WO2013121482A1 - 波長変換素子の検査方法及び検査装置 - Google Patents

波長変換素子の検査方法及び検査装置 Download PDF

Info

Publication number
WO2013121482A1
WO2013121482A1 PCT/JP2012/007282 JP2012007282W WO2013121482A1 WO 2013121482 A1 WO2013121482 A1 WO 2013121482A1 JP 2012007282 W JP2012007282 W JP 2012007282W WO 2013121482 A1 WO2013121482 A1 WO 2013121482A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion element
light
wavelength conversion
wavelength
inspection
Prior art date
Application number
PCT/JP2012/007282
Other languages
English (en)
French (fr)
Inventor
大登 正敬
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Publication of WO2013121482A1 publication Critical patent/WO2013121482A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation

Definitions

  • the present invention relates to an inspection method and an inspection apparatus for a wavelength conversion element having a polarization inversion structure.
  • Quasi-phase matching is performed using an element in which a polarization inversion structure is periodically formed in a ferroelectric crystal.
  • the characteristics of a wavelength conversion element having a polarization reversal structure change depending on the polarization reversal structure.
  • Patent Document 1 describes that a plurality of laser beams having different wavelengths are input to a wavelength conversion element, and the output light is analyzed to detect a wavelength at which the polarization inversion structure of the wavelength conversion element is matched. Has been.
  • Patent Document 2 describes that a polarization inversion structure is inspected by etching a wavelength conversion element and providing a step between the polarization inversion portion and other portions.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a wavelength conversion element inspection method and inspection apparatus capable of sufficiently obtaining optical information necessary for inspection of a polarization inversion structure. It is to provide.
  • the inspection method of the wavelength conversion element according to the present invention is as follows. First, the first inspection light generated by the supercontinuum light source is incident on a wavelength conversion element that is a ferroelectric crystal having a polarization inversion structure. Then, the emitted light emitted from the wavelength conversion element is subjected to spectral analysis to detect one or a plurality of first peak wavelengths. Furthermore, the inspection result of the wavelength conversion element is determined based on the detected first peak wavelength.
  • the inspection apparatus includes a super continuum light source, a light guide unit, and a spectroscopic unit.
  • the super continuum light source generates first inspection light.
  • the light guide unit causes the first inspection light to enter the wavelength conversion element.
  • the wavelength conversion element is a ferroelectric crystal having a polarization inversion structure.
  • the spectroscopic unit spectrally analyzes the emitted light emitted from the wavelength conversion element to detect one or a plurality of first peak wavelengths.
  • FIG. 1 is a diagram illustrating a configuration of an inspection apparatus 10 according to the first embodiment.
  • the inspection apparatus 10 is an element for inspecting the wavelength conversion element 20.
  • the inspection apparatus 10 includes an SC (super continuum) light source 110, an optical system (light guide unit) 154, and a spectroscopic unit 130.
  • the SC light source 110 generates super continuum light (SC light) as the first inspection light.
  • the optical system 154 causes the first inspection light to enter the wavelength conversion element 20.
  • the wavelength conversion element 20 is a ferroelectric crystal having a polarization inversion structure.
  • the spectroscopic unit 130 spectrally analyzes the outgoing light emitted from the wavelength conversion element 20 and detects one or a plurality of first peak wavelengths.
  • the first peak wavelength is light that has been wavelength-converted by the wavelength conversion element 20.
  • SC light is continuous and broadband light. For this reason, compared with the case where a plurality of laser beams having different wavelengths are used as inspection light, sufficient optical information necessary for inspection of the domain-inverted structure can be obtained. Details will be described below.
  • the inspection apparatus 10 includes an SC light source 110, a spectrum adjustment filter 152, a stage 120, an optical system 162, a pump cut filter 164, a spectroscopic unit 130, and a control unit 140.
  • the SC light source 110 generates SC light by making ultrashort pulse light incident on a nonlinear optical material.
