WO2013120393A1 - 简洁高效的超级功率放大器 - Google Patents

简洁高效的超级功率放大器 Download PDF

Info

Publication number
WO2013120393A1
WO2013120393A1 PCT/CN2013/000090 CN2013000090W WO2013120393A1 WO 2013120393 A1 WO2013120393 A1 WO 2013120393A1 CN 2013000090 W CN2013000090 W CN 2013000090W WO 2013120393 A1 WO2013120393 A1 WO 2013120393A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
power
tube
circuit
bias
Prior art date
Application number
PCT/CN2013/000090
Other languages
English (en)
French (fr)
Inventor
金海辉
Original Assignee
Jin Haihui
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jin Haihui filed Critical Jin Haihui
Publication of WO2013120393A1 publication Critical patent/WO2013120393A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • H03F1/0272Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A by using a signal derived from the output signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • H03F3/3069Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor the emitters of complementary power transistors being connected to the output
    • H03F3/3076Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor the emitters of complementary power transistors being connected to the output with symmetrical driving of the end stage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/30Indexing scheme relating to single-ended push-pull [SEPP]; Phase-splitters therefor
    • H03F2203/30078A resistor being added in the pull stage of the SEPP amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/30Indexing scheme relating to single-ended push-pull [SEPP]; Phase-splitters therefor
    • H03F2203/30111A resistor being added in the push stage of the SEPP amplifier

