WO2013118185A1 - Airborne ultrasonic sensor - Google Patents

Airborne ultrasonic sensor Download PDF

Info

Publication number
WO2013118185A1
WO2013118185A1 PCT/JP2012/000878 JP2012000878W WO2013118185A1 WO 2013118185 A1 WO2013118185 A1 WO 2013118185A1 JP 2012000878 W JP2012000878 W JP 2012000878W WO 2013118185 A1 WO2013118185 A1 WO 2013118185A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic sensor
aerial ultrasonic
bottomed cylindrical
cylindrical case
sensor according
Prior art date
Application number
PCT/JP2012/000878
Other languages
French (fr)
Japanese (ja)
Inventor
井幡 光詞
友則 木村
井上 悟
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/000878 priority Critical patent/WO2013118185A1/en
Publication of WO2013118185A1 publication Critical patent/WO2013118185A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices

Definitions

  • the present invention relates to an aerial ultrasonic sensor that transmits ultrasonic waves in the air and receives ultrasonic waves propagated in the air.
  • this type of aerial ultrasonic sensor has a configuration in which plate-like piezoelectric vibrators having electrodes formed on both surfaces are fixed to the bottom surface of a bottomed cylindrical case (see, for example, Non-Patent Document 1).
  • the transmittance decreases as the difference in acoustic impedance between the media increases.
  • the bottomed cylindrical case is usually made of metal such as aluminum, and the acoustic impedance of the aerial ultrasonic sensor consisting of a bottomed cylindrical case and a piezoelectric vibrator is significantly higher than that of the atmosphere. large. For this reason, the conventional aerial ultrasonic sensor has a problem of poor transmission and reception efficiency.
  • Patent Document 1 As a method for improving the transmission / reception efficiency, there is a method using an acoustic matching layer (see, for example, Patent Document 1).
  • a piezoelectric vibrator is fixed to an inner bottom surface of a bottomed cylindrical case, and an acoustic matching layer is fixed to an outer bottom surface.
  • the acoustic impedance matching between the piezoelectric vibrator and the outside air through which the ultrasonic wave is propagated can be performed, and transmission / reception efficiency can be improved.
  • the air ultrasonic sensor using the acoustic matching layer disclosed in Patent Document 1 requires an adhesive for fixing the acoustic matching layer to the bottomed cylindrical case. Therefore, there is a problem that transmission / reception sensitivity changes depending on the material and thickness of the adhesive.
  • a foamable material is used for the acoustic matching layer, and there is a problem in environmental resistance such as heat.
  • the present invention has been made to solve the above-described problems, and is capable of transmitting and receiving by increasing vibration displacement on the radiation surface without using an acoustic matching layer and without increasing power consumption.
  • An object is to provide an aerial ultrasonic sensor capable of improving sensitivity.
  • the aerial ultrasonic sensor according to the present invention has a bottomed cylindrical case having an opening at one end in the axial direction and a bottom surface at the other end, and a first piezoelectric vibration fixed to the inner bottom surface of the bottomed cylindrical case. And a second piezoelectric vibrator fixed to the outer bottom surface of the bottomed cylindrical case and having a polarization direction opposite to that of the first piezoelectric vibrator.
  • the present invention since it is configured as described above, it is possible to improve transmission / reception sensitivity by increasing vibration displacement on the radiation surface without using an acoustic matching layer and without increasing power consumption. it can.
  • FIG. 1 is a schematic view showing the configuration of an aerial ultrasonic sensor according to Embodiment 1 of the present invention, where (a) is a side view, (b) is a top view, and (c) is a cross-sectional view taken along line AA ′. It is.
  • the airborne ultrasonic sensor has a bottomed cylindrical case 1 having an opening at one end in the axial direction and a bottom surface at the other end.
  • a piezoelectric vibrator (first piezoelectric vibrator) 2 is fixed substantially at the center of the inner bottom surface of the bottomed cylindrical case 1.
  • a piezoelectric vibrator (second piezoelectric vibrator) 3 having the same shape as the piezoelectric vibrator 2 is fixed to substantially the center of the outer bottom surface of the bottomed cylindrical case 1.
  • electrodes are formed on both surfaces of the piezoelectric vibrators 2 and 3.
  • the piezoelectric vibrators 2 and 3 are fixed to the bottomed cylindrical case 1 so that the polarization directions are the same, but the bottomed cylindrical case 1 is so effective that the polarization directions are effectively reversed.
  • the input / output terminals 4a and 4b are connected to the inner side surface and the piezoelectric vibrators 2 and 3, respectively.
  • a signal (voltage) having a predetermined frequency is supplied from a signal source (not shown) to the input / output terminals 4a and 4b.
  • the piezoelectric vibrators 2 and 3 perform stretching vibration mainly in the radial direction by application of signals from the input / output terminals 4a and 4b.
  • the polarization directions of both piezoelectric vibrators 2 and 3 are effectively opposite to each other, when one of the piezoelectric vibrators 2 and 3 is extended with respect to the electric field in the same direction, the other is contracted to generate a flexural vibration.
  • FIG. 2 is a view for explaining the principle of generation of ultrasonic waves in the aerial ultrasonic sensor according to Embodiment 1 of the present invention.
  • FIG. 2 only the bottom surface portion of the aerial ultrasonic sensor shown in FIG. 1 is shown for simplification.
  • the piezoelectric vibrator 2 expands and the piezoelectric vibrator 3 contracts as shown in FIG. , 3 protrudes downward.
  • the piezoelectric vibrators 2 and 3 that are effectively opposite in polarization direction are fixed to both sides of the bottom surface of the bottomed cylindrical case 1.
  • the vibration displacement at the bottom surface of the bottomed cylindrical case 1 can be increased.
  • the transmission / reception sensitivity of the aerial ultrasonic sensor is improved. Therefore, the aerial ultrasonic sensor according to Embodiment 1 has improved transmission / reception sensitivity compared to the conventional aerial ultrasonic sensor. To do.
  • FIG. 3 is a diagram illustrating a dimension example of the aerial ultrasonic sensor according to the first embodiment in which the vibration displacement calculation is performed
  • FIG. 4 is a diagram illustrating a dimension example of the conventional aerial ultrasonic sensor.
  • the conventional aerial ultrasonic sensor shown in FIG. 4 has the same configuration as the aerial ultrasonic sensor shown in FIG. 3 except that the piezoelectric vibrator 200 is fixed only to the inner bottom surface of the bottomed cylindrical case 100. ing.
  • the bottomed cylindrical case 1, 100 is made of aluminum, and the piezoelectric vibrators 2, 3, 200 are made of PZT.
  • the calculation is performed on a three-dimensional model having a central angle of 90 °.
  • FIG. 5 is a graph showing calculation results of vibration displacement at the outer bottom surface of the bottomed cylindrical case 1,100 of the aerial ultrasonic sensor shown in FIGS.
  • the vibration displacement calculation result on the outer bottom surface of the bottomed cylindrical case 1 including the piezoelectric vibrator 3 is shown.
  • the horizontal axis indicates the radial position with the center of the bottom surface as the origin, and the vertical axis indicates the vibration displacement in the vertical direction on the bottom surface.
  • symbol a indicates the vibration displacement in the aerial ultrasonic sensor according to the first embodiment of FIG. 3
  • symbol b indicates the vibration displacement in the conventional aerial ultrasonic sensor in FIG. From FIG. 5, it can be seen that in the aerial ultrasonic sensor according to the first embodiment, the vibration displacement at the center of the bottom surface is larger than that in the conventional example.
  • FIG. 6 is a graph showing the calculation result of the radiation sound pressure distribution of the aerial ultrasonic sensor shown in FIGS.
  • the horizontal axis indicates an angle when the front direction (perpendicular direction of the radiation surface) of the aerial ultrasonic sensor is 0 °, and the vertical axis indicates sound pressure.
  • symbol a indicates the sound pressure distribution in the aerial ultrasonic sensor according to Embodiment 1 in FIG. 3
  • symbol b indicates the sound pressure distribution in the conventional aerial ultrasonic sensor in FIG. From FIG. 6, it can be seen that, in the aerial ultrasonic sensor according to the first embodiment, the radiation sound pressure is generally increased as compared with the conventional example.
  • the piezoelectric vibrators 2 and 3 having effectively opposite polarization directions are fixed to both sides of the bottom surface of the bottomed cylindrical case 1.
  • the vibration displacement on the radiation surface of the aerial ultrasonic sensor can be increased, and the transmission / reception sensitivity of the aerial ultrasonic sensor can be improved.
  • the radiation sound pressure can be increased.
  • the bottom surface of the bottomed cylindrical case 1 and the piezoelectric vibrators 2 and 3 are shown as being circular.
  • the present invention is not limited thereto. For example, it may be oval or rectangular.
  • FIG. 7A and 7B are schematic views showing the configuration of an aerial ultrasonic sensor according to Embodiment 2 of the present invention, in which FIG. 7A is a side view, FIG. 7B is a top view, and FIG. 7C is a cross-sectional view along line BB ′. It is.
  • the aerial ultrasonic sensor according to the second embodiment shown in FIG. 7 is obtained by adding a thick portion 1a to the bottomed cylindrical case 1 of the aerial ultrasonic sensor according to the first embodiment shown in FIG.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the thick portion 1a is integrally provided on the side surface of the bottomed cylindrical case 1 so as to increase its thickness around the axis.
  • FIG. 7 shows a case where the thick portion 1 a is provided on the entire circumference of the predetermined portion in the axial direction of the outer side surface of the bottomed cylindrical case 1.
  • the piezoelectric vibrators 2 and 3 that are effectively opposite in polarization direction are provided with bottomed cylinders. Since it is fixed to both sides of the bottom surface of the case 1, the vibration displacement in the structure itself can be increased. Therefore, the vibration displacement at the outer bottom surface of the bottomed cylindrical case 1 including the piezoelectric vibrator 3 can be increased as compared with the conventional example without increasing the power consumption.
  • the vibration displacement at the side surface of the bottomed cylindrical case 1 increases as the vibration displacement at the bottom surface of the bottomed cylindrical case 1 increases. To do. However, an increase in vibration displacement at the side surface causes unnecessary radiation.
  • the thick portion 1 a is provided on the side surface of the bottomed cylindrical case 1. And since this wall thickness part 1a suppresses the vibration in the side surface of the bottomed cylindrical case 1, unnecessary radiation can be reduced.
  • FIG. 8 is a diagram showing a dimension example of the aerial ultrasonic sensor according to the second embodiment in which the vibration displacement calculation is performed. Note that examples of dimensions of the aerial ultrasonic sensor according to the first embodiment and the conventional aerial ultrasonic sensor are as shown in FIGS.
  • the aerial ultrasonic sensor according to the second embodiment shown in FIG. 8 is the aerial ultrasonic sensor according to the first embodiment of FIG.
  • the thick portion 1a is provided on the side surface of the bottomed cylindrical case 1. It is configured identically. In the vibration displacement calculation, the symmetry is taken into consideration, and the calculation is performed on a three-dimensional model having a central angle of 90 °.
  • FIG. 9 is a graph showing calculation results of vibration displacement at the outer bottom surface of the bottomed cylindrical case 1,100 of the aerial ultrasonic sensor shown in FIGS.
  • the vibration displacement calculation results on the outer bottom surface of the bottomed cylindrical case 1 including the piezoelectric vibrator 3 are shown.
  • the horizontal axis indicates the radial position with the center of the bottom surface as the origin, and the vertical axis indicates the vibration displacement in the vertical direction on the bottom surface.
  • symbol a represents the vibration displacement of the aerial ultrasonic sensor according to the first embodiment of FIG. 3
  • symbol b represents the vibration displacement of the conventional aerial ultrasonic sensor of FIG.
  • FIG. 10 is a graph showing the calculation results of the vibration displacement on the outer side surface of the bottomed cylindrical case 1, 100 of the aerial ultrasonic sensor shown in FIGS.
  • the horizontal axis indicates the position in the axial direction with the opening end of the outer side surface as the origin, and the vertical axis indicates the vertical vibration displacement on the side surface.
  • symbol a represents the vibration displacement of the aerial ultrasonic sensor according to the first embodiment of FIG. 3
  • symbol b represents the vibration displacement of the conventional aerial ultrasonic sensor of FIG. 4
  • symbol c represents the embodiment of FIG.
  • the vibration displacement of the aerial ultrasonic sensor which concerns on form 2 is shown.
  • the vibration displacement in the vicinity of 3 mm to 5 mm on the outer side of the side surface is smaller than in the conventional example and the first embodiment.
  • FIG. 11 is a graph showing the calculation results of the radiation sound pressure distribution of the aerial ultrasonic sensor shown in FIGS.
  • the horizontal axis represents an angle with the front direction (perpendicular to the radiation surface) of the aerial ultrasonic sensor being 0 °
  • the vertical axis represents sound pressure.
  • symbol a represents the sound pressure distribution of the aerial ultrasonic sensor according to the first embodiment of FIG. 3
  • symbol b represents the sound pressure distribution of the conventional aerial ultrasonic sensor of FIG. 4
  • symbol c represents FIG.
  • the sound pressure distribution of the airborne ultrasonic sensor according to the second embodiment is shown. From FIG. 11, it can be seen that, in the aerial ultrasonic sensor according to the second embodiment, the radiated sound pressure in the 90 ° direction is reduced as compared with the aerial ultrasonic sensor according to the first embodiment. Further, it can be seen that the sound pressure distribution in the front direction is increased as compared with the conventional example and the aerial ultrasonic sensor according to the first embodiment.
  • the thick portion 1a is provided on the side surface of the bottomed cylindrical case 1, in addition to the effects of the first embodiment, the vibration displacement at the side surface , The radiated sound pressure in the front direction can be increased, and the radiated sound pressure in the 90 ° direction, which is unwanted radiation, can be decreased.
  • the case where the bottom surface of the bottomed cylindrical case 1 and the piezoelectric vibrators 2 and 3 are circular as shown in FIG. 7B is shown, but the present invention is not limited thereto. For example, it may be oval or rectangular.
  • FIG. 7B a case where the thick portion 1a is provided on the entire circumference around the axis of the outer side surface of the bottomed cylindrical case 1 is shown.
  • the present invention is not limited to this, and a thick portion may be provided on the inner side surface, and the meat may be provided at predetermined intervals around the axis (for example, four locations on the top, bottom, left, and right in FIG. 7B). You may make it provide a thick part.
  • FIG. 12A and 12B are schematic views showing the configuration of an aerial ultrasonic sensor according to Embodiment 3 of the present invention.
  • FIG. 12A is a side view
  • FIG. 12B is a top view
  • FIG. 12C is a cross-sectional view taken along the line CC ′. It is.
  • the aerial ultrasonic sensor according to the third embodiment shown in FIG. 12 is obtained by adding a step portion 1b to the bottomed cylindrical case 1 of the aerial ultrasonic sensor according to the second embodiment shown in FIG.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the step portion 1b is configured by providing the thick portion 1a on the outer side surface so as to form a step with respect to the outer bottom surface of the bottomed cylindrical case 1.
  • the thick portion 1a is provided on the side surface of the bottomed cylindrical case 1 as in the aerial ultrasonic sensor according to the second embodiment.
  • a step is formed with respect to the outer bottom surface of the bottomed cylindrical case 1, so that the resonance frequency of the aerial ultrasonic sensor can be adjusted.
  • FIG. 13 is a diagram showing an example of dimensions of the aerial ultrasonic sensor according to the third embodiment in which the resonance frequency is calculated. Then, the resonance frequency was obtained when the size of the stepped portion 1b shown in FIG. 13 was changed (when the position of the thick portion 1a provided on the outer side surface of the bottomed cylindrical case 1 was changed). In the resonance frequency calculation, the symmetry is taken into consideration, and the calculation is performed on a three-dimensional model having a central angle of 90 °.
  • FIG. 14 is a graph showing the relationship between the size of the stepped portion 1b and the resonance frequency.
  • the horizontal axis indicates the size of the stepped portion 1b
  • the vertical axis indicates the resonance frequency.
  • the resonance frequency of the aerial ultrasonic sensor according to the first embodiment shown in FIG. 3 is indicated by a broken line
  • the resonance frequency of the ultrasonic sensor according to the third embodiment shown in FIG. 13 is indicated by a solid line.
  • FIG. 14 shows that the resonance frequency changes depending on the size of the step portion 1b, and the resonance frequency can be adjusted by the size of the step portion 1b.
  • the size of the stepped portion 1b is made the same as the thickness of the bottom surface of the bottomed cylindrical case 1, thereby reducing the resonance frequency.
  • the fluctuation can be reduced, and the influence of the thick portion 1a provided on the side surface of the bottomed cylindrical case 1 can be reduced.
  • the step is formed with respect to the outer bottom surface of the bottomed cylindrical case 1, in addition to the effects in the second embodiment, the radiation in the front direction is performed. It is possible to adjust the resonance frequency while increasing the sound pressure and reducing unnecessary radiation. Moreover, the influence of the thick part 1a provided in the side surface of the bottomed cylindrical case 1 can be reduced by making the level
  • the case where the bottom surface of the bottomed cylindrical case 1 and the piezoelectric vibrators 2 and 3 are circular as shown in FIG. 12B is shown.
  • it may be oval or rectangular.
  • the aerial ultrasonic sensor according to the third embodiment as shown in FIG. 12 (b), the case where the stepped portion 1b is provided around the axis of the bottomed cylindrical case 1 is shown.
  • the step portions may be provided at predetermined intervals around the axis (for example, four locations on the top, bottom, left, and right in FIG. 12B).
  • the invention of the present application can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment. .
  • the aerial ultrasonic sensor according to the present invention can improve transmission and reception sensitivity by increasing vibration displacement on the radiation surface without using an acoustic matching layer and without increasing power consumption. It is suitable for use in an aerial ultrasonic sensor or the like that transmits ultrasonic waves and receives ultrasonic waves that have propagated in the air.