  • SC light is generated when an ultrashort pulse light is subjected to nonlinear optical effects such as self-phase modulation, cross-phase modulation, four-wave mixing, and Raman scattering in a nonlinear optical material. That is, SC light is continuous and broadband pulse light.
  • the spectrum adjustment filter 152 removes frequency components unnecessary for the inspection of the wavelength conversion element 20 from the SC light emitted from the SC light source 110.
  • the optical system 154 includes a lens or the like, and guides the SC light transmitted through the spectrum adjustment filter 152 to the incident side end face of the wavelength conversion element 20.
  • Stage 120 carries wavelength conversion element 20.
  • the stage 120 includes a heater and adjusts the temperature of the wavelength conversion element 20.
  • the heater of the stage 120 is controlled by the control unit 140.
  • the optical system 162 guides the light emitted from the wavelength conversion element 20 to the pump cut filter 164.
  • the pump cut filter 164 removes a frequency component included in the SC light from the light emitted from the wavelength conversion element 20.
  • the spectroscopic unit 130 divides the light transmitted through the pump cut filter 164 and detects a wavelength having a peak (first peak wavelength). There are usually a plurality of first peak wavelengths. Then, the spectroscopic unit 130 outputs the detected first peak wavelengths to a display unit and the like together with a chart that is a spectroscopic result. The operation of the spectroscopic unit 130 is controlled by the control unit 140.
  • the wavelength conversion element 20 is a ferroelectric crystal having a polarization inversion structure.
  • the ferroelectric crystal is, for example, LiNbO 3 to which Mg is added, but is not limited thereto.
  • the wavelength conversion element 20 converts the wavelength of the wavelength and outputs it.
  • the wavelength conversion element 20 outputs sum frequency (SFG), for example, second harmonic (SHG), but light generated by parametric conversion, light generated by difference frequency conversion, or light generated by sum frequency mixed conversion May be output.
  • FSG sum frequency
  • SHG second harmonic
  • the stage 120 is set to a predetermined temperature.
  • the SC light source 110 generates SC light.
  • the generated SC light passes through the spectrum adjustment filter 152 and the optical system 154 and then enters the wavelength conversion element 20.
  • the wavelength component that satisfies the phase matching condition is wavelength-converted.
  • the pump cut filter 164 removes the wavelength component included in the SC light from the light emitted from the wavelength conversion element 20.
  • the light incident on the spectroscopic unit 130 mainly includes light converted by the wavelength conversion element 20.
  • the spectroscopic unit 130 performs spectroscopic analysis and detects the first peak wavelength.
  • FIG. 2 is a flowchart showing a second usage method of the inspection apparatus 10.
  • the control unit 140 sets the stage 120 to a predetermined temperature (step S12).
  • the SC light source 110 generates SC light.
  • the generated SC light is incident on the wavelength conversion element 20.
  • the wavelength component that satisfies the phase matching condition is wavelength-converted.
  • the spectroscopic unit 130 performs spectroscopic analysis and detects the first peak wavelength. The details of this process are the same as in the first usage method (step S14).
  • step S12 and step S14 are repeated while changing the temperature of the stage 120 (step S16).
  • step S18 the person who is inspecting wavelength conversion element 20 judges the structure of wavelength conversion element 20 using the 1st peak wavelength (Step S18). The details of this determination will be described together with the effects of this embodiment.
  • the first peak wavelength is efficiently measured at a plurality of temperatures.
  • the wavelength conversion element 20 outputs SHG-converted light (that is, second harmonic)
  • the phase matching condition in the wavelength conversion element 20 is expressed by the following equation (1).
  • polarization inversion period
  • ⁇ ⁇ wavelength of fundamental wave
  • ⁇ 2 ⁇ wavelength of second harmonic
  • n ⁇ crystal refractive index at fundamental wavelength
  • n 2 ⁇ wavelength of second harmonic.
  • the spectroscopic unit 130 may not detect the first peak wavelength even when a laser that should be wavelength-converted in design is incident on the wavelength conversion element 20. In this case, it is unknown whether the laser wavelength should be shifted to the short wavelength side or the long wavelength side. For this reason, it is difficult to perform the same inspection as when the inspection apparatus 10 is used.
