and a relatively high melting point. It is a low density polyethylene resin, and the S2 layer is a linear ultra-low density polyethylene resin having a low density and a relatively low melting point,
The melting point difference between the S1 layer and the S2 layer is 10 ° C. or more,
Furthermore, the density of the S2 layer is 0.895 g / cm 3 to 0.9.
The ethylene-α-olefin copolymer having a melting point of 15 g / cm 3 and a melting point of 94 ° C. to 108 ° C. has a characteristic that the heat-sealing start temperature is lower than the actual melting point, and the combination effect thereof. By
The heat-shrinkable tubular multi-layered film can be heat-sealed and vacuum-wrapped in a state where the bags are overlapped with each other while having the basic characteristics of the conventional heat-shrinkable tubular multi-layered film.

【0022】ここで、S1層の最外表面部のゲル分率
(X)の範囲としては35重量%〜70重量%であるこ
とが必要である。ゲル分率(X)が35重量%未満で
は、外表面同士の熱融着を防ぐ効果が不十分となり、ま
たゲル分率(X)が70重量%を超えると、積層フィル
ムの延伸成膜性が劣ったものとなって、低温熱収縮性が
不十分となるためである。
Here, the gel fraction (X) of the outermost surface of the S1 layer must be in the range of 35% by weight to 70% by weight. When the gel fraction (X) is less than 35% by weight, the effect of preventing heat fusion between the outer surfaces becomes insufficient, and when the gel fraction (X) exceeds 70% by weight, the stretched film-forming property of the laminated film is improved. Is inferior and the low temperature heat shrinkability becomes insufficient.

【0023】S1層の密度は、0.900g/cm3
0.915g/cm3 であることが必要である。密度が
0.900g/cm3 未満ではフィルムが巻き取られた
状態でブロッキングし、取り扱い上不具合になり、また
密度が0.915g/cm3を超えると、バッグの低温
熱収縮性が劣った結果となるためである。融点の範囲
は、115℃〜125℃であることが必要である。融点
が115℃未満では、外表面の熱融着開始温度が低くな
りすぎ、S2層との融点の差が小さいものとなり、重ね
合せシール可能温度幅が狭くなり、また融点が125℃
を超えると、バッグの低温熱収縮性が劣った結果となる
ためである。
The density of the S1 layer is 0.900 g / cm 3 or more.
It is necessary to be 0.915 g / cm 3 . If the density is less than 0.900 g / cm 3 , the film will be blocked in a wound state, resulting in handling problems, and if the density exceeds 0.915 g / cm 3 , the low temperature heat shrinkability of the bag will be poor. This is because The melting point range needs to be 115 ° C to 125 ° C. If the melting point is less than 115 ° C, the heat-sealing start temperature of the outer surface becomes too low, the difference in melting point from the S2 layer becomes small, the temperature range in which superposition sealing is possible becomes narrow, and the melting point is 125 ° C.
If it exceeds, the low temperature heat shrinkability of the bag will be inferior.

【0024】S2層の樹脂としては、密度の範囲は0.
895g/cm3 〜0.915g/cm3 であることが
必要である。密度が、0.895g/cm3 未満では、
バッグの開口性が不良となり、バッグが手で簡単に開か
なくなり、また密度が0.915g/cm3 を超える
と、バッグの低温熱収縮性が劣った結果となるためであ
る。
The resin of the S2 layer has a density range of 0.
It is necessary to be 895 g / cm 3 to 0.915 g / cm 3 . When the density is less than 0.895 g / cm 3 ,
This is because the opening property of the bag becomes poor and the bag cannot be easily opened by hand, and when the density exceeds 0.915 g / cm 3 , the low temperature heat shrinkability of the bag is inferior.

【0025】融点の範囲は、94℃〜108℃であるこ
とが必要である。融点が94℃未満では、バッグ内面の
耐油性が不良となり、また融点が108℃を超えると、
内面のシール開始温度が高くなり、重ね合せシール可能
温度幅が狭くなるためである。S1層は融点が115℃
〜125℃の樹脂から選択され、S2層は融点が94℃
〜108℃の樹脂から選択されるが、S1層とS2層の
融点の差の値が10℃以上である組み合わせであること
が必要である。S1層とS2層の融点の差の値が10℃
未満であると、重ね合せシール可能温度幅が40℃未満
となり、重ね合せシール性に劣ったものとなるためであ
る。S1層とS2層の融点差の上限値としては31℃で
ある。融点差が31℃を超えるような組み合わせでは低
温熱収縮性、内面耐油性等のバッグの兼備するべき特性
を犠牲にせざるを得ないものとなるためである。
The melting point range needs to be 94 ° C to 108 ° C. If the melting point is less than 94 ° C, the oil resistance of the inner surface of the bag becomes poor, and if the melting point exceeds 108 ° C,
This is because the sealing start temperature of the inner surface becomes high and the temperature range in which superposition sealing is possible becomes narrow. The melting point of the S1 layer is 115 ° C.
Selected from resins of ~ 125 ° C, S2 layer has a melting point of 94 ° C
It is selected from resins having a temperature of ˜108 ° C., but it is necessary that the combination is such that the difference in melting point between the S1 layer and the S2 layer is 10 ° C. or more. The difference in melting point between the S1 and S2 layers is 10 ° C.
If it is less than 40 ° C., the temperature range in which superposition sealing is possible is less than 40 ° C., and the superposition sealing property becomes poor. The upper limit of the melting point difference between the S1 layer and the S2 layer is 31 ° C. This is because a combination having a melting point difference of more than 31 ° C. will have to sacrifice low-temperature heat shrinkability, oil resistance on the inner surface, and other properties that the bag should have.

【0026】S1層として用いる、密度が0.900g
/cm3 〜0.915g/cm3 であり、かつ融点が1
10℃〜125℃であるエチレン−α・オレフィンの共
重合体の具体例としては、エチレンと、ブテン−1、ペ
ンテン−1、4−メチルペンテン−1、ヘキセン−1、
オクテン−1などで代表される炭素数4〜12のα・オ
レフィンとの共重合体樹脂をあげることができる。従来
のチーグラー・ナッタ系触媒を重合触媒として使用して
得られる線状低密度ポリエチレン樹脂、線状超低密度ポ
リエチレン樹脂から適切に選択して用いることができ
る。
Used as the S1 layer, having a density of 0.900 g
/ Cm 3 to 0.915 g / cm 3 and a melting point of 1
Specific examples of the ethylene-α-olefin copolymer having a temperature of 10 ° C to 125 ° C include ethylene, butene-1, pentene-1, 4-methylpentene-1, and hexene-1,
A copolymer resin with an α-olefin having 4 to 12 carbon atoms represented by octene-1 and the like can be given. A linear low-density polyethylene resin or a linear ultra-low-density polyethylene resin obtained by using a conventional Ziegler-Natta catalyst as a polymerization catalyst can be appropriately selected and used.

【0027】S2層として用いる密度が0.895g/
cm3 〜0.915g/cm3 であり、かつ融点が94
℃〜108℃であるエチレン−α・オレフィンの共重合
体の具体例としては、エチレンと、ブテン−1、ペンテ
ン−1、4−メチルペンテン−1、ヘキセン−1、オク
テン−1などで代表される炭素数4〜12のα・オレフ
ィンとの共重合体樹脂であって、いわゆるシングルサイ
ト触媒を重合触媒として使用して得られる線状超低密度
ポリエチレン樹脂である。
The density used as the S2 layer is 0.895 g /
cm 3 to 0.915 g / cm 3 and a melting point of 94
Specific examples of the ethylene-α-olefin copolymer having a temperature of ℃ to 108 ℃ are represented by ethylene and butene-1, pentene-1, 4-methylpentene-1, hexene-1, octene-1 and the like. A linear ultra-low density polyethylene resin obtained by using a so-called single-site catalyst as a polymerization catalyst, which is a copolymer resin with an α-olefin having 4 to 12 carbon atoms.

【0028】また、接着性熱収縮性樹脂層(T1、T
2)としては、エチレン酢酸ビニル共重合体樹脂(EV
A)、エチレンーエチルアクリレート共重合体樹脂(E
EA)、エチレンーアクリル酸共重合体樹脂(EAA)
等の公知の樹脂を例示することができる。芯層(C層)
に用いられる塩化ビニリデン系樹脂としては、塩化ビニ
リデンと塩化ビニル、メチルアクリレート、ブチルアク
リレートとの共重合体樹脂等を例示することができる。
Further, the adhesive heat-shrinkable resin layer (T1, T
2) include ethylene vinyl acetate copolymer resin (EV
A), ethylene-ethyl acrylate copolymer resin (E
EA), ethylene-acrylic acid copolymer resin (EAA)
Examples of known resins such as Core layer (C layer)
Examples of the vinylidene chloride-based resin used in the above include copolymer resins of vinylidene chloride and vinyl chloride, methyl acrylate, butyl acrylate, and the like.

【0029】本発明の積層フィルムにおいて、フィルム
全層の厚さは30〜100μmの範囲、好ましくは40
〜80μmの範囲である。厚みが30μm未満では、フ
ィルムの機械的強度が不足し、また100μmを超える
とフィルムのヒートーシールに要する時間が長くなり好
ましくない。積層フィルムの中で芯層(C層)の厚みは
3〜20μmの範囲が好ましい。C層の厚みが3μm未
満では、積層フィルムのガスバリア性が不足し、20μ
mを超えると積層フィルムの耐酷使性が悪化するので好
ましくない。
In the laminated film of the present invention, the thickness of all layers of the film is in the range of 30 to 100 μm, preferably 40.
˜80 μm. If the thickness is less than 30 μm, the mechanical strength of the film will be insufficient, and if it exceeds 100 μm, the time required for heat sealing of the film will be undesirably long. The thickness of the core layer (C layer) in the laminated film is preferably in the range of 3 to 20 μm. If the thickness of the C layer is less than 3 μm, the gas barrier property of the laminated film is insufficient, and
When it exceeds m, the abuse resistance of the laminated film is deteriorated, which is not preferable.