Abstract

This airborne ultrasonic sensor is equipped with: a tubular case (1) with a bottom that has an opening on one end in the axial direction thereof and the bottom on the other end; a piezoelectric vibrator (2) that is fixed to the inner bottom surface of the tubular case (1) with the bottom; and a piezoelectric vibrator (3) that is fixed to the outer bottom surface of the tubular case (1) with the bottom and has a direction of polarization opposite to that of the piezoelectric vibrator (2).

Description

空中超音波センサAerial ultrasonic sensor
 この発明は、空気中に超音波を送信し、また、空気中を伝搬してきた超音波を受信する空中超音波センサに関するものである。 The present invention relates to an aerial ultrasonic sensor that transmits ultrasonic waves in the air and receives ultrasonic waves propagated in the air.
 従来から、圧電振動子を用いた空中超音波センサは、障害物を検知する障害物検知システム等に利用されている。この空中超音波センサでは、超音波を空気中に送信し、障害物等により反射されて空気中を伝搬してきた当該超音波を受信することで障害物検知を行っている。 Conventionally, airborne ultrasonic sensors using piezoelectric vibrators have been used in obstacle detection systems that detect obstacles. In this aerial ultrasonic sensor, an obstacle is detected by transmitting an ultrasonic wave in the air and receiving the ultrasonic wave reflected in the air and propagated in the air.
 従来、この種の空中超音波センサは、両面に電極を形成した板状の圧電振動子が有底筒状ケースの底面に固着された構成であった(例えば非特許文献1参照)。
 一方、一般的に超音波は、異種の伝搬媒質間の境界を透過するとき、媒質間の音響インピーダンスの差が大きいほど透過率が低下する。それに対して、従来の空中超音波センサでは、通常、有底筒状ケースはアルミ等の金属からなり、有底筒状ケースと圧電振動子からなる空中超音波センサの音響インピーダンスは大気に比べ著しく大きい。そのため、従来の空中超音波センサは送受信効率が悪いという課題があった。
Conventionally, this type of aerial ultrasonic sensor has a configuration in which plate-like piezoelectric vibrators having electrodes formed on both surfaces are fixed to the bottom surface of a bottomed cylindrical case (see, for example, Non-Patent Document 1).
On the other hand, generally, when an ultrasonic wave passes through a boundary between different types of propagation media, the transmittance decreases as the difference in acoustic impedance between the media increases. In contrast, in conventional aerial ultrasonic sensors, the bottomed cylindrical case is usually made of metal such as aluminum, and the acoustic impedance of the aerial ultrasonic sensor consisting of a bottomed cylindrical case and a piezoelectric vibrator is significantly higher than that of the atmosphere. large. For this reason, the conventional aerial ultrasonic sensor has a problem of poor transmission and reception efficiency.
 そこで、この送受信効率を改善する方法として、音響整合層を利用する方法がある(例えば特許文献1参照)。この特許文献1に開示された空中超音波センサでは、有底筒状ケースの内側底面に圧電振動子が固着され、外側底面に音響整合層が固着されている。これにより、圧電振動子と超音波が伝搬される外気間との音響インピーダンスの整合を行うことができ、送受信効率を改善することができる。 Therefore, as a method for improving the transmission / reception efficiency, there is a method using an acoustic matching layer (see, for example, Patent Document 1). In the aerial ultrasonic sensor disclosed in Patent Document 1, a piezoelectric vibrator is fixed to an inner bottom surface of a bottomed cylindrical case, and an acoustic matching layer is fixed to an outer bottom surface. Thereby, the acoustic impedance matching between the piezoelectric vibrator and the outside air through which the ultrasonic wave is propagated can be performed, and transmission / reception efficiency can be improved.
特開2005-184687号公報JP 2005-184687 A
 しかしながら、特許文献1に開示された音響整合層を利用した空中超音波センサでは、音響整合層を有底筒状ケースに固着するための接着剤が必要となる。そのため、接着剤の材料・厚さ等により、送受信感度が変化してしまうという課題がある。また、音響整合層には発泡性の材料が利用されており、熱等の耐環境性に課題がある。 However, the air ultrasonic sensor using the acoustic matching layer disclosed in Patent Document 1 requires an adhesive for fixing the acoustic matching layer to the bottomed cylindrical case. Therefore, there is a problem that transmission / reception sensitivity changes depending on the material and thickness of the adhesive. In addition, a foamable material is used for the acoustic matching layer, and there is a problem in environmental resistance such as heat.
 この発明は、上記のような課題を解決するためになされたもので、音響整合層を使うことなく、また、消費電力を増大させることなく、放射面での振動変位を増大させることにより、送受信感度向上させることができる空中超音波センサを提供することを目的としている。 The present invention has been made to solve the above-described problems, and is capable of transmitting and receiving by increasing vibration displacement on the radiation surface without using an acoustic matching layer and without increasing power consumption. An object is to provide an aerial ultrasonic sensor capable of improving sensitivity.
 この発明に係る空中超音波センサは、軸方向の一端に開口を有し、他端に底面を有する有底筒状ケースと、有底筒状ケースの内側底面に固着された第1の圧電振動子と、有底筒状ケースの外側底面に固着され、分極方向が第1の圧電振動子とは逆向きである第2の圧電振動子とを備えたものである。 The aerial ultrasonic sensor according to the present invention has a bottomed cylindrical case having an opening at one end in the axial direction and a bottom surface at the other end, and a first piezoelectric vibration fixed to the inner bottom surface of the bottomed cylindrical case. And a second piezoelectric vibrator fixed to the outer bottom surface of the bottomed cylindrical case and having a polarization direction opposite to that of the first piezoelectric vibrator.
 この発明によれば、上記のように構成したので、音響整合層を使うことなく、また、消費電力を増大させることなく、放射面での振動変位を増大させることにより、送受信感度向上させることができる。 According to the present invention, since it is configured as described above, it is possible to improve transmission / reception sensitivity by increasing vibration displacement on the radiation surface without using an acoustic matching layer and without increasing power consumption. it can.
この発明の実施の形態1に係る空中超音波センサの構成を示す概略図であり、(a)は側面図、(b)は上面図、(c)はA-A’線断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows the structure of the airborne ultrasonic sensor which concerns on Embodiment 1 of this invention, (a) is a side view, (b) is a top view, (c) is an A-A 'sectional view. この発明の実施の形態1に係る空中超音波センサにおける超音波の発生原理を説明する図である。It is a figure explaining the generation principle of the ultrasonic wave in the air ultrasonic sensor which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る空中超音波センサの寸法例を示す図である。It is a figure which shows the example of a dimension of the air ultrasonic sensor which concerns on Embodiment 1 of this invention. 従来の空中超音波センサの寸法例を示す図である。It is a figure which shows the example of a dimension of the conventional airborne ultrasonic sensor. 図3,4に示す空中超音波センサの放射面での振動変位計算結果を示すグラフである。It is a graph which shows the vibration displacement calculation result in the radiation | emission surface of the air ultrasonic sensor shown in FIG. 図3,4に示す空中超音波センサの放射音圧分布計算結果を示すグラフである。It is a graph which shows the radiation sound pressure distribution calculation result of the air ultrasonic sensor shown to FIG. この発明の実施の形態2に係る空中超音波センサの構成を示す概略図であり、(a)は側面図、(b)は上面図、(c)はB-B’線断面図である。It is the schematic which shows the structure of the airborne ultrasonic sensor which concerns on Embodiment 2 of this invention, (a) is a side view, (b) is a top view, (c) is a B-B 'sectional view. この発明の実施の形態2に係る空中超音波センサの寸法例を示す図である。It is a figure which shows the example of a dimension of the air ultrasonic sensor which concerns on Embodiment 2 of this invention. 図3,4,8に示す空中超音波センサの放射面での振動変位計算結果を示すグラフである。It is a graph which shows the vibration displacement calculation result in the radiation | emission surface of the air ultrasonic sensor shown to FIG. 図3,4,8に示す空中超音波センサの有底筒状ケースの外側側面での振動変位計算結果を示すグラフである。It is a graph which shows the vibration displacement calculation result in the outer side surface of the bottomed cylindrical case of the aerial ultrasonic sensor shown to FIG. 図3,4,8に示す空中超音波センサの放射音圧分布計算結果を示すグラフである。It is a graph which shows the radiation sound pressure distribution calculation result of the air ultrasonic sensor shown to FIG. この発明の実施の形態3に係る空中超音波センサの構成を示す概略図であり、(a)は側面図、(b)は上面図、(c)はC-C’線断面図である。It is the schematic which shows the structure of the airborne ultrasonic sensor which concerns on Embodiment 3 of this invention, (a) is a side view, (b) is a top view, (c) is a C-C 'sectional view. この発明の実施の形態3に係る空中超音波センサの寸法例を示す図である。It is a figure which shows the example of a dimension of the air ultrasonic sensor which concerns on Embodiment 3 of this invention. 図13に示す空中超音波センサの段差部の大きさと共振周波数の関係を示すグラフである。It is a graph which shows the relationship between the magnitude | size of the level | step-difference part of the ultrasonic sensor shown in FIG. 13, and a resonant frequency.
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係る空中超音波センサの構成を示す概略図であり、(a)は側面図、(b)は上面図、(c)はA-A’線断面図である。
 空中超音波センサは、図1に示すように、軸方向の一端に開口を有し、他端に底面を有する有底筒状ケース1を有している。そして、この有底筒状ケース1の内側底面の略中央には、圧電振動子(第1の圧電振動子)2が固着されている。また、有底筒状ケース1の外側底面の略中央には、圧電振動子2と同一形状の圧電振動子(第2の圧電振動子)3が固着されている。また、図示はしていないが、圧電振動子2,3の両面には電極が形成されている。なお、圧電振動子2,3は、分極方向が同じとなるように有底筒状ケース1に固着されているが、実効的に分極方向が逆向きとなるように、有底筒状ケース1の内側面および圧電振動子2,3に、入出力端子4a,4bがそれぞれ接続されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a schematic view showing the configuration of an aerial ultrasonic sensor according to Embodiment 1 of the present invention, where (a) is a side view, (b) is a top view, and (c) is a cross-sectional view taken along line AA ′. It is.
As shown in FIG. 1, the airborne ultrasonic sensor has a bottomed cylindrical case 1 having an opening at one end in the axial direction and a bottom surface at the other end. A piezoelectric vibrator (first piezoelectric vibrator) 2 is fixed substantially at the center of the inner bottom surface of the bottomed cylindrical case 1. In addition, a piezoelectric vibrator (second piezoelectric vibrator) 3 having the same shape as the piezoelectric vibrator 2 is fixed to substantially the center of the outer bottom surface of the bottomed cylindrical case 1. Although not shown, electrodes are formed on both surfaces of the piezoelectric vibrators 2 and 3. The piezoelectric vibrators 2 and 3 are fixed to the bottomed cylindrical case 1 so that the polarization directions are the same, but the bottomed cylindrical case 1 is so effective that the polarization directions are effectively reversed. The input / output terminals 4a and 4b are connected to the inner side surface and the piezoelectric vibrators 2 and 3, respectively.
 上記のように構成された空中超音波センサでは、信号源(不図示)から所定周波数の信号(電圧)が入出力端子4a,4bに供給される。そして、圧電振動子2,3は、入出力端子4a,4bからの信号の印加により、主に径方向に対して伸縮振動を行う。この際、両圧電振動子2,3は、実効的に分極方向が逆向きとなるため、同じ向きの電界に対して一方が伸びると他方が縮むように動作し、たわみ振動が生じる。 In the aerial ultrasonic sensor configured as described above, a signal (voltage) having a predetermined frequency is supplied from a signal source (not shown) to the input / output terminals 4a and 4b. The piezoelectric vibrators 2 and 3 perform stretching vibration mainly in the radial direction by application of signals from the input / output terminals 4a and 4b. At this time, since the polarization directions of both piezoelectric vibrators 2 and 3 are effectively opposite to each other, when one of the piezoelectric vibrators 2 and 3 is extended with respect to the electric field in the same direction, the other is contracted to generate a flexural vibration.
 図2はこの発明の実施の形態1に係る空中超音波センサにおける超音波の発生原理を説明する図である。なお図2では、簡略化のため、図1に示す空中超音波センサの底面部分のみを示している。
 まず、電圧が印加されていない場合には、図2(a)に示すように、有底筒状ケース1および圧電振動子2,3に変位は生じない。一方、所定方向の電圧が印加された場合、図2(b)に示すように、圧電振動子2は伸張し、圧電振動子3は収縮するため、有底筒状ケース1および圧電振動子2,3は下側に突起する。一方、上記とは逆方向の電圧が印加された場合には、図2(c)に示すように、圧電振動子2が収縮し、圧電振動子3が伸張するため、有底筒状ケース1および圧電振動子2,3は上側に突起する。
 したがって、圧電振動子2,3に交流電圧を印加することにより、その電源周波数に応じた振動が生じ、この振動により超音波が発生する。
FIG. 2 is a view for explaining the principle of generation of ultrasonic waves in the aerial ultrasonic sensor according to Embodiment 1 of the present invention. In FIG. 2, only the bottom surface portion of the aerial ultrasonic sensor shown in FIG. 1 is shown for simplification.
First, when no voltage is applied, no displacement occurs in the bottomed cylindrical case 1 and the piezoelectric vibrators 2 and 3 as shown in FIG. On the other hand, when a voltage in a predetermined direction is applied, the piezoelectric vibrator 2 expands and the piezoelectric vibrator 3 contracts as shown in FIG. , 3 protrudes downward. On the other hand, when a voltage in the opposite direction to the above is applied, the piezoelectric vibrator 2 contracts and the piezoelectric vibrator 3 expands as shown in FIG. The piezoelectric vibrators 2 and 3 protrude upward.
Therefore, when an AC voltage is applied to the piezoelectric vibrators 2 and 3, vibration corresponding to the power supply frequency is generated, and ultrasonic waves are generated by the vibration.
 ここで、実施の形態1に係る空中超音波センサでは、実効的に分極方向が逆向きである圧電振動子2,3を有底筒状ケース1の底面の両側に固着させているため、従来例のように圧電振動子を有底筒状ケースの底面の内側だけに固着させた構造と比較して、有底筒状ケース1の底面での振動変位を増大させることができる。そして、構造自体での振動変位が増大するため、消費電力を増大させる必要がなくなる。また、一般的に底面での振動変位が増大すると、空中超音波センサの送受信感度は向上するため、実施の形態1に係る空中超音波センサは、従来例の空中超音波センサより送受信感度が向上する。 Here, in the aerial ultrasonic sensor according to the first embodiment, the piezoelectric vibrators 2 and 3 that are effectively opposite in polarization direction are fixed to both sides of the bottom surface of the bottomed cylindrical case 1. As compared with the structure in which the piezoelectric vibrator is fixed only inside the bottom surface of the bottomed cylindrical case as in the example, the vibration displacement at the bottom surface of the bottomed cylindrical case 1 can be increased. And since the vibration displacement in the structure itself increases, there is no need to increase the power consumption. In general, when the vibration displacement at the bottom increases, the transmission / reception sensitivity of the aerial ultrasonic sensor is improved. Therefore, the aerial ultrasonic sensor according to Embodiment 1 has improved transmission / reception sensitivity compared to the conventional aerial ultrasonic sensor. To do.
 次に、実施の形態1に係る空中超音波センサの効果を示すため、有底筒状ケース1の外側底面(放射面)での振動変位計算結果について示す。なお、従来の空中超音波センサでの振動変位計算結果についても合わせて示す。
 図3は振動変位計算を行った実施の形態1に係る空中超音波センサの寸法例を示す図であり、図4は従来の空中超音波センサの寸法例を示す図である。なお、図4に示す従来の空中超音波センサは、圧電振動子200が有底筒状ケース100の内側底面にだけ固着されている点以外は図3に示す空中超音波センサと同一に構成されている。また、振動変位計算において、有底筒状ケース1,100はアルミとし、圧電振動子2,3,200はPZTとして計算を行っている。また、対称性を考慮し、中心角が90°となる3次元モデルに対して計算を行っている。
Next, in order to show the effect of the aerial ultrasonic sensor according to the first embodiment, the vibration displacement calculation result on the outer bottom surface (radiation surface) of the bottomed cylindrical case 1 will be described. In addition, it shows together about the vibration displacement calculation result in the conventional aerial ultrasonic sensor.
FIG. 3 is a diagram illustrating a dimension example of the aerial ultrasonic sensor according to the first embodiment in which the vibration displacement calculation is performed, and FIG. 4 is a diagram illustrating a dimension example of the conventional aerial ultrasonic sensor. The conventional aerial ultrasonic sensor shown in FIG. 4 has the same configuration as the aerial ultrasonic sensor shown in FIG. 3 except that the piezoelectric vibrator 200 is fixed only to the inner bottom surface of the bottomed cylindrical case 100. ing. In the vibration displacement calculation, the bottomed cylindrical case 1, 100 is made of aluminum, and the piezoelectric vibrators 2, 3, 200 are made of PZT. In consideration of symmetry, the calculation is performed on a three-dimensional model having a central angle of 90 °.
 図5は図3,4に示す空中超音波センサの有底筒状ケース1,100の外側底面での振動変位計算結果を示すグラフである。なお、図3に示す実施の形態1に係る空中超音波センサに対しては、圧電振動子3を含む有底筒状ケース1の外側底面での振動変位計算結果を示している。この図5において、横軸は底面の中心を原点とした径方向の位置を示し、縦軸は底面上の垂直方向の振動変位を示している。また、符号aは図3の実施の形態1に係る空中超音波センサでの振動変位を示し、符号bは図4の従来の空中超音波センサでの振動変位を示している。
 この図5から、実施の形態1に係る空中超音波センサでは、従来例と比較して、底面中央部での振動変位が大きくなっていることがわかる。
FIG. 5 is a graph showing calculation results of vibration displacement at the outer bottom surface of the bottomed cylindrical case 1,100 of the aerial ultrasonic sensor shown in FIGS. For the aerial ultrasonic sensor according to Embodiment 1 shown in FIG. 3, the vibration displacement calculation result on the outer bottom surface of the bottomed cylindrical case 1 including the piezoelectric vibrator 3 is shown. In FIG. 5, the horizontal axis indicates the radial position with the center of the bottom surface as the origin, and the vertical axis indicates the vibration displacement in the vertical direction on the bottom surface. Further, symbol a indicates the vibration displacement in the aerial ultrasonic sensor according to the first embodiment of FIG. 3, and symbol b indicates the vibration displacement in the conventional aerial ultrasonic sensor in FIG.
From FIG. 5, it can be seen that in the aerial ultrasonic sensor according to the first embodiment, the vibration displacement at the center of the bottom surface is larger than that in the conventional example.
 次に、実施の形態1に係る空中超音波センサの効果を示すため、放射音圧分布計算結果について示す。なお、従来の空中超音波センサでの放射音圧分布計算結果についても合わせて示す。また、上記放射音圧計算は、図3,4に示す構造に対して行い、対称性を考慮して軸対称モデルに対して行っている。
 図6は図3,4に示す空中超音波センサの放射音圧分布計算結果を示すグラフである。この図6において、横軸は空中超音波センサの正面方向(放射面の垂直方向)を0°とした角度を示し、縦軸は音圧を示している。また、符号aは図3の実施の形態1に係る空中超音波センサでの音圧分布を示し、符号bは図4の従来の空中超音波センサでの音圧分布を示している。
 この図6から、実施の形態1に係る空中超音波センサでは、従来例と比較して、全体的に放射音圧が増大していることがわかる。
Next, in order to show the effect of the aerial ultrasonic sensor according to the first embodiment, the calculation result of the radiation sound pressure distribution will be shown. In addition, the radiation sound pressure distribution calculation result in the conventional aerial ultrasonic sensor is also shown. Further, the calculation of the radiated sound pressure is performed on the structure shown in FIGS. 3 and 4 and is performed on the axially symmetric model in consideration of symmetry.
FIG. 6 is a graph showing the calculation result of the radiation sound pressure distribution of the aerial ultrasonic sensor shown in FIGS. In FIG. 6, the horizontal axis indicates an angle when the front direction (perpendicular direction of the radiation surface) of the aerial ultrasonic sensor is 0 °, and the vertical axis indicates sound pressure. Further, symbol a indicates the sound pressure distribution in the aerial ultrasonic sensor according to Embodiment 1 in FIG. 3, and symbol b indicates the sound pressure distribution in the conventional aerial ultrasonic sensor in FIG.
From FIG. 6, it can be seen that, in the aerial ultrasonic sensor according to the first embodiment, the radiation sound pressure is generally increased as compared with the conventional example.
 以上のように、この実施の形態1によれば、実効的に分極方向が逆向きである圧電振動子2,3を、有底筒状ケース1の底面の両側に固着させるように構成したので、音響整合層を使うことなく、また、消費電力を増大させることなく、空中超音波センサの放射面での振動変位を増大させることができ、空中超音波センサの送受信感度向上させることができる。また、放射音圧も増大させることができる。 As described above, according to the first embodiment, the piezoelectric vibrators 2 and 3 having effectively opposite polarization directions are fixed to both sides of the bottom surface of the bottomed cylindrical case 1. Without using an acoustic matching layer and without increasing power consumption, the vibration displacement on the radiation surface of the aerial ultrasonic sensor can be increased, and the transmission / reception sensitivity of the aerial ultrasonic sensor can be improved. Also, the radiation sound pressure can be increased.
 なお、実施の形態1に係る空中超音波センサでは、図1(b)のように、有底筒状ケース1の底面および圧電振動子2,3が円形の場合ついて示したが、これに限るものではなく、例えば楕円形や矩形であってもよい。 In the aerial ultrasonic sensor according to the first embodiment, as shown in FIG. 1B, the bottom surface of the bottomed cylindrical case 1 and the piezoelectric vibrators 2 and 3 are shown as being circular. However, the present invention is not limited thereto. For example, it may be oval or rectangular.
実施の形態2.
 図7はこの発明の実施の形態2に係る空中超音波センサの構成を示す概略図であり、(a)は側面図、(b)は上面図、(c)はB-B’線断面図である。この図7に示す実施の形態2に係る空中超音波センサは、図1に示す実施の形態1に係る空中超音波センサの有底筒状ケース1に肉厚部1aを追加したものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
Embodiment 2. FIG.
7A and 7B are schematic views showing the configuration of an aerial ultrasonic sensor according to Embodiment 2 of the present invention, in which FIG. 7A is a side view, FIG. 7B is a top view, and FIG. 7C is a cross-sectional view along line BB ′. It is. The aerial ultrasonic sensor according to the second embodiment shown in FIG. 7 is obtained by adding a thick portion 1a to the bottomed cylindrical case 1 of the aerial ultrasonic sensor according to the first embodiment shown in FIG. Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
 肉厚部1aは、有底筒状ケース1の側面に、軸心周りに、その厚みを厚くするように一体に設けられたものである。なお図7では、有底筒状ケース1の外側側面の軸心方向における所定部分の全周に肉厚部1aを設けた場合を示している。 The thick portion 1a is integrally provided on the side surface of the bottomed cylindrical case 1 so as to increase its thickness around the axis. FIG. 7 shows a case where the thick portion 1 a is provided on the entire circumference of the predetermined portion in the axial direction of the outer side surface of the bottomed cylindrical case 1.
 ここで、実施の形態2に係る空中超音波センサにおいても、実施の形態1に係る空中超音波センサと同様に、実効的に分極方向が逆向きである圧電振動子2,3を有底筒状ケース1の底面の両側に固着させているため、構造自体での振動変位を増大させることができる。よって、消費電力を増大させることなく、従来例に比較して、圧電振動子3を含む有底筒状ケース1の外側底面での振動変位を増大させることができる。 Here, also in the aerial ultrasonic sensor according to the second embodiment, similarly to the aerial ultrasonic sensor according to the first embodiment, the piezoelectric vibrators 2 and 3 that are effectively opposite in polarization direction are provided with bottomed cylinders. Since it is fixed to both sides of the bottom surface of the case 1, the vibration displacement in the structure itself can be increased. Therefore, the vibration displacement at the outer bottom surface of the bottomed cylindrical case 1 including the piezoelectric vibrator 3 can be increased as compared with the conventional example without increasing the power consumption.
 一方、図1に示す実施の形態1に係る空中超音波センサでは、有底筒状ケース1の底面での振動変位の増大に伴って、有底筒状ケース1の側面での振動変位も増大する。しかしながら、側面での振動変位増大は不要放射の原因となる。
 それに対して、実施の形態2に係る空中超音波センサでは、有底筒状ケース1の側面に肉厚部1aを設けている。そして、この肉厚部1aにより有底筒状ケース1の側面での振動が抑圧されるため、不要放射を低減させることができる。
On the other hand, in the aerial ultrasonic sensor according to the first embodiment shown in FIG. 1, the vibration displacement at the side surface of the bottomed cylindrical case 1 increases as the vibration displacement at the bottom surface of the bottomed cylindrical case 1 increases. To do. However, an increase in vibration displacement at the side surface causes unnecessary radiation.
In contrast, in the aerial ultrasonic sensor according to the second embodiment, the thick portion 1 a is provided on the side surface of the bottomed cylindrical case 1. And since this wall thickness part 1a suppresses the vibration in the side surface of the bottomed cylindrical case 1, unnecessary radiation can be reduced.
 次に、実施の形態2に係る空中超音波センサの効果を示すため、有底筒状ケース1の外側底面および外側側面での振動変位計算結果について示す。なお、従来の空中超音波センサおよび実施の形態1に係る空中超音波センサでの振動変位計算結果についても合わせて示す。
 図8は振動変位計算を行った実施の形態2に係る空中超音波センサの寸法例を示す図である。なお、実施の形態1に係る空中超音波センサおよび従来の空中超音波センサの寸法例は図3,4に示す通りである。図8に示す実施の形態2に係る空中超音波センサは、有底筒状ケース1の側面に肉厚部1aを設けている点以外は、図3の実施の形態1に係る空中超音波センサと同一に構成されている。また、振動変位計算では、対称性を考慮し、中心角が90°となる3次元モデルに対して計算を行っている。
Next, in order to show the effect of the aerial ultrasonic sensor according to the second embodiment, the vibration displacement calculation results on the outer bottom surface and the outer side surface of the bottomed cylindrical case 1 will be described. In addition, the vibration displacement calculation result in the conventional aerial ultrasonic sensor and the aerial ultrasonic sensor according to Embodiment 1 is also shown.
FIG. 8 is a diagram showing a dimension example of the aerial ultrasonic sensor according to the second embodiment in which the vibration displacement calculation is performed. Note that examples of dimensions of the aerial ultrasonic sensor according to the first embodiment and the conventional aerial ultrasonic sensor are as shown in FIGS. The aerial ultrasonic sensor according to the second embodiment shown in FIG. 8 is the aerial ultrasonic sensor according to the first embodiment of FIG. 3 except that the thick portion 1a is provided on the side surface of the bottomed cylindrical case 1. It is configured identically. In the vibration displacement calculation, the symmetry is taken into consideration, and the calculation is performed on a three-dimensional model having a central angle of 90 °.
 図9は図3,4,8に示す空中超音波センサの有底筒状ケース1,100の外側底面での振動変位計算結果を示すグラフである。なお、図3,8に示す実施の形態1,2に係る空中超音波センサに対しては、圧電振動子3を含む有底筒状ケース1の外側底面での振動変位計算結果を示している。この図9において、横軸は底面の中心を原点とした径方向の位置を示し、縦軸は底面上の垂直方向の振動変位を示している。また、符号aは図3の実施の形態1に係る空中超音波センサの振動変位を示し、符号bは図4の従来の空中超音波センサの振動変位を示し、符号cは図8の実施の形態2に係る空中超音波センサの振動変位を示している。
 この図9から、実施の形態2に係る空中超音波センサでは、従来例および実施の形態1と比較して、底面中央部での振動変位が大きくなっていることがわかる。
FIG. 9 is a graph showing calculation results of vibration displacement at the outer bottom surface of the bottomed cylindrical case 1,100 of the aerial ultrasonic sensor shown in FIGS. For the aerial ultrasonic sensors according to the first and second embodiments shown in FIGS. 3 and 8, the vibration displacement calculation results on the outer bottom surface of the bottomed cylindrical case 1 including the piezoelectric vibrator 3 are shown. . In FIG. 9, the horizontal axis indicates the radial position with the center of the bottom surface as the origin, and the vertical axis indicates the vibration displacement in the vertical direction on the bottom surface. Further, symbol a represents the vibration displacement of the aerial ultrasonic sensor according to the first embodiment of FIG. 3, symbol b represents the vibration displacement of the conventional aerial ultrasonic sensor of FIG. 4, and symbol c represents the embodiment of FIG. The vibration displacement of the aerial ultrasonic sensor which concerns on form 2 is shown.
From FIG. 9, it can be seen that in the aerial ultrasonic sensor according to the second embodiment, the vibration displacement at the center of the bottom surface is larger than in the conventional example and the first embodiment.
 また、図10は図3,4,8に示す空中超音波センサの有底筒状ケース1,100の外側側面での振動変位計算結果を示すグラフである。この図10において、横軸は外側側面の開口端を原点とした軸心方向の位置を示し、縦軸は側面上の垂直方向の振動変位を示している。また、符号aは図3の実施の形態1に係る空中超音波センサの振動変位を示し、符号bは図4の従来の空中超音波センサの振動変位を示し、符号cは図8の実施の形態2に係る空中超音波センサの振動変位を示している。
 この図10から、実施の形態2に係る空中超音波センサでは、従来例および実施の形態1と比較して、側面外側の3mm~5mm近傍での振動変位が小さくなっていることがわかる。
FIG. 10 is a graph showing the calculation results of the vibration displacement on the outer side surface of the bottomed cylindrical case 1, 100 of the aerial ultrasonic sensor shown in FIGS. In FIG. 10, the horizontal axis indicates the position in the axial direction with the opening end of the outer side surface as the origin, and the vertical axis indicates the vertical vibration displacement on the side surface. Further, symbol a represents the vibration displacement of the aerial ultrasonic sensor according to the first embodiment of FIG. 3, symbol b represents the vibration displacement of the conventional aerial ultrasonic sensor of FIG. 4, and symbol c represents the embodiment of FIG. The vibration displacement of the aerial ultrasonic sensor which concerns on form 2 is shown.
As can be seen from FIG. 10, in the aerial ultrasonic sensor according to the second embodiment, the vibration displacement in the vicinity of 3 mm to 5 mm on the outer side of the side surface is smaller than in the conventional example and the first embodiment.
 次に、実施の形態2に係る空中超音波センサの効果を示すため、放射音圧分布計算結果について示す。なお、従来の空中超音波センサおよび実施の形態1に係る空中超音波センサでの放射音圧分布計算結果についても合わせて示す。また、上記放射音圧計算は、図3,4,8に示す構造に対して行い、対称性を考慮して軸対称モデルに対して行っている。
 図11は図3,4,8に示す空中超音波センサの放射音圧分布計算結果を示すグラフである。この図11において、横軸は空中超音波センサの正面方向(放射面の垂直方向)を0°とした角度を示し、縦軸は音圧を示している。また、符号aは図3の実施の形態1に係る空中超音波センサの音圧分布を示し、符号bは図4の従来例の空中超音波センサの音圧分布を示し、符号cは図8の実施の形態2に係る空中超音波センサの音圧分布を示している。
 この図11から、実施の形態2に係る空中超音波センサでは、実施の形態1に係る空中超音波センサと比較して、90°方向の放射音圧が減少していることがわかる。また、従来例および実施の形態1に係る空中超音波センサと比較して、正面方向の音圧分布が増大していることがわかる。
Next, in order to show the effect of the aerial ultrasonic sensor according to the second embodiment, the calculation result of the radiation sound pressure distribution will be shown. In addition, the radiation sound pressure distribution calculation result in the conventional aerial ultrasonic sensor and the aerial ultrasonic sensor according to Embodiment 1 is also shown. Further, the calculation of the radiated sound pressure is performed on the structure shown in FIGS. 3, 4 and 8, and is performed on the axially symmetric model in consideration of symmetry.
FIG. 11 is a graph showing the calculation results of the radiation sound pressure distribution of the aerial ultrasonic sensor shown in FIGS. In FIG. 11, the horizontal axis represents an angle with the front direction (perpendicular to the radiation surface) of the aerial ultrasonic sensor being 0 °, and the vertical axis represents sound pressure. Further, symbol a represents the sound pressure distribution of the aerial ultrasonic sensor according to the first embodiment of FIG. 3, symbol b represents the sound pressure distribution of the conventional aerial ultrasonic sensor of FIG. 4, and symbol c represents FIG. The sound pressure distribution of the airborne ultrasonic sensor according to the second embodiment is shown.
From FIG. 11, it can be seen that, in the aerial ultrasonic sensor according to the second embodiment, the radiated sound pressure in the 90 ° direction is reduced as compared with the aerial ultrasonic sensor according to the first embodiment. Further, it can be seen that the sound pressure distribution in the front direction is increased as compared with the conventional example and the aerial ultrasonic sensor according to the first embodiment.
 以上のように、この実施の形態2によれば、有底筒状ケース1の側面に肉厚部1aを設けるように構成したので、実施の形態1における効果に加えて、側面での振動変位を減少させることができ、正面方向の放射音圧は増大させ、不要放射となる90°方向の放射音圧は減少させることができる。 As described above, according to the second embodiment, since the thick portion 1a is provided on the side surface of the bottomed cylindrical case 1, in addition to the effects of the first embodiment, the vibration displacement at the side surface , The radiated sound pressure in the front direction can be increased, and the radiated sound pressure in the 90 ° direction, which is unwanted radiation, can be decreased.
 なお、実施の形態2に係る空中超音波センサでは、図7(b)のように、有底筒状ケース1の底面および圧電振動子2,3が円形の場合ついて示したが、これに限るものではなく、例えば楕円形や矩形であってもよい。
 また、実施の形態2に係る空中超音波センサでは、図7(b)のように、有底筒状ケース1の外側側面の軸心周りの全周に肉厚部1aを設けた場合について示したが、これに限るものではなく、内側側面に肉厚部を設けるようにしてもよいし、また、軸心周りに所定の間隔(例えば図7(b)の上下左右の4箇所)で肉厚部を設けるようにしてもよい。
In the aerial ultrasonic sensor according to the second embodiment, the case where the bottom surface of the bottomed cylindrical case 1 and the piezoelectric vibrators 2 and 3 are circular as shown in FIG. 7B is shown, but the present invention is not limited thereto. For example, it may be oval or rectangular.
In addition, in the aerial ultrasonic sensor according to the second embodiment, as shown in FIG. 7B, a case where the thick portion 1a is provided on the entire circumference around the axis of the outer side surface of the bottomed cylindrical case 1 is shown. However, the present invention is not limited to this, and a thick portion may be provided on the inner side surface, and the meat may be provided at predetermined intervals around the axis (for example, four locations on the top, bottom, left, and right in FIG. 7B). You may make it provide a thick part.
実施の形態3.
 図12はこの発明の実施の形態3に係る空中超音波センサの構成を示す概略図であり、(a)は側面図、(b)は上面図、(c)はC-C’線断面図である。この図12に示す実施の形態3に係る空中超音波センサは、図7に示す実施の形態2に係る空中超音波センサの有底筒状ケース1に段差部1bを追加したものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
Embodiment 3 FIG.
12A and 12B are schematic views showing the configuration of an aerial ultrasonic sensor according to Embodiment 3 of the present invention. FIG. 12A is a side view, FIG. 12B is a top view, and FIG. 12C is a cross-sectional view taken along the line CC ′. It is. The aerial ultrasonic sensor according to the third embodiment shown in FIG. 12 is obtained by adding a step portion 1b to the bottomed cylindrical case 1 of the aerial ultrasonic sensor according to the second embodiment shown in FIG. Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
 この段差部1bは、肉厚部1aを有底筒状ケース1の外側底面に対して段差を形成するように外側側面に設けることで、構成されるものである。 The step portion 1b is configured by providing the thick portion 1a on the outer side surface so as to form a step with respect to the outer bottom surface of the bottomed cylindrical case 1.
 ここで、実施の形態3に係る空中超音波センサにおいても、実施の形態2に係る空中超音波センサと同様に、有底筒状ケース1の側面に肉厚部1aを設けているため、有底筒状ケース1の底面での振動変位増大および側面での振動変位減少による、正面方向の放射音圧増大および不要放射となる90°方向の放射音圧減少を図ることができる。
 さらに、実施の形態3に係る空中超音波センサでは、有底筒状ケース1の外側底面に対して段差を形成しているため、空中超音波センサの共振周波数を調整することができる。
Here, also in the aerial ultrasonic sensor according to the third embodiment, the thick portion 1a is provided on the side surface of the bottomed cylindrical case 1 as in the aerial ultrasonic sensor according to the second embodiment. By increasing the vibration displacement at the bottom surface of the bottom cylindrical case 1 and decreasing the vibration displacement at the side surface, it is possible to increase the radiation sound pressure in the front direction and decrease the radiation sound pressure in the 90 ° direction, which is unnecessary radiation.
Furthermore, in the aerial ultrasonic sensor according to the third embodiment, a step is formed with respect to the outer bottom surface of the bottomed cylindrical case 1, so that the resonance frequency of the aerial ultrasonic sensor can be adjusted.
 次に、段差部1bと共振周波数の関係について示すため、段差部1bの大きさを変化させた場合での共振周波数計算結果について示す。なお、比較のために、図3の実施の形態1に係る空中超音波センサ(段差部1bがない場合)での共振周波数計算結果についても合わせて示す。
 図13は共振周波数計算を行った実施の形態3に係る空中超音波センサの寸法例を示す図である。そして、図13に示す段差部1bの大きさを変化させた場合(有底筒状ケース1の外側側面に設けた肉厚部1aの位置を変化させた場合)での共振周波数を求めた。なお、共振周波数計算では、対称性を考慮し、中心角が90°となる3次元モデルに対して計算を行っている。
Next, in order to show the relationship between the stepped portion 1b and the resonance frequency, the resonance frequency calculation result when the size of the stepped portion 1b is changed is shown. For comparison, the resonance frequency calculation result in the aerial ultrasonic sensor according to the first embodiment shown in FIG. 3 (when there is no stepped portion 1b) is also shown.
FIG. 13 is a diagram showing an example of dimensions of the aerial ultrasonic sensor according to the third embodiment in which the resonance frequency is calculated. Then, the resonance frequency was obtained when the size of the stepped portion 1b shown in FIG. 13 was changed (when the position of the thick portion 1a provided on the outer side surface of the bottomed cylindrical case 1 was changed). In the resonance frequency calculation, the symmetry is taken into consideration, and the calculation is performed on a three-dimensional model having a central angle of 90 °.
 図14は段差部1bの大きさと共振周波数の関係を示すグラフである。この図14において、横軸は段差部1bの大きさを示し、縦軸は共振周波数を示している。なお、図3に示す実施の形態1に係る空中超音波センサの共振周波数を破線で示し、図13に示す実施の形態3に係る超音波センサの共振周波数を実線で示している。
 この図14から、段差部1bの大きさにより共振周波数が変化していることがわかり、段差部1bの大きさにより共振周波数を調整することができる。また、実施の形態1に係る空中超音波センサの共振周波数(破線)と比較すると、段差部1bの大きさを有底筒状ケース1の底面の厚さと同じ大きさにすることで共振周波数の変動を小さくすることができ、有底筒状ケース1の側面に設けた肉厚部1aの影響を小さくすることができる。
FIG. 14 is a graph showing the relationship between the size of the stepped portion 1b and the resonance frequency. In FIG. 14, the horizontal axis indicates the size of the stepped portion 1b, and the vertical axis indicates the resonance frequency. The resonance frequency of the aerial ultrasonic sensor according to the first embodiment shown in FIG. 3 is indicated by a broken line, and the resonance frequency of the ultrasonic sensor according to the third embodiment shown in FIG. 13 is indicated by a solid line.
FIG. 14 shows that the resonance frequency changes depending on the size of the step portion 1b, and the resonance frequency can be adjusted by the size of the step portion 1b. Further, when compared with the resonance frequency (broken line) of the aerial ultrasonic sensor according to the first embodiment, the size of the stepped portion 1b is made the same as the thickness of the bottom surface of the bottomed cylindrical case 1, thereby reducing the resonance frequency. The fluctuation can be reduced, and the influence of the thick portion 1a provided on the side surface of the bottomed cylindrical case 1 can be reduced.
 以上のように、この実施の形態3によれば、有底筒状ケース1の外側底面に対して段差を形成するように構成したので、実施の形態2における効果に加えて、正面方向の放射音圧は増大させ、不要放射は低減させつつ、共振周波数を調整することが可能である。また、段差部1bの大きさを有底筒状ケース1の底面の厚さと同じ大きさにすることで、有底筒状ケース1の側面に設けた肉厚部1aの影響を低減できる。 As described above, according to the third embodiment, since the step is formed with respect to the outer bottom surface of the bottomed cylindrical case 1, in addition to the effects in the second embodiment, the radiation in the front direction is performed. It is possible to adjust the resonance frequency while increasing the sound pressure and reducing unnecessary radiation. Moreover, the influence of the thick part 1a provided in the side surface of the bottomed cylindrical case 1 can be reduced by making the level | step-difference part 1b the same magnitude | size as the thickness of the bottom face of the bottomed cylindrical case 1. FIG.
 なお、実施の形態3に係る空中超音波センサでは、図12(b)のように、有底筒状ケース1の底面および圧電振動子2,3が円形の場合ついて示したが、これに限るものではなく、例えば楕円形や矩形であってもよい。
 また、実施の形態3に係る空中超音波センサでは、図12(b)のように、有底筒状ケース1の軸心周りの全周に段差部1bを設けた場合について示したが、これに限るものではなく、軸心周りに所定の間隔(例えば図12(b)の上下左右の4箇所)で段差部を設けるようにしてもよい。
In the aerial ultrasonic sensor according to Embodiment 3, the case where the bottom surface of the bottomed cylindrical case 1 and the piezoelectric vibrators 2 and 3 are circular as shown in FIG. 12B is shown. For example, it may be oval or rectangular.
In the aerial ultrasonic sensor according to the third embodiment, as shown in FIG. 12 (b), the case where the stepped portion 1b is provided around the axis of the bottomed cylindrical case 1 is shown. However, the step portions may be provided at predetermined intervals around the axis (for example, four locations on the top, bottom, left, and right in FIG. 12B).
 また、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 Further, within the scope of the present invention, the invention of the present application can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment. .
 この発明に係る空中超音波センサは、音響整合層を使うことなく、また、消費電力を増大させることなく、放射面での振動変位を増大させることにより、送受信感度向上させることができ、空気中に超音波を送信し、また、空気中を伝搬してきた超音波を受信する空中超音波センサ等に用いるのに適している。 The aerial ultrasonic sensor according to the present invention can improve transmission and reception sensitivity by increasing vibration displacement on the radiation surface without using an acoustic matching layer and without increasing power consumption. It is suitable for use in an aerial ultrasonic sensor or the like that transmits ultrasonic waves and receives ultrasonic waves that have propagated in the air.
 1 有底筒状ケース、1a 肉厚部、1b 段差部、2,3 圧電振動子、4a,4b 入出力端子。 1 Bottomed cylindrical case, 1a thick part, 1b stepped part, 2, 3 piezoelectric vibrator, 4a, 4b input / output terminal.

Claims (4)

  1.  軸方向の一端に開口を有し、他端に底面を有する有底筒状ケースと、
     前記有底筒状ケースの内側底面に固着された第1の圧電振動子と、
     前記有底筒状ケースの外側底面に固着され、分極方向が前記第1の圧電振動子とは逆向きである第2の圧電振動子と
     を備えた空中超音波センサ。
    A bottomed cylindrical case having an opening at one end in the axial direction and a bottom surface at the other end;
    A first piezoelectric vibrator fixed to an inner bottom surface of the bottomed cylindrical case;
    An aerial ultrasonic sensor comprising: a second piezoelectric vibrator fixed to an outer bottom surface of the bottomed cylindrical case and having a polarization direction opposite to that of the first piezoelectric vibrator.
  2.  前記有底筒状ケースの側面には、軸心周りに肉厚部が設けられた
     ことを特徴とする請求項1記載の空中超音波センサ。
    The aerial ultrasonic sensor according to claim 1, wherein a thick portion is provided around an axis on a side surface of the bottomed cylindrical case.
  3.  前記肉厚部は、前記有底筒状ケースの外側底面に対して段差を形成するように設けられた
     ことを特徴とする請求項2記載の空中超音波センサ。
    The aerial ultrasonic sensor according to claim 2, wherein the thick portion is provided so as to form a step with respect to an outer bottom surface of the bottomed cylindrical case.
  4.  前記段差は、前記有底筒状ケースの底面の厚みと略同一である
     ことを特徴とする請求項3記載の空中超音波センサ。
    The aerial ultrasonic sensor according to claim 3, wherein the step is substantially the same as a thickness of a bottom surface of the bottomed cylindrical case.
PCT/JP2012/000878 2012-02-09 2012-02-09 Airborne ultrasonic sensor WO2013118185A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/000878 WO2013118185A1 (en) 2012-02-09 2012-02-09 Airborne ultrasonic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/000878 WO2013118185A1 (en) 2012-02-09 2012-02-09 Airborne ultrasonic sensor

Publications (1)

Publication Number Publication Date
WO2013118185A1 true WO2013118185A1 (en) 2013-08-15

Family

ID=48947000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000878 WO2013118185A1 (en) 2012-02-09 2012-02-09 Airborne ultrasonic sensor

Country Status (1)

Country Link
WO (1) WO2013118185A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107710786A (en) * 2015-06-30 2018-02-16 株式会社日立电力解决方案 Ultrasonic probe and apparatus for ultrasonic examination

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245799A (en) * 1988-03-28 1989-09-29 Matsushita Electric Works Ltd Piezoelectric vibrator
JP2002112391A (en) * 2000-09-29 2002-04-12 Taiyo Yuden Co Ltd Piezoelectric vibrator
JP2003163995A (en) * 2001-11-28 2003-06-06 Matsushita Electric Works Ltd Aerial ultrasonic microphone and ultrasonic detector equipped therewith
JP2004297219A (en) * 2003-03-25 2004-10-21 Nippon Soken Inc Ultrasonic sensor and component with ultrasonic sensor fitted thereto
JP2007282058A (en) * 2006-04-10 2007-10-25 Nippon Ceramic Co Ltd Ultrasonic sensor
JP2012029110A (en) * 2010-07-23 2012-02-09 Nec Corp Oscillation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245799A (en) * 1988-03-28 1989-09-29 Matsushita Electric Works Ltd Piezoelectric vibrator
JP2002112391A (en) * 2000-09-29 2002-04-12 Taiyo Yuden Co Ltd Piezoelectric vibrator
JP2003163995A (en) * 2001-11-28 2003-06-06 Matsushita Electric Works Ltd Aerial ultrasonic microphone and ultrasonic detector equipped therewith
JP2004297219A (en) * 2003-03-25 2004-10-21 Nippon Soken Inc Ultrasonic sensor and component with ultrasonic sensor fitted thereto
JP2007282058A (en) * 2006-04-10 2007-10-25 Nippon Ceramic Co Ltd Ultrasonic sensor
JP2012029110A (en) * 2010-07-23 2012-02-09 Nec Corp Oscillation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107710786A (en) * 2015-06-30 2018-02-16 株式会社日立电力解决方案 Ultrasonic probe and apparatus for ultrasonic examination
CN107710786B (en) * 2015-06-30 2020-03-27 株式会社日立电力解决方案 Ultrasonic probe and ultrasonic inspection apparatus

Similar Documents

Publication Publication Date Title
JP5328990B2 (en) Aerial ultrasonic sensor
JPWO2007091609A1 (en) Ultrasonic sensor
WO2013118185A1 (en) Airborne ultrasonic sensor
US20130223657A1 (en) Electronic device
CN112566731B (en) One-dimensional ultrasound transducer unit for region monitoring
JP5693304B2 (en) Aerial ultrasonic sensor
EP2819434B1 (en) Ultrasonic wave-generating device
JP6156387B2 (en) Electroacoustic transducer, manufacturing method thereof, and electronic apparatus using the electroacoustic transducer
US9807513B2 (en) Electroacoustic transducer
JP7226154B2 (en) ultrasonic sensor
JP2005039689A (en) Ultrasonic sensor
JP2014192720A (en) Ultrasonic sensor
WO2023079789A1 (en) Ultrasonic transducer
JP2009065380A (en) Ultrasonic sensor
WO2017141402A1 (en) Ultrasonic transmission/reception apparatus, wall member, and method for attaching ultrasonic sensor to wall member
WO2023203805A1 (en) Ultrasonic wave transducer
WO2023106211A1 (en) Ultrasonic sensor and object detection device
JP7435282B2 (en) ultrasonic transducer
KR101888536B1 (en) multi-resonance stepped plate transducer for wideband parametric array application in air
JP5340432B2 (en) Ultrasonic sensor
KR102083505B1 (en) Resonator device for enhancing output and sensitivity of guided wave transducers and the method of enhancement controlling
KR101960019B1 (en) Magnetostriction transducer having enhanced magnitude of output signal due to a resonance structure, and method of enhancing magnitude of output signal of transducers
WO2022201999A1 (en) Ultrasonic sensor
JP2000253494A (en) Piezoelectric element for ultrasonic sensor
JP2006013871A (en) Ultrasonic wave transducer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP