WO2013120383A1 - 一种多点协同传输预编码方法、终端及基站 - Google Patents

一种多点协同传输预编码方法、终端及基站 Download PDF

Info

Publication number
WO2013120383A1
WO2013120383A1 PCT/CN2012/087144 CN2012087144W WO2013120383A1 WO 2013120383 A1 WO2013120383 A1 WO 2013120383A1 CN 2012087144 W CN2012087144 W CN 2012087144W WO 2013120383 A1 WO2013120383 A1 WO 2013120383A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal
precoding
matrix
phase correction
Prior art date
Application number
PCT/CN2012/087144
Other languages
English (en)
French (fr)
Inventor
王衍文
刘娟
卢兆山
陈东丽
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013120383A1 publication Critical patent/WO2013120383A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection

Definitions

  • Multi-point coordinated transmission precoding method terminal and base station
  • the present invention relates to the field of wireless communications, and in particular to a Co-ordinated Multi-Point Transmission (CoMP) precoding method, a terminal, and a base station.
  • CoMP Co-ordinated Multi-Point Transmission
  • Multipoint coordinated transmission technology is the collaboration between multiple transmission points geographically separated.
  • multiple transmission points are base stations of different cells.
  • downlink multi-point coordinated transmission technology solutions are mainly divided into two categories: joint scheduling and joint transmission (JT).
  • the joint scheduling allocates mutually orthogonal resources to different terminals (User Equipment, UE) through the coordination of time, frequency and space resources between cells to avoid mutual interference.
  • the interference of the small interval is the main factor that restricts the performance of the UE at the cell edge. Therefore, joint scheduling can reduce the interference between cells, thereby improving the performance of the cell edge UE.
  • multiple cells simultaneously transmit data to the UE to enhance the UE receiving signals.
  • two cells transmit data to one UE on the same resource, and the UE simultaneously receives signals from multiple cells.
  • the superposition of useful signals from multiple cells can improve the signal quality received by the UE, and on the other hand, reduce the interference experienced by the UE, thereby improving system performance.
  • eNB1 Micro Cell
  • eNB2 Physical Cell
  • the transmitting antennas are geographically spaced.
  • the antenna is in a different position relative to the UE.
  • Antenna ports at the same transmit position are correlated and can be considered to have the same large-scale shadow fading.
  • Transmitting antenna ports at different locations are usually uncorrelated, mainly because these transmitting antenna ports are far apart, and the surrounding environment is richly scattered, and the transmitting antenna ports at different positions exhibit different sizes. Scale shadow fading.
  • these transmit antennas at different locations jointly transmit data to one UE, the channel exhibits different properties than the conventional MIMO channel. This channel that reflects the new nature Some different designs and CSI (channel state information) feedback mechanisms are needed.
  • the embodiments of the present invention provide a precoding implementation method, a terminal, and a base station, which overcome the influence of different arrival delays of different antennas between different base stations and the same base station.
  • An embodiment of the present invention provides a precoding implementation method, including:
  • the terminal acquires a channel matrix between the base station and each of the cooperative base stations;
  • the terminal acquires a corresponding precoding codeword according to each channel matrix, and a precoding matrix index corresponding to the precoding codeword; the terminal acquires a phase correction matrix between the serving base station and each coordinated base station. The terminal feeds back the delay, precoding matrix index and phase correction matrix to the serving base station.
  • the foregoing method may further have the following feature: the acquiring, by the terminal, the corresponding precoding codeword according to the channel matrix includes:
  • the foregoing method may further have the following feature: the acquiring, by the terminal, the phase correction matrix between the serving base station and each of the cooperative base stations includes:
  • H the channel matrix between the terminal and the serving base station, which is the corresponding pre- The coded codeword
  • . is the channel matrix between the terminal and the cooperative base station
  • ⁇ . is the corresponding precoding codeword
  • tr[ ] represents the trace operation
  • argma ⁇ trKH ⁇ +H ⁇ B ⁇ H ⁇ +H ⁇ B) ] indicates that the corresponding trace is the largest, as the phase correction matrix between the serving base station and the cooperative base station.
  • the embodiment of the invention further provides a precoding implementation method, including:
  • the cooperative base station of the terminal receives a delay, a phase correction matrix, and a precoding matrix index from the serving base station of the terminal, where the delay is a delay of the signal of the serving base station and the cooperative base station reaching the terminal;
  • a phase correction matrix is a phase correction matrix between the serving base station and the cooperative base station, where the precoding matrix index is a precoding matrix index that the terminal feeds back to the serving base station and the cooperative base station;
  • the cooperative base station performs the following processing on the signal to be sent to the terminal: performing phase correction using the phase correction matrix, and using the delay to perform time domain delay or frequency domain phase rotation to make the phased signal Transmitted to the terminal.
  • the phase correction using the phase correction matrix comprises:
  • the signal to be sent to the terminal is a phase correction matrix between the serving base station and the cooperative base station.
  • the foregoing method may further have the following features: performing phase correction using the phase correction matrix, performing frequency domain phase rotation, and performing precoding processing on the precoding codeword obtained by using the precoding index, including:
  • s 1CDD e il TlN -W 2 -s,- diag(e i( ,e ] ' e ..., ⁇ - )
  • the signal to be sent to the terminal is a phase correction matrix, where ⁇ is a precoding codeword corresponding to the precoding matrix index, q is a subcarrier index or an index associated with a specific resource unit, and N is a reverse
  • is a precoding codeword corresponding to the precoding matrix index
  • q is a subcarrier index or an index associated with a specific resource unit
  • N is a reverse
  • r is the delay between the serving base station and the cooperative base station, and is expressed by the number of delay points.
  • the embodiment of the invention further provides a terminal, including:
  • a channel estimation module configured to: acquire between the terminal and the serving base station, and between the cooperative base stations Channel matrix
  • a delay estimation module configured to: acquire a delay of the signal sent by the serving base station and each coordinated base station to the terminal;
  • a precoding codeword construction module configured to: obtain a corresponding precoding codeword according to each channel matrix, and a precoding matrix index corresponding to the precoding codeword;
  • a phase correction matrix estimation module configured to: acquire a phase correction matrix between the serving base station and each of the cooperative base stations;
  • a feedback module configured to: feed the delay, the precoding matrix index, and the phase correction matrix to the serving base station.
  • the terminal may further have the following feature, the precoding codeword constructing module is configured to obtain a corresponding precoding codeword according to a channel matrix in the following manner:
  • the terminal may further have the following feature:
  • the phase correction matrix estimation module is configured to obtain a phase correction matrix between the serving base station and each of the cooperative base stations by using the following formula:
  • H the channel matrix between the terminal and the serving base station, which is the corresponding precoding
  • the codeword . is the channel matrix between the terminal and the cooperative base station
  • ⁇ . is the corresponding precoding codeword
  • tr[ ] indicates the trace operation
  • arg +H ⁇ B)] indicates the largest trace
  • is a phase correction matrix between the serving base station and the cooperative base station ⁇ .
  • the embodiment of the invention further provides a base station, including:
  • An information interaction module configured to: when the base station serves as a cooperative base station of the terminal, receive a delay, a phase correction matrix, and a precoding matrix index from the serving base station of the terminal, where the delay is the serving base station and the The signal of the cooperative base station reaches a delay of the terminal; the phase correction moment The matrix is a phase correction matrix between the serving base station and the cooperative base station, where the precoding matrix index is a precoding matrix index that the terminal feeds back to the serving base station and the cooperative base station; phase correction and coding a module, configured to: perform a process of: transmitting a signal to be sent to the terminal: performing phase correction using the phase correction matrix, and performing time domain delay or frequency domain phase rotation using the delay to make an equivalent Domain delay, outputting a signal to the precoding module;