  • FIG. 3 is a diagram illustrating a configuration of the inspection apparatus 10 according to the second embodiment.
  • the inspection apparatus 10 according to the present embodiment has the same configuration as the inspection apparatus 10 according to the first embodiment except for the following points.
  • the inspection apparatus 10 has a variable wavelength filter 153 instead of the spectrum adjustment filter 152. Then, the control unit 140 controls the wavelength that the variable wavelength filter 153 transmits.
  • FIG. 4 is a flowchart showing how to use the inspection apparatus 10 shown in FIG.
  • the stage 120 is set to a predetermined temperature.
  • the control unit 140 sets the wavelength that the variable wavelength filter 153 transmits to a predetermined wavelength (step S32).
  • the SC light source 110 generates SC light. Only the set wavelength component is cut out from the generated SC light, and enters the wavelength conversion element 20 as second inspection light.
  • the pump cut filter 164 transmits the light emitted from the wavelength conversion element 20.
  • the spectroscopic unit 130 detects the peak wavelength (second peak wavelength) (step S34).
  • the pump cut filter 164 cuts the light emitted from the wavelength conversion element 20.
  • the spectroscopic unit 130 does not detect the peak wavelength (step S34).
  • the control unit 140 repeatedly performs the processing shown in step S32 and step S34 while sweeping the wavelength of light transmitted through the variable wavelength filter 153 (step S36).
  • control unit 140 causes the variable wavelength filter 153 to function in the same manner as the spectrum adjustment filter 152 and then makes the SC light incident on the wavelength conversion element 20. Then, the spectroscopic unit 130 detects the first peak wavelength from the light emitted from the wavelength conversion element 20 (step S38). Then, the person who is inspecting the wavelength conversion element 20 makes a determination by comparing the first peak wavelength and the second peak wavelength (step S40). As a result, it is possible to determine whether there is a noise component of the polarization reversal period of the wavelength conversion element 20, that is, whether there is a polarization reversal period formed parasitically although not desired.
  • ⁇ out wavelength of light converted by the wavelength conversion element 20
  • n out refractive index of the wavelength conversion element 20 at ⁇ out
  • ⁇ 1 , ⁇ 2 wavelength of light incident on the wavelength conversion element 20
  • n 1 Refractive index of the wavelength conversion element 20 at ⁇ 1
  • n 2 Refractive index of the wavelength conversion element 20 at ⁇ 2 .
  • This phase matching condition is not satisfied until two lights ( ⁇ 1 , ⁇ 2 ) having different wavelengths are incident.
  • SC light is incident on the wavelength conversion element 20
  • the wavelength conversion element 20 has a single wavelength light. Only incident. Therefore, the converted light based on the phase matching condition of equation (2) is included in the first peak wavelength, but is not included in the second peak wavelength.
  • the desired phase matching condition is satisfied both when the first peak wavelength is detected and when the second peak wavelength is detected. Therefore, it is possible to determine whether or not there is a parasitic polarization inversion period by examining frequency components that are included in the first peak wavelength but not included in the second peak wavelength.
  • the control unit 140 may perform processing for examining frequency components that are included in the first peak wavelength but not included in the second peak wavelength.
  • Example 1 Using the first inspection method according to the first embodiment, a plurality of samples (wavelength conversion elements 20) prepared by the same method were inspected.
  • FIG. 5 shows the frequency dependence of the intensity of light output from each sample. From this figure, it can be seen that the peak wavelength is different for each sample. This indicates that the polarization inversion period varies depending on the sample. By examining this wavelength shift, the fine structure of the polarization inversion period can be detected.
  • Example 2 One sample was inspected while changing the temperature of the stage 120 by using the second inspection method of the first embodiment.
  • FIG. 6 shows how the frequency dependence of the intensity of light output from the sample changes with temperature. From this figure, it can be seen that the peak wavelength differs depending on the temperature of the stage 120, that is, the temperature of the sample, that is, the wavelength satisfying the phase matching condition is different. And the wavelength which satisfy

