WO2013115325A1 - Process and equipment for producing sintered magnet - Google Patents

Process and equipment for producing sintered magnet Download PDF

Info

Publication number
WO2013115325A1
WO2013115325A1 PCT/JP2013/052235 JP2013052235W WO2013115325A1 WO 2013115325 A1 WO2013115325 A1 WO 2013115325A1 JP 2013052235 W JP2013052235 W JP 2013052235W WO 2013115325 A1 WO2013115325 A1 WO 2013115325A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered magnet
magnet
mold
temperature
sintered
Prior art date
Application number
PCT/JP2013/052235
Other languages
French (fr)
Japanese (ja)
Inventor
道大 迫
真一郎 藤川
明彦 池田
宏樹 松苗
崇 古屋
雅基 斉藤
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2013556499A priority Critical patent/JP6079643B2/en
Publication of WO2013115325A1 publication Critical patent/WO2013115325A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/003Apparatus, e.g. furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • B22F2301/355Rare Earth - Fe intermetallic alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Definitions

  • the present invention relates to a method and apparatus for manufacturing a sintered magnet used for a high performance motor or the like.
  • Nd—Fe—B based sintered magnets are often used for permanent magnets used in motors of hybrid vehicles and the like, and since they have excellent magnetic properties, demand is expected to increase in the future.
  • a conventional method of manufacturing a Nd—Fe—B based sintered magnet is to dissolve raw materials such as Nd, Fe, and B in a vacuum or an argon gas atmosphere, and then use the jaw crusher and jet mill to roughen the raw materials. Grind and pulverize. Then, the pulverized raw material is formed into a predetermined shape in a magnetic field, sintered and heat-treated, cut and ground using a slicer and a grinding machine, and subjected to surface treatment and inspection, and then magnetized.
  • Neomag Co., Ltd. “Neodymium Magnet Manufacturing Method Series (6)” [online], November 2009, Internet ⁇ URL: http: // www. neomag. jp / mailmagazines / 20091 / letter200911. php>
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a sintered magnet manufacturing method and manufacturing apparatus that improve the material yield of the sintered magnet.
  • the method for manufacturing a sintered magnet according to the present invention that achieves the above object is to first press-mold magnet powder constituting an R—Fe—B based sintered magnet (where R is a rare earth element containing Nd as a main component).
  • R is a rare earth element containing Nd as a main component.
  • a green compact formed by compressing magnet powder is formed.
  • the green compact is heated to a predetermined sintering temperature and sintered to form a sintered magnet.
  • the sintered magnet is heated at a temperature not exceeding the sintering temperature and the sintered magnet is pressed. Thus, the dimensions of the sintered magnet are corrected.
  • the sintered magnet manufacturing apparatus includes press-molding magnet powder constituting an R—Fe—B based sintered magnet (where R is a rare earth element mainly composed of Nd). Is provided with a dimension correction part for correcting the dimension of the sintered magnet formed by heating the green compact formed by compressing the magnet powder to a predetermined sintering temperature.
  • the dimensional correction section includes a first mold and a second mold that perform press molding on the sintered magnet relatively close to and away from each other, and a heating section that heats the sintered magnet. The sintered magnet is heated to a temperature not exceeding the sintering temperature by the part and the sintered magnet is pressure-molded by the first mold and the second mold to correct the size of the sintered magnet. .
  • the sintered magnet is heated to a temperature not exceeding the sintering temperature by the heating unit, and the sintered magnet is added by the first mold and the second mold.
  • the dimension of the sintered magnet is corrected by pressure forming. Therefore, by eliminating or reducing the cutting process and grinding process, the machining cost necessary for these processes can be eliminated or reduced, and the material yield of the sintered magnet can be improved.
  • FIG. 1 is a flowchart showing a method of manufacturing a sintered magnet according to the first embodiment of the present invention.
  • the R—Fe—B based sintered magnet is made of an alloy as a raw material (step S1), coarsely pulverized (step S2), finely pulverized (step S3), molded in a magnetic field (step S4), and sintered.
  • Manufacture is performed through the steps of sizing (step S5), dimensional correction (step S6), aging heat treatment (step S7), surface treatment (step S8), inspection (step S9), and magnetization (step S10).
  • the raw material alloy is manufactured by a strip casting method or other melting method in a vacuum or an inert gas atmosphere (step S1).
  • the sintered magnet according to the present embodiment has Nd 2 Fe 14 B as a main phase, and Dy, Tb, Pr, or the like is added to Nd in the sintered magnet using a grain boundary diffusion treatment or the like.
  • the coercive force of the sintered magnet can be improved by adding the rare earth metal to Nd.
  • the produced raw material alloy is coarsely pulverized using a jaw crusher, a brown mill, or the like until the particle size is about several hundred ⁇ m (step S2).
  • the coarsely pulverized alloy is finely pulverized to a particle size of about 3 to 5 ⁇ m by a jet mill or the like (step S3).
  • the finely pulverized magnetic material is molded in a magnetic field to obtain a green compact (step S4).
  • the green compact can be formed using various methods such as a parallel magnetic field forming method and an orthogonal magnetic field forming method.
  • the steps from the production of the raw material alloy to the forming in the magnetic field are collectively referred to as green compact forming.
  • the green compact molded in the magnetic field is sintered in an inert gas atmosphere such as vacuum or argon gas to obtain an R—Fe—B based sintered magnet (step S5).
  • Sintering depends on the material composition of the green compact, the pulverization method, and the particle size, but is performed by heating the green compact to 1000 to 1100 ° C. and placing it in a furnace for about 8 to 12 hours, for example.
  • FIGS. 2 and 3 are conceptual diagrams for explaining a method for manufacturing a sintered magnet according to the first embodiment of the present invention.
  • a press machine is used to form a work by an upper mold 13 (corresponding to the first mold) and a lower mold 14 (corresponding to the second mold). Press molding is performed on W, and dimensional correction of the sintered magnet deformed in the sintering process is performed by maintaining the press for about 30 seconds to 10 minutes, for example, while heating to 620 ° C. to 1000 ° C. (step S6). Details are given below.
  • aging heat treatment is performed in a vacuum or an inert gas atmosphere to adjust the coercive force of the sintered magnet (step S7).
  • the aging heat treatment is performed in a two-step heat treatment, for example, for about 5 to 10 hours, in which the sintered magnet is heated to about 900 ° C. and placed in a furnace and then heated to about 500 ° C.
  • dimension correction of a sintered magnet may be performed at a temperature higher than aging heat treatment. Therefore, it is preferable to carry out dimensional correction of the sintered magnet before the aging heat treatment. This is because the temperature at which the heat treatment is performed may change the structure of the magnet and may affect the magnet characteristics.
  • step S8 surface treatment is performed by Ni plating or the like in order to prevent rust and corrosion of the sintered magnet.
  • the magnetic properties, appearance, dimensions, etc. are inspected (step S9), and finally a sintered magnet is manufactured by applying a pulse magnetic field or a static magnetic field and magnetizing (step S10). ).
  • FIG. 4 is a cross-sectional view showing a dimension correcting device used in a dimension correcting step according to the method for manufacturing a sintered magnet according to the first embodiment
  • FIG. 5 is a side view showing the same dimension correcting device
  • FIG. It is a top view which shows the inside of the storage container in an apparatus.
  • the sintered magnet manufacturing apparatus according to the present embodiment includes the sintered magnet size correcting apparatus shown in FIG.
  • the sintered magnet dimensional correction device has a press device body 200 including an upper slide 201 and a bolster 202 that can be relatively close to each other and a die set 100 that can be attached to and detached from the press device body 200.
  • the die set 100 includes an upper die 11, a lower die 12 disposed to face the upper die 11, an adjustment mechanism 40 for aligning the upper die 11 and the lower die 12, and a workpiece W (target for dimension correction processing).
  • a storage container 20 that is placed on the lower die 11 and provided with a correction die for correcting the dimensions of the sintered magnet.
  • the containment vessel 20 includes a heating device 21 (corresponding to a heating unit) for heating the sintered magnet, a globe 22 used for moving the sintered magnet, and a piping duct for evacuating the chamber of the containment vessel 20. 23, a cooling plate 24 that cools the sintered magnet after dimension correction, and a cooling pipe 25 that circulates cooling water or the like through the cooling plate 24.
  • a heating device 21 corresponding to a heating unit
  • a globe 22 used for moving the sintered magnet
  • a piping duct for evacuating the chamber of the containment vessel 20.
  • a cooling plate 24 that cools the sintered magnet after dimension correction
  • a cooling pipe 25 that circulates cooling water or the like through the cooling plate 24.
  • the press apparatus main body 200 includes an upper slide 201 and a bolster 202 that can be moved closer to and away from each other in the vertical direction in FIG.
  • the upper slide 201 moves close to and away from the bolster 202 by hydraulic pressure.
  • the upper slide 201 has a crankpin 17 that detachably fixes the upper die 11 of the die set 100
  • the bolster 202 has a crankpin 17 that detachably fixes the lower die 12 of the die set 100.
  • the bolster 202 is provided with a knockout bar 203 that allows the sintered magnet, whose dimensions have been corrected, to be taken out of the correction mold, so that it can be raised and lowered.
  • the straightening mold is composed of an upper mold 13, a lower mold 14, and an outer peripheral mold 15.
  • the knockout bar 203 and the lower mold 14 constitute a knockout mechanism for taking out the workpiece W.
  • reference numeral 204 denotes a hydraulic cylinder that drives the knockout bar 203 up and down.
  • the die set 100 is fixed to the press apparatus main body 200 by fixing the upper die 11 to the upper slide 201 by the crankpin 17 and fixing the lower die 12 to the bolster 202 by the crankpin 17.
  • the upper die 11 is interlocked with the operation of the upper slide 201 of the press apparatus main body 200.
  • the adjusting mechanism 40 includes a guide rod 41 provided on the lower die 12 and a guide cylinder 42 that holds the guide rod 41 provided on the upper die 12 in a slidable manner. As the guide rod 41 slides in the guide cylinder, the upper die 11 and the lower die 12 are aligned. In the present embodiment, even when the upper die 11 is farthest from the lower die 12, the guide rod 41 is not detached from the guide cylinder 42, thereby ensuring the positional accuracy.
  • the upper die 11 and the lower die 12 are fixed to the press apparatus main body 200 by the crank pins 17. Therefore, the die set 100 can be easily attached to and removed from the press apparatus main body 200 only by removing the crankpin 17 as shown by the broken line in FIG.
  • the containment vessel 20 is placed on the lower die 12 in order to process a sintered magnet to be processed in a vacuum or a low oxygen atmosphere.
  • the piping duct 23 is connected to a vacuum pump (not shown) in order to form a room in a vacuum or low oxygen atmosphere.
  • a valve (not shown) is provided in the middle of the piping path, and an inert gas such as nitrogen gas can be filled into the storage container by switching the path with the valve after the inside of the storage container is evacuated.
  • the oxygen concentration in the room is preferably 10 ppm or less in a Nd—Fe—B sintered magnet, and 1 ppm or less when a metal such as Dy, Tb, or Pr is added to Nd. This is because Dy, Tb, and Pr are more easily oxidized than Nd.
  • a correction die attached to the upper die 11 and the lower die 12 in a vacuum state is inserted into the containment vessel from the vertical direction in FIG.
  • the lower mold 14 is fixed and installed by a fixing jig 16, and the upper mold 13 is fixed and installed by the fixing jig 16 on the upper die 11 in the same manner as the lower mold 14.
  • an outer peripheral mold 15 surrounding a sintered magnet to be processed is attached to the lower mold 14 by engaging with a bowl shape at the tip of the lower mold 14.
  • the storage container 20 is provided with a magnet insertion / removal mechanism for placing a sintered magnet input from the outside on the lower mold and replacing the workpiece W with the next workpiece W after correcting the dimensions.
  • the magnet loading / unloading mechanism is configured by providing a glove 22 formed in the shape of a hand from the side surface of the storage container in FIG.
  • the globe 22 is made of, for example, a material such as natural rubber, has excellent stretchability, and enables quick insertion and removal of the sintered magnet. The work by the glove 22 is performed after the press device main body 200 is stopped in advance so that the operator is not injured.
