WO2013121762A1 - Clinical thermometer and body temperature measurement system - Google Patents
Clinical thermometer and body temperature measurement system Download PDFInfo
- Publication number
- WO2013121762A1 WO2013121762A1 PCT/JP2013/000712 JP2013000712W WO2013121762A1 WO 2013121762 A1 WO2013121762 A1 WO 2013121762A1 JP 2013000712 W JP2013000712 W JP 2013000712W WO 2013121762 A1 WO2013121762 A1 WO 2013121762A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermal resistor
- temperature sensor
- temperature
- thermal
- pair
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/16—Special arrangements for conducting heat from the object to the sensitive element
- G01K1/165—Special arrangements for conducting heat from the object to the sensitive element for application in zero heat flux sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K13/00—Thermometers specially adapted for specific purposes
- G01K13/20—Clinical contact thermometers for use with humans or animals
Definitions
- the present invention relates to a thermometer and a body temperature measurement system for measuring the deep body temperature of a subject in a state of being attached to the body surface of the subject.
- thermometer that measures the body temperature of the deep part of the subject in a state of being attached to the body surface of the subject.
- a non-heating type thermometer is known (for example, Patent Documents 1 and 2).
- a first temperature sensor that comes into contact with the body surface when it is attached to the body surface of a subject, and a heat insulating material (thermal resistor) for the first temperature sensor are provided.
- a heat insulating material for the first temperature sensor.
- each temperature sensor pair is arranged in a thermal resistor, and the thermal resistance of the thermal resistor is configured to be different from each other.
- thermometer of such a measurement method is referred to as a heat flow type thermometer.
- the temperature distribution on the body surface of the subject can be cited.
- the heat flow thermometer measures the heat flow of the subject in a state where it is attached to the body surface of the subject.
- the above-described thermal resistor is placed in a region on the body surface where the temperature distribution is greatly different.
- the temperature difference according to the resistance value of the thermal resistor cannot be obtained. As a result, a desired measurement result may not be obtained.
- this invention is made
- a temperature sensor is disposed as a first temperature sensor on a side in contact with a body surface of a subject, and is in contact with the body surface as a second temperature sensor.
- a thermometer that includes a plurality of thermal resistors each having a temperature sensor disposed on a side facing the side surface, and measures the deep body temperature of the subject in a state of being attached to the body surface of the subject,
- a first thermal resistor having a predetermined thermal resistance between one temperature sensor and the second temperature sensor; and a thermal resistance between the first temperature sensor and the second temperature sensor. Is lower than the first thermal resistor, and the thermal resistance between the first temperature sensor and the second temperature sensor is lower than that of the first thermal resistor.
- the third thermal resistor, the first thermal resistor, and the second thermal resistor And a uniformizing member configured to cover a surface of the third thermal resistor that faces the surface of the third thermal resistor that is in contact with the body surface, the first thermal resistor, and the second thermal resistor
- a first thermal resistor and a second thermal resistor based on a temperature relationship measured by the first temperature sensor of each of the body and the third thermal resistor.
- a selection means for selecting one of a pair and a second pair constituted by the first thermal resistor and the third thermal resistor; and the pair selected by the selection means Calculating means for calculating the deep body temperature based on the measurement result of each temperature sensor included.
- disturbance factors when measuring deep body temperature can be suppressed, and measurement accuracy of deep body temperature can be improved.
- FIG. 10 It is a schematic diagram which shows an example of an internal structure of the heat flow type thermometer 10 concerning one embodiment of this invention. It is a figure which shows the measurement principle of the deep body temperature in the heat flow type thermometer. It is a figure which shows the measurement conditions at the time of the measurement experiment by the heat-flow-type thermometer. It is a figure which shows the result at the time of the measurement experiment by the heat-flow-type thermometer. It is a figure which shows the result at the time of the measurement experiment by the heat-flow-type thermometer. It is a figure which shows the result at the time of the measurement experiment by the heat-flow-type thermometer.
- FIG. 1 is a schematic diagram showing an example of the internal configuration of a heat flow thermometer 10 according to an embodiment of the present invention.
- the upper diagram shows an outline of the heat flow thermometer 10 viewed from the side, and the lower diagram shows an overview of the heat flow thermometer 10 viewed from above.
- the heat flow thermometer 10 is attached to the body surface of the subject and measures the deep body temperature of the subject in this state.
- the heat flow type thermometer 10 is comprised with the type which does not have a heating function.
- the heat flow thermometer 10 includes a plurality of (in this case, three) measurement units 20 (second measurement unit 20a, first measurement unit 20b, and third measurement unit 20c). Configured.
- the three measurement units 20 measure the deep body temperature of the subject divided into two pairs. Specifically, the measurement is performed with the combination of the second measurement unit 20a and the first measurement unit 20b as the first pair and the combination of the third measurement unit 20c and the first measurement unit 20b as the second pair. Done.
- the deep body temperature is calculated based on the measurement result of either pair. This is because the measurement unit 20 is affixed to different regions on the body surface during measurement by each measurement unit 20, and therefore the influence of the temperature distribution on the body surface may be included as a disturbance in the measurement result. Because there is sex.
- any pair is selected according to the measurement result of each pair, and the deep body temperature of the subject is measured based on the measurement result of the selected pair. To do.
- each of the plurality of measurement units 20 is provided with a first temperature sensor 21 (21a to 21c), a second temperature sensor 22 (22a to 22c), and a thermal resistor 23 (23a to 23c). It has been.
- the first temperature sensor 21 is located on the side in contact with the body surface when the heat flow thermometer 10 is attached to the body surface of the subject.
- the second temperature sensor 22 is located on the side facing the first temperature sensor 21 through the thermal resistor 23.
- the 1st temperature sensor 21 and the 2nd temperature sensor 22 are comprised by the thermocouple, for example.
- the thermal resistor 23 is configured to have a flat plate shape with a thickness of 1 mm to 2 mm and a diameter of 10 mm, for example, and the material is, for example, polyacetal.
- the thermal resistor 23 is disposed between the first temperature sensor 21 and the second temperature sensor 22 and allows the heat flow from the body surface of the subject to pass therethrough.
- Each of the first temperature sensor 21 and the second temperature sensor 22 is disposed at a central position in the thermal resistor 23.
- the thermal resistors 23 are juxtaposed via the heat insulating member 13 at intervals of about 1 mm to 10 mm (preferably 2 mm to 6 mm), respectively, so that heat flows passing through the thermal resistors 23 do not mix with each other. Has been placed.
- thermometer 10 the bottom surface of the thermal resistor 23 is covered with a heat conductive member 15 (15a to 15c) having a good thermal conductivity such as an aluminum tape.
- the entire body surface side of the heat flow thermometer 10 is covered with an adhesive tape (adhesive layer) and an adhesive tape (release paper) 14. Thereby, the heat flow type thermometer 10 can be easily mounted on the body surface of the subject.
- the thermal resistor 23a and the thermal resistor 23c are configured to have the same thermal resistance (between the first temperature sensor 21 and the second temperature sensor 22). It is comprised so that thermal resistance may become lower than 23b.
- the member of the thermal resistor 23 is changed, the thickness of the thermal resistor 23 (first temperature) The change of the distance between the sensor 21 and the 2nd temperature sensor 22 is mentioned.
- the thermal resistor 23a and the thermal resistor 23c are formed of the same member, and the thermal resistor 23b is a member having a lower thermal conductivity than the thermal resistor 23a and the thermal resistor 23c. Can be formed.
- the thermal resistor 23a, the thermal resistor 23b, and the thermal resistor 23c are all formed of the same member, and the distance between the first temperature sensor 21 and the second temperature sensor 22 is set to The resistor 23a and the thermal resistor 23c have the same length, and the thermal resistor 23b may be longer than the thermal resistor 23a and the thermal resistor 23c.
- the former method that is, the case where the thermal resistor 23b is formed of a member having lower thermal conductivity than the thermal resistor 23a and the thermal resistor 23c is shown.
- the heat flow thermometer 10 can dissipate heat flow from the side surface of the thermal resistor 23. It can be suppressed. Further, the influence on the first temperature sensor 21 and the second temperature sensor 22 due to the heat flow dissipated from the body surface around the thermal resistor 23 can be suppressed as much as possible.
- a heat insulating member 13 having a thermal conductivity lower than or comparable to that of the thermal resistor 23 is disposed on the side surface of the thermal resistor 23. Thereby, dissipation of the heat flow from the body surface around the thermal resistor 23 can be directly suppressed.
- the heat insulating member 13 is made of another material having high flexibility, and can be deformed along the shape of the body surface. This is to allow the heat flow thermometer 10 to be adhered and adhered to the body surface.
- foamed rubber, polyurethane, or the like is used as a material of the heat insulation member 13, for example.
- foamed rubber, polyurethane, or the like is used as a material of the heat insulation member 13, for example.
- the heat insulating member 13 is thicker than the adjacent thermal resistor 23, and each thermal resistor 23 is fitted in an opening hole provided in the center of the heat insulating member 13. That is, the side surface of the thermal resistor 23 is surrounded by the heat insulating member 13. With such a configuration, the heat flow thermometer 10 can directly suppress the dissipation of heat flow from the side surface of the thermal resistor 23.
- the upper surface of the heat insulating member 13 is covered with, for example, a plastic film.
- the homogenizing member 11 is disposed on the upper surface of the thermal resistor 23, and the homogenizing member 11 covers the entire upper surface of the thermal resistor 23. Thereby, the temperature of the upper surface of the thermal resistor 23 (that is, the outside air side where the heat flow is dissipated) is made uniform, and the direction of the heat flow passing through the thermal resistor 23 is substantially perpendicular to the body surface. The heat flow from the side surface of the thermal resistor 23 can be indirectly suppressed.
- the uniformizing member 11 may be made of a material having a higher thermal conductivity than that of the thermal resistor 23, and is realized by, for example, aluminum.
- a protective member 12 is attached above the uniformizing member 11.
- the protective member 12 is fixed to a surface on the side opposite to the surface that contacts the body surface of the heat insulating member 13, and the protective member 12 is arranged with a predetermined space with respect to the uniformizing member 11.
- the protection member 12 may be a non-plastic member such as paper, or may be a plastic member such as plastic. Further, the protective member 12 may be formed uniformly, or has a predetermined size of a vent (a vent having a diameter such that clothes, fingers, etc. do not directly contact the homogenizing member 11). A plurality of them may be provided.
- the uniformizing member 11 is not directly exposed, it is possible to avoid clothing, fingers, etc. coming into direct contact with the uniformizing member 11. Moreover, the wind which hits from the outer side with respect to the equalization member 11 can also be interrupted
- the protection member 12 can remove the influence of the disturbance received by the homogenizing member 11 in the heat flow thermometer 10 (does not disturb the heat flow from the inside to the outside and blocks the disturbance from the outside to the homogenizing member 11). To do).
- the heat flow in the heat flow thermometer is expressed as an electric circuit using an electric circuit similarity method.
- the heat flow is represented as current I
- the temperature is represented as voltage T
- the heat resistance is represented as electric resistance R.
- the heat flow in the heat flow thermometer is equivalent to the equivalent circuit 100 (first equivalent circuit 100a, It can be expressed as a second equivalent circuit 100b).
- Tb represents the deep body temperature
- Rt represents the thermal resistance of the subcutaneous tissue of the subject.
- Tt1 indicates the temperature detected by the first temperature sensor 21a.
- Ta1 indicates the temperature detected by the second temperature sensor 22a
- Ra1 indicates the thermal resistance value of the thermal resistor (second thermal resistor) 23a.
- Tt2 indicates the temperature detected by the first temperature sensor 21b
- Ta2 indicates the temperature detected by the second temperature sensor 22b
- Ra2 indicates the thermal resistor (first thermal resistor) 23b.
- the thermal resistance value is shown.
- Tc represents an external temperature
- Rc represents a thermal resistance value between the homogenizing member 11 and the outside for making the measured temperature on the outside air side uniform.
- Tt3 indicates the temperature detected by the first temperature sensor 21c.
- Ta3 indicates the temperature detected by the second temperature sensor 22c, and Ra3 indicates the thermal resistance value of the thermal resistor (third thermal resistor) 23c. Note that Tt2, Ta2, and Ra2 in the second equivalent circuit 100b are the same as those described in the first equivalent circuit 100a.
- thermal resistance of the thermal resistor 23a is equal to that of the thermal resistor 23c, whereas the thermal resistance of the thermal resistor 23b is higher than that of the thermal resistor 23a. It is configured as follows.
- the measurement principle of the deep body temperature in the first equivalent circuit 100a and the second equivalent circuit 100b will be described in more detail. Since the principle of measuring the deep body temperature in both equivalent circuits is the same, here, the first equivalent circuit 100a will be described as an example.
- the first equivalent circuit 100a can be replaced with one to which a voltage (Tb-Tc) is applied. Therefore, it can be assumed that the current I flows in the first equivalent circuit 100a according to the voltage.
- the deep body temperature Tb can be obtained by detecting four temperatures (Tt1, Tt2, Ta1, Ta2).
- the measurement site is the chest
- the probe of the heat flow compensation thermometer 50 is attached to the right chest
- the heat flow thermometer 10 is attached to the left chest.
- the temperature at the measurement location is 27.2 degrees
- the measurement posture of the subject is sitting.
- a measurement condition is also added such that the chest is exposed to the outside air from a state where the chest is covered with clothes.
- FIG. 4A, FIG. 4B, FIG. 5A and FIG. 5B show the measurement results measured by the heat flow thermometer 10 and the heat flow compensation thermometer 50 under the measurement conditions described in FIG.
- FIG. 4B shows the measurement result of the deep body temperature by the first pair (second measurement unit 20a, first measurement unit 20b) shown in FIG. 4A. More specifically, among the temperature sensors (1) to (6), the results measured by the temperature sensors (1), (2), (4) and (5) correspond to the respective signs. It is shown.
- FIG. 4B also shows the measurement results by the second measurement unit (temperature sensors (1) and (4)) 20a and the measurement results by the first measurement unit (temperature sensors (2) and (5)) 20b.
- the deep body temperature of the subject's chest obtained from is shown as “estimated temperature”.
- the measurement result of the heat flow compensation thermometer 50 described in FIG. 3 is shown as a “heat flow compensation formula”.
- the relationship of the temperature difference according to the resistance value of the thermal resistor is obtained, that is, the measurement result of the temperature sensor (1) ⁇ the measurement result of the temperature sensor (2). It has been.
- Such a temperature difference relationship is obtained because the first measurement unit 20b having the temperature sensor (2) has a higher thermal resistance than the second measurement unit 20a having the temperature sensor (1). (See FIG. 2).
- the “estimated temperature” indicating the measurement result of the deep body temperature by the first pair has a correlation with the measurement result of the heat flow compensation thermometer 50.
- the measurement site (chest) is exposed to the outside from the state covered with clothes after about 13 minutes from the start of measurement. Therefore, in particular, in the temperature sensor (4) and the temperature sensor (5) provided on the outside air side, the measurement temperature is lowered from the point of about 13 minutes under the influence of the outside air.
- part since it is not directly related to the point which is intended to explain by this embodiment, it abbreviate
- only such a result is shown for reference.
- FIG. 5B shows the measurement result of the deep body temperature by the second pair (first measurement unit 20b, third measurement unit 20c) shown in FIG. 5A. More specifically, among the temperature sensors (1) to (6), the results measured by the temperature sensors (2), (3), (5) and (6) correspond to the respective signs. It is shown.
- FIG. 5B also shows the measurement results obtained by the first measurement unit (temperature sensors (2) and (5)) 20b and the measurement results obtained by the third measurement unit (temperature sensors (3) and (6)) 20c.
- the deep body temperature of the subject's chest obtained from is shown as “estimated temperature”.
- the measurement result of the heat flow compensation thermometer 50 described in FIG. 3 is shown as a “heat flow compensation formula”.
- the temperature difference relationship of the measurement result of the temperature sensor (3) ⁇ the measurement result of the temperature sensor (2) is not obtained. That is, the first measurement unit 20b having the temperature sensor (2) has a higher thermal resistance than the third measurement unit 20c having the temperature sensor (3) (see FIG. 2). ), No temperature difference is seen in the measurement results of both temperature sensors (temperature sensor (2) and temperature sensor (3)).
- the “estimated temperature” indicating the measurement result of the deep body temperature by the second pair has the same change as the temperature sensor (2) and the temperature sensor (3), and the measurement result of the heat flow compensation thermometer 50 There is no correlation between the two.
- the measurement result of the deep body temperature by the second pair may be influenced by disturbance due to the temperature distribution on the body surface of the subject, and it can be said that there is a problem in the measurement accuracy of the deep body temperature. Therefore, considering the measurement results described in FIG. 4B and FIG. 5B, in this case, the measurement result of the first pair (FIG. 5B) is selected, and the depth body temperature is measured based on the measurement result of the first pair. Will do.
- the measurement site (chest) is exposed to the outside from the state covered with clothes after about 13 minutes from the start of measurement. Therefore, in particular, in the temperature sensor (5) and the temperature sensor (6) provided on the outside air side, the measurement temperature is lowered from the point of about 13 minutes under the influence of the outside air. In addition, like FIG. 4B mentioned above, here, such a result is shown only for reference.
- FIG. 6 shows an external configuration of a body temperature measurement system including a heat flow thermometer 10 and a body temperature display device 60 configured to be communicable with the heat flow thermometer 10.
- the heat flow thermometer 10 includes a processing unit (not shown) (RF-ID tag that includes an antenna for communication and processes the detected temperature value of each temperature sensor).
- the processing unit receives power supply from the body temperature display device 60 via an antenna (for example, power supply due to generation of induced electromotive force by electromagnetic waves having a frequency of 13.56 MHz), and a power circuit (not shown) included therein
- an antenna for example, power supply due to generation of induced electromotive force by electromagnetic waves having a frequency of 13.56 MHz
- a power circuit not shown
- the body temperature display device 60 includes an RF-ID reader / writer. When the body temperature display device 60 is close to the processing unit, the body temperature display device 60 is magnetically coupled to the processing unit, and supplies power to a power supply circuit included in the processing unit. Receives deep body temperature data and various information.
- the heat flow thermometer 10 includes a processing unit and is operated by receiving power supply from the RF-ID reader / writer included in the body temperature display device 60. There is no need to mount the device, and it is possible to reduce the size and weight. As a result, it becomes easy to attach to the measurement site of the subject for a long time.
- the measurement result shows that the body temperature display device 60 including an RF-ID reader / writer that transmits electromagnetic waves of a predetermined frequency, for example, 13.56 MHz, is about 5 to 30 mm of the measurement site where the heat flow thermometer 10 is attached. It can be read simply by moving it closer to the position. For this reason, it is possible to greatly reduce the load of measurement result confirmation / recording work by the measurer.
- a predetermined frequency for example, 13.56 MHz
- FIG. 7 is a diagram illustrating a functional configuration of the heat flow thermometer 10 including the circuit board 40 on which the processing unit 70 is mounted and the sensor unit 41.
- the processing unit 70 includes an antenna 71, a wireless communication unit 72, a storage unit 73, and a control unit 74.
- the wireless communication unit 72 includes a rectifier circuit, a booster circuit, and the like.
- the AC voltage generated in the antenna 71 is converted into a predetermined DC voltage and supplied to the storage unit 73 and the control unit 74.
- the wireless communication unit 72 transmits the deep body temperature data acquired by the control unit 74 to the body temperature display device 60 via the antenna 71 in a predetermined format.
- the storage unit 73 stores, for example, identification information unique to the processing unit.
- the control unit 74 performs overall control of processing in the heat flow thermometer 10. In the control unit 74, for example, operations of the wireless communication unit 72 and the storage unit 73 are controlled. In addition, the control unit 74 processes the output from the sensor unit 41 (first temperature sensors 21a to 21c, second temperature sensors 22a to 22c) (digital conversion, calculation based on a programmed calculation formula, etc.), It transmits to the wireless communication part 72 as deep body temperature data.
- the body temperature display device 60 includes an RF-ID reader / writer 80, a control unit 61, a storage unit 62, a display unit 63, and a wired communication unit 64.
- the body temperature display device 60 includes a power supply unit composed of a battery, a rechargeable battery, etc., an operation switch including a power ON / OFF switch, etc., but the illustration thereof is omitted here. Yes.
- the RF-ID reader / writer 80 functions to transmit / receive data to / from the heat flow thermometer 10 and to supply power, and includes an antenna 81, a wireless communication unit 82, and a signal processing unit 83. It comprises.
- the antenna 81 generates an electromagnetic wave having a predetermined frequency, for example, 13.56 MHz, and magnetically couples with the antenna 71 of the processing unit 70 of the heat flow thermometer 10 to supply power to the processing unit 70. Or receive data from the processing unit 70.
- a predetermined frequency for example, 13.56 MHz
- the wireless communication unit 82 controls the voltage applied to the antenna 81 in order to supply power to the processing unit 70 of the heat flow thermometer 10 via the antenna 81, or the processing unit of the heat flow thermometer 10 via the antenna 81. Data received from 70 is transmitted to the signal processing unit 83.
- the data received from the wireless communication unit 82 is processed (for example, converted into digital data) and transmitted to the control unit 61 as deep body temperature data.
- the control unit 61 performs overall control of processing in the body temperature display device 60.
- the operations of the wireless communication unit 82 and the signal processing unit 83 are controlled.
- the deep body temperature data received from the signal processing unit 83 is stored in the storage unit 62 together with the identification information, or displayed on the display unit 63.
- the control unit 61 converts the deep body temperature data stored in the storage unit 62 together with the identification information through the wired communication unit 64 to another information processing apparatus (other information wired via the wired communication unit 64). To the processing device).
- control unit 61 is provided with a selection unit 91 and a calculation unit 92 as its functional configuration.
- the selection unit 91 selects one of the measurement result of the first pair and the measurement result of the second pair as the deep body temperature of the subject. This selection is performed based on the measurement result of the first temperature sensor 21 of each measurement unit 20. That is, as described in FIG. 4B and FIG. 5B, the measurement result of the first temperature sensor 21 that matches the thermal resistance relationship of the thermal resistor (the measurement result of the temperature sensor (1) ⁇ the measurement result of the temperature sensor (2)). Then, the measurement result of the pair from which the measurement result of the temperature sensor (3) ⁇ the measurement result of the temperature sensor (2)) is selected is selected.
- the calculation unit 92 calculates the deep body temperature of the subject based on the measurement result of the pair selected by the selection unit 91.
- a plurality of measurement units each having a thermal resistor are provided, and one of the pairs of measurement units is selected, and based on the measurement result of the selected pair. Measure the deep body temperature of the subject.
- the measurement result of any pair can be selected in consideration of the influence of disturbance due to the temperature distribution on the surface of the body to which the thermal resistor is affixed, the orientation when the thermal resistor is affixed, etc. become. Therefore, the disturbance element at the time of measuring deep body temperature can be suppressed, and the measurement accuracy of deep body temperature can be improved.
- processing for selecting either the measurement result of the first pair or the measurement result of the second pair, or the deep body temperature of the subject is calculated based on the measurement result of the selected pair.
- the process to perform is performed on the body temperature display device 60 side. That is, you may make it provide a selection part and a determination part in the control part 74 of the heat flow type thermometer 10 (refer FIG. 8).
- the deep body temperature calculated from the measurement result of any pair is transmitted from the heat flow thermometer 10 to the body temperature display device 60 side.
- one of the measurement result of the first pair and the measurement result of the second pair is selected based on the temperature relationship measured by the first temperature sensor 21 of each measurement unit 20.
- the present invention is not limited to this.
- the user may select from the measurement results of all pairs.
- the measurement results of all pairs are transmitted from the heat flow thermometer 10 to the body temperature display device 60 side.
- the measurement result of all the said pairs is displayed in the body temperature display apparatus 60, and a user makes a selection with reference to it.
- priority may be provided to either the first pair or the second pair, and the measurement result of any pair may be selected based on the priority. For example, when a temperature difference corresponding to the resistance value of the thermal resistance is obtained in both the first pair and the second pair (measurement result of temperature sensor (1) ⁇ measurement of temperature sensor (2)) As a result, the measurement result of the temperature sensor (3) ⁇ the measurement result of the temperature sensor (2)), and any pair of measurement results may be selected based on the priority.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
A clinical thermometer comprises a plurality of thermal resistors, each of which has a first temperature sensor disposed on a side that comes in contact with the surface of the body to be examined, and a second temperature sensor disposed on the side opposing the side that comes in contact with the body surface, and the clinical thermometer measures the core body temperature of the body to be examined when adhered to the surface of the body to be examined. The clinical thermometer is provided with: a first thermal resistor having a prescribed thermal resistance between the first and second temperature sensors; second and third thermal resistors having thermal resistances between the first and second temperature sensors lower than that of the first thermal resistor; a homogenization member that covers the faces of the first to third thermal resistors at the side opposing the side that comes in contact with the body surface; a selecting means for selecting either a first pair comprising the first and second thermal resistors or a second pair comprising the first and third thermal resistors, on the basis of the relationships between the temperatures of the first to third thermal resistors measured with the first temperature sensors; and a calculation means that calculates the core body temperature on the basis of the results of measurements by the temperature sensors belonging to the pair selected by the selecting means.
Description
本発明は、被検体の体表面に貼付された状態で当該被検体の深部体温を測定する体温計及び体温測定システムに関する。
The present invention relates to a thermometer and a body temperature measurement system for measuring the deep body temperature of a subject in a state of being attached to the body surface of the subject.
従来、被検体の体表面に貼り付けられた状態で当該被検体の深部の体温を測定する体温計が知られている。このような体温計の一つとして非加熱型の体温計が知られている(例えば、特許文献1及び2)。
Conventionally, a thermometer that measures the body temperature of the deep part of the subject in a state of being attached to the body surface of the subject is known. As one of such thermometers, a non-heating type thermometer is known (for example, Patent Documents 1 and 2).
一般に、非加熱型の体温計には、被検体の体表面に貼り付けた際に体表面に接触する第1の温度センサと、該第1の温度センサに対して断熱材(熱抵抗体)を介して対向した位置に配される第2の温度センサとから構成される温度センサのペアが少なくとも2組備えられている。ここで、各温度センサのペアは熱抵抗体に配されており、当該熱抵抗体の熱抵抗は互いに異なるように構成されている。
In general, in a non-heating type thermometer, a first temperature sensor that comes into contact with the body surface when it is attached to the body surface of a subject, and a heat insulating material (thermal resistor) for the first temperature sensor are provided. There are provided at least two pairs of temperature sensors each composed of a second temperature sensor disposed at a position opposed to each other. Here, each temperature sensor pair is arranged in a thermal resistor, and the thermal resistance of the thermal resistor is configured to be different from each other.
そして、各温度センサのペアにおける第1の温度センサと第2の温度センサとの温度差をそれぞれ検出し、それら温度差により、被検体の深部からの熱流量を求め、当該被検体の深部の体温の算出を行なう(以下、このような測定方式の体温計を熱流式体温計と称する)。
Then, a temperature difference between the first temperature sensor and the second temperature sensor in each temperature sensor pair is detected, and a heat flow rate from the deep part of the subject is obtained based on the temperature difference. The body temperature is calculated (hereinafter, a thermometer of such a measurement method is referred to as a heat flow type thermometer).
しかし、このような熱流式体温計においては、測定誤差を及ぼす外乱要素が多々あり、測定精度に影響を及ぼすこれら要因を個別に調べ、それらの要因を排除する対策を講じていくことが不可欠である。
However, in such a heat flow thermometer, there are many disturbance factors that cause measurement errors, and it is essential to investigate these factors that affect measurement accuracy individually and take measures to eliminate those factors. .
ここで、外乱要素の一つとして、例えば、被検体の体表面の温度分布が挙げられる。熱流式体温計は、被検体の体表面に貼り付けられた状態で当該被検体の熱流の測定を行なうため、このとき、上述した熱抵抗体が、温度分布の差が激しい体表面上の領域にそれぞれ貼り付けられた場合、熱抵抗体の抵抗値に応じた温度差が得られない。その結果、望ましい測定結果が得られない可能性がある。
Here, as one of the disturbance elements, for example, the temperature distribution on the body surface of the subject can be cited. The heat flow thermometer measures the heat flow of the subject in a state where it is attached to the body surface of the subject. At this time, the above-described thermal resistor is placed in a region on the body surface where the temperature distribution is greatly different. When pasted, the temperature difference according to the resistance value of the thermal resistor cannot be obtained. As a result, a desired measurement result may not be obtained.
そこで、本発明は、上記課題に鑑みてなされたものであり、深部体温を測定する際の外乱要素を抑制し、深部体温の測定精度を向上させるようにした技術を提供することを目的とする。
Then, this invention is made | formed in view of the said subject, and it aims at providing the technique which suppressed the disturbance element at the time of measuring deep body temperature, and improved the measurement precision of deep body temperature. .
上記課題を解決するため、本発明の一態様は、第1の温度センサとして被検体の体表面に接触する側に温度センサが配されるとともに、第2の温度センサとして前記体表面に接触する側の面と対向する側に温度センサが配される熱抵抗体を複数有し、前記被検体の体表面に貼付された状態で前記被検体の深部体温を測定する体温計であって、前記第1の温度センサと前記第2の温度センサとの間が所定の熱抵抗で構成される第1の熱抵抗体と、前記第1の温度センサと前記第2の温度センサとの間の熱抵抗が前記第1の熱抵抗体よりも低く構成される第2の熱抵抗体と、前記第1の温度センサと前記第2の温度センサとの間の熱抵抗が前記第1の熱抵抗体よりも低く構成される第3の熱抵抗体と、前記第1の熱抵抗体、前記第2の熱抵抗体及び前記第3の熱抵抗体の前記体表面に接触する側の面に対向する側の面を覆うように構成される均一化部材と、前記第1の熱抵抗体、前記第2の熱抵抗体及び前記第3の熱抵抗体それぞれの前記第1の温度センサにより測定された温度の関係に基づいて、前記第1の熱抵抗体及び前記第2の熱抵抗体により構成される第1のペアと、前記第1の熱抵抗体及び前記第3の熱抵抗体により構成される第2のペアとのうちのいずれかのペアを選択する選択手段と、前記選択手段により選択されたペアに含まれる各温度センサの測定結果に基づいて前記深部体温を算出する算出手段とを具備する。
In order to solve the above-described problem, according to one embodiment of the present invention, a temperature sensor is disposed as a first temperature sensor on a side in contact with a body surface of a subject, and is in contact with the body surface as a second temperature sensor. A thermometer that includes a plurality of thermal resistors each having a temperature sensor disposed on a side facing the side surface, and measures the deep body temperature of the subject in a state of being attached to the body surface of the subject, A first thermal resistor having a predetermined thermal resistance between one temperature sensor and the second temperature sensor; and a thermal resistance between the first temperature sensor and the second temperature sensor. Is lower than the first thermal resistor, and the thermal resistance between the first temperature sensor and the second temperature sensor is lower than that of the first thermal resistor. The third thermal resistor, the first thermal resistor, and the second thermal resistor And a uniformizing member configured to cover a surface of the third thermal resistor that faces the surface of the third thermal resistor that is in contact with the body surface, the first thermal resistor, and the second thermal resistor A first thermal resistor and a second thermal resistor based on a temperature relationship measured by the first temperature sensor of each of the body and the third thermal resistor. A selection means for selecting one of a pair and a second pair constituted by the first thermal resistor and the third thermal resistor; and the pair selected by the selection means Calculating means for calculating the deep body temperature based on the measurement result of each temperature sensor included.
本発明によれば、深部体温を測定する際の外乱要素を抑制し、深部体温の測定精度を向上させることができる。
According to the present invention, disturbance factors when measuring deep body temperature can be suppressed, and measurement accuracy of deep body temperature can be improved.
本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same reference numerals.
添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
本発明の一実施の形態に係わる熱流式体温計10の内部構成の一例を示す概要図である。
熱流式体温計10における深部体温の測定原理を示す図である。
熱流式体温計10による測定実験時の測定条件を示す図である。
熱流式体温計10による測定実験時の結果を示す図である。
熱流式体温計10による測定実験時の結果を示す図である。
熱流式体温計10による測定実験時の結果を示す図である。
熱流式体温計10による測定実験時の結果を示す図である。
熱流式体温計10を備えた体温測定システムの構成の一例を示す図。
熱流式体温計10の機能的な構成の一例を示す図である。
体温表示装置60の機能的な構成の一例を示す図である。
The accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
It is a schematic diagram which shows an example of an internal structure of the heat flow type thermometer 10 concerning one embodiment of this invention. It is a figure which shows the measurement principle of the deep body temperature in the heat flow type thermometer. It is a figure which shows the measurement conditions at the time of the measurement experiment by the heat-flow-type thermometer. It is a figure which shows the result at the time of the measurement experiment by the heat-flow-type thermometer. It is a figure which shows the result at the time of the measurement experiment by the heat-flow-type thermometer. It is a figure which shows the result at the time of the measurement experiment by the heat-flow-type thermometer. It is a figure which shows the result at the time of the measurement experiment by the heat-flow-type thermometer. The figure which shows an example of a structure of the body temperature measurement system provided with the heat-flow-type thermometer. It is a figure which shows an example of a functional structure of the heat-flow-type thermometer. It is a figure which shows an example of a functional structure of the body temperature display apparatus.
以下、本発明に係わる実施の形態について添付図面を参照して詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
(実施形態1)
図1は、本発明の一実施の形態に係わる熱流式体温計10の内部構成の一例を示す概要図である。なお、上側の図は、熱流式体温計10を側面から見た概要を示しており、下側の図は、熱流式体温計10を上部から見た概要を示している。 (Embodiment 1)
FIG. 1 is a schematic diagram showing an example of the internal configuration of aheat flow thermometer 10 according to an embodiment of the present invention. The upper diagram shows an outline of the heat flow thermometer 10 viewed from the side, and the lower diagram shows an overview of the heat flow thermometer 10 viewed from above.
図1は、本発明の一実施の形態に係わる熱流式体温計10の内部構成の一例を示す概要図である。なお、上側の図は、熱流式体温計10を側面から見た概要を示しており、下側の図は、熱流式体温計10を上部から見た概要を示している。 (Embodiment 1)
FIG. 1 is a schematic diagram showing an example of the internal configuration of a
熱流式体温計10は、被検体の体表面に貼り付けられ、その状態で被検体の深部体温の測定を行なう。なお、本実施形態においては、熱流式体温計10は、加熱機能を有していないタイプで構成される。
The heat flow thermometer 10 is attached to the body surface of the subject and measures the deep body temperature of the subject in this state. In addition, in this embodiment, the heat flow type thermometer 10 is comprised with the type which does not have a heating function.
ここで、本実施形態に係わる熱流式体温計10は、複数(この場合、3つ)の測定ユニット20(第2の測定ユニット20a、第1の測定ユニット20b、第3の測定ユニット20c)を具備して構成される。
Here, the heat flow thermometer 10 according to the present embodiment includes a plurality of (in this case, three) measurement units 20 (second measurement unit 20a, first measurement unit 20b, and third measurement unit 20c). Configured.
3つの測定ユニット20は、2つのペアに分けて被検体の深部体温の測定を行なう。具体的には、第2の測定ユニット20a及び第1の測定ユニット20bの組み合わせを第1のペアとし、第3の測定ユニット20c及び第1の測定ユニット20bの組み合わせを第2のペアとして測定が行なわれる。
The three measurement units 20 measure the deep body temperature of the subject divided into two pairs. Specifically, the measurement is performed with the combination of the second measurement unit 20a and the first measurement unit 20b as the first pair and the combination of the third measurement unit 20c and the first measurement unit 20b as the second pair. Done.
そして、いずれかのペアの測定結果に基づいて深部体温の算出が行なわれる。これは、各測定ユニット20による測定に際しては、それぞれ、体表面上で異なる領域に測定ユニット20が貼付されるため、測定結果に、当該体表面の温度分布の影響が外乱として含まれてしまう可能性があるからである。
Then, the deep body temperature is calculated based on the measurement result of either pair. This is because the measurement unit 20 is affixed to different regions on the body surface during measurement by each measurement unit 20, and therefore the influence of the temperature distribution on the body surface may be included as a disturbance in the measurement result. Because there is sex.
すなわち、本実施形態に係わる熱流式体温計10によれば、各ペアの測定結果に応じて、いずれかのペアを選択し、当該選択されたペアの測定結果に基づいて被検体の深部体温の測定を行なう。
That is, according to the heat flow type thermometer 10 according to the present embodiment, any pair is selected according to the measurement result of each pair, and the deep body temperature of the subject is measured based on the measurement result of the selected pair. To do.
ここで、複数の測定ユニット20には、第1の温度センサ21(21a~21c)と、第2の温度センサ22(22a~22c)と、熱抵抗体23(23a~23c)とがそれぞれ設けられている。
Here, each of the plurality of measurement units 20 is provided with a first temperature sensor 21 (21a to 21c), a second temperature sensor 22 (22a to 22c), and a thermal resistor 23 (23a to 23c). It has been.
第1の温度センサ21は、被検体の体表面に熱流式体温計10が貼り付けられた際に、当該体表面に接触する側に位置する。第2の温度センサ22は、熱抵抗体23を介して第1の温度センサ21と対向する側に位置する。なお、第1の温度センサ21及び第2の温度センサ22は、例えば、熱電対により構成される。
The first temperature sensor 21 is located on the side in contact with the body surface when the heat flow thermometer 10 is attached to the body surface of the subject. The second temperature sensor 22 is located on the side facing the first temperature sensor 21 through the thermal resistor 23. In addition, the 1st temperature sensor 21 and the 2nd temperature sensor 22 are comprised by the thermocouple, for example.
熱抵抗体23は、例えば、厚さ1mm~2mmで直径が10mmの平板形状を有して構成されており、その材質としては、例えば、ポリアセタール等が用いられる。熱抵抗体23は、第1の温度センサ21と第2の温度センサ22との間に配され、被検体の体表面からの熱流を通過させる。第1の温度センサ21及び第2の温度センサ22はそれぞれ、熱抵抗体23内の中央位置に配置されている。
The thermal resistor 23 is configured to have a flat plate shape with a thickness of 1 mm to 2 mm and a diameter of 10 mm, for example, and the material is, for example, polyacetal. The thermal resistor 23 is disposed between the first temperature sensor 21 and the second temperature sensor 22 and allows the heat flow from the body surface of the subject to pass therethrough. Each of the first temperature sensor 21 and the second temperature sensor 22 is disposed at a central position in the thermal resistor 23.
熱抵抗体23は、それぞれ、1mm~10mm程度(好ましくは2mm~6mm)の間隔をもって断熱部材13を介して並置されており、熱抵抗体23をそれぞれ通過する熱流が混ざり合うことがないように配置されている。
The thermal resistors 23 are juxtaposed via the heat insulating member 13 at intervals of about 1 mm to 10 mm (preferably 2 mm to 6 mm), respectively, so that heat flows passing through the thermal resistors 23 do not mix with each other. Has been placed.
また、熱抵抗体23の底面は、それぞれ、アルミテープ等の熱伝導性の良い熱伝導部材15(15a~15c)により覆われている。熱流式体温計10の体表面側全体は、貼り付けテープ(粘着層)及び貼り付けテープ(剥離紙)14により覆われている。これにより、熱流式体温計10を被検体の体表面に容易に装着することができる。
Further, the bottom surface of the thermal resistor 23 is covered with a heat conductive member 15 (15a to 15c) having a good thermal conductivity such as an aluminum tape. The entire body surface side of the heat flow thermometer 10 is covered with an adhesive tape (adhesive layer) and an adhesive tape (release paper) 14. Thereby, the heat flow type thermometer 10 can be easily mounted on the body surface of the subject.
ここで、熱抵抗体23a及び熱抵抗体23cは、(第1の温度センサ21と第2の温度センサ22との間の)熱抵抗が等しくなるように構成されており、また、熱抵抗体23bよりも熱抵抗が低くなるように構成されている。なお、熱抵抗体23bよりも、熱抵抗体23a及び熱抵抗体23cの熱抵抗を低くする手法としては、熱抵抗体23の部材の変更や、熱抵抗体23の厚さ(第1の温度センサ21と第2の温度センサ22との間の距離)の変更が挙げられる。
Here, the thermal resistor 23a and the thermal resistor 23c are configured to have the same thermal resistance (between the first temperature sensor 21 and the second temperature sensor 22). It is comprised so that thermal resistance may become lower than 23b. In addition, as a method of lowering the thermal resistance of the thermal resistor 23a and the thermal resistor 23c than the thermal resistor 23b, the member of the thermal resistor 23 is changed, the thickness of the thermal resistor 23 (first temperature) The change of the distance between the sensor 21 and the 2nd temperature sensor 22 is mentioned.
具体的には、前者の手法では、熱抵抗体23a及び熱抵抗体23cを同一の部材で形成し、熱抵抗体23bを、熱抵抗体23a及び熱抵抗体23cよりも熱伝導率の低い部材で形成すれば良い。また、後者の手法では、熱抵抗体23a、熱抵抗体23b及び熱抵抗体23cを全て同じ部材で形成し、第1の温度センサ21と第2の温度センサ22との間の距離を、熱抵抗体23a及び熱抵抗体23cは同じ長さとし、熱抵抗体23bについては、熱抵抗体23a及び熱抵抗体23cよりも長くすれば良い。なお、図1の場合、前者の手法、すなわち、熱抵抗体23bを、熱抵抗体23a及び熱抵抗体23cよりも熱伝導率の低い部材で形成している場合を示している。
Specifically, in the former method, the thermal resistor 23a and the thermal resistor 23c are formed of the same member, and the thermal resistor 23b is a member having a lower thermal conductivity than the thermal resistor 23a and the thermal resistor 23c. Can be formed. In the latter method, the thermal resistor 23a, the thermal resistor 23b, and the thermal resistor 23c are all formed of the same member, and the distance between the first temperature sensor 21 and the second temperature sensor 22 is set to The resistor 23a and the thermal resistor 23c have the same length, and the thermal resistor 23b may be longer than the thermal resistor 23a and the thermal resistor 23c. In the case of FIG. 1, the former method, that is, the case where the thermal resistor 23b is formed of a member having lower thermal conductivity than the thermal resistor 23a and the thermal resistor 23c is shown.
第1の温度センサ21、第2の温度センサ22及び熱抵抗体23を上述したような形状及び配置で構成することにより、熱流式体温計10では、熱抵抗体23の側面からの熱流の放散を抑えられる。また、熱抵抗体23の周囲の体表面から熱流が放散したことによる、第1の温度センサ21及び第2の温度センサ22への影響を極力抑えることができる。
By configuring the first temperature sensor 21, the second temperature sensor 22, and the thermal resistor 23 in the shape and arrangement as described above, the heat flow thermometer 10 can dissipate heat flow from the side surface of the thermal resistor 23. It can be suppressed. Further, the influence on the first temperature sensor 21 and the second temperature sensor 22 due to the heat flow dissipated from the body surface around the thermal resistor 23 can be suppressed as much as possible.
熱抵抗体23の側面には、熱抵抗体23よりも低い又は同程度の熱伝導率を有する断熱部材13が配されている。これにより、熱抵抗体23の周囲の体表面からの熱流の放散を直接的に抑えることができる。断熱部材13は、柔軟性の高い他の材質で構成されており、体表面の形状に沿って変形させることができる。これは、熱流式体温計10を体表面に密着して貼り付けられるようにするためである。なお、断熱部材13の材質としては、例えば、発泡ゴムやポリウレタン等が用いられる。勿論、これ以外の材質で構成されていても良く、例えば、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン等の樹脂の発泡体で構成されていても良い。
A heat insulating member 13 having a thermal conductivity lower than or comparable to that of the thermal resistor 23 is disposed on the side surface of the thermal resistor 23. Thereby, dissipation of the heat flow from the body surface around the thermal resistor 23 can be directly suppressed. The heat insulating member 13 is made of another material having high flexibility, and can be deformed along the shape of the body surface. This is to allow the heat flow thermometer 10 to be adhered and adhered to the body surface. In addition, as a material of the heat insulation member 13, for example, foamed rubber, polyurethane, or the like is used. Of course, it may be made of a material other than this, for example, it may be made of a foam of a resin such as polyethylene, polypropylene, polyvinylidene fluoride or the like.
断熱部材13は、隣接する熱抵抗体23よりも厚みがあり、熱抵抗体23は、それぞれ、断熱部材13の中央に設けられた開口穴に嵌めこまれている。すなわち、熱抵抗体23の側面は、断熱部材13により取り囲まれている。このような構成により、熱流式体温計10では、熱抵抗体23の側面からの熱流の放散を直接的に抑えることができる。なお、断熱部材13の上面は、例えば、プラスチックフィルムにより覆われている。
The heat insulating member 13 is thicker than the adjacent thermal resistor 23, and each thermal resistor 23 is fitted in an opening hole provided in the center of the heat insulating member 13. That is, the side surface of the thermal resistor 23 is surrounded by the heat insulating member 13. With such a configuration, the heat flow thermometer 10 can directly suppress the dissipation of heat flow from the side surface of the thermal resistor 23. Note that the upper surface of the heat insulating member 13 is covered with, for example, a plastic film.
熱抵抗体23の上面には、均一化部材11が配されており、この均一化部材11は、熱抵抗体23の上面全体を覆っている。これにより、熱抵抗体23の上面(つまり、熱流が放散される外気側)の温度が均一化されるとともに、(熱抵抗体23を通過する熱流の方向を、体表面に対して略垂直方向に向けることにより、)熱抵抗体23の側面からの熱流の放散を間接的に抑えることができる。なお、均一化部材11は、熱抵抗体23よりも熱伝導率が大きい材質であれば良く、例えば、アルミニウム等で実現される。
The homogenizing member 11 is disposed on the upper surface of the thermal resistor 23, and the homogenizing member 11 covers the entire upper surface of the thermal resistor 23. Thereby, the temperature of the upper surface of the thermal resistor 23 (that is, the outside air side where the heat flow is dissipated) is made uniform, and the direction of the heat flow passing through the thermal resistor 23 is substantially perpendicular to the body surface. The heat flow from the side surface of the thermal resistor 23 can be indirectly suppressed. The uniformizing member 11 may be made of a material having a higher thermal conductivity than that of the thermal resistor 23, and is realized by, for example, aluminum.
均一化部材11の上方には、保護部材12が取り付けられている。保護部材12は、その周縁部分が断熱部材13の体表面に接触する側の面と対向する側の面に固定されており、均一化部材11に対して所定の空間をもって配されている。なお、保護部材12は、例えば、紙等の非可塑性の部材であっても良いし、プラスチック等の可塑性の部材であっても良い。また、保護部材12は、均質に形成されていても良いし、所定の大きさの通気孔(衣服や指等が均一化部材11に直接接触することがない程度の径からなる通気孔)が複数設けられていても良い。
A protective member 12 is attached above the uniformizing member 11. The protective member 12 is fixed to a surface on the side opposite to the surface that contacts the body surface of the heat insulating member 13, and the protective member 12 is arranged with a predetermined space with respect to the uniformizing member 11. The protection member 12 may be a non-plastic member such as paper, or may be a plastic member such as plastic. Further, the protective member 12 may be formed uniformly, or has a predetermined size of a vent (a vent having a diameter such that clothes, fingers, etc. do not directly contact the homogenizing member 11). A plurality of them may be provided.
いずれにしても、均一化部材11が直接露出しない構成とすることで、衣類や指等が直接均一化部材11に接触することを回避させることができる。また、均一化部材11に対して外側からあたる風を遮断する(又は風量、風速を低減させる)こともできる。
In any case, by adopting a configuration in which the uniformizing member 11 is not directly exposed, it is possible to avoid clothing, fingers, etc. coming into direct contact with the uniformizing member 11. Moreover, the wind which hits from the outer side with respect to the equalization member 11 can also be interrupted | blocked (or air volume and a wind speed are reduced).
なお、保護部材12と均一化部材11との間には、空間(空気層)が設けられているため、均一化部材11から放散される熱流が保護部材12によって妨げられることもない。つまり、保護部材12は、熱流式体温計10において均一化部材11が受ける外乱の影響を除去することができる(内部から外部への熱流を妨げず、且つ外部から均一化部材11への外乱を遮断する)。
In addition, since a space (air layer) is provided between the protective member 12 and the homogenizing member 11, the heat flow dissipated from the homogenizing member 11 is not hindered by the protective member 12. That is, the protection member 12 can remove the influence of the disturbance received by the homogenizing member 11 in the heat flow thermometer 10 (does not disturb the heat flow from the inside to the outside and blocks the disturbance from the outside to the homogenizing member 11). To do).
次に、図2を用いて、図1に示す熱流式体温計10における深部体温の測定原理について簡単に説明する。ここでは、本実施形態に係わる熱流式体温計の深部体温の測定原理を説明するために、熱流式体温計における熱流を、電気回路相似法を用いて電気回路として表現する。図2においては、熱流を電流Iとし、温度を電圧Tとし、熱抵抗を電気抵抗Rとして表現しており、これにより、熱流式体温計における熱流は、等価回路100(第1の等価回路100a、第2の等価回路100b)として表現できる。
Next, the measurement principle of the deep body temperature in the heat flow thermometer 10 shown in FIG. 1 will be briefly described with reference to FIG. Here, in order to explain the measurement principle of the deep body temperature of the heat flow thermometer according to this embodiment, the heat flow in the heat flow thermometer is expressed as an electric circuit using an electric circuit similarity method. In FIG. 2, the heat flow is represented as current I, the temperature is represented as voltage T, and the heat resistance is represented as electric resistance R. As a result, the heat flow in the heat flow thermometer is equivalent to the equivalent circuit 100 (first equivalent circuit 100a, It can be expressed as a second equivalent circuit 100b).
ここで、Tbは深部体温を示し、Rtは被検体の皮下組織の熱抵抗を示している。また、第1の等価回路100aにおいて、Tt1は第1の温度センサ21aにおいて検出された温度を示している。また、Ta1は第2の温度センサ22aにおいて検出された温度を示し、Ra1は熱抵抗体(第2の熱抵抗体)23aの熱抵抗値を示している。
Here, Tb represents the deep body temperature, and Rt represents the thermal resistance of the subcutaneous tissue of the subject. In the first equivalent circuit 100a, Tt1 indicates the temperature detected by the first temperature sensor 21a. Ta1 indicates the temperature detected by the second temperature sensor 22a, and Ra1 indicates the thermal resistance value of the thermal resistor (second thermal resistor) 23a.
また更に、Tt2は第1の温度センサ21bにおいて検出された温度を示し、Ta2は第2の温度センサ22bにおいて検出された温度を示し、Ra2は熱抵抗体(第1の熱抵抗体)23bの熱抵抗値を示している。更に、Tcは外部温度を示し、Rcは外気側の測定温度を均一化させるための均一化部材11と外界との間の熱抵抗値を示している。
Furthermore, Tt2 indicates the temperature detected by the first temperature sensor 21b, Ta2 indicates the temperature detected by the second temperature sensor 22b, and Ra2 indicates the thermal resistor (first thermal resistor) 23b. The thermal resistance value is shown. Further, Tc represents an external temperature, and Rc represents a thermal resistance value between the homogenizing member 11 and the outside for making the measured temperature on the outside air side uniform.
また、第2の等価回路100bにおいて、Tt3は第1の温度センサ21cにおいて検出された温度を示している。また、Ta3は第2の温度センサ22cにおいて検出された温度を示し、Ra3は熱抵抗体(第3の熱抵抗体)23cの熱抵抗値を示している。なお、第2の等価回路100bにおけるTt2、Ta2及びRa2は、上記第1の等価回路100aで説明した構成と同一である。
In the second equivalent circuit 100b, Tt3 indicates the temperature detected by the first temperature sensor 21c. Ta3 indicates the temperature detected by the second temperature sensor 22c, and Ra3 indicates the thermal resistance value of the thermal resistor (third thermal resistor) 23c. Note that Tt2, Ta2, and Ra2 in the second equivalent circuit 100b are the same as those described in the first equivalent circuit 100a.
上述した通り、本実施形態においては、熱抵抗体23a及び熱抵抗体23cは、同じ部材で形成されており、熱抵抗が等しくなるように構成されている。そのため、Ra1=Ra3の関係が成り立つ。なお、第1の等価回路100a及び第2の等価回路100bにより測定される深部体温は、それぞれ異なる値になる可能性がある。これは、熱抵抗体23a及び熱抵抗体23cがそれぞれ異なる体表面の領域に貼り付けられるため、当該体表面上の温度分布の影響を受ける可能性があるからである。
As described above, in the present embodiment, the thermal resistor 23a and the thermal resistor 23c are formed of the same member and are configured to have the same thermal resistance. Therefore, the relationship Ra1 = Ra3 is established. Note that the deep body temperature measured by the first equivalent circuit 100a and the second equivalent circuit 100b may have different values. This is because the thermal resistor 23a and the thermal resistor 23c are attached to different regions of the body surface, and thus may be affected by the temperature distribution on the body surface.
また、熱抵抗体23a及び熱抵抗体23cの熱抵抗が等しくなるように構成されているのに対して、熱抵抗体23bの熱抵抗が、熱抵抗体23a及び熱抵抗体23cよりも高くなるように構成されている。
In addition, the thermal resistance of the thermal resistor 23a is equal to that of the thermal resistor 23c, whereas the thermal resistance of the thermal resistor 23b is higher than that of the thermal resistor 23a. It is configured as follows.
ここで、第1の等価回路100a及び第2の等価回路100bにおける深部体温の測定原理について更に詳細に説明する。なお、両等価回路における深部体温の測定原理は、同様となるので、ここでは、第1の等価回路100aを例に挙げて説明する。
Here, the measurement principle of the deep body temperature in the first equivalent circuit 100a and the second equivalent circuit 100b will be described in more detail. Since the principle of measuring the deep body temperature in both equivalent circuits is the same, here, the first equivalent circuit 100a will be described as an example.
第1の等価回路100aでは、電圧(Tb-Tc)が印加されているものと置き換えることができる。そのため、第1の等価回路100a内にはその電圧に応じて電流Iが流れると仮定できる。
The first equivalent circuit 100a can be replaced with one to which a voltage (Tb-Tc) is applied. Therefore, it can be assumed that the current I flows in the first equivalent circuit 100a according to the voltage.
このうち、熱抵抗体23aにおける熱流を電流I1とし、熱抵抗体23bにおける熱流を電流I2とすると、電流I1及び電流I2は、下式(1)、(2)のように表すことができる。
Of these, assuming that the heat flow in thethermal resistor 23a is current I1, and the heat flow in the thermal resistor 23b is current I2, the current I1 and the current I2 can be expressed by the following equations (1) and (2).
Of these, assuming that the heat flow in the
そして、それぞれの式を変形すると、下式(3)、(4)のようになる。
Then, when the respective equations are modified, the following equations (3) and (4) are obtained.
Then, when the respective equations are modified, the following equations (3) and (4) are obtained.
ここで、皮下組織の熱抵抗Rtは、個人毎及び部位毎に異なり、一定ではない。そこで、上式(3)、(4)からRtを削除すべく、Rtについて求めると、下式(5)のようになる。
Here, the thermal resistance Rt of the subcutaneous tissue varies from individual to individual and from site to site, and is not constant. Therefore, when Rt is calculated to remove Rt from the above equations (3) and (4), the following equation (5) is obtained.
Here, the thermal resistance Rt of the subcutaneous tissue varies from individual to individual and from site to site, and is not constant. Therefore, when Rt is calculated to remove Rt from the above equations (3) and (4), the following equation (5) is obtained.
そして、上式(5)を上式(4)に代入することで、下式(6)が求められる。
Then, by substituting the above equation (5) into the above equation (4), the following equation (6) is obtained.
Then, by substituting the above equation (5) into the above equation (4), the following equation (6) is obtained.
Ra1及びRa2は既知であるため、4つの温度(Tt1、Tt2、Ta1、Ta2)が検出されることで、深部体温Tbを求めることができる。
Since Ra1 and Ra2 are known, the deep body temperature Tb can be obtained by detecting four temperatures (Tt1, Tt2, Ta1, Ta2).
ここで、図3~図5Bを用いて、図1に示す熱流式体温計10により胸部の深部体温を実際に測定した際の測定結果について説明する。ここでは、熱流式体温計10の測定結果の比較例として、熱流補償式体温計(加熱機能を有するタイプ)の測定結果についても併せて説明する。
Here, using FIG. 3 to FIG. 5B, the measurement results when the deep body temperature of the chest is actually measured by the heat flow thermometer 10 shown in FIG. 1 will be described. Here, as a comparative example of the measurement result of the heat flow thermometer 10, the measurement result of the heat flow compensation thermometer (type having a heating function) will also be described.
始めに、図3を用いて、測定条件について説明する。測定部位は胸部であり、熱流補償式体温計50のプローブが右胸部に貼り付けられ、熱流式体温計10が左胸部に貼り付けられる。測定場所の温度は、27.2度であり、また、被検者の測定姿勢は座位とする。なお、この測定においては、参考として、胸部を衣服に覆われた状態から胸部を外気に露出させるといった測定条件も加えている。
First, measurement conditions will be described with reference to FIG. The measurement site is the chest, the probe of the heat flow compensation thermometer 50 is attached to the right chest, and the heat flow thermometer 10 is attached to the left chest. The temperature at the measurement location is 27.2 degrees, and the measurement posture of the subject is sitting. In this measurement, as a reference, a measurement condition is also added such that the chest is exposed to the outside air from a state where the chest is covered with clothes.
ここで、図4A、図4B、図5A及び図5Bは、上記図3で説明した測定条件の下、熱流式体温計10及び熱流補償式体温計50により測定された測定結果を示している。
Here, FIG. 4A, FIG. 4B, FIG. 5A and FIG. 5B show the measurement results measured by the heat flow thermometer 10 and the heat flow compensation thermometer 50 under the measurement conditions described in FIG.
まず、図4A及び図4Bに示す測定結果について説明する。図4Bには、図4Aに示す第1のペア(第2の測定ユニット20a、第1の測定ユニット20b)による深部体温の測定結果が示されている。より具体的には、各温度センサ(1)~(6)のうち、温度センサ(1)、(2)、(4)及び(5)により測定された結果が、それぞれの符号に対応して示されている。
First, the measurement results shown in FIGS. 4A and 4B will be described. FIG. 4B shows the measurement result of the deep body temperature by the first pair (second measurement unit 20a, first measurement unit 20b) shown in FIG. 4A. More specifically, among the temperature sensors (1) to (6), the results measured by the temperature sensors (1), (2), (4) and (5) correspond to the respective signs. It is shown.
また、図4Bには、第2の測定ユニット(温度センサ(1)及び(4))20aによる測定結果と、第1の測定ユニット(温度センサ(2)及び(5))20bによる測定結果とから得られる被検体の胸部の深部体温が”推定温度”として示されている。また、図3で説明した熱流補償式体温計50の測定結果が”熱流補償式”として示されている。
FIG. 4B also shows the measurement results by the second measurement unit (temperature sensors (1) and (4)) 20a and the measurement results by the first measurement unit (temperature sensors (2) and (5)) 20b. The deep body temperature of the subject's chest obtained from is shown as “estimated temperature”. In addition, the measurement result of the heat flow compensation thermometer 50 described in FIG. 3 is shown as a “heat flow compensation formula”.
図4Bに示す第1のペアの測定結果を参照すると、温度センサ(1)の測定結果<温度センサ(2)の測定結果、という、熱抵抗体の抵抗値に応じた温度差の関係が得られている。このような温度差の関係が得られるのは、温度センサ(1)を有する第2の測定ユニット20aよりも、温度センサ(2)を有する第1の測定ユニット20bの方が熱抵抗が高く設定されているためである(図2参照)。また更に、第1のペアによる深部体温の測定結果を示す”推定温度”は、熱流補償式体温計50の測定結果と、相関をもっているといえる。
Referring to the measurement result of the first pair shown in FIG. 4B, the relationship of the temperature difference according to the resistance value of the thermal resistor is obtained, that is, the measurement result of the temperature sensor (1) <the measurement result of the temperature sensor (2). It has been. Such a temperature difference relationship is obtained because the first measurement unit 20b having the temperature sensor (2) has a higher thermal resistance than the second measurement unit 20a having the temperature sensor (1). (See FIG. 2). Furthermore, it can be said that the “estimated temperature” indicating the measurement result of the deep body temperature by the first pair has a correlation with the measurement result of the heat flow compensation thermometer 50.
この図4Bに示す測定結果においては、測定開始から約13分経過時点で測定部位(胸部)を衣服に覆われている状態から外部に露出している。そのため、特に、外気側に設けられる温度センサ(4)及び温度センサ(5)では、当該外気の影響を受けて、約13分経過時点から測定温度の低下がみられる。なお、この測定部位の外部への露出については、本実施形態で説明を意図するポイントとは直接関係ないため、これ以上の説明については省略する。ここではあくまで参考用として、このような結果を示しているだけである。
In the measurement result shown in FIG. 4B, the measurement site (chest) is exposed to the outside from the state covered with clothes after about 13 minutes from the start of measurement. Therefore, in particular, in the temperature sensor (4) and the temperature sensor (5) provided on the outside air side, the measurement temperature is lowered from the point of about 13 minutes under the influence of the outside air. In addition, about the exposure to the exterior of this measurement site | part, since it is not directly related to the point which is intended to explain by this embodiment, it abbreviate | omits about further description. Here, only such a result is shown for reference.
続いて、図5A及び図5Bに示す測定結果について説明する。
Subsequently, the measurement results shown in FIGS. 5A and 5B will be described.
図5Bには、図5Aに示す第2のペア(第1の測定ユニット20b、第3の測定ユニット20c)による深部体温の測定結果が示されている。より具体的には、各温度センサ(1)~(6)のうち、温度センサ(2)、(3)、(5)及び(6)により測定された結果が、それぞれの符号に対応して示されている。
FIG. 5B shows the measurement result of the deep body temperature by the second pair (first measurement unit 20b, third measurement unit 20c) shown in FIG. 5A. More specifically, among the temperature sensors (1) to (6), the results measured by the temperature sensors (2), (3), (5) and (6) correspond to the respective signs. It is shown.
また、図5Bには、第1の測定ユニット(温度センサ(2)及び(5))20bによる測定結果と、第3の測定ユニット(温度センサ(3)及び(6))20cによる測定結果とから得られる被検体の胸部の深部体温が”推定温度”として示されている。また、図3で説明した熱流補償式体温計50の測定結果が”熱流補償式”として示されている。
FIG. 5B also shows the measurement results obtained by the first measurement unit (temperature sensors (2) and (5)) 20b and the measurement results obtained by the third measurement unit (temperature sensors (3) and (6)) 20c. The deep body temperature of the subject's chest obtained from is shown as “estimated temperature”. In addition, the measurement result of the heat flow compensation thermometer 50 described in FIG. 3 is shown as a “heat flow compensation formula”.
図5Bに示す第2のペアの測定結果を参照すると、温度センサ(3)の測定結果<温度センサ(2)の測定結果、という温度差の関係が得られていない。すなわち、温度センサ(3)を有する第3の測定ユニット20cよりも、温度センサ(2)を有する第1の測定ユニット20bの方が熱抵抗が高く設定されているにも拘わらず(図2参照)、両温度センサ(温度センサ(2)及び温度センサ(3))による測定結果に温度差がみられない。
Referring to the measurement result of the second pair shown in FIG. 5B, the temperature difference relationship of the measurement result of the temperature sensor (3) <the measurement result of the temperature sensor (2) is not obtained. That is, the first measurement unit 20b having the temperature sensor (2) has a higher thermal resistance than the third measurement unit 20c having the temperature sensor (3) (see FIG. 2). ), No temperature difference is seen in the measurement results of both temperature sensors (temperature sensor (2) and temperature sensor (3)).
また、第2のペアによる深部体温の測定結果を示す”推定温度”は、温度センサ(2)及び温度センサ(3)と同様の変化を有しており、熱流補償式体温計50の測定結果との間に相関性は見られない。
The “estimated temperature” indicating the measurement result of the deep body temperature by the second pair has the same change as the temperature sensor (2) and the temperature sensor (3), and the measurement result of the heat flow compensation thermometer 50 There is no correlation between the two.
すなわち、第2のペアによる深部体温の測定結果は、被検体の体表面の温度分布等による外乱の影響を受けている可能性があり、深部体温の測定精度に問題があるといえる。そのため、図4B及び図5Bで説明した測定結果を考慮すると、この場合、第1のペア(図5B)の測定結果を選択し、当該第1のペアの測定結果に基づいて深部体温の測定を行なうことになる。
That is, the measurement result of the deep body temperature by the second pair may be influenced by disturbance due to the temperature distribution on the body surface of the subject, and it can be said that there is a problem in the measurement accuracy of the deep body temperature. Therefore, considering the measurement results described in FIG. 4B and FIG. 5B, in this case, the measurement result of the first pair (FIG. 5B) is selected, and the depth body temperature is measured based on the measurement result of the first pair. Will do.
また、図5Bに示す測定結果においては、図4Bの場合と同様に、測定開始から約13分経過時点で測定部位(胸部)を衣服に覆われている状態から外部に露出している。そのため、特に、外気側に設けられる温度センサ(5)及び温度センサ(6)では、当該外気の影響を受けて、約13分経過時点からの測定温度の低下がみられる。なお、上述した図4Bと同様に、ここではあくまで参考用として、このような結果を示しているだけである。
Further, in the measurement result shown in FIG. 5B, as in the case of FIG. 4B, the measurement site (chest) is exposed to the outside from the state covered with clothes after about 13 minutes from the start of measurement. Therefore, in particular, in the temperature sensor (5) and the temperature sensor (6) provided on the outside air side, the measurement temperature is lowered from the point of about 13 minutes under the influence of the outside air. In addition, like FIG. 4B mentioned above, here, such a result is shown only for reference.
次に、図6を用いて、図1に示す熱流式体温計10を備えた体温測定システムについて説明する。図6には、熱流式体温計10と、当該熱流式体温計10に通信可能に構成される体温表示装置60とを備える体温測定システムの外観構成が示される。
Next, a body temperature measurement system including the heat flow type thermometer 10 shown in FIG. 1 will be described with reference to FIG. FIG. 6 shows an external configuration of a body temperature measurement system including a heat flow thermometer 10 and a body temperature display device 60 configured to be communicable with the heat flow thermometer 10.
熱流式体温計10は、不図示の処理部(通信を行なうためのアンテナを備え、検出された各温度センサの温度値を処理するRF-IDタグ)を備えている。処理部は、体温表示装置60から、アンテナを介して電力供給(例えば、13.56MHzの周波数の電磁波による誘導起電力の発生による電力供給)を受け、内部に含まれる電源回路(不図示)に電力が供給されることで、処理部全体が起動し、深部体温データを、各種情報とともに体温表示装置60に送信する。
The heat flow thermometer 10 includes a processing unit (not shown) (RF-ID tag that includes an antenna for communication and processes the detected temperature value of each temperature sensor). The processing unit receives power supply from the body temperature display device 60 via an antenna (for example, power supply due to generation of induced electromotive force by electromagnetic waves having a frequency of 13.56 MHz), and a power circuit (not shown) included therein When the electric power is supplied, the entire processing unit is activated, and the deep body temperature data is transmitted to the body temperature display device 60 together with various information.
体温表示装置60は、RF-IDリーダ/ライタを備えており、処理部に近付けた際に、処理部との間で磁気結合し、処理部に含まれる電源回路への電力供給と、処理部からの深部体温データ及び各種情報の受信とを行なう。
The body temperature display device 60 includes an RF-ID reader / writer. When the body temperature display device 60 is close to the processing unit, the body temperature display device 60 is magnetically coupled to the processing unit, and supplies power to a power supply circuit included in the processing unit. Receives deep body temperature data and various information.
このように体温測定システムにおいては、熱流式体温計10が、処理部を備え、体温表示装置60が有するRF-IDリーダ/ライタより電力供給を受けて作動する構成となっているため、内部に電源を搭載しておく必要がなく、小型・軽量化を実現することができる。この結果、被検体の測定部位に長時間装着しておくことが容易となる。
As described above, in the body temperature measurement system, the heat flow thermometer 10 includes a processing unit and is operated by receiving power supply from the RF-ID reader / writer included in the body temperature display device 60. There is no need to mount the device, and it is possible to reduce the size and weight. As a result, it becomes easy to attach to the measurement site of the subject for a long time.
また、測定結果は、所定の周波数、例えば、13.56MHzの電磁波を送信するRF-IDリーダ/ライタを備える体温表示装置60を、熱流式体温計10が貼り付けられた測定部位の5~30mm程度の位置に近づけるだけで読み取ることができる。そのため、測定者による測定結果の確認・記録作業の負荷を大幅に軽減させることが可能となる。
In addition, the measurement result shows that the body temperature display device 60 including an RF-ID reader / writer that transmits electromagnetic waves of a predetermined frequency, for example, 13.56 MHz, is about 5 to 30 mm of the measurement site where the heat flow thermometer 10 is attached. It can be read simply by moving it closer to the position. For this reason, it is possible to greatly reduce the load of measurement result confirmation / recording work by the measurer.
ここで、図7を用いて、図6に示す熱流式体温計10の機能的な構成の一例について説明する。図7は、処理部70が搭載された回路基板40とセンサ部41とを備える熱流式体温計10の機能構成を示す図である。
Here, an example of a functional configuration of the heat flow thermometer 10 shown in FIG. 6 will be described with reference to FIG. FIG. 7 is a diagram illustrating a functional configuration of the heat flow thermometer 10 including the circuit board 40 on which the processing unit 70 is mounted and the sensor unit 41.
処理部70には、アンテナ71と、無線通信部72と、記憶部73と、コントロール部74とが具備される。無線通信部72は、整流回路や昇圧回路等を備える。無線通信部72では、アンテナ71において生じた交流電圧を、所定の直流電圧に変換し、記憶部73及びコントロール部74に供給する。また、無線通信部72は、コントロール部74において取得された深部体温データを所定形式でアンテナ71を介して体温表示装置60に送信する。
The processing unit 70 includes an antenna 71, a wireless communication unit 72, a storage unit 73, and a control unit 74. The wireless communication unit 72 includes a rectifier circuit, a booster circuit, and the like. In the wireless communication unit 72, the AC voltage generated in the antenna 71 is converted into a predetermined DC voltage and supplied to the storage unit 73 and the control unit 74. In addition, the wireless communication unit 72 transmits the deep body temperature data acquired by the control unit 74 to the body temperature display device 60 via the antenna 71 in a predetermined format.
記憶部73は、例えば、処理部固有の識別情報等を記憶する。コントロール部74は、、熱流式体温計10における処理を統括制御する。コントロール部74においては、例えば、無線通信部72及び記憶部73の動作を制御する。また、コントロール部74は、センサ部41(第1の温度センサ21a~21c、第2の温度センサ22a~22c)からの出力を処理(デジタル変換、プログラム化された計算式による演算等)し、深部体温データとして無線通信部72に送信する。
The storage unit 73 stores, for example, identification information unique to the processing unit. The control unit 74 performs overall control of processing in the heat flow thermometer 10. In the control unit 74, for example, operations of the wireless communication unit 72 and the storage unit 73 are controlled. In addition, the control unit 74 processes the output from the sensor unit 41 (first temperature sensors 21a to 21c, second temperature sensors 22a to 22c) (digital conversion, calculation based on a programmed calculation formula, etc.), It transmits to the wireless communication part 72 as deep body temperature data.
次に、図8を用いて、図6に示す体温表示装置60の機能的な構成の一例について説明する。
Next, an example of a functional configuration of the body temperature display device 60 shown in FIG. 6 will be described with reference to FIG.
体温表示装置60は、RF-IDリーダ/ライタ80と、コントロール部61と、記憶部62と、表示部63と、有線通信部64とを具備して構成される。なお、体温表示装置60には、この他、電池、充電池等で構成される電源部や、電源ON/OFFスイッチを含む操作スイッチ等を備えているが、ここではその図示については省略している。
The body temperature display device 60 includes an RF-ID reader / writer 80, a control unit 61, a storage unit 62, a display unit 63, and a wired communication unit 64. In addition, the body temperature display device 60 includes a power supply unit composed of a battery, a rechargeable battery, etc., an operation switch including a power ON / OFF switch, etc., but the illustration thereof is omitted here. Yes.
RF-IDリーダ/ライタ80は、熱流式体温計10との間でデータを送受信したり、また、電源の供給を行なったりする機能を果たし、アンテナ81と、無線通信部82と、信号処理部83とを具備する。
The RF-ID reader / writer 80 functions to transmit / receive data to / from the heat flow thermometer 10 and to supply power, and includes an antenna 81, a wireless communication unit 82, and a signal processing unit 83. It comprises.
アンテナ81は、所定の周波数、例えば、13.56MHzの周波数の電磁波を発生させて、熱流式体温計10の処理部70のアンテナ71との間で磁気結合することで、処理部70に電源を供給したり、処理部70よりデータを受信したりする。
The antenna 81 generates an electromagnetic wave having a predetermined frequency, for example, 13.56 MHz, and magnetically couples with the antenna 71 of the processing unit 70 of the heat flow thermometer 10 to supply power to the processing unit 70. Or receive data from the processing unit 70.
無線通信部82では、アンテナ81を介して熱流式体温計10の処理部70に電源を供給するために、アンテナ81に印加する電圧を制御したり、アンテナ81を介して熱流式体温計10の処理部70より受信したデータを信号処理部83に送信する。
The wireless communication unit 82 controls the voltage applied to the antenna 81 in order to supply power to the processing unit 70 of the heat flow thermometer 10 via the antenna 81, or the processing unit of the heat flow thermometer 10 via the antenna 81. Data received from 70 is transmitted to the signal processing unit 83.
信号処理部83では、無線通信部82から受信したデータを処理(例えば、デジタルデータへの変換)し、深部体温データとしてコントロール部61に送信する。
In the signal processing unit 83, the data received from the wireless communication unit 82 is processed (for example, converted into digital data) and transmitted to the control unit 61 as deep body temperature data.
コントロール部61は、体温表示装置60における処理を統括制御する。コントロール部61においては、例えば、無線通信部82及び信号処理部83の動作を制御する。また、信号処理部83から受信した深部体温データを識別情報とともに記憶部62に格納したり、表示部63に表示したりする。更に、コントロール部61は、記憶部62に格納された深部体温データを、識別情報とともに有線通信部64を介して、他の情報処理装置(有線通信部64を介して有線接続された他の情報処理装置)に送信したりする。
The control unit 61 performs overall control of processing in the body temperature display device 60. In the control unit 61, for example, the operations of the wireless communication unit 82 and the signal processing unit 83 are controlled. Further, the deep body temperature data received from the signal processing unit 83 is stored in the storage unit 62 together with the identification information, or displayed on the display unit 63. Further, the control unit 61 converts the deep body temperature data stored in the storage unit 62 together with the identification information through the wired communication unit 64 to another information processing apparatus (other information wired via the wired communication unit 64). To the processing device).
ここで、コントロール部61には、その機能的な構成として、選択部91と、算出部92とが設けられる。
Here, the control unit 61 is provided with a selection unit 91 and a calculation unit 92 as its functional configuration.
選択部91は、第1のペアの測定結果と、第2のペアの測定結果とのいずれかを被検体の深部体温として選択する。この選択は、各測定ユニット20の第1の温度センサ21の測定結果に基づいて行なわれる。すなわち、図4Bや図5Bで説明した通り、熱抵抗体の熱抵抗の関係に合致した第1の温度センサ21の測定結果(温度センサ(1)の測定結果<温度センサ(2)の測定結果、温度センサ(3)の測定結果<温度センサ(2)の測定結果)が得られているペアの測定結果を選択する。
The selection unit 91 selects one of the measurement result of the first pair and the measurement result of the second pair as the deep body temperature of the subject. This selection is performed based on the measurement result of the first temperature sensor 21 of each measurement unit 20. That is, as described in FIG. 4B and FIG. 5B, the measurement result of the first temperature sensor 21 that matches the thermal resistance relationship of the thermal resistor (the measurement result of the temperature sensor (1) <the measurement result of the temperature sensor (2)). Then, the measurement result of the pair from which the measurement result of the temperature sensor (3) <the measurement result of the temperature sensor (2)) is selected is selected.
算出部92は、選択部91により選択されたペアの測定結果に基づいて被検体の深部体温を算出する。
The calculation unit 92 calculates the deep body temperature of the subject based on the measurement result of the pair selected by the selection unit 91.
以上説明したように本実施形態によれば、熱抵抗体をそれぞれ有する測定ユニットを複数設け、測定ユニット同士のペアのうち、いずれかのペアを選択し、当該選択したペアの測定結果に基づいて被検体の深部体温を測定する。
As described above, according to the present embodiment, a plurality of measurement units each having a thermal resistor are provided, and one of the pairs of measurement units is selected, and based on the measurement result of the selected pair. Measure the deep body temperature of the subject.
このような構成により、例えば、熱抵抗体が貼付された体表面の温度分布や当該熱抵抗体の貼付時の向き等による外乱の影響を考慮して、いずれかのペアの測定結果を選択できることになる。そのため、深部体温を測定する際の外乱要素を抑制し、深部体温の測定精度を向上させることができる。
With such a configuration, for example, the measurement result of any pair can be selected in consideration of the influence of disturbance due to the temperature distribution on the surface of the body to which the thermal resistor is affixed, the orientation when the thermal resistor is affixed, etc. become. Therefore, the disturbance element at the time of measuring deep body temperature can be suppressed, and the measurement accuracy of deep body temperature can be improved.
以上が本発明の代表的な実施形態の例であるが、本発明は、上記及び図面に示す実施形態に限定することなく、その要旨を変更しない範囲内で適宜変形して実施できるものである。ここで、いくつか変形例を挙げて説明する。
The above is an example of a typical embodiment of the present invention, but the present invention is not limited to the embodiment described above and shown in the drawings, and can be appropriately modified and implemented within the scope not changing the gist thereof. . Here, some modifications will be described.
(変形例1)
上述した実施形態では、第1のペアの測定結果と第2のペアの測定結果とのいずれかを選択する処理や、また、当該選択したペアの測定結果に基づいて被検体の深部体温を算出する処理を体温表示装置60側で行なう場合について説明したが、これに限られない。例えば、熱流式体温計10側でこのような判定を行なっても良い。すなわち、熱流式体温計10のコントロール部74に選択部や判定部を設けるようにしても良い(図8参照)。この場合、熱流式体温計10から体温表示装置60側には、例えば、いずれかのペアの測定結果から算出された深部体温が送信されることになる。 (Modification 1)
In the above-described embodiment, processing for selecting either the measurement result of the first pair or the measurement result of the second pair, or the deep body temperature of the subject is calculated based on the measurement result of the selected pair. Although the case where the process to perform is performed on the bodytemperature display device 60 side has been described, it is not limited thereto. For example, such a determination may be performed on the heat flow thermometer 10 side. That is, you may make it provide a selection part and a determination part in the control part 74 of the heat flow type thermometer 10 (refer FIG. 8). In this case, for example, the deep body temperature calculated from the measurement result of any pair is transmitted from the heat flow thermometer 10 to the body temperature display device 60 side.
上述した実施形態では、第1のペアの測定結果と第2のペアの測定結果とのいずれかを選択する処理や、また、当該選択したペアの測定結果に基づいて被検体の深部体温を算出する処理を体温表示装置60側で行なう場合について説明したが、これに限られない。例えば、熱流式体温計10側でこのような判定を行なっても良い。すなわち、熱流式体温計10のコントロール部74に選択部や判定部を設けるようにしても良い(図8参照)。この場合、熱流式体温計10から体温表示装置60側には、例えば、いずれかのペアの測定結果から算出された深部体温が送信されることになる。 (Modification 1)
In the above-described embodiment, processing for selecting either the measurement result of the first pair or the measurement result of the second pair, or the deep body temperature of the subject is calculated based on the measurement result of the selected pair. Although the case where the process to perform is performed on the body
(変形例2)
上述した実施形態では、測定ユニット20それぞれの第1の温度センサ21により測定された温度の関係に基づいて、第1のペアの測定結果と第2のペアの測定結果とのいずれかを選択する場合について説明したが、これに限られない。例えば、全てのペアの測定結果の中からユーザが選択するようにしても良い。この場合、熱流式体温計10から体温表示装置60側へは、全てのペアの測定結果を送信する。そして、体温表示装置60において当該全てのペアの測定結果を表示し、それを参照してユーザが選択を行なう。 (Modification 2)
In the above-described embodiment, one of the measurement result of the first pair and the measurement result of the second pair is selected based on the temperature relationship measured by the first temperature sensor 21 of eachmeasurement unit 20. Although the case has been described, the present invention is not limited to this. For example, the user may select from the measurement results of all pairs. In this case, the measurement results of all pairs are transmitted from the heat flow thermometer 10 to the body temperature display device 60 side. And the measurement result of all the said pairs is displayed in the body temperature display apparatus 60, and a user makes a selection with reference to it.
上述した実施形態では、測定ユニット20それぞれの第1の温度センサ21により測定された温度の関係に基づいて、第1のペアの測定結果と第2のペアの測定結果とのいずれかを選択する場合について説明したが、これに限られない。例えば、全てのペアの測定結果の中からユーザが選択するようにしても良い。この場合、熱流式体温計10から体温表示装置60側へは、全てのペアの測定結果を送信する。そして、体温表示装置60において当該全てのペアの測定結果を表示し、それを参照してユーザが選択を行なう。 (Modification 2)
In the above-described embodiment, one of the measurement result of the first pair and the measurement result of the second pair is selected based on the temperature relationship measured by the first temperature sensor 21 of each
(変形例3)
また、上述した実施形態では、熱抵抗体23それぞれに、第1の温度センサ21と、第2の温度センサ22とが配される場合について説明したが、これに限られない。例えば、均一化部材11の効果を利用して、熱抵抗体23それぞれに配されている第2の温度センサ22を共有する構成としても良い。また、第2の温度センサ22は、均一化部材11の体表面側の面のいずれかの位置に配置されていればよく、必ずしも第1の温度センサ21と対向した位置に配置されていなくても良い。 (Modification 3)
Moreover, although embodiment mentioned above demonstrated the case where the 1st temperature sensor 21 and the 2nd temperature sensor 22 were distribute | arranged to each thermal resistor 23, it is not restricted to this. For example, it is good also as a structure which shares the 2nd temperature sensor 22 distribute | arranged to each thermal resistor 23 using the effect of theequalization member 11. FIG. Further, the second temperature sensor 22 only needs to be disposed at any position on the body surface side surface of the homogenizing member 11, and is not necessarily disposed at a position facing the first temperature sensor 21. Also good.
また、上述した実施形態では、熱抵抗体23それぞれに、第1の温度センサ21と、第2の温度センサ22とが配される場合について説明したが、これに限られない。例えば、均一化部材11の効果を利用して、熱抵抗体23それぞれに配されている第2の温度センサ22を共有する構成としても良い。また、第2の温度センサ22は、均一化部材11の体表面側の面のいずれかの位置に配置されていればよく、必ずしも第1の温度センサ21と対向した位置に配置されていなくても良い。 (Modification 3)
Moreover, although embodiment mentioned above demonstrated the case where the 1st temperature sensor 21 and the 2nd temperature sensor 22 were distribute | arranged to each thermal resistor 23, it is not restricted to this. For example, it is good also as a structure which shares the 2nd temperature sensor 22 distribute | arranged to each thermal resistor 23 using the effect of the
(変形例4)
また、上述した実施形態では、熱抵抗体23a及び熱抵抗体23cの熱抵抗が等しくなるように構成されている場合について説明したが、これに限られない。すなわち、熱抵抗体23a及び熱抵抗体23cの熱抵抗は、熱抵抗体23bよりも低くなるように構成されていれば良く、それぞれの熱抵抗が必ずしも同じである必要はない。 (Modification 4)
Moreover, although embodiment mentioned above demonstrated the case where it was comprised so that the thermal resistance of thethermal resistance body 23a and the thermal resistance body 23c might become equal, it is not restricted to this. In other words, the thermal resistance of the thermal resistor 23a and the thermal resistor 23c only needs to be configured to be lower than that of the thermal resistor 23b, and the respective thermal resistances are not necessarily the same.
また、上述した実施形態では、熱抵抗体23a及び熱抵抗体23cの熱抵抗が等しくなるように構成されている場合について説明したが、これに限られない。すなわち、熱抵抗体23a及び熱抵抗体23cの熱抵抗は、熱抵抗体23bよりも低くなるように構成されていれば良く、それぞれの熱抵抗が必ずしも同じである必要はない。 (Modification 4)
Moreover, although embodiment mentioned above demonstrated the case where it was comprised so that the thermal resistance of the
(変形例5)
また、上述した実施形態では、体温表示装置60のRF-IDリーダ/ライタ80から電力供給を受けて熱流式体温計10を作動させる場合について説明したが、これに限られない。例えば、熱流式体温計10の内部に電源(小型の電池等)を設け、体温表示装置60から電力供給を受けずに、単独で動作可能とするように構成しても良い。 (Modification 5)
In the above-described embodiment, the case where theheat flow thermometer 10 is operated by receiving power supply from the RF-ID reader / writer 80 of the body temperature display device 60 has been described. However, the present invention is not limited to this. For example, a power source (a small battery or the like) may be provided inside the heat flow thermometer 10 so that it can operate independently without receiving power supply from the body temperature display device 60.
また、上述した実施形態では、体温表示装置60のRF-IDリーダ/ライタ80から電力供給を受けて熱流式体温計10を作動させる場合について説明したが、これに限られない。例えば、熱流式体温計10の内部に電源(小型の電池等)を設け、体温表示装置60から電力供給を受けずに、単独で動作可能とするように構成しても良い。 (Modification 5)
In the above-described embodiment, the case where the
(変形例6)
また、上述した実施形態では、体温表示装置60と、熱流式体温計10との通信手段として、RF-IDリーダ/ライタ80とRF-IDタグとを用いた通信方式を採用する場合について説明したが、これに限られない。すなわち、他の無線通信方式や、有線での通信方式と組み合わせた構成としても良い。 (Modification 6)
In the above-described embodiment, the case where the communication method using the RF-ID reader /writer 80 and the RF-ID tag is adopted as the communication means between the body temperature display device 60 and the heat flow thermometer 10 has been described. Not limited to this. That is, a configuration combined with another wireless communication method or a wired communication method may be used.
また、上述した実施形態では、体温表示装置60と、熱流式体温計10との通信手段として、RF-IDリーダ/ライタ80とRF-IDタグとを用いた通信方式を採用する場合について説明したが、これに限られない。すなわち、他の無線通信方式や、有線での通信方式と組み合わせた構成としても良い。 (Modification 6)
In the above-described embodiment, the case where the communication method using the RF-ID reader /
(変形例7)
また、上述した実施形態では、測定ユニット20を3つ設ける場合について説明したが、これに限られない。すなわち、測定ユニット20を4つ以上設けても構わない。なお、熱流式体温計10の大きさや、測定ユニットの数を増やすことにより得られる効果(測定精度の向上に貢献する効果)等を考慮すると、測定ユニット20が3つであるのが望ましい。 (Modification 7)
Moreover, although embodiment mentioned above demonstrated the case where the threemeasurement units 20 were provided, it is not restricted to this. That is, four or more measurement units 20 may be provided. In consideration of the size of the heat flow thermometer 10 and the effects obtained by increasing the number of measurement units (effects contributing to improvement in measurement accuracy), it is desirable that the number of measurement units 20 be three.
また、上述した実施形態では、測定ユニット20を3つ設ける場合について説明したが、これに限られない。すなわち、測定ユニット20を4つ以上設けても構わない。なお、熱流式体温計10の大きさや、測定ユニットの数を増やすことにより得られる効果(測定精度の向上に貢献する効果)等を考慮すると、測定ユニット20が3つであるのが望ましい。 (Modification 7)
Moreover, although embodiment mentioned above demonstrated the case where the three
(変形例8)
また、第1のペア及び第2のペアのいずれかに優先度を設け、当該優先度に基づいていずれかのペアの測定結果を選択するようにしても良い。例えば、第1のペア及び第2のペアの両方において、熱抵抗の抵抗値に応じた温度差が得られている場合には(温度センサ(1)の測定結果<温度センサ(2)の測定結果、温度センサ(3)の測定結果<温度センサ(2)の測定結果)、当該優先度に基づいていずれかのペアの測定結果を選択すれば良い。 (Modification 8)
Moreover, priority may be provided to either the first pair or the second pair, and the measurement result of any pair may be selected based on the priority. For example, when a temperature difference corresponding to the resistance value of the thermal resistance is obtained in both the first pair and the second pair (measurement result of temperature sensor (1) <measurement of temperature sensor (2)) As a result, the measurement result of the temperature sensor (3) <the measurement result of the temperature sensor (2)), and any pair of measurement results may be selected based on the priority.
また、第1のペア及び第2のペアのいずれかに優先度を設け、当該優先度に基づいていずれかのペアの測定結果を選択するようにしても良い。例えば、第1のペア及び第2のペアの両方において、熱抵抗の抵抗値に応じた温度差が得られている場合には(温度センサ(1)の測定結果<温度センサ(2)の測定結果、温度センサ(3)の測定結果<温度センサ(2)の測定結果)、当該優先度に基づいていずれかのペアの測定結果を選択すれば良い。 (Modification 8)
Moreover, priority may be provided to either the first pair or the second pair, and the measurement result of any pair may be selected based on the priority. For example, when a temperature difference corresponding to the resistance value of the thermal resistance is obtained in both the first pair and the second pair (measurement result of temperature sensor (1) <measurement of temperature sensor (2)) As a result, the measurement result of the temperature sensor (3) <the measurement result of the temperature sensor (2)), and any pair of measurement results may be selected based on the priority.
本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
本願は、2012年2月14日提出の日本国特許出願特願2012-029807を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。
This application claims priority on the basis of Japanese Patent Application No. 2012-029807 filed on Feb. 14, 2012, the entire contents of which are incorporated herein by reference.
Claims (8)
- 被検体の体表面に接触する側に第1の温度センサが配され、前記体表面に接触する側の面と対向する側に第2の温度センサが配された熱抵抗体を複数有し、被検体の体温を測定する体温計であって、
前記第1の温度センサと前記第2の温度センサとの間が所定の熱抵抗で構成される第1の熱抵抗体と、
前記第1の温度センサと前記第2の温度センサとの間の熱抵抗が前記第1の熱抵抗体よりも低く構成される第2の熱抵抗体と、
前記第1の温度センサと前記第2の温度センサとの間の熱抵抗が前記第1の熱抵抗体よりも低く構成される第3の熱抵抗体と、
前記第1の熱抵抗体、前記第2の熱抵抗体及び前記第3の熱抵抗体の前記体表面に接触する側の面に対向する側の面を覆うように構成される均一化部材と、
前記第1の熱抵抗体、前記第2の熱抵抗体及び前記第3の熱抵抗体それぞれの前記第1の温度センサにより測定された温度の関係に基づいて、前記第1の熱抵抗体及び前記第2の熱抵抗体により構成される第1のペアと、前記第1の熱抵抗体及び前記第3の熱抵抗体により構成される第2のペアとのうちのいずれかのペアを選択する選択手段と、
前記選択手段により選択されたペアに含まれる各温度センサの測定結果に基づいて前記深部体温を算出する算出手段と
を具備することを特徴とする体温計。 A plurality of thermal resistors in which a first temperature sensor is disposed on a side that contacts the body surface of the subject, and a second temperature sensor is disposed on a side facing the surface that contacts the body surface; A thermometer for measuring the temperature of a subject,
A first thermal resistor having a predetermined thermal resistance between the first temperature sensor and the second temperature sensor;
A second thermal resistor configured to have a thermal resistance between the first temperature sensor and the second temperature sensor lower than that of the first thermal resistor;
A third thermal resistor configured to have a thermal resistance between the first temperature sensor and the second temperature sensor lower than that of the first thermal resistor;
A homogenizing member configured to cover a surface of the first thermal resistor, the second thermal resistor, and the third thermal resistor that are opposed to a surface that is in contact with the body surface; ,
Based on the temperature relationship measured by the first temperature sensor of each of the first thermal resistor, the second thermal resistor, and the third thermal resistor, the first thermal resistor and Select one of the first pair composed of the second thermal resistor and the second pair composed of the first thermal resistor and the third thermal resistor Selection means to
A thermometer comprising: calculation means for calculating the deep body temperature based on a measurement result of each temperature sensor included in the pair selected by the selection means. - 前記選択手段は、
前記第2の熱抵抗体及び前記第3の熱抵抗体の前記第1の温度センサの測定温度のうちのいずれか一方が、前記第1の熱抵抗体の前記第1の温度センサにより測定された測定温度よりも低ければ、当該低い測定温度を測定した第1の温度センサを配する熱抵抗体を含むペアを選択する
ことを特徴とする請求項1記載の体温計。 The selection means includes
One of the measured temperatures of the first temperature sensor of the second thermal resistor and the third thermal resistor is measured by the first temperature sensor of the first thermal resistor. 2. The thermometer according to claim 1, wherein if the temperature is lower than the measured temperature, a pair including a thermal resistor that arranges the first temperature sensor that measures the low measured temperature is selected. - 前記選択手段は、
前記第2の熱抵抗体及び前記第3の熱抵抗体の前記第1の温度センサの測定温度のうちの両方が、前記第1の熱抵抗体の前記第1の温度センサにより測定された測定温度よりも低ければ、予め決められた優先度に基づいて、前記第1のペアと前記第2のペアとのうちのいずれか一方のペアを選択する
ことを特徴とする請求項1又は2記載の体温計。 The selection means includes
A measurement in which both of the measured temperatures of the first temperature sensor of the second thermal resistor and the third thermal resistor are measured by the first temperature sensor of the first thermal resistor. The pair of the first pair and the second pair is selected based on a predetermined priority if the temperature is lower than the temperature. Thermometer. - 前記第1の熱抵抗体及び前記第3の熱抵抗体は、前記第1の温度センサと前記第2の温度センサとの間の熱抵抗が等しい
ことを特徴とする請求項1から3のいずれか1項に記載の体温計。 4. The thermal resistance between the first temperature sensor and the second temperature sensor is equal between the first thermal resistor and the third thermal resistor. 5. The thermometer according to claim 1. - 前記第1の熱抵抗体、前記第2の熱抵抗体及び前記第3の熱抵抗体の側面を取り囲むように配される断熱部材と、
周縁部分が前記断熱部材の前記体表面に接触する側の面と対向する側の面によって固定され、前記均一化部材に対して所定の空間をもって配された保護部材と
を更に具備することを特徴とする請求項1から4のいずれか1項に記載の体温計。 A heat insulating member disposed so as to surround side surfaces of the first thermal resistor, the second thermal resistor, and the third thermal resistor;
And a protective member that is fixed by a surface of the heat insulating member that faces the body surface of the heat insulating member and that faces the body surface, and is disposed with a predetermined space with respect to the uniformizing member. The thermometer according to any one of claims 1 to 4. - 前記算出手段により算出された深部体温を表示する表示手段
を更に具備することを特徴とする請求項1から5のいずれか1項に記載の体温計。 The thermometer according to any one of claims 1 to 5, further comprising display means for displaying the deep body temperature calculated by the calculating means. - 前記算出手段により算出された深部体温を体温表示装置に出力する出力手段
を更に具備することを特徴とする請求項1から5のいずれか1項に記載の体温計。 The thermometer according to any one of claims 1 to 5, further comprising output means for outputting the deep body temperature calculated by the calculation means to a body temperature display device. - 第1の温度センサとして被検体の体表面に接触する側に温度センサが配されるとともに、第2の温度センサとして前記体表面に接触する側の面と対向する側に温度センサが配される熱抵抗体を複数有し、前記被検体の体表面に貼付された状態で前記被検体の深部体温を測定する体温計と、該体温計に通信可能な体温表示装置とを具備する体温測定システムであって、
前記体温計は、
前記第1の温度センサと前記第2の温度センサとの間が所定の熱抵抗で構成される第1の熱抵抗体と、
前記第1の温度センサと前記第2の温度センサとの間の熱抵抗が前記第1の熱抵抗体よりも低く構成される第2の熱抵抗体と、
前記第1の温度センサと前記第2の温度センサとの間の熱抵抗が前記第1の熱抵抗体よりも低く構成される第3の熱抵抗体と、
前記第1の熱抵抗体、前記第2の熱抵抗体及び前記第3の熱抵抗体の前記体表面に接触する側の面に対向する側の面を覆うように構成される均一化部材と、
前記第1の熱抵抗体及び前記第2の熱抵抗体により構成される第1のペアと、前記第1の熱抵抗体及び前記第3の熱抵抗体により構成される第2のペアとにより測定された前記深部体温を示す情報をそれぞれ出力する出力手段と
を具備し、
前記体温表示装置は、
前記出力手段から前記第1のペアにより測定された前記深部体温を示す情報と、前記第2のペアにより測定された前記深部体温を示す情報とを入力する入力手段と、
前記第1の熱抵抗体、前記第2の熱抵抗体及び前記第3の熱抵抗体それぞれの前記第1の温度センサにより測定された温度の関係に基づいて、前記第1のペアと前記第2のペアとのうちのいずれかの一方のペアを選択する選択手段と、
前記選択手段により選択されたペアにより測定された前記深部体温を示す情報に基づいて前記深部体温を算出する算出手段と、
前記算出手段により算出された深部体温を表示する表示手段と
を具備することを特徴とする体温測定システム。 A temperature sensor is arranged as a first temperature sensor on the side that contacts the body surface of the subject, and a temperature sensor is arranged as a second temperature sensor on the side facing the surface that contacts the body surface. A body temperature measuring system comprising a plurality of thermal resistors, a thermometer for measuring the deep body temperature of the subject in a state of being attached to the body surface of the subject, and a body temperature display device capable of communicating with the thermometer. And
The thermometer is
A first thermal resistor having a predetermined thermal resistance between the first temperature sensor and the second temperature sensor;
A second thermal resistor configured to have a thermal resistance between the first temperature sensor and the second temperature sensor lower than that of the first thermal resistor;
A third thermal resistor configured to have a thermal resistance between the first temperature sensor and the second temperature sensor lower than that of the first thermal resistor;
A homogenizing member configured to cover a surface of the first thermal resistor, the second thermal resistor, and the third thermal resistor that are opposed to a surface that is in contact with the body surface; ,
A first pair constituted by the first thermal resistor and the second thermal resistor, and a second pair constituted by the first thermal resistor and the third thermal resistor. Output means each for outputting information indicating the measured deep body temperature, and
The body temperature display device
Input means for inputting information indicating the deep body temperature measured by the first pair and information indicating the deep body temperature measured by the second pair from the output means;
Based on the temperature relationship measured by the first temperature sensor of each of the first thermal resistor, the second thermal resistor, and the third thermal resistor, the first pair and the first Selecting means for selecting one of the two pairs;
Calculation means for calculating the deep body temperature based on information indicating the deep body temperature measured by the pair selected by the selection means;
And a display means for displaying the deep body temperature calculated by the calculation means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014500100A JP6081983B2 (en) | 2012-02-14 | 2013-02-08 | Thermometer and body temperature measurement system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012029807 | 2012-02-14 | ||
JP2012-029807 | 2012-02-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013121762A1 true WO2013121762A1 (en) | 2013-08-22 |
Family
ID=48983897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/000712 WO2013121762A1 (en) | 2012-02-14 | 2013-02-08 | Clinical thermometer and body temperature measurement system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6081983B2 (en) |
WO (1) | WO2013121762A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105395172A (en) * | 2014-09-10 | 2016-03-16 | 精工爱普生株式会社 | Heat Flow Measuring Apparatus And Metabolism Measuring Apparatus |
JP2016114467A (en) * | 2014-12-15 | 2016-06-23 | ジオマテック株式会社 | Deep body temperature measurement system and deep body temperature measurement method |
CN105919552A (en) * | 2015-02-27 | 2016-09-07 | 精工爱普生株式会社 | Heat flow meter and electronic device |
WO2018033799A1 (en) * | 2016-08-19 | 2018-02-22 | Thalman Health Ltd. | Method and system for determination of core body temperature |
US20180049646A1 (en) * | 2016-08-19 | 2018-02-22 | Thalman Health Ltd. | System and method for monitoring core body temperature |
CN109115368A (en) * | 2018-09-13 | 2019-01-01 | 浙江大学 | A kind of non-intrusion type DIE Temperature measuring probe and the method for obtaining DIE Temperature |
US10866147B2 (en) | 2015-12-21 | 2020-12-15 | Koninklijke Philips N.V. | Heat-flow sensor |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3936845A4 (en) * | 2019-03-14 | 2022-06-29 | Biodata Bank, Inc. | Temperature sensor unit, and body core thermometer |
CN110632959A (en) * | 2019-10-18 | 2019-12-31 | 湖南晨威高科有限公司 | Charging pile internal temperature control method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6358223A (en) * | 1986-08-29 | 1988-03-14 | Tatsuo Togawa | Clinical thermometer device |
JP2007212407A (en) * | 2006-02-13 | 2007-08-23 | Kanazawa Univ | Non-heating type deep part medical thermometer and deep part temperature measuring device using it |
JP2011133300A (en) * | 2009-12-24 | 2011-07-07 | Seiko Epson Corp | Electronic thermometer and body temperature measuring method |
JP2011185820A (en) * | 2010-03-10 | 2011-09-22 | Seiko Epson Corp | Thermometer device and temperature measuring method |
JP2012112767A (en) * | 2010-11-24 | 2012-06-14 | Citizen Holdings Co Ltd | Temperature measuring device |
-
2013
- 2013-02-08 JP JP2014500100A patent/JP6081983B2/en active Active
- 2013-02-08 WO PCT/JP2013/000712 patent/WO2013121762A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6358223A (en) * | 1986-08-29 | 1988-03-14 | Tatsuo Togawa | Clinical thermometer device |
JP2007212407A (en) * | 2006-02-13 | 2007-08-23 | Kanazawa Univ | Non-heating type deep part medical thermometer and deep part temperature measuring device using it |
JP2011133300A (en) * | 2009-12-24 | 2011-07-07 | Seiko Epson Corp | Electronic thermometer and body temperature measuring method |
JP2011185820A (en) * | 2010-03-10 | 2011-09-22 | Seiko Epson Corp | Thermometer device and temperature measuring method |
JP2012112767A (en) * | 2010-11-24 | 2012-06-14 | Citizen Holdings Co Ltd | Temperature measuring device |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105395172A (en) * | 2014-09-10 | 2016-03-16 | 精工爱普生株式会社 | Heat Flow Measuring Apparatus And Metabolism Measuring Apparatus |
EP2995247A1 (en) * | 2014-09-10 | 2016-03-16 | Seiko Epson Corporation | Heat flow measuring apparatus and metabolism measuring apparatus |
JP2016114467A (en) * | 2014-12-15 | 2016-06-23 | ジオマテック株式会社 | Deep body temperature measurement system and deep body temperature measurement method |
CN105919552A (en) * | 2015-02-27 | 2016-09-07 | 精工爱普生株式会社 | Heat flow meter and electronic device |
US10866147B2 (en) | 2015-12-21 | 2020-12-15 | Koninklijke Philips N.V. | Heat-flow sensor |
WO2018033799A1 (en) * | 2016-08-19 | 2018-02-22 | Thalman Health Ltd. | Method and system for determination of core body temperature |
US20180049646A1 (en) * | 2016-08-19 | 2018-02-22 | Thalman Health Ltd. | System and method for monitoring core body temperature |
WO2018033795A3 (en) * | 2016-08-19 | 2018-04-19 | Thalman Health Ltd. | System and method for monitoring core body temperature |
US11089961B2 (en) * | 2016-08-19 | 2021-08-17 | James Foody | System and method for monitoring core body temperature |
US11224344B2 (en) | 2016-08-19 | 2022-01-18 | James Foody | Method and system for determination of core body temperature |
CN109115368A (en) * | 2018-09-13 | 2019-01-01 | 浙江大学 | A kind of non-intrusion type DIE Temperature measuring probe and the method for obtaining DIE Temperature |
CN109115368B (en) * | 2018-09-13 | 2024-02-20 | 浙江大学 | Non-invasive core temperature measurement probe and method for acquiring core temperature |
Also Published As
Publication number | Publication date |
---|---|
JP6081983B2 (en) | 2017-02-15 |
JPWO2013121762A1 (en) | 2015-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6081983B2 (en) | Thermometer and body temperature measurement system | |
EP2329240B1 (en) | Temperature sensor structure | |
JP6337416B2 (en) | Temperature measuring device | |
JP5648283B2 (en) | Electronic thermometer and body temperature measuring method | |
US8573843B2 (en) | Temperature measuring device | |
JP5647022B2 (en) | Thermometer | |
JP6468398B2 (en) | Deep thermometer | |
CN108431564A (en) | Heat flow transducer | |
CN108139274A (en) | The system and method measured for core temperature | |
JP5821449B2 (en) | Temperature measurement system and temperature calculation method | |
JP2013044624A (en) | Clinical thermometer | |
CN108871609A (en) | A kind of wearable temperature measurement patch of long-time cycle | |
EP3699570A1 (en) | Core body temperature sensor and method for the manufacturing thereof | |
JP2016057199A (en) | Temperature measurement device and temperature measurement method | |
WO2012042759A1 (en) | Clinical thermometer | |
WO2019133601A1 (en) | Body core temperature sensor with two tegs | |
JP2012098259A (en) | Temperature measurement device | |
JP2013200152A (en) | Clinical thermometer | |
JP5898204B2 (en) | Thermometer | |
US11982572B2 (en) | Stick-on thermometer | |
JP2013170907A (en) | Thermometer | |
JP2012073128A (en) | Clinical thermometer | |
JP5971394B2 (en) | Temperature measurement system and temperature calculation method | |
JP2013044625A (en) | Clinical thermometer | |
JP5562212B2 (en) | Temperature measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13749517 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014500100 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13749517 Country of ref document: EP Kind code of ref document: A1 |