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

 検査装置(10)は、SC(スーパーコンティニューム)光源(110)、光学系(導光部:154)、及び分光部(130)を有している。SC光源(110)は、第1検査用光として、スーパーコンティニューム光(SC光)を発生する。光学系(154)は、第1検査用光を波長変換素子(20)に入射させる。波長変換素子(20)は、分極反転構造を有する強誘電体結晶である。分光部(130)は、波長変換素子(20)から出射された出射光を分光分析して、一つまたは複数の第1ピーク波長を検出する。

Description

波長変換素子の検査方法及び検査装置
 本発明は、分極反転構造を有する波長変換素子の検査方法及び検査装置に関する。
 近年、擬似位相整合を用いて波長変換を行う技術が開発されている。擬似位相整合は、強誘電体結晶に分極反転構造を周期的に形成した素子を用いて行われる。分極反転構造を有する波長変換素子は、分極反転の構造によってその特性が変わってしまう。
 特許文献1には、互いに異なる波長を有する複数のレーザ光を波長変換素子に入力し、その出力光を解析することにより、その波長変換素子の分極反転構造が整合する波長を検出することが記載されている。
 特許文献2には、波長変換素子をエッチングして、分極反転部とその他の部分に段差を設けることにより、分極反転構造を検査することが記載されている。
特開2005-69984号公報 特開2007-232826号公報
 本発明者は、上記した方法では以下の問題があると考えた。特許文献1に記載の構造では、入射光の波長は離散的である。このため、分極反転構造の検査に必要な光学上の情報を十分に得ることはできない。また特許文献2に記載の構造では、実際の光学的特性は検査できない。
 本発明は上記事情に鑑みてなされたものであり、その目的とするところは、分極反転構造の検査に必要な光学上の情報を十分に得ることができる波長変換素子の検査方法及び検査装置を提供することにある。
 本発明に係る波長変換素子の検査方法は、以下の通りである。まず、スーパーコンティニューム光源が発生した第1検査用光を、分極反転構造を有する強誘電体結晶である波長変換素子に入射する。そして、波長変換素子から出射された出射光を分光分析して、一つまたは複数の第1ピーク波長を検出する。さらに、検出した第1ピーク波長に基づいて、波長変換素子の検査結果を判断する。
 本発明に係る検査装置は、スーパーコンティニューム光源、導光部、及び分光部を有している。スーパーコンティニューム光源は、第1検査用光を発生させる。導光部は、第1検査用光を波長変換素子に入射させる。波長変換素子は、分極反転構造を有する強誘電体結晶である。分光部は、波長変換素子から出射された出射光を分光分析して、一つまたは複数の第1ピーク波長を検出する。
 本発明によれば、分極反転構造の検査に必要な光学上の情報を十分に得ることができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
第1の実施形態に係る検査装置の構成を示す図である。 検査装置の使用方法を示すフローチャートである。 第2の実施形態に係る検査装置の構成を示す図である。 図3に示した検査装置の使用方法を示すフローチャートである。 波長変換素子が出力した光の強度の周波数依存を示す図である。 波長変換素子が出力した光の強度の周波数依存が、温度によってどのように変化するかを示す図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
(第1の実施形態)
 図1は、第1の実施形態に係る検査装置10の構成を示す図である。検査装置10は、波長変換素子20を検査するための素子である。検査装置10は、SC(スーパーコンティニューム)光源110、光学系(導光部)154、及び分光部130を有している。SC光源110は、第1検査用光として、スーパーコンティニューム光(SC光)を発生する。光学系154は、第1検査用光を波長変換素子20に入射させる。波長変換素子20は、分極反転構造を有する強誘電体結晶である。分光部130は、波長変換素子20から出射された出射光を分光分析して、一つまたは複数の第1ピーク波長を検出する。第1ピーク波長は、波長変換素子20によって波長変換された光である。SC光は、連続で広帯域な光である。このため、互いに異なる波長を有する複数のレーザ光を検査用の光として用いる場合と比較して、分極反転構造の検査に必要な光学上の情報を十分に得ることができる。以下、詳細に説明する。
 本実施形態において、検査装置10は、SC光源110、スペクトル調整フィルタ152、ステージ120、光学系162、ポンプカットフィルタ164、分光部130、及び制御部140を有している。
 SC光源110は、超短パルス光を非線形光学材料に入射することによってSC光を生成する。SC光は、超短パルス光が非線形光学材料において、自己位相変調、相互位相変調、四光波混合、ラマン散乱等の非線形光学効果を受けることによって生成される。すなわちSC光は、連続で広帯域なパルス光である。
 スペクトル調整フィルタ152は、SC光源110が出射したSC光から、波長変換素子20の検査に不要な周波数成分を除去する。光学系154は、レンズ等によって構成されており、スペクトル調整フィルタ152を透過したSC光を、波長変換素子20の入射側端面に案内する。
 ステージ120は、波長変換素子20を載置する。ステージ120はヒータを内蔵しており、波長変換素子20の温度を調整する。ステージ120のヒータは、制御部140によって制御されている。
 光学系162は、波長変換素子20が出射した光をポンプカットフィルタ164に導光する。ポンプカットフィルタ164は、波長変換素子20が出射した光のうち、SC光に含まれる周波数成分を除去する。分光部130は、ポンプカットフィルタ164を透過した光を分光し、ピークを有する波長(第1ピーク波長)を検出する。第1ピーク波長は、通常は複数存在する。そして分光部130は、検出した複数の第1ピーク波長を、分光結果であるチャートとともに、表示部などに出力する。分光部130の動作は、制御部140によって制御されている。
 波長変換素子20は、上記したように、分極反転構造を有する強誘電体結晶である。強誘電体結晶としては、例えばMgを添加したLiNbOであるが、これに限定されない。波長変換素子20は、入射した光が特定の波長成分を有していた場合、この波長成分を波長変換して出力する。波長変換素子20は、和周波(SFG)、例えば第2次高調波(SHG)を出力するが、パラメトリック変換により生成した光、差周波変換により生成した光、または和周波混合変換により生成した光を出力しても良い。
 次に、検査装置10の第1の使用方法について説明する。まず、ステージ120を所定の温度に設定する。次いで、SC光源110は、SC光を発生させる。発生したSC光は、スペクトル調整フィルタ152及び光学系154を透過した後、波長変換素子20に入射する。波長変換素子20に入射したSC光は、位相整合条件を満たす波長成分が波長変換される。ポンプカットフィルタ164は、波長変換素子20から出射した光のうち、SC光に含まれる波長成分を除去する。このため、分光部130に入射する光は、波長変換素子20が波長変換した光を主に含む。分光部130は、分光分析を行い、第1ピーク波長を検出する。
 図2は、検査装置10の第2の使用方法を示すフローチャートである。ステージ120上には、波長変換素子20が載置されている。まず制御部140は、ステージ120を所定の温度に設定する(ステップS12)。
 次いでSC光源110は、SC光を発生させる。発生したSC光は、波長変換素子20に入射する。波長変換素子20に入射したSC光は、位相整合条件を満たす波長成分が波長変換される。分光部130は、分光分析を行い、第1ピーク波長を検出する。この工程の詳細は、第1の使用方法と同様である(ステップS14)。
 そして、検査すべき全ての温度で検査が終了するまで、ステージ120の温度を変えつつ、ステップS12及びステップS14の処理を繰り返す(ステップS16)。そして、波長変換素子20の検査を行っている者は、第1ピーク波長を用いて、波長変換素子20の構造を判断する(ステップS18)。この判断の詳細については、本実施形態の効果と共に説明する。
 次に、本実施形態の効果について説明する。上記した処理により、複数の温度において、第1ピーク波長が効率的に測定される。例えば波長変換素子20がSHGによる変換光(すなわち第2次高調波)を出力する場合、波長変換素子20における位相整合条件は、下記(1)式で示される。
Figure JPOXMLDOC01-appb-M000001
・・・(1)
 ここで、Λ:分極反転周期、λω:基本波の波長、λ:第2次高調波の波長、nω:基本波波長での結晶屈折率、n:第2次高調波の波長での結晶屈折率である。
 入射光のうち、(1)式に示した位相整合条件を満たす条件において、第2次高調波が発生する。このため、分極反転の微細構造にばらつきがあった場合、又は強誘電体結晶の屈折率にばらつきがあった場合、第2次高調波の波長は変わる。この波長の変化を調べることにより、波長変換素子20の分極反転構造の詳細、及び、強誘電体結晶の屈折率のばらつきを認識することができる。例えば、分極反転周期が分かっている場合、第1ピーク波長の温度依存性を調べることにより、波長変換素子20を構成する強誘電体結晶の内部の屈折率の分散の分布を認識することができる。
 また、これら第1ピーク波長を用いることにより、その波長変換素子20をいずれの温度に設定すれば所望の波長が得られるかを、効率的に判断することができる。
 これに対して、SC光源110の代わりに、互いに波長が異なる複数のレーザ光源を用いた場合を考える。波長変換素子20の分極反転構造や、強誘電体結晶の屈折率は、ばらつきを有している。このため、設計上では波長変換されるはずのレーザを波長変換素子20に入射した場合であっても、分光部130が第1ピーク波長を検出しないこともある。この場合、レーザの波長を短波長側及び長波長側のいずれの方向にずらせばよいかはわからない。このため、検査装置10を用いた場合と同様の検査を行うことは難しい。