  • the storage container 20 is configured so that an operator can easily see the inside state by forming one upper part of the side wall of the storage container 20 on an inclined surface.
  • the heating device 21 is composed of a heater or the like, and is provided in the vicinity of the upper mold 13, the lower mold 14, and the outer mold 15, and is formed in a hollow shape so that the upper mold 13 can slide up and down. .
  • the structure of the heating apparatus 21 is not specifically limited, An electric heater, a far-infrared heater, etc. can be mentioned.
  • the cooling plate 24 is disposed inside the containment vessel.
  • a water jacket is formed inside the cooling plate 24, and the water guided from the cooling pipe 25 cools the cooling plate 24, thereby forcibly cooling the workpiece W placed on the cooling plate 24.
  • the heated workpiece is naturally cooled, but by using the cooling plate 24, the cooling time can be shortened and the machining time can be reduced.
  • the work W is placed on the mold 14 in the storage container, and at the same time, the magnet is housed in the storage container in addition to the work W placed on the mold 14.
  • the outer peripheral mold 15 does not pressurize the sintered magnet in consideration of deformation of the sintered magnet, but may be configured to pressurize when correcting the dimension of the side surface.
  • the containment vessel 20 is sealed, and the containment vessel 20 is evacuated or filled with an inert gas, and the molds 13, 14, 15 and the workpiece W are moved to about 620 ° C. to 1000 ° C. using the heating device 21. Heat to.
  • the temperature of the workpiece W reaches the set temperature
  • the upper slide 201 is lowered while maintaining the temperature
  • the upper die 13 is lowered accordingly, and the workpiece W is pressure-molded in the space in the correction die.
  • the set temperature may be maintained by circulating the gas in the storage container when the storage container is filled with an inert gas.
  • the pressure applied in the press working is pressurized at a pressure that does not reach the yield stress while considering that the yield stress of the magnet is reduced by heating the sintered magnet.
  • the heating temperature is, for example, 620 ° C. or higher, and is performed at 1000 ° C. or lower, which is the sintering temperature at which the structure in the sintered magnet changes. Even in the range of 620 ° C. to 1000 ° C., it is more preferable to carry out at 800 ° C. or less in consideration of preventing thermal deformation and oxidation of the sintered magnet itself.
  • the press device 200 When the press working is completed, the workpiece W is taken out by the knockout mechanism, the press device 200 is stopped, and the hand is inserted into the glove 22 provided. In this state, the processed workpiece W is placed on the cooling plate 24 using the globe 22 and cooled, and the unprocessed workpiece W is newly placed on the mold 14. When the movement of the workpiece W by the globe 22 is completed, the hand is removed from the globe 22 and the press device main body 200 is started again.
  • heating, pressing, taking out of the processed workpiece W, attaching and cooling of the unprocessed workpiece W are repeated, and when all the workpieces W have been processed, the storage container 20 is heated. Is opened and the processed workpiece W is taken out.
  • the sintered magnet put into the dimensional correction device is in a state of being thermally deformed by being heated to several hundred degrees or thousand degrees in the sintering process, which is the previous process of this process.
  • a large machining allowance is provided for the sintered magnet.
  • a large amount of so-called rare earth metals such as Dy and Tb contained in the sintered magnet are ground, resulting in poor material yield.
  • the inside of the containment vessel is heated using the heating device 21, and the sintered magnet is heated to a temperature not exceeding the sintering temperature so that the structure of the sintered magnet does not change.
  • Pressure molding is performed.
  • the sintered magnet is fragile in a temperature state such as room temperature and is difficult to withstand the press working, but in this embodiment, the pressure molding is performed in a state of being heated to such an extent that the sintered magnet is not denatured. Therefore, the size of the sintered magnet can be corrected by pressure molding without destroying the sintered magnet.
  • the machining cost of the sintered magnet can be reduced and the material yield can be improved.
  • the inside of the containment vessel is filled with a vacuum or an inert gas by a vacuum pump, it is possible to prevent the magnet characteristics of the sintered magnet from deteriorating.
  • conventional grinding or machining may be performed according to the shape of the magnet to be formed. Even in that case, the material yield can be improved by performing the dimensional correction according to the present embodiment.
  • a device that performs warm press processing such as a conventional hot press is not provided with an alignment adjustment mechanism between the upper slide and the bolster. Therefore, when correcting the dimensions, it is necessary to perform molding in a state where the upper and lower molds are fitted to the outer peripheral mold, and so-called setup work for installing the mold is required.
  • the slide mechanism between the upper die 11 and the lower die 12 can be improved by the adjusting mechanism 40 having the guide rod 41 and the guide cylinder 42. Therefore, it is not necessary to perform a setup operation for installing a mold as in the conventional hot press apparatus, and continuous press working can be performed only by exchanging the work, thereby shortening the working time and improving workability.
  • the die set 100 can be easily detached from the press apparatus main body 200 as shown by the broken line in FIG. Therefore, the maintenance of the storage container 20 positioned inside the die set 100 can be performed outside the press apparatus main body 200, and the press apparatus main body 200 can be used for other purposes.
  • the workpiece W can be extracted without extracting the entire mold from the storage container 20. Further, by pulling out while sandwiching between the upper mold 13 and the lower mold 14, it is possible to prevent chipping and breakage of the work corner.
  • the storage container 20 is provided with a glove 22 so that the workpiece W can be loaded and unloaded via the globe 22, the workpiece W can be loaded into the molds 13, 14, and 15 without opening the storage container 20. Removal can be performed.
  • the cooling plate 24 is arranged in the storage container 20 so as to forcibly cool the pressed sintered magnet, the workpiece W can be taken out of the storage container 20 earlier than natural cooling. . Further, since only the workpiece W is cooled and the dies 13, 14, and 15 are not cooled, the time for raising the dies 13, 14, and 15 to the temperature required for press working can be shortened, and the next workpiece can be shortened in a shorter time. W can be processed.
  • a sintered magnet is formed by heating and compacting a green compact with a magnet material.
  • the sintered magnet is heated at a temperature not exceeding the sintering temperature, and pressure molding is performed on the sintered magnet by the upper mold 13 and the lower mold 14. Therefore, the brittleness of the green compact can be improved and processing can be performed without destroying the sintered magnet, the machining cost can be reduced, and the material yield can be improved.
  • the sintered magnet is heated to 800 ° C. or lower and subjected to pressure molding at the time of dimensional correction, not only the material yield is improved, but also the thermal deformation and oxidation of the sintered magnet itself are prevented. You can also.
  • the sintered magnet is configured to be pressure-molded in a low oxygen atmosphere, it is possible to suppress the oxidation of the sintered magnet and to prevent deterioration of the magnet characteristics.
  • the sintered magnet is configured to be pressure-molded at a pressure less than the yield stress, dimension correction can be performed so that the sintered magnet does not break while considering the change in yield stress due to heating.
  • FIG. 7 is a side view showing a dimensional correction apparatus according to the second embodiment
  • FIG. 8 is a plan view showing the inside of a storage container in the dimensional correction apparatus
  • FIG. 9 shows a sintered magnet as a work placed on a mold.
  • FIG. 10 is an explanatory view for explaining a state in which the sintered magnet is positioned on the lower mold.
  • symbol uses the same code
  • the shape of the globe 22 is provided on one of the side walls of the storage container 20, and the embodiment in which the work W is manually attached to and removed from the molds 13, 14, and 15 has been described. Not.
  • the sintered magnets may be automatically installed on the molds 13, 14 and 15 by using a rotary table 26 as shown in FIG.
  • the rotary table 26 is provided with seven positioning fixing jigs 26A to 26G for holding and placing the workpiece W at the installation position of the lower mold 14.
  • the positioning and fixing jigs 26A to 26G constitute a space for moving the pressing pin 28 and the pressing pin 28 for holding and releasing the workpiece W in order to place the workpiece W on the lower mold 14 from the state in which the workpiece W is held.
  • a drive cylinder 29 is provided.
  • Dimensional correction of the sintered magnet according to the second embodiment is performed as follows. First, the workpiece W is placed on the mold 14 in the storage container, and at the same time, a predetermined number, for example, six workpieces W are set on the positioning and fixing jigs 26B to 26G of the rotary table 26. Next, the storage container 20 is sealed, evacuated or filled with an inert gas, the holding of the work W by the pressing pin 28 is released, and the work W is placed on the mold 14.
  • the dies 13, 14, 15 and the workpiece W are heated to a predetermined temperature, and press working is performed in a state where the temperature is maintained.
  • the workpiece W is taken out by the knockout bar 203 and the mold 14. Then, it is fixed again by the pressing pins 28 of the positioning fixing jigs 26A to 26G of the rotary table 26, and the rotary table 26 rotates to set the next workpiece W on the mold 14.
  • the processed workpiece W is cooled by the cooling gas being injected by the positioning fixture 26G in which the cooling nozzle 27 of the rotary table 26 is set. Thereafter, heating, pressing, removing, setting and cooling of the next workpiece W are repeated, and when all the workpieces W have been processed, the storage container 20 is opened and the processed workpiece W is taken out.
  • the rotary table 26 is used to automatically insert and remove the workpiece W from the mold. Therefore, similarly to the first embodiment, the work W can be inserted and removed from the molds 13, 14, and 15 without opening the storage container 20, and workability can be improved. With this configuration, it is possible to remove and replace the sintered magnet that has been automatically input without requiring an operator in the containment vessel.
  • the heating device 21 is disposed inside the containment vessel 20 so that the pressure around the sintered magnet does not exceed the sintering temperature of the sintered magnet at the time of pressure molding with the mold 13 and the mold 14.
  • the present invention is not limited to this.
  • the sintered magnet sinters the mold 13 and / or the mold 14 by heating the mold 13 and / or the mold 14 itself by incorporating a structure such as a heater in the mold 13 and / or the mold 14.
  • the sintered magnet may be heated by heating to a temperature not exceeding the temperature.
  • a magnet test piece was fixed to a test piece of a sintered magnet (thickness: 3.8 mm, cross-section length: 6 mm ⁇ 6 mm) using an upper slide, a bolster, and an outer peripheral mold in the same manner as in FIG.
  • the temperature was raised from room temperature while applying pressure, and the amount of deformation of the test piece was measured.
  • the sintered magnet metal according to Experimental Example 1 is composed of Fe 70%, Nd 22%, B 0.4%, Dy 2.5%, and Pr 2.5%.
  • Table 1 is a table of the molding temperature and deformation rate (%) when the sintered magnet test piece according to this Experimental Example 1 is heated and pressed, and FIG. 11 is a graph of Table 1.
  • about molding temperature it measured by making a thermocouple contact the side surface of the magnet test piece at the time of pressurization.
  • FIG. 12 shows the experimental result of the amount of warpage of the sintered magnet when it is spaced apart from one end of the test piece in the horizontal direction
  • FIG. 13 shows the warpage of the sintered magnet before and after the execution of the method according to the above embodiment. The amount is shown as a histogram.
  • the width of the amount of warpage of the sintered magnet test piece could be suppressed from 0.093 mm to 0.027 mm to about 30% before the execution. all right. Further, as can be seen from FIG. 13, it was found that the amount of warping of the test piece after the method according to the above embodiment is less than the upper limit standard, so that it is not necessary to perform grinding or the like separately.
  • the machining cost required for the sintered magnet can be reduced and the material yield of rare earth metals such as Dy and Tb can be improved.

Abstract

[Problem] To provide a process for producing a sintered magnet, said process reducing the machining allowance in working a sintered magnet and thus enhancing the materials yield. [Solution] This process includes: a forming step of press-forming a magnet powder, which is to constitute an R-Fe-B sintered magnet (wherein R is a rare earth element component comprising Nd as the main component), to form a green compact through the compression of the magnet powder; a sintering step of heating the green compact to a prescribed temperature to sinter the green compact and thus form a sintered magnet; and a dimension correction step of pressure-molding the sintered magnet with the sintered magnet heated to a temperature not exceeding the sintering temperature to correct the dimensions of the sintered magnet.

Description

焼結磁石の製造方法および製造装置Method and apparatus for manufacturing sintered magnet
 本発明は、高性能モーター等に使用される焼結磁石の製造方法および製造装置に関する。 The present invention relates to a method and apparatus for manufacturing a sintered magnet used for a high performance motor or the like.
 ハイブリッド自動車のモーター等に使用される永久磁石にはNd-Fe-B系の焼結磁石が多く用いられ、優れた磁気特性を有することから今後も需要が増大すると考えられている。 Nd—Fe—B based sintered magnets are often used for permanent magnets used in motors of hybrid vehicles and the like, and since they have excellent magnetic properties, demand is expected to increase in the future.
 従来のNd-Fe-B系焼結磁石の製造方法は、Nd,Fe、B等の原料を真空中もしくはアルゴンガス雰囲気中で溶解し、ジョークラッシャー及びジェットミル等を用いて溶解した原料を粗粉砕、微粉砕する。そして粉砕した原料を磁界中で所定の形状に成形して焼結及び熱処理し、スライサーや研削盤を用いて切断加工や研削加工を行い、表面処理、検査を行った後に着磁させている。 A conventional method of manufacturing a Nd—Fe—B based sintered magnet is to dissolve raw materials such as Nd, Fe, and B in a vacuum or an argon gas atmosphere, and then use the jaw crusher and jet mill to roughen the raw materials. Grind and pulverize. Then, the pulverized raw material is formed into a predetermined shape in a magnetic field, sintered and heat-treated, cut and ground using a slicer and a grinding machine, and subjected to surface treatment and inspection, and then magnetized.
 焼結磁石は脆くて塑性変形させることが困難であるため、製品を所望の形状にするためには焼結後に研削・切削加工等の機械加工を行うのが一般的であり、焼結磁石には研削等のために多くの機械加工代を設ける必要があるのが現状である。しかし、Nd-Fe-B系焼結磁石にはNd以外にもDyやTb等の希土類金属が使用されており、DyやTb等の希土類金属の価格は昨今高騰している。そのため、DyやTb等の希土類金属を使用する焼結磁石の材料歩留まりを向上させることは重要な課題となっている。 Since sintered magnets are brittle and difficult to be plastically deformed, it is common to perform machining such as grinding and cutting after sintering in order to make a product into a desired shape. Currently, it is necessary to provide a lot of machining allowance for grinding or the like. However, in addition to Nd, rare earth metals such as Dy and Tb are used for Nd—Fe—B based sintered magnets, and the prices of rare earth metals such as Dy and Tb have recently increased. Therefore, improving the material yield of sintered magnets using rare earth metals such as Dy and Tb is an important issue.
 本発明は、上述した課題を解決するためになされたものであり、焼結磁石の材料歩留まりを向上させた焼結磁石の製造方法及び製造装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a sintered magnet manufacturing method and manufacturing apparatus that improve the material yield of the sintered magnet.
 上記目的を達成する本発明に係る焼結磁石の製造方法は、まずR-Fe-B系焼結磁石(RはNdを主成分とする希土類元素)を構成する磁石粉末をプレス成形することによって磁石粉末が圧縮して形成された圧粉体を成形する。次に、所定の焼結温度に圧粉体を加熱して焼結させることによって焼結磁石を成形し、焼結温度を超えない温度で焼結磁石を加熱するとともに焼結磁石を加圧成形することによって焼結磁石の寸法を矯正することを特徴とする。 The method for manufacturing a sintered magnet according to the present invention that achieves the above object is to first press-mold magnet powder constituting an R—Fe—B based sintered magnet (where R is a rare earth element containing Nd as a main component). A green compact formed by compressing magnet powder is formed. Next, the green compact is heated to a predetermined sintering temperature and sintered to form a sintered magnet. The sintered magnet is heated at a temperature not exceeding the sintering temperature and the sintered magnet is pressed. Thus, the dimensions of the sintered magnet are corrected.
 また、上記目的を達成する本発明に係る焼結磁石の製造装置は、R-Fe-B系焼結磁石(RはNdを主成分とする希土類元素)を構成する磁石粉末をプレス成形することによって磁石粉末が圧縮して形成された圧粉体を所定の焼結温度に加熱することで形成された焼結磁石の寸法を矯正する寸法矯正部を備えている。本発明において、寸法矯正部は、相対的に接近離間して焼結磁石にプレス成形を行う第1の型及び第2の型と、焼結磁石を加熱する加熱部と、を有し、加熱部によって焼結磁石を焼結温度を超えない温度に加熱するとともに第1の型及び第2の型によって焼結磁石を加圧成形することによって焼結磁石の寸法矯正を行うことを特徴とする。 In addition, the sintered magnet manufacturing apparatus according to the present invention that achieves the above object includes press-molding magnet powder constituting an R—Fe—B based sintered magnet (where R is a rare earth element mainly composed of Nd). Is provided with a dimension correction part for correcting the dimension of the sintered magnet formed by heating the green compact formed by compressing the magnet powder to a predetermined sintering temperature. In the present invention, the dimensional correction section includes a first mold and a second mold that perform press molding on the sintered magnet relatively close to and away from each other, and a heating section that heats the sintered magnet. The sintered magnet is heated to a temperature not exceeding the sintering temperature by the part and the sintered magnet is pressure-molded by the first mold and the second mold to correct the size of the sintered magnet. .
 本発明に係る焼結磁石の製造方法及び製造装置によれば、加熱部によって焼結温度を超えない温度に焼結磁石を加熱するとともに第1の型及び第2の型によって焼結磁石を加圧成形して焼結磁石の寸法矯正を行っている。そのため、切断加工や研削加工を廃止又は削減することによってこれらの加工に必要な機械加工代を廃止又は削減でき、焼結磁石の材料歩留まりを向上させることができる。 According to the method and apparatus for manufacturing a sintered magnet according to the present invention, the sintered magnet is heated to a temperature not exceeding the sintering temperature by the heating unit, and the sintered magnet is added by the first mold and the second mold. The dimension of the sintered magnet is corrected by pressure forming. Therefore, by eliminating or reducing the cutting process and grinding process, the machining cost necessary for these processes can be eliminated or reduced, and the material yield of the sintered magnet can be improved.
本発明の第1実施形態に係る焼結磁石の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the sintered magnet which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る焼結磁石の製造方法の説明に供する概念図である。It is a conceptual diagram with which it uses for description of the manufacturing method of the sintered magnet which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る焼結磁石の製造方法の説明に供する概念図である。It is a conceptual diagram with which it uses for description of the manufacturing method of the sintered magnet which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る焼結磁石の製造方法に使用する寸法矯正装置を示す断面図である。It is sectional drawing which shows the dimension correction apparatus used for the manufacturing method of the sintered magnet which concerns on 1st Embodiment of this invention. 同寸法矯正装置を示す側面図である。It is a side view which shows the same dimension correction apparatus. 同寸法矯正装置の格納容器の内部を示す平面図である。It is a top view which shows the inside of the storage container of the same dimension correction apparatus. 本発明の第2実施形態に係る焼結磁石の製造方法に使用する寸法矯正装置を示す側面図である。It is a side view which shows the dimension correction apparatus used for the manufacturing method of the sintered magnet which concerns on 2nd Embodiment of this invention. 同寸法矯正装置の格納容器の内部を示す平面図である。It is a top view which shows the inside of the storage container of the same dimension correction apparatus. 同寸法矯正装置において焼結磁石の投入及び取り出しを行うテーブルに設けられた位置決め固定治具について示す平面図である。It is a top view shown about the positioning fixing jig provided in the table which inserts and takes out a sintered magnet in the same dimension correction apparatus. 同位置決め固定治具に挟持された焼結磁石を金型上に載置する様子を示す説明図である。It is explanatory drawing which shows a mode that the sintered magnet clamped by the positioning fixing jig is mounted on a metal mold | die. 本発明の実験例1に係る焼結磁石試験片の加熱による温度変化に伴う降伏応力と変形率の実験結果を示すグラフである。It is a graph which shows the experimental result of the yield stress and deformation rate accompanying the temperature change by the heating of the sintered magnet test piece which concerns on Experimental example 1 of this invention. 本発明の実験例2に係る寸法矯正前後での焼結磁石試験片の一端部からの水平方向の変位に伴う反り量の実験結果を示すグラフである。It is a graph which shows the experimental result of the curvature amount accompanying the horizontal displacement from the one end part of the sintered magnet test piece before and behind the dimension correction which concerns on Experimental example 2 of this invention. 図12のヒストグラムである。It is a histogram of FIG.
 以下、添付した図面を参照しながら、本発明の実施の形態を説明する。なお、以下の記載は特許請求の範囲に記載される技術的範囲や用語の意義を限定するものではない。また、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, the following description does not limit the technical scope and terms used in the claims. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may differ from actual ratios.
 (第1実施形態)
 図1は本発明の第1実施形態に係る焼結磁石の製造方法を示すフローチャートである。本実施形態においてR-Fe-B系の焼結磁石は、原料となる合金の作製(ステップS1)、粗粉砕(ステップS2)、微粉砕(ステップS3)、磁場中成形(ステップS4)、焼結(ステップS5)、寸法矯正(ステップS6)、時効熱処理(ステップS7)、表面処理(ステップS8)、検査(ステップS9)、及び着磁(ステップS10)の工程を経ることによって製造される。
(First embodiment)
FIG. 1 is a flowchart showing a method of manufacturing a sintered magnet according to the first embodiment of the present invention. In this embodiment, the R—Fe—B based sintered magnet is made of an alloy as a raw material (step S1), coarsely pulverized (step S2), finely pulverized (step S3), molded in a magnetic field (step S4), and sintered. Manufacture is performed through the steps of sizing (step S5), dimensional correction (step S6), aging heat treatment (step S7), surface treatment (step S8), inspection (step S9), and magnetization (step S10).
 原料合金の作製は、真空又は不活性ガス雰囲気中においてストリップキャスティング法又はその他の溶解法によって行われる(ステップS1)。本実施形態に係る焼結磁石はNd2Fe14Bを主相とし、この中のNdに対して粒界拡散処理等を用いてDyやTb、Pr等を添加している。Ndに上記希土類金属を添加することによって焼結磁石の保磁力を向上させることができる。 The raw material alloy is manufactured by a strip casting method or other melting method in a vacuum or an inert gas atmosphere (step S1). The sintered magnet according to the present embodiment has Nd 2 Fe 14 B as a main phase, and Dy, Tb, Pr, or the like is added to Nd in the sintered magnet using a grain boundary diffusion treatment or the like. The coercive force of the sintered magnet can be improved by adding the rare earth metal to Nd.
 作製された原料合金はジョークラッシャー又はブラウンミル等を用いて粒径数百μm程度になるまで粗粉砕される(ステップS2)。粗粉砕された合金はジェットミル等によって粒径3~5μm程度にまで微粉砕される(ステップS3)。微粉砕工程においては、特に粒径を3~4μmにすると保磁力を高くすることができるため好ましい。 The produced raw material alloy is coarsely pulverized using a jaw crusher, a brown mill, or the like until the particle size is about several hundred μm (step S2). The coarsely pulverized alloy is finely pulverized to a particle size of about 3 to 5 μm by a jet mill or the like (step S3). In the pulverization step, it is preferable to make the particle diameter 3 to 4 μm because coercive force can be increased.
 次に微粉砕された磁性材料を磁場中で成形し、圧粉体を得る(ステップS4)。圧粉体は平行磁界成形法や直交磁界成形法などの種々の方法を用いて行なうことができる。なお、本実施形態において原料合金の作製から磁場中成形までの工程を包括して圧粉体成形と称する。 Next, the finely pulverized magnetic material is molded in a magnetic field to obtain a green compact (step S4). The green compact can be formed using various methods such as a parallel magnetic field forming method and an orthogonal magnetic field forming method. In the present embodiment, the steps from the production of the raw material alloy to the forming in the magnetic field are collectively referred to as green compact forming.
 磁場中で成形された圧粉体は真空又はアルゴンガスなどの不活性ガス雰囲気中で焼結され、R-Fe-B系焼結磁石が得られる(ステップS5)。焼結は、圧粉体の材料組成や粉砕方法、粒径によって前後するが、圧粉体を1000~1100℃に加熱しつつ炉内に例えば8~12時間程度載置して行われる。 The green compact molded in the magnetic field is sintered in an inert gas atmosphere such as vacuum or argon gas to obtain an R—Fe—B based sintered magnet (step S5). Sintering depends on the material composition of the green compact, the pulverization method, and the particle size, but is performed by heating the green compact to 1000 to 1100 ° C. and placing it in a furnace for about 8 to 12 hours, for example.
 図2及び図3は本発明の第1実施形態に係る焼結磁石の製造方法の説明に供する概念図である。寸法矯正工程では概して図2、図3に示すようにプレス装置を用いて金型である上金型13(第1の型に相当)と下金型14(第2の型に相当)によってワークWにプレス成形を行い、焼結工程で変形した焼結磁石の寸法矯正を例えば、620℃~1000℃に加熱しつつ例えば30秒~10分程度プレスを維持することによって行う(ステップS6)。詳細は以下に行う。 FIGS. 2 and 3 are conceptual diagrams for explaining a method for manufacturing a sintered magnet according to the first embodiment of the present invention. In the dimensional correction process, as shown in FIGS. 2 and 3, generally, a press machine is used to form a work by an upper mold 13 (corresponding to the first mold) and a lower mold 14 (corresponding to the second mold). Press molding is performed on W, and dimensional correction of the sintered magnet deformed in the sintering process is performed by maintaining the press for about 30 seconds to 10 minutes, for example, while heating to 620 ° C. to 1000 ° C. (step S6). Details are given below.
 寸法矯正後には真空又は不活性ガス雰囲気中で時効熱処理を行って焼結磁石の保磁力を調整する(ステップS7)。時効熱処理は一般的に、焼結磁石を900℃程度に加熱しつつ炉内に載置し、その後500℃程度に加熱するという2段階の熱処理を例えば5~10時間程度行う。このように焼結磁石の寸法矯正は時効熱処理よりも高い温度にて実施される場合がある。そのため、時効熱処理の前に、焼結磁石の寸法矯正を実施するのが好ましい。熱処理を行う温度は磁石の組織を変えるおそれがあり、磁石特性に影響を与える可能性があるためである。 After the dimension correction, aging heat treatment is performed in a vacuum or an inert gas atmosphere to adjust the coercive force of the sintered magnet (step S7). In general, the aging heat treatment is performed in a two-step heat treatment, for example, for about 5 to 10 hours, in which the sintered magnet is heated to about 900 ° C. and placed in a furnace and then heated to about 500 ° C. Thus, dimension correction of a sintered magnet may be performed at a temperature higher than aging heat treatment. Therefore, it is preferable to carry out dimensional correction of the sintered magnet before the aging heat treatment. This is because the temperature at which the heat treatment is performed may change the structure of the magnet and may affect the magnet characteristics.
 時効熱処理後には焼結磁石の錆びや腐食を防止するためにNiめっきなどによって表面処理を行う(ステップS8)。表面処理が終わったら、磁気特性や外観、及び寸法などの検査を行い(ステップS9)、最後にパルス磁界や静的磁界を印加して着磁することによって焼結磁石が製造される(ステップS10)。 After the aging heat treatment, surface treatment is performed by Ni plating or the like in order to prevent rust and corrosion of the sintered magnet (step S8). When the surface treatment is finished, the magnetic properties, appearance, dimensions, etc. are inspected (step S9), and finally a sintered magnet is manufactured by applying a pulse magnetic field or a static magnetic field and magnetizing (step S10). ).
 次に本実施形態に係る焼結磁石の製造方法における寸法矯正工程を具現化した寸法矯正装置について詳述する。図4は第1実施形態に係る焼結磁石の製造方法に係る寸法矯正工程にて使用する寸法矯正装置を示す断面図、図5は同寸法矯正装置を示す側面図、図6は同寸法矯正装置中の格納容器の内部を示す平面図である。本実施形態に係る焼結磁石の製造装置は、図4に示す焼結磁石の寸法矯正装置を含むものである。 Next, a dimensional correction apparatus that embodies the dimensional correction step in the method for manufacturing a sintered magnet according to the present embodiment will be described in detail. FIG. 4 is a cross-sectional view showing a dimension correcting device used in a dimension correcting step according to the method for manufacturing a sintered magnet according to the first embodiment, FIG. 5 is a side view showing the same dimension correcting device, and FIG. It is a top view which shows the inside of the storage container in an apparatus. The sintered magnet manufacturing apparatus according to the present embodiment includes the sintered magnet size correcting apparatus shown in FIG.
 焼結磁石の寸法矯正装置は、相対的に近接離間可能な上スライド201およびボルスタ202を備えるプレス装置本体200と、プレス装置本体200に取り付け及び取り外しが可能なダイセット100とを有する。ダイセット100は、上ダイ11と、上ダイ11に対向して配置される下ダイ12と、上ダイ11と下ダイ12の位置合わせを行なう調節機構40と、ワークW(寸法矯正加工の対象となる焼結磁石)の寸法を矯正する矯正金型が設けられ下ダイ11に載置される格納容器20と、を有する。 The sintered magnet dimensional correction device has a press device body 200 including an upper slide 201 and a bolster 202 that can be relatively close to each other and a die set 100 that can be attached to and detached from the press device body 200. The die set 100 includes an upper die 11, a lower die 12 disposed to face the upper die 11, an adjustment mechanism 40 for aligning the upper die 11 and the lower die 12, and a workpiece W (target for dimension correction processing). And a storage container 20 that is placed on the lower die 11 and provided with a correction die for correcting the dimensions of the sintered magnet.
 格納容器20は、焼結磁石を加熱する加熱装置21(加熱部に相当)と、焼結磁石の移動作業の際に用いるグローブ22と、格納容器20の室内を真空等にするための配管ダクト23と、寸法矯正後の焼結磁石を冷却する冷却プレート24と、冷却プレート24に冷却水などを循環させる冷却パイプ25と、を有する。 The containment vessel 20 includes a heating device 21 (corresponding to a heating unit) for heating the sintered magnet, a globe 22 used for moving the sintered magnet, and a piping duct for evacuating the chamber of the containment vessel 20. 23, a cooling plate 24 that cools the sintered magnet after dimension correction, and a cooling pipe 25 that circulates cooling water or the like through the cooling plate 24.
 プレス装置本体200は、図4における上下方向に相対的に近接離間可能な上スライド201とボルスタ202とを有する。図示例では、上スライド201が油圧によってボルスタ202に対して近接離間移動する。上スライド201は、ダイセット100の上ダイ11を着脱自在に固定するクランクピン17を有し、ボルスタ202は、ダイセット100の下ダイ12を着脱自在に固定するクランクピン17を有する。ボルスタ202には、寸法を矯正した後の焼結磁石を矯正金型から取り出すノックアウトバー203が昇降自在に設けられている。 The press apparatus main body 200 includes an upper slide 201 and a bolster 202 that can be moved closer to and away from each other in the vertical direction in FIG. In the illustrated example, the upper slide 201 moves close to and away from the bolster 202 by hydraulic pressure. The upper slide 201 has a crankpin 17 that detachably fixes the upper die 11 of the die set 100, and the bolster 202 has a crankpin 17 that detachably fixes the lower die 12 of the die set 100. The bolster 202 is provided with a knockout bar 203 that allows the sintered magnet, whose dimensions have been corrected, to be taken out of the correction mold, so that it can be raised and lowered.
 矯正金型は上金型13、下金型14、外周金型15から構成される。ノックアウトバー203及び下金型14によってワークWを取り出すノックアウト機構が構成される。図中符合204は、ノックアウトバー203を昇降駆動する油圧シリンダを示している。 The straightening mold is composed of an upper mold 13, a lower mold 14, and an outer peripheral mold 15. The knockout bar 203 and the lower mold 14 constitute a knockout mechanism for taking out the workpiece W. In the figure, reference numeral 204 denotes a hydraulic cylinder that drives the knockout bar 203 up and down.
 ダイセット100は、上ダイ11をクランクピン17によって上スライド201に固定し、下ダイ12をクランクピン17によってボルスタ202に固定することによって、プレス装置本体200に固定される。上ダイ11は、プレス装置本体200の上スライド201の動作に連動する。 The die set 100 is fixed to the press apparatus main body 200 by fixing the upper die 11 to the upper slide 201 by the crankpin 17 and fixing the lower die 12 to the bolster 202 by the crankpin 17. The upper die 11 is interlocked with the operation of the upper slide 201 of the press apparatus main body 200.
 調節機構40は、下ダイ12に設けられたガイドロッド41と、上ダイ12に設けられたガイドロッド41をスライド移動自在に保持するガイドシリンダ42と、を有する。ガイドロッド41がガイドシリンダ内を摺動することによって、上ダイ11と下ダイ12との位置合わせが行なわれる。本実施形態において、上ダイ11が下ダイ12から最も離間した場合でもガイドロッド41はガイドシリンダ42から外れることはなく、これによって位置精度が確保される。 The adjusting mechanism 40 includes a guide rod 41 provided on the lower die 12 and a guide cylinder 42 that holds the guide rod 41 provided on the upper die 12 in a slidable manner. As the guide rod 41 slides in the guide cylinder, the upper die 11 and the lower die 12 are aligned. In the present embodiment, even when the upper die 11 is farthest from the lower die 12, the guide rod 41 is not detached from the guide cylinder 42, thereby ensuring the positional accuracy.
 また、上ダイ11及び下ダイ12はクランクピン17によってプレス装置本体200に固定される。そのため、クランクピン17の取り外しのみによって図5の破線に示すようにダイセット100のプレス装置本体200への取り付け及び取り外しを容易に行うことができる。 Further, the upper die 11 and the lower die 12 are fixed to the press apparatus main body 200 by the crank pins 17. Therefore, the die set 100 can be easily attached to and removed from the press apparatus main body 200 only by removing the crankpin 17 as shown by the broken line in FIG.
 格納容器20は加工対象となる焼結磁石を真空又は低酸素雰囲気において加工するために下ダイ12に載置されている。配管ダクト23は室内を真空又は低酸素雰囲気に形成するために真空ポンプ(不図示)に接続されている。配管経路の途中にはバルブ(不図示)が設けられ、格納容器内を真空にした後にバルブによって経路を切り替えることによって窒素ガス等の不活性ガスを格納容器内に充填することができる。室内の酸素濃度はNd-Fe-Bの焼結磁石において10ppm以下、NdにDyやTb、Pr等の金属を添加した場合は1ppm以下とすることが望ましい。Ndに比べてDyやTb、Prの方が酸化されやすいためである。 The containment vessel 20 is placed on the lower die 12 in order to process a sintered magnet to be processed in a vacuum or a low oxygen atmosphere. The piping duct 23 is connected to a vacuum pump (not shown) in order to form a room in a vacuum or low oxygen atmosphere. A valve (not shown) is provided in the middle of the piping path, and an inert gas such as nitrogen gas can be filled into the storage container by switching the path with the valve after the inside of the storage container is evacuated. The oxygen concentration in the room is preferably 10 ppm or less in a Nd—Fe—B sintered magnet, and 1 ppm or less when a metal such as Dy, Tb, or Pr is added to Nd. This is because Dy, Tb, and Pr are more easily oxidized than Nd.
 格納容器内部には真空状態を保持した状態で上ダイ11及び下ダイ12に取り付けられた矯正金型が図4における上下方向から格納容器内部に挿通している。下ダイ12からは下金型14が固定治具16によって固定されて設置され、上ダイ11には上金型13が下金型14と同様に固定治具16によって固定されて設置されている。また、図4において下金型14の上には加工対象となる焼結磁石を包囲する外周金型15が下金型14先端の鍔形状と係合することによって下金型14に取り付けられる。 In the containment vessel, a correction die attached to the upper die 11 and the lower die 12 in a vacuum state is inserted into the containment vessel from the vertical direction in FIG. From the lower die 12, the lower mold 14 is fixed and installed by a fixing jig 16, and the upper mold 13 is fixed and installed by the fixing jig 16 on the upper die 11 in the same manner as the lower mold 14. . Further, in FIG. 4, an outer peripheral mold 15 surrounding a sintered magnet to be processed is attached to the lower mold 14 by engaging with a bowl shape at the tip of the lower mold 14.
 また、格納容器20には外部から投入された焼結磁石を下金型上に載置し、寸法矯正後に次のワークWとの取替えを行う磁石投入取り外し機構が設けられている。 Also, the storage container 20 is provided with a magnet insertion / removal mechanism for placing a sintered magnet input from the outside on the lower mold and replacing the workpiece W with the next workpiece W after correcting the dimensions.
 本実施形態において磁石投入取り外し機構は図5における格納容器側面から内部空間に手の形に成形されたグローブ22が設けられることによって構成される。グローブ22は例えば天然ゴム等の材料から構成されており、伸縮性に優れ、焼結磁石の速やかな投入及び取り外しを可能にする。グローブ22による作業は作業者が怪我をしないように予めプレス装置本体200を停止させてから行う。 In the present embodiment, the magnet loading / unloading mechanism is configured by providing a glove 22 formed in the shape of a hand from the side surface of the storage container in FIG. The globe 22 is made of, for example, a material such as natural rubber, has excellent stretchability, and enables quick insertion and removal of the sintered magnet. The work by the glove 22 is performed after the press device main body 200 is stopped in advance so that the operator is not injured.
 また、格納容器20には図5に示すように、格納容器20の側壁の一つの上部が傾斜面に形成されることによって作業者が内部の様子を容易に視認できるように構成されている。 Further, as shown in FIG. 5, the storage container 20 is configured so that an operator can easily see the inside state by forming one upper part of the side wall of the storage container 20 on an inclined surface.
 加熱装置21はヒーター等から構成され、上金型13、下金型14、及び外周金型15の付近に設けられ、上金型13が上下にスライド移動できるように中空状に形成されている。加熱装置21の構成は特に限定されることはないが、電熱ヒーターや遠赤外線ヒーター等を挙げることができる。 The heating device 21 is composed of a heater or the like, and is provided in the vicinity of the upper mold 13, the lower mold 14, and the outer mold 15, and is formed in a hollow shape so that the upper mold 13 can slide up and down. . Although the structure of the heating apparatus 21 is not specifically limited, An electric heater, a far-infrared heater, etc. can be mentioned.
 また、冷却プレート24は格納容器内部に配置される。冷却プレート24の内部にはウォータージャケットが形成され、冷却パイプ25から導かれた水が冷却プレート24を冷却することによって、冷却プレート24に載置されたワークWを強制冷却する。従来は加熱後のワークを自然に冷却させていたが、冷却プレート24を使用することによって冷却時間を短縮し、加工時間の低減に寄与できる。 Further, the cooling plate 24 is disposed inside the containment vessel. A water jacket is formed inside the cooling plate 24, and the water guided from the cooling pipe 25 cools the cooling plate 24, thereby forcibly cooling the workpiece W placed on the cooling plate 24. Conventionally, the heated workpiece is naturally cooled, but by using the cooling plate 24, the cooling time can be shortened and the machining time can be reduced.
 次に本実施形態に係る焼結磁石の製造方法の寸法矯正工程について説明する。まずワークWを格納容器内の金型14へ載置すると同時に金型14に載置したワークW以外にも磁石を格納容器内に収容しておく。外周金型15は焼結磁石の変形を考慮して焼結磁石を加圧していないが、側面の寸法矯正を行う場合には加圧するように構成してもよい。 Next, the dimensional correction process of the sintered magnet manufacturing method according to this embodiment will be described. First, the work W is placed on the mold 14 in the storage container, and at the same time, the magnet is housed in the storage container in addition to the work W placed on the mold 14. The outer peripheral mold 15 does not pressurize the sintered magnet in consideration of deformation of the sintered magnet, but may be configured to pressurize when correcting the dimension of the side surface.
 次に格納容器20を密閉し、格納容器20に対して真空引き、又は不活性ガスの充填を行い、加熱装置21を用いて金型13、14、15及びワークWを約620℃~1000℃に加熱する。ワークWの温度が設定温度に達したら、温度を保持した状態で上スライド201を下降させるとそれに伴って上金型13が下降し、矯正金型内の空間においてワークWが加圧成形される。設定温度の保持は格納容器内に不活性ガスを充填した場合には格納容器内のガスを循環させることによって行ってもよい。プレス加工にて付加する圧力は焼結磁石の加熱によって磁石の降伏応力が低下することを考慮しつつ、降伏応力に達しない圧力で加圧する。 Next, the containment vessel 20 is sealed, and the containment vessel 20 is evacuated or filled with an inert gas, and the molds 13, 14, 15 and the workpiece W are moved to about 620 ° C. to 1000 ° C. using the heating device 21. Heat to. When the temperature of the workpiece W reaches the set temperature, when the upper slide 201 is lowered while maintaining the temperature, the upper die 13 is lowered accordingly, and the workpiece W is pressure-molded in the space in the correction die. . The set temperature may be maintained by circulating the gas in the storage container when the storage container is filled with an inert gas. The pressure applied in the press working is pressurized at a pressure that does not reach the yield stress while considering that the yield stress of the magnet is reduced by heating the sintered magnet.
 また、加熱温度は例えば620℃以上であり、焼結磁石中の組織が変化する焼結温度である1000℃以下において行う。なお、620℃~1000℃の範囲の中であっても、焼結磁石自身の熱変形や酸化の促進を防止することを考慮して800℃以下で実施することがより好ましい。 The heating temperature is, for example, 620 ° C. or higher, and is performed at 1000 ° C. or lower, which is the sintering temperature at which the structure in the sintered magnet changes. Even in the range of 620 ° C. to 1000 ° C., it is more preferable to carry out at 800 ° C. or less in consideration of preventing thermal deformation and oxidation of the sintered magnet itself.
 プレス加工が終了したらノックアウト機構によってワークWを取り出し、プレス装置200を停止させてから備え付けのグローブ22に手を挿入する。その状態でグローブ22を使用して加工後のワークWを冷却プレート24上に載置して冷却し、金型14に未加工のワークWを新たに載置する。グローブ22によるワークWの移動が完了したら手をグローブ22から抜いてプレス装置本体200を再び起動させる。 When the press working is completed, the workpiece W is taken out by the knockout mechanism, the press device 200 is stopped, and the hand is inserted into the glove 22 provided. In this state, the processed workpiece W is placed on the cooling plate 24 using the globe 22 and cooled, and the unprocessed workpiece W is newly placed on the mold 14. When the movement of the workpiece W by the globe 22 is completed, the hand is removed from the globe 22 and the press device main body 200 is started again.
 以降は上記金型13、14、15及びワークWの加熱、プレス加工、加工後のワークWの取り出し、未加工ワークWの取り付け及び冷却を繰り返し、全てのワークWの加工が終了したら格納容器20を開放し、加工済みワークWを取り出す。 Thereafter, heating, pressing, taking out of the processed workpiece W, attaching and cooling of the unprocessed workpiece W are repeated, and when all the workpieces W have been processed, the storage container 20 is heated. Is opened and the processed workpiece W is taken out.
 寸法矯正装置に投入された焼結磁石は本工程の前工程である焼結工程において数百度又は千度程度に加熱されて熱変形した状態となっている。このように熱変形により焼結磁石に生じた歪を平面度等の所定の寸法精度を満たすようにするために、従来は焼結磁石に多くの機械加工代を設けることによって対応している。しかし、これでは焼結磁石に含まれるDyやTb等のいわゆる希土類金属を多く研削してしまうこととなり、材料歩留まりが悪い。 The sintered magnet put into the dimensional correction device is in a state of being thermally deformed by being heated to several hundred degrees or thousand degrees in the sintering process, which is the previous process of this process. In order to satisfy the predetermined dimensional accuracy such as flatness with respect to the distortion generated in the sintered magnet due to thermal deformation in this manner, conventionally, a large machining allowance is provided for the sintered magnet. However, in this case, a large amount of so-called rare earth metals such as Dy and Tb contained in the sintered magnet are ground, resulting in poor material yield.
 これに対して本実施形態においては、加熱装置21を用いて格納容器内を加熱し、焼結磁石の組織が変化しないように焼結温度を超えない温度にまで加熱した状態で焼結磁石に加圧成形を行なっている。焼結磁石は室温等の温度状態においては脆く、プレス加工に耐えることは困難であるが、本実施形態においては焼結磁石が変性しない程度にまで加熱した状態で加圧成形を行なっている。そのため、焼結磁石を破壊させることなく加圧成形することによって焼結磁石の寸法を矯正することができる。 In contrast, in the present embodiment, the inside of the containment vessel is heated using the heating device 21, and the sintered magnet is heated to a temperature not exceeding the sintering temperature so that the structure of the sintered magnet does not change. Pressure molding is performed. The sintered magnet is fragile in a temperature state such as room temperature and is difficult to withstand the press working, but in this embodiment, the pressure molding is performed in a state of being heated to such an extent that the sintered magnet is not denatured. Therefore, the size of the sintered magnet can be corrected by pressure molding without destroying the sintered magnet.
 このように焼結磁石を温間で加圧成形して寸法を矯正することによって、焼結磁石の機械加工代を削減でき、材料歩留まりを向上させることができる。 Thus, by pressing the sintered magnet warm and correcting the dimensions, the machining cost of the sintered magnet can be reduced and the material yield can be improved.
 また、格納容器内は真空ポンプによって真空又は不活性ガスが充填された状態となっているため、焼結磁石の磁石特性が低下することを防止できる。なお、粒界拡散処理によるDyやPr等の添加は寸法矯正の実施後に行ってもよい。また、図1における時効熱処理の後には成形する磁石の形状に応じて従来の研削加工、又は機械加工を行ってもよい。その場合であっても本実施形態に係る寸法矯正を実施することによって材料歩留まりを向上させることができる。 Moreover, since the inside of the containment vessel is filled with a vacuum or an inert gas by a vacuum pump, it is possible to prevent the magnet characteristics of the sintered magnet from deteriorating. In addition, you may perform addition of Dy, Pr, etc. by grain boundary diffusion processing after implementation of dimension correction. In addition, after the aging heat treatment in FIG. 1, conventional grinding or machining may be performed according to the shape of the magnet to be formed. Even in that case, the material yield can be improved by performing the dimensional correction according to the present embodiment.
 また、従来のホットプレスのような温間でプレス加工を行う装置は、上スライドとボルスタとの位置合わせ調節機構が設けられていない。そのため、寸法矯正の際には外周金型に上下の金型を嵌合させた状態で成形を行う必要があり、金型設置のためのいわゆる段取り作業が必要となる。 In addition, a device that performs warm press processing such as a conventional hot press is not provided with an alignment adjustment mechanism between the upper slide and the bolster. Therefore, when correcting the dimensions, it is necessary to perform molding in a state where the upper and lower molds are fitted to the outer peripheral mold, and so-called setup work for installing the mold is required.
 これに対して本実施形態に係る焼結磁石の寸法矯正装置は、ガイドロッド41とガイドシリンダ42を有する調節機構40によって上ダイ11と下ダイ12とのスライド精度を向上させることができる。そのため、従来のホットプレス装置のように金型を設置する段取り作業を行う必要がなく、ワークの交換のみで連続プレス加工ができ、加工時間を短縮し、作業性を向上させることができる。 On the other hand, in the sintered magnet dimensional correction apparatus according to this embodiment, the slide mechanism between the upper die 11 and the lower die 12 can be improved by the adjusting mechanism 40 having the guide rod 41 and the guide cylinder 42. Therefore, it is not necessary to perform a setup operation for installing a mold as in the conventional hot press apparatus, and continuous press working can be performed only by exchanging the work, thereby shortening the working time and improving workability.
 また、ダイセット100は、クランクピン17の取り外しによって図5の破線に示すようにプレス装置本体200から容易に取り外すことができる。そのため、ダイセット100の内部に位置する格納容器20のメンテナンスがプレス装置本体200の外で行うことができ、プレス装置本体200は別の用途に使用することもできる。 Further, the die set 100 can be easily detached from the press apparatus main body 200 as shown by the broken line in FIG. Therefore, the maintenance of the storage container 20 positioned inside the die set 100 can be performed outside the press apparatus main body 200, and the press apparatus main body 200 can be used for other purposes.
 また、下金型14を可動させてワークWを抜き出すように構成することによって、格納容器20から金型ごと抜き出すことなくワークWを取り出すことができる。また、上金型13と下金型14で挟み込みながら抜き出すことで、ワーク角部に欠け破損が生じることを防止できる。 Also, by configuring the lower mold 14 to move and extract the workpiece W, the workpiece W can be extracted without extracting the entire mold from the storage container 20. Further, by pulling out while sandwiching between the upper mold 13 and the lower mold 14, it is possible to prevent chipping and breakage of the work corner.
 また、格納容器20にはグローブ22を設け、グローブ22を介してワークWの投入、取り出しができるよう構成したため、格納容器20を開放せずに金型13、14、15にワークWの投入及び取り出しを行うことができる。 Further, since the storage container 20 is provided with a glove 22 so that the workpiece W can be loaded and unloaded via the globe 22, the workpiece W can be loaded into the molds 13, 14, and 15 without opening the storage container 20. Removal can be performed.
 また、格納容器20には冷却プレート24を配置してプレス加工された焼結磁石を強制的に冷却するように構成したため、自然冷却に比べてワークWを格納容器20からより早く取り出すことができる。また、ワークWのみ冷却し、金型13、14、15は冷却されないため、金型13、14、15をプレス加工に必要な温度に昇温させる時間を短縮でき、より短時間で次のワークWを加工できる。 Further, since the cooling plate 24 is arranged in the storage container 20 so as to forcibly cool the pressed sintered magnet, the workpiece W can be taken out of the storage container 20 earlier than natural cooling. . Further, since only the workpiece W is cooled and the dies 13, 14, and 15 are not cooled, the time for raising the dies 13, 14, and 15 to the temperature required for press working can be shortened, and the next workpiece can be shortened in a shorter time. W can be processed.
 以上説明したように第1実施形態に係る焼結磁石の製造方法及び製造装置によれば、磁石材料を圧粉体を加熱して焼結させることによって焼結磁石を成形し、加熱装置21によって焼結温度を超えない温度にて焼結磁石を加熱するとともに上金型13及び下金型14によって焼結磁石に加圧成形を行っている。そのため、圧粉体の脆性を改善して焼結磁石を破壊せずに加工を行うことができ、機械加工代を削減して材料歩留まりを向上させることができる。 As described above, according to the method and apparatus for manufacturing a sintered magnet according to the first embodiment, a sintered magnet is formed by heating and compacting a green compact with a magnet material. The sintered magnet is heated at a temperature not exceeding the sintering temperature, and pressure molding is performed on the sintered magnet by the upper mold 13 and the lower mold 14. Therefore, the brittleness of the green compact can be improved and processing can be performed without destroying the sintered magnet, the machining cost can be reduced, and the material yield can be improved.
 また、寸法矯正の際には焼結磁石を800℃以下に加熱して加圧成形を行うようにしたため、材料歩留まりを向上させるだけでなく焼結磁石自身の熱変形や酸化の促進を防止することもできる。 In addition, since the sintered magnet is heated to 800 ° C. or lower and subjected to pressure molding at the time of dimensional correction, not only the material yield is improved, but also the thermal deformation and oxidation of the sintered magnet itself are prevented. You can also.
 また、焼結磁石は低酸素雰囲気中において加圧成形されるよう構成したため、焼結磁石の酸化を抑制し、磁石特性の低下を防止することができる。 In addition, since the sintered magnet is configured to be pressure-molded in a low oxygen atmosphere, it is possible to suppress the oxidation of the sintered magnet and to prevent deterioration of the magnet characteristics.
 また、焼結磁石は降伏応力に満たない圧力にて加圧成形されるよう構成したため、加熱による降伏応力の変化を考慮しつつ、焼結磁石が破断しないように寸法矯正を行うことができる。 In addition, since the sintered magnet is configured to be pressure-molded at a pressure less than the yield stress, dimension correction can be performed so that the sintered magnet does not break while considering the change in yield stress due to heating.
 (第2実施形態)
 図7は第2実施形態に係る寸法矯正装置を示す側面図、図8は同寸法矯正装置中の格納容器の内部を示す平面図、図9はワークである焼結磁石を金型上に載置する位置決め固定治具について示す平面図、図10は焼結磁石を下金型に位置決めする様子の説明に供する説明図である。なお、符号は第1実施形態と共通する構成は同一符号とし、第2実施形態に係る寸法矯正装置は、基本的に第1実施形態と同様であるため説明を省略する。
(Second Embodiment)
FIG. 7 is a side view showing a dimensional correction apparatus according to the second embodiment, FIG. 8 is a plan view showing the inside of a storage container in the dimensional correction apparatus, and FIG. 9 shows a sintered magnet as a work placed on a mold. FIG. 10 is an explanatory view for explaining a state in which the sintered magnet is positioned on the lower mold. In addition, the code | symbol uses the same code | symbol as the structure which is common in 1st Embodiment, and since the dimension correction apparatus which concerns on 2nd Embodiment is fundamentally the same as that of 1st Embodiment, description is abbreviate | omitted.
 第1実施形態では格納容器20の側壁の1つにグローブ22の形状が設けられ、金型13、14、15へ手動でワークWの取り付け及び取り外しを行う実施形態について説明したが、これに限定されない。焼結磁石の金型13、14、15への設置は図8に示すようなロータリーテーブル26を使用することによって自動で行ってもよい。 In the first embodiment, the shape of the globe 22 is provided on one of the side walls of the storage container 20, and the embodiment in which the work W is manually attached to and removed from the molds 13, 14, and 15 has been described. Not. The sintered magnets may be automatically installed on the molds 13, 14 and 15 by using a rotary table 26 as shown in FIG.
 本実施形態においてロータリーテーブル26にはワークWを挟持して下金型14の設置位置に位置決めして載置する位置決め固定治具26A~26Gが7箇所設けられている。位置決め固定治具26A~26Gは、ワークWを保持した状態から下金型14にワークWを載置するためにワークWの保持及び解除を行う押さえピン28と押さえピン28の移動空間を構成する駆動シリンダ29が設けられている。 In the present embodiment, the rotary table 26 is provided with seven positioning fixing jigs 26A to 26G for holding and placing the workpiece W at the installation position of the lower mold 14. The positioning and fixing jigs 26A to 26G constitute a space for moving the pressing pin 28 and the pressing pin 28 for holding and releasing the workpiece W in order to place the workpiece W on the lower mold 14 from the state in which the workpiece W is held. A drive cylinder 29 is provided.
 第2実施形態に係る焼結磁石の寸法矯正は以下のように行う。まず、ワークWを格納容器内の金型14に載置すると同時にロータリーテーブル26の位置決め固定治具26B~26Gに所定数、例えば6個ワークWをセットする。次に格納容器20を密閉し、真空引き又は不活性ガスの充填を行い、押さえピン28によるワークWの保持を解除して金型14にワークWを載置する。 Dimensional correction of the sintered magnet according to the second embodiment is performed as follows. First, the workpiece W is placed on the mold 14 in the storage container, and at the same time, a predetermined number, for example, six workpieces W are set on the positioning and fixing jigs 26B to 26G of the rotary table 26. Next, the storage container 20 is sealed, evacuated or filled with an inert gas, the holding of the work W by the pressing pin 28 is released, and the work W is placed on the mold 14.
 その後、第1実施形態と同様に金型13、14、15及びワークWを加熱して所定の温度まで昇温させ、温度が保持された状態においてプレス加工を行う。加工後、ワークWはノックアウトバー203及び金型14によって取り出される。そして、ロータリーテーブル26の位置決め固定治具26A~26Gの押さえピン28によって再び固定され、ロータリーテーブル26が回転して次のワークWが金型14にセットされる。 Thereafter, as in the first embodiment, the dies 13, 14, 15 and the workpiece W are heated to a predetermined temperature, and press working is performed in a state where the temperature is maintained. After processing, the workpiece W is taken out by the knockout bar 203 and the mold 14. Then, it is fixed again by the pressing pins 28 of the positioning fixing jigs 26A to 26G of the rotary table 26, and the rotary table 26 rotates to set the next workpiece W on the mold 14.
 加工されたワークWはロータリーテーブル26の冷却ノズル27がセットされた位置決め固定治具26Gにて冷却ガスが噴射されることによって冷却される。以降は、上記ワークWの加熱、プレス加工、取り外し、次のワークWのセット及び冷却を繰り返し、全てのワークWの加工が終了したら格納容器20を開放し、加工されたワークWを取り出す。 The processed workpiece W is cooled by the cooling gas being injected by the positioning fixture 26G in which the cooling nozzle 27 of the rotary table 26 is set. Thereafter, heating, pressing, removing, setting and cooling of the next workpiece W are repeated, and when all the workpieces W have been processed, the storage container 20 is opened and the processed workpiece W is taken out.
 以上、説明したように第2実施形態に係る焼結磁石の製造方法によれば、ロータリーテーブル26を使用して自動でワークWを金型内に投入及び取り外しができるように構成している。そのため、第1実施形態と同様に格納容器20を開放せずに金型13、14、15にワークWの投入及び取り外しを行うことができ、作業性を向上させることができる。このように構成することによって作業者を必要とせずに自動的に投入された焼結磁石の取り外し及び交換作業を格納容器内で行うことができる。 As described above, according to the method for manufacturing a sintered magnet according to the second embodiment, the rotary table 26 is used to automatically insert and remove the workpiece W from the mold. Therefore, similarly to the first embodiment, the work W can be inserted and removed from the molds 13, 14, and 15 without opening the storage container 20, and workability can be improved. With this configuration, it is possible to remove and replace the sintered magnet that has been automatically input without requiring an operator in the containment vessel.
 なお、本発明は上述した実施形態にのみ限定されず、特許請求の範囲において種々の変更が可能である。第1実施形態では加熱装置21が格納容器20の内部に配置されて、金型13と金型14による加圧成形の際に焼結磁石の周囲を焼結磁石の焼結温度を越えない所定の温度に加熱する実施形態について説明したが、これに限定されない。焼結磁石は、金型13及び/または金型14にヒーター等の構成を内蔵させて金型13及び/または金型14自身を加熱することによって金型13及び/または金型14を焼結温度を超えない温度に加熱し、焼結磁石を加熱してもよい。 In addition, this invention is not limited only to embodiment mentioned above, A various change is possible in a claim. In the first embodiment, the heating device 21 is disposed inside the containment vessel 20 so that the pressure around the sintered magnet does not exceed the sintering temperature of the sintered magnet at the time of pressure molding with the mold 13 and the mold 14. However, the present invention is not limited to this. The sintered magnet sinters the mold 13 and / or the mold 14 by heating the mold 13 and / or the mold 14 itself by incorporating a structure such as a heater in the mold 13 and / or the mold 14. The sintered magnet may be heated by heating to a temperature not exceeding the temperature.
 (実験例1)
 次に本実施形態に係る焼結磁石の製造方法において。寸法矯正工程時に行うプレス加工の成形温度に関する実験を行ったので説明する。
(Experimental example 1)
Next, in the method for manufacturing a sintered magnet according to this embodiment. An experiment related to the molding temperature of the press working performed during the dimension correction process will be described.
 本実験では焼結磁石の試験片(厚さ3.8mm、断面の長さが6mm×6mm)に図4と同様に上スライド、ボルスタ、及び外周金型を用いて磁石試験片を固定し、加圧しながら温度を室温から上昇させ、試験片の変形量を測定した。本実験例1に係る焼結磁石の金属はFe70%、Nd22%、B0.4%、Dy2.5%、Pr2.5%から構成される。表1は本実験例1に係る焼結磁石試験片を加温、加圧させていった場合の成形温度と変形率(%)の表、図11は表1をグラフ化したものである。なお、成形温度については、加圧時の磁石試験片側面に熱電対を接触させることで測定した。 In this experiment, a magnet test piece was fixed to a test piece of a sintered magnet (thickness: 3.8 mm, cross-section length: 6 mm × 6 mm) using an upper slide, a bolster, and an outer peripheral mold in the same manner as in FIG. The temperature was raised from room temperature while applying pressure, and the amount of deformation of the test piece was measured. The sintered magnet metal according to Experimental Example 1 is composed of Fe 70%, Nd 22%, B 0.4%, Dy 2.5%, and Pr 2.5%. Table 1 is a table of the molding temperature and deformation rate (%) when the sintered magnet test piece according to this Experimental Example 1 is heated and pressed, and FIG. 11 is a graph of Table 1. In addition, about molding temperature, it measured by making a thermocouple contact the side surface of the magnet test piece at the time of pressurization.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1及び図11より、本実験例1に係るR-Fe-B系焼結磁石は620度より塑性変形が起こることがわかった。以上より、620℃以上であればプレス加工で焼結磁石の寸法矯正が行えることになるが、上記R-Fe-B系焼結磁石の焼結温度は1000℃となっている。620℃以上であっても成形温度が焼結温度を超えると焼結磁石の組織や磁気特性が変化してしまうため、上記実施形態に係る寸法矯正工程は620℃から焼結温度を超えない1000℃の範囲において行うことが好ましいことがわかった。また、この場合に磁石にプレス加工を行って、磁石が塑性変形する降伏応力は表1より36MPa~262MPaになることがわかった。 From Table 1 and FIG. 11, it was found that the R—Fe—B sintered magnet according to Experimental Example 1 undergoes plastic deformation from 620 degrees. From the above, when the temperature is 620 ° C. or higher, the size of the sintered magnet can be corrected by press working, but the sintering temperature of the R—Fe—B based sintered magnet is 1000 ° C. Even if the temperature is 620 ° C. or higher, if the molding temperature exceeds the sintering temperature, the structure and magnetic properties of the sintered magnet change, and therefore the dimension correction process according to the above embodiment does not exceed the sintering temperature from 620 ° C. 1000 It has been found preferable to carry out in the range of ° C. In this case, it was found from Table 1 that the yield stress at which the magnet is plastically deformed by pressing the magnet is 36 MPa to 262 MPa.
 (実験例2)
 次に上記焼結磁石の製造方法によって製造した焼結磁石の寸法精度に関して、焼結磁石の反り量を確認したので説明する。
(Experimental example 2)
Next, regarding the dimensional accuracy of the sintered magnet manufactured by the method for manufacturing a sintered magnet, the amount of warpage of the sintered magnet has been confirmed and will be described.
 本実験では実際の製品とほぼ同等の焼結磁石の試験片(厚さ4mm、断面の長さが8mm×28mm)を720℃に加熱して温間プレス成形を実施し、上記実施形態に係る方法を実施する前後でのNd焼結磁石試験片の反り量を確認した。試験片の温度は直接測定することができないため、型表面の温度から換算して結果を算出した。図12は試験片の一端部から水平方向に離間した際の焼結磁石の反り量の実験結果を示すものであり、図13は上記実施形態に係る方法の実施前後での焼結磁石の反り量をヒストグラムで示したものである。 In this experiment, a sintered magnet test piece (thickness 4 mm, cross-sectional length 8 mm × 28 mm) substantially equal to that of an actual product was heated to 720 ° C. to perform warm press forming, and according to the above embodiment. The amount of warpage of the Nd sintered magnet test piece before and after carrying out the method was confirmed. Since the temperature of the test piece cannot be measured directly, the result was calculated by converting from the temperature of the mold surface. FIG. 12 shows the experimental result of the amount of warpage of the sintered magnet when it is spaced apart from one end of the test piece in the horizontal direction, and FIG. 13 shows the warpage of the sintered magnet before and after the execution of the method according to the above embodiment. The amount is shown as a histogram.
 図12からもわかるように、上記実施形態に係る方法の実施前後では焼結磁石試験片の反り量の幅を0.093mmから0.027mmと実施前の30%程度にまで抑制できたことがわかった。また、図13からわかるように、上記実施形態に係る方法実施後の試験片の反り量はいずれも上限規格を下回っているため、別途研削等を行う必要がないことがわかった。 As can be seen from FIG. 12, before and after the execution of the method according to the above embodiment, the width of the amount of warpage of the sintered magnet test piece could be suppressed from 0.093 mm to 0.027 mm to about 30% before the execution. all right. Further, as can be seen from FIG. 13, it was found that the amount of warping of the test piece after the method according to the above embodiment is less than the upper limit standard, so that it is not necessary to perform grinding or the like separately.
 このように上記実施形態に係る焼結磁石の製造方法を実施することによって焼結磁石に必要な機械加工代を削減し、DyやTb等の希土類金属の材料歩留まりを向上できることが確認できた。 Thus, it was confirmed that by implementing the method for manufacturing a sintered magnet according to the above-described embodiment, the machining cost required for the sintered magnet can be reduced and the material yield of rare earth metals such as Dy and Tb can be improved.
 本出願は、2012年2月3日に出願された日本特許出願番号2012-022471号に基づいており、その開示内容は参照され、全体として組み入れられている。 This application is based on Japanese Patent Application No. 2012-022471 filed on February 3, 2012, the disclosure of which is referenced and incorporated as a whole.
11      上ダイ、
12      下ダイ、
13      上金型(第1の型)、
14      下金型(第2の型)、
15      外周金型、
16      固定治具、
17      クランクピン、
100     ダイセット、
20      格納容器、
200     プレス装置本体、
201     上スライド、
202     ボルスタ、
203     ノックアウトバー、
204     油圧シリンダ、
21      加熱装置(加熱部)、
22      グローブ、
23      配管ダクト
24      冷却プレート、
25      冷却パイプ、
26      ロータリーテーブル、
26A~26G 位置決め固定治具、
27      冷却ノズル、
28      押さえピン、
29      駆動シリンダ、
40      調節機構、
41      ガイドロッド、
42      ガイドシリンダ、
W       ワーク。
11 Upper die,
12 Lower die,
13 Upper mold (first mold),
14 Lower mold (second mold),
15 peripheral mold,
16 Fixing jig,
17 Crankpin,
100 die sets,
20 containment vessel,
200 Press machine body,
201 slide up,
202 Bolster,
203 Knockout Bar,
204 hydraulic cylinder,
21 Heating device (heating unit),
22 Globe,
23 Piping duct 24 Cooling plate,
25 Cooling pipe,
26 Rotary table,
26A-26G Positioning fixture
27 Cooling nozzle,
28 holding pin,
29 drive cylinder,
40 adjustment mechanism,
41 guide rod,
42 guide cylinder,
W Work.

Claims (6)

  1.  R-Fe-B系焼結磁石(RはNdを主成分とする希土類元素)を構成する磁石粉末をプレス成形することによって前記磁石粉末が圧縮して形成された圧粉体を成形する工程と、
     所定の焼結温度に前記圧粉体を加熱して焼結させることによって焼結磁石を成形する焼結工程と、
     前記焼結温度を超えない温度に前記焼結磁石を加熱するとともに前記焼結磁石を加圧成形することによって前記焼結磁石の寸法を矯正する寸法矯正工程と、を有する焼結磁石の製造方法。
    Forming a green compact formed by compressing the magnet powder by press-molding a magnet powder constituting an R—Fe—B based sintered magnet (R is a rare earth element containing Nd as a main component); ,
    A sintering step of forming a sintered magnet by heating and sintering the green compact to a predetermined sintering temperature;
    A method for producing a sintered magnet comprising: a dimension correcting step of correcting the size of the sintered magnet by heating the sintered magnet to a temperature not exceeding the sintering temperature and press-molding the sintered magnet. .
  2.  前記寸法矯正工程において、前記焼結磁石の温度を620℃以上に加熱することを特徴とする請求項1に記載の焼結磁石の製造方法。 The method for producing a sintered magnet according to claim 1, wherein, in the dimension correcting step, the temperature of the sintered magnet is heated to 620 ° C or higher.
  3.  前記寸法矯正工程において、前記焼結磁石の温度を800℃以下に加熱することを特徴とする請求項1または2に記載の焼結磁石の製造方法。 The method for producing a sintered magnet according to claim 1 or 2, wherein, in the dimension correcting step, the temperature of the sintered magnet is heated to 800 ° C or lower.
  4.  前記寸法矯正工程は、前記焼結磁石を配置した空間を大気よりも低酸素雰囲気とすることによって行われることを特徴とする請求項1~3のいずれか1項に記載の焼結磁石の製造方法。 The production of a sintered magnet according to any one of claims 1 to 3, wherein the dimension correcting step is performed by setting a space in which the sintered magnet is disposed in a lower oxygen atmosphere than the atmosphere. Method.
  5.  前記寸法矯正工程は、前記焼結磁石が塑性変形する降伏応力以上の圧力において加圧成形が行われることを特徴とする請求項1~4のいずれか1項に記載の焼結磁石の製造方法。 The method for producing a sintered magnet according to any one of claims 1 to 4, wherein in the dimension correcting step, pressure molding is performed at a pressure equal to or higher than a yield stress at which the sintered magnet is plastically deformed. .
  6.  R-Fe-B系焼結磁石(RはNdを主成分とする希土類元素)を構成する磁石粉末をプレス成形することによって前記磁石粉末が圧縮して形成された圧粉体を所定の焼結温度に加熱することで形成された焼結磁石の寸法を矯正する寸法矯正部を備えた焼結磁石の製造装置であって、
     前記寸法矯正部は、相対的に接近離間して前記焼結磁石にプレス成形を行う第1の型及び第2の型と、前記焼結磁石を加熱する加熱部と、を有し、
     前記加熱部によって前記焼結磁石を前記焼結温度を超えない温度に加熱するとともに前記第1の型及び前記第2の型によって前記焼結磁石を加圧成形することによって前記焼結磁石の寸法矯正を行うことを特徴とする焼結磁石の製造装置。
    The green compact formed by compressing the magnet powder by press-molding the magnet powder constituting the R—Fe—B based sintered magnet (R is a rare earth element mainly composed of Nd) is sintered to a predetermined degree. A sintered magnet manufacturing apparatus including a dimension correction unit that corrects a dimension of a sintered magnet formed by heating to a temperature,
    The dimensional correction unit has a first mold and a second mold that perform press molding on the sintered magnet relatively close to and away from each other, and a heating unit that heats the sintered magnet,
    The sintered magnet is heated by the heating unit to a temperature not exceeding the sintering temperature, and the sintered magnet is pressed by the first mold and the second mold, thereby measuring the size of the sintered magnet. An apparatus for manufacturing a sintered magnet, wherein correction is performed.
PCT/JP2013/052235 2012-02-03 2013-01-31 Process and equipment for producing sintered magnet WO2013115325A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013556499A JP6079643B2 (en) 2012-02-03 2013-01-31 Method and apparatus for manufacturing sintered magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-022471 2012-02-03
JP2012022471 2012-02-03

Publications (1)

Publication Number Publication Date
WO2013115325A1 true WO2013115325A1 (en) 2013-08-08

Family

ID=48905356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052235 WO2013115325A1 (en) 2012-02-03 2013-01-31 Process and equipment for producing sintered magnet

Country Status (2)

Country Link
JP (1) JP6079643B2 (en)
WO (1) WO2013115325A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049599A (en) * 2012-08-31 2014-03-17 Daido Steel Co Ltd CURVATURE CORRECTION METHOD OF NdFeB-BASED PLATE-LIKE MAGNET, AND MANUFACTURING METHOD OF NdFeB-BASED PLATE-LIKE MAGNET
CN109676129A (en) * 2018-12-17 2019-04-26 浙江东阳东磁稀土有限公司 A kind of neodymium-iron-boron preparation of high stock utilization
CN112509798A (en) * 2020-10-27 2021-03-16 宁波瑞途智能科技有限公司 Neodymium iron boron magnet forming press

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164704A (en) * 1982-03-23 1983-09-29 Sumitomo Metal Ind Ltd Production of sintered product
JPS61136656A (en) * 1984-12-07 1986-06-24 Sumitomo Special Metals Co Ltd Production of sintered material for permanent magnet
JPS61140108A (en) * 1984-12-12 1986-06-27 Namiki Precision Jewel Co Ltd Manufacture of permanent magnet
JPS62262405A (en) * 1986-05-09 1987-11-14 Hitachi Metals Ltd Method for processing permanent magnet alloy
JPH01270210A (en) * 1988-04-21 1989-10-27 Hitachi Metals Ltd Arclike permanent magnet and manufacture thereof
JPH05255708A (en) * 1992-03-13 1993-10-05 Toyota Motor Corp Sizing method for sintered body of metallic powder
JPH09327744A (en) * 1996-06-11 1997-12-22 Tdk Corp Sizing method of metal stock body
JP2005079401A (en) * 2003-09-01 2005-03-24 Ms Consulting:Kk Manufacturing method of magnetic anisotropic sintering ferrite magnet

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159811A (en) * 1984-08-31 1986-03-27 Fujitsu Ltd Manufacture of sintered rare-earth magnet
JPH0617535B2 (en) * 1985-08-01 1994-03-09 住友特殊金属株式会社 Method of manufacturing permanent magnet material
JP2791616B2 (en) * 1991-12-28 1998-08-27 山陽特殊製鋼株式会社 Manufacturing method of ring-shaped magnet material
JPH0885805A (en) * 1993-10-12 1996-04-02 Hitachi Metal Ee F T:Kk Production of sintered parts
JP2004292840A (en) * 2003-03-25 2004-10-21 Sumitomo Denko Shoketsu Gokin Kk Sizing method for sintered component and die for sizing
JP2005310975A (en) * 2004-04-20 2005-11-04 Toyota Motor Corp Sintered neodymium magnet, its manufacturing method and rotary machine
JP2008192696A (en) * 2007-02-01 2008-08-21 Tdk Corp Manufacturing method of multilayer electronic component
JP2013098485A (en) * 2011-11-04 2013-05-20 Toyota Motor Corp Manufacturing apparatus and manufacturing method for rare earth magnet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164704A (en) * 1982-03-23 1983-09-29 Sumitomo Metal Ind Ltd Production of sintered product
JPS61136656A (en) * 1984-12-07 1986-06-24 Sumitomo Special Metals Co Ltd Production of sintered material for permanent magnet
JPS61140108A (en) * 1984-12-12 1986-06-27 Namiki Precision Jewel Co Ltd Manufacture of permanent magnet
JPS62262405A (en) * 1986-05-09 1987-11-14 Hitachi Metals Ltd Method for processing permanent magnet alloy
JPH01270210A (en) * 1988-04-21 1989-10-27 Hitachi Metals Ltd Arclike permanent magnet and manufacture thereof
JPH05255708A (en) * 1992-03-13 1993-10-05 Toyota Motor Corp Sizing method for sintered body of metallic powder
JPH09327744A (en) * 1996-06-11 1997-12-22 Tdk Corp Sizing method of metal stock body
JP2005079401A (en) * 2003-09-01 2005-03-24 Ms Consulting:Kk Manufacturing method of magnetic anisotropic sintering ferrite magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049599A (en) * 2012-08-31 2014-03-17 Daido Steel Co Ltd CURVATURE CORRECTION METHOD OF NdFeB-BASED PLATE-LIKE MAGNET, AND MANUFACTURING METHOD OF NdFeB-BASED PLATE-LIKE MAGNET
CN109676129A (en) * 2018-12-17 2019-04-26 浙江东阳东磁稀土有限公司 A kind of neodymium-iron-boron preparation of high stock utilization
CN112509798A (en) * 2020-10-27 2021-03-16 宁波瑞途智能科技有限公司 Neodymium iron boron magnet forming press
CN112509798B (en) * 2020-10-27 2022-05-06 宁波瑞途智能科技有限公司 Neodymium iron boron magnet forming press

Also Published As

Publication number Publication date
JP6079643B2 (en) 2017-02-15
JPWO2013115325A1 (en) 2015-05-11

Similar Documents

Publication Publication Date Title
JP2015032669A (en) Method for producing sintered magnet
JP5815655B2 (en) R-T-B-M-C sintered magnet manufacturing method and manufacturing apparatus thereof
JP6330438B2 (en) Manufacturing method of rare earth sintered magnet
TWI466141B (en) Manufacture of rare earth magnets
JP2020027938A (en) MANUFACTURING METHOD AND CUTTING DEVICE FOR Nd-Fe-B BASED SINTERED MAGNETIC MATERIAL
JP6079643B2 (en) Method and apparatus for manufacturing sintered magnet
CN105575651A (en) Compression molding technology for neodymium iron boron magnet
JP5994854B2 (en) Manufacturing method of sintered magnet
JP2006228937A (en) Manufacturing method of rare earth sintered magnet and device for molding in magnetic field
JP2011210879A (en) Method for manufacturing rare-earth magnet
JPWO2018088392A1 (en) Rare earth magnet manufacturing method
JP6252021B2 (en) Manufacturing method of sintered magnet
KR101813427B1 (en) Method of manufacturing rare earth magnet
KR20110116757A (en) Method for manufacturing rare earth sintering magnets
CN105551790A (en) Sintering method for neodymium-iron-boron magnet
JP2006156425A (en) Method of manufacturing rare earth sintered magnet, intra-magnetic field molding apparatus, and metal die
JP6136146B2 (en) Method for correcting curvature of NdFeB system plate magnet and method for manufacturing NdFeB system plate magnet
TWI615859B (en) Anisotropic magnet manufacturing method and magnet manufacturing equipment
JP6233170B2 (en) Manufacturing method of sintered magnet
JP6379625B2 (en) Method for manufacturing a split magnet
JP4392605B2 (en) Molding apparatus and molding method
JP4432113B2 (en) Molding apparatus and molding method
KR100225497B1 (en) Method for manufacturing permanent magnet based on re-tm-b alloy
JP5043307B2 (en) Sintered magnet manufacturing method and magnetic field molding apparatus
CN103846431B (en) Electromagnetic driven compaction apparatus and Magnetitum manufacture method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556499

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13743760

Country of ref document: EP

Kind code of ref document: A1