【0030】また、外表面樹脂層(S1層)の厚みは2
〜50μmの範囲、好ましくは5〜40μmの範囲であ
る。厚みが2μm未満では、バッグの外表面同士の熱融
着を妨げる効果が不足するので好ましくなく、また50
μmを超えると積層フィルムに反りを生じるので好まし
くない。熱シール性樹脂層(S2層)の厚みは5〜40
μmの範囲、好ましくは5〜30μmの範囲である。厚
みが5μm未満では、シール部の耐油性や機械的強度が
不十分なものとなり好ましくなく、また40μmを超え
ると積層フィルムに反りを生じるので好ましくない。
The outer surface resin layer (S1 layer) has a thickness of 2
To 50 μm, preferably 5 to 40 μm. When the thickness is less than 2 μm, the effect of hindering heat fusion between the outer surfaces of the bag is insufficient, which is not preferable.
When it exceeds μm, the laminated film is warped, which is not preferable. The thickness of the heat sealable resin layer (S2 layer) is 5 to 40.
It is in the range of μm, preferably in the range of 5 to 30 μm. When the thickness is less than 5 μm, the oil resistance and mechanical strength of the seal portion are insufficient, which is not preferable, and when the thickness exceeds 40 μm, the laminated film is warped, which is not preferable.

【0031】次に本発明のフィルムを得る好ましい製造
方法について述べる。本発明の積層フィルムの製造方法
は、円環状多層ダイを用いて、塩化ビニリデン系樹脂
を芯層(C層)として、C層の両面に隣接して、接着性
熱収縮性樹脂層(T1、T2層)を介して外表面樹脂層
(S1層)、熱シール性樹脂層(S2層)を配した筒状
積層体を共押出法により形成し、この筒状物の外面か
ら電子線を照射した後、筒状積層体を延伸して、架橋
ー延伸効果を活用する架橋ー延伸方法であり、特公平4
−4149号公報に開示されているのと同様にして製造
することができる。成膜された筒状フィルムは、その片
端をヒートシールし、ヒートシールされた線に沿って切
断されて、筒状バッグとして生肉等の包装に用いられ
る。
Next, a preferable production method for obtaining the film of the present invention will be described. The method for producing a laminated film according to the present invention uses an annular multi-layer die, a vinylidene chloride resin as a core layer (C layer), adjacent to both surfaces of the C layer, and an adhesive heat-shrinkable resin layer (T1, A tubular laminate having an outer surface resin layer (S1 layer) and a heat-sealable resin layer (S2 layer) disposed via a T2 layer) is formed by a coextrusion method, and an electron beam is irradiated from the outer surface of the tubular object. After that, the tubular laminate is stretched to utilize the cross-linking / stretching effect.
It can be manufactured in the same manner as disclosed in Japanese Patent No. 4149. The formed tubular film is heat-sealed at one end and cut along the heat-sealed line to be used as a tubular bag for packaging raw meat or the like.

【0032】また、積層フィルムの外面のブロッキング
や、バッグの開口性を改良するために積層フィルムの内
外面にデンプン粉を0.1mg/m2 〜5mg/m2
度塗布したり、S1層、S2層にエルカ酸アミド等のス
リップ剤を添加することも出来る。
Further, blocking and the outer surface of the laminated film, or coating of about 0.1mg / m 2 ~5mg / m 2 starch powder on the inner and outer surfaces of the laminate film in order to improve the opening of the bag, S1 layer, A slip agent such as erucic acid amide can be added to the S2 layer.

【0033】[0033]

【発明の実施の形態】以下、実施例及び比較例を挙げ
て、本発明についてさらに具体的に詳述する。まず、本
発明における物性の測定方法及び評価方法を示す。 <ゲル分率>ASTMD2765に準拠した下記に示す
操作によって求める。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below with reference to Examples and Comparative Examples. First, the method for measuring and evaluating the physical properties in the present invention will be described. <Gel Fraction> Obtained by the following operation based on ASTM D2765.

【0034】 所定の場所(S1層の場合は最外表面
部、T1の場合は最内部)から下記のサンプリング法に
より、約50mgサンプリングした試料を、0.01m
gの精度を持つ天秤にて計量する(W0g)。 あらかじめアセトン中に24時間浸して油分を除去
した150メッシュのSUS製スクリーンのパウチと試
料を合わせて同上の天秤にて計量する(W1g)。
About 50 mg of a sample sampled from a predetermined place (outermost surface portion in the case of S1 layer, innermost case in the case of T1) by 0.01 m
Weigh with a balance having an accuracy of g (W 0 g). The pouch of a 150-mesh SUS screen in which oil has been removed by previously immersing it in acetone for 24 hours and the sample are combined and weighed by the above balance (W 1 g).

【0035】 試料をパウチで包む。 パウチで包んだ試料をセパラブルフラスコとコンデ
ンサーを用いて沸騰パラキシレン中12時間保持する。 パウチで包んだ試料を真空乾燥機により恒量になる
まで乾燥する。 パウチで包んだ試料を、同上の天秤にて計量する
(W2g)。
Wrap the sample in a pouch. The pouch-wrapped sample is kept in boiling paraxylene for 12 hours using a separable flask and a condenser. The sample wrapped in the pouch is dried by a vacuum dryer until the weight becomes constant. The sample wrapped in the pouch is weighed with the same balance (W 2 g).

【0036】 ゲル分率(重量%)={1−(W1
2)/W0}×100 上記の計算式にてゲル分率を算出する。なお、上記のゲ
ル分率測定の試料調整時の注意として、 ・積層物の特定層を試料とするときはエタノールを付け
つつ、ゆっくり剥がしたものを試料とする。
Gel fraction (% by weight) = {1- (W 1
W 2 ) / W 0 } × 100 The gel fraction is calculated by the above formula. As a precaution when adjusting the sample for the above gel fraction measurement, • When using a specific layer of the laminate as a sample, attach it slowly with ethanol and use it as the sample.

【0037】・パリソンの特定層の表層部を試料とする
ときは、剥がした層の平面性の良い部分より10mm×
20mmの切片を取り、この表層部を光学顕微鏡のミク
ロトームを用いて20μmの厚みでスライスしたものを
集めて試料とする。なお、延伸フィルムの特定層を剥が
した後、熱収縮させパリソン状態に戻したものをスライ
スすることもできる。
When the surface layer portion of the specific layer of the parison is used as a sample, it is 10 mm × more than the portion of the peeled layer having good flatness.
A 20 mm section is taken, and the surface layer portion is sliced with a thickness of 20 μm using a microtome of an optical microscope to obtain a sample. In addition, after peeling off the specific layer of the stretched film, it is possible to slice the one which is heat-shrinked and returned to the parison state.

【0038】<融点>JIS−K7121に準拠し、測
定装置はパーキンエルマー社製DSC−7を使用した。
なお、融点は融解ピークの中で最も高いピークの温度で
示した。 <密度>JIS−K7112のD法に準拠し、柴山科学
器械製作所製密度勾配管法比重測定装置を使用した。比
重液にはイソプロピルアルコール/水の系を用いた。
<Melting point> According to JIS-K7121, a measuring device used was DSC-7 manufactured by Perkin Elmer.
The melting point is indicated by the temperature of the highest peak among the melting peaks. <Density> According to the D method of JIS-K7112, a density gradient tube method specific gravity measuring device manufactured by Shibayama Scientific Instruments Co., Ltd. was used. An isopropyl alcohol / water system was used as the specific gravity liquid.

【0039】<MI(メルトインデックス)>ASTM
D1238に準じて測定した。 <重ね合せシール可能温度幅>折り幅400mm、長さ
650mmのそれぞれの筒状バッグ2枚に、牛ロース
(幅約250mm、長さ約300mm、厚み約150m
m)を入れて、各々のバッグ端部の約10cmが重なり
合うようにして、2袋同時に真空包装機にセットする。
ついで減圧室を密閉状態にし、真空引きの後、所定の温
度条件でヒートシールを行って肉塊を真空包装する。そ
して、真空包装機から2袋同時に取り出し、75℃の温
湯に約4秒間ディッピングして熱収縮処理して後、5℃
の冷水に漬けて冷却する。ヒートシール温度条件を70
℃から20℃刻みで上げてゆき、バッグの内面部のシー
ルをシールチェッカー(エージレスRシールチェッカー
(三菱ガス化学(株)製))を用いてピンホールの有無
をチェックし、ピンホールがなくなり内面部のシールが
完全に行われるようになる温度をT1とする。また、冷
水に漬けたときに2つの袋同士が、熱融着して離れなく
なる温度をT2とする。(T2−T1)を重ね合せシール
温度幅とした。
<MI (melt index)> ASTM
It measured according to D1238. <Overlap sealable temperature range> Beef loin (width approx. 250 mm, length approx. 300 mm, thickness approx. 150 m) is put into two tubular bags each having a folding width of 400 mm and a length of 650 mm.
m) is put in, and about 10 cm of each bag end is overlapped, and two bags are simultaneously set in a vacuum packaging machine.
Then, the decompression chamber is hermetically closed, and after vacuuming, heat sealing is performed under a predetermined temperature condition to vacuum-pack the meat chunk. Then, take out two bags from the vacuum packaging machine at the same time, dip them in hot water at 75 ° C for about 4 seconds to perform heat shrinkage treatment, and then at 5 ° C.
Soak in cold water to cool. Heat seal temperature condition 70
Raise the temperature from ℃ to 20 ℃ in increments, and check the seal on the inner surface of the bag with a seal checker (Ageless R seal checker (manufactured by Mitsubishi Gas Chemical Co., Inc.)) for the presence of pinholes. Let T 1 be the temperature at which the part is completely sealed. Further, the temperature at which the two bags do not separate due to heat fusion when immersed in cold water is T 2 . The (T 2 -T 1) was superimposed sealing temperature range.

【0040】なお、真空包装はインパルスシール式の古
川製作所製FVM−WM型機を用いてシール時間2秒、
冷却時間2秒の条件で行い、シール温度は電圧を変えて
変更した。シール温度の測定は、サーモラベル(温度測
定用ステッカー、アイピー技研株式会社製)をシールバ
ーに貼り付けて行った。 記号 水準値及び評価 ◎ :重ね合せシール可能温度幅が60℃以上のもの、重ね合せシール性に非 常に優れる。
For vacuum packaging, an impulse-sealing type FVM-WM machine manufactured by Furukawa Seisakusho Co., Ltd. was used for sealing for 2 seconds.
The cooling time was 2 seconds, and the sealing temperature was changed by changing the voltage. The seal temperature was measured by sticking a thermo label (a sticker for temperature measurement, manufactured by IP Giken Co., Ltd.) on the seal bar. Symbol Level value and evaluation ⊚: The temperature range in which the overlap sealing is possible is 60 ° C or more, and the superposition sealing property is extremely excellent.