(第2の実施形態)
 図3は、第2の実施形態に係る検査装置10の構成を示す図である。本実施形態に係る検査装置10は、以下の点を除いて、第1の実施形態に係る検査装置10と同様の構成である。
 まず、検査装置10は、スペクトル調整フィルタ152の代わりに可変波長フィルタ153を有している。そして制御部140は、可変波長フィルタ153が透過する波長を制御する。
 図4は、図3に示した検査装置10の使用方法を示すフローチャートである。ステージ120を所定の温度に設定する。そして制御部140は、可変波長フィルタ153が透過する波長を所定の波長に設定する(ステップS32)。次いで、SC光源110は、SC光を発生させる。発生したSC光は、設定された波長成分のみが切り出され、第2検査用光として波長変換素子20に入射する。
 波長変換素子20に入射した第2検査用光の波長が波長変換素子20の位相整合条件を満たす場合、ポンプカットフィルタ164は、波長変換素子20から出射した光を透過する。この場合、分光部130は、ピーク波長(第2ピーク波長)を検出する(ステップS34)。
 一方、第2検査用光の波長が波長変換素子20の位相整合条件を満たさない場合、ポンプカットフィルタ164は、波長変換素子20から出射した光をカットする。この場合、分光部130は、ピーク波長を検出しない(ステップS34)。
 制御部140は、ステップS32及びステップS34に示した処理を、可変波長フィルタ153を透過する光の波長を掃引しながら繰り返し行う(ステップS36)。
 また、制御部140は、可変波長フィルタ153をスペクトル調整フィルタ152と同様に機能させた上で、SC光を波長変換素子20に入射する。そして分光部130は、波長変換素子20から出射した光から、第1ピーク波長を検出する(ステップS38)。そして、波長変換素子20の検査を行っている者は、第1ピーク波長及び第2ピーク波長を比較して判断を行う(ステップS40)。これにより、波長変換素子20の分極反転周期のノイズ成分、すなわち所望していないが寄生的に形成された分極反転周期の有無を判断することができる。
 具体的には、寄生的に形成された分極反転周期Λaには、以下の(2)式に示す位相整合条件を満たすものがある。
  2πnoutout=2π(n11+n22+1/Λa)・・・(2)
 ここで、λout:波長変換素子20が変換した光の波長、nout:λoutにおける波長変換素子20の屈折率、λ1, λ2:波長変換素子20に入射する光の波長、n1:λ1における波長変換素子20の屈折率、n2:λ2における波長変換素子20の屈折率である。
 この位相整合条件は、互いに波長が異なる2つの光(λ1, λ2)が入射して、初めて満たされる。一方、第1ピーク波長が検出されるときには、波長変換素子20にはSC光が入射しているのに対し、第2ピーク波長が検出されるときには、波長変換素子20には単一波長の光しか入射していない。従って、(2)式の位相整合条件に基づいた変換光は、第1ピーク波長に含まれているが、第2ピーク波長には含まれていない。
 一方、所望している位相整合条件は、第1ピーク波長が検出されるとき、及び第2ピーク波長が検出されるときのいずれの場合でも満たされる。従って、第1ピーク波長に含まれているが第2ピーク波長に含まれていない周波数成分を調べることにより、寄生的に形成された分極反転周期の有無を判断することができる。なお、第1ピーク波長に含まれているが第2ピーク波長に含まれていない周波数成分を調べる処理は、制御部140が行っても良い。
(実施例1)
 第1の実施形態の第1の検査方法を用いて、同一の方法で作成された複数の試料(波長変換素子20)を検査した。図5は、各試料が出力した光の強度の周波数依存を示している。本図から、試料ごとに、ピーク波長が異なっていることが分かる。これは、試料によって、分極反転周期にばらつきがあることを示している。そしてこの波長のずれを調べることにより、分極反転周期の微細構造を検出することができる。
(実施例2)
 第1の実施形態の第2の検査方法を用いて、ステージ120の温度を変化させながら、一つの試料を検査した。図6は、試料が出力した光の強度の周波数依存が、温度によってどのように変化するかを示している。本図から、ステージ120の温度、すなわち試料の温度によってピーク波長が異なっていること、すなわち位相整合条件を満たす波長が異なることが分かる。そして、各温度において位相整合条件を満たす波長を、容易に判断することができた。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 この出願は、2012年2月13日に出願された日本出願特願2012-028399を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (6)