  • the precoding module is configured to: preferably use the signal output by the phase correction and precoding module, wherein the base station further has the following feature, the phase correction and coding module is configured to use a phase correction matrix by using the following formula Perform phase correction:
  • s Sl - diag(e ⁇ , e ]e ..., e ⁇ ) where is a signal to be transmitted to the terminal, and is a phase correction matrix between the serving base station and the cooperative base station.
  • the precoding module is configured to perform precoding processing on the signal output by the phase correction and precoding module by using a precoding codeword corresponding to the precoding index by using the following formula: :
  • s lCDD e il TlN - W 2 - s, - diag(e i( , e ] ' e ..., ⁇ - )
  • the signal to be sent to the terminal is a phase correction matrix, where ⁇ is a precoding codeword corresponding to the precoding matrix index, q is a subcarrier index or an index associated with a specific resource unit, and N is a reverse
  • is a precoding codeword corresponding to the precoding matrix index
  • q is a subcarrier index or an index associated with a specific resource unit
  • N is a reverse
  • r is the delay between the serving base station and the cooperative base station, and is represented by the number of delay points, which is a signal output by the precoding module.
  • the Cyclic Delay Diversity (CDD) mode is used to compensate the transmission delay difference between different base stations and different antennas of the same base station, and the method does not increase the user time without changing the base station data transmission time.
  • CDD Cyclic Delay Diversity
  • the layered phase correction precoding is used on the one hand, and the signal is cyclically shifted at different transmitting antenna ends of the base station according to the delay difference of the terminal feedback to realize the coherent transmission;
  • the transmission delay difference of the small interval is compensated, which improves the robustness of the CoMP system to the delay difference between cells.
  • the user since the same information is combined at the receiving end through different channels, the user effectively utilizes the diversity gain provided by the channel, thereby improving the quality of the received signal of the CoMP user.
  • FIG. 1 is a schematic diagram of a two-cell single-user application of CoMP precoding based on cyclic delay diversity according to an embodiment of the present invention
  • FIG. 2 is a flow chart of a method for implementing CoMP precoding based on cyclic delay diversity according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an implementation of a CoMP precoding based on cyclic delay diversity according to an embodiment of the present invention
  • FIG. 4 is a structural block diagram of a terminal according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a base station according to an embodiment of the present invention.
  • An embodiment of the present invention provides a precoding implementation method, including:
  • the terminal acquires a channel matrix between the base station and each of the cooperative base stations;
  • the terminal acquires a corresponding precoding codeword according to each channel matrix, and a precoding matrix index corresponding to the precoding codeword; the terminal acquires a phase correction matrix between the serving base station and each coordinated base station. The terminal feeds back the delay, precoding matrix index and phase correction matrix to the serving base station.
  • the method for the terminal to obtain the corresponding pre-coded codeword according to the channel matrix is: the terminal performs singular value decomposition on the channel matrix, H ⁇ U ⁇ , and extracts the front column to obtain a channel estimation codeword matrix ⁇ ; ; predefined codebook in the ⁇ ; codeword as the shortest distance of the channel matrix corresponding to the precoding code word;
  • the channel matrix between the terminal and the serving base station or A channel matrix between the terminal and the cooperative base station.
  • the method for the terminal to acquire a phase correction matrix between the serving base station and each of the cooperative base stations is:
  • H the channel matrix between the terminal and the serving base station, which is the corresponding precoding
  • the codeword . is the channel matrix between the terminal and the cooperative base station
  • ⁇ . is the corresponding precoding codeword
  • tr[ ] indicates the trace operation
  • arg +H ⁇ B)] indicates the largest trace
  • is a phase correction matrix between the serving base station and the cooperative base station ⁇ .
  • the embodiment of the invention further provides a precoding implementation method, including:
  • the serving base station receives a delay between the serving base station and each coordinated base station fed back by the terminal, a phase correction matrix between the serving base station and each coordinated base station, and a precoding matrix index corresponding to each coordinated base station of the terminal, The delay, the phase correction matrix, and the precoding matrix index are sent to the corresponding cooperative base station;
  • the cooperative base station receives a delay, a phase correction matrix, and a precoding matrix index from the serving base station of the terminal, where the delay is a delay of the signal of the serving base station and the cooperative base station reaching the terminal;
  • the phase correction The matrix is a phase correction matrix between the serving base station and the cooperative base station, and the precoding matrix index is a precoding matrix index that the terminal feeds back to the serving base station and the cooperative base station;
  • the cooperative base station performs the following processing on the signal to be sent to the terminal: performing phase correction using the phase correction matrix, and using the delay to perform time domain delay or frequency domain phase rotation to make the phased signal Transmitted to the terminal.
  • the performing phase correction using the phase correction matrix includes:
  • s s diag ⁇ e ⁇ , e ie ..., e ie ⁇ ) where is a signal to be transmitted to the terminal, and is a phase correction matrix between the serving base station and the cooperative base station.
  • the signal to be sent to the terminal is a phase correction matrix, where ⁇ is a precoding codeword corresponding to the precoding matrix index, q is a subcarrier index or an index associated with a specific resource unit, and N is a reverse
  • is a precoding codeword corresponding to the precoding matrix index
  • q is a subcarrier index or an index associated with a specific resource unit
  • N is a reverse
  • r is the delay between the serving base station and the cooperative base station, and is expressed by the number of delay points.
  • An embodiment of the present invention provides a method for implementing CoMP precoding, including:
  • each cell serves only one UE, and each cell served by the cell uses the same time-frequency resource, each eNB has M transmit antennas, and the kth UE includes N k receive antennas. The kth user needs to transmit a separate data stream.
  • a two-cell JT service is used for one user service, where eN ⁇ is a serving base station, eNB 2 is a cooperative base station, and the user is a desired user, and the implementation process of the user's precoding is described as follows:
  • the user UE1 separately estimates the time when the data sent by the serving cell and the coordinated cell arrives at the user according to the different channel state information reference pilots included in the same position in the signal resource block transmitted by the two cells, and then subtracts the two to obtain the time between the two cells.
  • the delay r. r t 2 - t, where t, , ⁇ are the times at which the signal transmitted by the serving base station eNBj and the cooperative base station eNB 2 arrives at the user UE, respectively.
  • the UE feeds back the delay ⁇ to the serving base station eN ⁇ .
  • the codeword is selected from the precoded codebook (as determined in the LTE protocol), and the codeword ⁇ in the codebook (where i is the codeword sequence number in the corresponding codebook) is traversed, and the channel matrix is performed. Odd The different value decomposition, ie H ⁇ f/ ⁇ u ⁇ , obtains the channel estimation codeword matrix:
  • 3 ⁇ 4 is the ⁇ ⁇ channel matrix with the base station eNBi of the cell
  • U u is the ⁇ ⁇ dimension matrix
  • ⁇ ⁇ diag a x , a 2 ,..., a r )
  • r rank(H x )
  • rank() represents a rank operation
  • ⁇ 2 ,..., ⁇ ⁇ is a singular value of the channel matrix 3 ⁇ 4.
  • the distance between the channel estimation codeword matrix ⁇ i and the codeword ⁇ in the codebook is traversed, and the minimum distance is the estimated value of the desired sub-pre-coded codeword ⁇ , and a method for calculating the distance is:
  • the channel matrix 3 ⁇ 4 is subjected to singular value decomposition to obtain a channel estimation codeword matrix ⁇ 2 , and further obtain a desired sub-precoding codeword.
  • W 2 arg tnin - w Hi )(w i - w Hi )*
  • the corresponding precoding matrix index is PMI 2 , and UEi feeds back PMI 2 to the serving base station eNBi.
  • the upper corner " ⁇ " indicates the conjugate transpose operator, and tr[ ] indicates the trace operation. Argmaxtr ⁇ H, ⁇ +H 2 W 2 Q) H ⁇ + ⁇ 2 ⁇ 2 ⁇ )]] indicates that the largest ⁇ of the corresponding trace is phase corrected
  • the UE feeds back to the serving base station eNBj.
  • the cyclic delay ⁇ is applied to the corrected 3 ⁇ 4 ⁇ symbol, and the delay r is made on each antenna in the time domain.
  • N is the number of points of the inverse Fourier transform
  • q is the subcarrier index (or the index associated with a particular resource unit).