【0041】 ○ :重ね合せシール可能温度幅が40℃以上60℃未満のもの、重ね合せシ ール性が優れる。 △ :重ね合せシール可能温度幅が20℃以上40℃未満のもの、重ね合せシ ール性に劣る。 × :重ね合せシール可能温度幅が20℃未満のもの、重ね合せシールが不可 能。◯: A temperature range in which superposition sealing is possible is 40 ° C. or more and less than 60 ° C., and the superposition sealing property is excellent. Δ: The temperature range in which the overlap sealing is possible is 20 ° C. or more and less than 40 ° C., and the overlay sealing property is poor. ×: The temperature range that can be overlap-sealed is less than 20 ° C, and the overlap-sealing is impossible.

【0042】<低温熱収縮性>縦及び横10cmの正方
形に切断したフィルムを75℃の熱水中に5秒間浸漬
し、弛緩状態で収縮させ、縦及び横の元の長さに対する
収縮率を平均して収縮率とする。なお、測定は成膜後1
5℃にて1週間保管したフィルムを用いて行った。
<Low-Temperature Heat Shrinkability> A film cut into squares of 10 cm in length and width is immersed in hot water at 75 ° C. for 5 seconds to shrink in a relaxed state, and the shrinkage ratio with respect to the original length in the length and width directions. The shrinkage rate is averaged. In addition, the measurement is 1 after the film formation.
It carried out using the film stored at 5 degreeC for 1 week.

【0043】 記号 水準値及び評価 ◎ :収縮率が33%以上、低温熱収縮性が非常に優れる。 ○ :収縮率が28%以上33%未満、低温熱収縮性が優れる。 △ :収縮率が23%以上28%未満、低温熱収縮性が劣る。 × :収縮率が23%未満、低温熱収縮性が非常に劣る。Symbol Level value and evaluation ⊚: Shrinkage rate is 33% or more, and low temperature heat shrinkability is very excellent. ◯: Shrinkage rate is 28% or more and less than 33%, and low temperature heat shrinkability is excellent. Δ: Shrinkage is 23% or more and less than 28%, and low-temperature heat shrinkability is poor. X: Shrinkage rate is less than 23%, and low temperature heat shrinkability is very poor.

【0044】<内面耐油性>成膜されたシームレスの筒
状フィルムの片端を最高強度が出る条件でヒートシール
を行い、ヒートシール線に沿って切断しバッグを製作し
た。バッグの底シール部に牛脂を塗布後、牛生肉を底シ
ール部に当たるまで押し込み真空包装を行った。この包
装物20個を90℃の熱水シャワーを下記に定められた
時間通過させ、底シール部の破壊の有無を調べて内面耐
油性を評価した。破壊個数が1個以内なら良好とした。
<Inner surface oil resistance> One end of the film-formed seamless tubular film was heat-sealed under the condition that the maximum strength was obtained and cut along the heat-sealing line to manufacture a bag. After applying beef tallow to the bottom seal portion of the bag, the beef raw meat was pushed in until it hit the bottom seal portion, and vacuum packaging was performed. Twenty of these packages were passed through a hot water shower at 90 ° C. for the time specified below, and the presence or absence of breakage of the bottom seal portion was examined to evaluate the oil resistance on the inner surface. If the number of fractured pieces is 1 or less, it is considered good.

【0045】 記号 水準値及び評価 ◎ :12秒後良好、内面耐油性が非常に優れる。 ○ :8秒後良好、内面耐油性が優れる。 △ :4秒後良好、内面耐油性が劣る。 × :4秒後でも不良、内面耐油性が非常に劣る。Symbol Level value and evaluation ⊚: Good after 12 seconds, very good oil resistance on the inner surface. ◯: Good after 8 seconds, excellent oil resistance on the inner surface. Δ: Good after 4 seconds, inferior internal oil resistance. X: Poor even after 4 seconds and very poor oil resistance on the inner surface.

【0046】<外面ブロッキング性>400mm幅の積
層フィルムを、巻きテンション1.0Kgで3インチの
塩化ビニル製ボビンに500m巻き取った。巻き取った
フィルムを40℃にて1週間保管後に、フィルムを繰り
出してその感触で評価した。 記号 水準値及び評価 ◎ :容易に繰り出せる、外面ブロッキング性に非常に優れる。
<Outer surface blocking property> A laminated film having a width of 400 mm was wound around a 3-inch vinyl chloride bobbin for 500 m with a winding tension of 1.0 kg. After the wound film was stored at 40 ° C. for 1 week, the film was unwound and evaluated by its feeling. Symbol Level value and evaluation ◎: Easy to feed, excellent in external blocking property.

【0047】 ○ :多少抵抗はあるが実用上問題のないレベル、外面ブロッキング性に優れ る。 △ :ブロッキングして繰り出すのが容易でなく実用上問題のあるもの、外面 ブロッキング性に劣る。 × :ブロッキングして繰り出せないもの、外面ブロッキング性に非常に劣る 。A: There is some resistance, but there is no problem in practical use, and the outer surface blocking property is excellent. (Triangle | delta): It is easy to block and pay out, and there is a problem in practical use, and the outer surface is inferior in blocking property. X: Blocked and unable to be drawn out, very poor in external surface blocking property.

【0048】<バッグ開口性>400mm幅の積層フィ
ルムを、巻きテンション1.0Kgで3インチの塩化ビ
ニル製ボビンに500m巻き取った。巻き取ったフィル
ムを28℃にて1週間保管後に、シームレスの筒状フィ
ルムの片端をヒートシールを行い、ヒートシール線に沿
って切断し長さ800mmのバッグを製作した。製作し
たバッグのシールされていない方の口を手で開き、その
感触で評価した。
<Bag opening property> A laminated film having a width of 400 mm was wound around a 3-inch vinyl chloride bobbin for 500 m with a winding tension of 1.0 kg. After the wound film was stored at 28 ° C. for 1 week, one end of a seamless tubular film was heat-sealed and cut along a heat-sealing line to manufacture a bag having a length of 800 mm. The unsealed mouth of the manufactured bag was opened by hand, and the feeling was evaluated.

【0049】 記号 水準値及び評価 ◎ :手で簡単に開口できる。バッグ開口性に非常に優れる。 ○ :多少抵抗はあるが実用上問題のないレベル、バッグ開口性に優れる。 △ :簡単に開口できず実用上問題のあるもの。バッグ開口性に劣る。 × :開口するのが非常に困難なもの。バッグ開口性に非常に劣る。Symbol Level Value and Evaluation ◎: Can be easily opened by hand. Very good bag opening. A: Excellent resistance to bag opening, with some resistance but no problem in practical use. Δ: Those that could not be opened easily and had a practical problem. Poor bag opening. X: It is very difficult to open. Very poor bag openability.

【0050】 <総合評価> 記号 水準値及び評価 ◎ :従来の基本特性を維持し、バッグ同士の重ね合せシールの可能な熱収 縮性筒状フィルムとして非常に優れる。 ○ :従来の基本特性を維持し、バッグ同士の重ね合せシールの可能な熱収縮 性筒状フィルムとして優れる。<Comprehensive Evaluation> Symbol Level Value and Evaluation ⊚: Excellent as a heat-shrinkable tubular film that maintains the conventional basic characteristics and can be overlaid and sealed between bags. ◯: Excellent as a heat-shrinkable tubular film that retains the conventional basic properties and can be overlaid and sealed between bags.

【0051】 △ :従来の基本特性を維持し、バッグ同士の重ね合せシールの可能な熱収縮 性筒状フィルムとしては劣る。 × :従来の基本特性を維持し、バッグ同士の重ね合せシールの可能な熱収縮 性筒状フィルムとしては非常に劣る。 つぎに、本実施例、比較例で用いた重合体を示す。 ・VL1:エチレンーオクテン−1共重合体(密度0.
905g/cm3、融点123℃、MI=0.8g/1
0分、ダウケミカル社製アテイン4203相当品) ・VL2:エチレンーオクテン−1共重合体(密度0.
912g/cm3、融点125℃、MI=3.3g/1
0分、ダウケミカル社製アテイン4202相当品) ・VL3:エチレンーブテン−1共重合体(密度0.8
90g/cm3、融点113℃、MI=0.8g/10
分、住友化学製エクセレンEUL130相当品) ・VL4:エチレンーブテン−1共重合体(密度0.9
00g/cm3、融点115℃、MI=2.0g/10
分、住友化学製エクセレンVL200相当品) ・LL1:エチレンー4−メチルペンテン−1共重合体
(密度0.915g/cm3、融点116℃、MI=
2.3g/10分、三井石油化学製、ウルトゼックス1
520L相当品) ・LL2:エチレンーヘキセン−1共重合体(密度0.
912g/cm3、融点118℃、住友化学製スミカセ
ンα−FZ102相当品) ・LL3:エチレンーヘキセン−1共重合体(密度0.
918g/cm3、融点120℃、住友化学製スミカセ
ンFZ104相当品) ・LL4:エチレンーオクテン−1共重合体(密度0.
923g/cm3、融点122℃、MI=4.0、ダウ
ケミカル社製ダウレックス5004相当品) ・SC1:エチレンーオクテン−1共重合体(密度0.
895g/cm3、融点94℃、MI=1.6g/10
分、ダウケミカル社製アフィニティーPF1140相当
品) ・SC2:エチレンーオクテン−1共重合体(密度0.
902g/cm3、融点100℃、MI=1.0g/1
0分、ダウケミカル社製アフィニティーPL1880相
当品) ・SC3:エチレンーオクテン−1共重合体(密度0.
910g/cm3、融点103℃、MI=1.0g/1
0分、ダウケミカル社製アフィニティーPL1845相
当品) ・SC4:エチレンーオクテン−1共重合体(密度0.
915g/cm3、融点108℃、MI=1.0g/1
0分、ダウケミカル社製アフィニティーFM1570相
当品) ・SC5:エチレンーブテン−1共重合体(密度0.9
00g/cm3、融点86℃、MI=3.5g/10
分、エクソン社製EXACT3027相当品) ・SC6:エチレンーブテン−1共重合体(密度0.8
85g/cm3、融点66℃、MI=2.2g/10
分、エクソン社製EXACT4021相当品) ・EVA1:エチレンー酢酸ビニル共重合体(密度0.
927g/cm3、酢酸ビニル含量10重量%、融点9
7℃、MI=3.0g/10分、東ソー社製ウルトラセ
ンUE540相当品) ・EVA2:エチレンー酢酸ビニル共重合体(密度0.
936g/cm3、酢酸ビニル含量15重量%、融点9
1℃、MI=1.5g/10分、東ソー社製ウルトラセ
ンUE630相当品) ・EVA3:エチレンー酢酸ビニル共重合体(密度0.
941g/cm3、酢酸ビニル含量20重量%、融点8
6℃、MI=1.5g/10分、東ソー社製ウルトラセ
ンUE631相当品) ・PVD1:塩化ビニリデンー塩化ビニル共重合体(塩
化ビニル含量17重量%、分子量9万、旭化成工業
(株)製) ・PVD2:塩化ビニリデンー塩化ビニル共重合体(塩
化ビニル含量20重量%、分子量11万、旭化成工業
(株)製) ・PVD3:塩化ビニリデンーメチルアクリレート共重
合体(メチルアクリレート含量8重量%、分子量9万、
旭化成工業(株)製)
Δ: It is inferior as a heat-shrinkable tubular film that maintains the conventional basic properties and can be overlaid and sealed between bags. X: It is very inferior as a heat-shrinkable tubular film that maintains the conventional basic properties and can be overlap-sealed between bags. Next, the polymers used in this example and comparative examples are shown. VL1: ethylene-octene-1 copolymer (density 0.
905 g / cm 3 , melting point 123 ° C., MI = 0.8 g / 1
0 minutes, equivalent to Dow Chemical's Athein 4203) VL2: ethylene-octene-1 copolymer (density: 0.
912 g / cm 3 , melting point 125 ° C., MI = 3.3 g / 1
0 minutes, equivalent to Dow Chemical's Athein 4202) VL3: ethylene-butene-1 copolymer (density 0.8)
90 g / cm 3 , melting point 113 ° C., MI = 0.8 g / 10
Min, Sumitomo Chemical's Excellen EUL130 equivalent product) VL4: ethylene-butene-1 copolymer (density 0.9)
00 g / cm 3 , melting point 115 ° C., MI = 2.0 g / 10
Min, Sumitomo Chemical Exelen VL200 equivalent product) LL1: ethylene-4-methylpentene-1 copolymer (density 0.915 g / cm 3 , melting point 116 ° C., MI =
2.3 g / 10 minutes, Mitsui Petrochemical, Ultzex 1
520L equivalent product) LL2: ethylene-hexene-1 copolymer (density: 0.
912 g / cm 3 , melting point 118 ° C., Sumikasen α-FZ102 equivalent manufactured by Sumitomo Chemical Co., Ltd. ・ LL3: ethylene-hexene-1 copolymer (density: 0.
918 g / cm 3 , melting point 120 ° C., Sumikasen FZ104 equivalent product made by Sumitomo Chemical Co., Ltd. ・ LL4: ethylene-octene-1 copolymer (density: 0.
923 g / cm 3 , melting point 122 ° C., MI = 4.0, Dow Rex 5004 equivalent product manufactured by Dow Chemical Co.) SC1: Ethylene-octene-1 copolymer (density: 0.
895 g / cm 3 , melting point 94 ° C., MI = 1.6 g / 10
Min., Affinity PF1140 equivalent product manufactured by Dow Chemical Co., Ltd.)-SC2: ethylene-octene-1 copolymer (density: 0.
902 g / cm 3 , melting point 100 ° C., MI = 1.0 g / 1
0 minutes, Dow Chemical Co. Affinity PL1880 or equivalent) SC3: Ethylene-octene-1 copolymer (density: 0.
910 g / cm 3 , melting point 103 ° C., MI = 1.0 g / 1
0 minutes, Affinity PL1845 equivalent product manufactured by Dow Chemical Co., Ltd.) SC4: Ethylene-octene-1 copolymer (density: 0.
915 g / cm 3 , melting point 108 ° C., MI = 1.0 g / 1
0 minutes, Affinity FM1570 equivalent product manufactured by Dow Chemical Co.) SC5: ethylene-butene-1 copolymer (density 0.9)
00 g / cm 3 , melting point 86 ° C., MI = 3.5 g / 10
Min, Exxon EXACT3027 equivalent product) SC6: ethylene-butene-1 copolymer (density 0.8
85 g / cm 3 , melting point 66 ° C., MI = 2.2 g / 10
Min., EXACT4021 equivalent manufactured by Exxon) -EVA1: ethylene-vinyl acetate copolymer (density 0.
927 g / cm 3 , vinyl acetate content 10% by weight, melting point 9
7 ° C., MI = 3.0 g / 10 min, Tosoh Corporation Ultrasen UE540 equivalent product) EVA2: ethylene-vinyl acetate copolymer (density: 0.
936 g / cm 3 , vinyl acetate content 15% by weight, melting point 9
1 ° C., MI = 1.5 g / 10 minutes, Tosoh Corp. Ultrasen UE630 equivalent product) EVA3: ethylene-vinyl acetate copolymer (density 0.
941 g / cm 3 , vinyl acetate content 20% by weight, melting point 8
6 ° C., MI = 1.5 g / 10 min, Tosoh Corporation Ultrasen UE631 equivalent product) PVD1: Vinylidene chloride-vinyl chloride copolymer (vinyl chloride content 17% by weight, molecular weight 90,000, manufactured by Asahi Kasei Kogyo Co., Ltd.) -PVD2: vinylidene chloride-vinyl chloride copolymer (vinyl chloride content 20% by weight, molecular weight 110,000, manufactured by Asahi Chemical Industry Co., Ltd.)-PVD3: vinylidene chloride-methyl acrylate copolymer (methyl acrylate content 8% by weight, molecular weight 9) Ten thousand
Asahi Kasei Kogyo Co., Ltd.)

【0052】[0052]

【実施例1】4台の押出機を使用して、S1層にVL1
からなる層を、T1層とT2層にEVA2からなる層
を、C層にPVD1からなる層を、S2層にSC1から
なる層を用いて、各層をS1/T1/C/T2/S2
(=10%/20%/10%/40%/20%)の5層
構造にしてサーキュラー多層ダイから押出し、押し出し
た積層体を20℃の冷水で急冷して折り畳み、折り幅1
00mm、厚み660μmのパリソンを得た。このパリ
ソンにENERGYSCIENCE INC.製のエレ
クトロカーテン<登録商標>(非走査型)を用いて、加
速電圧175KV、照射線量12メガラッドの条件で電
子線照射を行った。架橋されたパリソンに空気を注入
し、約80℃に加熱し、縦約3倍、横約4倍にインフレ
ーション2軸延伸して折り幅400mm、平均厚み55
μmの筒状フィルム500mを3インチの塩化ビニル製
ボビンに巻き取り、500m巻きのフィルムを計3巻を
得た。
Example 1 VL1 was applied to the S1 layer using four extruders.
Each layer is composed of S1 / T1 / C / T2 / S2 by using a layer made of, a T1 layer and a T2 layer made of EVA2, a C layer made of PVD1 and an S2 layer made of SC1.
(= 10% / 20% / 10% / 40% / 20%) to form a five-layer structure, extruded from a circular multilayer die, and extruding the extruded laminate by rapidly cooling it with cold water at 20 ° C., folding width 1
A parison with a thickness of 00 mm and a thickness of 660 μm was obtained. In this parison, ENERGYSCIENCE INC. Electron beam irradiation was performed under the conditions of an accelerating voltage of 175 KV and an irradiation dose of 12 megarads using a manufactured electro curtain <registered trademark> (non-scanning type). Air is injected into the cross-linked parison and heated to about 80 ° C, and inflation is biaxially stretched about 3 times in the longitudinal direction and about 4 times in the lateral direction to obtain a folding width of 400 mm and an average thickness of 55
A 500 μm tubular film of 500 μm was wound around a 3-inch vinyl chloride bobbin to obtain a total of 3 500 m-rolled films.

【0053】また、得られた筒状フィルムの片端を最高
強度が出る条件でヒートシールを行い、ヒートシール線
に沿って切断し、折り幅400mm、長さ650mmの
バッグを製作した(フィルムNo.1)。
Further, one end of the obtained tubular film was heat-sealed under the condition that the maximum strength was obtained and cut along the heat-sealing line to produce a bag having a folding width of 400 mm and a length of 650 mm (Film No. 1).

【0054】[0054]

【比較例1】実施例1において、S1層にSC1からな
る層を用いたことの他は、実施例1と同じことを繰り返
して、折り幅400mm、平均厚み55μmの筒状フィ
ルム500mを計3巻を得た。また、折り幅400m
m、長さ650mmのバッグを製作した(フィルムN
o.2)。
Comparative Example 1 The same procedure as in Example 1 was repeated except that the layer made of SC1 was used as the S1 layer in Example 1, and a total of 3 cylindrical films 500m each having a folding width of 400 mm and an average thickness of 55 μm were prepared. I got a roll. Also, folding width 400m
A bag having a length of m and a length of 650 mm was manufactured (Film N
o. 2).

【0055】[0055]

【比較例2】実施例1において、S2層にVL1からな
る層を用いたことの他は、実施例1と同じことを繰り返
して、折り幅400mm、平均厚み55μmの筒状フィ
ルム500mを計3巻を得た。また、得られた筒状フィ
ルムの片端を最高強度が出る条件でヒートシールを行
い、ヒートシール線に沿って切断し、折り幅400m
m、長さ650mmのバッグを製作した(フィルムN
o.3)。
[Comparative Example 2] The same procedure as in Example 1 was repeated except that a layer made of VL1 was used as the S2 layer in Example 1, and a total of 3 cylindrical films 500m each having a folding width of 400 mm and an average thickness of 55 μm were prepared. I got a roll. In addition, one end of the obtained tubular film is heat-sealed under the condition that the maximum strength is obtained, cut along the heat-sealing line, and the folding width is 400 m.
A bag having a length of m and a length of 650 mm was manufactured (Film N
o. 3).

【0056】以上の実施例1、比較例1、2の評価結果
を表1にまとめて記す。なお、表1中には、フィルムの
構成とS1層とS2層に用いたエチレン−α・オレフィ
ン線状共重合体の物性、ならびにS1層、T1層のゲル
分率測定結果を合わせて示した。なお、ゲル分率はそれ
ぞれ、 S1層とT1層の全体、 S1層の最外部
(C層から離れた側の表層部をミクロトームを用い20
μmの厚みでスライスし試料とした)の部分のゲル分率
(X)、 T1層の最内部(C層側の表層部をミクロ
トームを用い20μmの厚みでスライスし試料とした)
の部分のゲル分率(Y)について測定し、(X)と
(Y)からゲル分率勾配(Y/X)を算出したものを示
した。
The evaluation results of Example 1 and Comparative Examples 1 and 2 described above are summarized in Table 1. In addition, in Table 1, the structure of the film, the physical properties of the ethylene-α / olefin linear copolymer used in the S1 layer and the S2 layer, and the gel fraction measurement results of the S1 layer and the T1 layer are also shown. . The gel fraction was 20% for the entire S1 layer and T1 layer, and 20% for the outermost portion of the S1 layer (the surface layer portion on the side remote from the C layer was measured using a microtome).
gel fraction (X) of the portion (thickness of μm was used as a sample), and the innermost portion of the T1 layer (the surface layer portion on the C layer side was sliced with a microtome to a thickness of 20 μm to obtain a sample)
The gel fraction (Y) of the portion (1) was measured, and the gel fraction gradient (Y / X) was calculated from (X) and (Y).

【0057】表1中のフィルムNo.1〜No.3のフ
ィルムの重ね合せシール可能温度幅の結果を示したもの
が図1で、本発明のフィルムと従来技術のフィルムとの
相違点を図示したものである。重ね合せシール可能温度
幅が、本発明のフィルム(フィルムNo.1)は約60
℃てあるのに対して、従来技術のフィルム(No.2、
No.3)は、重ね合せシール可能温度幅が20℃であ
る。そして、本発明のフィルムからなるバッグは、一度
に多数のバッグを重なり部分が有るような緊密な状態で
真空包装機にセットして、効率的に処理することができ
るものであることがわかった。一方、従来技術のフィル
ムは、重ね合せシール可能温度幅が20℃と狭いので、
真空包装機の細長いシールバーの場所による温度ムラ
や、バッグの重なり合った部分は伝熱の遅れが生じたり
するものであるために、一度に多数のバッグを真空包装
処理しようとすれば、バッグの重なり合った部分が熱融
着して離れなくなったり、あるいは熱融着を防ごうとす
れば、内面のシールが不完全になったりして、不良率が
多く効率的な真空包装処理に適さないものであることが
わかる。
Film No. in Table 1 1 to No. FIG. 1 shows the result of the temperature range in which the film of Example 3 can be overlapped and sealed, and illustrates the difference between the film of the present invention and the film of the prior art. The temperature range that can be overlaid and sealed is about 60 for the film of the present invention (film No. 1)
In contrast to the conventional film (No. 2,
No. In 3), the temperature range in which superposition sealing is possible is 20 ° C. It was found that the bag made of the film of the present invention can be efficiently processed by setting a large number of bags at a time in a vacuum packaging machine in such a tight state that there are overlapping portions. . On the other hand, the film of the prior art has a narrow temperature range capable of being overlapped and sealed at 20 ° C.
Since temperature unevenness due to the location of the long and narrow seal bar of the vacuum packaging machine and the overlapping parts of the bag may cause delay in heat transfer, if you try to vacuum-pack many bags at once, The overlapped part is heat-sealed and cannot be separated, or if the heat-sealing is to be prevented, the inner surface will be incompletely sealed, and the defective rate is high and it is not suitable for efficient vacuum packaging processing. It can be seen that it is.

【0058】[0058]

【表1】 [Table 1]

【0059】[0059]

【実施例2】実施例1において、T1層とT2層にEV
A1からなる層を、C層にPVD2からなる層を用い、
電子線照射条件を表2に示すように、7メガラッド、1
0メガラッド、12メガラッド、15メガラッドと変更
したことの他は、実施例1と同じことを繰り返して、折
り幅400mm、平均厚み55μmの筒状フィルム50
0m巻をそれぞれ3巻得た。ただし、延伸温度は、各フ
ィルムにおいて折り幅400mm,平均厚み55μmに
なるように微調整をして成膜した。
[Embodiment 2] In Embodiment 1, an EV is applied to the T1 layer and the T2 layer.
Using a layer made of A1 and a layer made of PVD2 for the C layer,
The electron beam irradiation conditions are as shown in Table 2, 7 megarads, 1
Cylindrical film 50 having a folding width of 400 mm and an average thickness of 55 μm by repeating the same procedure as in Example 1 except that 0 megarad, 12 megarad, and 15 megarad were changed.
Three rolls of 0 m each were obtained. However, the stretching temperature was adjusted so that the folding width of each film was 400 mm and the average thickness was 55 μm.

【0060】また、得られた筒状フィルムの片端を最高
強度が出る条件でヒートシールを行い、ヒートシール線
に沿って切断し、折り幅400mm、長さ650mmの
バッグを製作した(フィルムNo.4〜No.7)。
Further, one end of the obtained tubular film was heat-sealed under the condition that the maximum strength was obtained and cut along the heat-sealing line to produce a bag having a folding width of 400 mm and a length of 650 mm (Film No. 4 to No. 7).

【0061】[0061]

【比較例3】実施例2において、電子線の照射量を3メ
ガラッド、17メガラッドと変更したことの他は、実施
例2と同じことを繰り返して、折り幅400mm、平均
厚み55μmの筒状フィルム500m巻をそれぞれ3巻
得た。ただし、延伸温度は、各フィルムにおいて折り幅
400mm,平均厚み55μmになるように微調整をし
て成膜した。
Comparative Example 3 A tubular film having a folding width of 400 mm and an average thickness of 55 μm was repeated by repeating the same procedure as in Example 2 except that the electron beam irradiation amount was changed to 3 megarads and 17 megarads. Three rolls of 500 m each were obtained. However, the stretching temperature was adjusted so that the folding width of each film was 400 mm and the average thickness was 55 μm.

【0062】また、得られた筒状フィルムの片端を最高
強度が出る条件でヒートシールを行い、ヒートシール線
に沿って切断し、折り幅400mm、長さ650mmの
バッグを製作した(フィルムNo.8、No.9)。以
上の実施例2、比較例3の評価結果を表2にまとめて記
す。なお、表2中には、電子線照射条件とS1層、T1
層のゲル分率測定結果を合わせて示した。
Further, one end of the obtained tubular film was heat-sealed under the condition that the maximum strength was obtained and cut along the heat-sealing line to produce a bag having a folding width of 400 mm and a length of 650 mm (Film No. 8, No. 9). The evaluation results of Example 2 and Comparative Example 3 described above are summarized in Table 2. In Table 2, electron beam irradiation conditions, S1 layer, T1
The gel fraction measurement results of the layers are also shown.

【0063】なお、フィルムNo.4〜No.9のフィ
ルムのS2層のゲル分率の測定値は、いずれも0.5重
量%未満であり、実質上、未架橋であった。表2の結果
によれば、S1層の最外表面部のゲル分率(X)として
は、35重量%から70重量%が好ましいことがわか
る。S1層の最外表面部のゲル分率(X)が35重量%
より小さいと重ね合せシール可能温度幅が狭くなり、効
率的な真空包装処理に適さなくなることがわかる(フィ
ルムNo.8)。
Film No. 4 to No. The measured values of the gel fraction of the S2 layer of the film No. 9 were all less than 0.5% by weight, and were substantially uncrosslinked. The results in Table 2 show that the gel fraction (X) of the outermost surface of the S1 layer is preferably 35% by weight to 70% by weight. The gel fraction (X) of the outermost surface of the S1 layer is 35% by weight
It can be seen that if it is smaller, the temperature range in which superposition sealing is possible becomes narrower, which makes it unsuitable for efficient vacuum packaging processing (Film No. 8).

【0064】また、S1層の最外表面部のゲル分率
(X)が70%を超える条件では、低温熱収縮性が劣っ
たものとなり、冷蔵生肉等の食品を内容物にし、熱収縮
させてタイトに包装する包装材として不満足なものとな
ってしまうことがわかる。この理由は、部分的にゲル分
率が高くなりすぎて、延伸成膜性が劣ったものとなり、
延伸温度を高めに設定しなければ、所定の延伸倍率のフ
ィルムを得られないために、低温熱収縮率が低い値とな
ったと思われる(フィルムNo.9)。
Under the condition that the gel fraction (X) of the outermost surface of the S1 layer exceeds 70%, the low temperature heat shrinkage is inferior, and food such as chilled raw meat is used as a content and heat shrinked. It can be seen that it becomes unsatisfactory as a packaging material for tight packaging. The reason for this is that the gel fraction becomes too high in some areas, resulting in poor stretch film formability,
Unless the stretching temperature is set higher, a film having a predetermined stretching ratio cannot be obtained, so that the low temperature heat shrinkage ratio is considered to have a low value (Film No. 9).

【0065】したがって、本発明のフィルムとして、ゲ
ル分率の範囲は、S1層の最外表面部のゲル分率(X)
は35重量%〜70重量%であることが必要であり、T
1層の最内部(C層側)のゲル分率(Y)の範囲は10
重量%〜40重量%であり、かつゲル分率の勾配(Y/
X)として0.6以下であることがわかる。また、S1
層、T1層全体のゲル分率としては、20重量%から6
5重量%の範囲になっていることがわかる(フィルムN
o.4〜No.7)。
Therefore, in the film of the present invention, the range of the gel fraction is the gel fraction (X) of the outermost surface of the S1 layer.
Must be 35% to 70% by weight, and T
The range of the gel fraction (Y) of the innermost part (C layer side) of one layer is 10
% To 40% by weight and the gradient of gel fraction (Y /
It can be seen that X) is 0.6 or less. Also, S1
The gel fraction of the entire layer, T1 layer, is from 20% by weight to 6%.
It can be seen that the range is 5% by weight (Film N
o. 4 to No. 7).

【0066】[0066]

【表2】 [Table 2]

【0067】[0067]

【実施例3】4台の押出機を使用して、S1層、T1
層、C層、T2層、S2層に表3に示す各樹脂層を用い
て、各層をS1/T1/C/T2/S2(=6.7%/
33.3%/13.3%/26.7%/20%)の5層
構造にしてサーキュラー多層ダイから押出し、押し出し
た積層体を20℃の冷水で急冷して折り畳み、折り幅1
00mm、厚み720μmのパリソンを得た。このパリ
ソンにENERGYSCIENCE INC.製のエレ
クトロカーテン<登録商標>(非走査型)を用いて、加
速電圧200KV、照射線量10メガラッドの条件で電
子線照射を行った。架橋されたパリソンに空気を注入
し、約80℃に加熱し、縦約3倍、横約4倍にインフレ
ーション2軸延伸して折り幅400mm、平均厚み60
μmの筒状フィルム500mを3インチの塩化ビニル製
ボビンに巻き取り、500m巻きのフィルムを計3巻を
得た。ただし、延伸温度は各フィルムにおいて、折り幅
400mm、厚み60μmになるように微調整をして成
膜した。
Example 3 S1 layer, T1 using 4 extruders
Each resin layer shown in Table 3 is used for the layer, the C layer, the T2 layer, and the S2 layer, and each layer is S1 / T1 / C / T2 / S2 (= 6.7% /
(33.3% / 13.3% / 26.7% / 20%) having a five-layer structure, extruded from a circular multi-layer die, and extruding the laminated body by rapidly cooling it with cold water at 20 ° C., folding width 1
A parison with a thickness of 00 mm and a thickness of 720 μm was obtained. In this parison, ENERGYSCIENCE INC. Electron beam irradiation was performed under the conditions of an accelerating voltage of 200 KV and an irradiation dose of 10 megarads using a manufactured Electro Curtain <registered trademark> (non-scanning type). Air is injected into the cross-linked parison and heated to about 80 ° C, and inflation is biaxially stretched about 3 times in the longitudinal direction and about 4 times in the lateral direction to obtain a folding width of 400 mm and an average thickness of 60
A 500 μm tubular film of 500 μm was wound around a 3-inch vinyl chloride bobbin to obtain a total of 3 500 m-rolled films. However, the stretching temperature of each film was finely adjusted so that the folding width was 400 mm and the thickness was 60 μm.

【0068】また、得られた筒状フィルムの片端を最高
強度が出る条件でヒートシールを行い、ヒートシール線
に沿って切断し、折り幅400mm、長さ650mmの
バッグを製作した(フィルムNo.10〜13)。
Further, one end of the obtained tubular film was heat-sealed under the condition that the maximum strength was obtained and cut along the heat-sealing line to produce a bag having a folding width of 400 mm and a length of 650 mm (Film No. 10-13).

【0069】[0069]

【比較例4】S1層、T1層、C層、T2層、S2層に
表3に示す各樹脂層を用いたことの他は、実施例3と同
じことを繰り返して、折り幅400mm、平均厚み60
μmの筒状フィルム500m巻をそれぞれ3巻を得た。
また、得られた筒状フィルムの片端を最高強度が出る条
件でヒートシールを行い、ヒートシール線に沿って切断
し、折り幅400mm、長さ650mmのバッグを製作
した(フィルムNo.14〜16)。
COMPARATIVE EXAMPLE 4 The same procedure as in Example 3 was repeated except that the resin layers shown in Table 3 were used for the S1, T1, C, T2 and S2 layers. Thickness 60
Three rolls each of 500 m roll of a μm tubular film were obtained.
In addition, one end of the obtained tubular film was heat-sealed under the condition that the maximum strength was obtained and cut along the heat-sealing line to manufacture a bag having a folding width of 400 mm and a length of 650 mm (Film Nos. 14 to 16). ).

【0070】なお、実施例3及び比較例4のS1及びT
1層における厚み方向のゲル分率の分布を調べるため
に、VL4とEVA3の10μmのフィルムを作成し、
所定の厚みになるように緊密に重ね合わせて同一条件で
照射した後、各フィルムのゲル分率を測定分析した結果
を図2に示す。この照射条件では、S1層の最外部のゲ
ル分率(X)は50重量%程度であり、またT1層の最
内部(C層側)のゲル分率(Y)は20重量%であり、
かつゲル分率の勾配(Y/X)として0.6以下である
ことがわかる。VL4のかわりにVL1、VL2、VL
3、LL1、LL3、SC4、の10μmのフィルムを
用いて、上記と同じことを繰り返して、各フィルムのゲ
ル分率を測定分析した。S1層の最外部にあたる外側か
ら20μm分のフィルムのゲル分率の結果を以下に示
す。
Incidentally, S1 and T of Example 3 and Comparative Example 4
In order to investigate the distribution of gel fraction in the thickness direction in one layer, a 10 μm film of VL4 and EVA3 was prepared,
FIG. 2 shows the results of measurement and analysis of the gel fraction of each film after closely overlapping and irradiating under the same conditions so as to have a predetermined thickness. Under this irradiation condition, the outermost gel fraction (X) of the S1 layer is about 50% by weight, and the innermost (C layer side) gel fraction (Y) of the T1 layer is 20% by weight.
Further, it can be seen that the gel fraction gradient (Y / X) is 0.6 or less. VL1, VL2, VL instead of VL4
The same procedure as above was repeated using 3, 10 μm films of LL1, LL3, and SC4, and the gel fraction of each film was measured and analyzed. The results of the gel fraction of the film of 20 μm from the outermost outermost layer of the S1 layer are shown below.

【0071】 VL1:(X)=48重量%、 (Y/X)=0.42 VL2:(X)=46重量%、 (Y/X)=0.43 VL3:(X)=49重量%、 (Y/X)=0.41 LL1:(X)=45重量%、 (Y/X)=0.44 LL3:(X)=43重量%、 (Y/X)=0.47 SC4:(X)=45重量%、 (Y/X)=0.44 また、フィルムNo.10〜フィルムNo.23のフィ
ルムのS2層のゲル分率は全て0.5重量%以下で、実
質的に未架橋であった。
VL1: (X) = 48% by weight, (Y / X) = 0.42 VL2: (X) = 46% by weight, (Y / X) = 0.43 VL3: (X) = 49% by weight , (Y / X) = 0.41 LL1: (X) = 45% by weight, (Y / X) = 0.44 LL3: (X) = 43% by weight, (Y / X) = 0.47 SC4: (X) = 45% by weight, (Y / X) = 0.44. 10 to film No. The gel fractions of the S2 layers of the films of No. 23 were all 0.5% by weight or less and were substantially uncrosslinked.

【0072】以上の実施例3、比較例4の評価結果を表
3にまとめて示す。表3により、まず本発明のS1層
は、密度が0.900g/cm3〜0.915g/cm3
で、融点が115℃〜125℃のエチレン−α・オレフ
ィンの共重合体であることが必要な理由を説明する。す
なわち、S1層の最外表面部が特定のゲル分率をもつた
めフイルムの最外層側が熱融着し難くなる性質、S1層
とS2層の樹脂の融点の差、さらにS2層のエチレン−
α・オレフィンの共重合体が融点の低下分よりもさらに
低温でヒートシールされ易いという性質を持つこと等に
より、相乗効果が最大限に高められ、優れた(バッグ同
士の)重ね合わせシール性を発現しているものである。
また、S1層に融点の高いエチレン−α−オレフィンの
共重合体を用い、S2層との融点差を広くすると、重ね
合せシール可能温度幅が広くなる傾向にある(フィルム
No.11、12とフィルムNo.10、13との比
較)。S1層の融点が高くなると、その際に密度も高く
なる傾向があり、バッグの低温収縮性は若干低下する結
果となる(フィルムNo.12、13とフィルムNo.
10、11の比較)。したがって、真空包装時の効率を
優先する場合と、低温熱収縮性を重視する場合とによっ
て、選ばれるS1層の樹脂を変更して対応することがで
きる。S1層の樹脂の密度が0.915g/cm3を超
えるとバッグの低温熱収縮性が30%に達せず、冷蔵生
肉等の食品を内容物にし、熱収縮させてタイトに包装す
る包装材としては不都合である(フィルムNo.1
4)。また、S1層の密度が0.900g/cm3未満
では、ロール状に巻き取られた状態でフィルム外面のブ
ロッキングが起き不都合である(フィルムNo.1
5)。
Table 3 collectively shows the evaluation results of Example 3 and Comparative Example 4 described above. According to Table 3, first, the S1 layer of the present invention has a density of 0.900 g / cm 3 to 0.915 g / cm 3.
The reason why it is necessary to be an ethylene-α-olefin copolymer having a melting point of 115 ° C to 125 ° C will be explained. That is, since the outermost surface of the S1 layer has a specific gel fraction, it is difficult for the outermost layer of the film to be heat-sealed, the difference in melting point between the resins of the S1 layer and the S2 layer, and the ethylene content of the S2 layer.
The synergistic effect is maximized and the excellent (bag-to-bag) superposition sealing property is achieved by the fact that the α-olefin copolymer has the property of being easily heat-sealed at a lower temperature than the decrease in the melting point. It is expressed.
Further, when an ethylene-α-olefin copolymer having a high melting point is used for the S1 layer and the melting point difference from the S2 layer is widened, the temperature range capable of being overlap-sealed tends to be widened (film Nos. 11 and 12). (Comparison with film Nos. 10 and 13). When the melting point of the S1 layer becomes higher, the density also tends to increase at that time, resulting in a slight decrease in the low temperature shrinkability of the bag (Film Nos. 12 and 13 and Film No. 13).
(Comparison of 10 and 11). Therefore, the resin of the S1 layer to be selected can be changed depending on whether the priority is given to the efficiency at the time of vacuum packaging or the case where the low temperature heat shrinkability is emphasized. If the resin density of the S1 layer exceeds 0.915 g / cm 3 , the low-temperature heat shrinkability of the bag will not reach 30%, and as a packaging material for packaging foods such as chilled raw meat, heat shrinking and tightly packaging. Is inconvenient (Film No. 1
4). Further, if the density of the S1 layer is less than 0.900 g / cm 3 , blocking of the outer surface of the film occurs in the state of being wound into a roll, which is inconvenient (Film No. 1).
5).

【0073】S1層に密度が0.915g/cm3、融
点が108℃のエチレン−α−オレフィンの共重合体を
用いた場合は、S2層との融点差が14℃の場合でも、
重ね合せシール可能温度幅が狭いものであった(フィル
ムNo.16)。この場合、S1層、S2層の両者が、
密度0.895g/cm3〜0.915g/cm3であ
り、かつ融点が94℃〜108℃のエチレン−α−オレ
フィンの共重合体であるために、融点差は14℃あって
も、重ね合せシール可能温度幅としては小さいものにな
ってしまう。このことは、本発明に於いてS1層として
使用する密度が0.900g/cm3〜0.915g/
cm3であり、かつ融点が115℃〜125℃であるエ
チレン−α−オレフィンの共重合体のヒートシール特性
と、本発明に於いてS2層として使用する密度が0.8
95g/cm3〜0.915g/cm3であり、かつ融点
が94℃〜108℃であるエチレン−α−オレフィンの
共重合体のヒートシール特性との差を利用することの大
切さを示している。
When an ethylene-α-olefin copolymer having a density of 0.915 g / cm 3 and a melting point of 108 ° C. is used for the S1 layer, even if the melting point difference from the S2 layer is 14 ° C.,
The temperature range in which overlap sealing was possible was narrow (Film No. 16). In this case, both the S1 layer and the S2 layer are
Is the density 0.895g / cm 3 ~0.915g / cm 3 , and to the melting point is a copolymer of 94 ° C. -108 ° C. ethylene -α- olefin, melting point difference even 14 ° C., overlaid The temperature range that can be fitted and sealed is small. This means that the density used as the S1 layer in the present invention is 0.900 g / cm 3 to 0.915 g /
cm 3 and the melting point of the ethylene-α-olefin copolymer having a melting point of 115 ° C. to 125 ° C., and the density used as the S2 layer in the present invention is 0.8.
95 g / cm 3 was ~0.915g / cm 3, and a melting point indicates the importance of utilizing the difference in the heat sealing characteristics of the copolymer of ethylene -α- olefin is 94 ° C. -108 ° C. There is.

【0074】[0074]

【表3】 [Table 3]

【0075】[0075]

【実施例4】S1層、T1層、C層、T2層、S2層
に、表4に示す各樹脂層を用いたことの他は実施例3と
同じことを繰り返して折り幅400mm、平均厚み60
μmの筒状フィルム500mを3インチの塩化ビニル製
ボビンに巻き取り、500m巻きのフィルムを計3巻を
得た。ただし、延伸温度は各フィルムにおいて、折り幅
400mm、厚み60μmになるように微調整をして成
膜した。
Example 4 The same procedure as in Example 3 was repeated except that the resin layers shown in Table 4 were used for the S1, T1, C, T2 and S2 layers, and the folding width was 400 mm and the average thickness was 400 mm. 60
A 500 μm tubular film of 500 μm was wound around a 3-inch vinyl chloride bobbin to obtain a total of 3 500 m-rolled films. However, the stretching temperature of each film was finely adjusted so that the folding width was 400 mm and the thickness was 60 μm.

【0076】また、得られた筒状フィルムの片端を最高
強度が出る条件でヒートシールを行い、ヒートシール線
に沿って切断し、折り幅400mm、長さ650mmの
バッグを製作した(フィルムNo.17〜19)。
Further, one end of the obtained tubular film was heat-sealed under the condition that the maximum strength was obtained and cut along the heat-sealing line to produce a bag having a folding width of 400 mm and a length of 650 mm (Film No. 17-19).

【0077】[0077]

【比較例5】S1層、T1層、C層、T2層、S2層
に、表4に示す各樹脂層を用いたことの他は、実施例3
と同じことを繰り返して、折り幅400mm、平均厚み
60μmの筒状フィルム500m巻をそれぞれ3巻を得
た。また、得られた筒状フィルムの片端を最高強度が出
る条件でヒートシールを行い、ヒートシール線に沿って
切断し、折り幅400mm、長さ650mmのバッグを
製作した(フィルムNo.20〜24)。
Comparative Example 5 Example 3 was repeated except that the resin layers shown in Table 4 were used for the S1, T1, C, T2 and S2 layers.
By repeating the same procedure as above, three rolls of 500 m each each having a folding width of 400 mm and an average thickness of 60 μm were obtained. Further, one end of the obtained tubular film was heat-sealed under the condition that the maximum strength was obtained, and cut along the heat-sealing line to produce a bag having a folding width of 400 mm and a length of 650 mm (Film Nos. 20 to 24). ).

【0078】フィルムNo.24のS1及びT1層にお
ける厚み方向のゲル分率の分布を調べるために、LL4
の10μmのフィルムを作成し、所定の厚みになるよう
に緊密に重ね合せて同一の条件で照射した後、S1層の
最外部にあたる外側から20μm分のフィルムのゲル分
率を測定し、その結果を以下に示す。 LL2:(X)=44重量%、 (Y/X)=0.45 LL4:(X)=42重量%、 (Y/X)=0.48 以上の実施例4、比較例5の評価結果を表4にまとめて
示す。表4より、本発明のS2層は、密度が0.895
g/cm3〜0.915g/cm3であり、かつ融点が9
4℃〜108℃のエチレン−α・オレフィンの共重合体
であることが必要な理由、およびS1層とS2層の融点
の差が10℃以上の値であることが必要な理由を説明す
る。
Film No. In order to investigate the distribution of the gel fraction in the S1 and T1 layers of 24 in the thickness direction, LL4
Of 10 μm, and after closely superimposing them to a predetermined thickness and irradiating them under the same conditions, the gel fraction of the film of 20 μm from the outermost outermost S1 layer was measured. Is shown below. LL2: (X) = 44% by weight, (Y / X) = 0.45 LL4: (X) = 42% by weight, (Y / X) = 0.48 Evaluation results of Example 4 and Comparative Example 5 above Are summarized in Table 4. From Table 4, the S2 layer of the present invention has a density of 0.895.
g / cm 3 was ~0.915g / cm 3, and a melting point of 9
The reason why the ethylene-α-olefin copolymer at 4 ° C to 108 ° C is required and the difference in melting point between the S1 layer and the S2 layer is required to be 10 ° C or more will be described.

【0079】すなわち、S2層の密度が0.895g/
cm3〜0.915g/cm3であり、かつ融点が94℃
〜108℃のエチレン−α・オレフィンの共重合体であ
り、S1層とS2層の融点の差が10℃以上の値である
場合には、フィルムの重ね合せシール温度幅が広く、低
温熱収縮性、内面耐油性、外面ブロッキング性、バッグ
開口性の全てについて満足できる評価結果であることが
わかる(フィルムNo.17〜No.19)。S2層に
比較的高密度で、高融点のエチレン−α・オレフィンの
共重合体を用いた場合は、バッグの開口性に優れた結果
となり、したがって真空包装時の効率を優先する場合
と、バッグの開口性を重視する場合とによって、選ばれ
るS2層の樹脂を変更して対応することができる(フィ
ルムNo.17とNo.19の比較)。
That is, the density of the S2 layer is 0.895 g /
cm 3 to 0.915 g / cm 3 and a melting point of 94 ° C.
It is an ethylene-α-olefin copolymer having a temperature of up to 108 ° C, and when the difference in melting point between the S1 layer and the S2 layer is a value of 10 ° C or more, the film overlap sealing temperature range is wide and low temperature heat shrinkage occurs. It is understood that the evaluation results are satisfactory for all of the properties, the oil resistance on the inner surface, the blocking property on the outer surface, and the bag openability (Film Nos. 17 to 19). When a relatively high density, high melting point ethylene-α-olefin copolymer is used for the S2 layer, the bag has excellent openability, and therefore, when the efficiency during vacuum packaging is prioritized and when the bag is used, Depending on the case where importance is attached to the opening property of No. 2, it is possible to change the resin of the S2 layer to be selected (comparison between film No. 17 and No. 19).

【0080】また、S2層の融点が94℃未満の場合
は、バッグの内面耐油性が不満足な結果となることがわ
かる(フィルムNo.20〜No.21)。また、密度
が0.895g/cm3未満の場合では、バッグの内面
耐油性が不満足な結果であるとともに、バッグの開口性
も不十分な結果となることがわかる(フィルムNo.2
1)。
It is also understood that when the melting point of the S2 layer is less than 94 ° C., the oil resistance on the inner surface of the bag is unsatisfactory (film No. 20 to No. 21). Further, when the density is less than 0.895 g / cm 3 , it is found that the oil resistance on the inner surface of the bag is unsatisfactory and the opening property of the bag is insufficient (Film No. 2).
1).

【0081】S1層とS2層の融点の差が10℃未満で
ある場合、重ね合せシール可能温度幅が40℃に満た
ず、不満足なものであることがわかる(フィルムNo.
22、No.23)。また、S1層とS2層の融点の差
を大きくしようとして、S2層として融点の低いものを
選べば、バッグ内面の耐油性が不十分となり(フィルム
No.20、No.21)、またバッグ内面の耐油性を
保ちつつ融点の差を広げるために、S1層に融点の高い
樹脂を選択すると、低温熱収縮性が劣ったものとなり不
満足なものとなってしまうことがわかる(フィルムN
o.23)。そのとき、低温熱収縮性を保ったまま、融
点の差を広げようとして、例えばS1層にVL4を用
い、S2層にEVA2を用いると、やはり内面耐油性が
劣った結果となり不満足なものであった(フィルムN
o.24)。
When the difference between the melting points of the S1 layer and the S2 layer is less than 10 ° C., the temperature range in which superposition sealing is possible is less than 40 ° C., which is unsatisfactory (Film No.
22, no. 23). Also, if an attempt is made to increase the melting point difference between the S1 layer and the S2 layer and a S2 layer having a low melting point is selected, the oil resistance of the inner surface of the bag becomes insufficient (film No. 20, No. 21), and the inner surface of the bag It can be seen that if a resin having a high melting point is selected for the S1 layer in order to widen the difference in melting point while maintaining the oil resistance of the above, the low temperature heat shrinkability becomes poor and the film becomes unsatisfactory (Film N
o. 23). At this time, if VL4 is used for the S1 layer and EVA2 is used for the S2 layer in an attempt to widen the difference in melting points while maintaining the low temperature heat shrinkability, the inner oil resistance is also inferior, which is unsatisfactory. (Film N
o. 24).

【0082】[0082]

【表4】 [Table 4]

【0083】[0083]

【発明の効果】以上説明したように、本発明の構成を満
たすことにより、低温熱収縮性・内面耐油性等の従来の
基本特性を兼ね備え、かつバッグが重なり合った状態で
ヒートシール、真空包装処理が可能な熱収縮性筒状積層
フィルムが得られる。
As described above, by satisfying the constitution of the present invention, it has the conventional basic characteristics such as low temperature heat shrinkability and oil resistance on the inner surface, and heat sealing and vacuum packaging in a state where bags are overlapped. A heat-shrinkable tubular laminated film capable of being obtained is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明および従来技術の積層フィルムの内面シ
ール可能温度域、重ね合せシール可能温度域、及び重ね
合せシール不可能温度域を示す実験図である。
FIG. 1 is an experimental diagram showing an inner surface sealable temperature range, an overlap sealable temperature range, and an overlap seal impossible temperature range of a laminated film of the present invention and the prior art.

【図2】実施例3における延伸前のS1層、T1層の厚
み方向のゲル分率を示す実験解析図である。
FIG. 2 is an experimental analysis diagram showing gel fractions in the thickness direction of the S1 layer and T1 layer before stretching in Example 3.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B65D 71/08 B65D 71/08 A 85/50 85/50 B B29K 23:00 27:00 105:02 B29L 9:00 23:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location // B65D 71/08 B65D 71/08 A 85/50 85/50 B B29K 23:00 27:00 105: 02 B29L 9:00 23:00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 筒の外側から筒の内側に向け、外表面樹
脂層(S1層)、接着性熱収縮性樹脂層(T1層)、塩
化ビニリデン系樹脂層(C層)、接着性熱収縮性樹脂層
(T2層)、熱シール性樹脂層(S2層)の順番に積層
された少なくとも5層からなり、該S1層の最外表面部
のゲル分率(X)が35重量%〜70重量%、該T1層
の最内部(該C層に隣接する部分)のゲル分率(Y)が
10重量%〜40重量%、(Y/X)で示されるゲル分
率勾配が0.6以下であり、該T1層と該C層との接合
部は電子線変性されており、かつ該S2層が実質的に未
架橋である熱収縮性筒状多層フィルムにおいて、 (1)上記外表面樹脂層(S1層)の密度が0.900
g/cm3 〜0.915g/cm3 であり、かつ融点が
115℃〜125℃であるエチレン−α・オレフィンの
共重合体からなり、 (2)上記熱シール性樹脂層(S2層)の密度が0.8
95g/cm3 〜0.915g/cm3 であり、かつ融
点が94℃〜108℃であるエチレン−α・オレフィン
の共重合体からなり、 (3)上記外表面樹脂層(S1層)と上記熱シール性樹
脂層(S2層)との融点の差が10℃以上であることを
特徴とする熱収縮性筒状多層フィルム。
1. An outer surface resin layer (S1 layer), an adhesive heat-shrinkable resin layer (T1 layer), a vinylidene chloride resin layer (C layer), and an adhesive heat shrinkage from the outside of the cylinder to the inside of the cylinder. Resin layer (T2 layer) and heat-sealing resin layer (S2 layer) laminated in this order at least 5 layers, and the gel fraction (X) of the outermost surface of the S1 layer is 35% by weight to 70%. % By weight, the gel fraction (Y) of the innermost portion of the T1 layer (the portion adjacent to the C layer) is 10% by weight to 40% by weight, and the gel fraction gradient represented by (Y / X) is 0.6. In the heat-shrinkable tubular multilayer film, wherein the joint between the T1 layer and the C layer is electron beam modified, and the S2 layer is substantially uncrosslinked: (1) The outer surface The density of the resin layer (S1 layer) is 0.900.
g / cm 3 was ~0.915g / cm 3, and a melting point is a copolymer of ethylene-.alpha. · olefin is 115 ° C. to 125 ° C., (2) the heat sealable resin layer (S2 layer) Density 0.8
Was 95g / cm 3 ~0.915g / cm 3 , and a melting point is a copolymer of ethylene-.alpha. · olefin is 94 ° C. -108 ° C., and (3) the outer surface resin layer (S1 layer) above A heat-shrinkable tubular multilayer film having a melting point difference of 10 ° C. or more from the heat-sealing resin layer (S2 layer).
JP18927795A 1995-07-25 1995-07-25 Heat shrinkable tubular multilayer film Expired - Lifetime JP3596947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18927795A JP3596947B2 (en) 1995-07-25 1995-07-25 Heat shrinkable tubular multilayer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18927795A JP3596947B2 (en) 1995-07-25 1995-07-25 Heat shrinkable tubular multilayer film

Publications (2)

Publication Number Publication Date
JPH0939179A true JPH0939179A (en) 1997-02-10
JP3596947B2 JP3596947B2 (en) 2004-12-02

Family

ID=16238628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18927795A Expired - Lifetime JP3596947B2 (en) 1995-07-25 1995-07-25 Heat shrinkable tubular multilayer film

Country Status (1)

Country Link
JP (1) JP3596947B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1270652A1 (en) * 2000-11-01 2003-01-02 Asahi Kasei Kabushiki Kaisha Heat-shrinkable film
WO2004024443A1 (en) * 2002-09-12 2004-03-25 Danaflex Packaging Corporation Limited Secondary sealing barrier films
JP2005119282A (en) * 2003-09-22 2005-05-12 Okura Ind Co Ltd Film for packaging edible meat
JP2006103751A (en) * 2004-10-05 2006-04-20 Asahi Kasei Life & Living Corp Shrink packaging body
WO2008099799A1 (en) 2007-02-14 2008-08-21 Asahi Kasei Chemicals Corporation Stretched laminated film and bag
WO2013121874A1 (en) * 2012-02-16 2013-08-22 株式会社クレハ Heat-shrinkable multilayer film
JP2019171698A (en) * 2018-03-28 2019-10-10 旭化成株式会社 Heat-shrinkable film

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1270652A4 (en) * 2000-11-01 2003-03-12 Asahi Chemical Ind Heat-shrinkable film
US7182998B2 (en) 2000-11-01 2007-02-27 Asahi Kasei Kabushiki Kaisha Heat-shrinkable film
EP1270652A1 (en) * 2000-11-01 2003-01-02 Asahi Kasei Kabushiki Kaisha Heat-shrinkable film
WO2004024443A1 (en) * 2002-09-12 2004-03-25 Danaflex Packaging Corporation Limited Secondary sealing barrier films
JP2005119282A (en) * 2003-09-22 2005-05-12 Okura Ind Co Ltd Film for packaging edible meat
JP4563132B2 (en) * 2004-10-05 2010-10-13 旭化成ケミカルズ株式会社 Shrink wrap
JP2006103751A (en) * 2004-10-05 2006-04-20 Asahi Kasei Life & Living Corp Shrink packaging body
WO2008099799A1 (en) 2007-02-14 2008-08-21 Asahi Kasei Chemicals Corporation Stretched laminated film and bag
JP4848020B2 (en) * 2007-02-14 2011-12-28 旭化成ケミカルズ株式会社 Stretched laminated film and bag
KR101128757B1 (en) * 2007-02-14 2012-04-12 아사히 가세이 케미칼즈 가부시키가이샤 Stretched laminated film and bag
WO2013121874A1 (en) * 2012-02-16 2013-08-22 株式会社クレハ Heat-shrinkable multilayer film
JPWO2013121874A1 (en) * 2012-02-16 2015-05-11 株式会社クレハ Heat shrinkable multilayer film
JP2019171698A (en) * 2018-03-28 2019-10-10 旭化成株式会社 Heat-shrinkable film

Also Published As

Publication number Publication date
JP3596947B2 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US4734327A (en) Cook-in shrink film
JP3894973B2 (en) Product packaging method using shrink film lid stock
US4758463A (en) Cook-in shrink film
US20080182053A1 (en) Shrink film containing semi-crystalline polyamide and process for making same
JPH0639978A (en) Thermoplastic multilayer packaging film
JP2005246969A (en) Multilayer heat-shrinkable film containing styrene polymer or styrene polymer blend
EP0706455A4 (en) Improved structures of polymers made from single site catalysts
US5234731A (en) Thermoplastic multi-layer packaging film and bags made therefrom having two layers of very low density polyethylene
JPH0469060B2 (en)
NZ314315A (en) Multilayer cheese packaging film with polyamide (nylon 6/12) and ethylene-vinyl alcohol copolymer blend core with polyolefin heat sealing layer
NZ200836A (en) Heat shrinkable multilayer packaging film and receptacles made therefrom
EP1137534B1 (en) Multilayer heat shrinkable film
JPH06270359A (en) Cooking film having improved sealing strength and optical characteristics
US6010792A (en) Poultry shrink bags
AU2022201577B2 (en) Multilayer monoaxially oriented film
EP0577432B1 (en) Multilayer shrinkable film with improved shrink, optics and sealability
JPH0939179A (en) Thermally shrinking cylindrical multilayer film
US20090035429A1 (en) Retortable packaging film with outer layers containing blend of propylene-based polymer and homogeneous polymer
US6291038B1 (en) Multilayer shrinkable film with improved shrink, optics and sealability
US6677012B1 (en) Poultry shrink bags with antiblock additives
CA2198679C (en) Cheese packaging film
JPH0378065B2 (en)
EP3489012B1 (en) Heat-shrinkable multilayer film
AU2002239314B2 (en) Poultry shrink bags with antiblock additives
GB2328676A (en) Patch bag comprising homogeneous ethylene/alpha-olefin copolymer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

EXPY Cancellation because of completion of term