WO2013118356A1 - Hydraulic closed circuit system - Google Patents

Hydraulic closed circuit system Download PDF

Info

Publication number
WO2013118356A1
WO2013118356A1 PCT/JP2012/078541 JP2012078541W WO2013118356A1 WO 2013118356 A1 WO2013118356 A1 WO 2013118356A1 JP 2012078541 W JP2012078541 W JP 2012078541W WO 2013118356 A1 WO2013118356 A1 WO 2013118356A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
pump
pressure
port
charge
Prior art date
Application number
PCT/JP2012/078541
Other languages
French (fr)
Japanese (ja)
Inventor
寺田 眞司
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to CN201280067659.8A priority Critical patent/CN104067032B/en
Priority to KR1020147019533A priority patent/KR20140108278A/en
Publication of WO2013118356A1 publication Critical patent/WO2013118356A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/005With rotary or crank input
    • F15B7/006Rotary pump input
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20538Type of pump constant capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20561Type of pump reversible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/27Directional control by means of the pressure source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3052Shuttle valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50536Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using unloading valves controlling the supply pressure by diverting fluid to the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/61Secondary circuits
    • F15B2211/613Feeding circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • F15B2211/7054Having equal piston areas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/765Control of position or angle of the output member
    • F15B2211/7656Control of position or angle of the output member with continuous position control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/4078Fluid exchange between hydrostatic circuits and external sources or consumers
    • F16H61/4139Replenishing or scavenging pumps, e.g. auxiliary charge pumps

Definitions

  • the present invention relates to a hydraulic closed circuit system capable of driving a hydraulic cylinder or a hydraulic motor with a high flow rate hydraulic oil, and more particularly to a hydraulic closed circuit system including a hydraulic pump driven by an electric motor.
  • a hydraulic closed circuit for driving an arm cylinder mounted on a hydraulic excavator and a hydraulic closed circuit including a hydraulic pump directly connected to an engine as a drive source is known (for example, see Patent Document 2).
  • the present invention provides a hydraulic closed circuit system that enables the driven portion to be driven by a low flow rate of hydraulic fluid while allowing the driven portion to be driven by a low flow rate of hydraulic fluid. For the purpose.
  • a hydraulic closed circuit system is a hydraulic closed circuit system capable of driving a hydraulic cylinder or a hydraulic motor having a first port and a second port.
  • a hydraulic pump having a first pump port in fluid communication with the first port through a conduit and a second pump port in fluid communication with the second port through a second conduit;
  • a shuttle valve having an electric motor for controlling rotation, one primary port and two secondary ports, wherein one of the secondary ports is in fluid communication with the first conduit;
  • a shuttle valve in which the other of the secondary ports is fluidly connected to the second pipe line, a charge pump in which a discharge port is fluidly connected to the primary port of the shuttle valve, and a charge pump by the charge pump And a relief valve to set pressure di pressure, the charge pump is characterized in the first conduit and the second conduit to the charge pressure through the shuttle valve.
  • the present invention provides a hydraulic closed circuit system that enables driving of a driven part with a low flow rate of hydraulic fluid while allowing the driven part to be controlled with a low flow rate of hydraulic fluid. Can do.
  • FIG. 1 is a schematic diagram showing a configuration example of a hydraulic closed circuit system 100 according to an embodiment of the present invention.
  • the hydraulic closed circuit system 100 is a system in which the hydraulic cylinder 3 is driven by the hydraulic pump 1 whose rotation is controlled by the electric motor 2.
  • the hydraulic cylinder 3 is used, for example, to drive a table of a large load capacity hydraulically driven large surface grinder.
  • the hydraulic closed circuit system 100 mainly includes a hydraulic pump 1, an electric motor 2, a hydraulic cylinder 3, safety valves 4L and 4R, a charge pump 5, an electric motor 6, a shuttle valve 7, a relief valve 8, and a sensor 9. And the control device 10.
  • the hydraulic pump 1 is a device that drives the hydraulic cylinder 3, and is, for example, a fixed displacement bidirectional hydraulic pump.
  • the hydraulic pump 1 may be a variable displacement pump.
  • the electric motor 2 is a device that controls the rotation of the hydraulic pump 1, and is, for example, an AC servo motor.
  • the hydraulic cylinder 3 is a hydraulic actuator having a first oil chamber 3L and a second oil chamber 3R separated by a piston 3a.
  • the first oil chamber 3L is fluidly communicated with the first pump port 1a of the hydraulic pump 1 through the first port 3b and the conduit C1, and the second oil chamber 3R is communicated with the second port 3c and the conduit C2.
  • the hydraulic pump 1 is in fluid communication with the second pump port 1b.
  • the hydraulic cylinder 3 is a double rod cylinder having two rods extending on both sides of the piston 3a, and one of the two rods is coupled to a surface grinder table (not shown).
  • the hydraulic cylinder 3 may be a single rod cylinder having one rod extending on one side of the piston 3a, and has a rod-free configuration in which a surface grinder table is directly coupled to the piston 3a. There may be.
  • the safety valve 4L is a valve for releasing the hydraulic oil in the pipe C1 to the hydraulic oil tank T1 when the pressure in the pipe C1 becomes equal to or higher than a predetermined pressure.
  • the safety valve 4R is a valve for releasing the hydraulic oil in the pipe C2 to the hydraulic oil tank T1 when the pressure in the pipe C2 becomes equal to or higher than a predetermined pressure.
  • main pipeline the pipeline C1 and the pipeline C2 are collectively referred to as “main pipeline”
  • main pipeline pressure in the pipeline C1 and the pressure in the pipeline C2 are collectively referred to as “main pipeline pressure”.
  • the safety valve 4L is disposed on a pipe line C4 that connects the pipe line C3 and the pipe line C1 in fluid communication with the hydraulic oil tank T1, and the safety valve 4R is a pipe line C5 that connects the pipe line C3 and the pipe line C2. Placed on top.
  • the charge pump 5 is a hydraulic pump that discharges hydraulic oil so that each pressure in the pipe line C1 and the pipe line C2 is equal to or higher than a predetermined charge pressure, and is, for example, a fixed displacement type one-way hydraulic pump.
  • the charge pump 5 may be a variable capacity pump.
  • the discharge amount per rotation of the charge pump 5 is smaller than the discharge amount per rotation of the hydraulic pump 1. This is because the hydraulic oil discharged from the charge pump 5 is auxiliary.
  • the electric motor 6 is a device that controls the rotation of the charge pump 5 and is, for example, an AC servo motor.
  • the electric motor 6 continuously rotates at a predetermined rotation speed so that the charge pump 5 continuously discharges hydraulic oil at a predetermined flow rate.
  • the electric motor 6 may rotate while changing the rotation speed so as to change the discharge amount of the charge pump 5 so that the discharge pressure of the charge pump 5 becomes a predetermined charge pressure.
  • the shuttle valve 7 is a valve that controls the flow of hydraulic oil between the pipe C1 or the pipe C2 and each of the hydraulic oil tank T1 and the charge pump 5, and includes one primary port 7a and two secondary sides. Ports 7b and 7c.
  • the primary port 7a is fluidly communicated with the discharge port of the charge pump 5 via the conduit C6, and one of the secondary ports 7b is fluidly communicated with the conduit C1 via the conduit C7.
  • the other side 7c of the secondary side port is fluidly connected to the pipe line C2 via the pipe line C8.
  • the shuttle valve 7 when the pressure in the pipe C1 is lower than a predetermined charge pressure, the shuttle valve 7 introduces hydraulic oil discharged from the charge pump 5 into the pipe C1 through the secondary port 7b. Further, when the pressure in the pipe C2 is lower than the predetermined charge pressure, the shuttle valve 7 introduces hydraulic oil discharged from the charge pump 5 into the pipe C2 through the secondary port 7c.
  • the relief valve 8 fluidly communicates the primary side port 8a and the secondary side port 8b when the pressure of the primary side port 8a becomes equal to or higher than a predetermined set pressure, and supplies the hydraulic fluid in the primary side port 8a to the secondary side. This is a valve that flows out to the side port 8b.
  • the primary side port 8a is fluidly connected to the pipe line C6 via the pipe line C9, and the secondary side port 8b is fluidly connected to the hydraulic oil tank T1 via the pipe line C10.
  • the relief valve 8 is an electromagnetic proportional relief valve, and changes the set pressure according to the magnitude of the control current supplied from the control device 10.
  • the set pressure of the relief valve 8 corresponds to the charge pressure of the charge pump 5.
  • the sensor 9 is a sensor that detects the operating state of the hydraulic cylinder 3, for example, a position sensor that detects the displacement of the piston 3a.
  • the sensor 9 outputs the detected value to the control device 10.
  • the control device 10 is a device for controlling the hydraulic closed circuit system 100 and is, for example, a computer including a CPU, a RAM, a ROM, an input / output interface, and the like.
  • control device 10 determines the required moving distance (the distance from the current position to the target position) of the surface grinder table, that is, the required moving distance of the piston 3a, according to the user input. Further, the control device 10 determines the rotation direction and rotation speed of the hydraulic pump 1 according to the determined required moving distance of the piston 3a, and sends a control signal corresponding to the determined rotation direction and rotation speed of the hydraulic pump 1 to the electric motor. 2 is output. Specifically, the control device 10 determines the rotational speed of the hydraulic pump 1 so that the rotational speed of the hydraulic pump 1 increases as the required moving distance of the piston 3a increases. Further, the control device 10 determines the rotation speed of the hydraulic pump 1 so that the rotation speed of the hydraulic pump 1 decreases as the required moving distance of the piston 3a decreases, that is, as the target position is approached.
  • control device 10 determines whether the surface grinder table has reached the target position while monitoring the position of the piston 3a, that is, the position of the surface grinder table, based on the output of the sensor 9.
  • control device 10 When it is determined that the surface grinder table has reached the target position, the control device 10 outputs a control signal for stopping the rotation of the hydraulic pump 1 to the electric motor 2.
  • a thick solid line represents a state where the charge pressure is higher than the main pipeline pressure.
  • illustration of the sensor 9 and the control device 10 is omitted for clarity.
  • the electric motor 6 continuously rotates at a predetermined rotation speed
  • the charge pump 5 continuously rotates at a predetermined rotation speed. I am letting.
  • the charge pump 5 continuously discharges hydraulic oil at a predetermined flow rate.
  • the shuttle valve 7 supplies hydraulic oil to the pipe C1 through the secondary port 7b and the pipe C7 as indicated by an arrow AR1. This flow of hydraulic oil disappears when the pressure in the pipe C1 reaches the charge pressure.
  • the shuttle valve 7 supplies hydraulic oil to the pipeline C2 through the secondary port 7c and the pipeline C8, as indicated by the arrow AR2. This flow of hydraulic oil disappears when the pressure in the pipe C2 reaches the charge pressure.
  • the hydraulic closed circuit system 100 ensures that the pressure in the pipe line C1 and the pipe line C2 is always equal to or higher than the charge pressure. This means that the main line pressure before starting the rotation of the hydraulic pump 1 (hereinafter referred to as “initial pressure”) is increased in advance, and the degree of compression of the hydraulic oil in the main line is increased in advance. To do.
  • the hydraulic closed circuit system 100 reduces the volume change (compression capacity) of the hydraulic oil in the main pipeline due to the rotation of the hydraulic pump 1 to increase the hydraulic control rigidity, eliminate the response delay, and the pump rotation angle.
  • the control resolution of the hydraulic oil discharge volume can be increased. This effect becomes more prominent as the capacity of the hydraulic oil in the hydraulic cylinder 3 and the main pipeline increases as the large load capacity hydraulically driven large surface grinding machine increases and the compression capacity to reach the operating load pressure increases. Due to this effect, the hydraulic closed circuit system 100 also enables minute position control of the piston 3a (surface grinder table) while allowing the piston 3a (surface grinder table) to be driven by a high flow rate of hydraulic fluid.
  • control device 10 may change the charge pressure in accordance with the weight of the driving target (for example, the total weight of the surface grinder table and the workpiece placed thereon).
  • control device 10 changes the magnitude of the control current output to the relief valve 8 according to the weight of the drive target detected by the weight sensor (not shown), and sets the relief valve 8.
  • the pressure that is, the charge pressure is changed.
  • the set pressure of the relief valve 8, that is, the charge pressure is increased as the weight of the drive target is increased.
  • the volume change (compression capacity) of the hydraulic fluid in the main pipeline due to the rotation of the hydraulic pump 1, which increases as the weight of the drive target increases by increasing the degree of compression of the hydraulic fluid in the main pipeline. is there.
  • the hydraulic closed circuit system 100 can stabilize the rising characteristics of the minute position control of the piston 3a (surface grinder table) regardless of the difference in the weight of the driven object.
  • control device 10 may reduce the set pressure of the relief valve 8 and cause the charge pump 5 to operate without load.
  • control device 10 determines whether or not the hydraulic closed circuit system 100 is in a standby state based on an operator's input, and when it is determined that the hydraulic closed circuit system 100 is in a standby state, The magnitude of the control current to be output is changed to reduce the set pressure of the relief valve 8, that is, the charge pressure.
  • the hydraulic closed circuit system 100 can prevent wasteful consumption of energy when the hydraulic closed circuit system 100 is in a standby state.
  • the thick dotted line indicates that the hydraulic pump 1 discharges the hydraulic oil from the first pump port 1a toward the first oil chamber 3L of the hydraulic cylinder 3, and as a result, the pressure in the pipelines C1, C4, and C7 Represents an elevated state.
  • a thick solid line represents a state in which the charge pressure is higher than the pressure in the pipe line C2.
  • the sensor 9 and the control device 10 are not shown for clarity.
  • the hydraulic closed circuit system 100 rotates the hydraulic pump 1 by the electric motor 2 in accordance with an operator input, and moves the piston 3 a (surface grinder table) in the direction indicated by the arrow AR 3.
  • the hydraulic cylinder 3 is driven.
  • the hydraulic oil is supplied to the pipe line C1 and the first oil chamber 3L by the hydraulic pump 1, and the compressibility of the hydraulic oil in the pipe line C1 and the first oil chamber 3L increases. As a result, the pressure of the hydraulic oil in the pipe line C1 and the first oil chamber 3L increases.
  • the shuttle valve 7 removes the hydraulic oil through the secondary side port 7c and the pipe line C8 as indicated by an arrow AR4. Supply to line C2. At this time, the charge pump 5 supplies hydraulic oil to the shuttle valve 7 through the conduit C6 as indicated by an arrow AR41. This flow of hydraulic oil disappears when the pressure in the pipe C2 and the second oil chamber 3R reaches the charge pressure.
  • the charge pressure when the hydraulic pump 1 is rotated at a predetermined rotational speed or higher may be different from the charge pressure before driving the hydraulic pump 1, for example, before driving the hydraulic pump 1. It may be a value lower than the charge pressure. This is because the usage purpose of the charge pressure is different. Specifically, the charge pressure before driving the hydraulic pump 1 is for increasing the rigidity of the hydraulic control and stabilizing the bulk elasticity of the hydraulic oil, while the hydraulic pump 1 is rotating. This is because the charge pressure is for replenishing the hydraulic fluid that is insufficient in the main pipeline to prevent the occurrence of cavitation and the like. Moreover, it is because the load of the electric motor 6 that rotates the charge pump 5 can be reduced by setting the charge pressure when the hydraulic pump 1 is rotated to a lower value.
  • control device 10 changes the magnitude of the control current output to the relief valve 8 according to the rotational speed of the hydraulic pump 1, for example. Specifically, the control device 10 decreases the set pressure of the relief valve 8, that is, the charge pressure, as the rotational speed of the hydraulic pump 1 increases.
  • the hydraulic closed circuit system 100 replenishes hydraulic oil through the shuttle valve 7 when the pressure of one of the pipe C1 and the pipe C2 falls below the charge pressure due to the rotation of the hydraulic pump 1. That is, the hydraulic closed circuit system 100 operates through the shuttle valve 7 in order to compensate for the volume change (compression capacity) when the volume of hydraulic oil in one of the pipe C1 and the pipe C2 decreases. Supply oil.
  • the hydraulic closed circuit system 100 can realize the position control of the piston 3a (surface grinding machine) with a high flow rate of hydraulic fluid, and the minute position of the piston 3a (surface grinding machine) with the low flow rate of hydraulic fluid. Control can be realized.
  • the hydraulic closed circuit system 100 is configured to drive the hydraulic cylinder 3 with the hydraulic pump 1, but may be configured to drive the hydraulic motor with the hydraulic pump 1.
  • the hydraulic closed circuit system 100 is used for moving the table of the large load capacity hydraulically driven large surface grinder, but for moving the injection cylinder and the movable platen of the injection molding machine. It may be used to move other machine tool components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

A hydraulic closed circuit system (100) capable of driving a hydraulic cylinder (3) is provided with the following: a hydraulic pump (1); an electric motor (2) for controlling the rotation of the hydraulic pump (1); a shuttle valve (7) in which a secondary side port (7b) communicates with a first conduit (C1) and a secondary side port (7c) communicates with a second conduit (C2); a charge pump (5) in which an ejection port communicates with a primary side port (7a) of the shuttle valve (7); and a relief valve (8) which makes the charge pressure of the charge pump (5) a set pressure. The charge pump (5) maintains the first conduit (C1) and the second conduit (C2) at a charge pressure through the shuttle valve (7). The relief valve (8) can change the set pressure.

Description

油圧閉回路システムHydraulic closed circuit system
 本発明は、油圧シリンダ又は油圧モータを高流量の作動油で駆動可能な油圧閉回路システムに関し、特に、電動機によって駆動される油圧ポンプを備えた油圧閉回路システムに関する。 The present invention relates to a hydraulic closed circuit system capable of driving a hydraulic cylinder or a hydraulic motor with a high flow rate hydraulic oil, and more particularly to a hydraulic closed circuit system including a hydraulic pump driven by an electric motor.
 従来、作業機械に搭載される油圧モータ駆動用のHST(Hydro Static Transmission)システムであり、エンジンに直結される油圧ポンプを駆動源として備えるHSTシステムが知られている(例えば、特許文献1参照。)。 2. Description of the Related Art Conventionally, an HST (Hydro Static Transmission) system for driving a hydraulic motor mounted on a work machine, which includes a hydraulic pump directly connected to an engine as a drive source is known (see, for example, Patent Document 1). ).
 また、油圧ショベルに搭載されるアームシリンダ駆動用の油圧閉回路であり、エンジンに直結される油圧ポンプを駆動源として備える油圧閉回路が知られている(例えば、特許文献2参照。)。 Also, a hydraulic closed circuit for driving an arm cylinder mounted on a hydraulic excavator, and a hydraulic closed circuit including a hydraulic pump directly connected to an engine as a drive source is known (for example, see Patent Document 2).
特開2008-32198号公報JP 2008-32198 A 特開昭61-127967号公報JP 61-127967 A
 しかしながら、特許文献1及び2に記載のHSTシステム又は油圧閉回路は何れも、エンジンに直結された油圧ポンプを駆動源として用いるため、油圧ポンプの微小且つ正確な回転が求められる被駆動部の微小位置制御には不向きである。 However, since both the HST system and the hydraulic closed circuit described in Patent Documents 1 and 2 use a hydraulic pump directly connected to the engine as a driving source, the driven pump is required to have a minute and accurate rotation of the hydraulic pump. Not suitable for position control.
 上述の点に鑑み、本発明は、高流量の作動油による被駆動部の駆動を可能としながらも低流量の作動油による被駆動部の微小位置制御を可能とする油圧閉回路システムを提供することを目的とする。 In view of the above, the present invention provides a hydraulic closed circuit system that enables the driven portion to be driven by a low flow rate of hydraulic fluid while allowing the driven portion to be driven by a low flow rate of hydraulic fluid. For the purpose.
 上述の目的を達成するために、本発明の実施例に係る油圧閉回路システムは、第一ポート及び第二ポートを有する油圧シリンダ又は油圧モータを駆動可能な油圧閉回路システムであって、第一管路を通じて前記第一ポートに流体的に連通される第一ポンプポートと第二管路を通じて前記第二ポートに流体的に連通される第二ポンプポートとを有する油圧ポンプと、前記油圧ポンプの回転を制御する電動モータと、1つの一次側ポートと2つの二次側ポートとを有するシャトル弁であり、該二次側ポートの一方が前記第一管路に流体的に連通され、該二次側ポートの他方が前記第二管路に流体的に連通されるシャトル弁と、吐出ポートが前記シャトル弁の一次側ポートに流体的に連通されるチャージポンプと、前記チャージポンプによるチャージ圧を設定圧とするリリーフ弁とを備え、前記チャージポンプは、前記シャトル弁を通じて前記第一管路及び前記第二管路を前記チャージ圧にすることを特徴とする。 In order to achieve the above object, a hydraulic closed circuit system according to an embodiment of the present invention is a hydraulic closed circuit system capable of driving a hydraulic cylinder or a hydraulic motor having a first port and a second port. A hydraulic pump having a first pump port in fluid communication with the first port through a conduit and a second pump port in fluid communication with the second port through a second conduit; A shuttle valve having an electric motor for controlling rotation, one primary port and two secondary ports, wherein one of the secondary ports is in fluid communication with the first conduit; A shuttle valve in which the other of the secondary ports is fluidly connected to the second pipe line, a charge pump in which a discharge port is fluidly connected to the primary port of the shuttle valve, and a charge pump by the charge pump And a relief valve to set pressure di pressure, the charge pump is characterized in the first conduit and the second conduit to the charge pressure through the shuttle valve.
 上述の手段により、本発明は、高流量の作動油による被駆動部の駆動を可能としながらも低流量の作動油による被駆動部の微小位置制御を可能とする油圧閉回路システムを提供することができる。 By the above-mentioned means, the present invention provides a hydraulic closed circuit system that enables driving of a driven part with a low flow rate of hydraulic fluid while allowing the driven part to be controlled with a low flow rate of hydraulic fluid. Can do.
本発明の実施例に係る油圧閉回路システムの構成例を示す概略図である。It is the schematic which shows the structural example of the hydraulic closed circuit system which concerns on the Example of this invention. 主管路圧がチャージ圧未満のときの油圧閉回路システムの状態を示す図である。It is a figure which shows the state of a hydraulic closed circuit system when a main pipe line pressure is less than a charge pressure. 油圧ポンプが吐出する作動油で油圧シリンダを駆動するときの油圧閉回路システムの状態を示す図である。It is a figure which shows the state of a hydraulic closed circuit system when driving a hydraulic cylinder with the hydraulic fluid which a hydraulic pump discharges.
 以下、図面を参照しつつ、本発明の実施例について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の実施例に係る油圧閉回路システム100の構成例を示す概略図である。 FIG. 1 is a schematic diagram showing a configuration example of a hydraulic closed circuit system 100 according to an embodiment of the present invention.
 油圧閉回路システム100は、電動モータ2によって回転制御される油圧ポンプ1で油圧シリンダ3を駆動するシステムである。油圧シリンダ3は、例えば、大負荷容量油圧駆動式大型平面研削盤のテーブルを駆動するために用いられる。 The hydraulic closed circuit system 100 is a system in which the hydraulic cylinder 3 is driven by the hydraulic pump 1 whose rotation is controlled by the electric motor 2. The hydraulic cylinder 3 is used, for example, to drive a table of a large load capacity hydraulically driven large surface grinder.
 本実施例では、油圧閉回路システム100は、主に、油圧ポンプ1、電動モータ2、油圧シリンダ3、安全弁4L、4R、チャージポンプ5、電動モータ6、シャトル弁7、リリーフ弁8、センサ9、及び制御装置10で構成される。 In this embodiment, the hydraulic closed circuit system 100 mainly includes a hydraulic pump 1, an electric motor 2, a hydraulic cylinder 3, safety valves 4L and 4R, a charge pump 5, an electric motor 6, a shuttle valve 7, a relief valve 8, and a sensor 9. And the control device 10.
 油圧ポンプ1は、油圧シリンダ3を駆動する装置であり、例えば、固定容量型の双方向油圧ポンプである。なお、油圧ポンプ1は、可変容量型のポンプであってもよい。 The hydraulic pump 1 is a device that drives the hydraulic cylinder 3, and is, for example, a fixed displacement bidirectional hydraulic pump. The hydraulic pump 1 may be a variable displacement pump.
 電動モータ2は、油圧ポンプ1の回転を制御する装置であり、例えば、ACサーボモータである。 The electric motor 2 is a device that controls the rotation of the hydraulic pump 1, and is, for example, an AC servo motor.
 油圧シリンダ3は、ピストン3aによって隔てられる第一油室3L及び第二油室3Rを有する油圧アクチュエータである。第一油室3Lは、第一ポート3b及び管路C1を通じて、油圧ポンプ1の第一ポンプポート1aに流体的に連通され、第二油室3Rは、第二ポート3c及び管路C2を通じて、油圧ポンプ1の第二ポンプポート1bに流体的に連通される。本実施例において、油圧シリンダ3は、ピストン3aの両側に延びる2つのロッドを備えた両ロッドシリンダであり、2つのロッドのうちの一方が平面研削盤テーブル(図示せず。)に結合される。なお、油圧シリンダ3は、ピストン3aの片側に延びる1つのロッドを備えた片ロッドシリンダであってもよく、平面研削盤テーブルが直接的にピストン3aに結合されるような、ロッドのない構成であってもよい。 The hydraulic cylinder 3 is a hydraulic actuator having a first oil chamber 3L and a second oil chamber 3R separated by a piston 3a. The first oil chamber 3L is fluidly communicated with the first pump port 1a of the hydraulic pump 1 through the first port 3b and the conduit C1, and the second oil chamber 3R is communicated with the second port 3c and the conduit C2. The hydraulic pump 1 is in fluid communication with the second pump port 1b. In this embodiment, the hydraulic cylinder 3 is a double rod cylinder having two rods extending on both sides of the piston 3a, and one of the two rods is coupled to a surface grinder table (not shown). . The hydraulic cylinder 3 may be a single rod cylinder having one rod extending on one side of the piston 3a, and has a rod-free configuration in which a surface grinder table is directly coupled to the piston 3a. There may be.
 安全弁4Lは、管路C1内の圧力が所定圧力以上となった場合に、管路C1内の作動油を作動油タンクT1に逃がすための弁である。また、安全弁4Rは、管路C2内の圧力が所定圧力以上となった場合に、管路C2内の作動油を作動油タンクT1に逃がすための弁である。なお、以下では、管路C1及び管路C2を総称して「主管路」とし、管路C1内の圧力、及び、管路C2内の圧力を総称して「主管路圧」とする。 The safety valve 4L is a valve for releasing the hydraulic oil in the pipe C1 to the hydraulic oil tank T1 when the pressure in the pipe C1 becomes equal to or higher than a predetermined pressure. The safety valve 4R is a valve for releasing the hydraulic oil in the pipe C2 to the hydraulic oil tank T1 when the pressure in the pipe C2 becomes equal to or higher than a predetermined pressure. Hereinafter, the pipeline C1 and the pipeline C2 are collectively referred to as “main pipeline”, and the pressure in the pipeline C1 and the pressure in the pipeline C2 are collectively referred to as “main pipeline pressure”.
 安全弁4Lは、作動油タンクT1に流体的に連通される管路C3と管路C1とを繋ぐ管路C4上に配置され、安全弁4Rは、管路C3と管路C2とを繋ぐ管路C5上に配置される。 The safety valve 4L is disposed on a pipe line C4 that connects the pipe line C3 and the pipe line C1 in fluid communication with the hydraulic oil tank T1, and the safety valve 4R is a pipe line C5 that connects the pipe line C3 and the pipe line C2. Placed on top.
 チャージポンプ5は、管路C1及び管路C2のそれぞれの圧力が所定のチャージ圧以上となるように作動油を吐出する油圧ポンプであり、例えば、固定容量型の一方向油圧ポンプである。なお、チャージポンプ5は、可変容量型のポンプであってもよい。また、チャージポンプ5の1回転当たり吐出量は、油圧ポンプ1の1回転当たり吐出量よりも小さい。チャージポンプ5が吐出する作動油は、補助的なものであるためである。 The charge pump 5 is a hydraulic pump that discharges hydraulic oil so that each pressure in the pipe line C1 and the pipe line C2 is equal to or higher than a predetermined charge pressure, and is, for example, a fixed displacement type one-way hydraulic pump. The charge pump 5 may be a variable capacity pump. The discharge amount per rotation of the charge pump 5 is smaller than the discharge amount per rotation of the hydraulic pump 1. This is because the hydraulic oil discharged from the charge pump 5 is auxiliary.
 電動モータ6は、チャージポンプ5の回転を制御する装置であり、例えば、ACサーボモータである。電動モータ6は、チャージポンプ5が所定流速で作動油を継続的に吐出するよう、所定の回転速度で継続的に回転する。なお、電動モータ6は、チャージポンプ5の吐出圧が所定のチャージ圧となるようにチャージポンプ5の吐出量を変化させるべく、回転速度を変化させながら回転してもよい。 The electric motor 6 is a device that controls the rotation of the charge pump 5 and is, for example, an AC servo motor. The electric motor 6 continuously rotates at a predetermined rotation speed so that the charge pump 5 continuously discharges hydraulic oil at a predetermined flow rate. The electric motor 6 may rotate while changing the rotation speed so as to change the discharge amount of the charge pump 5 so that the discharge pressure of the charge pump 5 becomes a predetermined charge pressure.
 シャトル弁7は、管路C1又は管路C2と作動油タンクT1及びチャージポンプ5のそれぞれとの間の作動油の流れを制御する弁であり、1つの一次側ポート7aと2つの二次側ポート7b、7cとを有する。 The shuttle valve 7 is a valve that controls the flow of hydraulic oil between the pipe C1 or the pipe C2 and each of the hydraulic oil tank T1 and the charge pump 5, and includes one primary port 7a and two secondary sides. Ports 7b and 7c.
 一次側ポート7aは、管路C6を介して、チャージポンプ5の吐出ポートに流体的に連通され、二次側ポートの一方7bは、管路C7を介して、管路C1に流体的に連通され、二次側ポートの他方7cは、管路C8を介して、管路C2に流体的に連通される。 The primary port 7a is fluidly communicated with the discharge port of the charge pump 5 via the conduit C6, and one of the secondary ports 7b is fluidly communicated with the conduit C1 via the conduit C7. The other side 7c of the secondary side port is fluidly connected to the pipe line C2 via the pipe line C8.
 具体的には、シャトル弁7は、管路C1内の圧力が所定のチャージ圧よりも低い場合、二次側ポート7bを通じて、チャージポンプ5が吐出する作動油を管路C1内に導入する。また、シャトル弁7は、管路C2内の圧力が所定のチャージ圧よりも低い場合、二次側ポート7cを通じて、チャージポンプ5が吐出する作動油を管路C2内に導入する。 Specifically, when the pressure in the pipe C1 is lower than a predetermined charge pressure, the shuttle valve 7 introduces hydraulic oil discharged from the charge pump 5 into the pipe C1 through the secondary port 7b. Further, when the pressure in the pipe C2 is lower than the predetermined charge pressure, the shuttle valve 7 introduces hydraulic oil discharged from the charge pump 5 into the pipe C2 through the secondary port 7c.
 リリーフ弁8は、一次側ポート8aの圧力が所定の設定圧以上となった場合に一次側ポート8aと二次側ポート8bとを流体的に連通して一次側ポート8aの作動油を二次側ポート8bに流出させる弁である。 The relief valve 8 fluidly communicates the primary side port 8a and the secondary side port 8b when the pressure of the primary side port 8a becomes equal to or higher than a predetermined set pressure, and supplies the hydraulic fluid in the primary side port 8a to the secondary side. This is a valve that flows out to the side port 8b.
 一次側ポート8aは、管路C9を介して、管路C6に流体的に連通され、二次側ポート8bは、管路C10を介して、作動油タンクT1に流体的に連通される。 The primary side port 8a is fluidly connected to the pipe line C6 via the pipe line C9, and the secondary side port 8b is fluidly connected to the hydraulic oil tank T1 via the pipe line C10.
 本実施例では、リリーフ弁8は、電磁比例リリーフ弁であり、制御装置10から供給される制御電流の大きさに応じて設定圧を変化させる。なお、リリーフ弁8の設定圧は、チャージポンプ5のチャージ圧に対応する。 In this embodiment, the relief valve 8 is an electromagnetic proportional relief valve, and changes the set pressure according to the magnitude of the control current supplied from the control device 10. The set pressure of the relief valve 8 corresponds to the charge pressure of the charge pump 5.
 センサ9は、油圧シリンダ3の動作状態を検出するセンサであり、例えば、ピストン3aの変位を検出する位置センサである。センサ9は、検出した値を制御装置10に対して出力する。 The sensor 9 is a sensor that detects the operating state of the hydraulic cylinder 3, for example, a position sensor that detects the displacement of the piston 3a. The sensor 9 outputs the detected value to the control device 10.
 制御装置10は、油圧閉回路システム100を制御するための装置であり、例えば、CPU、RAM、ROM、入出力インタフェース等を備えたコンピュータである。 The control device 10 is a device for controlling the hydraulic closed circuit system 100 and is, for example, a computer including a CPU, a RAM, a ROM, an input / output interface, and the like.
 また、制御装置10は、ユーザ入力に応じて、平面研削盤テーブルの所要移動距離(現在位置から目標位置までの距離)、すなわち、ピストン3aの所要移動距離を決定する。さらに、制御装置10は、決定したピストン3aの所要移動距離に応じて油圧ポンプ1の回転方向及び回転速度を決定し、決定した油圧ポンプ1の回転方向及び回転速度に対応する制御信号を電動モータ2に対して出力する。具体的には、制御装置10は、ピストン3aの所要移動距離が大きいほど油圧ポンプ1の回転速度が大きくなるように油圧ポンプ1の回転速度を決定する。また、制御装置10は、ピストン3aの所要移動距離が小さくなるにつれて、すなわち、目標位置に近づくにつれて、油圧ポンプ1の回転速度が小さくなるように、油圧ポンプ1の回転速度を決定する。 Further, the control device 10 determines the required moving distance (the distance from the current position to the target position) of the surface grinder table, that is, the required moving distance of the piston 3a, according to the user input. Further, the control device 10 determines the rotation direction and rotation speed of the hydraulic pump 1 according to the determined required moving distance of the piston 3a, and sends a control signal corresponding to the determined rotation direction and rotation speed of the hydraulic pump 1 to the electric motor. 2 is output. Specifically, the control device 10 determines the rotational speed of the hydraulic pump 1 so that the rotational speed of the hydraulic pump 1 increases as the required moving distance of the piston 3a increases. Further, the control device 10 determines the rotation speed of the hydraulic pump 1 so that the rotation speed of the hydraulic pump 1 decreases as the required moving distance of the piston 3a decreases, that is, as the target position is approached.
 また、制御装置10は、センサ9の出力に基づいてピストン3aの位置、すなわち、平面研削盤テーブルの位置を監視しながら、平面研削盤テーブルが目標位置に到達したか否かを判定する。 Further, the control device 10 determines whether the surface grinder table has reached the target position while monitoring the position of the piston 3a, that is, the position of the surface grinder table, based on the output of the sensor 9.
 平面研削盤テーブルが目標位置に到達したと判定した場合に、制御装置10は、油圧ポンプ1の回転を停止させるための制御信号を電動モータ2に対して出力する。 When it is determined that the surface grinder table has reached the target position, the control device 10 outputs a control signal for stopping the rotation of the hydraulic pump 1 to the electric motor 2.
 次に、図2を参照しながら、主管路圧がチャージ圧未満のときの油圧閉回路システム100の状態について説明する。なお、図2において、太い実線は、主管路圧よりもチャージ圧が高い状態を表す。また、図2は、図の明瞭化のため、センサ9及び制御装置10の図示を省略している。 Next, the state of the hydraulic closed circuit system 100 when the main line pressure is less than the charge pressure will be described with reference to FIG. In FIG. 2, a thick solid line represents a state where the charge pressure is higher than the main pipeline pressure. In FIG. 2, illustration of the sensor 9 and the control device 10 is omitted for clarity.
 本実施例では、電動モータ6は、油圧ポンプ1及び電動モータ2が停止している場合にも、所定の回転速度で継続的に回転し、チャージポンプ5を所定の回転速度で継続的に回転させている。その結果、チャージポンプ5は、所定の流速で作動油を継続的に吐出している。 In this embodiment, even when the hydraulic pump 1 and the electric motor 2 are stopped, the electric motor 6 continuously rotates at a predetermined rotation speed, and the charge pump 5 continuously rotates at a predetermined rotation speed. I am letting. As a result, the charge pump 5 continuously discharges hydraulic oil at a predetermined flow rate.
 チャージポンプ5が継続的に作動油を吐出した結果、管路C6及び管路C9内の圧力がチャージ圧、すなわち、リリーフ弁8の設定圧に達すると、リリーフ弁8は、管路C10を通じて、管路C6及び管路C9内の作動油を作動油タンクT1に流出させる。その結果、管路C6及び管路C9内の圧力は、チャージ圧に維持される。 As a result of the continuous discharge of the hydraulic oil by the charge pump 5, when the pressure in the pipe C6 and the pipe C9 reaches the charge pressure, that is, the set pressure of the relief valve 8, the relief valve 8 passes through the pipe C10. The hydraulic oil in the pipe line C6 and the pipe line C9 is discharged to the hydraulic oil tank T1. As a result, the pressure in the pipe C6 and the pipe C9 is maintained at the charge pressure.
 このとき、管路C1内の圧力がチャージ圧未満であれば、シャトル弁7は、矢印AR1で示すように、二次側ポート7b及び管路C7を通じて作動油を管路C1に供給する。この作動油の流れは、管路C1内の圧力がチャージ圧に達した場合に消失する。 At this time, if the pressure in the pipe C1 is less than the charge pressure, the shuttle valve 7 supplies hydraulic oil to the pipe C1 through the secondary port 7b and the pipe C7 as indicated by an arrow AR1. This flow of hydraulic oil disappears when the pressure in the pipe C1 reaches the charge pressure.
 同様に、管路C2内の圧力がチャージ圧未満であれば、シャトル弁7は、矢印AR2で示すように、二次側ポート7c及び管路C8を通じて作動油を管路C2に供給する。この作動油の流れは、管路C2内の圧力がチャージ圧に達した場合に消失する。 Similarly, if the pressure in the pipeline C2 is less than the charge pressure, the shuttle valve 7 supplies hydraulic oil to the pipeline C2 through the secondary port 7c and the pipeline C8, as indicated by the arrow AR2. This flow of hydraulic oil disappears when the pressure in the pipe C2 reaches the charge pressure.
 このように、油圧閉回路システム100は、管路C1及び管路C2内の圧力が常にチャージ圧以上となるようにする。これは、油圧ポンプ1の回転を開始させる前の主管路圧(以下、「初期圧」とする。)を予め増大させ、主管路内の作動油の圧縮度を予め増大させておくことを意味する。 Thus, the hydraulic closed circuit system 100 ensures that the pressure in the pipe line C1 and the pipe line C2 is always equal to or higher than the charge pressure. This means that the main line pressure before starting the rotation of the hydraulic pump 1 (hereinafter referred to as “initial pressure”) is increased in advance, and the degree of compression of the hydraulic oil in the main line is increased in advance. To do.
 その結果、油圧閉回路システム100は、油圧ポンプ1の回転による主管路内の作動油の体積変化(圧縮容量)を小さくして油圧制御剛性を高め、応答遅れを排除し、且つ、ポンプ回転角による作動油吐出容積の制御分解能を高めることができる。この効果は、大負荷容量油圧駆動式大型平面研削盤のように油圧シリンダ3や主管路内の作動油の容量が大きく、作動負荷圧に達するまでの圧縮容量が大きいほど顕著になる。この効果により、油圧閉回路システム100は、高流量の作動油によるピストン3a(平面研削盤テーブル)の駆動を可能にしながら、ピストン3a(平面研削盤テーブル)の微小位置制御をも可能にする。 As a result, the hydraulic closed circuit system 100 reduces the volume change (compression capacity) of the hydraulic oil in the main pipeline due to the rotation of the hydraulic pump 1 to increase the hydraulic control rigidity, eliminate the response delay, and the pump rotation angle. The control resolution of the hydraulic oil discharge volume can be increased. This effect becomes more prominent as the capacity of the hydraulic oil in the hydraulic cylinder 3 and the main pipeline increases as the large load capacity hydraulically driven large surface grinding machine increases and the compression capacity to reach the operating load pressure increases. Due to this effect, the hydraulic closed circuit system 100 also enables minute position control of the piston 3a (surface grinder table) while allowing the piston 3a (surface grinder table) to be driven by a high flow rate of hydraulic fluid.
 なお、制御装置10は、駆動対象の重量(例えば、平面研削盤テーブル及びその上に置かれる被加工物の合計重量である。)に応じてチャージ圧を変化させてもよい。 Note that the control device 10 may change the charge pressure in accordance with the weight of the driving target (for example, the total weight of the surface grinder table and the workpiece placed thereon).
 具体的には、制御装置10は、重量センサ(図示せず。)が検出した駆動対象の重量に応じてリリーフ弁8に対して出力する制御電流の大きさを変化させ、リリーフ弁8の設定圧、すなわちチャージ圧を変化させる。 Specifically, the control device 10 changes the magnitude of the control current output to the relief valve 8 according to the weight of the drive target detected by the weight sensor (not shown), and sets the relief valve 8. The pressure, that is, the charge pressure is changed.
 より具体的には、駆動対象の重量が大きいほどリリーフ弁8の設定圧、すなわちチャージ圧が大きくなるようにする。主管路内の作動油の圧縮度を増大させることによって、駆動対象の重量が大きいほど大きくなる、油圧ポンプ1の回転による主管路内の作動油の体積変化(圧縮容量)の影響を打ち消すためである。 More specifically, the set pressure of the relief valve 8, that is, the charge pressure is increased as the weight of the drive target is increased. In order to counteract the influence of the volume change (compression capacity) of the hydraulic fluid in the main pipeline due to the rotation of the hydraulic pump 1, which increases as the weight of the drive target increases, by increasing the degree of compression of the hydraulic fluid in the main pipeline. is there.
 これにより、油圧閉回路システム100は、駆動対象の重量の違いにかかわらず、ピストン3a(平面研削盤テーブル)の微小位置制御の立ち上がり特性を安定させることができる。 Thereby, the hydraulic closed circuit system 100 can stabilize the rising characteristics of the minute position control of the piston 3a (surface grinder table) regardless of the difference in the weight of the driven object.
 また、制御装置10は、油圧閉回路システム100が待機状態にある場合、リリーフ弁8の設定圧を下げ、チャージポンプ5を無負荷運転させるようにしてもよい。 In addition, when the hydraulic closed circuit system 100 is in a standby state, the control device 10 may reduce the set pressure of the relief valve 8 and cause the charge pump 5 to operate without load.
 具体的には、制御装置10は、操作者の入力に基づいて油圧閉回路システム100が待機状態にあるか否かを判定し、待機状態にあると判定した場合に、リリーフ弁8に対して出力する制御電流の大きさを変化させ、リリーフ弁8の設定圧、すなわちチャージ圧を低下させる。 Specifically, the control device 10 determines whether or not the hydraulic closed circuit system 100 is in a standby state based on an operator's input, and when it is determined that the hydraulic closed circuit system 100 is in a standby state, The magnitude of the control current to be output is changed to reduce the set pressure of the relief valve 8, that is, the charge pressure.
 これにより、油圧閉回路システム100は、油圧閉回路システム100が待機状態にある場合にエネルギが無駄に消費されるのを防止することができる。 Thereby, the hydraulic closed circuit system 100 can prevent wasteful consumption of energy when the hydraulic closed circuit system 100 is in a standby state.
 次に、図3を参照しながら、油圧ポンプ1が吐出する作動油で油圧シリンダ3を駆動するときの油圧閉回路システム100の状態について説明する。なお、図3において、太い点線は、油圧ポンプ1が第一ポンプポート1aから油圧シリンダ3の第一油室3Lに向けて作動油を吐出した結果、管路C1、C4、C7内の圧力が上昇した状態を表す。また、太い実線は、管路C2内の圧力よりもチャージ圧が高い状態を表す。また、図3は、図の明瞭化のため、センサ9及び制御装置10の図示を省略している。 Next, the state of the hydraulic closed circuit system 100 when the hydraulic cylinder 3 is driven by the hydraulic oil discharged from the hydraulic pump 1 will be described with reference to FIG. In FIG. 3, the thick dotted line indicates that the hydraulic pump 1 discharges the hydraulic oil from the first pump port 1a toward the first oil chamber 3L of the hydraulic cylinder 3, and as a result, the pressure in the pipelines C1, C4, and C7 Represents an elevated state. A thick solid line represents a state in which the charge pressure is higher than the pressure in the pipe line C2. In FIG. 3, the sensor 9 and the control device 10 are not shown for clarity.
 図3で示すように、油圧閉回路システム100は、操作者の入力に応じて電動モータ2により油圧ポンプ1を回転させ、ピストン3a(平面研削盤テーブル)を矢印AR3で示す方向に移動させるように油圧シリンダ3を駆動する。 As shown in FIG. 3, the hydraulic closed circuit system 100 rotates the hydraulic pump 1 by the electric motor 2 in accordance with an operator input, and moves the piston 3 a (surface grinder table) in the direction indicated by the arrow AR 3. The hydraulic cylinder 3 is driven.
 このとき、管路C1及び第一油室3Lには油圧ポンプ1により作動油が供給されて管路C1及び第一油室3L内の作動油の圧縮度が増大する。その結果、管路C1及び第一油室3L内の作動油の圧力は増大する。 At this time, the hydraulic oil is supplied to the pipe line C1 and the first oil chamber 3L by the hydraulic pump 1, and the compressibility of the hydraulic oil in the pipe line C1 and the first oil chamber 3L increases. As a result, the pressure of the hydraulic oil in the pipe line C1 and the first oil chamber 3L increases.
 一方、管路C2及び第二油室3Rからは油圧ポンプ1により作動油が吸い出されて管路C2及び第二油室3R内の作動油の圧縮度が減少する。その結果、管路C2及び第二油室3R内の作動油の圧力は減少する。 On the other hand, hydraulic oil is sucked out from the pipeline C2 and the second oil chamber 3R by the hydraulic pump 1, and the compressibility of the hydraulic oil in the pipeline C2 and the second oil chamber 3R decreases. As a result, the pressure of the hydraulic oil in the pipe line C2 and the second oil chamber 3R decreases.
 管路C2及び第二油室3R内の作動油の圧力が減少してチャージ圧を下回ると、シャトル弁7は、矢印AR4で示すように、二次側ポート7c及び管路C8を通じて作動油を管路C2に供給する。このとき、チャージポンプ5は、矢印AR41で示すように、管路C6を通じて作動油をシャトル弁7に供給する。この作動油の流れは、管路C2及び第二油室3R内の圧力がチャージ圧に達した場合に消失する。 When the pressure of the hydraulic oil in the pipe line C2 and the second oil chamber 3R decreases and falls below the charge pressure, the shuttle valve 7 removes the hydraulic oil through the secondary side port 7c and the pipe line C8 as indicated by an arrow AR4. Supply to line C2. At this time, the charge pump 5 supplies hydraulic oil to the shuttle valve 7 through the conduit C6 as indicated by an arrow AR41. This flow of hydraulic oil disappears when the pressure in the pipe C2 and the second oil chamber 3R reaches the charge pressure.
 なお、油圧ポンプ1を所定の回転速度以上で回転させているときのチャージ圧は、油圧ポンプ1を駆動させる前のチャージ圧と異なる値であってもよく、例えば、油圧ポンプ1を駆動させる前のチャージ圧より低い値であってもよい。チャージ圧の利用目的が異なるからである。具体的には、油圧ポンプ1を駆動させる前のチャージ圧が油圧制御剛性を高めて作動油の体積弾性の安定化を図るためのものであるのに対し、油圧ポンプ1を回転させているときのチャージ圧は、主管路で不足した作動油を補充してキャビテーション等の発生を防止するためのものであるからである。また、油圧ポンプ1を回転させているときのチャージ圧をより低い値にすることで、チャージポンプ5を回転させる電動モータ6の負荷を低減させることができるからである。なお、この場合、制御装置10は、例えば油圧ポンプ1の回転速度に応じてリリーフ弁8に対して出力する制御電流の大きさを変化させる。具体的には、制御装置10は、油圧ポンプ1の回転速度が増大するにつれてリリーフ弁8の設定圧、すなわちチャージ圧を低下させる。 The charge pressure when the hydraulic pump 1 is rotated at a predetermined rotational speed or higher may be different from the charge pressure before driving the hydraulic pump 1, for example, before driving the hydraulic pump 1. It may be a value lower than the charge pressure. This is because the usage purpose of the charge pressure is different. Specifically, the charge pressure before driving the hydraulic pump 1 is for increasing the rigidity of the hydraulic control and stabilizing the bulk elasticity of the hydraulic oil, while the hydraulic pump 1 is rotating. This is because the charge pressure is for replenishing the hydraulic fluid that is insufficient in the main pipeline to prevent the occurrence of cavitation and the like. Moreover, it is because the load of the electric motor 6 that rotates the charge pump 5 can be reduced by setting the charge pressure when the hydraulic pump 1 is rotated to a lower value. In this case, the control device 10 changes the magnitude of the control current output to the relief valve 8 according to the rotational speed of the hydraulic pump 1, for example. Specifically, the control device 10 decreases the set pressure of the relief valve 8, that is, the charge pressure, as the rotational speed of the hydraulic pump 1 increases.
 このように、油圧閉回路システム100は、油圧ポンプ1の回転により管路C1及び管路C2のうちの一方の圧力がチャージ圧を下回った場合に、シャトル弁7を通じて作動油を補充する。すなわち、油圧閉回路システム100は、管路C1及び管路C2のうちの一方における作動油の体積が減少した場合に、その体積変化分(圧縮容量分)を補うために、シャトル弁7を通じて作動油を供給する。 As described above, the hydraulic closed circuit system 100 replenishes hydraulic oil through the shuttle valve 7 when the pressure of one of the pipe C1 and the pipe C2 falls below the charge pressure due to the rotation of the hydraulic pump 1. That is, the hydraulic closed circuit system 100 operates through the shuttle valve 7 in order to compensate for the volume change (compression capacity) when the volume of hydraulic oil in one of the pipe C1 and the pipe C2 decreases. Supply oil.
 以上の構成により、油圧閉回路システム100は、高流量の作動油によるピストン3a(平面研削盤)の位置制御を実現でき、且つ、低流量の作動油によるピストン3a(平面研削盤)の微小位置制御を実現できる。 With the above configuration, the hydraulic closed circuit system 100 can realize the position control of the piston 3a (surface grinding machine) with a high flow rate of hydraulic fluid, and the minute position of the piston 3a (surface grinding machine) with the low flow rate of hydraulic fluid. Control can be realized.
 以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなしに上述した実施例に種々の変形及び置換を加えることができる。 Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications and substitutions can be made to the above-described embodiments without departing from the scope of the present invention. Can be added.
 例えば、上述の実施例では、油圧閉回路システム100は、油圧ポンプ1で油圧シリンダ3を駆動する構成であるが、油圧ポンプ1で油圧モータを駆動する構成であってもよい。 For example, in the above-described embodiment, the hydraulic closed circuit system 100 is configured to drive the hydraulic cylinder 3 with the hydraulic pump 1, but may be configured to drive the hydraulic motor with the hydraulic pump 1.
 また、上述の実施例では、油圧閉回路システム100は、大負荷容量油圧駆動式大型平面研削盤のテーブルを移動させるために用いられるが、射出成形機の射出シリンダや可動プラテンを移動するために用いられてもよく、他の工作機械の構成部品を移動するために用いられてもよい。 In the above-described embodiment, the hydraulic closed circuit system 100 is used for moving the table of the large load capacity hydraulically driven large surface grinder, but for moving the injection cylinder and the movable platen of the injection molding machine. It may be used to move other machine tool components.
 また、本願は、2012年2月6日に出願した日本国特許出願2012-23491号に基づく優先権を主張するものでありその日本国特許出願の全内容を本願に参照により援用する。 Further, this application claims priority based on Japanese Patent Application No. 2012-23491 filed on February 6, 2012, the entire contents of which are incorporated herein by reference.
 1・・・油圧ポンプ 1a・・・第一ポンプポート 1b・・・第二ポンプポート 2・・・電動モータ 3・・・油圧シリンダ 3a・・・ピストン 3b・・・第一ポート 3c・・・第二ポート 3L・・・第一油室 3R・・・第二油室 4L、4R・・・安全弁 5・・・チャージポンプ 6・・・電動モータ 7・・・シャトル弁 7a・・・一次側ポート 7b、7c・・・二次側ポート 8・・・リリーフ弁 8a・・・一次側ポート 8b・・・二次側ポート 9・・・センサ 10・・・制御装置 100・・・油圧閉回路システム T1・・・タンク C1~C10・・・管路 DESCRIPTION OF SYMBOLS 1 ... Hydraulic pump 1a ... 1st pump port 1b ... 2nd pump port 2 ... Electric motor 3 ... Hydraulic cylinder 3a ... Piston 3b ... 1st port 3c ... 2nd port 3L ... 1st oil chamber 3R ... 2nd oil chamber 4L, 4R ... Safety valve 5 ... Charge pump 6 ... Electric motor 7 ... Shuttle valve 7a ... Primary side Port 7b, 7c ... Secondary side port 8 ... Relief valve 8a ... Primary side port 8b ... Secondary side port 9 ... Sensor 10 ... Control device 100 ... Hydraulic closed circuit System T1 ... Tank C1-C10 ... Pipe

Claims (3)

  1.  第一ポート及び第二ポートを有する油圧シリンダ又は油圧モータを駆動可能な油圧閉回路システムであって、
     第一管路を通じて前記第一ポートに流体的に連通される第一ポンプポートと第二管路を通じて前記第二ポートに流体的に連通される第二ポンプポートとを有する油圧ポンプと、
     前記油圧ポンプの回転を制御する電動モータと、
     1つの一次側ポートと2つの二次側ポートとを有するシャトル弁であり、該二次側ポートの一方が前記第一管路に流体的に連通され、該二次側ポートの他方が前記第二管路に流体的に連通されるシャトル弁と、
     吐出ポートが前記シャトル弁の一次側ポートに流体的に連通されるチャージポンプと、
     前記チャージポンプによるチャージ圧を設定圧とするリリーフ弁と、を備え、
     前記チャージポンプは、前記シャトル弁を通じて前記第一管路及び前記第二管路を前記チャージ圧にする、
     ことを特徴とする油圧閉回路システム。
    A hydraulic closed circuit system capable of driving a hydraulic cylinder or hydraulic motor having a first port and a second port,
    A hydraulic pump having a first pump port in fluid communication with the first port through a first conduit and a second pump port in fluid communication with the second port through a second conduit;
    An electric motor for controlling the rotation of the hydraulic pump;
    A shuttle valve having one primary port and two secondary ports, wherein one of the secondary ports is in fluid communication with the first conduit and the other of the secondary ports is the first port. A shuttle valve in fluid communication with the two conduits;
    A charge pump whose discharge port is in fluid communication with the primary port of the shuttle valve;
    A relief valve having a charge pressure by the charge pump as a set pressure,
    The charge pump sets the first and second pipes to the charge pressure through the shuttle valve;
    Hydraulic closed circuit system characterized by that.
  2.  前記チャージポンプは、前記油圧シリンダ又は前記油圧モータを作動油で駆動する前に、前記シャトル弁を通じて前記第一管路及び前記第二管路を前記チャージ圧にする、
     ことを特徴とする請求項1に記載の油圧閉回路システム。
    The charge pump, before driving the hydraulic cylinder or the hydraulic motor with hydraulic oil, the first pipe and the second pipe through the shuttle valve to the charge pressure;
    The hydraulic closed circuit system according to claim 1.
  3.  前記リリーフ弁は、前記設定圧を変更可能である、
     ことを特徴とする請求項1に記載の油圧閉回路システム。
    The relief valve can change the set pressure,
    The hydraulic closed circuit system according to claim 1.
PCT/JP2012/078541 2012-02-06 2012-11-02 Hydraulic closed circuit system WO2013118356A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280067659.8A CN104067032B (en) 2012-02-06 2012-11-02 Hydraulic pressure closed loop system
KR1020147019533A KR20140108278A (en) 2012-02-06 2012-11-02 Hydraulic closed circuit system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012023491A JP6009770B2 (en) 2012-02-06 2012-02-06 Hydraulic closed circuit system
JP2012-023491 2012-09-27

Publications (1)

Publication Number Publication Date
WO2013118356A1 true WO2013118356A1 (en) 2013-08-15

Family

ID=48947143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078541 WO2013118356A1 (en) 2012-02-06 2012-11-02 Hydraulic closed circuit system

Country Status (4)

Country Link
JP (1) JP6009770B2 (en)
KR (1) KR20140108278A (en)
CN (1) CN104067032B (en)
WO (1) WO2013118356A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6896484B2 (en) * 2017-03-31 2021-06-30 住友重機械工業株式会社 Position control device, hydraulic drive device
CN107965572B (en) * 2017-11-06 2020-06-26 北京理工大学 Electro-hydraulic control system for automatic transmission

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3744244A (en) * 1971-07-30 1973-07-10 Automation Equipment Inc Hydrostatic drive
US3972189A (en) * 1975-11-17 1976-08-03 Eaton Corporation Control for hydrostatic transmissions
FR2301741A1 (en) * 1975-02-20 1976-09-17 Renault Balancing unit for pressure fed hydrostatic transmission - has piloted relief valves augmenting input valve function
US3999387A (en) * 1975-09-25 1976-12-28 Knopf Frank A Closed loop control system for hydrostatic transmission
JPS5618155A (en) * 1979-07-19 1981-02-20 Yanmar Agricult Equip Co Ltd Self-traveling tractor
JPS62292958A (en) * 1986-06-11 1987-12-19 Shimadzu Corp Hydraulic system
JPS6418665U (en) * 1987-07-24 1989-01-30
US5009126A (en) * 1987-10-13 1991-04-23 Zahnfabrik Friedrichshafen Ag Hydrostatic-mechanical drive system
JPH03229065A (en) * 1990-01-31 1991-10-11 Shimadzu Corp Hydraulic machine type transmission
JP2001500953A (en) * 1996-09-13 2001-01-23 ヴィッカース、インコーポレイテッド Electrohydraulic system and device with bidirectional electric motor / hydraulic pump unit
US6360537B1 (en) * 1999-07-23 2002-03-26 Sauer-Danfoss Inc. System for controlling a hydraulic vehicle drive
US20060064974A1 (en) * 2004-09-28 2006-03-30 James Whitaker Hydrostatic transmission circuit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435169A (en) * 1987-07-31 1989-02-06 Honda Motor Co Ltd Hydraulic control device for vehicle continuously variable transmission
US6698197B1 (en) * 2002-11-26 2004-03-02 Eaton Corporation Hydraulically actuated by-pass valve
JP4742732B2 (en) * 2005-08-04 2011-08-10 トヨタ自動車株式会社 Vehicle transmission
JP5368943B2 (en) * 2009-11-10 2013-12-18 川崎重工業株式会社 Hydraulic control device
JP5343037B2 (en) * 2010-05-17 2013-11-13 株式会社 神崎高級工機製作所 Swash plate type hydraulic machine and hydrostatic transmission

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3744244A (en) * 1971-07-30 1973-07-10 Automation Equipment Inc Hydrostatic drive
FR2301741A1 (en) * 1975-02-20 1976-09-17 Renault Balancing unit for pressure fed hydrostatic transmission - has piloted relief valves augmenting input valve function
US3999387A (en) * 1975-09-25 1976-12-28 Knopf Frank A Closed loop control system for hydrostatic transmission
US3972189A (en) * 1975-11-17 1976-08-03 Eaton Corporation Control for hydrostatic transmissions
JPS5618155A (en) * 1979-07-19 1981-02-20 Yanmar Agricult Equip Co Ltd Self-traveling tractor
JPS62292958A (en) * 1986-06-11 1987-12-19 Shimadzu Corp Hydraulic system
JPS6418665U (en) * 1987-07-24 1989-01-30
US5009126A (en) * 1987-10-13 1991-04-23 Zahnfabrik Friedrichshafen Ag Hydrostatic-mechanical drive system
JPH03229065A (en) * 1990-01-31 1991-10-11 Shimadzu Corp Hydraulic machine type transmission
JP2001500953A (en) * 1996-09-13 2001-01-23 ヴィッカース、インコーポレイテッド Electrohydraulic system and device with bidirectional electric motor / hydraulic pump unit
US6360537B1 (en) * 1999-07-23 2002-03-26 Sauer-Danfoss Inc. System for controlling a hydraulic vehicle drive
US20060064974A1 (en) * 2004-09-28 2006-03-30 James Whitaker Hydrostatic transmission circuit

Also Published As

Publication number Publication date
CN104067032B (en) 2016-10-12
JP6009770B2 (en) 2016-10-19
CN104067032A (en) 2014-09-24
JP2013160318A (en) 2013-08-19
KR20140108278A (en) 2014-09-05

Similar Documents

Publication Publication Date Title
JP5805217B2 (en) Hydraulic closed circuit drive
JP6220228B2 (en) Hydraulic drive system for construction machinery
JP5759072B2 (en) Hydraulic system for construction machinery
WO2013121922A1 (en) Construction machinery
WO2011004880A1 (en) Hybrid construction machine
JP6081288B2 (en) Hydraulic system for construction machinery
JP2016169818A (en) Hydraulic driving system
JP2016070500A (en) Fluid circuit, and machine having fluid circuit
JPWO2018164263A1 (en) Excavator
KR20130143585A (en) Hydraulic pump control system for construction machinery
JP6025432B2 (en) Hydrostatic drive system
JP6009770B2 (en) Hydraulic closed circuit system
CN106246618B (en) Hydraulic control system for supplying a hydraulic consumer in a closed hydraulic circuit with a pressure medium
JP2016080098A (en) Driving system of hydraulic working machine
CA2802618C (en) Method and device for operating a driven axle in a machine tool
JP6453736B2 (en) Hydraulic drive unit for construction machinery
KR20120051722A (en) Hydraulic power module
WO2015056421A1 (en) Hydraulic drive system
JP2008298226A (en) Hydraulic driven device
JP2006336805A (en) Control device of work machine
JP2011038558A (en) Electric fluid pressure actuator device
TWI749178B (en) Position control device, hydraulic drive device
JP6218363B2 (en) Hydrostatic drive system
JP2011153527A (en) Hydraulic device
JP2013160319A (en) Hydraulic closed circuit system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147019533

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868297

Country of ref document: EP

Kind code of ref document: A1