WO2013115449A1 - 저손실 복수 방향 안테나의 선택적 통신 방식 스위칭을 적용하는 가공 송배전 선로 감시장치 - Google Patents
저손실 복수 방향 안테나의 선택적 통신 방식 스위칭을 적용하는 가공 송배전 선로 감시장치 Download PDFInfo
- Publication number
- WO2013115449A1 WO2013115449A1 PCT/KR2012/007282 KR2012007282W WO2013115449A1 WO 2013115449 A1 WO2013115449 A1 WO 2013115449A1 KR 2012007282 W KR2012007282 W KR 2012007282W WO 2013115449 A1 WO2013115449 A1 WO 2013115449A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transmission line
- overhead transmission
- information
- module
- wireless module
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00006—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
- H02J13/00022—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
- H02J13/00024—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission by means of mobile telephony
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C17/00—Arrangements for transmitting signals characterised by the use of a wireless electrical link
- G08C17/02—Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C19/00—Electric signal transmission systems
- G08C19/02—Electric signal transmission systems in which the signal transmitted is magnitude of current or voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00006—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
- H02J13/00022—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
- H02J13/00026—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission involving a local wireless network, e.g. Wi-Fi, ZigBee or Bluetooth
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00006—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
- H02J13/00028—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment involving the use of Internet protocols
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00032—Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
- H02J13/00034—Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02B90/20—Smart grids as enabling technology in buildings sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S40/00—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
- Y04S40/12—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
- Y04S40/126—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission
Definitions
- the present invention relates to a monitoring device for overhead transmission / transmission lines, and includes a directional antenna for wireless communication such as WLAN, Zigbee, etc. for communication between nodes in addition to GPS (Global Positioning System) and mobile communications. It can be installed in more than one direction but avoids the use of splitters to enable long-distance communication, and can be used by switching to be able to switch the communication method in response to channel characteristics or line disturbances.
- the present invention relates to an overhead transmission line monitoring device capable of transmitting and receiving information.
- Transmission line is used for transmission line to extend the power generated by the power plant to the substation or customer, transmission tower, insulator, grounding device as a structure to support the transmission line.
- the transmission and distribution line is equipped with a monitoring diagnostic device that can measure, monitor and diagnose the operation status of the transmission line and the surrounding environment in real time through its own sensors, and can transmit and receive data to and from the upper operating system through wired and wireless communication. do.
- the monitoring diagnostic device used in the overhead transmission line is a transmission system monitoring system, transmission line monitoring device, transmission line monitoring diagnosis device, transmission smart sensor, power sensor, ball sensor, power donut, etc. It is called.
- monitoring diagnostic devices are located in the high voltage overhead transmission line of 22kV ⁇ 765kV in which lightning, strong wind pressure and vibration exist at several meters above the ground and up to 100m in height, and the temperature of the transmission line increases up to +260 degrees according to the transmission load.
- the distance between the monitoring diagnostic device is a maximum of 1km it is difficult to apply the wired communication method due to the installation environment constraints, it is a trend to apply a variety of wireless communication technology.
- a directional antenna for 2.4Ghz ISM (Industrial Scientific Medical Band) service such as wireless LAN
- a power splitter splitter
- a method of transmitting or receiving information to another device is used.
- the power splitter splitter
- the power is attenuated by -3 dB
- the signal power output from the wireless communication transmission module passes through the power splitter. Since -3dB of transmission power is attenuated when transmitting to the feeder, the communication distance is reduced by half.
- due to the characteristics of the WLAN channel there is a problem in that reliability is lowered because the communication is stopped due to the lack of an alternative communication means when an operation problem or power failure or failure occurs, such as when an increase in traffic or a channel cannot be secured.
- an object of the present invention is to solve the above problems, and an object of the present invention is to install a directional antenna for wireless communication such as wireless LAN and Zigbee for communication between nodes in two or more directions, but avoid using a splitter.
- a directional antenna for wireless communication such as wireless LAN and Zigbee for communication between nodes in two or more directions, but avoid using a splitter.
- the present invention provides a overhead transmission line monitoring device capable of transmitting and receiving monitoring information with high reliability even in a harsh environment.
- An object of the present invention is to provide an overhead transmission line monitoring device that can maintain high reliability.
- the overhead transmission line monitoring device is a overhead transmission line monitoring device installed on the overhead transmission line, overhead transmission and distribution Diver for generating a GPS information by communicating with the GPS satellites using a plurality of diversity antenna formed in the side portion, the main body through which the line passes and covers both ends of the main body through which the line passes; City GPS module; A sensor module for collecting state information on an operating state or an environmental state of an overhead transmission line; A first wireless module, a second wireless module, and an antenna switch for communicating with another overhead transmission line monitoring device installed on the overhead transmission line using a plurality of directional antennas formed in the side part; And controlling switching of the antenna switch to connect the plurality of directional antennas to the first wireless module when the first wireless module is operated, and to connect the plurality of directional antennas to the second wireless module when the second wireless module is operated. And a control unit for connecting to a wireless module, wherein the control unit transmits monitoring information including
- the sensor module includes an infrared camera for acquiring an image of the deterioration state of the insulators installed on the transmission line or the track, or a digital camera for acquiring an image of the state of the transmission line or the surrounding area. Information about one image may be included in the surveillance information.
- the first wireless module is a module for processing RF signals and data in a WiFi communication method
- the second wireless module is a module for processing RF signals and data in a Zigbee, Bluetooth, or NFC communication method.
- the mobile communication module may further include a diversity communication module for communicating with a mobile communication base station using the second plurality of diversity antennas formed in the side part to transmit the monitoring information to a system on the Internet.
- the mobile communication module may be selected and operated according to an environment in which the overhead transmission and distribution line monitoring device is installed, or the switching of the antenna switch may be controlled and one of the first wireless module or the second wireless module may be operated. have.
- the controller stops the operation of the wireless module in operation among the first wireless module or the second wireless module when the intensity, traffic amount, or bit error of the RF signal received through the plurality of directional antennas is less than or equal to a predetermined reference value. And other radio modules.
- the apparatus may further include a power supply device for supplying power to the monitoring device by self-generating a current transformer using a magnetic core installed in a non-contact manner with the overhead transmission and distribution line.
- the apparatus further includes a battery or a supercapacitor for storing a predetermined amount of power in advance by using the power supplied to the overhead transmission and distribution line.
- the controller may operate the second wireless module that operates with less power than the first wireless module.
- the control unit monitors only the partial information in which a selection is previously selected among information on an operation state of the overhead transmission line, information on the surrounding environment state, and information on an image captured by the camera.
- the monitoring information may be transmitted through the second wireless module which is included in the information and operates with less power than the first wireless module.
- the information on the operating state of the overhead transmission line includes information on the operating current, the line temperature, or the fault current of the overhead transmission line, and the information on the surrounding environment state, the slope of the line of the overhead transmission line, the line distortion It may include information on wind direction, wind speed, tree access, wildfire fire, air temperature, or humidity.
- a method for monitoring a overhead transmission line is a overhead transmission line monitoring method using a overhead transmission line monitoring device installed on a overhead transmission line, wherein the overhead transmission line monitoring device includes a overhead transmission line. And a side part covering both ends of the main body through which the line passes and the line passing through the main body, and communicating with GPS satellites using a plurality of diversity antennas formed on the side part using a GPS module to communicate GPS information. Generating; Collecting state information on an operating state or an environmental state of the overhead transmission line using a sensor; And controlling the switching of the antenna switch to communicate with another overhead transmission line monitoring device installed on the overhead transmission line using a plurality of directional antennas formed on the side part.
- the communication scheme is switched in response to channel characteristics (unable to secure a channel due to traffic increase, strength of a received signal, bit error, etc.) or line failure (outage or line failure, etc.). It is possible to improve the reliability of the transmission of monitoring information by switching to be possible, and by appropriately configuring a switch and a wireless communication module without using a splitter, the loss of power distribution to at least two antennas is reduced to 0.5 dB or less. Increasing the coverage capacity by increasing the distance more than twice compared to the conventional one.
- the node-to-node communication method is changed from the wireless LAN method such as WiFi to the short-range communication method such as Zigbee using the power of the power storage device previously stored through the transmission and distribution line, and operated according to the lowest power usage algorithm. This ensures high reliability against temporary and permanent failures of lines and equipment.
- FIG. 1 is a view for explaining the overhead transmission line monitoring apparatus according to an embodiment of the present invention.
- Figure 2a is a perspective view of the overhead transmission line monitoring device according to an embodiment of the present invention.
- Figure 2b is a view for explaining a power device of the overhead transmission line monitoring device according to an embodiment of the present invention.
- FIG 3 is a view for explaining an environment in which the overhead transmission line monitoring device according to an embodiment of the present invention is installed on the transmission line between the transmission tower.
- FIG. 4 is a view for explaining in detail the operation relationship between the antenna switch and the wireless LAN module / Zigbee module in the overhead transmission line monitoring apparatus according to an embodiment of the present invention.
- the overhead transmission line monitoring device 100 is made of a predetermined material (for example, the body side is aluminum, both sides cover plastic, etc.)
- the control unit 110 the memory 111, the power unit 112, the sensor module 113, the GPS module 120, GPS antennas 121, 122, mobile communication module 130 ), Antennas for mobile communication 131 and 132, antenna switch 140, antennas for short range communication 141 and 142, wireless LAN module 150, and Zigbee module 160.
- the circuit configuration such as 160 may be properly disposed within a metal (eg, aluminum) main body (or body) through which the transmission and distribution line passes, and the antennas for GPS 121 and 122 and the antennas for mobile communication 131 and 132.
- Antennas, such as near field communication antennas (141, 142), etc., may be formed by inserting by in-mold or vapor deposition, or injection molding into side portions made of plastics covering both ends of the main body through which the line passes (e.g., cover and antenna Double injection) may be formed and installed.
- the GPS antennas 121 and 122, the mobile communication antennas 131 and 132, and the short-range communication antennas 141 and 142 are described as two examples, but the present invention is not limited thereto. It may be provided in plurality.
- the overhead transmission line monitoring device 100 is installed to penetrate the transmission line line supported by the transmission tower in order to extend the power produced in the power plant to send to the substation or customer, and other nodes (processing transmission and distribution line Surveillance device) and wireless LAN (eg WiFi), Zigbee, Bluetooth, etc. are installed at appropriate distances to enable short-range wireless communication.
- Power device 112 is processed transmission and distribution line monitoring device 100 according to the induced electromotive force generated by self-generation using the electromagnetic induction principle of the magnetic core (coil) mounted in a non-contact with the transmission and distribution line inside the transmission and distribution monitoring device 100 Magnetic induction current transformer (Current Transformer) self-generated power supply for generating and providing power for the operation of).
- Current Transformer Current Transformer self-generated power supply for generating and providing power for the operation of.
- induction magnetic field is generated in the direction perpendicular to the power direction according to the current of the transmission and distribution line to which the power is supplied, the magnetic core in the perpendicular direction again by the induction magnetic field Through induced electromotive force is generated.
- the coil type magnetic core acting as a primary coil and non-contactly wrapping the transmission and distribution line inside the monitoring device 100 acts as a secondary coil, and at this time, the induced electromotive force generated in the secondary coil by electromagnetic induction. Size and direction are defined by Faraday's law and Lenz's law.
- two or more magnetic cores that surround a line in a non-contact manner may be separated into semicircular shapes, and may be used by combining air gaps having a predetermined interval therebetween.
- the power device 112 is a battery for storing a predetermined amount of power in advance by using the power of the transmission and distribution line to provide power for the operation of the overhead transmission line monitoring device 100 even when the power supplied to the transmission and distribution line is cut off or Supercapacitors and the like.
- a part of the power generated by the semi-permanent current transformer type self-powered power supply is stored in a predetermined amount of power in a battery or a supercapacitor, and so on. In the occurrence of the power supply to the overhead transmission line monitoring device 100 using a battery or a supercapacitor for a predetermined time.
- the control unit 110 controls the overall operation of the overhead transmission line monitoring device 100, the operating state (eg, operating current, line temperature, fault current, etc.) and the surroundings of the transmission and distribution line detected and collected by the sensor module 113
- Information on the environment e.g., slope of the track, track distortion, wind direction / wind speed, tree approach, fire such as forest fire, air temperature, humidity, etc.
- images taken by cameras digital cameras, infrared cameras, etc.
- Real-time monitoring information or monitoring information received from other nodes
- including collected information and GPS information generated by the GPS module 120 in real time for example, when an event in which the monitoring information satisfies a setting condition such as a setting value
- the monitoring information may be transmitted to the corresponding antenna through the mobile communication module 130, the wireless LAN module 150, or the Zigbee module 160 according to the location where the overhead transmission line monitoring device 100 is installed.
- the memory 111 stores various settings or programs for the operation of the overhead transmission line monitoring device 100, and in order to store and read the monitoring information, a read only memory (ROM) and a RAM (RAM). Random Access Memory), flash ROM, and the like.
- the sensor module 113 is an operating state (eg, operating current, line temperature, fault current, etc.) of the transmission and distribution line and the surrounding environment state (eg, line slope, line distortion, wind direction / wind speed, tree approach, fire such as forest fire, and atmosphere). It may include various sensors to detect temperature, humidity (rainfall, snowfall, etc.), and in addition, real-time analysis of abnormality of facilities such as transmission and distribution lines or insulators installed on the tracks, and the condition and surroundings of transmission and distribution lines. Orientation can be fixed so as to check the site of the image or the direction can be rotated by a control command transmitted through the mobile communication module 130 or the wireless module (150/160) in accordance with the remote control of the operating system on the Internet.
- an operating state eg, operating current, line temperature, fault current, etc.
- the surrounding environment state eg, line slope, line distortion, wind direction / wind speed, tree approach, fire such as forest fire, and atmosphere.
- Orientation can be fixed so as to check the site of the image
- Digital cameras using CCD or CMOS image sensors, or infrared cameras for thermal imaging may be installed on the left and right side cover to acquire an image of a deterioration state of a facility such as a transmission line or an insulator installed on the line.
- At least one digital camera may be installed in the lower part of the main body in order to acquire an image.
- GPS module 120 is installed on the cover upper end (corresponding to the upper side from the upper end) of the overhead transmission line monitoring device 100 and the GPS antennas 121, 122 installed upwardly directed toward the GPS satellites. It communicates with the GPS satellites to provide GPS information, including information about the current location (eg latitude, longitude, altitude, etc.) and the current time.
- the GPS module 120 measures the received signals from the GPS antennas 121 and 122, which are diversity antennas, and combines the signals according to diversity processing to increase the reception quality of the satellite signals. By transmitting a signal, the transmission capacity can be improved.
- the mobile communication module 130 is responsible for a data transmission backbone function to an upper system such as an operating system, and is installed on the lower cover part (corresponding to the lower side of the entire side part / lower cover part) of the overhead transmission line monitoring device 100. It transmits and receives necessary data to and from the mobile communication base station using the mobile communication antennas (131, 132) which are directed downward toward the mobile communication base station installed in the.
- the mobile communication module 130 may increase the quality of the signal received from the mobile communication base station by measuring the received signals from the mobile communication antennas 131 and 132 which are diversity antennas, and combining the signals according to diversity processing. Transmission capacity can be improved by transmitting necessary signals through two antennas.
- the mobile communication method of the mobile communication module 130 may include Code Division Multiple Access (CDMA), Wideband CDMA (WCDMA), Personal Communication System (PCS), Global System for Mobile communications (GSM), Long Term Evolution (LTE), or wireless. It may include all wireless wide area network (WWAN) communications, such as the Internet (eg, WiBro).
- CDMA Code Division Multiple Access
- WCDMA Wideband CDMA
- PCS Personal Communication System
- GSM Global System for Mobile communications
- LTE Long Term Evolution
- wireless may include all wireless wide area network (WWAN) communications, such as the Internet (eg, WiBro).
- WWAN wireless wide area network
- the data to be transmitted is spread, channel coding, etc., and then the frequency is increased to transmit the radio signal to the mobile communication base station through the mobile communication antennas 131 and 132. can do.
- the monitoring information collected as described above for example, status information, GPS information
- a higher system such as an operating system on the Internet that is the final destination address. Can be sent to.
- the monitoring information collected as described above may be transmitted by the control unit 110 through the corresponding antennas (131, 132) connected to the mobile communication module 130, mountain, coast
- the wireless LAN module 150 or the Zigbee module is controlled by the controller 110. Selecting the operation of the 160 and controlling the switching of the antenna switch 140, the selected module is monitored by other nodes (processing transmission and distribution line monitoring device) through the short-range communication antenna (141, 142) (e.g., status information). , GPS information), and the node or another node can be controlled to transmit to a higher system such as an operating system on the Internet.
- a plurality of surrounding nodes may operate as an ad hoc network type cluster, and each slave node may include monitoring information (eg, status information and GPS information) as another slave node or master node. ), The master node collects it and transmits the collected monitoring information in real time or at regular intervals to a higher system such as an operating system on the Internet.
- monitoring information eg, status information and GPS information
- the wireless LAN module 150 may communicate according to a WiFi Fidelity (WiFi) protocol
- the Zigbee module 160 may be a near field such as Bluetooth or NFC (Near Field Communication) protocol instead of the Zigbee module 160 as an example. It may be replaced by another module that performs communication according to any one protocol for wireless communication.
- WiFi WiFi Fidelity
- NFC Near Field Communication
- FIG 4 is a view for explaining the operation relationship between the antenna switch 140 and the wireless LAN module 150 / Zigbee module 160 in the overhead transmission line monitoring device 100 according to an embodiment of the present invention.
- the antenna switch 140 includes a first switch 145 and a second switch 146
- the wireless LAN module 150 includes a first RF module 151, a second RF module 152
- the signal processor 153 is included
- the Zigbee module 160 includes a first RF module 161, a second RF module 162, and a signal processor 163.
- the near field communication antennas 141 and 142 are high-gain directional antennas, which are installed at the lower end of the cover of the side part of the overhead transmission line monitoring device 100 (which corresponds to the center in the entire side part), and have different nodes in different directions installed on the line. It may be installed to be oriented in the left and right directions to face. This ensures a data transmission quality of 10Mbps or more at a maximum of 800M or more at distances of several hundred meters or more. Since long distance transmission is required, they are installed in different directions symmetrically on the left and right sides.
- Short-range communication antennas 141 and 142 which are directed in different directions, are connected to the center contacts of the first switch 145 and the second switch 146 of the antenna switch 140, respectively.
- the switches 145 and 146 of the antenna switch 140 are low-loss switches within 0.5 dB, and the controller 110 analyzes a signal received through the short range communication antennas 141 and 142 to determine the wireless LAN module 150 or The transfer to the Zigbee module 160 is determined.
- the antenna switch 140 two times the transmission efficiency can be obtained by compensating twice the power compared to using the existing splitter (divider), and twice the communication distance and communication compared to the conventional Capacity / quality can be secured.
- the controller 110 controls the antenna switch 140.
- the short range communication antennas 141 and 142 connected to the first switch 145 and the second switch 146 are connected to the first RF module 151 and the second RF module 152 of the WLAN module 150.
- the short range communication antennas 141 and 142 may be switched to be connected to the first RF module 161 and the second RF module 162 of the Zigbee module 160.
- the first RF module 151 and the second RF module are connected.
- 152 demodulates a 2.4 GHz WiFi RF (Radio Frequency) signal from each antenna into a baseband signal
- the signal processor 153 processes the demodulated baseband signal to perform digital data of the corresponding WiFi protocol.
- the controller 110 analyzes the communication quality based on the strength of the received RF signal (eg, Received Signal Strength Indicator (RSSI)), the traffic volume based on the digital data, the bit error, and the like.
- RSSI Received Signal Strength Indicator
- the operation of the WLAN module 150 is stopped and the switches 145 and 146 of the antenna switch 140 are controlled so that the respective short-range communication antennas 141 and 142 are controlled by the Zigbee module 160.
- Connected to the 1RF module 161 and the second RF module 162 Check it.
- the monitoring information including status information and GPS information
- the controller 110 is transferred to the WLAN module 150.
- the RF signal modulated by the first RF module 151 and the second RF module 152 through signal processing such as encoding by the signal processor 153 is transmitted through the respective short range communication antennas 141 and 142. Can be.
- the first RF module 161 and the second RF module 162 are connected to the first RF module 161 and the second RF module 162 of the Zigbee module 160, respectively.
- the controller 110 analyzes a communication quality based on a received RF signal strength (for example, a received signal strength indicator (RSSI)), a traffic amount based on the digital data, a bit error, and the like and sets a reference value.
- RSSI received signal strength indicator
- the operation of the Zigbee module 160 is stopped and the switches 145 and 146 of the antenna switch 140 are controlled so that each near field communication antenna 141 or 142 is the first RF module of the WLAN module 150. 151 and the second RF module 152 It should be determined.
- the monitoring information including status information and GPS information
- the controller 110 is transmitted to the Zigbee module 160.
- the RF signals modulated by the first RF module 161 and the second RF module 162 through signal processing such as encoding by the signal processor 163 may be transmitted through the respective short-range communication antennas 141 and 142. have.
- the controller 110 controls the switching of the antenna switch 140 so that a communication method (WiFi / Zigbee) having a good communication quality can be selected, and accordingly, selection of the wireless LAN module 150 and the Zigbee module 160 are performed. It is possible to control the normal operation.
- a communication method WiFi / Zigbee
- the controller 110 controls the switches 145 and 146 of the antenna switch 140 so that the respective short-range communication antennas 141 and 142 are connected to the first RF module 161 and the second RF module (Zigbee module 160). 162 may be maintained. This is because the power consumption for the operation of the Zigbee module 160 is less than the WLAN module 150.
- control unit 110 transmits monitoring information (eg, including status information and GPS information) to another node (processing transmission and distribution line monitoring device) through the Zigbee module 160, but in the operating system. It can be controlled to transmit only the minimum information necessary for identification.
- monitoring information eg, including status information and GPS information
- the operating state eg, operating current, line temperature, fault current, etc.
- the surrounding environment eg, line slope, line distortion, wind direction / wind speed, tree approach
- Monitoring information such as fire, atmospheric temperature, humidity, etc.), information on images captured by the camera (insulator and track deterioration status, etc.) (selection can be preset)
- selection can be preset
- It may be included in the ZigBee module 160 to be transmitted through the Zigbee module 160.
- the switching of the antenna switch 140 and the selective operation of the WLAN module 150 and the Zigbee module 160 can be controlled by the control of the controller 110, but such control is remotely performed through the operating system. Control is also possible. For example, an operator who monitors an operating system may identify a failure state or a line failure of the WLAN module 150 or the Zigbee module 160 based on the monitoring information, input a control command, and transmit the control command to the controller 110. Accordingly, the controller 110 operates the WLAN module 150 or the ZigBee module 160 and controls the switching of the switches 145 and 146 accordingly, thereby respectively antennas 141 and 142. Surveillance information can be transmitted through This makes it possible to maintain high reliability by facilitating maintenance when the operation of the overhead transmission line monitoring device 100 installed in a mountainous area is not smooth.
- the antenna switch 140 can be improved by switching the antenna switch 140 so that the communication scheme can be switched in response to a failure, etc., and the antenna switch 140 and the wireless communication module 150 or 160 are appropriately used without using a splitter.
- the loss of power distribution to the two antennas 141 and 142 may be reduced to 0.5 dB or less, thereby increasing the coverage capacity by increasing the communication distance by more than two times compared to the conventional one.
- the power storage device battery, supercapacitor, etc.
- the short range communication method such as Zigbee (or Bluetooth, NFC, etc.) in the wireless LAN method such as WiFi.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
- Radio Relay Systems (AREA)
Abstract
본 발명은 가공 송배전 선로에 설치되는 감시 장치에 GPS(Global Positioning System) 통신과 이동통신용 이외에 노드 사이의 통신을 위한 무선랜, 지그비 등의 무선 통신용 지향성 안테나를 2 방향 이상으로 설치하되 스플리터(분배기) 사용을 지양하여 장거리 통신이 가능하도록 하며, 채널 특성이나 선로의 장애 등에 대처하여 통신 방식이 절체될 수 있도록 스위칭하여 사용될 수 있도록 함으로써, 열악한 환경에서도 높은 신뢰성으로 감시 정보를 송수신할 수 있는 가공 송배전 선로 감시장치에 관한 것이다.
Description
본 발명은 가공 송배전 선로 감시장치에 관한 것으로서, 가공 송배전 선로에 설치되는 감시 장치에 GPS(Global Positioning System) 통신과 이동통신용 이외에 노드 사이의 통신을 위한 무선랜, 지그비 등의 무선 통신용 지향성 안테나를 2 방향 이상으로 설치하되 스플리터(분배기) 사용을 지양하여 장거리 통신이 가능하도록 하며, 채널 특성이나 선로의 장애 등에 대처하여 통신 방식이 절체될 수 있도록 스위칭하여 사용될 수 있도록 함으로써, 열악한 환경에서도 높은 신뢰성으로 감시 정보를 송수신할 수 있는 가공 송배전 선로 감시장치에 관한 것이다.
송배전선로에는 발전소에서 생산된 전력을 변전소나 수용가까지 보낼 수 있도록 연장하기 위한 송배전선, 송배전선을 지지해 줄 수 있도록 하는 구조물로서의 송전탑, 애자, 접지 장치 등이 사용된다. 이러한 송배전선로에는 송배전선로의 운전상태나 주변환경상태 등을 자체 구비된 센서 등을 통해 실시간으로 계측, 감시 및 진단을 수행하고, 유무선 통신을 통해 상위 운영시스템까지 테이터 송수신이 가능한 감시진단장치가 부착된다. 이러한 가공 송배전선로에 사용되는 감시진단장치는 송전설비 감시시스템, 송전선로 감시장치, 송전선로 감시진단장치, 송전 스마트센서, 전력용센서, 볼 센서(Ball Sensor), 파워도넛(Power Dount) 등으로 불린다.
이러한 감시진단장치는 지상 수미터에서부터 최대 100m 이상의 높이에 낙뢰와 강한 풍압, 진동이 존재하고, 전송부하에 따라 송전선로의 온도가 최대 +260도까지 상승하는 22kV~765kV의 초고압의 가공 송배전선로에 직접 설치 장착되고, 감시진단장치간 거리가 최대 1km로 설치 환경상의 제약으로 인해 유선통신 방식을 적용하기 어려우므로, 다양한 무선통신 기술을 적용하는 추세이다.
예를 들어, 종래의 가공 송배전 선로 감시장치에서는, 무선랜과 같은 2.4Ghz ISM(Industrial Scientific Medical Band) 대역 서비스용 지향성 안테나를 양측면에 서로 다른방향을 지향하도록 설치하고 전력분배기(스플리터)를 이용하여 다른 장치로 정보를 송신하거나 수신하는 방식을 사용하는 경우가 있었다. 그러나 이와 같은 종래 방식의 경우에, 안테나로부터 수신되는 신호의 세기가 전력분배기(스플리터)를 통과시 전력이 -3dB 감쇄되어 수신되고, 무선통신 송신모듈로부터 출력되는 신호전력이 전력분배기를 통과하여 안테나 급전부로 전송시 송신전력의 -3dB가 감쇄되므로, 통신 거리가 절반으로 줄어드는 문제점이 있다. 또한, 무선랜 채널의 특성 상 트래픽이 증가하거나 채널 확보가 불가능한 경우 등 동작 상의 문제나 정전 또는 고장 발생 시에 대체 통신 수단이 불비하여 통신이 중단되므로 신뢰성이 떨어지는 문제점이 있다.
따라서, 본 발명은 상술한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은, 노드 사이의 통신을 위한 무선랜, 지그비 등의 무선 통신용 지향성 안테나를 2 방향 이상으로 설치하되 스플리터(분배기) 사용을 지양하여 장거리 통신이 가능하도록 하며, 채널 특성(트래픽 증가에 의한 채널 확보 불가, 수신 신호의 세기, 비트 에러 등)이나 선로의 장애(정전이나 선로 고장 등) 등에 대처하여 통신 방식이 절체될 수 있도록 스위칭하여 사용될 수 있도록 함으로써, 열악한 환경에서도 높은 신뢰성으로 감시 정보를 송수신할 수 있는 가공 송배전 선로 감시장치를 제공하는 데 있다.
또한, 특히 정전 시에는 송배전 선로를 통해 미리 저장한 전력저장장치의 전력을 이용해 WiFi와 같은 무선랜 방식에서 지그비와 같은 근거리 통신 방식으로 노드간 통신 방식을 변경하고 최저전력사용 알고리즘에 따라 동작함으로써 더욱 높은 신뢰성을 유지할 수 있는 가공 송배전 선로 감시장치를 제공하는 데 있다.
먼저, 본 발명의 특징을 요약하면, 상기와 같은 본 발명의 목적을 달성하기 위한 본 발명의 일면에 따른, 가공 송배전 선로 감시장치는, 가공 송배전 선로에 설치되는 가공 송배전 선로 감시장치로서, 가공 송배전 선로가 관통하는 본체와 상기 선로가 통과하는 상기 본체의 양끝을 커버하는 측면부를 포함하고, 상기 본체 내부에는, 상기 측면부에 형성된 복수의 다이버시티 안테나를 이용해 GPS 위성과 통신하여 GPS 정보를 생성하는 다이버시티 방식의 GPS 모듈; 가공 송배전 선로의 운전상태 또는 주변환경상태에 대한 상태 정보를 수집하는 센서 모듈; 상기 측면부에 형성된 복수의 지향성 안테나를 이용해 가공 송배전 선로에 설치되는 다른 가공 송배전 선로 감시장치와 통신하기 위한 제1무선모듈, 제2무선모듈, 및 안테나 스위치; 및 상기 안테나 스위치의 절체를 제어해, 상기 제1무선모듈의 동작 시 상기 복수의 지향성 안테나를 상기 제1무선모듈과 연결시키며, 상기 제2무선모듈의 동작 시 상기 복수의 지향성 안테나를 상기 제2무선모듈과 연결시키는 제어부를 포함하고, 상기 제어부는 상기 제1무선모듈 또는 상기 제2무선모듈과 연결된 상기 복수의 지향성 안테나를 통해 상기 상태 정보와 상기 GPS 정보를 포함한 감시 정보를 전송한다.
상기 센서 모듈은 송배전 선로나 선로에 설치된 애자의 열화상태에 대한 영상을 획득하기 위한 적외선 카메라, 또는 송배전 선로의 상태나 주변의 현장에 대한 영상을 획득하기 위한 디지털 카메라를 포함하고, 상기 카메라가 촬영한 영상에 대한 정보가 상기 감시 정보에 포함될 수 있다.
상기 제1무선모듈은 WiFi 통신 방식의 RF 신호와 데이터를 처리하기 위한 모듈이며, 상기 제2무선모듈은 지그비, 블루투스, 또는 NFC 통신 방식의 RF 신호와 데이터를 처리하기 위한 모듈이다.
상기 측면부에 형성된 제2 복수의 다이버시티 안테나를 이용해 이동통신 기지국과 통신하여 인터넷 상의 시스템으로 상기 감시 정보를 전송하기 위한 다이버시티 방식의 이동통신모듈을 더 포함할 수 있다.
상기 가공 송배전 선로 감시장치가 설치되는 환경에 따라 상기 이동통신모듈을 선택하여 동작시키거나, 상기 안테나 스위치 절체를 제어하고 상기 제1무선모듈 또는 상기 제2무선모듈 중 어느 하나를 선택하여 동작시킬 수 있다.
상기 제어부는 상기 복수의 지향성 안테나를 통해 수신되는 RF 신호의 세기, 트래픽량, 또는 비트에러를 분석하여 설정된 기준값 이하이면 상기 제1무선모듈 또는 상기 제2무선모듈 중 동작 중인 무선모듈의 동작을 중지시키고 다른 무선모듈을 동작시킬 수 있다.
가공 송배전 선로와 비접촉식으로 설치된 자기코어를 이용해 자기유도 변류기(Current Transformer)형으로 자가발전하여 상기 감시장치에 전원을 공급하기 위한 전원공급장치를 더 포함할 수 있다.
가공 송배전 선로에 공급되고 있는 전력을 이용해 미리 일정 전력량을 저장하기 위한 배터리 또는 슈퍼커패시터를 더 포함하고, 선로 장애 발생 시에, 상기 배터리 또는 슈퍼커패시터의 전력을 이용해 상기 가공 송배전 선로 감시장치가 동작하며, 상기 제어부는 상기 제1무선모듈 보다 적은 전력으로 동작하는 상기 제2무선모듈을 동작시킬 수 있다.
선로 장애 발생 시에, 상기 제어부는 상기 가공 송배전 선로의 운전상태에 대한 정보, 상기 주변환경상태에 대한 정보, 및 상기 카메라가 촬영한 영상에 대한 정보 중 미리 선택이 설정되어 있는 일부 정보만을 상기 감시 정보에 포함시켜 상기 제1무선모듈 보다 적은 전력으로 동작하는 상기 제2무선모듈을 통해 해당 감시 정보를 전송할 수 있다.
상기 가공 송배전 선로의 운전상태에 대한 정보는, 가공 송배전 선로의 운전전류, 선로 온도, 또는 고장 전류에 대한 정보를 포함하며, 상기 주변환경상태에 대한 정보는, 가공 송배전 선로의 선로 기울기, 선로 뒤틀림, 풍향, 풍속, 수목 접근, 산불 화재, 대기온도, 또는 습도에 대한 정보를 포함할 수 있다.
그리고, 본 발명의 다른 일면에 따른, 가공 송배전 선로 감시방법은, 가공 송배전 선로에 설치되는 가공 송배전 선로 감시장치를 이용한 가공 송배전 선로 감시방법에 있어서, 상기 가공 송배전 선로 감시장치는, 가공 송배전 선로가 관통하는 본체와 상기 선로가 통과하는 상기 본체의 양끝을 커버하는 측면부를 포함하고, 상기 본체 내부에서, GPS 모듈을 이용하여 상기 측면부에 형성된 복수의 다이버시티 안테나를 이용해 GPS 위성과 통신하여 GPS 정보를 생성하는 단계; 센서를 이용하여 가공 송배전 선로의 운전상태 또는 주변환경상태에 대한 상태 정보를 수집하는 단계; 및 상기 측면부에 형성된 복수의 지향성 안테나를 이용해 가공 송배전 선로에 설치되는 다른 가공 송배전 선로 감시장치와 통신하기 위해, 안테나 스위치의 절체를 제어해, 제1무선모듈의 동작 시 상기 복수의 지향성 안테나를 상기 제1무선모듈과 연결시키며, 제2무선모듈의 동작 시 상기 복수의 지향성 안테나를 상기 제2무선모듈과 연결시키는 단계를 포함하고, 상기 제1무선모듈 또는 상기 제2무선모듈과 연결된 상기 복수의 지향성 안테나를 통해 상기 상태 정보와 상기 GPS 정보를 포함한 감시 정보를 전송하는 것을 특징으로 한다.
본 발명에 따른 가공 송배전 선로 감시장치에 따르면, 채널 특성(트래픽 증가에 의한 채널 확보 불가, 수신 신호의 세기, 비트 에러 등)이나 선로의 장애(정전이나 선로 고장 등) 등에 대처하여 통신 방식이 절체될 수 있도록 스위칭하여 감시 정보 전송에 대한 신뢰성을 향상시킬 수 있으며, 스플리터(분배기) 사용 없이 스위치와 무선통신모듈을 적절하게 구성하여 최소한 두 안테나로의 전력 배분에 대한 손실을 0.5dB 이하로 낮추어 통신 거리를 기존에 비교하여 2배 이상 높여 커버리지 용량 증대를 꾀할 수 있다.
또한, 정전이나 선로 장애 시에도 송배전 선로를 통해 미리 저장한 전력저장장치의 전력을 이용해 WiFi와 같은 무선랜 방식에서 지그비와 같은 근거리 통신 방식으로 노드간 통신 방식을 변경하고 최저전력사용 알고리즘에 따라 동작함으로써 선로나 장치의 일시적/영구적 장애에 대하여도 높은 신뢰성을 유지할 수 있다.
도 1은 본 발명의 일실시예에 따른 가공 송배전 선로 감시장치를 설명하기 위한 도면이다.
도 2a는 본 발명의 일실시예에 따른 가공 송배전 선로 감시장치의 사시도이다.
도 2b는 본 발명의 일실시예에 따른 가공 송배전 선로 감시장치의 전력 장치를 설명하기 위한 도면이다.
도 3은 본 발명의 일실시예에 따른 가공 송배전 선로 감시장치가 송전탑 사이의 송전선로에 설치되는 환경을 설명하기 위한 도면이다.
도 4는 본 발명의 일실시예에 따른 가공 송배전 선로 감시장치에서 안테나 스위치와 무선랜 모듈/지그비 모듈의 동작 관계를 구체적으로 설명하기 위한 도면이다.
이하 첨부 도면들 및 첨부 도면들에 기재된 내용들을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명하지만, 본 발명이 실시예들에 의해 제한되거나 한정되는 것은 아니다.
도 1은 본 발명의 일실시예에 따른 가공 송배전 선로 감시장치(100)를 설명하기 위한 도면이다. 도 1을 참조하면, 본 발명의 일실시예에 따른 가공 송배전 선로 감시장치(100)는, 도 2a와 같이 송배전선로가 관통하도록 제작된 소정 재질(예, 몸체쪽은 알루미늄, 양측면 커버는 플라스틱 등)의 하우징 내에 구비되는, 제어부(110), 메모리(111), 전력장치(112), 센서모듈(113), GPS 모듈(120), GPS용 안테나들(121, 122), 이동통신모듈(130), 이동통신용 안테나들(131, 132), 안테나 스위치(140), 근거리 통신용 안테나(141, 142), 무선랜 모듈(150), 지그비 모듈(160)을 포함한다. 제어부(110), 메모리(111), 전력장치(112), 센서모듈(113), GPS 모듈(120), 이동통신모듈(130), 안테나 스위치(140), 무선랜 모듈(150), 지그비 모듈(160) 등 회로 구성은 송배전선로가 관통하는 금속(예, 알루미늄) 본체(또는 몸체) 내부에 적절히 배치될 수 있으며, GPS용 안테나들(121, 122), 이동통신용 안테나들(131, 132), 근거리 통신용 안테나(141, 142) 등과 같은 안테나들은 선로가 통과하는 본체의 양끝을 커버하는 플라스틱류의 재질로된 측면부 내부에 인몰드나 증착 방식, 또는 사출 성형하여 삽입하는 형태(예, 커버와 안테나의 2중 사출) 등으로 형성되어 설치될 수 있다. GPS용 안테나들(121, 122), 이동통신용 안테나들(131, 132), 근거리 통신용 안테나들(141, 142)은 각각 2개로 이루어지는 것을 예로 들어 설명하지만, 이에 한정되지 않으며 필요에 따라 3개 이상의 복수개로 설치될 수도 있다. 도 3과 같이, 가공 송배전 선로 감시장치(100)는 발전소에서 생산된 전력을 변전소나 수용가까지 보낼 수 있도록 연장하기 위해 송전탑에 의해 지지되는 송배전선 선로가 관통하도록 설치되며, 다른 노드(가공 송배전 선로 감시장치)와 무선랜(예, WiFi), 지그비, 블루투스 등 근거리 무선 통신이 가능하도록 적절한 거리마다 설치된다.
전력장치(112)는 송배전 감시장치(100) 안쪽에 송배전 선로와 비접촉식으로 장착된 자기코어(코일)의 전자기 유도작용 원리를 이용하여 자가발전으로 생성한 유도 기전력에 따라 가공 송배전 선로 감시장치(100)의 동작을 위한 전원을 생성하여 제공하기 위한 자기유도 변류기(Current Transformer)형 자가발전 전원공급장치를 포함한다. 도 2b와 같이 자기유도 변류기(Current Transformer)형 자가발전 전원공급장치에서는, 전력이 공급되는 송배전 선로의 전류에 따라 전력방향의 직각방향으로 유도자기장이 발생하고 유도 자기장에 의해 다시 직각방향으로 자기코어를 통해 유도 기전력이 발생한다. 송전선로가 1차코일로 작용하고 감시장치(100) 내부에 송배전 선로를 비접촉식으로 감싸고있는 코일형 자기코어는 2차코일로 작용하며, 이때 전자기 유도작용에 의해서 2차코일에서 발생하는 유도 기전력의 크기와 방향은 페러데이 법칙과 렌츠의 법칙에 이해서 정의된다. 유도 기전력 발생의 효율을 높이기 위하여 도 2b와 같이 선로를 비접촉식으로 감싸고있는 2개 이상의 자기코어를 각각 반원형으로 분리하고 일정 간격의 에어갭을 사이에 두고 결합시켜 사용할 수 있다. 전력장치(112)는 송배전 선로에 공급되고 있는 전력이 차단된 경우에도 가공 송배전 선로 감시장치(100)의 동작을 위한 전원을 제공하기 위하여 송배전 선로의 전력을 이용해 미리 일정 전력량을 저장하기 위한 배터리 또는 슈퍼커패시터 등을 포함할 수 있다. 송배전 선로에 전력이 공급되고 있을 때 위와 같은 반영구적인 자기유도 변류기(Current Transformer)형 자가발전 전원공급장치에 의해 발생되는 전력의 일부를 배터리 또는 슈퍼커패시터 등에 일정 전력량을 미리 저장해 둠으로써, 선로 장애 등의 발생시에 일정 시간 동안 배터리 또는 슈퍼커패시터를 이용해 가공 송배전 선로 감시장치(100)에 전원을 공급할 수 있다.
제어부(110)는 가공 송배전 선로 감시장치(100)의 전반적인 동작을 제어하며, 센서모듈(113)에서 감지하여 수집하는 송배전선로의 운전상태(예, 운전전류, 선로 온도, 고장 전류 등)와 주변환경상태(예, 선로 기울기, 선로 뒤틀림, 풍향/풍속, 수목 접근, 산불 등의 화재, 대기온도, 습도 등) 등의 상태 정보, 카메라(디지털카메라, 적외선 카메라 등)에 의해 촬영된 영상에 대한 정보와 GPS 모듈(120)을 통해 생성한 GPS 정보를 수집한 감시 정보(또는, 다른 노드로부터 수신한 감시 정보 포함)를 실시간으로(예, 감시 정보가 설정값 등 설정 조건을 만족하는 이벤트 발생시) 또는 메모리(111)에 일시 저장하였다가 일정 주기로, 수동으로(예, 인터넷 상의 운영시스템을 통해 원격제어가능) 미리 설정된 통신 방식으로 또는 자동으로(예, 통신 품질을 분석하여 일정 기준값 보다 큰 통신 방식을 선택 가능) 필요한 통신 방식을 선택하여, 해당 모듈을 통해 다른 노드 또는 인터넷 상의 운영시스템 등 상위 시스템으로 전송하도록 제어할 수 있다. 예를 들어, 가공 송배전 선로 감시장치(100)가 설치된 위치에 따라 이동통신모듈(130), 무선랜 모듈(150), 또는 지그비 모듈(160)을 통해 해당 안테나로 감시 정보가 전송될 수 있다.
메모리(111)는 가공 송배전 선로 감시장치(100)의 동작을 위한 각종 설정이나 프로그램이 저장되며, 또한 감시 정보를 저장하고 읽을 수 있도록 하기 위하여, 롬(ROM: Read Only Memory), 램(RAM : Random Access Memory), 플래쉬롬(flash ROM) 등을 포함할 수 있다.
센서모듈(113)은 송배전선로의 운전상태(예, 운전전류, 선로 온도, 고장 전류 등)와 주변환경상태(예, 선로 기울기, 선로 뒤틀림, 풍향/풍속, 수목 접근, 산불 등의 화재, 대기온도, 습도(강우, 강설) 등)를 감지하기 위한 각종 센서를 포함할 수 있으며, 이외에도 송배전 선로나 선로에 설치된 애자 등과 같은 설비의 열화상태의 이상 유무에 대한 실시간 분석과 송배전 선로의 상태나 주변의 현장을 영상으로 확인할 수 있도록 방향이 고정되도록 설치되거나, 또는 인터넷 상의 운영 시스템의 원격 제어에 따라 이동 통신모듈(130) 또는 무선모듈(150/160)을 통해 전달되는 제어 명령으로 방향 회전이 가능하도록 설치된 CCD 또는 CMOS 이미지 센서를 이용하는 디지털 카메라 또는 열화상 촬영을 위한 적외선 카메라가 포함된다. 예를 들어, 송배전 선로나 선로에 설치된 애자 등과 같은 설비의 열화상태에 대한 영상을 획득하기 위하여 적외선 카메라가 좌우 측면부의 커버상에 최소한 1개 이상씩 설치될 수 있으며, 송배전 선로의 상태나 주변 현장에 대한 영상을 획득하기 위하여 디지털 카메라가 본체 하부에 최소 1개 이상 설치될 수 있다.
GPS 모듈(120)은 가공 송배전 선로 감시장치(100)의 측면부의 커버 상단부(상단부에서 상측에 해당)에 설치되고 GPS 위성쪽을 향하도록 상향으로 지향되어 설치된 GPS용 안테나들(121, 122)을 이용해 GPS 위성과 통신하여, 현재 위치(예, 위도, 경도, 고도 등) 및 현재 시간에 대한 정보를 포함하는GPS 정보를 제공한다. GPS 모듈(120)은 다이버시티 안테나인 GPS용 안테나들(121, 122)로부터의 수신 신호를 측정하여 다이버시티 방식 처리에 따라 신호를 조합함으로써 위성 신호의 수신 품질을 높일 수 있으며 두 안테나를 통하여 필요한 신호를 전송함으로써 전송 용량을 향상시킬 수 있다.
이동통신모듈(130)은 운영시스템 등 상위시스템으로 데이터 전송 백본 기능을 담당하는 것으로서, 가공 송배전 선로 감시장치(100)의 측면부의 커버 하단부(전체 측면부/커버 하단부에서 하부쪽에 해당)에 설치되고 지상에 설치된 이동통신 기지국을 향하도록 하향으로 지향되어 설치된 이동통신용 안테나들(131, 132)을 이용해 이동통신 기지국과 필요한 데이터를 송수신한다. 이동통신모듈(130)은 다이버시티 안테나인 이동통신용 안테나들(131, 132)로부터의 수신 신호를 측정하여 다이버시티 방식 처리에 따라 신호를 조합함으로써 이동통신 기지국으로부터 수신되는 신호의 품질을 높일 수 있으며 두 안테나를 통하여 필요한 신호를 전송함으로써 전송 용량을 향상시킬 수 있다.
이동통신모듈(130)의 이동통신 방식은, CDMA(Code Division Multiple Access), WCDMA(Wideband CDMA), PCS(PersonalCommunication System), GSM(Global System for Mobile communications), LTE(Long Term Evolution), 또는 무선 인터넷(예, WiBro) 등의 모든 WWAN(Wireless Wide Area Network) 통신을 포함할 수 있다. 이동통신모듈(130)은 이동통신용 안테나들(131, 132)를 통해 해당 통신 방식의 무선 신호를 수신하면, 수신한 신호를 주파수 하강시켜 기저대역신호로 변환하고, 기저대역신호를 역확산 및 채널복호화하는 기능을 수행하며, 필요한 신호의 송신 시에는, 송신할 데이터를 확산 및 채널코딩 등을 수행한 후 주파수 상승시켜 이동통신용 안테나들(131, 132)를 통해 무선 신호로 이동통신 기지국을 향해 송신할 수 있다. 이와 같은 이동통신모듈(130)의 처리를 통해 위와 같이 수집하는 감시정보(예, 상태정보, GPS 정보 포함)가 이동통신 기지국으로 전송될 수 있으며, 결국 최종 목적지 주소인 인터넷 상의 운영시스템 등 상위 시스템으로 전송될 수 있다.
한편, 위와 같이 수집하는 감시정보(예, 상태정보, GPS 정보 포함)는 제어부(110)에 의해 이동통신모듈(130)과 연결된 해당 안테나(131, 132)를 통해 전송될 수 있지만, 산악, 해안, 사막 등 이동 통신 기지국이 가까이 설치되지 않아 이동 통신이 불통인 지역의 송배전선로에 가공 송배전 선로 감시장치(100)가 설치되는 경우에는, 제어부(110)에 의해 무선랜 모듈(150) 또는 지그비 모듈(160)의 동작을 선택하고 안테나 스위치(140)의 절체를 제어해, 해당 선택된 모듈이 근거리 통신용 안테나(141, 142)를 통해 다른 노드(가공 송배전 선로 감시장치)로 감시정보(예, 상태정보, GPS 정보 포함)를 전송하여, 해당 노드나 또 다른 노드가 인터넷 상의 운영시스템 등 상위 시스템으로 전송하도록 제어할 수 있다.
예를 들어, 주위의 복수 노드들(가공 송배전 선로 감시장치)이 애드혹망 형태의 클러스터로 동작할 수 있으며, 각 슬레이브 노드는 다른 슬레이브 노드나 마스터 노드로 감시정보(예, 상태정보, GPS 정보 포함)를 전송하면, 마스터 노드가 이를 수집하여 수집된 감시정보를 실시간으로 또는 일정 주기로 그에 연결된 인터넷 상의 운영시스템 등 상위 시스템으로 전송할 수 있다.
여기서, 무선랜 모듈(150)은 WiFi(Wireless Fidelity) 프로토콜에 따른 통신이 가능하며, 지그비 모듈(160)은 하나의 예시로서 지그비 모듈(160) 대신에 블루투스나 NFC(Near Field Communication) 프로토콜 등 근거리 무선통신에 대한 어느 한 프로토콜에 따른 통신을 수행하는 다른 모듈로 대체될 수 있다.
도 4는 본 발명의 일실시예에 따른 가공 송배전 선로 감시장치(100)에서 안테나 스위치(140)와 무선랜 모듈(150)/지그비 모듈(160)의 동작 관계를 구체적으로 설명하기 위한 도면이다.
도 4를 참조하면, 안테나 스위치(140)는 제1스위치(145)와 제2스위치(146)을 포함하며, 무선랜 모듈(150)은 제1RF 모듈(151), 제2RF 모듈(152) 및 신호처리부(153)를 포함하고, 지그비 모듈(160)은 제1RF 모듈(161), 제2RF 모듈(162) 및 신호처리부(163)를 포함한다.
근거리 통신용 안테나(141, 142)는 고이득의 지향성 안테나로서 가공 송배전 선로 감시장치(100)의 측면부의 커버 하단부(전체 측면부에서는 가운데 쪽에 해당)에 설치되고 선로 상에 설치된 서로 다른 방향의 다른 노드를 향하도록 좌우 방향으로 지향되도록 설치될 수 있다. 이는 노드 간 거리가 수백미터 이상으로 최대 800M 이상에서 10Mbps 이상의 데이터 전송품질을 보장할 수 있도록 하며, 장거리 전송이 요구되므로, 좌, 우측면에 대칭적으로 각각 다른 방향으로 설치된다.
안테나 스위치(140)의 제1스위치(145)와 제2스위치(146)의 중앙 접점에는 각각 서로 다른 방향으로 지향된 근거리 통신용 안테나(141, 142)가 하나씩 연결된다. 안테나 스위치(140)의 스위치들(145, 146)은 0.5dB이내의 저손실 스위치이며, 제어부(110)가 근거리 통신용 안테나(141, 142)를 통해 수신되는 신호를 분석하여 무선랜 모듈(150) 또는 지그비 모듈(160)로의 절체가 결정된다. 이러한 안테나 스위치(140)를 이용함으로써 기존의 스플리터(분배기)를 사용하는 것과 비교하여 2배의 전력을 보상받음으로써 2배의 전송효율을 얻을 수 있으며, 기존과 비교하여 2배의 통신거리, 통신용량/품질을 확보할 수 있다.
채널 특성(트래픽 증가에 의한 채널 확보 불가, 수신 신호의 세기, 비트 에러 등)의 변경이나 선로의 장애(정전이나 선로 고장 등) 등이 발생 시에, 제어부(110)가 안테나 스위치(140)를 제어함에 따라, 제1스위치(145) 및 제2스위치(146)에 연결된 각각의 근거리 통신용 안테나(141, 142)가 무선랜 모듈(150)의 제1RF 모듈(151) 및 제2RF 모듈(152)에 연결되도록 절체될 수 있으며, 또는 각각의 근거리 통신용 안테나(141, 142)가 지그비 모듈(160)의 제1RF 모듈(161) 및 제2RF 모듈(162)에 연결되도록 절체될 수 있다.
예를 들어, 각각의 근거리 통신용 안테나(141, 142)가 무선랜 모듈(150)의 제1RF 모듈(151) 및 제2RF 모듈(152)에 연결된 상태에서, 제1RF 모듈(151)와 제2RF 모듈(152)가 각 안테나로부터의 2.4GHz 대역의 WiFi RF(Radio Frequency) 신호를 기저 대역 신호로 복조 처리하고, 신호처리부(153)가 해당 복조된 기저 대역의 신호를 처리하여 해당 WiFi 프로토콜의 디지털 데이터로 복원하면, 제어부(110)는 수신되는 RF 신호의 세기(예, RSSI(Received Signal Strength Indicator)), 상기 디지털 데이터에 기초한 트래픽량, 비트에러 등을 기반으로 한 통신 품질을 분석하여 통신 품질이 설정된 기준값 이하일 경우에, 무선랜 모듈(150)의 동작을 중지시키고 안테나 스위치(140)의 스위치들(145, 146)을 제어하여 각 근거리 통신용 안테나(141, 142)가 지그비 모듈(160)의 제1RF 모듈(161) 및 제2RF 모듈(162)에 연결되도록 한다. 설정된 기준값 보다 크게 통신 품질이 유지되는 경우에는, 제어부(110)에 의해 다른 노드(가공 송배전 선로 감시장치)로 전송될 감시정보(예, 상태정보, GPS 정보 포함)가 무선랜 모듈(150)로 전달되고, 신호처리부(153)에 의한 인코딩 등의 신호처리를 거쳐 제1RF 모듈(151)와 제2RF 모듈(152)가 각각 변조한 RF 신호를 각각의 근거리 통신용 안테나(141, 142)를 통해 전송할 수 있다.
이에 따라, 각각의 근거리 통신용 안테나(141, 142)가 지그비 모듈(160)의 제1RF 모듈(161) 및 제2RF 모듈(162)에 연결된 상태에서, 제1RF 모듈(161)와 제2RF 모듈(162)가 각 안테나로부터의 2.4GHz 대역의 지그비 RF(Radio Frequency) 신호를 기저 대역 신호로 복조 처리하고, 신호처리부(163)가 해당 복조된 기저 대역의 신호를 처리하여 해당 지그비 프로토콜의 디지털 데이터로 복원하면, 제어부(110)는 수신되는 RF 신호의 세기(예, RSSI(Received Signal Strength Indicator)), 상기 디지털 데이터에 기초한 트래픽량, 비트에러 등을 기반으로 한 통신 품질을 분석하여 통신 품질이 설정된 기준값 이하일 경우에, 지그비 모듈(160)의 동작을 중지시키고 안테나 스위치(140)의 스위치들(145, 146)을 제어하여 각 근거리 통신용 안테나(141, 142)가 무선랜 모듈(150)의 제1RF 모듈(151) 및 제2RF 모듈(152)에 연결되도록 한다. 설정된 기준값 보다 크게 통신 품질이 유지되는 경우에는, 제어부(110)에 의해 다른 노드(가공 송배전 선로 감시장치)로 전송될 감시정보(예, 상태정보, GPS 정보 포함)가 지그비 모듈(160)로 전달되고, 신호처리부(163)에 의한 인코딩 등의 신호처리를 거쳐 제1RF 모듈(161)와 제2RF 모듈(162)가 각각 변조한 RF 신호를 각각의 근거리 통신용 안테나(141, 142)를 통해 전송할 수 있다.
이와 같이 제어부(110)는 통신 품질이 양호한 통신 방식(WiFi/지그비)이 선택될 수 있도록 안테나 스위치(140)의 절체를 제어하고, 이에 따른 무선랜 모듈(150)과 지그비 모듈(160)의 선택적인 동작의 제어가 가능하다.
다만, 정전이나 선로 고장 등에 의해 전력 공급이 중단된 선로 장애 상태가 감지되는 경우에는, 전력장치(112)가 송배전 선로의 전력을 이용해 미리 일정 전력량을 저장하여 둔 배터리 또는 슈퍼커패시터의 전력이 이용되어 가공 송배전 선로 감시장치(100)가 동작한다. 이때, 제어부(110)는 안테나 스위치(140)의 스위치들(145, 146)을 제어하여 각 근거리 통신용 안테나(141, 142)가 지그비 모듈(160)의 제1RF 모듈(161) 및 제2RF 모듈(162)에 연결이 유지되도록 할 수 있다. 무선랜 모듈(150) 보다 지그비 모듈(160)의 동작을 위한 전력 소모가 적기 때문이다. 전력소비를 줄이기 위하여 이때에는 제어부(110)에 의해 지그비 모듈(160)을 통해 다른 노드(가공 송배전 선로 감시장치)로 감시정보(예, 상태정보, GPS 정보 포함)를 전송하되, 운영시스템에서 현장 파악을 위하여 필요한 최소한의 정보만 전송하도록 제어할 수 있다. 예를 들어, 센서모듈(113)에 의해 감지되는 송배전선로의 운전상태(예, 운전전류, 선로 온도, 고장 전류 등)와 주변환경상태(예, 선로 기울기, 선로 뒤틀림, 풍향/풍속, 수목 접근, 산불 등의 화재, 대기온도, 습도 등) 등의 상태 정보, 카메라에 의해 촬영된 영상에 대한 정보(애자 및 선로 열화상태 등) 중 선택된(선택은 미리 설정될 수 있음) 일부 정보만을 감시 정보에 포함시켜 지그비 모듈(160)을 통해 전송되도록 할 수 있다.
위와 같이 제어부(110)의 제어에 의해 안테나 스위치(140)의 절체와 무선랜 모듈(150)과 지그비 모듈(160)의 선택적인 동작의 제어가 가능할 뿐만 아니라, 이와 같은 제어는 운영 시스템을 통하여 원격 제어도 가능하다. 예를 들어, 운영 시스템을 모니터링하는 운영자는, 감시 정보를 기초로 무선랜 모듈(150)이나 지그비 모듈(160)의 고장 상태나 선로 장애 등을 파악하고 제어 명령을 입력하여 제어부(110)로 전송되도록 할 수 있으며, 이에 따라 제어부(110)는 무선랜 모듈(150) 또는 지그비 모듈(160)을 동작시키고 그에 맞게 스위치들(145, 146)의 절체를 제어하여 각각의 근거리 통신용 안테나(141, 142)를 통해 감시정보를 전송할 수 있다. 이는 산악 지역 등에 설치된 가공 송배전 선로 감시장치(100)의 동작이 원활하지 않을 때 유지보수를 용이하게 하도록 함으로써 높은 신뢰성을 유지할 수 있도록 한다.
상술한 바와 같이 본 발명의 일실시예에 따른 가공 송배전 선로 감시장치(100)에서는, 채널 특성(트래픽 증가에 의한 채널 확보 불가, 수신 신호의 세기, 비트 에러 등)이나 선로의 장애(정전이나 선로 고장 등) 등에 대처하여 통신 방식이 절체될 수 있도록 안테나 스위치(140)를 스위칭함으로써 신뢰성을 향상시킬 수 있으며, 스플리터(분배기) 사용 없이 안테나 스위치(140)와 무선통신모듈(150, 160)을 적절하게 구성하여 두 안테나(141, 142)로의 전력 배분에 대한 손실을 0.5dB 이하로 낮추어 통신 거리를 기존에 비교하여 2배 이상 높여 커버리지 용량을 증대시킬 수 있다. 또한, 정전이나 선로 장애 시에도 송배전 선로를 통해 미리 저장한 전력저장장치(배터리, 슈퍼커패시터 등)의 전력을 이용해 WiFi와 같은 무선랜 방식에서 지그비(또는 블루투스, NFC등)와 같은 근거리 통신 방식으로 노드간 통신 방식을 변경하고 최저전력사용 알고리즘에 따라 동작함으로써 선로나 장치의 일시적/영구적 장애에 대하여도 높은 신뢰성을 유지할 수 있다.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
Claims (11)
- 가공 송배전 선로에 설치되는 가공 송배전 선로 감시장치로서, 가공 송배전 선로가 관통하는 본체와 상기 선로가 통과하는 상기 본체의 양끝을 커버하는 측면부를 포함하고,상기 본체 내부에는, 상기 측면부에 형성된 복수의 다이버시티 안테나를 이용해 GPS 위성과 통신하여 GPS 정보를 생성하는 다이버시티 방식의 GPS 모듈; 가공 송배전 선로의 운전상태 또는 주변환경상태에 대한 상태 정보를 수집하는 센서 모듈; 상기 측면부에 형성된 복수의 지향성 안테나를 이용해 가공 송배전 선로에 설치되는 다른 가공 송배전 선로 감시장치와 통신하기 위한 제1무선모듈, 제2무선모듈, 및 안테나 스위치; 및 상기 안테나 스위치의 절체를 제어해, 상기 제1무선모듈의 동작 시 상기 복수의 지향성 안테나를 상기 제1무선모듈과 연결시키며, 상기 제2무선모듈의 동작 시 상기 복수의 지향성 안테나를 상기 제2무선모듈과 연결시키는 제어부를 포함하고,상기 제어부는 상기 제1무선모듈 또는 상기 제2무선모듈과 연결된 상기 복수의 지향성 안테나를 통해 상기 상태 정보와 상기 GPS 정보를 포함한 감시 정보를 전송하는 것을 특징으로 하는 가공 송배전 선로 감시장치.
- 제1항에 있어서,상기 센서 모듈은 송배전 선로나 선로에 설치된 애자의 열화상태에 대한 영상을 획득하기 위한 적외선 카메라, 또는 송배전 선로의 상태나 주변의 현장에 대한 영상을 획득하기 위한 디지털 카메라를 포함하고,상기 카메라가 촬영한 영상에 대한 정보가 상기 감시 정보에 포함되는 것을 특징으로 하는 가공 송배전 선로 감시장치.
- 제1항에 있어서,상기 제1무선모듈은 WiFi 통신 방식의 RF 신호와 데이터를 처리하기 위한 모듈이며, 상기 제2무선모듈은 지그비, 블루투스, 또는 NFC 통신 방식의 RF 신호와 데이터를 처리하기 위한 모듈인 것을 특징으로 하는 가공 송배전 선로 감시장치.
- 제1항에 있어서,상기 측면부에 형성된 제2 복수의 다이버시티 안테나를 이용해 이동통신 기지국과 통신하여 인터넷 상의 시스템으로 상기 감시 정보를 전송하기 위한 다이버시티 방식의 이동통신모듈을 더 포함하는 것을 특징으로 하는 가공 송배전 선로 감시장치.
- 제4항에 있어서,상기 가공 송배전 선로 감시장치가 설치되는 환경에 따라 상기 이동통신모듈을 선택하여 동작시키거나, 상기 안테나 스위치 절체를 제어하고 상기 제1무선모듈 또는 상기 제2무선모듈 중 어느 하나를 선택하여 동작시키기 위한 것을 특징으로 하는 가공 송배전 선로 감시장치.
- 제1항에 있어서,상기 제어부는 상기 복수의 지향성 안테나를 통해 수신되는 RF 신호의 세기, 트래픽량, 또는 비트에러를 분석하여 설정된 기준값 이하이면 상기 제1무선모듈 또는 상기 제2무선모듈 중 동작 중인 무선모듈의 동작을 중지시키고 다른 무선모듈을 동작시키는 것을 특징으로 하는 가공 송배전 선로 감시장치.
- 제1항에 있어서,가공 송배전 선로와 비접촉식으로 설치된 자기코어를 이용해 자기유도 변류기(Current Transformer)형으로 자가발전하여 상기 감시장치에 전원을 공급하기 위한 전원공급장치를 더 포함하는 것을 특징으로 하는 가공 송배전 선로 감시장치.
- 제1항에 있어서,가공 송배전 선로에 공급되고 있는 전력을 이용해 미리 일정 전력량을 저장하기 위한 배터리 또는 슈퍼커패시터를 더 포함하고,선로 장애 발생 시에, 상기 배터리 또는 슈퍼커패시터의 전력을 이용해 상기 가공 송배전 선로 감시장치가 동작하며, 상기 제어부는 상기 제1무선모듈 보다 적은 전력으로 동작하는 상기 제2무선모듈을 동작시키는 것을 특징으로 하는 가공 송배전 선로 감시장치.
- 제2항에 있어서,선로 장애 발생 시에, 상기 제어부는 상기 가공 송배전 선로의 운전상태에 대한 정보, 상기 주변환경상태에 대한 정보, 및 상기 카메라가 촬영한 영상에 대한 정보 중 미리 선택이 설정되어 있는 일부 정보만을 상기 감시 정보에 포함시켜 상기 제1무선모듈 보다 적은 전력으로 동작하는 상기 제2무선모듈을 통해 해당 감시 정보를 전송하는 것을 특징으로 하는 가공 송배전 선로 감시장치.
- 제1항에 있어서,상기 가공 송배전 선로의 운전상태에 대한 정보는, 가공 송배전 선로의 운전전류, 선로 온도, 또는 고장 전류에 대한 정보를 포함하며,상기 주변환경상태에 대한 정보는, 가공 송배전 선로의 선로 기울기, 선로 뒤틀림, 풍향, 풍속, 수목 접근, 산불 화재, 대기온도, 또는 습도에 대한 정보를 포함하는 것을 특징으로 하는 가공 송배전 선로 감시장치.
- 가공 송배전 선로에 설치되는 가공 송배전 선로 감시장치를 이용한 가공 송배전 선로 감시방법에 있어서,상기 가공 송배전 선로 감시장치는, 가공 송배전 선로가 관통하는 본체와 상기 선로가 통과하는 상기 본체의 양끝을 커버하는 측면부를 포함하고,상기 본체 내부에서, GPS 모듈을 이용하여 상기 측면부에 형성된 복수의 다이버시티 안테나를 이용해 GPS 위성과 통신하여 GPS 정보를 생성하는 단계;센서를 이용하여 가공 송배전 선로의 운전상태 또는 주변환경상태에 대한 상태 정보를 수집하는 단계; 및상기 측면부에 형성된 복수의 지향성 안테나를 이용해 가공 송배전 선로에 설치되는 다른 가공 송배전 선로 감시장치와 통신하기 위해, 안테나 스위치의 절체를 제어해, 제1무선모듈의 동작 시 상기 복수의 지향성 안테나를 상기 제1무선모듈과 연결시키며, 제2무선모듈의 동작 시 상기 복수의 지향성 안테나를 상기 제2무선모듈과 연결시키는 단계를 포함하고,상기 제1무선모듈 또는 상기 제2무선모듈과 연결된 상기 복수의 지향성 안테나를 통해 상기 상태 정보와 상기 GPS 정보를 포함한 감시 정보를 전송하는 것을 특징으로 하는 가공 송배전 선로 감시방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013127654/28A RU2545343C1 (ru) | 2012-01-31 | 2012-09-11 | Устройство контроля воздушной линии передачи и распределения электроэнергии с выборочным переключением коммуникационной схемы направленных антенн с малыми потерями |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120009346A KR101192015B1 (ko) | 2012-01-31 | 2012-01-31 | 저손실 복수 방향 안테나의 선택적 통신 방식 스위칭을 적용하는 가공 송배전 선로 감시장치 |
KR10-2012-0009346 | 2012-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013115449A1 true WO2013115449A1 (ko) | 2013-08-08 |
Family
ID=47288167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/007282 WO2013115449A1 (ko) | 2012-01-31 | 2012-09-11 | 저손실 복수 방향 안테나의 선택적 통신 방식 스위칭을 적용하는 가공 송배전 선로 감시장치 |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR101192015B1 (ko) |
RU (1) | RU2545343C1 (ko) |
WO (1) | WO2013115449A1 (ko) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104301426A (zh) * | 2014-10-27 | 2015-01-21 | 国家电网公司 | 一种输电线路在线监控系统的无线通信系统 |
CN104316839A (zh) * | 2014-11-07 | 2015-01-28 | 国网辽宁省电力有限公司鞍山供电公司 | 一种电力设备及输电线路故障综合在线监测系统 |
CN104407199A (zh) * | 2014-12-01 | 2015-03-11 | 国网上海市电力公司 | 一种接地线电流超标自动报警定位系统 |
CN110865268A (zh) * | 2019-12-03 | 2020-03-06 | 广东电网有限责任公司 | 低土壤电阻率地区输电杆塔雷击跳闸率测试方法 |
CN110865270A (zh) * | 2019-12-03 | 2020-03-06 | 广东电网有限责任公司 | 雷击下220kV输电线路反击跳闸率测试方法 |
CN110865265A (zh) * | 2019-12-03 | 2020-03-06 | 广东电网有限责任公司 | 一种山地地区输电线路反击跳闸率测试方法 |
CN110865266A (zh) * | 2019-12-03 | 2020-03-06 | 广东电网有限责任公司 | 一种十字型接地装置的输电线路耐雷水平试验方法 |
CN110865271A (zh) * | 2019-12-03 | 2020-03-06 | 广东电网有限责任公司 | 计及线路土壤电阻率差异化的雷击跳闸率试验方法 |
CN110865267A (zh) * | 2019-12-03 | 2020-03-06 | 广东电网有限责任公司 | 一种110kV输电线路绕击跳闸率的评估方法 |
CN110865269A (zh) * | 2019-12-03 | 2020-03-06 | 广东电网有限责任公司 | 一种基于粒子群算法的输电线路绕击跳闸率测评方法 |
CN110907773A (zh) * | 2019-12-03 | 2020-03-24 | 广东电网有限责任公司 | 高土壤电阻率地区雷击输电线路耐雷水平测评方法 |
CN114594346A (zh) * | 2022-05-09 | 2022-06-07 | 宁波天安智能电网科技股份有限公司 | 一种带电线路的近端测量装置及开关柜 |
CN116882982A (zh) * | 2023-09-08 | 2023-10-13 | 山东云小兵信息技术有限公司 | 一种基于人工智能的线损分析方法及装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200484713Y1 (ko) * | 2017-05-18 | 2017-11-15 | 모루기술 주식회사 | 무선 토크 측정 장치 |
KR102645581B1 (ko) * | 2022-11-03 | 2024-03-08 | (주)이맥이노베이션 | 에너지 하베스팅 기능을 갖는 자체 발광 항공장애 표시구, 및 그 동작 방법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007093342A (ja) * | 2005-09-28 | 2007-04-12 | Yokogawa Electric Corp | 送電線の振動検出装置 |
KR20080040062A (ko) * | 2006-11-02 | 2008-05-08 | 오종택 | 애드혹 센서 네트워크를 이용한 송전선로 상태 감시 장치및 그 방법 |
KR100925046B1 (ko) * | 2007-11-15 | 2009-11-03 | 현대중공업 주식회사 | 송수신 안테나가 구비된 송전선로 감시장치 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4777381A (en) * | 1983-04-13 | 1988-10-11 | Fernandes Roosevelt A | Electrical power line and substation monitoring apparatus and systems |
US5029101A (en) * | 1987-09-18 | 1991-07-02 | Fernandes Roosevelt A | High voltage conductor mounted line powered monitoring system |
RU2222858C1 (ru) * | 2002-10-31 | 2004-01-27 | Механошин Борис Иосифович | Устройство для дистанционного контроля состояния провода воздушной линии электропередачи (варианты) |
AU2002952426A0 (en) * | 2002-11-01 | 2002-11-21 | Fault Detectors Pty Ltd. | A sensor system and method |
WO2004068151A1 (en) * | 2003-01-31 | 2004-08-12 | Fmc Tech Limited | A monitoring device for a medium voltage overhead line |
US6924766B2 (en) * | 2003-04-03 | 2005-08-02 | Kyocera Wireless Corp. | Wireless telephone antenna diversity system |
US7282944B2 (en) * | 2003-07-25 | 2007-10-16 | Power Measurement, Ltd. | Body capacitance electric field powered device for high voltage lines |
US20080077336A1 (en) * | 2006-09-25 | 2008-03-27 | Roosevelt Fernandes | Power line universal monitor |
KR100925045B1 (ko) * | 2007-11-15 | 2009-11-03 | 현대중공업 주식회사 | 균등전원이 공급되는 송전선로 감시장치 |
-
2012
- 2012-01-31 KR KR1020120009346A patent/KR101192015B1/ko not_active IP Right Cessation
- 2012-09-11 RU RU2013127654/28A patent/RU2545343C1/ru not_active IP Right Cessation
- 2012-09-11 WO PCT/KR2012/007282 patent/WO2013115449A1/ko active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007093342A (ja) * | 2005-09-28 | 2007-04-12 | Yokogawa Electric Corp | 送電線の振動検出装置 |
KR20080040062A (ko) * | 2006-11-02 | 2008-05-08 | 오종택 | 애드혹 센서 네트워크를 이용한 송전선로 상태 감시 장치및 그 방법 |
KR100925046B1 (ko) * | 2007-11-15 | 2009-11-03 | 현대중공업 주식회사 | 송수신 안테나가 구비된 송전선로 감시장치 |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104301426A (zh) * | 2014-10-27 | 2015-01-21 | 国家电网公司 | 一种输电线路在线监控系统的无线通信系统 |
CN104316839A (zh) * | 2014-11-07 | 2015-01-28 | 国网辽宁省电力有限公司鞍山供电公司 | 一种电力设备及输电线路故障综合在线监测系统 |
CN104407199A (zh) * | 2014-12-01 | 2015-03-11 | 国网上海市电力公司 | 一种接地线电流超标自动报警定位系统 |
CN110865268A (zh) * | 2019-12-03 | 2020-03-06 | 广东电网有限责任公司 | 低土壤电阻率地区输电杆塔雷击跳闸率测试方法 |
CN110865270A (zh) * | 2019-12-03 | 2020-03-06 | 广东电网有限责任公司 | 雷击下220kV输电线路反击跳闸率测试方法 |
CN110865265A (zh) * | 2019-12-03 | 2020-03-06 | 广东电网有限责任公司 | 一种山地地区输电线路反击跳闸率测试方法 |
CN110865266A (zh) * | 2019-12-03 | 2020-03-06 | 广东电网有限责任公司 | 一种十字型接地装置的输电线路耐雷水平试验方法 |
CN110865271A (zh) * | 2019-12-03 | 2020-03-06 | 广东电网有限责任公司 | 计及线路土壤电阻率差异化的雷击跳闸率试验方法 |
CN110865267A (zh) * | 2019-12-03 | 2020-03-06 | 广东电网有限责任公司 | 一种110kV输电线路绕击跳闸率的评估方法 |
CN110865269A (zh) * | 2019-12-03 | 2020-03-06 | 广东电网有限责任公司 | 一种基于粒子群算法的输电线路绕击跳闸率测评方法 |
CN110907773A (zh) * | 2019-12-03 | 2020-03-24 | 广东电网有限责任公司 | 高土壤电阻率地区雷击输电线路耐雷水平测评方法 |
CN110865268B (zh) * | 2019-12-03 | 2021-07-13 | 广东电网有限责任公司 | 低土壤电阻率地区输电杆塔雷击跳闸率测试方法 |
CN110865271B (zh) * | 2019-12-03 | 2021-07-13 | 广东电网有限责任公司 | 计及线路土壤电阻率差异化的雷击跳闸率试验方法 |
CN110865265B (zh) * | 2019-12-03 | 2021-07-13 | 广东电网有限责任公司 | 一种山地地区输电线路反击跳闸率测试方法 |
CN110865270B (zh) * | 2019-12-03 | 2021-07-13 | 广东电网有限责任公司 | 雷击下220kV输电线路反击跳闸率测试方法 |
CN110865267B (zh) * | 2019-12-03 | 2021-07-13 | 广东电网有限责任公司 | 一种110kV输电线路绕击跳闸率的评估方法 |
CN110865269B (zh) * | 2019-12-03 | 2021-07-13 | 广东电网有限责任公司 | 一种基于粒子群算法的输电线路绕击跳闸率测评方法 |
CN110907773B (zh) * | 2019-12-03 | 2021-07-13 | 广东电网有限责任公司 | 高土壤电阻率地区雷击输电线路耐雷水平测评方法 |
CN110865266B (zh) * | 2019-12-03 | 2021-07-13 | 广东电网有限责任公司 | 一种十字型接地装置的输电线路耐雷水平试验方法 |
CN114594346A (zh) * | 2022-05-09 | 2022-06-07 | 宁波天安智能电网科技股份有限公司 | 一种带电线路的近端测量装置及开关柜 |
CN116882982A (zh) * | 2023-09-08 | 2023-10-13 | 山东云小兵信息技术有限公司 | 一种基于人工智能的线损分析方法及装置 |
CN116882982B (zh) * | 2023-09-08 | 2023-12-01 | 山东云小兵信息技术有限公司 | 一种基于人工智能的线损分析方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
KR101192015B1 (ko) | 2012-10-16 |
RU2545343C1 (ru) | 2015-03-27 |
RU2013127654A (ru) | 2015-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013115449A1 (ko) | 저손실 복수 방향 안테나의 선택적 통신 방식 스위칭을 적용하는 가공 송배전 선로 감시장치 | |
EP3119122B1 (en) | Control system and method for wireless base station and related device | |
CA2534937C (en) | Integrated power and communication device | |
US20120083289A1 (en) | Method, device and system for determining position information | |
WO2018159944A1 (ko) | 무선 통신 시스템에서 네트워크 환경 관리 방법 및 장치 | |
CN202713632U (zh) | 一种基于wifi的无人驾驶飞行器多通道无线链路系统 | |
KR20200017209A (ko) | Tvws를 이용한 고속 무선망 서비스 시스템 | |
CN110969562A (zh) | 智慧工地管理监控系统 | |
CN204498226U (zh) | 一种无线高清网络摄像装置 | |
CN201491184U (zh) | 机载无线宽带通讯系统 | |
CN117177202A (zh) | 一种基于Lora通信的自然条件恶劣地区电力设备环境监测系统和方法 | |
CN205754871U (zh) | 机场场面无线通信系统和无线终端 | |
CN109719731B (zh) | 隧道机器人复合通信系统 | |
CN105873086A (zh) | 机场场面无线通信系统和无线终端 | |
CN110839293B (zh) | 一种输电线路状态监测代理装置 | |
CN103402075A (zh) | 基于无线传输技术的海岛输电线视频监控和视频巡检系统 | |
CN100593298C (zh) | 无线通信方法、无线通信终端容纳装置和无线通信终端 | |
JP2010220086A (ja) | 端局装置および監視システム | |
CN111629382A (zh) | 一种地下电站用无线局域网系统 | |
CN206226619U (zh) | 水域动态监控共基站系统 | |
CN113784304B (zh) | 一种通信系统 | |
WO2013081292A1 (ko) | 컨테이너 터미널의 와이파이 시스템 및 그의 무선 접속 방법 | |
CN114172559A (zh) | 一种自组网传输设备 | |
US11355017B2 (en) | Antenna mast, method and installation for the provision of flight data and computer program | |
JP5161142B2 (ja) | 端局装置および監視システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12867221 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013127654 Country of ref document: RU Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12867221 Country of ref document: EP Kind code of ref document: A1 |