  • OFDM Orthogonal Frequency Division Multiplexing
  • the transmitted signal obtained by the cooperative base station eNB 2 after CDD encoding is:
  • s XCDD e il TlN -W 2 -s, - diag(e i( ,e ] ' e ..., ⁇ - )
  • the serving base station eNBi and the cooperative base station eNB 2 pre-code and transmit the signals si, respectively, and the received signals of the user terminal 1 are:
  • This embodiment provides a method for implementing CoMP precoding in two cell scenarios, where the number of transmit antennas of the eNB 1 eNB 2 is 4, the number of receive antennas of the UE 2 is 2, and the number of UE ⁇ layers is 2, as shown in FIG. 2 . , including the following steps:
  • the terminal side performs channel estimation, and estimates a channel matrix Hi between the serving base station eN ⁇ and the local cell user UEi; For the cooperation d, the zone eNB 2 , the channel matrix 3b between the cooperation d, the zone eNB 2 and the user UE is estimated. As described in step 202, the delay between different cells is estimated.
  • the user UEi estimates the time when the data sent by the serving cell and the coordinated cell arrives at the user according to the different channel state information reference pilots included in the same location in the signal resource block sent by the two cells, and then subtracts the two to obtain the time between the two cells.
  • the delay r. r t 2 - t, where t, , ⁇ are the times at which the signal transmitted by the serving base station eNBi and the cooperative base station eNB 2 arrives at the user UE, respectively.
  • the UE feeds back the delay r to the serving base station eN ⁇ .
  • a precoded codeword is constructed.
  • the codeword is selected from the precoded codebook (as determined in the LTE protocol), and the codeword ⁇ in the codebook is traversed (where i is the codeword sequence number in the corresponding codebook),
  • 3 ⁇ 4 is the ⁇ ⁇ channel matrix with the base station eNBi of the cell
  • U u is the ⁇ ⁇ dimension matrix
  • £ ⁇ , , diag ⁇ a , a 2 ,... , a r )
  • r ⁇ )
  • rank( ) denotes a rank operation, ⁇ , ⁇ ,, . , ⁇ , which is a singular value of the channel matrix 3 ⁇ 4.
  • the distance between the channel estimation codeword and the codeword ⁇ in the codebook is traversed, and the minimum value of the codeword is the estimated value of the expected subprecoding codeword ⁇ :
  • W 2 arg tnin - w Hi )(w i - w Hi )*
  • the corresponding precoding matrix index is PMI 2 , and UEi feeds back PMI 2 to the serving base station eNBi.
  • the phase correction matrix is estimated, and on the side, based on the signal power maximum criterion, the phase correction matrix is calculated based on the channel matrix and the precoding matrix at that time:
  • the upper corner " ⁇ " indicates the conjugate transpose operator, and tr[ ] indicates the trace operation. Argmaxtr ⁇ H, ⁇ +H 2 W 2 Q) H ⁇ + ⁇ 2 ⁇ 2 ⁇ )]] indicates that the largest ⁇ of the corresponding trace is phase corrected
  • UEi feeds back to the serving base station eNB1.
  • step 205 the serving base station and collaborative base station eNB eNBi 2 through the interface between the base stations and the base station (e.g., an X2 interface) information interaction channel, i.e., base station eNB is transmitted to the base station eNB 2 precoding matrix index PMI 2, the delay between cells Sample number r, phase correction matrix ⁇ .
  • the cyclic delay ⁇ is applied to the corrected 3 ⁇ 4 ⁇ symbol, and the delay r is made on each antenna in the time domain, which is equivalent to the phase rotation /N on each subcarrier in the frequency domain. That is, the qth subcarrier in the frequency domain performs phase shift processing.
  • N is the number of points of the inverse Fourier transform
  • q is the subcarrier index (or the index associated with the particular resource unit).
  • the transmitted signal obtained by the cooperative base station eNB 2 after CDD encoding is:
  • the serving base station and the cooperative base station respectively perform precoding on the signal si and then transmit. Then, the received signal of the user UEi is:
  • y H X W X -s x +H 2 - e i2 TlN -W 2 -s x - diag(e if , ) 3 is an effect diagram of a codebook-based CoMP precoding implementation according to an embodiment of the present invention.
  • a pre-coded energy is aggregated to a user of a cell UE to a cooperative base station eNB 2 , and the pre-coded energy is aggregated to the user.
  • This embodiment provides a method for implementing CoMP precoding in a case of K cells, where the number of transmitting antennas of eNB 1 eNB 2 , ..., eNB K is 4, the number of receiving antennas of the UE is 2, and the number of layers of each UE 2, the same procedure as in Example 1:
  • the user terminal 1 is the reception signal:
  • the embodiment of the present invention provides a terminal, as shown in FIG. 4, including: a channel estimation module 41, a delay estimation module 42, a precoding codeword construction module 43, a phase correction matrix estimation module 44, and a feedback module 45;
  • the channel estimation module 41 is configured to: acquire a channel matrix between the terminal and the serving base station, and each of the cooperative base stations; for example, estimate a channel matrix between the user UE and the base station eNBi; and estimate a channel matrix between the user UE and the base station eNB 2 3 ⁇ 4.
  • the time delay estimation module 42 is connected to the channel estimation module 41, and is configured to: acquire a delay of the signal of the serving base station and each coordinated base station to the terminal; specifically, according to the channel estimation module 41 The output channel calculates the delay difference between different cells.
  • the precoding codeword construction module 43 is connected to the delay estimation module 42 and configured to: obtain a corresponding precoding codeword according to each channel matrix, and a precoding matrix index corresponding to the precoding codeword;
  • a phase correction matrix estimation module 44 configured to: acquire a phase correction matrix between the serving base station and each of the cooperative base stations;
  • the feedback module 45 is configured to: feed back the delay, the precoding matrix index and the phase correction matrix to the serving base station.
  • the embodiment of the present invention further provides a base station, as shown in FIG. 5, including: an information interaction module 51, a phase correction and coding module 52, and a precoding processing module 53, where:
  • the information interaction module 51 is configured to: transmit information between the serving base station and the cooperative base station; when the base station serves as a cooperative base station of the terminal, receive a delay, a phase correction matrix, and a precoding matrix index from the serving base station of the terminal, The delay is that the signal of the serving base station and the cooperative base station reaches a delay of the terminal; the phase correction matrix is a phase correction matrix between the serving base station and the cooperative base station, and the precoding
  • the matrix index is a precoding matrix index that the terminal feeds back to the serving base station and the cooperative base station; when the base station serves as a serving base station of the terminal, it is used as a base station;
  • the phase correction and encoding module 52 is coupled to the information interaction module 51, configured to perform precoding codeword phase correction and CDD encoding on the cooperative base station; and perform the following processing on the signal to be sent to the terminal: using the phase correction matrix Performing phase correction, using the time delay to perform time domain delay or frequency domain phase rotation to make it correspond to a time domain delay, and outputting a signal to the precoding module; for specific processing, refer to the method embodiment;
  • the precoding processing module 53 is coupled to the phase correction and encoding module 52 for performing precoding processing.
  • the implementation functions of the modules used for the phase correction and the precoding module and the functions of the modules described above are described in the specific implementation process of the foregoing method, and are not described herein.
  • One of ordinary skill in the art will appreciate that all or a portion of the above steps may be performed by a program to instruct the associated hardware, such as a read only memory, a magnetic disk, or an optical disk.
  • all or part of the steps of the above embodiments may also be implemented using one or more integrated circuits.
  • each module/unit in the foregoing embodiment may be implemented in the form of hardware, or may be implemented in the form of a software function module. The invention is not limited to any specific form of combination of hardware and software.
  • the Cyclic Delay Diversity (CDD) method is used to compensate the transmission delay difference between different base stations and different antennas of the same base station, and the data transmission time of the base station is not changed without changing.
  • CDD Cyclic Delay Diversity
  • the layered phase correction precoding is used, and on the other hand, according to the delay difference of the feedback from the terminal, the signals are cyclically shifted at different transmitting antenna ends of the base station to realize coherent transmission;
  • the transmission delay difference is compensated, which improves the robustness of the CoMP system to the delay difference between cells.
  • the user effectively utilizes the diversity gain provided by the channel, which improves the quality of the received signal of the CoMP user.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

一种多点协同传输预编码实现方法、终端及基站,所述方法包括:终端获取其与服务基站、各协作基站之间的信道矩阵;所述终端获取所述服务基站与每个协作基站发送的信号到达所述终端的时延;所述终端根据各信道矩阵获取各自对应的预编码码字,以及,所述预编码码字对应的预编码矩阵索引;所述终端获取所述服务基站与每个协作基站之间的相位校正矩阵;所述终端将所述时延、预编码矩阵索引和相位校正矩阵反馈给所述服务基站。

Description

一种多点协同传输预编码方法、 终端及基站
技术领域
本发明涉及无线通信领域, 具体而言, 涉及一种多点协同传输 (Co-ordinated Multi-Point Transmission, CoMP)预编码方法、 终端及基站。
背景技术
在 3Gpp长期演进( Long Term Evolution- Advanced, LTE-A ) 系统中, 提 出了釆用 CoMP技术来提高系统的性能。 多点协同传输技术是地理位置上分 离的多个传输点之间的协作。 一般来说, 多个传输点是不同小区的基站。 其 中, 下行多点协同传输技术方案主要分为两类: 联合调度和联合发送( Joint Transmission, JT)。联合调度是通过小区之间的时间、频率和空间资源的协调, 为不同的终端 (User Equipment, UE)分配互相正交的资源, 避免相互之间的 干扰。 小区间的干扰是制约小区边缘 UE性能的主要因素, 因此联合调度可 以降低小区间的干扰, 从而提高小区边缘 UE 的性能。
与联合调度只有一个小区向 UE发送数据不同, 联合发送则有多个小区 同时向 UE发送数据, 以增强 UE接收信号。 如图 1 所示, 两个小区在相 同的资源上向一个 UE发送数据, UE 同时接收多个小区的信号。 一方面, 来自多个小区的有用信号叠加可以提升 UE接收的信号质量, 另一方面, 降 低了 UE 受到的干扰, 从而提高系统性能。
另夕卜,传统的下行 MIMO系统中,所有的发射天线是在一个发射位置上。 而图 1中地理上间隔的天线场景下, eNBl (宏小区, Macro Cell )和 eNB2 (微 小区, Pico Cell )在相同时频资源同时为一个用户服务, 发射天线在地理上是 间隔的, 这些天线相对于 UE处于不同的位置。 在相同发射位置的天线端口 是相关的, 可以认为是有着同样的大尺度阴影衰落。 而处于不同位置的发射 天线端口通常是不相关的,这主要是因为这些发射天线端口相距的距离较远, 并且周围的环境是富散射的, 而且处于不同位置的发射天线端口表现出不同 的大尺度阴影衰落。 当这些处于不同位置的发射天线联合向一个 UE发送数 据时, 信道呈现出与传统 MIMO信道不同的性质。 这种体现出新性质的信道 就需要一些不同的设计和 CSI ( channel state information, 信道状态信息)反 馈机制。
因此,有必要寻找高精度,且简洁实用的 CoMP预编码反馈及实现方法。
发明内容
本发明实施例提供一种预编码实现方法、 终端及基站, 克服不同基站间 和同一基站多天线的不同到达时延带来的影响。 本发明实施例提供了一种预编码实现方法, 包括:
终端获取其与服务基站、 各协作基站之间的信道矩阵;
所述终端获取所述服务基站与每个协作基站发送的信号到达所述终端的 时延;
所述终端根据各信道矩阵获取各自对应的预编码码字, 以及, 所述预编 码码字对应的预编码矩阵索引; 所述终端获取所述服务基站与每个协作基站之间的相位校正矩阵; 所述终端将所述时延、 预编码矩阵索引和相位校正矩阵反馈给所述服务 基站。
较佳的, 上述方法还可具有以下特点, 所述终端根据信道矩阵获取对应 的预编码码字包括:
所述终端将信道矩阵 进行奇异值分解, H^ U^ , 提取 的前 列 得到信道估计码字矩阵^ ;; 将预定义码本中与所述^ ;的距离最短的码字作 为所述信道矩阵 对应的预编码码字;
其中, 所述 为所述终端与所述服务基站之间的信道矩阵, 或者, 为所 述终端与所述协作基站之间的信道矩阵。 较佳的, 上述方法还可具有以下特点, 所述终端获取所述服务基站与每 个协作基站之间的相位校正矩阵包括:
Θ = arg max ίτ[{Η Ψ + Η^Θ)Η {Η Ψ + Η JWj &)] 其中, H,是所述终端与所述服务基站之间的信道矩阵, 是 对应的预 编码码字, .是终端与协作基站之间的信道矩阵, ^.是 对应的预编码码字, tr[ ]表示求迹运算, argma^trKH^+H ^B ^H^+H ^B)]表示对应迹最大的 Θ作为所述服务基站与所述协作基站 ^之间的相位校正矩阵。
本发明实施例还提供一种预编码实现方法, 包括:
终端的协作基站从所述终端的服务基站接收时延、 相位校正矩阵以及预 编码矩阵索引, 所述时延为所述服务基站与所述协作基站的信号达到所述终 端的时延; 所述相位校正矩阵为所述服务基站与所述协作基站之间的相位校 正矩阵, 所述预编码矩阵索引为所述终端反馈给所述服务基站与所述协作基 站对应的预编码矩阵索引;
所述协作基站将待发送给所述终端的信号进行下述处理: 使用所述相位 校正矩阵进行相位校正, 使用所述时延进行时域延时或频域相位旋转使其相 理后的信号发射至所述终端。
较佳的, 上述方法还可具有以下特点, 所述使用相位校正矩阵进行相位 校正包括:
Figure imgf000005_0001
其中, 是待发送给所述终端的信号, 是所述服务基站 与所述协作基站之间的相位校正矩阵。
较佳的, 上述方法还可具有以下特点, 所述使用所述相位校正矩阵进行 相位校正, 进行频域相位旋转和使用所述预编码索引得到的预编码码字进行 预编码处理包括:
s1CDD = eil TlN -W2-s,- diag(ei( ,e]'e ..., β - )
其中, 是待发送给所述终端的信号, 是相位校正矩阵, ^是所述预编码矩阵索引对应的预编码码字, q为子载波索引或者与特定资 源单元相关联的索引, N表示反傅立叶变换的点数, r为所述服务基站与所述 协作基站之间的时延, 使用延迟点数表示。
本发明实施例还提供一种终端, 包括:
信道估计模块, 其设置为: 获取所述终端与服务基站、 各协作基站之间 的信道矩阵;
时延估计模块, 其设置为: 获取所述服务基站与每个协作基站发送的信 号到达所述终端的时延;
预编码码字构造模块, 其设置为: 根据各信道矩阵获取各自对应的预编 码码字, 以及, 所述预编码码字对应的预编码矩阵索引;
相位校正矩阵估计模块, 其设置为: 获取所述服务基站与每个协作基站 之间的相位校正矩阵;
反馈模块, 其设置为: 将所述时延、 预编码矩阵索引和相位校正矩阵反 馈给所述服务基站。
较佳的, 上述终端还可具有以下特点, 所述预编码码字构造模块是设置 为以如下方式根据信道矩阵获取对应的预编码码字:
将信道矩阵 进行奇异值分解, ^ = Uue^ , 提取 Vu的前 mk列得到信道 估计码字矩阵^ ;; 将预定义码本中与所述^ ;的距离最短的码字作为所述信 道矩阵 对应的预编码码字;
其中, 所述 为所述终端与所述服务基站之间的信道矩阵, 或者, 为所 述终端与所述协作基站之间的信道矩阵。 较佳的, 上述终端还可具有以下特点, 所述相位校正矩阵估计模块是设 置为通过如下公式获取所述服务基站与每个协作基站之间的相位校正矩阵包 括:
Θ = arg max ίτ[{Η Ψ + Η^Θ)Η {Η Ψ + Η JWj &)] 其中, H,是所述终端与所述服务基站之间的信道矩阵, 是 对应的预 编码码字, .是终端与协作基站之间的信道矩阵, ^.是 对应的预编码码字, tr[ ]表示求迹运算, arg +H ^B)]表示对应迹最大的
Figure imgf000006_0001
Θ作为所述服务基站与所述协作基站 ^之间的相位校正矩阵。 本发明实施例还提供一种基站, 包括:
信息交互模块, 其设置为: 在所述基站作为终端的协作基站时, 从所述 终端的服务基站接收时延、 相位校正矩阵以及预编码矩阵索引, 所述时延为 所述服务基站与所述协作基站的信号达到所述终端的时延; 所述相位校正矩 阵为所述服务基站与所述协作基站之间的相位校正矩阵, 所述预编码矩阵索 引为所述终端反馈给所述服务基站与所述协作基站对应的预编码矩阵索引; 相位校正及编码模块, 其设置为: 将待发送给所述终端的信号进行下述 处理: 使用所述相位校正矩阵进行相位校正, 使用所述时延进行时域延时或 频域相位旋转使其相当于时域延时, 输出信号至所述预编码模块;
预编码模块, 其设置为: 对所述相位校正及预编码模块输出的信号使用 较佳的, 上述基站还可具有以下特点, 所述相位校正及编码模块是设置 为通过以下公式使用相位校正矩阵进行相位校正:
s = Sl - diag(e^ , e]e ..., e^ ) 其中, 是待发送给所述终端的信号, 是所述服务基站 与所述协作基站之间的相位校正矩阵。
较佳的, 上述基站还可具有以下特点, 所述预编码模块是设置为通过以 下公式对相位校正及预编码模块输出的信号使用与所述预编码索引对应的预 编码码字进行预编码处理:
slCDD = eil TlN - W2 - s, - diag(ei( , e]'e ..., β - )
其中, 是待发送给所述终端的信号, 是相位校正矩阵, ^是所述预编码矩阵索引对应的预编码码字, q为子载波索引或者与特定资 源单元相关联的索引, N表示反傅立叶变换的点数, r为所述服务基站与所述 协作基站之间的时延, 使用延迟点数表示, ¾DD为预编码模块输出的信号。
本发明实施例根据信道信息,利用循环延迟分集( Cyclic Delay Diversity, CDD ) 方式, 对不同基站间和同一基站不同天线的传输时延差进行补偿, 本 方法在不改变基站数据发送时间不增加用户接收端复杂度的基础上, 一方面 釆用分层相位校正预编码, 另一方面根据终端反馈的时延差在基站不同发射 天线端对信号进行循环位移以实现相干传输; 本发明实施例对小区间的传输 时延差进行了补偿, 从而提高了 CoMP系统对小区间时延差的鲁棒性。 且由 于相同的信息经过不同的信道在接收端被合并起来, 用户有效地利用了信道 提供的分集增益, 提高了 CoMP用户接收信号的质量。 附图概述
图 1 是本发明实施例基于循环延迟分集的 CoMP预编码的两小区单用户 应用示意图;
图 2是本发明实施例基于循环延迟分集的 CoMP预编码实现方法的流程 图;
图 3是本发明实施例基于循环延迟分集的 CoMP预编码实现效果图; 图 4是本发明实施例终端的结构框图;
图 5是本发明实施例基站的结构框图。
本发明的较佳实施方式
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。 本发明实施例提供一种预编码实现方法, 包括:
终端获取其与服务基站、 各协作基站之间的信道矩阵;
所述终端获取所述服务基站与每个协作基站的信号达到所述终端的时 延;
所述终端根据各信道矩阵获取各自对应的预编码码字, 以及, 所述预编 码码字对应的预编码矩阵索引; 所述终端获取所述服务基站与每个协作基站之间的相位校正矩阵; 所述终端将所述时延、 预编码矩阵索引和相位校正矩阵反馈给所述服务 基站。
其中, 所述终端才艮据信道矩阵获取对应的预编码码字的一种方法为: 所述终端将信道矩阵 进行奇异值分解, H^ U^ , 提取 的前 列 得到信道估计码字矩阵^ ;; 将预定义码本中与所述^ ;的距离最短的码字作 为所述信道矩阵 对应的预编码码字;
其中, 所述 为所述终端与所述服务基站之间的信道矩阵, 或者, 为所 述终端与所述协作基站之间的信道矩阵。 其中, 所述终端获取所述服务基站与每个协作基站之间的相位校正矩阵 的一种方法为:
Θ = arg max ίτ[{Η Ψ + Η^Θ)Η {Η Ψ + Η JWj &)] 其中, H,是所述终端与所述服务基站之间的信道矩阵, 是 对应的预 编码码字, .是终端与协作基站之间的信道矩阵, ^.是 对应的预编码码字, tr[ ]表示求迹运算, arg +H ^B)]表示对应迹最大的
Figure imgf000009_0001
Θ作为所述服务基站与所述协作基站 ^之间的相位校正矩阵。
本发明实施例还提供一种预编码实现方法, 包括:
服务基站接收终端反馈的所述服务基站与各协作基站之间的时延、 服务 基站与各协作基站之间的相位校正矩阵, 以及, 所述终端对应于各协作基站 的预编码矩阵索引, 将所述时延、 相位校正矩阵以及预编码矩阵索引发送给 对应的协作基站;
协作基站从所述终端的服务基站接收时延、 相位校正矩阵以及预编码矩 阵索引, 所述时延为所述服务基站与所述协作基站的信号达到所述终端的时 延;所述相位校正矩阵为所述服务基站与所述协作基站之间的相位校正矩阵, 所述预编码矩阵索引为所述终端反馈给所述服务基站与所述协作基站对应的 预编码矩阵索引;
所述协作基站将待发送给所述终端的信号进行下述处理: 使用所述相位 校正矩阵进行相位校正, 使用所述时延进行时域延时或频域相位旋转使其相 理后的信号发射至所述终端。
其中, 所述使用相位校正矩阵进行相位校正包括:
s = s diag{e^ , eie ..., eie~ ) 其中, 是待发送给所述终端的信号, 是所述服务基站 与所述协作基站之间的相位校正矩阵。
其中, 所述使用所述相位校正矩阵进行相位校正, 进行频域相位旋转和 使用所述预编码索引得到的预编码码字进行预编码处理包括: sXCDD = βί2π"τΙΝ - W2 - sx - diagie1^ , e]f … 、
其中, 是待发送给所述终端的信号, 是相位校正矩阵, ^是所述预编码矩阵索引对应的预编码码字, q为子载波索引或者与特定资 源单元相关联的索引, N表示反傅立叶变换的点数, r为所述服务基站与所述 协作基站之间的时延, 使用延迟点数表示。
本发明实施例提供一种 CoMP预编码实现方法, 包括:
假设有 A个 eNB, 每个小区只服务于一个 UE, 且每个小区服务的 UE 使用同一个时频资源, 每个 eNB均具有 M根发射天线, 第 k个 UE包含 Nk 根接收天线, 第 k个用户需要传输 个独立的数据流。 某 eNBa ( a=l,2...A ) 发送的信号可表示为 M维列向量^ ,其中, ^为第 k个 UE的 M x 维预编 码矩阵,
Figure imgf000010_0001
= mt , tr( )表示迹运算,上角标 H表示共轭转置运算, ¾ 是第 k个 UE的 维发射符号矢量。
以两小区釆用 JT方式为一个用户服务为例,其中 eN^为服务基站, eNB2 为协作基站, 用户 为期望用户, 则对用户 的预编码的实现过程描述 下:
1)估计信道, 对服务基站 eN^ , 用户 UE 计与服务基站 eNB 间的信 道矩阵 。 对协作基站 eNB2, 用户 UE 计与协作基站 eNB2间的信道矩阵 ¾。
2)估计不同小区间的时延
用户 UE1根据两小区发送的信号资源块中相同位置包含的不同信道状态 信息参考导频分别估计出服务小区和协作小区所发送数据到达用户的时刻, 再将两者相减得到两小区间的时延差 r。 r = t2 - t,,其中 t,、 ^分别为服务基站 eNBj和协作基站 eNB2所发送信号到达用户 UE的时刻。 UE向服务基站 eN^ 反馈时延 τ。
3)构造预编码码字
在 UE侧 , 从预编码的码本 (如 LTE协议中确定的 )里选取码字 , 遍历 码本中的码字 ^ (其中 i是相应码本中的码字序号) , 将信道矩阵 ¾进行奇 异值分解, 即 H^f/^u^^ , 得到信道估计码字矩阵:
其中 为 的前 列, ¾是 与本小区基站 eNBi间的 Ν Μ维信 道 矩 阵 , Uu 是 Ν Μ 维 酉 矩 阵 , 是 ΜχΜ 维 酉 矩 阵 , εη = diag ax ,a2,...,ar),r = rank(Hx ) ,diag表示对角阵, rank()表示秩运算, ,,σ2,...,σΓ 是信道矩阵 ¾的奇异值。
接着遍历信道估计码字矩阵^ i与码本中码字 ^的距离,距离最小的即为 期望子预编码码字的估计值 ^ , 一种计算距离的方法为:
= arg tnin - wHi )(wi - wHi )* 其中上角标 " * " 表示共轭算子, I I表示取行列式的值。 argmin|(Wi -w^Xw, - |表示对应 | |行列式绝对值最小的码字选择为期望子 预编码码字的估计值 ^, 对应的预编码矩阵索引是 PMIl UE 向服务基站 eNBi反馈 PMIi。 当然, 也可以釆取其他方式计算距离。 类似, 在 UEi侧, 将信道矩阵 ¾进行奇异值分解, 得到信道估计码字矩 阵^ 2, 进一步得到期望子预编码码字
W2 = arg tnin - wHi )(wi - wHi )* 对应的预编码矩阵索引是 PMI2, UEi向服务基站 eNBi反馈 PMI2
(4)估计相位校正矩阵, 在 侧, 基于信号功率最大准则, 根据该时 刻的信道矩阵和预编码矩阵计算出相位校正矩阵 Θ:
Θ = arg max ίτ[{ΗΨ + Η2Ψ2Θ)Η {ΗΨ + Η2Ψ2Θ)]
Θ
其中上角标 "Η" 表示共轭转置算子, tr[ ]表示求迹运算。 argmaxtr^H,^ +H2W2Q)H {ΗΨ +Η2Ψ2Θ)]表示对应迹最大的 Θ选择为相位校正
Θ
矩阵, UE 向服务基站 eNBj反馈 Θ。
( 5 )信息交互,服务基站 eNBi与协作基站 eNB2通过基站与基站间的接 口 (如 X2接口) 交互信道信息, 即基站 eNBi向基站 eNB2传递预编码矩阵 索引 PMI2、 小区间的时延样点数 r、 相位校正矩阵 Θ。 (6)协作基站的预编码码字相位校正和 CDD编码
在基站 eNB2端,协作基站 eNB2在接收到服务基站 eNB发送的相位校正 矩阵 Θ后, 将该相位校正矩阵用信号相位形式表示为 0 = ^¾^( ,^,..., ) , 其中 diag( )表示对角阵, 6; 2,... m为对应层数的相位校正因子。 将相位校正 因子与预编码矩阵和待发送的数据流相乘,则协作基站 eNB2校正后的发射信 号为:
s =W2-Sl-diag(e^,e]e ...,e]^) 对校正后¾^的符号进行循环延时 τ, 在时域的每根天线上做时延 r, 相 当于频域每个子载波上的相位旋转 /N。 即频域第 q个子载波进行相移处理 。 其中, N表示反傅立叶变换的点数, q为子载波索引 (或者与特定资 源单元相关联的索引)。这样整个正交频分复用(OFDM, Orthogonal Frequency Division Multiplexing)符号的发送并没有在时间上滞后, 只是符号内部进行了 循环移位。 上述 ¾^已经包括预编码处理, 如果去掉 则只表示相位校正 处理。
得到协作基站 eNB2经过 CDD编码后的发射信号为:
sXCDD = eil TlN -W2-s, - diag(ei( ,e]'e ..., β - )
(7)服务基站 eNBi和协作基站 eNB2将信号 si分别进行预编码后发射, 则用户 1¾1端的接收信号为:
y = HxWx-sx+ ei2 TlN -H2W2-sx- diag(eif )
下面将结合实例对本发明的具体实现过程进行详细描述。
方法实施例 1
该实施例提供了两个小区情形下 CoMP预编码实现方法, 其中 eNB1 eNB2的发射天线数均为 4, UE 々接收天线数为 2, 且 UE 々层数为 2, 如图 2所示, 包括如下步骤:
如步骤 201所述, 终端侧进行信道估计,估计服务基站 eN^与本小区用 户 UEi间的信道矩阵 Hi; 对协作 d、区 eNB2 , 估计协作 d、区 eNB2与用户 UE 间的信道矩阵 ¾。 如步骤 202所述, 估计不同小区间的时延。
用户 UEi根据两小区发送的信号资源块中相同位置包含的不同信道状态 信息参考导频分别估计出服务小区和协作小区所发送数据到达用户的时刻, 再将两者相减得到两小区间的时延差 r。 r = t2- t,,其中 t,、 ^分别为服务基站 eNBi和协作基站 eNB2所发送信号到达用户 UE 的时刻。 UE 向服务基站 eN^反馈时延 r。
如步骤 203所述, 构造预编码码字。
在 UEi侧 , 从预编码的码本 (如 LTE协议中确定的 )里选取码字 , 遍历 码本中的码字 ^ (其中 i是相应码本中的码字序号),
将信道矩阵 ¾进行奇异值分解,即
Figure imgf000013_0001
,得到信道估计码字矩阵:
其中 为 的前 列, ¾是 与本小区基站 eNBi间的 Ν Μ维信 道 矩 阵 , Uu 是 Ν Μ 维 酉 矩 阵 , 是 ΜχΜ 维 酉 矩 阵 , £·, , = diag{a ,a2,...,ar),r = ταη^Η ) , diag 表示对角阵, rank( )表示秩运算, σ,,σ,,. ,σ,是信道矩阵 ¾的奇异值。
接着遍历信道估计码字 与码本中码字 ^的距离,码字距离最小的即为 期望子预编码码字的估计值 ^:
= arg tnin - wHi )(wi - wHi )* 其中上角标 " * " 表示共轭算子, I I表示取行列式的值。 argmin|(Wi -w^Xw, - |表示对应 | |行列式绝对值最小的码字选择为期望子 预编码码字的估计值 Wl 对应的预编码矩阵索引是 PMIl UE1向服务基站 eN^反馈 PMIlo 类似, 在 UEi侧, 将信道矩阵 ¾进行奇异值分解, 得到信道估计码字矩 阵^ 2, 进一步得到期望子预编码码字 W2:
W2 = arg tnin - wHi )(wi - wHi )* 对应的预编码矩阵索引是 PMI2, UEi向服务基站 eNBi反馈 PMI2
如步骤 204所述, 估计相位校正矩阵, 在 侧, 基于信号功率最大准 则, 根据该时刻的信道矩阵和预编码矩阵计算出相位校正矩阵 Θ:
Θ = arg max ίτ[{ΗΨ + Η2Ψ2Θ)Η {ΗΨ + Η2Ψ2Θ)]
Θ
其中上角标 "Η" 表示共轭转置算子, tr[ ]表示求迹运算。 argmaxtr^H,^ +H2W2Q)H {ΗΨ +Η2Ψ2Θ)]表示对应迹最大的 Θ选择为相位校正
Θ
矩阵, UEi向服务基站 eNBl反馈 Θ。
如步骤 205所述, 服务基站 eNBi与协作基站 eNB2通过基站与基站间 的接口 (如 X2接口) 交互信道信息, 即基站 eNB 向基站 eNB2传递预编码 矩阵索引 PMI2、 小区间的时延样点数 r、 相位校正矩阵 Θ。
如步骤 206所述, 协作基站的预编码码字相位校正和 CDD编码
在基站 eNB2端, 协作基站在接收到服务基站发送的相位校正矩阵 Θ后, 将该相位校正矩阵用信号相位形式表示为 0 = 6&^( ,^),其中 diag()表示对 角阵, 6;, 为对应层数的相位校正因子。 将相位校正矩阵与预编码矩阵和待 发送的数据流相乘, 则协作基站 eNB2校正后的信号为:
对校正后¾^的符号进行循环延时 τ, 在时域的每根天线上做时延 r, 相 当于频域每个子载波上的相位旋转 /N。 即频域第 q个子载波进行相移处理 。 其中, N表示反傅立叶变换的点数, q为子载波索引 (或者与特定资 源单元相关联的索引 ) 。 这样整个 OFDM符号的发送并没有在时间上滞后, 只是符号内部进行了循环移位。 当然, 也可以直接进行时域延时 。
得到协作基站 eNB2经过 CDD编码后的发射信号为:
s]CDD = eMN -W2-s diag(eJ(>l , ) 如步骤 207所述,服务基站和协作基站将信号 si分别进行预编码后发射。 则用户 UEi端的接收信号为:
y = HXWX -sx+H2- ei2 TlN -W2-sx- diag(eif , ) 图 3是根据本发明实施例的基于码本的 CoMP预编码实施的效果图, 对 于服务基站 eNBi,预编码后能量汇聚向本小区用户 UE^对于协作基站 eNB2, 预编码后能量汇聚向用户 UE^
方法实施例 2
该实施例提供了 K个小区情形下 CoMP预编码实现方法, 其中 eNB1 eNB2, ... , eNBK的发射天线数均为 4 , UE接收天线数为 2 , 且每个 UE的层 数为 2, 步骤同实施例 1:
则用户 1¾1端的接收信号为:
y = ΗλΨλ -sx+H2- e ]2 ^IN -W2-sx- diag(eJ^ , eJ^ )
+H3 - e]27Iq^IN -W3-Sl- diag(e , eJ^ )
+ HK · e]27tqT^IN -WK-sx- diag(eJ^ , eJ^ ) 其中, 服务基站 eNBj与协作基站 eNBi间的时延差 τ21 , τ2] =t2-t,, 服务 基站 eNBl与协作基站 eNBK间的时延差 w 。 分别为服务 基站 eNB^ 协作基站 eNB2, ......,协作基站 eNBK所发送信号到达用户 UE1 的时刻。 ^, 为协作基站 eNB2对应层数的相位校正因子, 6^, 为协作基 站 eNBK对应层数的相位校正因子。
装置实施例
本发明实施例提供一种终端, 如图 4所示, 包括: 信道估计模块 41、 时 延估计模块 42, 预编码码字构造模块 43, 相位校正矩阵估计模块 44和反馈 模块 45; 其中:
信道估计模块 41, 其设置为: 获取所述终端与服务基站、 各协作基站之 间的信道矩阵; 比如, 估计用户 UE与基站 eNBi间的信道矩阵 ; 估计用 户 UE与基站 eNB2间的信道矩阵 ¾。
时延估计模块 42, 连接至信道估计模块 41, 其设置为: 获取服务基站与 每个协作基站的信号到达所述终端的时延; 具体的, 根据信道估计模块 41的 输出信道计算不同小区间的时延差。
预编码码字构造模块 43 , 连接至时延估计模块 42, 其设置为: 根据各信 道矩阵获取各自对应的预编码码字, 以及, 所述预编码码字对应的预编码矩 阵索引;
相位校正矩阵估计模块 44, 其设置为: 获取所述服务基站与每个协作基 站之间的相位校正矩阵;
反馈模块 45 , 其设置为: 将所述时延、 预编码矩阵索引和相位校正矩阵 反馈给所述服务基站。
本发明实施例还提供一种基站, 如图 5所示, 包括: 信息交互模块 51、 相位校正及编码模块 52及预编码处理模块 53 , 其中:
信息交互模块 51 , 其设置为: 服务基站和协作基站间的信息传递; 在所 述基站作为终端的协作基站时, 从所述终端的服务基站接收时延、 相位校正 矩阵以及预编码矩阵索引, 所述时延为所述服务基站与所述协作基站的信号 达到所述终端的时延; 所述相位校正矩阵为所述服务基站与所述协作基站之 间的相位校正矩阵, 所述预编码矩阵索引为所述终端反馈给所述服务基站与 所述协作基站对应的预编码矩阵索引; 在所述基站作为终端的服务基站时, 作基站;
相位校正及编码模块 52, 连接至信息交互模块 51 ,设置为对协作基站进 行预编码码字相位校正和 CDD编码;将待发送给所述终端的信号进行下述处 理: 使用所述相位校正矩阵进行相位校正, 使用所述时延进行时域延时或频 域相位旋转使其相当于时域延时, 输出信号至所述预编码模块; 具体处理参 见方法实施例;
预编码处理模块 53 , 连接至相位校正及编码模块 52, 用于进行预编码处 理。 具体的, 用于对相位校正及预编码模块输出的信号使用与所述预编码索 以上所述装置的各个模块的实现功能参见上述方法的具体实现过程, 在 此不再赞述。 本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围 之内。
工业实用性 本发明实施例根据信道信息,利用循环延迟分集( Cyclic Delay Diversity, CDD ) 方式, 对不同基站间和同一基站不同天线的传输时延差进行补偿, 在 不改变基站数据发送时间不增加用户接收端复杂度的基础上, 一方面釆用分 层相位校正预编码, 另一方面根据终端反馈的时延差在基站不同发射天线端 对信号进行循环位移以实现相干传输; 对小区间的传输时延差进行了补偿, 从而提高了 CoMP系统对小区间时延差的鲁棒性。 且由于相同的信息经过不 同的信道在接收端被合并起来, 用户有效地利用了信道提供的分集增益, 提 高了 CoMP用户接收信号的质量。

Claims

权 利 要 求 书
1、 一种预编码实现方法, 其包括:
终端获取其与服务基站、 各协作基站之间的信道矩阵;
所述终端获取所述服务基站与每个协作基站的发送的信号到达所述终端 的时延;
所述终端根据各信道矩阵获取各自对应的预编码码字, 以及, 所述预编 码码字对应的预编码矩阵索引; 所述终端获取所述服务基站与每个协作基站之间的相位校正矩阵; 所述终端将所述时延、 预编码矩阵索引和相位校正矩阵反馈给所述服务 基站。
2、 如权利要求 1所述的方法, 其中, 所述终端根据信道矩阵获取对应的 预编码码字包括:
所述终端将信道矩阵 进行奇异值分解, 得到 提取 的前 列得到信道估计码字矩阵^ ;; 将预定义码本中与所述^ ;的距离最短的码 字作为所述信道矩阵 对应的预编码码字;
其中, 所述 为所述终端与所述服务基站之间的信道矩阵, 或者, 为所 述终端与所述协作基站之间的信道矩阵, mk为所述终端需要传输的数据流数, k为终端编号, i为所述服务基站或所述协作基站的编号。
3、 如权利要求 1或 2所述的方法, 其中, 所述终端通过以下公式获取所 述服务基站与每个协作基站之间的相位校正矩阵 Θ:
Θ = arg max ίτ[{Η Ψ + Η^Θ)Η {Η Ψ + Η JWj &)] 其中, H,是所述终端与所述服务基站之间的信道矩阵, 是 对应的预 编码码字, .是终端与协作基站之间的信道矩阵, ^.是 对应的预编码码字, tr[ ]表示求迹运算, arg +H ^B)]表示对应迹最大的
Figure imgf000018_0001
Θ作为所述服务基站与所述协作基站 H之间的相位校正矩阵。
4、 一种预编码实现方法, 其包括:
终端的协作基站从所述终端的服务基站接收时延、 相位校正矩阵以及预 编码矩阵索引, 所述时延为所述服务基站与所述协作基站发送的信号到达所 述终端的时延; 所述相位校正矩阵为所述服务基站与所述协作基站之间的相 位校正矩阵, 所述预编码矩阵索引为所述终端反馈给所述服务基站与所述协 作基站对应的预编码矩阵索引;
所述协作基站将待发送给所述终端的信号进行下述处理: 使用所述相位 校正矩阵进行相位校正, 使用所述时延进行时域延时或频域相位旋转使其相 理后的信号发射至所述终端。
5、 如权利要求 4所述的方法, 其中, 按照以下公式使用相位校正矩阵进 行相位校正:
Figure imgf000019_0001
其中, 是待发送给所述终端的信号, 是所述服务基站 与所述协作基站之间的相位校正矩阵, ¾^是相位校正后的信号。
6、 如权利要求 4或 5所述的方法, 其中, 通过以下公式使用所述相位校 正矩阵进行相位校正, 进行频域相位旋转和使用所述预编码索引得到的预编 码码字进行预编码处理包括:
s1CDD = eil TlN - W2 - s, - diag(ei( , e]'e ..., β - )
其中, 是待发送给所述终端的信号, ¾DD是预编码处理后的信号, 是相位校正矩阵, ^是所述预编码矩阵索引对应的预编码 码字, q为子载波索引或者与特定资源单元相关联的索引, N表示反傅立叶变 换的点数, r为所述服务基站与所述协作基站之间的时延, 使用延迟点数表 示。
7、 一种终端, 其包括:
信道估计模块, 其设置为: 获取所述终端与服务基站、 各协作基站之间 的信道矩阵;
时延估计模块, 其设置为: 获取所述服务基站与每个协作基站发送的信 号到达所述终端的时延;
预编码码字构造模块, 其设置为: 根据各信道矩阵获取各自对应的预编 码码字, 以及, 所述预编码码字对应的预编码矩阵索引; 相位校正矩阵估计模块, 其设置为: 获取所述服务基站与每个协作基站 之间的相位校正矩阵; 以及
反馈模块, 其设置为: 将所述时延、 预编码矩阵索引和相位校正矩阵反 馈给所述服务基站。
8、 如权利要求 7所述的终端, 其中, 预编码码字是设置为以如下方式构 造模块根据信道矩阵获取对应的预编码码字:
将信道矩阵 进行奇异值分解, 得到 ^ = Uue^ , 提取 Vu的前 mk列得到 信道估计码字矩阵^ ;; 将预定义码本中与所述^ ;的距离最短的码字作为所 述信道矩阵 对应的预编码码字;
其中, 所述 为所述终端与所述服务基站之间的信道矩阵, 或者, 为所 述终端与所述协作基站之间的信道矩阵, mk为所述终端需要传输的数据流数, k为终端编号, i为所述服务基站或所述协作基站的编号。
9、 如权利要求 7或 8所述的终端, 其中, 所述相位校正矩阵估计模块是 设置为按照以下公式获取所述服务基站与每个协作基站之间的相位校正矩 阵:
Θ = arg max ίτ[{Η Ψ + Η^Θ)Η {Η Ψ + Η JWj &)] 其中, H,是所述终端与所述服务基站之间的信道矩阵, 是 对应的预 编码码字, .是终端与协作基站之间的信道矩阵, ^.是 对应的预编码码字, tr[ ]表示求迹运算, arg +H ^B)]表示对应迹最大的
Figure imgf000020_0001
Θ作为所述服务基站与所述协作基站 ^之间的相位校正矩阵。
10、 一种基站, 其包括:
信息交互模块, 其设置为: 在所述基站作为终端的协作基站时, 从所述 终端的服务基站接收时延、 相位校正矩阵以及预编码矩阵索引, 所述时延为 所述服务基站与所述协作基站的信号达到所述终端的时延; 所述相位校正矩 阵为所述服务基站与所述协作基站之间的相位校正矩阵, 所述预编码矩阵索 引为所述终端反馈给所述服务基站与所述协作基站对应的预编码矩阵索引; 相位校正及编码模块, 其设置为: 将待发送给所述终端的信号进行下述 处理: 使用所述相位校正矩阵进行相位校正, 使用所述时延进行时域延时或 频域相位旋转使其相当于时域延时, 输出信号至所述预编码模块; 以及
预编码模块, 其设置为: 对相位校正及预编码模块输出的信号使用与所
11、 如权利要求 10所述的基站, 其中, 所述相位校正及编码模块是设置 为按照以下公式使用相位校正矩阵进行相位校正:
s =Sl-diag{e^,eie ...,e^) 其中, 是待发送给所述终端的信号, 是所述服务基站 与所述协作基站之间的相位校正矩阵, ¾^是相位校正后的信号。
12、 如权利要求 10或 11所述的基站, 其中, 所述预编码模块是设置为 以如下公式对相位校正及预编码模块输出的信号使用与所述预编码索引对应 的预编码码字进行预编码处理:
slCDD = eil TlN -W2-s, - diag(ei( ,e]'e ..., β - )
其中, 是待发送给所述终端的信号, ¾DD是预编码处理后的信号, 是相位校正矩阵, ^是所述预编码矩阵索引对应的预编码 码字, q为子载波索引或者与特定资源单元相关联的索引, N表示反傅立叶变 换的点数, r为所述服务基站与所述协作基站之间的时延, 使用延迟点数表 示, ¾DD为预编码模块输出的信号。
PCT/CN2012/087144 2012-02-17 2012-12-21 一种多点协同传输预编码方法、终端及基站 WO2013120383A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210036954.9A CN103259582B (zh) 2012-02-17 2012-02-17 一种多点协同传输预编码方法、终端及基站
CN201210036954.9 2012-02-17

Publications (1)

Publication Number Publication Date
WO2013120383A1 true WO2013120383A1 (zh) 2013-08-22

Family

ID=48963312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087144 WO2013120383A1 (zh) 2012-02-17 2012-12-21 一种多点协同传输预编码方法、终端及基站

Country Status (2)

Country Link
CN (1) CN103259582B (zh)
WO (1) WO2013120383A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3567740A4 (en) * 2017-01-06 2019-11-27 Sony Corporation ELECTRONIC DEVICE, APPARATUS AND METHOD FOR RADIO COMMUNICATION

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106685623B (zh) * 2016-11-28 2020-04-21 上海华为技术有限公司 一种时延补偿方法、用户设备及基站
CN109600208B (zh) 2017-09-30 2021-06-04 电信科学技术研究院 一种上行传输、配置方法、终端及基站
CN113727356B (zh) * 2021-08-26 2023-11-21 中国联合网络通信集团有限公司 一种降低通信干扰的方法及装置
CN116318292A (zh) * 2021-12-20 2023-06-23 华为技术有限公司 信道信息上报的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877684A (zh) * 2009-04-28 2010-11-03 大唐移动通信设备有限公司 一种预编码矩阵的确定方法及装置
WO2010130101A1 (zh) * 2009-05-15 2010-11-18 华为技术有限公司 信道预编码方法、装置及系统
CN101917381A (zh) * 2010-08-20 2010-12-15 西安电子科技大学 协作多点传输系统中小区间延迟差补偿方法
CN102685874A (zh) * 2012-04-12 2012-09-19 中兴通讯股份有限公司 一种多个接入点间偏差校准方法、系统和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111352B (zh) * 2009-12-23 2015-05-20 中兴通讯股份有限公司 多点协作联合发送网络中的信息反馈方法、装置和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877684A (zh) * 2009-04-28 2010-11-03 大唐移动通信设备有限公司 一种预编码矩阵的确定方法及装置
WO2010130101A1 (zh) * 2009-05-15 2010-11-18 华为技术有限公司 信道预编码方法、装置及系统
CN101917381A (zh) * 2010-08-20 2010-12-15 西安电子科技大学 协作多点传输系统中小区间延迟差补偿方法
CN102685874A (zh) * 2012-04-12 2012-09-19 中兴通讯股份有限公司 一种多个接入点间偏差校准方法、系统和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3567740A4 (en) * 2017-01-06 2019-11-27 Sony Corporation ELECTRONIC DEVICE, APPARATUS AND METHOD FOR RADIO COMMUNICATION

Also Published As

Publication number Publication date
CN103259582A (zh) 2013-08-21
CN103259582B (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
CN111344955B (zh) 用于无线通信系统的电子设备、方法、装置和存储介质
US20220311489A1 (en) Spectral sharing wireless systems
EP2901569B1 (en) Method for wifi beamforming, feedback, and sounding (wibeam)
CN103718474B (zh) 在无线通信系统中组合基带和射频波束控制的装置和方法
WO2011124021A1 (zh) 用于信息反馈以及预编码的方法和装置
EP2898720A1 (en) Systems and methods for interference alignment in wi-fi
TW201212570A (en) A method and system for orthogonalized beamforming in multiple user multiple input multiple output (MU-MIMO) communication systems
WO2013131391A1 (zh) 一种多用户干扰抑制方法、终端及基站
TW201145874A (en) Feedback for supporting SU-MIMO and MU-MIMO operation in wireless communication
CN104871437A (zh) Fdd系统中信道互易性补偿方法和装置
WO2014015660A1 (zh) 无线通信系统的基带处理装置和无线通信系统
US20230361842A1 (en) Improving precoding
WO2013120383A1 (zh) 一种多点协同传输预编码方法、终端及基站
WO2013033919A1 (zh) 数据传输方法、系统、发射机和接收机
WO2010108298A1 (zh) 无线通信系统中控制同信道干扰的方法和装置
TW201242293A (en) Systems and methods for providing precoding and feedback
WO2012055276A1 (zh) 业务数据下发方法和装置
WO2012122810A1 (zh) 一种实现协同预编码的方法和系统
WO2013107151A1 (zh) 一种上行干扰抵消的方法、终端和基站
WO2015100620A1 (zh) Ofdm通信系统及信号收发方法与装置
WO2018095122A1 (zh) 无线通信方法和无线通信设备
WO2012152037A1 (zh) 一种在协作多点系统中进行信道质量测量的方法和系统
CN105471558B (zh) 多输入多输出系统信令传输方法和装置
CN102377527B (zh) 一种降低多小区反馈开销的方法和装置
WO2011050543A1 (zh) 获取下行信道状态信息的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868405

Country of ref document: EP

Kind code of ref document: A1