WO2013121518A1 - Measuring apparatus and measuring method - Google Patents

Measuring apparatus and measuring method Download PDF

Info

Publication number
WO2013121518A1
WO2013121518A1 PCT/JP2012/053369 JP2012053369W WO2013121518A1 WO 2013121518 A1 WO2013121518 A1 WO 2013121518A1 JP 2012053369 W JP2012053369 W JP 2012053369W WO 2013121518 A1 WO2013121518 A1 WO 2013121518A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
intensity
film
measurement
incident
Prior art date
Application number
PCT/JP2012/053369
Other languages
French (fr)
Japanese (ja)
Inventor
健夫 山田
慎吾 河合
眞治 林
崇寛 山倉
山本 猛
Original Assignee
株式会社ニレコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニレコ filed Critical 株式会社ニレコ
Priority to PCT/JP2012/053369 priority Critical patent/WO2013121518A1/en
Publication of WO2013121518A1 publication Critical patent/WO2013121518A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method

Definitions

  • the present invention relates to a measuring apparatus and a measuring method for obtaining at least one of the thickness and density of a film formed on a substrate surface by measuring reflected light of light irradiated on the measuring surface.
  • an ellipsometer for example, Patent Document 1
  • spectral reflectance reflection with respect to wavelength
  • a measuring apparatus hereinafter referred to as a PV (Peak-Valley) apparatus
  • Patent Document 2 measures a film thickness from a wavelength indicating a local maximum value or a wavelength indicating a local minimum value.
  • a measuring apparatus and a measuring method using a color characteristic variable have been developed by the same applicant as the applicant of the present application (Patent Document 3).
  • These measuring apparatuses and measuring methods measure only the film thickness of a film formed on a flat surface.
  • the manufacturing process when you want to measure the thickness and density of a film formed on a highly specular substrate, or when you want to measure the thickness of a film formed on a rough substrate surface There is. In these cases, physical characteristics such as the thickness and density of the film can be identified by visually observing the manner of reflection when irradiated with light.
  • the thickness and density of the film formed on the substrate surface with high specularity and the surface of the substrate with roughness were measured by measuring the reflection method when irradiated with light.
  • a measuring apparatus and measuring method capable of measuring the thickness of the film have not been developed.
  • JP 2009-68937 A Japanese Patent No. 3532165 Japanese Patent No. 4482618
  • the thickness and density of the film formed on the highly specular substrate surface and the roughness on the substrate surface were measured by measuring the reflection method when irradiated with light. There is a need for a measuring apparatus and method that can measure the thickness of a film.
  • a measuring apparatus includes a head including a light source and a light intensity sensor, and a data processing unit, and irradiates the measurement target with light from the light source and reflects the intensity of the reflected light. It is a measuring apparatus that measures at least one of the thickness and density of a film formed on a substrate by measuring with the light intensity sensor.
  • the head is configured to be able to change an incident angle of light from the light source with respect to a measurement target
  • the data processing unit is configured such that the light from the light source has an incident angle of 0 degree with respect to the measurement target.
  • the thickness and density of the film using the intensity of the reflected light when incident on and the intensity of the reflected light when the light from the light source is incident at any incident angle between 1 and 20 degrees. Measure at least one of
  • the film is formed by the thickness or density of the film formed on a highly specular surface such as a metal surface or on a less specular surface that diffuses light such as a paper surface.
  • the thickness or density of the film can be measured by utilizing the fact that the intensity or specularity of the reflected light of the provided surface changes.
  • the data processing unit determines the film from the intensity of the reflected light when the light from the light source is incident on the measurement object at an incident angle of 0 degrees.
  • the film density is determined from the ratio to the intensity of reflected light when incident at an angle.
  • the intensity of reflected light of light incident perpendicularly to the surface varies depending on the thickness of a film formed on a highly specular surface such as a metal surface.
  • the thickness of the film can be measured.
  • the density of the film can be measured by utilizing the fact that the specularity of the surface provided with the film changes depending on the density of the film formed on a highly specular surface such as a metal surface.
  • the data processing unit determines the intensity of the reflected light when the light from the light source is incident on the measurement object at an incident angle of 0 degrees, and the The thickness of the film is determined from the ratio with the intensity of the reflected light when the light from the light source is incident at any incident angle between 1 degree and 20 degrees.
  • the specularity of the surface provided with the film changes depending on the thickness of the film formed on the surface that diffuses light such as the surface of paper (surface with low specularity). Can be used to measure the film thickness.
  • the head includes a beam splitter.
  • the light emitted from the head and the light incident on the head reaching the light intensity sensor can travel along the same path by the beam splitter.
  • the measurement method according to the second aspect of the present invention is a measurement method for measuring at least one of the thickness and density of a film formed on a substrate using a head including a light source and a light intensity sensor.
  • the light from the light source is applied to the measurement object from the head so that the light is incident on the measurement object at an incident angle of 0 degrees, and the intensity of the reflected light is the light intensity.
  • the film is formed by the thickness or density of the film formed on a highly specular surface such as a metal surface or on a less specular surface that diffuses light such as a paper surface.
  • the thickness or density of the film can be measured by utilizing the fact that the intensity or specularity of the reflected light of the provided surface changes.
  • FIG. 5 is a diagram illustrating a distribution of film thicknesses calculated using Equation (3) from the intensity of reflected light at five pressed locations indicated by 5. It is a figure which shows the distribution of the film thickness calculated using Formula (3) from the intensity
  • FIG. 1 is a diagram showing a configuration of a measuring apparatus according to an embodiment of the present invention.
  • the measurement apparatus includes a measurement head 100, a data processing unit 200, and a control unit 300.
  • a data storage unit (not shown) is connected to the data processing unit 200.
  • the measuring head 100 acquires data to be measured.
  • the data processing unit 200 receives data to be measured from the measuring head 100 and processes the data to obtain the physical characteristics of the film formed on the substrate.
  • the control unit 300 controls the processing of the measurement head 100 and the data processing unit 200 so that the measurement head 100 acquires data to be measured in an appropriate state and the data processing unit can receive the data.
  • FIG. 2 is a diagram showing the configuration of the measurement head 100.
  • the measurement head 100 includes a light emitting diode light source 101, an optical system 103, a beam splitter 105, a measurement window 107, and a light intensity sensor 109.
  • the light emitting diode light source 101 may be a combination of an ultraviolet light emitting diode light source having a peak at 430 nm and a white light emitting diode light source having a peak near 580 nm.
  • the optical system 3 is for collimating the light from the light source. Specifically, the optical system 3 is an optical system that combines a cylindrical collimator and a lens.
  • the beam splitter 105 is a cube-type non-polarizing beam splitter (product code 47009-J) manufactured by Edmond Co., and the difference in transmission / reflection characteristics of p-polarized light and s-polarized light is 6% over a wide band of 430 nm to 670 nm. Is controlled within.
  • the light intensity sensor 109 may be a photodiode or a CCD. Alternatively, a spectroscopic sensor described in Patent Document 3 may be used.
  • the light from the light emitting diode light source 101 is collimated by the optical system 103, reflected by the beam splitter 105, passes through the measurement window 107, and reaches the measurement object 500.
  • Part of the light irradiated onto the measurement target surface travels in the opposite direction along the same path as the light irradiated onto the measurement target surface, reaches the beam splitter 105, passes through the beam splitter 105, and passes through the light intensity sensor 109.
  • light irradiated on the measurement object 500 is represented by a solid line
  • light reflected by the measurement object 500 is represented by a dotted line.
  • the light from the light-emitting diode light source 101 is irradiated perpendicularly to the surface of the measuring object 500, that is, at an incident angle of 0 degrees.
  • the position of the measurement head 100 can be moved so that light from the light-emitting diode light source 101 of the measurement head 100 is irradiated on the surface of the measurement object 500 at various incident angles. It is configured.
  • FIG. 3 is a diagram illustrating a configuration of the rotation mechanism unit 150 that rotates the measurement head 100.
  • the measurement head 100 can irradiate light from the light-emitting diode light source 101 with respect to the surface of the measurement object 500 at an incident angle ⁇ of 0 to 20 degrees.
  • a cam follower 151 As the cam follower 151 moves along the straight line A by the uniaxial drive mechanism, the guide 153 rotates about the measurement point P along the rail 155. Since the measuring head 100 is attached to the guide 153, it rotates together with the guide 153.
  • the angle setting resolution of the incident angle ⁇ is preferably higher than 0.1 degree.
  • the moving mechanism of the measuring head 100 for causing the light from the diode light source 101 to irradiate the surface of the measuring object 500 at various incident angles is of any other configuration. Good.
  • the first measurement object is a negative electrode material of a lithium ion battery.
  • the negative electrode material is a coating process in which carbon particles dissolved in water or an oily solvent are coated on a copper thin film (thickness: 10 to 25 micrometers) as a base material, and then dried in a drying furnace. And wound on a roll. Thereafter, the other side is again treated with a coating process to coat the carbon particles. Then, it is pressed with a roll press.
  • FIG. 4 is a diagram showing the appearance of the first sample.
  • sample 1 A first sample (hereinafter referred to as sample 1) was prepared by preparing a negative electrode material before pressing with an outer diameter of 110 mm and rolling down a round bar with an outer diameter of 33 mm into five places using a press. The five places that were reduced were No. 1 to No. Called 5. No. 1 to No. Up to 5, the rolling load was increased with increasing numbers.
  • FIG. 5 is a diagram showing the appearance of the second sample.
  • sample 2 Prepare a second sample (hereinafter referred to as sample 2) by preparing another negative electrode material with an outer diameter of 110 millimeters before pressing and rolling down a round bar with an outer diameter of 66 millimeters into one place with a press. did.
  • the measurement apparatus irradiates the measurement target with light and acquires the data of the reflected light.
  • the spectral sensor described in Patent Document 3 is used, the reflected color tristimulus value is obtained by the processor from the spectral reflectance distribution obtained by the spectral sensor, and the reflected color tristimulus value is obtained.
  • Y was defined as the intensity of reflected light.
  • the thickness of the film made of carbon particles formed of a thin film of copper of sample 1 is measured.
  • FIG. 6 is a diagram showing the intensity of the reflected light of the sample 1 at five locations where it is reduced and where it is not reduced.
  • the horizontal axis in FIG. 6 indicates the measurement position, and the vertical axis in FIG. 6 indicates the intensity (Y value) of the reflected light.
  • the light from the light-emitting diode light source 101 was incident perpendicular to the measurement surface, that is, with an incident angle of 0 degrees.
  • FIG. 7 is a graph showing the relationship between the reflected light intensity (Y value) and the actually measured film thickness at five locations where the sample 1 is reduced and where it is not reduced.
  • the data of FIG. 6 is used as the intensity (Y value) of reflected light in FIG.
  • the horizontal axis of FIG. 7 shows the number of measurement points, and the vertical axis of FIG. 7 shows the intensity of reflected light (Y value) (left scale) and the measured film thickness (right scale).
  • the actually measured film thickness was obtained by measuring the film thickness at the five locations where the reduction was performed and the portion where the reduction was not performed at a location considered to be close to the maximum value of Y with a contact-type film thickness meter.
  • FIG. 7 shows that the value of Y increases as the measured film thickness decreases.
  • the transmitted light amount T of the absorbing material can be expressed by the Lambert Bale equation.
  • T A x exp (-Bd) (1)
  • Ln (T) Ln (A) ⁇ Bd
  • d is the thickness of the absorbent, and A and B are constants.
  • FIG. 8 is a diagram showing the relationship between the intensity of reflected light and the film thickness.
  • the horizontal axis in FIG. 8 represents the logarithmic value of the intensity (Y) of the reflected light
  • the vertical axis in FIG. 8 represents the film thickness value.
  • R 2 indicates the degree of correlation. No. 3 to No.
  • the data processing unit 109 can determine the film thickness using the light intensity Y.
  • the coefficients of Equation (3) and Equation (4) may be stored in the data storage unit for each type of negative electrode material, and may be used according to the type of negative electrode material.
  • FIG. 9 shows the location where the sample 1 is not crushed and 1 to No.
  • FIG. 5 is a diagram illustrating a distribution of film thicknesses calculated using Equation (3) from the intensity of reflected light at five pressed locations indicated by 5.
  • the horizontal axis in FIG. 9 indicates the measurement position, and the vertical axis in FIG. 9 indicates the calculated film thickness.
  • FIG. 10 is a diagram showing the distribution of the film thickness calculated using the equation (3) from the intensity of the reflected light and the measured film thickness distribution for the sample 2 including the unrolled portion and the pressed portion.
  • the horizontal axis of FIG. 10 shows the measurement position, and the vertical axis of FIG. 10 shows the intensity of reflected light (right scale) and the film thickness (left scale).
  • the calculated film thickness substantially corresponds to the actually measured film thickness. Equation (3) is created using the data of sample 1, but it can be seen that it can be applied to sample 2.
  • the density of the film made of carbon particles formed as a copper thin film of Sample 1 is measured.
  • the “gloss” of the surface increases.
  • “Gloss” in this case is specularity, and is the intensity ratio between specular reflection light and diffuse reflection light when light is irradiated on the surface.
  • specularity the intensity ratio between specular reflection light and diffuse reflection light when light is irradiated on the surface.
  • FIG. 11 is a diagram illustrating a result of irradiating sample 1, sample 2, and the sample after being pressed in an actual process with the measurement apparatus according to the embodiment of the present invention, and acquiring data of the reflected light.
  • the horizontal axis in FIG. 11 indicates the incident angle, that is, the measurement angle
  • the vertical axis in FIG. 11 indicates the intensity of the reflected light, that is, the value of Y.
  • the intensity of the reflected light is maximum when the measurement angle is 0 degrees, and the intensity of the reflected light decreases as the measurement angle increases.
  • the change in the intensity of the reflected light with respect to the change in the measurement angle is greatest in the sample after being pressed in the actual process.
  • the pseudo glossiness Q ⁇ Gloss ( ⁇ ) with respect to the measurement angle ⁇ is defined by the following equation. That is, the pseudo glossiness Q ⁇ Gloss ( ⁇ ) at the measurement angle ⁇ is a ratio between the intensity of the reflected light at the measurement angle 0 ° and the intensity of the reflected light at the measurement angle ⁇ .
  • Q ⁇ Gloss ( ⁇ ) Y (0 °) / Y ( ⁇ ) (5)
  • the pseudo glossiness increases as the specularity of the measurement target surface increases. When the specularity is high, the ratio of the change in the pseudo glossiness with respect to the change in the measurement angle ⁇ is increased.
  • FIGS. 12 and 13 are diagrams showing the relationship between the pseudo glossiness and the intensity of reflected light for each sample.
  • FIG. 12 shows the relationship when the measurement angles are 4, 6, 8, 10, and 12 degrees
  • FIG. 13 shows the measurement angles of 14, 16, 18, and 20 degrees. The relationship in the case of is shown.
  • the horizontal axis of FIGS. 12 and 13 indicates the pseudo glossiness Q ⁇ Gloss ( ⁇ ), and the vertical axis indicates the intensity of reflected light when the measurement angle is 0 degree, that is, Y (0 °).
  • 12 and 13 show an approximate expression of the relationship between y and x and the degree of correlation R 2 for each measurement angle, where x is the pseudo glossiness Q ⁇ Gloss ( ⁇ ) and y is the intensity of light.
  • FIG. 14 is a diagram showing the relationship between the measurement angle of the pseudo glossiness and the correlation degree.
  • the horizontal axis in FIG. 14 indicates the measurement angle of the pseudo glossiness, and the vertical axis in FIG. 14 indicates the degree of correlation.
  • the degree of correlation increases.
  • the measurement angle becomes larger than 10 degrees, the correlation degree gradually becomes saturated.
  • the measurement angle is increased, it is necessary to enlarge the rotation mechanism unit 150 of the measurement head 100, and it is easily affected by the distance to the measurement target. Therefore, in this embodiment, the measurement angle other than 0 degrees is set to 10 degrees.
  • the measurement angle is determined by the gloss level (specularity) of the measurement target.
  • the portion that has not been reduced is close to the complete diffusion surface, so the measurement angle other than 0 degrees was set to 10 degrees.
  • the specularity of the measurement object is high and the gloss level is high, it is necessary to reduce the measurement angle.
  • the structure is such that the measurement angle can be changed from 0 degree to 20 degrees, the angle setting resolution is higher than 0.1 degree, and the measurement angle other than 0 degree is from 1 degree to 20 degrees. If the angle is any angle between degrees, it can correspond to a measurement object from the mirror surface to the diffusion surface.
  • FIG. 15 is a diagram showing the relationship between the pseudo glossiness and the film density.
  • the horizontal axis in FIG. 15 indicates the logarithmic pseudo glossiness, and the vertical axis in FIG. 15 indicates the film density.
  • the density of the sample film is obtained as follows. The weight of the sample is measured with an electronic balance, and the weight of the base material (copper foil) is subtracted. The film thickness of the sample before pressing is measured with a contact-type film thickness meter to determine the film thickness d0.
  • FIG. 16 is a diagram summarizing the measurement results of film thickness and density by the measuring apparatus of the present embodiment.
  • the horizontal axis of FIG. 16 shows the sample, and the vertical axis of FIG. 16 shows the measured thickness value (right scale), measured density value (Y value) (left scale), and reflected light intensity (left scale). Scale) and pseudo-glossiness (left scale).
  • the thickness of the film on each side of the negative electrode material being run for processing The thickness and density can be measured.
  • the measurement time is increased. Therefore, if a light receiving sensor such as a photodiode is used as the light intensity sensor 109, the measurement time can be set to 0.1 milliseconds, which can correspond to the measurement while the measurement target is traveling.
  • the above description is about the thickness and density of the negative electrode material film of a lithium ion battery, which is based on a copper thin film.
  • the measuring apparatus and method according to the present invention can also be applied to the thickness and density of the positive electrode material film of a lithium ion battery, which is based on an aluminum thin film.
  • the intensity of the reflected light of light incident perpendicularly to the surface is increased by the thickness of the film formed on the highly specular surface such as a metal surface.
  • the change can be used to measure the thickness of the film.
  • the density of the film can be measured by utilizing the fact that the specularity of the surface provided with the film changes depending on the density of the film formed on a highly specular surface such as a metal surface.
  • the second measurement object is the thickness of the glue film applied to the paper surface.
  • the surface of the paper before applying the glue has roughness, and the irradiated light is diffused. That is, the specularity of the surface is low.
  • the glue film on the paper surface acts as a lens, and the light that is diffusely reflected decreases and the light that is specularly reflected increases. That is, the specularity of the surface increases. Therefore, if the pseudo glossiness is measured by the measuring apparatus according to the embodiment of the present invention, the film thickness of the paste on the paper surface can be measured.
  • FIG. 17 is a diagram showing the relationship between the measurement angle and the intensity of reflected light (Y value) for paper with a paste film applied to the surface.
  • the ratio of the intensity of the reflected light when the measurement angle is 0 degree and the intensity of the reflected light when the measurement angle is 8 degrees of the sample 1 and the sample 2 which are papers with a paste film applied on the surface is Larger than the value of paper (base paper) to which no glue film is applied. Accordingly, the thickness of the glue film is measured by measuring the pseudo glossiness using the intensity of the reflected light when the measurement angle is 8 degrees.
  • the pseudo glossiness is used instead of the reflected light intensity when the measurement angle is 0 degrees.
  • the intensity of the reflected light when the measurement angle is 0 degrees is This is because the pseudo glossiness does not vary so much depending on the state of the surface of the base paper, while it varies greatly depending on the state of the surface of the base paper, and it is easier to determine the reference value.
  • the thickness of the film applied to the surface of the paper is measured by measuring the pseudo glossiness using the intensity of the reflected light when the measurement angle is 8 degrees by the measurement apparatus according to the embodiment of the present invention. Can be measured.
  • the thickness of the film formed on the surface that diffuses light is reduced.
  • the film thickness can be measured by utilizing the change in specularity.
  • FIG. 18 is a flowchart showing a method for measuring the thickness or density of a film according to the present invention.
  • step S010 of FIG. 18 the intensity of the reflected light at an incident angle of 0 degrees is measured by the measuring head 100.
  • step S020 of FIG. 18 the intensity of the reflected light at an incident angle of 10 degrees is measured by the measuring head 100.
  • step S030 in FIG. 18 the data processing unit 200 obtains at least one of the thickness and density of the film from the intensity of the reflected light at the incident angles of 0 degrees and 10 degrees.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mathematical Physics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A film thickness measuring apparatus of the present invention is provided with: a head, which is provided with a light source and a light intensity sensor; and a data processing unit. In the measuring apparatus, out of light, which is radiated from the light source to a subject to be measured, and which is reflected, intensity of light radiated from the head is measured by means of the light intensity sensor, thereby measuring thickness and/or density of a film formed on a base material. The head is configured such that an incidence angle of the light radiated from the light source can be changed with respect to the subject to be measured, and the data processing unit measures the film thickness and/or the density of the film using intensity of reflection light in the cases where the light radiated from the light source entered at an incidence angle of 0 degree into the subject to be measured, and also using intensity of reflection light in the cases where the light radiated from the light source entered at an incidence angle of 1-20 degrees.

Description

測定装置及び測定方法Measuring apparatus and measuring method
 本発明は、基材面に形成された膜の厚さ及び密度の少なくとも一方を、測定面に照射された光の反射光を測定することによって求める測定装置及び測定方法に関する。 The present invention relates to a measuring apparatus and a measuring method for obtaining at least one of the thickness and density of a film formed on a substrate surface by measuring reflected light of light irradiated on the measuring surface.
 基材面に形成された膜の膜厚を、測定面に照射された光の反射光を測定することによって測定する装置としては、エリプソメータ(たとえば、特許文献1)や分光反射率(波長に対する反射率の分布)データの極大値を示す波長又は極小値を示す波長から膜厚を測定する測定装置(以下、PV(Peak-Valley)装置と呼称する)(たとえば、特許文献2)がある。また、本願の出願人と同一出願人により、色の特性変数を利用する測定装置及び測定方法が開発されている(特許文献3)。 As an apparatus for measuring the film thickness of the film formed on the substrate surface by measuring the reflected light of the light irradiated on the measurement surface, an ellipsometer (for example, Patent Document 1) or spectral reflectance (reflection with respect to wavelength) is used. There is a measuring apparatus (hereinafter referred to as a PV (Peak-Valley) apparatus) (for example, Patent Document 2) that measures a film thickness from a wavelength indicating a local maximum value or a wavelength indicating a local minimum value. Further, a measuring apparatus and a measuring method using a color characteristic variable have been developed by the same applicant as the applicant of the present application (Patent Document 3).
 これらの測定装置及び測定方法は、平坦な面上に形成された膜の膜厚のみを測定対象とするものである。他方、製造プロセスにおいて、鏡面性の高い基材上に形成された膜の厚さ及び密度を測定したい場合や、粗さを持った基材面上に形成された膜の厚さを測定したい場合がある。これらの場合の中には、光を照射した場合の反射の仕方を目視によって観察することによって膜の厚さや密度などの物理的特性を識別することが可能な場合がある。 These measuring apparatuses and measuring methods measure only the film thickness of a film formed on a flat surface. On the other hand, in the manufacturing process, when you want to measure the thickness and density of a film formed on a highly specular substrate, or when you want to measure the thickness of a film formed on a rough substrate surface There is. In these cases, physical characteristics such as the thickness and density of the film can be identified by visually observing the manner of reflection when irradiated with light.
 しかし、光を照射した場合の反射の仕方を測定することによって、鏡面性の高い基材面上に形成された膜の厚さ及び密度や、粗さを持った基材面上に形成された膜の厚さを測定することのできる測定装置及び測定方法は開発されていなかった。 However, the thickness and density of the film formed on the substrate surface with high specularity and the surface of the substrate with roughness were measured by measuring the reflection method when irradiated with light. A measuring apparatus and measuring method capable of measuring the thickness of the film have not been developed.
特開2009-68937号公報JP 2009-68937 A 特許3532165号公報Japanese Patent No. 3532165 特許4482618号公報Japanese Patent No. 4482618
 したがって、光を照射した場合の反射の仕方を測定することによって、鏡面性の高い基材面上に形成された膜の厚さ及び密度や、粗さを持った基材面上に形成された膜の厚さを測定することのできる測定装置及び測定方法に対するニーズがある。 Therefore, the thickness and density of the film formed on the highly specular substrate surface and the roughness on the substrate surface were measured by measuring the reflection method when irradiated with light. There is a need for a measuring apparatus and method that can measure the thickness of a film.
 本発明の第1の態様による測定装置は、光源と光強度センサとを備えたヘッドと、データ処理部と、を備え、前記光源から測定対象に光を照射して反射された光の強度を前記光強度センサで測定することにより、基材上に形成された膜の厚さ及び密度の少なくとも一方を測定する測定装置である。前記ヘッドは、前記光源からの光の、測定対象に対する入射角を変えることができるように構成されており、前記データ処理部は、前記光源からの光が測定対象に対して0度の入射角で入射した場合の反射光の強度、及び、前記光源からの光が1度から20度の間のいずれかの入射角で入射した場合の反射光の強度を使用して膜の厚さ及び密度の少なくとも一方を測定する。 A measuring apparatus according to a first aspect of the present invention includes a head including a light source and a light intensity sensor, and a data processing unit, and irradiates the measurement target with light from the light source and reflects the intensity of the reflected light. It is a measuring apparatus that measures at least one of the thickness and density of a film formed on a substrate by measuring with the light intensity sensor. The head is configured to be able to change an incident angle of light from the light source with respect to a measurement target, and the data processing unit is configured such that the light from the light source has an incident angle of 0 degree with respect to the measurement target. The thickness and density of the film using the intensity of the reflected light when incident on and the intensity of the reflected light when the light from the light source is incident at any incident angle between 1 and 20 degrees. Measure at least one of
 本態様の測定装置によれば、金属面などの鏡面性の高い面上、または紙の面などの光を拡散する鏡面性の低い面上に形成された膜の厚さまたは密度によって、膜を備えた面の反射光の強度または鏡面性が変化することを利用して、膜の厚さまたは密度を測定することができる。 According to the measuring apparatus of this aspect, the film is formed by the thickness or density of the film formed on a highly specular surface such as a metal surface or on a less specular surface that diffuses light such as a paper surface. The thickness or density of the film can be measured by utilizing the fact that the intensity or specularity of the reflected light of the provided surface changes.
 本発明の第1の態様の第1の実施形態によれば、前記データ処理部が、前記光源からの光が測定対象に対して0度の入射角で入射した場合の反射光の強度から膜の厚さを求め、前記光源からの光が測定対象に対して0度の入射角で入射した場合の反射光の強度と前記光源からの光が1度から20度の間のいずれかの入射角で入射した場合の反射光の強度との比から膜の密度を求めるように構成されている。 According to the first embodiment of the first aspect of the present invention, the data processing unit determines the film from the intensity of the reflected light when the light from the light source is incident on the measurement object at an incident angle of 0 degrees. The intensity of the reflected light when the light from the light source is incident on the measurement object at an incident angle of 0 degrees and the light from the light source is incident between 1 degree and 20 degrees. The film density is determined from the ratio to the intensity of reflected light when incident at an angle.
 本実施形態の測定装置によれば、金属面などの鏡面性の高い面上に形成された膜の厚さによって面に垂直に入射させた光の反射光の強度が変化することを利用して膜の厚さを測定することができる。また、金属面などの鏡面性の高い面上に形成された膜の密度によって、膜を備えた面の鏡面性が変化することを利用して、膜の密度を測定することができる。 According to the measuring apparatus of the present embodiment, the intensity of reflected light of light incident perpendicularly to the surface varies depending on the thickness of a film formed on a highly specular surface such as a metal surface. The thickness of the film can be measured. In addition, the density of the film can be measured by utilizing the fact that the specularity of the surface provided with the film changes depending on the density of the film formed on a highly specular surface such as a metal surface.
 本発明の第1の態様の第2の実施形態によれば、前記データ処理部が、前記光源からの光が測定対象に対して0度の入射角で入射した場合の反射光の強度と前記光源からの光が1度から20度の間のいずれかの入射角で入射した場合の反射光の強度との比から膜の厚さを求めるように構成されている。 According to the second embodiment of the first aspect of the present invention, the data processing unit determines the intensity of the reflected light when the light from the light source is incident on the measurement object at an incident angle of 0 degrees, and the The thickness of the film is determined from the ratio with the intensity of the reflected light when the light from the light source is incident at any incident angle between 1 degree and 20 degrees.
 本実施形態の測定装置によれば、紙の面などの光を拡散する面(鏡面性の低い面)上に形成された膜の厚さによって、膜を備えた面の鏡面性が変化することを利用して膜の厚さを測定することができる。 According to the measuring apparatus of the present embodiment, the specularity of the surface provided with the film changes depending on the thickness of the film formed on the surface that diffuses light such as the surface of paper (surface with low specularity). Can be used to measure the film thickness.
 本発明の第1の態様の第3の実施形態によれば、前記ヘッドが、ビーム・スプリッタを含む。 According to a third embodiment of the first aspect of the present invention, the head includes a beam splitter.
 本実施形態においては、ビーム・スプリッタによって、前記ヘッドから照射される光と、前記光強度センサに至る、前記ヘッドへ入射する光とが、同じ経路に沿って進行するようにすることができる。 In the present embodiment, the light emitted from the head and the light incident on the head reaching the light intensity sensor can travel along the same path by the beam splitter.
 本発明の第2の態様による測定方法は、光源と光強度センサとを備えたヘッドを使用して、基材上に形成された膜の厚さ及び密度の少なくとも一方を測定する測定方法である。本態様による測定方法は、光が測定対象に対して0度の入射角で入射するように前記光源からの光を前記ヘッドから測定対象に照射して、反射された光の強度を前記光強度センサで測定するステップと、光が測定対象に対して1度から20度のいずれかの入射角で入射するように前記光源からの光を前記ヘッドから測定対象に照射して、反射された光の強度を前記光強度センサで測定するステップと、前記光源からの光が測定対象に対して0度の入射角で入射した場合の反射光の強度、及び、前記光源からの光が1度から20度の間のいずれかの入射角で入射した場合の反射光の強度を使用して膜の厚さ及び密度の少なくとも一方を測定するステップと、を含む。 The measurement method according to the second aspect of the present invention is a measurement method for measuring at least one of the thickness and density of a film formed on a substrate using a head including a light source and a light intensity sensor. . In the measurement method according to this aspect, the light from the light source is applied to the measurement object from the head so that the light is incident on the measurement object at an incident angle of 0 degrees, and the intensity of the reflected light is the light intensity. A step of measuring with a sensor, and a light reflected from the head by irradiating the measurement object with light from the light source so that the light is incident on the measurement object at an incident angle of 1 to 20 degrees. Measuring the intensity of the light with the light intensity sensor, the intensity of the reflected light when the light from the light source is incident on the measurement object at an incident angle of 0 degrees, and the light from the light source from 1 degree Measuring at least one of film thickness and density using the intensity of the reflected light when incident at any angle of incidence between 20 degrees.
 本態様の測定方法によれば、金属面などの鏡面性の高い面上、または紙の面などの光を拡散する鏡面性の低い面上に形成された膜の厚さまたは密度によって、膜を備えた面の反射光の強度または鏡面性が変化することを利用して、膜の厚さまたは密度を測定することができる。 According to the measurement method of this aspect, the film is formed by the thickness or density of the film formed on a highly specular surface such as a metal surface or on a less specular surface that diffuses light such as a paper surface. The thickness or density of the film can be measured by utilizing the fact that the intensity or specularity of the reflected light of the provided surface changes.
本発明の一実施形態による測定装置の構成を示す図である。It is a figure which shows the structure of the measuring apparatus by one Embodiment of this invention. 測定ヘッドの構成を示す図である。It is a figure which shows the structure of a measurement head. 測定ヘッドを回動させる回転機構部の構成を示す図である。It is a figure which shows the structure of the rotation mechanism part which rotates a measurement head. 第1のサンプルの外観を示す図である。It is a figure which shows the external appearance of a 1st sample. 第2のサンプルの外観を示す図である。It is a figure which shows the external appearance of a 2nd sample. サンプル1の、圧下した5箇所及び圧下していない箇所の反射光の強度を示す図である。It is a figure which shows the intensity | strength of the reflected light of the sample 5 locations where it was crushed, and the location which is not crushed. サンプル1の、圧下した5箇所及び圧下していない箇所の反射光の強度(Yの値)と実測膜厚との関係を示す図である。It is a figure which shows the relationship between the intensity | strength (value of Y) of the reflected light of the sample 5 location where it was crushed, and the location which is not crushed, and measured film thickness. 反射光の強度と膜厚との関係を示す図である。It is a figure which shows the relationship between the intensity | strength of reflected light, and a film thickness. サンプル1の圧下していない箇所、及びNo.1乃至No.5で示される圧下した5箇所について、反射光の強度から式(3)を使用して計算した膜厚の分布を示す図である。The location where sample 1 was not reduced, and No. 1 to No. FIG. 5 is a diagram illustrating a distribution of film thicknesses calculated using Equation (3) from the intensity of reflected light at five pressed locations indicated by 5. 圧下していない箇所、及び圧下した個所を含むサンプル2について、反射光の強度、反射光の強度から式(3)を使用して計算した膜厚、及び実測膜厚の分布を示す図である。It is a figure which shows the distribution of the film thickness calculated using Formula (3) from the intensity | strength of reflected light, the intensity | strength of reflected light about the sample 2 containing the location which is not crushed and the crushed part, and an actual film thickness. . 本発明の実施形態による測定装置によって、サンプル1、サンプル2及び実プロセスでプレスした後のサンプルに光を照射し、その反射光のデータを取得した結果を示す図である。It is a figure which shows the result of having irradiated the sample after pressing by the measuring apparatus by embodiment of this invention, the sample 1, the sample 2, and the real process, and acquiring the data of the reflected light. 各サンプルについて、疑似光沢度と反射光の強度との関係を示す図である。It is a figure which shows the relationship between pseudo glossiness and the intensity | strength of reflected light about each sample. 各サンプルについて、疑似光沢度と反射光の強度との関係を示す図である。It is a figure which shows the relationship between pseudo glossiness and the intensity | strength of reflected light about each sample. 疑似光沢度の測定角度と相関度との関係を示す図である。It is a figure which shows the relationship between the measurement angle of pseudo glossiness, and a correlation degree. 疑似光沢度と膜の密度との関係を示す図である。It is a figure which shows the relationship between pseudo glossiness and the density of a film | membrane. 本実施形態の測定装置による膜厚及び密度の測定結果をまとめた図である。It is the figure which put together the measurement result of the film thickness and the density by the measuring apparatus of this embodiment. 表面に糊の膜を塗布した紙について、測定角度と反射光の強度(Yの値)との関係を示す図である。It is a figure which shows the relationship between a measurement angle and the intensity | strength (Y value) of reflected light about the paper which apply | coated the paste film | membrane on the surface. 本発明による膜の厚さまたは密度の測定方法を示す流れ図である。3 is a flow chart illustrating a method for measuring film thickness or density according to the present invention.
 図1は、本発明の一実施形態による測定装置の構成を示す図である。測定装置は、測定ヘッド100、データ処理部200及び制御部300を備える。データ処理部200には、図示しないデータ記憶部が接続されている。測定ヘッド100は、測定対象のデータを取得する。データ処理部200は、測定ヘッド100から測定対象のデータを受け取り、該データを処理することにより基材上に形成された膜の物理的特性を求める。制御部300は、測定ヘッド100が、適切な状態で測定対象のデータを取得し、データ処理部が該データを受け取ることができるように測定ヘッド100及びデータ処理部200の処理を制御する。 FIG. 1 is a diagram showing a configuration of a measuring apparatus according to an embodiment of the present invention. The measurement apparatus includes a measurement head 100, a data processing unit 200, and a control unit 300. A data storage unit (not shown) is connected to the data processing unit 200. The measuring head 100 acquires data to be measured. The data processing unit 200 receives data to be measured from the measuring head 100 and processes the data to obtain the physical characteristics of the film formed on the substrate. The control unit 300 controls the processing of the measurement head 100 and the data processing unit 200 so that the measurement head 100 acquires data to be measured in an appropriate state and the data processing unit can receive the data.
 図2は、測定ヘッド100の構成を示す図である。測定ヘッド100は、発光ダイオード光源101、光学系103、ビーム・スプリッタ105、計測用窓107及び光強度センサ109を含む。発光ダイオード光源101は、430nmにピークを持つ紫外発光ダイオード光源と、580nm付近にピークを持つ白色発光ダイオード光源を併用したものであってもよい。光学系3は、光源からの光をコリメートするためのものであり、具体的には、筒状のコリメータやレンズを組み合わせた光学系である。ビーム・スプリッタ105は、一例として、エドモンド社製のキューブ型無偏光ビームスプリッター(商品コード47009-J)で、430nm乃至670nmの広帯域にわたり、p偏光、s偏光の透過/反射特性の差が6%以内に制御されているものである。光強度センサ109は、フォトダイオードやCCDであってもよい。あるいは、特許文献3に記載されている分光センサを使用してもよい。 FIG. 2 is a diagram showing the configuration of the measurement head 100. The measurement head 100 includes a light emitting diode light source 101, an optical system 103, a beam splitter 105, a measurement window 107, and a light intensity sensor 109. The light emitting diode light source 101 may be a combination of an ultraviolet light emitting diode light source having a peak at 430 nm and a white light emitting diode light source having a peak near 580 nm. The optical system 3 is for collimating the light from the light source. Specifically, the optical system 3 is an optical system that combines a cylindrical collimator and a lens. As an example, the beam splitter 105 is a cube-type non-polarizing beam splitter (product code 47009-J) manufactured by Edmond Co., and the difference in transmission / reflection characteristics of p-polarized light and s-polarized light is 6% over a wide band of 430 nm to 670 nm. Is controlled within. The light intensity sensor 109 may be a photodiode or a CCD. Alternatively, a spectroscopic sensor described in Patent Document 3 may be used.
 発光ダイオード光源101からの光は、光学系103によってコリメートされた後、ビーム・スプリッタ105によって反射され、計測用窓107を通過した後、測定対象物500に至る。測定対象面に照射された光の一部は、測定対象面に照射される光と同じ経路を逆方向に進んでビーム・スプリッタ105に至り、ビーム・スプリッタ105を通過して、光強度センサ109に至る。図2において、測定対象物500に照射される光を実線で表し、測定対象物500によって反射された光を点線で表す。図2においては、発光ダイオード光源101からの光が、測定対象500の面に対して、垂直に、すなわち、0度の入射角で照射されている。実際には、測定ヘッド100の発光ダイオード光源101からの光が、測定対象物500の面に対して、種々の入射角で照射されるように、測定ヘッド100の位置を移動させることができるように構成されている。 The light from the light emitting diode light source 101 is collimated by the optical system 103, reflected by the beam splitter 105, passes through the measurement window 107, and reaches the measurement object 500. Part of the light irradiated onto the measurement target surface travels in the opposite direction along the same path as the light irradiated onto the measurement target surface, reaches the beam splitter 105, passes through the beam splitter 105, and passes through the light intensity sensor 109. To. In FIG. 2, light irradiated on the measurement object 500 is represented by a solid line, and light reflected by the measurement object 500 is represented by a dotted line. In FIG. 2, the light from the light-emitting diode light source 101 is irradiated perpendicularly to the surface of the measuring object 500, that is, at an incident angle of 0 degrees. Actually, the position of the measurement head 100 can be moved so that light from the light-emitting diode light source 101 of the measurement head 100 is irradiated on the surface of the measurement object 500 at various incident angles. It is configured.
 図3は、測定ヘッド100を回動させる回転機構部150の構成を示す図である。測定対象500上の測定点Pを中心として、測定対象物500の面に対して、0乃至20度の入射角φで発光ダイオード光源101からの光を照射することができるように、測定ヘッド100を回転させるための、カムフォロワ151、ガイド153及びレール155が設けられている。カムフォロワ151が、一軸駆動機構により直線Aに沿って運動することにより、ガイド153がレール155に沿って測定点Pを中心に回動する。測定ヘッド100は、ガイド153に取り付けられているので、ガイド153とともに回動する。入射角φの角度設定分解能は、0.1度より高いことが好ましい。ダイオード光源101からの光が、測定対象物500の面に対して、種々の入射角で照射されるようにするための、測定ヘッド100の移動機構は、その他のどのような構成であってもよい。 FIG. 3 is a diagram illustrating a configuration of the rotation mechanism unit 150 that rotates the measurement head 100. With the measurement point P on the measurement object 500 as the center, the measurement head 100 can irradiate light from the light-emitting diode light source 101 with respect to the surface of the measurement object 500 at an incident angle φ of 0 to 20 degrees. Are provided with a cam follower 151, a guide 153, and a rail 155. As the cam follower 151 moves along the straight line A by the uniaxial drive mechanism, the guide 153 rotates about the measurement point P along the rail 155. Since the measuring head 100 is attached to the guide 153, it rotates together with the guide 153. The angle setting resolution of the incident angle φ is preferably higher than 0.1 degree. The moving mechanism of the measuring head 100 for causing the light from the diode light source 101 to irradiate the surface of the measuring object 500 at various incident angles is of any other configuration. Good.
 第1の測定対象は、リチウムイオン電池の負極材料である。負極材料は、塗布プロセスで、基材である銅の薄膜(厚さは、10乃至25マイクロメータ)上に、水または油性の溶剤に溶かしたカーボン粒子を塗布し、その後、乾燥炉で乾燥させ、ロールに巻き取られる。その後、他方の面にカーボン粒子を塗布するために再び塗布プロセスで処理される。その後、ロールプレス機でプレスされる。 The first measurement object is a negative electrode material of a lithium ion battery. The negative electrode material is a coating process in which carbon particles dissolved in water or an oily solvent are coated on a copper thin film (thickness: 10 to 25 micrometers) as a base material, and then dried in a drying furnace. And wound on a roll. Thereafter, the other side is again treated with a coating process to coat the carbon particles. Then, it is pressed with a roll press.
 本発明の測定装置及び測定方法を説明するための実験について説明する。 An experiment for explaining the measuring apparatus and measuring method of the present invention will be described.
 図4は、第1のサンプルの外観を示す図である。 FIG. 4 is a diagram showing the appearance of the first sample.
 外径110ミリメータのプレス前の負極材を準備し、外径33ミリメータの丸棒をプレス機で5箇所に圧下することにより、第1のサンプル(以下、サンプル1と呼称)を作成した。圧下した5箇所をNo.1乃至No.5と呼称する。No.1からNo.5まで、番号の増加に応じて圧下荷重を増加させた。 A first sample (hereinafter referred to as sample 1) was prepared by preparing a negative electrode material before pressing with an outer diameter of 110 mm and rolling down a round bar with an outer diameter of 33 mm into five places using a press. The five places that were reduced were No. 1 to No. Called 5. No. 1 to No. Up to 5, the rolling load was increased with increasing numbers.
 図5は、第2のサンプルの外観を示す図である。 FIG. 5 is a diagram showing the appearance of the second sample.
 外径110ミリメータのプレス前の別の負極材を準備し、外径66ミリメータの丸棒をプレス機で1か所に圧下することにより、第2のサンプル(以下、サンプル2と呼称)を作成した。 Prepare a second sample (hereinafter referred to as sample 2) by preparing another negative electrode material with an outer diameter of 110 millimeters before pressing and rolling down a round bar with an outer diameter of 66 millimeters into one place with a press. did.
 実験においては、本発明の実施形態による測定装置によって、測定対象に光を照射し、その反射光のデータを取得した。本実施形態の測定装置の光強度センサ109として、特許文献3で説明した分光センサを使用し、分光センサによって求めた分光反射率分布からプロセッサによって反射色三刺激値を求め、反射色三刺激値のYを反射光の強度とした。 In the experiment, the measurement apparatus according to the embodiment of the present invention irradiates the measurement target with light and acquires the data of the reflected light. As the light intensity sensor 109 of the measuring apparatus according to the present embodiment, the spectral sensor described in Patent Document 3 is used, the reflected color tristimulus value is obtained by the processor from the spectral reflectance distribution obtained by the spectral sensor, and the reflected color tristimulus value is obtained. Y was defined as the intensity of reflected light.
 最初に、本実施形態の測定装置を使用して、サンプル1の、銅の薄膜状に形成されたカーボン粒子からなる膜の厚さを測定する。 First, using the measuring apparatus of the present embodiment, the thickness of the film made of carbon particles formed of a thin film of copper of sample 1 is measured.
 図6は、サンプル1の、圧下した5箇所及び圧下していない箇所の反射光の強度を示す図である。図6の横軸は測定位置を示し、図6の縦軸は反射光の強度(Yの値)を示す。この場合に、発光ダイオード光源101からの光は、測定面に垂直に、すなわち入射角0度で入射させた。 FIG. 6 is a diagram showing the intensity of the reflected light of the sample 1 at five locations where it is reduced and where it is not reduced. The horizontal axis in FIG. 6 indicates the measurement position, and the vertical axis in FIG. 6 indicates the intensity (Y value) of the reflected light. In this case, the light from the light-emitting diode light source 101 was incident perpendicular to the measurement surface, that is, with an incident angle of 0 degrees.
 図7は、サンプル1の、圧下した5箇所及び圧下していない箇所の反射光の強度(Yの値)と実測膜厚との関係を示す図である。図7の反射光の強度(Yの値)のデータは、図6のデータを使用している。図7の横軸は測定点数を示し、図7の縦軸は反射光の強度(Yの値)(左側の目盛り)及び実測膜厚(右側の目盛り)を示す。実測膜厚は、圧下した5箇所及び圧下していない箇所の、Yの最大値に近いと思われる場所の膜厚を接触式膜厚計で測定して求めた。図7から、実測膜厚が減少すると、Yの値が増加することがわかる。 FIG. 7 is a graph showing the relationship between the reflected light intensity (Y value) and the actually measured film thickness at five locations where the sample 1 is reduced and where it is not reduced. The data of FIG. 6 is used as the intensity (Y value) of reflected light in FIG. The horizontal axis of FIG. 7 shows the number of measurement points, and the vertical axis of FIG. 7 shows the intensity of reflected light (Y value) (left scale) and the measured film thickness (right scale). The actually measured film thickness was obtained by measuring the film thickness at the five locations where the reduction was performed and the portion where the reduction was not performed at a location considered to be close to the maximum value of Y with a contact-type film thickness meter. FIG. 7 shows that the value of Y increases as the measured film thickness decreases.
 一般的に吸収材料の透過光量Tはランバート・ベールの式で表せる。
 T=A×exp(-Bd)              (1)
 Ln(T)=Ln(A)-Bd 
ここで、dは吸収材の厚さであり、A及びBは定数である。
In general, the transmitted light amount T of the absorbing material can be expressed by the Lambert Bale equation.
T = A x exp (-Bd) (1)
Ln (T) = Ln (A) −Bd
Here, d is the thickness of the absorbent, and A and B are constants.
 本発明において、カーボン粒子からなる膜を透過した光が基材である銅箔で反射されて再びカーボン粒子からなる膜を透過した光を検出するので、Yと膜厚dとの関係は以下の式で表せる。
 d=-E×LOG(Y)+F             (2)
In the present invention, light transmitted through a film made of carbon particles is reflected by a copper foil as a base material and light transmitted through a film made of carbon particles is detected again. Therefore, the relationship between Y and film thickness d is as follows: It can be expressed by an expression.
d = -E × LOG (Y) + F (2)
 図8は、反射光の強度と膜厚との関係を示す図である。図8の横軸は反射光の強度(Y)の対数値を示し、図8の縦軸は膜厚の値を示す。図8のデータは、サンプル1の圧下していない箇所、及びNo.1乃至No.5で示される圧下した5箇所のデータ、ならびに、実プロセスでプレスした後のデータを含む。これらの7点のデータを2個の近似式で近似した。圧下していない箇所、及びNo.1乃至No.5で示される圧下した5箇所のデータで以下の式を得た。
 d 1=-209.77LOG(Y)+59.856     R2=0.959   (3)
ここで、Rは相関度を示す。また、No.3乃至No.5で示される圧下した3箇所と実プロセスでプレスした後のデータで以下の式を得た。
 d2=-86.476LOG(Y)+110.14   R2=0.9974     (4)
 このように、膜厚によって近似式の勾配(係数)が変化するのは、膜厚にしたがって膜の構造が変化し反射率が大きくなるためと考えられる。
FIG. 8 is a diagram showing the relationship between the intensity of reflected light and the film thickness. The horizontal axis in FIG. 8 represents the logarithmic value of the intensity (Y) of the reflected light, and the vertical axis in FIG. 8 represents the film thickness value. The data shown in FIG. 1 to No. The data of five places shown by 5 and the data after pressing by an actual process are included. These 7 points of data were approximated by two approximate equations. The part which is not reduced and No. 1 to No. The following formula was obtained from the data of 5 places shown in FIG.
d 1 = -209.77LOG (Y) +59.856 R 2 = 0.959 (3)
Here, R 2 indicates the degree of correlation. No. 3 to No. The following formulas were obtained from the three pressed positions indicated by 5 and the data after pressing in the actual process.
d2 = -86.476 LOG (Y) + 110.14 R 2 = 0.9974 (4)
The reason why the gradient (coefficient) of the approximate expression changes depending on the film thickness is considered to be because the film structure changes according to the film thickness and the reflectance increases.
 式(3)及び式(4)の係数をデータ記憶部に記憶させておけば、光の強度Yを使用してデータ処理部109によって膜厚を求めることができる。負極材料の種類ごとに式(3)及び式(4)の係数をデータ記憶部に記憶させておき、負極材料の種類に応じて使用するようにしてもよい。 If the coefficients of Equation (3) and Equation (4) are stored in the data storage unit, the data processing unit 109 can determine the film thickness using the light intensity Y. The coefficients of Equation (3) and Equation (4) may be stored in the data storage unit for each type of negative electrode material, and may be used according to the type of negative electrode material.
 図9は、サンプル1の圧下していない箇所、及びNo.1乃至No.5で示される圧下した5箇所について、反射光の強度から式(3)を使用して計算した膜厚の分布を示す図である。図9の横軸は測定位置を示し、図9の縦軸は計算膜厚を示す。 FIG. 9 shows the location where the sample 1 is not crushed and 1 to No. FIG. 5 is a diagram illustrating a distribution of film thicknesses calculated using Equation (3) from the intensity of reflected light at five pressed locations indicated by 5. The horizontal axis in FIG. 9 indicates the measurement position, and the vertical axis in FIG. 9 indicates the calculated film thickness.
 図10は、圧下していない箇所、及び圧下した個所を含むサンプル2について、反射光の強度から式(3)を使用して計算した膜厚、及び実測膜厚の分布を示す図である。図10の横軸は測定位置を示し、図10の縦軸は反射光の強度(右側目盛り)及び膜厚(左側目盛り)を示す。図10によれば、計算膜厚は実測膜厚にほぼ対応している。式(3)は、サンプル1のデータを使用して作成したものであるが、サンプル2に適用できることがわかる。 FIG. 10 is a diagram showing the distribution of the film thickness calculated using the equation (3) from the intensity of the reflected light and the measured film thickness distribution for the sample 2 including the unrolled portion and the pressed portion. The horizontal axis of FIG. 10 shows the measurement position, and the vertical axis of FIG. 10 shows the intensity of reflected light (right scale) and the film thickness (left scale). According to FIG. 10, the calculated film thickness substantially corresponds to the actually measured film thickness. Equation (3) is created using the data of sample 1, but it can be seen that it can be applied to sample 2.
 つぎに、本実施形態の測定装置を使用して、サンプル1の、銅の薄膜状に形成されたカーボン粒子からなる膜の密度を測定する。図4において、サンプル1の圧下していない箇所、及びNo.1乃至No.5で示される圧下した5箇所を比較すると、圧下荷重の大きさが大きいほど、面の「光沢」が増加していることがわかる。この場合の「光沢」とは鏡面性であり、面に光を照射した際の鏡面反射光と拡散反射光の強度比である。このように、圧下荷重の大きさが大きいほど、面の鏡面性が高くなるのは、圧下によってカーボン粒子によって形成される膜の密度が増加するためと考えられる。したがって、鏡面反射光と拡散反射光の強度比、すなわち鏡面性を測定することによって、膜の密度を求めることが考えられる。 Next, using the measuring apparatus of the present embodiment, the density of the film made of carbon particles formed as a copper thin film of Sample 1 is measured. In FIG. 1 to No. Comparing the five places of reduction shown by 5, it can be seen that as the magnitude of the reduction load increases, the “gloss” of the surface increases. “Gloss” in this case is specularity, and is the intensity ratio between specular reflection light and diffuse reflection light when light is irradiated on the surface. Thus, it can be considered that the greater the reduction load, the higher the specularity of the surface is because the density of the film formed by the carbon particles increases due to the reduction. Therefore, it is conceivable to determine the density of the film by measuring the intensity ratio of specular reflection light and diffuse reflection light, that is, specularity.
 図11は、本発明の実施形態による測定装置によって、サンプル1、サンプル2及び実プロセスでプレスした後のサンプルに光を照射し、その反射光のデータを取得した結果を示す図である。図11の横軸は、入射角度、すなわち測定角度を示し、図11の縦軸は、反射光の強度、すなわち、Yの値を示す。各サンプルについて、測定角度が0度の場合の反射光の強度が最大であり、測定角度が大きくなるにしたがって反射光の強度は小さくなる。測定角度の変化に対する反射光の強度の変化は、実プロセスでプレスした後のサンプルが最も大きい。サンプル1のNo.1乃至No.5については、番号が大きくなるにしたがって、測定角度の変化に対する反射光の強度の変化が大きくなる。このことは、圧下荷重が大きくなるにしたがって、測定角度の変化に対する反射光の強度の変化が大きくなることを意味する。 FIG. 11 is a diagram illustrating a result of irradiating sample 1, sample 2, and the sample after being pressed in an actual process with the measurement apparatus according to the embodiment of the present invention, and acquiring data of the reflected light. The horizontal axis in FIG. 11 indicates the incident angle, that is, the measurement angle, and the vertical axis in FIG. 11 indicates the intensity of the reflected light, that is, the value of Y. For each sample, the intensity of the reflected light is maximum when the measurement angle is 0 degrees, and the intensity of the reflected light decreases as the measurement angle increases. The change in the intensity of the reflected light with respect to the change in the measurement angle is greatest in the sample after being pressed in the actual process. Sample 1 No. 1 to No. With respect to 5, as the number increases, the change in the intensity of reflected light with respect to the change in measurement angle increases. This means that the change in the intensity of the reflected light with respect to the change in the measurement angle increases as the rolling load increases.
 ここで、測定角度φに対する疑似光沢度Q・Gloss(φ)を以下の式によって定義する。すなわち、測定角度φの疑似光沢度Q・Gloss(φ)は、測定角度0度の場合の反射光の強度と測定角度φの場合の反射光の強度との比である。
 Q・Gloss(φ)=Y(0°)/Y(φ)     (5)
疑似光沢度は、測定対象面の鏡面性が高くなるにしたがって大きくなる。また、鏡面性が高い場合には、測定角度φの変化に対する疑似光沢度の変化の割合が大きくなる。
Here, the pseudo glossiness Q · Gloss (φ) with respect to the measurement angle φ is defined by the following equation. That is, the pseudo glossiness Q · Gloss (φ) at the measurement angle φ is a ratio between the intensity of the reflected light at the measurement angle 0 ° and the intensity of the reflected light at the measurement angle φ.
Q · Gloss (φ) = Y (0 °) / Y (φ) (5)
The pseudo glossiness increases as the specularity of the measurement target surface increases. When the specularity is high, the ratio of the change in the pseudo glossiness with respect to the change in the measurement angle φ is increased.
 図12及び図13は、各サンプルについて、疑似光沢度と反射光の強度との関係を示す図である。図12は、測定角度が、4度、6度、8度、10度、及び12度の場合の関係を示し、図13は、測定角度が、14度、16度、18度、及び20度の場合の関係を示す。図12及び図13の横軸は、疑似光沢度Q・Gloss(φ)を示し、縦軸は、測定角度0度の場合の反射光の強度、すなわちY(0°)を示す。図12及び図13には、疑似光沢度Q・Gloss(φ)をxとし、光の強度をyとして、各測定角度についてyとxとの関係の近似式及び相関度Rを示した。 12 and 13 are diagrams showing the relationship between the pseudo glossiness and the intensity of reflected light for each sample. FIG. 12 shows the relationship when the measurement angles are 4, 6, 8, 10, and 12 degrees, and FIG. 13 shows the measurement angles of 14, 16, 18, and 20 degrees. The relationship in the case of is shown. The horizontal axis of FIGS. 12 and 13 indicates the pseudo glossiness Q · Gloss (φ), and the vertical axis indicates the intensity of reflected light when the measurement angle is 0 degree, that is, Y (0 °). 12 and 13 show an approximate expression of the relationship between y and x and the degree of correlation R 2 for each measurement angle, where x is the pseudo glossiness Q · Gloss (φ) and y is the intensity of light.
 図14は、疑似光沢度の測定角度と相関度との関係を示す図である。図14の横軸は疑似光沢度の測定角度を示し、図14の縦軸は相関度を示す。測定角度が大きくなるにしたがって、相関度は増加する。測定角度が10度より大きくなると相関度は次第に飽和していく。測定角度を大きくすると測定ヘッドの100の回転機構部150を大きくする必要があり、また測定対象との距離の影響も受けやすくなる。そこで、本実施形態では、0度以外の測定角度を10度とした。 FIG. 14 is a diagram showing the relationship between the measurement angle of the pseudo glossiness and the correlation degree. The horizontal axis in FIG. 14 indicates the measurement angle of the pseudo glossiness, and the vertical axis in FIG. 14 indicates the degree of correlation. As the measurement angle increases, the degree of correlation increases. When the measurement angle becomes larger than 10 degrees, the correlation degree gradually becomes saturated. When the measurement angle is increased, it is necessary to enlarge the rotation mechanism unit 150 of the measurement head 100, and it is easily affected by the distance to the measurement target. Therefore, in this embodiment, the measurement angle other than 0 degrees is set to 10 degrees.
 一般的に測定対象の光沢度のレベル(鏡面性)によって測定角度を決定する。本実施形態において、圧下していない箇所は、完全拡散面に近いので、0度以外の測定角度を10度とした。測定対象の鏡面性が高く、光沢度のレベルが高い場合には、測定角度を小さくすることが必要になる。図3に示したように、測定角度を0度乃至20度変化させることができるような構造とし、角度設定分解能を0.1度よりも高くし、0度以外の測定角度を1度から20度の間のいずれかの角度とすれば、鏡面から拡散面までの測定対象に対応することができる。 Generally, the measurement angle is determined by the gloss level (specularity) of the measurement target. In the present embodiment, the portion that has not been reduced is close to the complete diffusion surface, so the measurement angle other than 0 degrees was set to 10 degrees. When the specularity of the measurement object is high and the gloss level is high, it is necessary to reduce the measurement angle. As shown in FIG. 3, the structure is such that the measurement angle can be changed from 0 degree to 20 degrees, the angle setting resolution is higher than 0.1 degree, and the measurement angle other than 0 degree is from 1 degree to 20 degrees. If the angle is any angle between degrees, it can correspond to a measurement object from the mirror surface to the diffusion surface.
  図15は、疑似光沢度と膜の密度との関係を示す図である。図15の横軸は、対数疑似光沢度を示し、図15の縦軸は、膜の密度を示す。近似式及び相関度は以下のとおりである。
 ρ=2.5582LOG{Q・Gloss(φ=10°)}+1.1620  R2=0.954   (6)
ここで、サンプルの膜の密度は、以下のようにして求める。サンプルの重さを電子天秤で測定し、基材(銅箔)の重さを引き算する。プレス前のサンプルの膜厚を接触式膜厚計で測定し膜厚d0を求める。膜厚d0と重さから、プレス前の密度ρ0が求まる。 圧下後のサンプルnの膜厚dnを測定すれば、密度ρnは次式で計算できる。
    ρn=ρ0×(d0/dn)          (7)
FIG. 15 is a diagram showing the relationship between the pseudo glossiness and the film density. The horizontal axis in FIG. 15 indicates the logarithmic pseudo glossiness, and the vertical axis in FIG. 15 indicates the film density. The approximate expression and the degree of correlation are as follows.
ρ = 2.5582LOG {Q · Gloss (φ = 10 °)} + 1.1620 R 2 = 0.954 (6)
Here, the density of the sample film is obtained as follows. The weight of the sample is measured with an electronic balance, and the weight of the base material (copper foil) is subtracted. The film thickness of the sample before pressing is measured with a contact-type film thickness meter to determine the film thickness d0. From the film thickness d0 and the weight, the density ρ0 before pressing can be obtained. If the film thickness dn of the sample n after the reduction is measured, the density ρn can be calculated by the following equation.
ρn = ρ0 × (d0 / dn) (7)
 図16は、本実施形態の測定装置による膜厚及び密度の測定結果をまとめた図である。図16の横軸はサンプルを示し、図16の縦軸は、膜厚の測定値(右側の目盛り)、密度の測定値(Yの値)(左側の目盛り)、反射光の強度(左側の目盛り)、及び疑似光沢度(左側の目盛り)を示す。 FIG. 16 is a diagram summarizing the measurement results of film thickness and density by the measuring apparatus of the present embodiment. The horizontal axis of FIG. 16 shows the sample, and the vertical axis of FIG. 16 shows the measured thickness value (right scale), measured density value (Y value) (left scale), and reflected light intensity (left scale). Scale) and pseudo-glossiness (left scale).
 銅薄膜の両面に溶剤で溶かしたカーボン粒子を塗布する処理中の負極材料の両面に、本実施形態の測定装置を設置すれば、処理のため走行中の負極材料のそれぞれの面の膜の厚さ及び密度を測定することができる。光強度センサ109に分光センサを使用すると測定時間が大きくなる。そこで、光強度センサ109としてフォトダイオードなどの受光センサを使用すれば測定時間は0.1ミリ秒とすることができ測定対象の走行中の測定に対応することができる。 If the measuring device of this embodiment is installed on both sides of the negative electrode material being processed to apply carbon particles dissolved in a solvent on both sides of the copper thin film, the thickness of the film on each side of the negative electrode material being run for processing The thickness and density can be measured. When a spectroscopic sensor is used as the light intensity sensor 109, the measurement time is increased. Therefore, if a light receiving sensor such as a photodiode is used as the light intensity sensor 109, the measurement time can be set to 0.1 milliseconds, which can correspond to the measurement while the measurement target is traveling.
 上記の説明は、銅の薄膜を基材とする、リチウムイオン電池の負極材料の膜の厚さ及び密度についてのものである。本発明による測定装置及び方法は、アルミニウムの薄膜を基材とする、リチウムイオン電池の正極材料の膜の厚さ及び密度についても適用することができる。 The above description is about the thickness and density of the negative electrode material film of a lithium ion battery, which is based on a copper thin film. The measuring apparatus and method according to the present invention can also be applied to the thickness and density of the positive electrode material film of a lithium ion battery, which is based on an aluminum thin film.
 さらに一般的に、本発明の実施形態の測定装置によれば、金属面などの鏡面性の高い面上に形成された膜の厚さによって面に垂直に入射させた光の反射光の強度が変化することを利用して膜の厚さを測定することができる。また、金属面などの鏡面性の高い面上に形成された膜の密度によって、膜を備えた面の鏡面性が変化することを利用して、膜の密度を測定することができる。 More generally, according to the measurement apparatus of the embodiment of the present invention, the intensity of the reflected light of light incident perpendicularly to the surface is increased by the thickness of the film formed on the highly specular surface such as a metal surface. The change can be used to measure the thickness of the film. In addition, the density of the film can be measured by utilizing the fact that the specularity of the surface provided with the film changes depending on the density of the film formed on a highly specular surface such as a metal surface.
 第2の測定対象は、紙の表面に塗布した糊の膜の厚さである。糊を塗布する前の紙の表面は粗さを有しており、照射された光は拡散される。すなわち、表面の鏡面性は低い。糊の膜が紙の表面に塗布されると、紙の表面の糊の膜がレンズの役割を果たし、拡散反射される光が減少し、鏡面反射される光が増加する。すなわち、表面の鏡面性は増加する。したがって、本発明の実施形態の測定装置によって疑似光沢度を測定すれば、紙の表面の糊の膜厚を測定することができる。 The second measurement object is the thickness of the glue film applied to the paper surface. The surface of the paper before applying the glue has roughness, and the irradiated light is diffused. That is, the specularity of the surface is low. When the glue film is applied to the paper surface, the glue film on the paper surface acts as a lens, and the light that is diffusely reflected decreases and the light that is specularly reflected increases. That is, the specularity of the surface increases. Therefore, if the pseudo glossiness is measured by the measuring apparatus according to the embodiment of the present invention, the film thickness of the paste on the paper surface can be measured.
 図17は、表面に糊の膜を塗布した紙について、測定角度と反射光の強度(Yの値)との関係を示す図である。表面に糊の膜を塗布した紙であるサンプル1及びサンプル2の、測定角度が0度の場合の反射光の強度と測定角度が8度の場合の反射光の強度との比は、表面に糊の膜を塗布していない紙(原紙)の値と比較して大きい。したがって、測定角度が8度の場合の反射光の強度を使用して疑似光沢度を測定することにより、糊の膜の厚さを測定する。ここで、糊の膜の厚さの測定に、測定角度が0度の場合の反射光の強度自体ではなく疑似光沢度を使用するのは、測定角度が0度の場合の反射光の強度は、原紙の表面の状態によって大きく変動するのに対し、疑似光沢度は原紙の表面の状態によってそれほど変動せず、基準値を定めるのがより容易だからである。このように、本発明の実施形態による測定装置により、測定角度が8度の場合の反射光の強度を使用して疑似光沢度を測定することにより、紙の表面に塗布した膜の厚さを測定することができる。 FIG. 17 is a diagram showing the relationship between the measurement angle and the intensity of reflected light (Y value) for paper with a paste film applied to the surface. The ratio of the intensity of the reflected light when the measurement angle is 0 degree and the intensity of the reflected light when the measurement angle is 8 degrees of the sample 1 and the sample 2 which are papers with a paste film applied on the surface is Larger than the value of paper (base paper) to which no glue film is applied. Accordingly, the thickness of the glue film is measured by measuring the pseudo glossiness using the intensity of the reflected light when the measurement angle is 8 degrees. Here, for measuring the thickness of the glue film, the pseudo glossiness is used instead of the reflected light intensity when the measurement angle is 0 degrees. The intensity of the reflected light when the measurement angle is 0 degrees is This is because the pseudo glossiness does not vary so much depending on the state of the surface of the base paper, while it varies greatly depending on the state of the surface of the base paper, and it is easier to determine the reference value. As described above, the thickness of the film applied to the surface of the paper is measured by measuring the pseudo glossiness using the intensity of the reflected light when the measurement angle is 8 degrees by the measurement apparatus according to the embodiment of the present invention. Can be measured.
 一般的に、本発明の実施形態の測定装置によれば、紙の面などの光を拡散する面(鏡面性の低い面)上に形成された膜の厚さによって、膜を備えた面の鏡面性が変化することを利用して膜の厚さを測定することができる。 In general, according to the measurement apparatus of the embodiment of the present invention, the thickness of the film formed on the surface that diffuses light (the surface having low specularity) such as the surface of paper is reduced. The film thickness can be measured by utilizing the change in specularity.
 図18は、本発明による膜の厚さまたは密度の測定方法を示す流れ図である。 FIG. 18 is a flowchart showing a method for measuring the thickness or density of a film according to the present invention.
 図18のステップS010において、測定ヘッド100によって0度の入射角度での反射光の強度を測定する。 In step S010 of FIG. 18, the intensity of the reflected light at an incident angle of 0 degrees is measured by the measuring head 100.
 図18のステップS020において、測定ヘッド100によって10度の入射角度での反射光の強度を測定する。 In step S020 of FIG. 18, the intensity of the reflected light at an incident angle of 10 degrees is measured by the measuring head 100.
 図18のステップS030において、データ処理部200が、0度及び10度の入射角度での反射光の強度から膜の厚さ及び密度の少なくとも一方を求める。 In step S030 in FIG. 18, the data processing unit 200 obtains at least one of the thickness and density of the film from the intensity of the reflected light at the incident angles of 0 degrees and 10 degrees.

Claims (5)

  1.  光源と光強度センサとを備えたヘッドと、データ処理部と、を備え、前記光源から測定対象に光を照射して反射された光の強度を前記光強度センサで測定することにより、基材上に形成された膜の厚さ及び密度の少なくとも一方を測定する測定装置であって、
     前記ヘッドは、前記光源からの光の、測定対象に対する入射角を変えることができるように構成されており、前記データ処理部は、前記光源からの光が測定対象に対して0度の入射角で入射した場合の反射光の強度、及び、前記光源からの光が1度から20度の間のいずれかの入射角で入射した場合の反射光の強度を使用して膜の厚さ及び密度の少なくとも一方を測定する測定装置。
    A head including a light source and a light intensity sensor; and a data processing unit, and measuring the intensity of the light reflected from the light source by irradiating the measurement target with the light intensity sensor, thereby forming a base material A measuring device for measuring at least one of thickness and density of a film formed thereon,
    The head is configured to be able to change an incident angle of light from the light source with respect to a measurement target, and the data processing unit is configured such that the light from the light source has an incident angle of 0 degree with respect to the measurement target. The thickness and density of the film using the intensity of the reflected light when incident on and the intensity of the reflected light when the light from the light source is incident at any incident angle between 1 and 20 degrees. A measuring device for measuring at least one of the above.
  2.  前記データ処理部が、前記光源からの光が測定対象に対して0度の入射角で入射した場合の反射光の強度から膜の厚さを求め、前記光源からの光が測定対象に対して0度の入射角で入射した場合の反射光の強度と前記光源からの光が1度から20度の間のいずれかの入射角で入射した場合の反射光の強度との比から膜の密度を求めるように構成された、請求項1に記載の測定装置。 The data processing unit obtains the thickness of the film from the intensity of reflected light when the light from the light source is incident on the measurement object at an incident angle of 0 degrees, and the light from the light source is applied to the measurement object. The density of the film from the ratio of the intensity of reflected light when incident at an incident angle of 0 degrees and the intensity of reflected light when light from the light source is incident at any incident angle between 1 and 20 degrees The measuring device according to claim 1, wherein the measuring device is configured to obtain
  3.  前記データ処理部が、前記光源からの光が測定対象に対して0度の入射角で入射した場合の反射光の強度と前記光源からの光が1度から20度の間のいずれかの入射角で入射した場合の反射光の強度との比から膜の厚さを求めるように構成された、請求項1に記載の測定装置。 When the light from the light source is incident on the object to be measured at an incident angle of 0 degree, the data processing unit and the light from the light source are incident at an angle between 1 degree and 20 degrees. The measuring apparatus according to claim 1, wherein the thickness of the film is obtained from a ratio to the intensity of reflected light when incident at an angle.
  4.  前記ヘッドが、ビーム・スプリッタを含む、請求項1から3のいずれかに記載の測定装置。 4. The measuring apparatus according to claim 1, wherein the head includes a beam splitter.
  5.  光源と光強度センサとを備えたヘッドを使用して、基材上に形成された膜の厚さ及び密度の少なくとも一方を測定する測定方法であって、
     光が測定対象に対して0度の入射角で入射するように前記光源からの光を前記ヘッドから測定対象に照射して、反射された光の強度を前記光強度センサで測定するステップと、
     光が測定対象に対して1度から20度のいずれかの入射角で入射するように前記光源からの光を前記ヘッドから測定対象に照射して、反射された光の強度を前記光強度センサで測定するステップと、
     前記光源からの光が測定対象に対して0度の入射角で入射した場合の反射光の強度、及び、前記光源からの光が1度から20度の間のいずれかの入射角で入射した場合の反射光の強度を使用して膜の厚さ及び密度の少なくとも一方を測定するステップと、を含む測定方法。
    A measurement method for measuring at least one of the thickness and density of a film formed on a substrate using a head including a light source and a light intensity sensor,
    Irradiating the measurement object from the head with light from the light source so that light is incident on the measurement object at an incident angle of 0 degrees, and measuring the intensity of the reflected light with the light intensity sensor;
    The light from the light source is applied to the measurement object from the head so that the light is incident on the measurement object at an incident angle of 1 to 20 degrees, and the intensity of the reflected light is measured by the light intensity sensor. Measuring with
    The intensity of the reflected light when the light from the light source is incident on the measurement object at an incident angle of 0 degrees, and the light from the light source is incident at any incident angle between 1 degree and 20 degrees Measuring at least one of thickness and density of the film using the intensity of the reflected light of the case.
PCT/JP2012/053369 2012-02-14 2012-02-14 Measuring apparatus and measuring method WO2013121518A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/053369 WO2013121518A1 (en) 2012-02-14 2012-02-14 Measuring apparatus and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/053369 WO2013121518A1 (en) 2012-02-14 2012-02-14 Measuring apparatus and measuring method

Publications (1)

Publication Number Publication Date
WO2013121518A1 true WO2013121518A1 (en) 2013-08-22

Family

ID=48983682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053369 WO2013121518A1 (en) 2012-02-14 2012-02-14 Measuring apparatus and measuring method

Country Status (1)

Country Link
WO (1) WO2013121518A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294902A (en) * 1986-06-16 1987-12-22 Ricoh Co Ltd Film thickness measuring apparatus
JPS6463804A (en) * 1987-09-03 1989-03-09 Sumitomo Heavy Industries Measuring apparatus for thickness of ink film
JPH01145504A (en) * 1987-12-01 1989-06-07 Canon Inc Optically measuring apparatus
JPH03146846A (en) * 1989-11-01 1991-06-21 Toshiba Corp Method for measuring density of thin film
JPH06347243A (en) * 1993-06-08 1994-12-20 Kobe Steel Ltd Method and apparatus for measurement of inside roughness of slender pipe
JP2001099629A (en) * 1999-09-30 2001-04-13 Nippon Muki Co Ltd Method for measuring surface unevenness of fiber paper
WO2010013429A1 (en) * 2008-07-30 2010-02-04 株式会社ニレコ Film thickness measuring device and film thickness measuring method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294902A (en) * 1986-06-16 1987-12-22 Ricoh Co Ltd Film thickness measuring apparatus
JPS6463804A (en) * 1987-09-03 1989-03-09 Sumitomo Heavy Industries Measuring apparatus for thickness of ink film
JPH01145504A (en) * 1987-12-01 1989-06-07 Canon Inc Optically measuring apparatus
JPH03146846A (en) * 1989-11-01 1991-06-21 Toshiba Corp Method for measuring density of thin film
JPH06347243A (en) * 1993-06-08 1994-12-20 Kobe Steel Ltd Method and apparatus for measurement of inside roughness of slender pipe
JP2001099629A (en) * 1999-09-30 2001-04-13 Nippon Muki Co Ltd Method for measuring surface unevenness of fiber paper
WO2010013429A1 (en) * 2008-07-30 2010-02-04 株式会社ニレコ Film thickness measuring device and film thickness measuring method

Similar Documents

Publication Publication Date Title
WO2010013325A1 (en) Spectrophotometer
US10429296B2 (en) Multilayer film metrology using an effective media approximation
JP2012002601A5 (en)
JP2020529009A5 (en)
JP5262612B2 (en) Moisture content measuring method and moisture content measuring device
JP2002098591A (en) Spectral oval polarimeter provided with refractive lighting optical system
JP7160916B2 (en) Methods and devices for characterizing coatings on transparent films and methods for manufacturing capacitor films
WO2013121518A1 (en) Measuring apparatus and measuring method
CN111076668B (en) Differential reflection spectrum measurement method for nano-thickness SiO2 thickness
JPWO2013121518A1 (en) Measuring apparatus and measuring method
JP6650400B2 (en) Test device for EUV optics
EP2972070B1 (en) Method and system for real-time in-process measurement of coating thickness
CN115290571A (en) Measuring apparatus and measuring method
JPWO2014038601A1 (en) Coating surface roughness distribution measuring device
JPS6217166B2 (en)
US10928185B2 (en) Methods and systems for real-time, in-process measurement of coatings on metal substrates using optical systems
JP2011196766A (en) Method for measuring shape of measured object having light transmittance
US7349107B2 (en) System and method for correction for angular spread in determining optical properties of materials
US20160223323A1 (en) Optical surface roughness measurement
Wilbrandt et al. Infrared optical constants determination by advanced FTIR techniques
JP4260683B2 (en) Ellipsometer, polarization state acquisition method and light intensity acquisition method
JP2013221891A (en) Film thickness measuring method and film thickness measuring program
JP4268508B2 (en) Film thickness measuring method and film thickness measuring apparatus
JPH11241912A (en) Film thickness measuring method
KR101150943B1 (en) Method for measuring film thickness of sample with textured surface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868682

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013558610

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868682

Country of ref document: EP

Kind code of ref document: A1