Definitions

  • the invention relates to the field of fidelity and high power amplification of electric signals, and is particularly suitable for some occasions requiring high power and high fidelity signal output.
  • This circuit can achieve high fidelity of class A and high efficiency of class B at the same time.
  • it has higher high-fidelity electric power output and is more energy efficient.
  • maintaining the same electrical power output capability also improves the quality of signal playback and achieves Class A effects.
  • a complete power amplifier circuit generally consists of a voltage amplifying portion and a current amplifying portion.
  • the voltage amplifying portion functions to amplify a weak input signal voltage; the current amplifying portion functions to enable a signal amplified by the voltage amplifying stage to be output.
  • Sufficient electric power drives the load.
  • More commonly used is a two-stage voltage amplification plus two-stage current amplification structure, wherein the first current amplification stage is mainly responsible for pushing the high-power crystal tube, also called the push stage, and the second current amplification stage is responsible for the output of the electric power, also called the power amplification stage.
  • the fully symmetrical circuit structure refers to the symmetrical positive and negative power arm amplification structure of each stage, and the second is a fully complementary amplifier component. It means that the positive and negative arms of each stage of the power amplifier are respectively constructed by complementary amplifiers.
  • the third is the fully symmetrical and fully complementary amplification of the electrical signals. It means that under the rated power output condition, the electrical signals are symmetrically amplified at each level to achieve distortion.
  • the overall circuit should be simple, which means faster response speed, better sound quality, lower interference, lower cost.
  • the full-symmetric fully complementary structure of the amplifying circuit has the following advantages: one is to make the nonlinear distortion of the transistor itself cancel each other, to minimize the inherent distortion of each stage, and the second is to have a higher load carrying capacity. It is relatively easy to design a fully complementary and fully symmetric hardware structure, but it is difficult to achieve full-symmetric full complementary amplification of electrical signals in practical work. The most difficult point is the power amplifier stage. If the symmetrical complementary amplification of the electrical signal is to be realized at this level, considering the maximum power output requirement, a large quiescent current must be set for the power tube, the value of which is greater than the rated power output condition. When the current output current is 1/2, this leads to a low efficiency of the power amplifier.
  • the same power amplifier can be set to different final static bias voltages.
  • Class A bias when the power amplifier can achieve full-symmetric full complement amplification of the electrical signal under the rated power output condition, it is called Class A bias.
  • Class B bias Only the threshold power-on current is supplied to the last-stage power tube, and the power tube takes the positive and negative half-cycle output in turn, which is called the class B bias.
  • Class A> Class A and Class B> Class B in terms of efficiency, Class B> Class A and Class A> Class A.
  • Class A bias The characteristic of Class A bias is that the bias current of the power tube is greater than 1/2 of the maximum output current. Only when this condition is met, the power stage can achieve complementary symmetrical amplification of the electrical signal, so the higher the rated power of the output, the more The greater the level of quiescent current. Class A biased power amplifiers have the advantage of the highest output signal fidelity. The disadvantage is that the final stage uses a large current bias, the efficiency is very low, and the amplifier generates a large amount of heat. Due to the limitation of the power supply and the heat dissipation capacity, the rated output power is much lower than that of the class A and B. It is suitable for high fidelity and medium and low power output occasions. .
  • the class B bias is to let the two complementary power tubes respectively amplify the power amplification of the signal positive and negative periods, one is in the amplified state and the other is only loaded, and the rotation works in the positive and negative half cycles of the signal.
  • the advantage is that it has higher efficiency and can output larger electric power.
  • the disadvantage is that the power stage fails to achieve complementary symmetrical amplification of the electric signal, resulting in a large inherent distortion of the power level. It is difficult to meet the requirements of high fidelity, so it is mainly used in applications where high power and low quality are required.
  • Class A and B are a compromise form.
  • the final stage power tube bias current is between Class A and Class B. Therefore, when the power is low, the circuit works in Class A state. When the output power is large, the power output tube is in Class B. State, this type of circuit is suitable for occasions where the sound quality requirements are not too high and the high power output can be considered.
  • the problem is that the quiescent current of the power stage is set at the point required to meet the maximum power output, thus causing the class A power to be macroscopically inefficient.
  • the idea of the invention is to set a small quiescent current for the class A power amplifier to reduce the power consumption during static operation. In order to ensure the class A amplification capability at the time of high power output, the bias current of the current amplification stage must follow the power.
  • the output of the current increases and increases automatically, so that the final stage power tube can be continuously Class A amplified.
  • the current amplification stage bias current also decreases, so the efficiency of this Class A power amplifier can be greatly improved. To achieve the unification of amplification quality and efficiency.
  • the difficulty lies in the power stage. Since the dynamic current range of the final stage is large, in consideration of the output of the maximum power current, it is necessary to set a large power level. Quiescent current, when the sound quality is biased, the efficiency is sacrificed, and when the efficiency is biased, the sound quality is sacrificed.
  • a bias current compensation circuit is designed for the current amplification stage, and a small quiescent current is provided for the power stage when static, and as the power current output increases and decreases, The bias current of the current amplifier stage is adjusted in real time to achieve sustainable Class A amplification, and the circuit must be compact.
  • Amplifying loop (also called P-type monitoring loop) composed of B-type transistor (referred to as PNP type triode or P-channel field effect transistor) BG13 is used to monitor the bias voltage Uan of the positive arm of the power amplifier current amplification stage. Then use an N-type transistor (referred to as an NPN transistor or an N-channel FET).
  • the amplifier circuit (also called the N-type monitoring circuit) of the BG14 monitors the bias of the negative arm of the power-discharge amplifier stage.
  • This connection has three connection points with the main circuit of the power amplifier.
  • a three-terminal complementary transistor bias current compensation voltage source circuit (see Figure 2).
  • Uan and Upb can also take the voltage between the base of the tube and the emitter of the power tube.
  • This connection has four connection points with the main circuit of the power amplifier, so it is called a four-terminal complementary transistor bias current compensation voltage source circuit (see Figure 3). ).
  • the two sampling signals are respectively input to the respective monitoring circuits, and after amplification, the collector currents of the respective monitoring tubes are formed, and the collectors of the two complementary monitoring tubes are connected, so that the two complementary monitoring circuits are mutually loaded.
  • This connection will act as a selective amplification and current output for weak input variables.
  • the quiescent current of the second voltage amplification stage forms a voltage drop across it, which provides a stable static bias for the push and power stages, and a reasonable adjustment of the initial current I flowing through the monitoring loop enables the boost stage and power
  • the stage works in a linear state.
  • Uan U P b
  • the bias voltage of the amplifier current amplification stage will also increase, the voltage of BG13 and BG14 is also increased, and the total current I of the monitoring tube also increases.
  • the Uab is reduced, the bias current of the current amplification stage is reduced, negative feedback is formed, and the increase of the bias current is suppressed.
  • the power amplifier current amplification stage bias current is reduced, the collector current I flowing through the monitoring tube is also reduced, the current amplification stage bias current is increased, and the negative feedback suppression bias current is reduced, so this circuit It is a constant voltage source circuit when it is static.
  • the output current I flowing through the monitoring loop will be controlled by the power arm bias whose power stage tends to be turned off, regardless of whether the output power current is positive or negative.
  • the current I becomes smaller, and the smaller amount is related to the absolute value of the output current.
  • the decrease in I causes the Uab to increase, thereby increasing the real-time bias current of the push stage and the power stage, so that the new circuit realizes the function of the final stage bias compensation.
  • This circuit is added to the power amplifier circuit through the three-terminal type or four-terminal type connection method. It provides a static bias current of the current amplification stage when static, and adjusts the bias current of the current amplification stage in real time during dynamic time to keep the power tube at a small quiescent current.
  • the class A amplification capability at high current output under bias conditions can be referred to as a complementary transistor bias current compensation voltage source circuit, referred to as a compensation circuit, according to the function of this circuit.
  • the traditional Class A power amplifier can significantly improve the efficiency and output power of the power amplifier without compromising the playback quality after the technical transformation of the compensation source circuit. Conversely, under the condition of maintaining the same output power, This can greatly reduce the cost of power and heat sinks.
  • the traditional Class B power amplifier adopts the compensation source circuit for technical transformation, which can improve the quality of signal reproduction and achieve Class A level without reducing the efficiency.
  • This compensation circuit solves the contradiction between the efficiency of the power amplifier amplifier and the sound quality, and enables the existing Class A power amplifier to have higher efficiency and higher high-fidelity power output, so that the Class A or Class B power amplifier can achieve the amplification quality improvement.
  • FIG. 4 is a three-terminal complementary transistor single-resistor bias current compensation voltage source applied to a power amplifier circuit
  • FIG. 5 is a four-terminal complementary transistor single-resistor bias current compensation voltage source application example
  • FIG. 6 is a three-terminal complementary transistor resistor.
  • Embodiment of the voltage division bias current compensation voltage source application FIG. 7 is an application example of a four-terminal type complementary transistor resistance voltage division bias current compensation voltage source.
  • the general-purpose amplification part of the circuit uses a fully symmetrical and fully complementary 0CL circuit structure. This configuration is used to minimize the inherent distortion of each stage and to provide hardware support for the full symmetrical full complement amplification of the electrical signal in the amplifier.
  • the core of the power amplifier circuit is a three-terminal complementary transistor single-resistor bias current compensation voltage source circuit (see the dotted line frame).
  • the compensation circuit is located at the output end of the second voltage amplification stage, and is connected in parallel with the input circuit of the power amplifier driving stage. Together, the load forming the second voltage amplification stage has a DC voltage drop that provides a stable static bias for the push and power stages.
  • the emitter of the P-type transistor BG13 is connected to the collector of the BG7 and the base connection point A of the BG9, and the emitter of the N-type transistor BG14 is connected to the collector of the BG8 and the base connection point B of the BG10, and the base of the BG13 passes.
  • the resistor R18 is connected to the output midpoint 0, and the base of the BG14 is connected to the output midpoint 0 through the resistor R19.
  • the collectors of BG13 and BG14 are connected.
  • the current I flowing through the compensation circuit and the input current of the boosting stage together form the collector output current of the second amplifier stage.
  • the voltage drop across the compensation circuit provides a bias voltage for the power amplifier current amplifier stage. .
  • Uao is equal to Uob, and the current flowing through the two monitoring tubes is the same.
  • Uao and Uob increase at the same time, and the current I flowing in the compensation circuit also increases, causing the Uab to decrease, which cancels the common mode signal pair.
  • the influence of the post-level When Uab is reduced, the I flowing through the compensation circuit is also reduced, resulting in an increase in Uab and a stable bias change. Therefore, this circuit can function as a constant voltage source when static, suppressing the common mode interference signal of the previous stage. .
  • the addition of the compensation circuit enables the power amplifier to achieve high-power Class A signal amplification capability under low quiescent current conditions.
  • the circuit corresponds to the state in which the final stage bias current is 10. 5 mA when the normal class A power amplifier outputs 1 mA current. At the second moment, the output current increases from 1 mA to 2 mA. At this time, the collector current of the BG11 is 11. 5 mA, and the collector current of the BG12 is 9. 5 mA.
  • the collector current of the BG11 is 12 mA, and the collector of the BG12 is still 10 mA.
  • the power amplifier is equivalent to the state when the normal class A power amplifier with a final stage bias current of 11 mA outputs 2 mA.
  • the collector current of BG11 is 1009. 5mA, and the collector current of BG12 is 9. 5mA.
  • the collector of BG11 is 1010mA, and the collector current of BG12 is 10mA. This is equivalent to the state when the normal class A power amplifier with a final bias current of 510 mA outputs 1 A current.
  • the collector current of BG11 is 1009. 5mA
  • the collector current of BG12 is 10. 5mA
  • Uao is reduced compared with the previous moment
  • Uob is increased
  • Uao is still much larger than Uob
  • BG13 is still saturated, but the base current of BG14 is increased compared to the above, so I is increased compared to the previous moment, which will lead to a reduction in power stage bias current.
  • the BG12 collector current will remain around 10mA.
  • the collector current of BG11 is 1009 mA.
  • the circuit is equivalent to the state when the final stage bias current of the class A circuit is 509. 5 mA when the current is 999 mA. The rest is like this.
  • the power amplifier is integrated as a Class A bias, achieving full-symmetric and fully complementary electrical signal amplification.
  • This power amplifier circuit takes into account the advantages of Class A and Class B offsets and overcomes them.
  • the shortcomings, and the circuit is very simple, only one transistor is added compared to the traditional power amplifier, so this power amplifier circuit is called a simple and effective super power amplifier.
  • the compensation source circuit uses a combination of two complementary transistors to realize complementary symmetrical amplification of the electrical signals of the entire power amplifier circuit.
  • the components used are commercially available, and the current technology is simple and easy to implement, and the cost is low.
  • the people with basic skills in electronic technology can complete the transformation independently.
  • the large-scale application of this compensation source circuit can promote the overall low-cost technology upgrade of the power amplifier industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

简洁高效的超级功率放大器是一款应用了互补晶体管偏流补偿电压源电路的功率放大器。设计的目标是在简洁和小静态电流偏置的条件下,实现大功率电流输出条件下的甲类信号放大。方法是:给功放设置一个较小的静态偏流,动态时随着功率电流输出的增加和减少,补偿电路实时适量调节功放末级的偏置电流,补偿功率管动态时的偏流损失,从而实现可持续的甲类信号放大要求,使功放有甲类的音质又有乙类的效率。其核心偏流补偿电路只用了两个互补晶体管的组合就实现了上述功能,电路简洁明快,主信号放大回路相比传统电路没有任何改变,创新集中在恒压源电路上,总体电路非常简洁。

Description

简洁髙效的超级功率放大器
技术领域:
本发明涉及电信号的髙保真大功率放大领域, 对一些需要大功率高保真信号输出的场合特别适用。 这 个电路可以同时实现甲类的高保真和乙类的高效率, 与传统甲类功放相比有更大的高保真电功率输出的同 时也更加节能。 与传统甲乙类功放相比, 保持相等的电功率输出能力外还提升了信号重放的品质, 达到甲 类的效果。
背景技术:
一个完整的功率放大器电路一般由电压放大部分和电流放大部分二大部组成, 电压放大部分作用是将 弱小的输入信号电压进行放大; 电流放大部分作用是使经电压放大级放大后的信号能够输出足够的电功率 带动负载。 比较常用的是两级电压放大加两级电流放大结构, 其中第一电流放大级主要负责推动大功率晶 体管也称推动级, 第二电流放大级负责电功率的输出也称功率放大级。
现有研究已经证明好的高保真放大器在电路设计上有四个特点: 一是全对称的电路结构, 是指每级都 是对称的正负电源臂放大结构, 二是全互补的放大器件, 是指功放每级的正负臂分别由互补的放大器件来 构建, 三是电信号的全对称全互补放大, 是指在额定功率输出条件下, 电信号在每一级对称放大后实现失 真的互补, 四是总体电路要简洁, 这意味着更快的反应速度, 更好的音质, 更低的干扰, 更低的成本。
全对称全互补结构的放大电路有以下好处:一是让晶体管本身的非线性失真进行互相抵消, 使每一级 的固有失真最小化, 二是有更高的带负载能力。 全互补全对称的硬件结构设计是比较容易的, 但是在实际 工作中要实现电信号的全对称全互补放大是困难的。 最难点在于功率放大级, 如果要在这一级实现电信号 的对称互补放大, 考虑到最大功率输出的要求, 必须为功率管设定一个很大的静态电流, 其值要大于额定 功率输出条件下时最大输出电流的 1/2, 这导致功放发热大效率低, 发热量的增加对散热系统和功放电源 也提出了更高的高求, 从而限制了输出功率的进一步提高。 如果设定一个较低的末级偏置电流, 则会导致 放大器在输出电流在大于两倍末级偏置电流时, 其中一个功率管进入截止状态, 虽然具有互补对称的硬件 结构, 却只有一只功率管对信号进行放大, 从而破坏电信号在末级互补对称放大功能, 导致非线性失真无 法互补抵消, 未级固有失真变大, 非线性失真只能靠大环路的负反馈来消除, 但是大环路负反馈这种结构 也不是完美的, 由于放大电路有响应延迟以及分布参数对瞬时信号的影响, 在瞬时大动态信号输入时, 电 路固有失真大的缺点将被显现出来, 产生新的谐波失真, 这种失真称瞬态互调失真。
在实际应用中, 根据功放的条件和实际听音需求, 同一个功率放大器可以设置不同的末级静态偏置电 流, 当在额定功率输出条件下, 功放能全程实现电信号的全对称全互补放大时, 称为甲类偏置。 在额定功 率输出条件下, 部分实现电信号的全对称全互补放大时称为甲乙类偏置。 只给末级功率管提供一个门限开 启电流, 功率管轮流担负正负半周的输出, 称为乙类偏置。 从信号放大的质量来说, 甲类〉甲乙类〉乙类, 从效率上来说,乙类〉甲乙类〉甲类。
甲类偏置的特点是功率管的偏置电流要大于 1/2的最大输出电流, 只有能满足达到这个条件, 功率级 才能实现电信号的互补对称放大, 如此输出的额定功率越大, 末级静态电流就越大。 甲类偏置的功率放大 器, 优点是输出信号保真度最高。 缺点是末级采用大电流偏置, 效率很低, 而且放大器发热量大, 受电源 和散热能力的限制额定输出功率相比甲乙类偏置低很多, 适用于高保真和中低功率输出的场合。
乙类偏置是让两只互补功率管分别负担信号正负周期的功率放大, 一只处于放大状态另一只载止, 轮 流工作于信号正负半周。 优点是有较高的效率, 能够输出较大的电功率, 缺点是功率级未能实现电信号的 互补对称放大, 造成功率级的固有失真较大。 难以担当高保真的要求, 所以主要应用于大功率而品质要求 不高的场合。
甲乙类是个折中形式, 末级功率管偏置电流介于甲类与乙类之间, 所以在小功率输出时, 电路工作于 甲类状态, 当输出电功率较大时功率输出管处于乙类状态, 此类电路适用于音质要求不太高, 又能兼顾大 功率输出的场合。
还有一种称为超甲类或准甲类的技术, 号称兼顾音质与效率, 但已有的该类技术在实际应用中, 由于 对髙保真放大原理上认识的不到位, 所以效果都不好。 表现在以下两方面。一是片面认为只要末级功率管 都不进入截止, 就是甲类了, 这是没有认识到电信号在功率级的互补对称放大才是甲类音质的保证。 二是 为了达到设计目标, 采用了非常复杂的电路或增加功放的级数, 这是忽视了简洁性原则, 造成了瞬态性能 的恶化。
发明内容:
有没有一个功放电路, 既有甲类偏置的音质也具有乙类偏置的效率, 同时也符合简洁至上的理念呢? 这就是本发明的初衷一一简洁简洁高效的超级功率放大器。通过对传统甲类功放全信号周期时的效率分析 可知, 甲类功放的低效率是表现在宏观上的, 这是由于传统甲类功放为了满足大功率输出时电信号的互补 对称放大要求, 设置了很大的末级偏置电流, 才导致了整体上的低效率。 甲类功放的效率在瞬态时也是很 高的。 比如说一个功放, 功率级的电源电压为正负 30V, 功率级静态偏置电流为 1. 8A。 在 8欧姆负载下输 出 100W电功率时,经计算可得输出电流为 3. 54A,这个输出电流小于 2倍静态电流,所以功放工作于甲类, 可得出此时功率级的效率为 100W/1. 8A*2*30=92. 6%。所以说甲类功放不是没有髙效率, 问题在于功率级的 静态电流设在了满足最大功率输出所要求的点上, 从而造成甲类功放在宏观上的低效。 本发明的思路是为甲类功放设定一个较小的静态电流, 使静态时的功耗减小, 为了保证大功率输出时 的甲类放大能力, 电流放大级的偏置电流必须随着功率电流的输出增加而自动增加, 使末级功率管进行可 持续的甲类放大, 当功率电流输出减小时, 电流放大级偏置电流也减小, 这样这款甲类功放的效率就可以 大大提高, 从而实现放大品质与效率的统一。
要解决的技术问题:
要想实现大功率髙效条件下电信号的全对称全互补放大,难点在功率级上,由于末级电流动态范围大, 考虑到最大功率电流的输出, 必须要给功率级设定一个大的静态电流, 当偏向音质时就要牺牲效率, 当偏 向效率就要牺牲音质。 为了使功率级进行可持续高效率的甲类信号放大, 就要为电流放大级设计一个偏流 补偿电路, 静态时为功率级提供一个较小的静态电流, 随着功率电流输出的增加和减少, 实时的调节电流 放大级的偏置电流, 以实现可持续的甲类放大能力, 并且该电路还必须简洁。
技术方案:
要实现这个要求, 可以通过以下方案来实现 (见附图 1 )。 用一个 P型晶体管 (指 PNP型三极管或 P沟 道场效应管) BG13构成的放大回路 (也称 P型监测回路) 监测功放电流放大级正臂的偏压 Uan。 再用一个 N型晶体管 (指 NPN型三极管或 N沟道场效应管) BG14构成的放大回路(也称 N型监测回路)监测功放电 流放大级负臂的偏压 Upb。当 Uan和 Upb取推动管基极与输出中点之间的电压,那么 P点 N点与 0点重合, Uan-Uao, Upb=Uob,此种接法与功放主电路有三个连接点所以称三端型互补晶体管偏流补偿电压源电路(见 附图 2)。 Uan和 Upb也可以取推动管基极与功率管发射极之间的电压, 此种接法与功放主电路有四个连接 点所以称四端型互补晶体管偏流补偿电压源电路 (见附图 3)。这两个取样信号分别输入到各自的监测回路, 放大后形成各自监测管的集电极电流,将这两个互补监测管的集电极相连,让两个互补监测回路互为负载。 这样连接将起到对弱输入变量选择性放大和电流输出的作用。 设 BG13和 BG14是三极管并且其放大倍数相 同, 附属电路参数也对称, 当 Uan=Upb时, I= P *ibl3= P *ibl4„ 当 UanHIpb时, I= P *ibl4, Uan<Upb 时, I=e*ibl3。 由此可见两个取样信号经各自的监测回路放大后, 当各自的集电极电流相同时, 总集电 极电流等于各自的分集电极电流, 当各自的集电极电流有差别时, 集电极电流相对较大的那个监测管将饱 和, 流过两互补管的集电极电流 I等于集电极电流相对较小的那个。 BG13, BG14集电极串联后两发射极之 间形成的输出回路连接在功放两推动管的基级之间, 与推动级的输入回路并联, 一起作为第二电压放大级 的负载。
第二电压放大级的静态电流在其上形成压降, 此压降为推动级和功率级提供稳定的静态偏置, 合理的 调节流过监测回路的初始电流 I, 就能使推动级和功率级工作于线性状态。 在静态时, Uan=UPb, 当前级因温度或电源波动 Uab增加时, 功放电流放大级的偏置电压也将增加, BG13和 BG14取样到电压也增加, 监测管总电流 I也增加, 导致 Uab减少, 电流放大级的偏流减小, 形成 负反馈, 抑制偏流的增加。 当因电源或温度波动引起 Uab减小时, 功放电流放大级偏流减小, 流过监测管 的集电极电流 I也减小, 电流放大级偏流增加, 形成负反馈抑制偏流的减小, 所以这个电路在静态时是一 个恒压源电路。
在动态功率电流输出时, 由于 Uao和 Ubo的变化方向相反, 流过监测回路的输出电流 I将受控于功率 级趋向截止的那一电源臂偏压, 不论输出的功率电流是正向还是负向, 随着输出电流值的增加, 电流 I都 会变小, 变小的量与输出电流的绝对值相关。 I减小使 Uab增加, 从而增加推动级和功率级的实时偏置电 流, 这样该新电路就实现了末级偏流补偿的功能。
这个电路通过三端型或四端型接法加入到功放电路后, 静态时提供电流放大级稳定的静态偏置电流, 动态时实时适量的调节电流放大级的偏流, 保持功率管在小静态电流偏置条件下大电流输出时的甲类放大 能力, 根据此电路的作用可称其为 --一互补晶体管偏流补偿电压源电路, 简称补偿电路。
有益效果:
当普通功率放大器采用了这个非常简单的补偿电路代替现时通常采用的单管恒压源偏置电路。将产生 如下的有益效果。
1. 传统甲类功放在釆用该补偿源电路进行技术改造后, 在不降低重放品质的前提下, 能够大大提高 功放的效率和输出功率; 反过来讲, 在保持相同输出功率条件下, 则可以大大降低电源和散热器 的成本。
2. 传统乙类功放采用该补偿源电路进行技术改造后, 在不降效率的前提下, 能够提高信号重放的品 质, 达到甲类的水准。
3. 在传统集成电路功放领域, 由于受散热条件的限制, 重放品质不高, 采用本技术后, 可以让集成 电路功放的重放品质大大提高。
这个补偿电路解决了功放放大器效率与音质的矛盾, 使现有的甲类功放有更高的效率和更大的高保真 功率输出, 使甲乙类或乙类功放实现放大品质的提高。
附图说明 (见图 4, 图 5, 图 6, 图 7)
图 4是三端型互补晶体管单电阻偏流补偿电压源应用在功放电路中的实施例, 图 5是四端型互补晶体 管单电阻偏流补偿电压源应用实施例, 图 6是三端型互补晶体管电阻分压偏流补偿电压源应用实施例, 图 7是四端型互补晶体管电阻分压偏流补偿电压源应用实施例。 这四个电路具有相同的工作原理和功能, 是同一设计思路下的不同实现形式。
具体实施方式:
为了更好的理解该补偿电路在功放电路中的作用, 下面结合图 4作详细说明。
电路通用放大部分采用了全对称和全互补的 0CL电路结构。采用这种结构是为了使每一级都实现固有 失真的最小化, 为电信号在功放中的全对称全互补放大提供硬件支撑。
功放电路的核心是三端型互补晶体管单电阻偏流补偿电压源电路 (见虚线框内), 在功放电路中该补 偿电路位于第二电压放大级的输出端, 与功放推动级的输入回路并联, 共同构成第二电压放大级的负载, 其上的直流压降为推动级和功率级提供稳定的静态偏置。
下面介绍补偿电路的工作原理。
P型晶体管 BG13的发射极接在 BG7的集电极与 BG9基极连接点 A上, N型晶体管 BG14的发射极接在 BG8的集电极与 BG10的基极连接点 B上, BG13的基极通过电阻 R18后接在输出中点 0, BG14的基极通过 电阻 R19后接在输出中点 0。 BG13和 BG14的集电极相连, 流过补偿电路的电流 I与推动级的输入电流共 同构成了第二放大级的集电极输出电流, 补偿电路上的压降为功放电流放大级提供了偏置电压。
在静态或信号零点时, Uao等于 Uob, 两监测管中流过的电流相同。 当温度变化或电源波动导致 AB间 有共模信号加入导致 Uab增大时, Uao和 Uob同时增大, 补偿电路中流过的电流 I也加大, 导致 Uab减小, 抵消了这个共模信号对后级的影响。 Uab减小时,流过补偿电路中的 I也减小, 导致 Uab增加, 起到稳定偏 压变化的作用, 所以这个电路在静态时能起到恒压源作用, 抑制前级的共模干扰信号。
当信号处于正半周时, 电压信号经电压放大级放大后, A点 B点 0点电位都将升髙, 这时功放对外输 出正向电流, 这时 BG11集电极电流增加, Uao增加, BG12集电极电流减小, Uob下降。 Uao>Uob,流过补 偿电路的电流 I受控于 Uob也将减小, 导致 Uab增加, 从而增加了电流放大级的偏置电流。 这个增加量补 偿了功率管 BG12因电流输出而导致的电流减小, 使其保持其与静态时差不多的偏置电流。
信号处于负半周时, A点 B点 0点电位都将降低,这时功放输出负向电流, BG12电流增加, Uob增加, BG11电流减小, Uao下降。 由于 UaoOJob, 流过 BG13和 BG14的集电极电流 I将跟随 Uao的变化而减小, 导致 Uab增加, 电流放大级的偏置电流将增加, 使 BG11的电流保持与静态时差不多的电流。
如此可见, 补偿电路的加入使功放实现了低静态电流条件下的大功率甲类信号放大能力。
接下来分析本实施例电路输出的电流是否如甲类电路一样实现了失真互补。
设功放末级的静态电流为 10mA, 分析其能不能以甲类状态输出最大值为 1A的高保真功率电流。 由于信号总是连续的, 下一刻总是上一刻的继承与发展, 下面用微分法进行分析, 步长设定为 lmA。 第一时刻,功率输出电流从 0上升到 1mA时, 由于功放输出电流小于偏置电流,此时功率管处于甲类, 输出电流由 BG11和 BG12共同负担, BG11的集电极电流从 10mA增加到了 10. 5mA, BG12的集电极电流从 10mA减少到了 9. 5mA。 这个结果导致 Uao上升, Uob下降, 这时补偿电路中的电流 I减少, 末级偏流将增 加, 使 BG12集电极电流大致保持在 10mA左右, 补偿后 BG11的集电极电流则增加到 llmA。此时电路相当 于末级偏置电流为 10. 5mA的普通甲类功放输出 1mA电流时的那个状态。 第二时刻输出电流从 1mA增加到 了 2mA。 此时, BG11的集电极电流为 11. 5mA, BG12的集电极电流为 9. 5mA, 同样经偏流补偿电路补偿后, BG11的集电极电流为 12mA, BG12的集电极仍为 10mA, 此时本功放相当于末级偏置电流为 11mA的普通甲 类功放输出 2mA时的那个状态。 以此类推到输出 1A电流时, BG11的集电极电流为 1009. 5mA, BG12的集电 极电流为 9. 5mA, 经补偿后, BG11集电极为 1010mA,BG12集电极电流为 10mA。相当于末级偏流为 510mA的 普通甲类功放输出 1A 电流时的那个状态。 当输出电流再从 1A减少到 999mA时, BG11 的集电极电流为 1009. 5mA, BG12集电极电流为 10. 5mA, Uao相比上一刻减小, Uob则加大,但是 Uao还是远远大于 Uob, BG13 还是饱和, 但是 BG14的基极电流相比上刻增加, 所以 I相比上一刻是增加的, 这将导致功率级偏置电流 的减少。补偿后, BG12集电极电流将维持 10mA左右。 BG11的集电极电流为 1009mA。此时电路相当于普通 甲类电路末级偏流为 509. 5mA时输出 999mA电流时的那个状态。 其余以此类推。
从上面分析可以看出, 在每一时刻, 电路总是工作于甲类状态, 功率管 BG11和 BG12始终都处于放大 状态, 信号在功放全程每一时刻都是进行互补对称放大的。
由此可以看出本电路在输出电流大于 2倍末级偏置电流时, 功率级还是工作于失真互补状态的。 固有 失真在功率级实现了最小化, 功放整体如同甲类偏置时一样, 实现了全对称全互补的电信号放大, 这款功 放电路兼顾了甲类和乙类偏置的优点, 克服了他们的缺点, 并且电路非常简洁, 相比传统功放只增加了一 个晶体管, 所以称这个功放电路为简洁髙效的超级功率放大器。 工业实用性:
该补偿源电路, 使用两个互补晶体管的组合, 实现了整个功放电路电信号的互补对称放大功能, 使用 的元器件是市场上都能买到的, 对现行技术进行改造简单易行, 成本低廉, 有电子技术基本技能的人都能 独立完成改造, 这个补偿源电路的大规模应用, 能推动功率放大器行业进行整体低成本的技术升级。

Claims

1. 互补晶体管偏流补偿电压源电路, 用一个 P型晶体管构成的放大回路监测功放电流放大级正电源臂的偏 置电压 Ua 用一个 N型晶体管构成的放大回路监测功放电流放大级负电源臂的偏置电压 Upb, 将这两 个互补监测管的集电极 (或漏极) 相连, 两监测管发射极(或源极) 形成控制电流的输出通路, 该电流 通路与功放电流放大级输入回路并联后成为电压放大级的负载, 该电路有以下特点: 静态时, 为功放电 流放大级提供稳定的静态偏压, 起到稳压源的作用, 动态时, 根据功放电流放大级正负电源臂的偏置电 压 Uan和 Upb变动, 进行弱输入变量选择性放大和电流输出, 输出的控制电流实时适量调节电流放大级 的偏置电流, 使功率级工作于高效的甲类放大状态。
2. 三端型互补晶体管偏流补偿电压源电路,根据权利 1,用一个 P型晶体管构成的放大回路监测推动管 BG9 基极 a点与输出中点 0点的电压 Uao,用一个 N型晶体管构成的放大回路监测推动管 BG10基极 b点与输 出中点 o之间的电压 Uob, 将这两个互补监测管的集电极(或漏极)相连, 两监测管的发射极(或源极) 形成控制电流的输出通路, 该电流通路与功放推动级输入回路并联后成为电压放大级的负载, 该电路有 以下特点: 静态时, 为功放电流放大级提供稳定的静态偏压, 起到稳压源的作用, 动态时, 根据取样信 号 Uao和 Uob, 进行弱输入变量选择性放大和电流输出, 输出的控制电流实时适量调节电流放大级的偏 置电流, 使功率级工作于髙效的甲类放大状态。
3. 四端型互补晶本管偏流补偿电压源电路,根据权利 1,用一个 P型晶体管构成的放大回路监测推动管 BG9 基极 a点与功率管 BG11发射极 n点之间的电压 Uan,用一个 N型晶体管构成的放大回路监测推动管 BG10 基极 b点与功率管 BG12发射极 p点之间的电压 Upb, 将这两个互补监测管的集电极(或漏极)相连, 两 监测管的发射极(或源极) 形成控制电流的输出通路, 该电流通路与功放电流放大级输入回路并联后成 为电压放大级的负载, 该电路有以下特点: 静态时, 为功放电流放大级提供稳定的静态偏压, 起到稳压 源的作用, 动态时, 根据取样信号 Uan和 Upb, 进行弱输入变量选择性放大和电流输出, 输出的控制电 流实时适量调节电流放大级的偏置电流, 使功率级工作于高效的甲类放大状态。
4. 三端型互补晶体管单电阻偏流补偿电压源电路, 根据权利 2, P型监测管和 N型监测管的集电极 (或漏 极)相连, 两个监测管发射极 (或源极) 之间形成控制电流的输出通路, P型监测管的基极(栅极可不 串联电阻 R18) 串联电阻 R18后接在功放输出中点 O点, 发射极 (或源极) 接在推动管 BG9的基极 A 点, N型监测管的基极(栅极可不串电阻 R19)串联电阻 R19后接在功放输出中点 O点, 发射极(或源 极)接在推动管 BG10的基极 B点, 有一种变形结构, 将 R18从 P型监测管的基极移动到发射极, R19 从 N型监测管的基极移动到发射极, 这两种形态电路的特点是, 以中点 0为基准., 将功放电流放大级总 偏压 Uab分成正电源臂偏压 Uao和负电源臂偏压 Uob, 作为取样信号分别输入到 P型和 N型分监测放大 回路, 静态时, 该电路起到稳压源的作用, 动态时, 补偿电路输出电流 I受控于 Uao和 Uob中绝对值较 小的那个, 实时适量调节电流放大级的偏置电流, 使功率级工作于髙效的甲类放大状态。
5. 三端型互补晶体管电阻分压偏流补偿电压源电路, 根据权利 2, P型监测管和 N型监测管的集电极 (或 漏极)相连, 两个监测管发射极 (或源极) 之间形成控制电流的输出通道, P型监测管的发射极接在推 动管 BG9的基极 A点, 基极串联电阻 R18后接在功放输出中点 O点, R20并联在 P型监测管的发射极
(或源极) 与基极(或栅极)之间, N型监测管的发射极(或源极)接在推动管 BG10的基极 B点, 基 极串联电阻 R19后接在功放输出中点 0点, R21并联在 N型监测管的发射极 (或源极) 与基极 (或栅 极)之间, 电路特点是: 以中点 O为基准, 将功放电流放大级总偏压 Uab分成正电源臂偏压 Uao和负电 源臂 Uob, 分别经电阻分压后作为取样信号, 分别输入到 P型和 N型分监测放大回路, 静态时, 该电路 起稳压源的作用, 动态时, 补偿电路输出电流 I受控于 Uao和 Uob中绝对值较小的那个, 实时适量调节 电流放大级的偏置电流, 使功率级工作于高效的甲类放大状态。
6. 四端型互补晶体管单电阻偏流补偿电压源电路, 根据权利 3 , P型监测管和 N型监测管的集电极(或漏 极) 相连, 两个监测管发射极(或源极) 之间形成控制电流 I的输出通道, P型监测管的发射极(或源 极) 接在推动管 BG9的基极 A点, 基极 (栅极可不串电阻 R18) 在串联电阻 R18后接在功率管 BG11 发射极的 N点, N型监测管的发射极(或源极)接在推动管 BG10的基极 B点, 基极(栅极可不串电阻 R19) 串联电阻 R19后接在功率管 BG12的发射极 P点, 有一种变形结构, 将 R18从 P型监测管的基极 移动到发射极, R19从 N型监测管的基极移动到发射极, 这两种形态电路的特点: 以同电源侧推动管和 功率管的基射偏压叠加电压 Uan和 Upb作为取样电压, 静态时, 电路起到稳压源的作用, 动态时, 补偿 电路输出电流 I受控于 Uan和 Upb中绝对值较小的那个, 实时适量调节功率级的偏置电流, 使功率放大 级工作于高效的甲类放大状态。
7. 四端型互补晶体管电阻分压偏流补偿电压源电路, 根据权利 3, P型监测管和 N型监测管的集电极 (或 漏极)相连, 两个监测管发射极 (或源极)之间形成控制电流 1的输出通道, P型监测管的发射极 (或 源极)接在推动管 BG9的基极 A点, 基极 (或栅极) 串联 R18后接在功率管 BG11发射极的 N点, 发 射极(或源极)与基极(或栅极)之间并联电阻 R20, N型监测管的发射极(或源极)接在推动管 BG10 的基极 B点,基极(或栅极)串联 R19后接在功率管 BG12的发射极 P点,发射极(或源极)与基极(或 栅极)之间并联电阻 R21, 电路的特点: 以同电源侧推动管和功率管的基射偏压相加后形成的偏压 Uan 和 Upb作为取样信号, 静态时, 电路起到稳压源的作用, 动态时, 补偿电路输出电流 I受控于 Uan和 Upb中绝对值较小的那个,实时适量调节功率级的偏置电流,使功率放大级工作于高效的甲类放大状态。
PCT/CN2013/000090 2012-02-13 2013-01-29 简洁高效的超级功率放大器 WO2013120393A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210038949.1 2012-02-13
CN 201210038949 CN102594263A (zh) 2012-02-13 2012-02-13 简洁高效的超级甲类功率放大器

Publications (1)

Publication Number Publication Date
WO2013120393A1 true WO2013120393A1 (zh) 2013-08-22

Family

ID=46482542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000090 WO2013120393A1 (zh) 2012-02-13 2013-01-29 简洁高效的超级功率放大器

Country Status (2)

Country Link
CN (1) CN102594263A (zh)
WO (1) WO2013120393A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594263A (zh) * 2012-02-13 2012-07-18 金海辉 简洁高效的超级甲类功率放大器
CN104124933B (zh) * 2014-06-25 2017-11-07 魅族科技(中国)有限公司 放大电路、电路板及电子设备
CN105591626A (zh) * 2014-10-21 2016-05-18 广州南洋理工职业学院 一种无直流偏置功放电路
CN109104671B (zh) * 2018-08-24 2020-11-20 林汉民 一种音响功率放大器输出级电路
CN112290960B (zh) * 2020-09-02 2022-04-01 南京驭逡通信科技有限公司 一种移动通讯终端的多模多频放大电路及其温度偏置补偿方法
CN112684238B (zh) * 2021-01-08 2024-05-24 四川湖山电器股份有限公司 一种开关功率管负载电流实时监测电路及监测系统
CN113258890B (zh) * 2021-05-26 2022-02-15 南京信息工程大学 一种大功率散热电路结构
CN114442720B (zh) * 2022-01-20 2024-05-17 王仲季 一种共基电流传输无大环路负反馈i/v电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933314U (ja) * 1982-08-27 1984-03-01 日本ビクター株式会社 プツシユプル増幅回路の周波数補償回路
US5049834A (en) * 1986-11-21 1991-09-17 Takafumi Kasai Amplifier having a constant-current bias circuit
CN2879534Y (zh) * 2006-03-22 2007-03-14 沈锦成 音频功率放大器
CN201854247U (zh) * 2010-11-23 2011-06-01 江苏瑞特电子设备有限公司 一种阻抗匹配功率放大输出电路
CN102594263A (zh) * 2012-02-13 2012-07-18 金海辉 简洁高效的超级甲类功率放大器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933314U (ja) * 1982-08-27 1984-03-01 日本ビクター株式会社 プツシユプル増幅回路の周波数補償回路
US5049834A (en) * 1986-11-21 1991-09-17 Takafumi Kasai Amplifier having a constant-current bias circuit
CN2879534Y (zh) * 2006-03-22 2007-03-14 沈锦成 音频功率放大器
CN201854247U (zh) * 2010-11-23 2011-06-01 江苏瑞特电子设备有限公司 一种阻抗匹配功率放大输出电路
CN102594263A (zh) * 2012-02-13 2012-07-18 金海辉 简洁高效的超级甲类功率放大器

Also Published As

Publication number Publication date
CN102594263A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
WO2013120393A1 (zh) 简洁高效的超级功率放大器
US7928799B2 (en) Power amplifying apparatus and mobile communication terminal
CN101308391B (zh) 一种高精度低压差线性稳压电路
WO2007109776A3 (en) Dynamic bias control in power amplifier
CN111522389A (zh) 宽输入低压差线性稳压电路
JPH10242779A (ja) 混合型増幅器
JP2004040769A (ja) バイアス電流制御回路を含む電力増幅器
GB2546576A (en) Hybrid switched mode amplifier
CN115567005B (zh) 一种功率自适应Doherty功率放大器结构及设计方法
CN211878488U (zh) 宽输入低压差线性稳压电路
CN111309089A (zh) 一种线性稳压电源
Kwon et al. A 0.028% THD+ N, 91% power-efficiency, 3-level PWM Class-D amplifier with a true differential front-end
CN101976094B (zh) 一种精确的电流产生电路
Wen et al. A 5.2 mw, 0.0016% thd up to 20khz, ground-referenced audio decoder with psrr-enhanced class-ab 16ω headphone amplifiers
WO2023280137A1 (zh) 跨阻放大器及跨阻放大器的控制方法
CN116185115A (zh) 一种ldo复合零点跟踪补偿电路
CN101931370A (zh) 具有静态电流抑制功能的低压降放大电路
WO2015090050A1 (zh) 一种放大器系统及设备
CN201210261Y (zh) 一种高精度低压差线性稳压电路
CN209345112U (zh) 运算跨导放大器
CN202210783U (zh) 运算放大电路
US9209761B2 (en) Combined input stage for transconductance amplifier having gain linearity over increased input voltage range
WO2017012144A1 (zh) 一种基于开关电源恒功率控制的电力载波通信线路驱动器
KR101665586B1 (ko) 진공관을 이용한 증폭회로
CN102386865A (zh) 运算放大电路及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13748719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13748719

Country of ref document: EP

Kind code of ref document: A1