  1.  スーパーコンティニューム光源が発生した第1検査用光を、分極反転構造を有する強誘電体結晶である波長変換素子に入射し、前記波長変換素子から出射された出射光を分光分析して、一つまたは複数の第1ピーク波長を検出する第1検出工程と、
     前記第1ピーク波長を用いて、前記波長変換素子の構造を判断する判断工程と、
    を備える波長変換素子の検査方法。
  2.  請求項1に記載の波長変換素子の検査方法において、
     前記第1検出工程を複数回行い、かつ各前記検出工程において前記波長変換素子を互いに異なる温度に設定する波長変換素子の検査方法。
  3.  請求項1に記載の波長変換素子の検査方法において、
     前記第1検査用光から特定波長の光を切り出して第2検査用光を生成し、前記第2検査用光を波長掃引しながら前記波長変換素子に入射し、前記波長変換素子から出射された出射光を分光分析して、一つまたは複数の第2ピーク波長を検出する第2検出工程と、
     前記第1ピーク波長と前記第2ピーク波長とを比較することにより、前記波長変換素子における分極反転周期のノイズ成分を判断する波長変換素子の検査方法。
  4.  第1検査用光を発生するスーパーコンティニューム光源と、
     前記第1検査用光を、分極反転構造を有する強誘電体結晶である波長変換素子に入射させる導光部と、
     前記波長変換素子から出射された出射光を分光分析して、一つまたは複数の第1ピーク波長を検出する分光部と、
    を備える検査装置。
  5.  請求項4に記載の検査装置において、
     前記波長変換素子の温度を制御する温度制御部をさらに備える検査装置。
  6.  請求項4に記載の検査装置において、
     前記第1検査用光から特定波長の光を切り出して第2検査用光を生成し、かつ前記第2検査用光の波長を掃引できる波長フィルタをさらに備え、
     前記第2検査用光は、前記波長変換素子に導光され、
     前記分光部は、さらに前記第2検査用光が前記波長変換素子に入射したときの前記出射光を分光分析して、一つまたは複数の第2ピーク波長を検出する検査装置。
PCT/JP2012/007282 2012-02-13 2012-11-13 波長変換素子の検査方法及び検査装置 WO2013121482A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-028399 2012-02-13
JP2012028399A JP2015084007A (ja) 2012-02-13 2012-02-13 波長変換素子の検査方法及び検査装置

Publications (1)

Publication Number Publication Date
WO2013121482A1 true WO2013121482A1 (ja) 2013-08-22

Family

ID=48983652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007282 WO2013121482A1 (ja) 2012-02-13 2012-11-13 波長変換素子の検査方法及び検査装置

Country Status (3)

Country Link
JP (1) JP2015084007A (ja)
TW (1) TW201350816A (ja)
WO (1) WO2013121482A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04335328A (ja) * 1991-05-10 1992-11-24 Hitachi Ltd 第2高調波発生素子の製造方法
JPH11160747A (ja) * 1997-11-27 1999-06-18 Matsushita Electric Ind Co Ltd 短波長光源、光波長変換素子および光波長変換素子の検査方法
JP2001235774A (ja) * 2000-02-21 2001-08-31 Univ Tokyo 非線形感受率スペクトル測定法
JP2004020588A (ja) * 2002-06-12 2004-01-22 Mitsubishi Cable Ind Ltd 波長変換装置
JP2005069984A (ja) * 2003-08-27 2005-03-17 Noritsu Koki Co Ltd レーザ光学素子検査装置及びレーザ光学素子検査方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04335328A (ja) * 1991-05-10 1992-11-24 Hitachi Ltd 第2高調波発生素子の製造方法
JPH11160747A (ja) * 1997-11-27 1999-06-18 Matsushita Electric Ind Co Ltd 短波長光源、光波長変換素子および光波長変換素子の検査方法
JP2001235774A (ja) * 2000-02-21 2001-08-31 Univ Tokyo 非線形感受率スペクトル測定法
JP2004020588A (ja) * 2002-06-12 2004-01-22 Mitsubishi Cable Ind Ltd 波長変換装置
JP2005069984A (ja) * 2003-08-27 2005-03-17 Noritsu Koki Co Ltd レーザ光学素子検査装置及びレーザ光学素子検査方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOICHI TANIGUCHI ET AL.: "Development of Wavelength Converter Based on Quasi-Phase- Matched PPMgLN Waveguide", MITSUBISHI CABLE INDUSTRIES REVIEW, no. 99, 19 July 2002 (2002-07-19), pages 29 - 34 *

Also Published As

Publication number Publication date
TW201350816A (zh) 2013-12-16
JP2015084007A (ja) 2015-04-30

Similar Documents

Publication Publication Date Title
Zhang et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface
Tomasino et al. Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling
Bégin et al. Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system
EP2304412B1 (en) System for generating raman vibrational analysis signals
Chemnitz et al. Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy
Solntsev et al. LiNbO3 waveguides for integrated SPDC spectroscopy
Høgstedt et al. Low-noise mid-IR upconversion detector for improved IR-degenerate four-wave mixing gas sensing
US8804117B2 (en) Method for detecting a resonant nonlinear optical signal and device for implementing said method
WO2014125729A1 (ja) 測定装置及び測定方法
Mohseni et al. Resolution of spectral focusing in coherent Raman imaging
Friis et al. Upconversion-based mid-infrared spectrometer using intra-cavity LiNbO 3 crystals with chirped poling structure
US10969276B2 (en) Dual-frequency-comb spectrometer and spectroscopy method for spectroscopic investigation of a sample
Müller et al. Invited Article: Coherent Raman and mid-IR microscopy using shaped pulses in a single-beam setup
Sederberg et al. Efficient, broadband third-harmonic generation in silicon nanophotonic waveguides spectrally shaped by nonlinear propagation
Hojo et al. Broadband infrared light source by simultaneous parametric down-conversion
Bisht et al. Spectral properties of broadband biphotons generated from PPMgSLT under a type-II phase-matching condition
EP3656026A1 (en) Method and system for frequency conversion
Tani et al. Time-domain coherent anti-Stokes Raman scattering signal detection for terahertz vibrational spectroscopy using chirped femtosecond pulses
WO2013121482A1 (ja) 波長変換素子の検査方法及び検査装置
Laiho et al. Uncovering dispersion properties in semiconductor waveguides to study photon-pair generation
Fang et al. Triple-frequency symmetric subtraction scheme for nonresonant background suppression in coherent anti-Stokes Raman scattering (CARS) microscopy
Yasui et al. Microscopic time-resolved two-dimensional imaging with a femtosecond amplifying optical Kerr gate
Lorenc et al. Mid-infrared Kerr index evaluation via cross-phase modulation with a near-infrared probe beam
Hempel et al. Comparing transmission-and epi-BCARS: a round robin on solid-state materials
Yang et al. Ultrasensitive nonlinear measurements of femtosecond pulses in the telecommunications band by aperiodically poled LiNbO 3 waveguides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP