JP2014049599A - CURVATURE CORRECTION METHOD OF NdFeB-BASED PLATE-LIKE MAGNET, AND MANUFACTURING METHOD OF NdFeB-BASED PLATE-LIKE MAGNET - Google Patents

CURVATURE CORRECTION METHOD OF NdFeB-BASED PLATE-LIKE MAGNET, AND MANUFACTURING METHOD OF NdFeB-BASED PLATE-LIKE MAGNET Download PDF

Info

Publication number
JP2014049599A
JP2014049599A JP2012191124A JP2012191124A JP2014049599A JP 2014049599 A JP2014049599 A JP 2014049599A JP 2012191124 A JP2012191124 A JP 2012191124A JP 2012191124 A JP2012191124 A JP 2012191124A JP 2014049599 A JP2014049599 A JP 2014049599A
Authority
JP
Japan
Prior art keywords
ndfeb
based plate
magnet
curvature
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012191124A
Other languages
Japanese (ja)
Other versions
JP6136146B2 (en
Inventor
Norio Yoshikawa
紀夫 吉川
Takahiro Yamamoto
隆弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2012191124A priority Critical patent/JP6136146B2/en
Publication of JP2014049599A publication Critical patent/JP2014049599A/en
Application granted granted Critical
Publication of JP6136146B2 publication Critical patent/JP6136146B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Heat Treatment Of Articles (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a curvature correction method capable of correcting the out-of-plane curvature of an NdFeB-based plate-like magnet appropriately.SOLUTION: A three-point bending load is applied to an NdFeB-based plate-like magnet under a temperature range of 500-950°C, so that the maximum surface stress is within a range of 1-12 MPa. Since a load is applied in a direction for correcting curvature directly, application of an unnecessary load to the NdFeB-based plate-like magnet can be suppressed, and curvature can be corrected while preventing fracture.

Description

本発明は、板状のNdFeB系磁石において湾曲を矯正する湾曲矯正方法、及びこの湾曲矯正方法を行う工程を含むNdFeB系板状磁石の製造方法を提供する。ここで「NdFeB系磁石」は、Nd2Fe14Bを主相とする磁石であるが、Nd, Fe及びBのみを含有するものには限られず、Nd以外の希土類元素や、Co, Ni, Cu, Al等の他の元素を含有するものであってもよい。 The present invention provides a method for correcting curvature in a plate-like NdFeB-based magnet, and a method for producing an NdFeB-based plate magnet including a step of performing the method for correcting curvature. Here, the “NdFeB magnet” is a magnet having Nd 2 Fe 14 B as a main phase, but is not limited to the one containing only Nd, Fe and B, and rare earth elements other than Nd, Co, Ni, It may contain other elements such as Cu and Al.

NdFeB系磁石は、残留磁束密度等の多くの磁気特性がそれまでの永久磁石よりもはるかに高いという特長を有する。そのため、NdFeB系磁石はハイブリッド自動車や電気自動車向けのモータ、電動補助型自転車用モータ、産業用モータ、ハードディスク等のボイスコイルモータ、高級スピーカー、ヘッドホン、永久磁石式磁気共鳴診断装置等、様々な製品に使用されている。   NdFeB magnets have the feature that many magnetic properties such as residual magnetic flux density are much higher than conventional permanent magnets. Therefore, NdFeB magnets are used in various products such as motors for hybrid and electric vehicles, motors for electric assist type bicycles, industrial motors, voice coil motors such as hard disks, high-end speakers, headphones, and permanent magnet magnetic resonance diagnostic equipment. Is used.

NdFeB系磁石は、上述の様々な用途に応じて、種々の形状のものが用いられている。例えば自動車向け等の大型のモータの回転子では、板状のNdFeB系磁石(NdFeB系板状磁石)が多数並べられた状態で用いられることが多い。このような回転子にNdFeB系板状磁石を取り付ける際には所定のスロットに挿入する必要があるため、個々のNdFeB系板状磁石は高い寸法精度及び形状精度が要求される。   NdFeB magnets of various shapes are used according to the various applications described above. For example, rotors of large motors such as those for automobiles are often used in a state where a large number of plate-like NdFeB magnets (NdFeB magnets) are arranged. When attaching an NdFeB-based plate magnet to such a rotor, it is necessary to insert the NdFeB-based plate magnet into a predetermined slot, so that each NdFeB-based plate magnet is required to have high dimensional accuracy and shape accuracy.

NdFeB系板状磁石において寸法精度及び形状精度における主要な問題点として、湾曲の発生が挙げられる。板状磁石の湾曲には、板面に垂直な方向への湾曲(以下、「面外湾曲」と呼ぶ)と板面内での湾曲(面内湾曲)がある。これらのうち、板状磁石の厚さが小さくなるほど面外湾曲が顕著に現れるようになり、しかも回転子等への取り付けに与える悪影響も大きい。以下、適宜、「面外湾曲」を単に「湾曲」と呼ぶ。このような湾曲の問題を回避するために、予め所定の寸法よりも大きいNdFeB系磁石を作製したうえで研削することにより、寸法精度及び形状精度を確保することも可能ではあるが、材料を無駄にしてしまうという問題がある。   In NdFeB-based plate magnets, a major problem in dimensional accuracy and shape accuracy is the occurrence of curvature. The bending of the plate magnet includes a bending in a direction perpendicular to the plate surface (hereinafter referred to as “out-of-plane bending”) and a bending in the plate surface (in-plane bending). Among these, as the thickness of the plate-shaped magnet decreases, out-of-plane curvature becomes more prominent, and the adverse effect on attachment to a rotor or the like is great. Hereinafter, “out-of-plane bending” will be simply referred to as “curving” as appropriate. In order to avoid such a bending problem, it is possible to ensure dimensional accuracy and shape accuracy by preparing and grinding an NdFeB magnet larger than a predetermined size in advance, but the material is wasted. There is a problem of making it.

焼結法(例えば特許文献1参照)で作製されたNdFeB系板状焼結磁石では、焼結前の合金粉末の充填密度の不均一性や、焼結の際の加熱やその後の冷却における各部の温度差(昇温/冷却の温度ずれ)等により、湾曲が生じ易い。特に、特許文献1に記載の方法ではプレスレス法(残留磁束密度を低下させることなく保磁力を向上させることを目的として、キャビティに充填した合金粉末を圧縮成形することなく磁界中で配向させた後に焼結する方法)を用いており、合金粉末の充填密度が不均一になり易いため、圧縮成形を行うプレス法よりも湾曲が生じ易い。また、熱間塑性加工法(例えば特許文献2参照)で作製されたNdFeB系板状熱間塑性加工磁石においても、熱間塑性加工後の冷却過程において温度(降温速度)を均一に保つことが難しく、湾曲が生じ易い。   In an NdFeB-based plate-like sintered magnet produced by a sintering method (see, for example, Patent Document 1), the non-uniformity of the packing density of the alloy powder before sintering, each part in heating during heating and subsequent cooling Due to the temperature difference (temperature rise / cooling temperature difference), etc., bending tends to occur. In particular, in the method described in Patent Document 1, the pressless method (for the purpose of improving the coercive force without reducing the residual magnetic flux density, the alloy powder filled in the cavity was oriented in a magnetic field without compression molding. Since the packing density of the alloy powder is likely to be non-uniform, bending is more likely to occur than the pressing method in which compression molding is performed. In addition, even in a NdFeB-based plate-like hot plastic working magnet manufactured by a hot plastic working method (see, for example, Patent Document 2), the temperature (temperature decrease rate) can be kept uniform during the cooling process after hot plastic working. Difficult and prone to bending.

このような湾曲に関して、NdFeB系板状磁石を対象としたものではないが、特許文献3及び4には、金属製の棒材や板材等の長尺材に生じた湾曲を矯正する方法が記載されている。
これらのうち特許文献3には、炭化タングステンから成る超硬合金製の長尺材を900〜1450℃に加熱しながら両端をチャックで掴み、長手方向に500〜5000kgW/cm2(49〜490MPa)の引張荷重を付与することが記載されている。また、この文献には、被矯正物に重しや当て板を当てながら上記引張荷重を与えることにより、一層矯正効果が向上する、と記載されている。
特許文献4には、Mn-Al系磁石を材料とする長尺材を550〜800℃に加熱しながら矯正することが記載されている。具体的には、長尺材が棒材の場合には、断面が三角形状に並ぶように配置された3本のロールの間に該棒材を挟み、ローラを回転させることにより矯正することが記載されている。一方、板材の場合については、具体的な矯正方法は記載されていない。
With respect to such bending, NdFeB-based plate magnets are not targeted, but Patent Documents 3 and 4 describe methods for correcting the bending generated in long materials such as metal bars and plates. Has been.
Among these, Patent Document 3 discloses that a cemented carbide long material made of tungsten carbide is gripped at both ends with a chuck while being heated to 900 to 1450 ° C., and 500 to 5000 kgW / cm 2 (49 to 490 MPa) in the longitudinal direction. It is described that a tensile load of 1 is applied. In addition, this document describes that the correction effect is further improved by applying the tensile load while applying a weight or a patch plate to the object to be corrected.
Patent Document 4 describes that a long material made of an Mn-Al magnet is corrected while being heated to 550 to 800 ° C. Specifically, when the long material is a bar material, the bar material is sandwiched between three rolls arranged so that the cross section is arranged in a triangle shape, and the length can be corrected by rotating the roller. Have been described. On the other hand, no specific correction method is described for the case of a plate material.

特開2006-019521号公報JP 2006-019521 A 特開平11-329810号公報Japanese Patent Laid-Open No. 11-329810 特開昭62-214826号公報JP-A-62-214826 特開平09-291348号公報JP 09-291348 A

特許文献3に記載の方法では、長尺材の(湾曲の弧に対する)弦の方向に引張荷重を印加するため、湾曲の矯正に直接寄与しない弦方向の分力により長尺材が引っ張られる。このような不必要な負荷が、超硬合金よりも脆いNdFeB系板状磁石にかかると、NdFeB系板状磁石が破断するおそれがある。また、特許文献4に記載の方法は、実質的には棒材から成る被加工物のみを対象としており、板状磁石の湾曲を矯正することができない。   In the method described in Patent Document 3, since a tensile load is applied in the direction of the chord (relative to the arc of curvature) of the long material, the long material is pulled by a component force in the chord direction that does not directly contribute to correction of the curvature. If such an unnecessary load is applied to the NdFeB-based plate magnet that is more brittle than the cemented carbide, the NdFeB-based plate magnet may be broken. In addition, the method described in Patent Document 4 is intended only for a workpiece substantially made of a rod, and cannot correct the curvature of the plate magnet.

本発明が解決しようとする課題は、NdFeB系板状磁石の面外湾曲を適切に矯正することができる湾曲矯正方法、及びこの湾曲矯正方法を行う工程を含むNdFeB系板状磁石の製造方法を提供することである。   The problem to be solved by the present invention is a method for correcting curvature that can properly correct the out-of-plane curvature of an NdFeB-based plate magnet, and a method for producing an NdFeB-based plate magnet that includes a step of performing this method of correcting curvature. Is to provide.

上記課題を解決するために成された本発明に係るNdFeB系板状磁石の湾曲矯正方法は、NdFeB系板状磁石の面外湾曲を、該NdFeB系板状磁石が500〜950℃の範囲内となる温度下で、最大表面応力が1〜12MPaの範囲内となるような3点曲げ負荷を与えることにより、矯正することを特徴とする。   In order to solve the above problems, the NdFeB-based plate magnet curving correction method according to the present invention provides an out-of-plane curvature of the NdFeB-based plate magnet, and the NdFeB-based plate magnet is within a range of 500 to 950 ° C. It is characterized by correcting by applying a three-point bending load such that the maximum surface stress is in the range of 1 to 12 MPa at a temperature of

本発明に係るNdFeB系板状磁石の湾曲矯正方法では特許文献3に記載の方法とは異なり、3点曲げ負荷がNdFeB系板状磁石に対して、湾曲を直接的に正す方向に印加されるため、不必要な負荷がNdFeB系板状磁石にかかることを抑えることができ、NdFeB系板状磁石が破断することを防ぐことができる。   Unlike the method described in Patent Document 3, the NdFeB-based plate magnet bending correction method according to the present invention applies a three-point bending load to the NdFeB-based plate magnet in a direction that directly corrects the bending. Therefore, it can suppress that unnecessary load is applied to the NdFeB-based plate magnet, and the NdFeB-based plate magnet can be prevented from breaking.

最大表面応力が1MPa未満であると、湾曲をほとんど矯正することができない。一方、最大表面応力が12MPaを超えると、NdFeB系板状磁石が破断してしまうおそれがある。そのため、本発明に係る方法では、最大表面応力の値は1〜12MPaの範囲内とする。   If the maximum surface stress is less than 1 MPa, the curvature can hardly be corrected. On the other hand, if the maximum surface stress exceeds 12 MPa, the NdFeB-based plate magnet may be broken. Therefore, in the method according to the present invention, the value of the maximum surface stress is set in the range of 1 to 12 MPa.

なお、最大表面応力σは、NdFeB系板状磁石の長さL、幅W及び厚みt、並びに長手方向及び幅方向の中点においてNdFeB系板状磁石の表面に印加する荷重Fを用いて、以下の式(1)
σ=3FL/(2wt2) …(1)
で表される。実際の3点曲げ負荷の付与の際には、この式(1)を変形した式(2)
F=2wt2σ/(3L) …(2)
に1〜12MPaの範囲内でσの値を代入することで得られる荷重Fを付与すればよい。
The maximum surface stress σ is the length L, width W and thickness t of the NdFeB-based plate magnet, and the load F applied to the surface of the NdFeB-based plate magnet at the middle point in the longitudinal direction and the width direction, The following formula (1)
σ = 3FL / (2wt 2 )… (1)
It is represented by When applying an actual three-point bending load, this equation (1) is transformed (2)
F = 2wt 2 σ / (3L)… (2)
The load F obtained by substituting the value of σ within the range of 1 to 12 MPa may be applied.

湾曲を矯正する際の温度が500℃未満であると、NdFeB系板状磁石に十分な塑性を付与することができないため、NdFeB系板状磁石が破断するおそれがある。一方、温度の上限は、十分な塑性を付与するという観点では融点よりも低い範囲内においてより高い方がよいものの、温度が950℃を超えると、NdFeB系板状磁石内の結晶粒が粗大化し、NdFeB系板状磁石が脆化したり、保磁力が低下する原因となる。そのため、本発明に係る方法では、NdFeB系板状磁石を矯正する際の温度は500〜950℃の範囲内とする。また、荷重Fを付与する際に用いる重錘等の部材にNdFeB系板状磁石が焼き付くことを確実に防止するために、温度の上限は900℃未満とすることが望ましい。   If the temperature at which the curvature is corrected is less than 500 ° C., sufficient plasticity cannot be imparted to the NdFeB-based plate magnet, and the NdFeB-based plate magnet may be broken. On the other hand, the upper limit of the temperature is preferably higher in the range lower than the melting point in terms of imparting sufficient plasticity, but when the temperature exceeds 950 ° C, the crystal grains in the NdFeB-based plate magnet become coarse. This causes the NdFeB-based plate magnet to become brittle or to reduce the coercive force. Therefore, in the method according to the present invention, the temperature at which the NdFeB-based plate magnet is straightened is set within the range of 500 to 950 ° C. Further, in order to surely prevent the NdFeB-based plate magnet from being seized onto a member such as a weight used when the load F is applied, the upper limit of the temperature is preferably less than 900 ° C.

本発明に係るNdFeB系板状磁石の湾曲矯正方法は、典型的には焼結法で作製されたNdFeB系板状焼結磁石や、熱間塑性加工法で作製されたNdFeB系板状熱間塑性加工磁石の湾曲の矯正に好適に用いることができる。   The NdFeB-based plate magnet correction method according to the present invention is typically an NdFeB-based plate-like sintered magnet manufactured by a sintering method or an NdFeB-based plate-like hot manufactured by a hot plastic working method. It can be suitably used for correcting the curvature of a plastic working magnet.

本発明において、前記矯正後、該NdFeB系板状磁石が450〜550℃の範囲内となる温度下で時効処理を行うことが望ましい。この時効処理により、NdFeB系板状磁石内、特に粒界付近の結晶粒内における結晶の欠陥を少なくすることができ、それにより保磁力を高めることができる。   In the present invention, after the correction, it is desirable to perform an aging treatment at a temperature at which the NdFeB-based plate magnet is in a range of 450 to 550 ° C. This aging treatment can reduce crystal defects in the NdFeB-based plate magnet, particularly in the crystal grains near the grain boundary, thereby increasing the coercive force.

前記時効処理を行う場合には更に、前記矯正後、前記時効処理の前に、該NdFeB系板状磁石が750〜850℃の範囲内となる温度下で保持し、その後急冷する時効予備熱処理を行うことが望ましい。この時効予備熱処理の技術的意義は以下の通りである。
NdFeB系磁石においては、理由は明確ではないが、600〜750℃の温度範囲内において徐冷すると、保磁力が低下すること(それゆえ、時効処理は、この温度範囲よりも低い450〜550℃において行う)、及びそれによって保磁力が低下した磁石を再度750℃以上に加熱したうえで急冷することにより保磁力が回復することが知られている。しかしながら、前記矯正の際には、NdFeB系板状磁石に荷重を印加しているため、該矯正の終了後に、温度を矯正時の500〜950℃から室温に冷却する際に急冷することが難しく、600〜750℃の温度範囲内においても徐冷をせざるを得ない。そこで、前記矯正後、すなわちこの徐冷の後に、750〜850℃に加熱したうえで急冷することにより、徐冷の悪影響を排除することができる。
In the case of performing the aging treatment, after the correction, before the aging treatment, the NdFeB-based plate magnet is maintained at a temperature within a range of 750 to 850 ° C., and then subjected to aging pre-heat treatment for rapid cooling. It is desirable to do. The technical significance of this aging pre-heat treatment is as follows.
For NdFeB magnets, the reason is not clear, but when it is slowly cooled within the temperature range of 600 to 750 ° C, the coercive force decreases (therefore, the aging treatment is 450 to 550 ° C, which is lower than this temperature range). It is known that the coercive force is recovered by heating the magnet whose coercive force is lowered to 750 ° C. or more and then rapidly cooling the magnet. However, during the correction, since a load is applied to the NdFeB plate magnet, it is difficult to rapidly cool the temperature from 500 to 950 ° C. during correction to room temperature after the correction is completed. , Even within the temperature range of 600-750 ° C., it must be gradually cooled. Therefore, after the correction, that is, after this slow cooling, the adverse effect of slow cooling can be eliminated by heating to 750 to 850 ° C. and then rapidly cooling.

本発明に係るNdFeB系板状磁石の湾曲矯正方法は、言うまでもなく、NdFeB系板状磁石を製造する際の一工程(湾曲矯正工程)として行うことができる。   Needless to say, the method of correcting the curvature of the NdFeB-based plate magnet according to the present invention can be performed as one step (curving correction step) when manufacturing the NdFeB-based plate magnet.

本発明により、NdFeB系板状磁石を破断させることなく、面外湾曲を適切に矯正することができる。   According to the present invention, the out-of-plane curvature can be appropriately corrected without breaking the NdFeB-based plate magnet.

NdFeB系板状焼結磁石における湾曲量の定義を示す概略側面図。The schematic side view which shows the definition of the curvature amount in a NdFeB type plate-shaped sintered magnet. 本発明に係るNdFeB系板状磁石の湾曲矯正方法の実施例を示す概略縦断面図。The schematic longitudinal cross-sectional view which shows the Example of the curvature correction method of the NdFeB type plate-shaped magnet which concerns on this invention. 本発明に係るNdFeB系板状磁石の湾曲矯正方法においてNdFeB系板状磁石に3点曲げ負荷を印加する状態を示す概略側面図。FIG. 3 is a schematic side view showing a state in which a three-point bending load is applied to the NdFeB-based plate magnet in the NdFeB-based plate magnet bending correction method according to the present invention. 実施例3においてNdFeB系板状磁石に与える温度変化の履歴を示すグラフ。6 is a graph showing a history of temperature change given to an NdFeB-based plate magnet in Example 3.

本発明に係るNdFeB系板状磁石の湾曲矯正方法の実施例を、図1〜図4を用いて説明する。本実施例では、NdFeB系板状焼結磁石の湾曲を矯正する例を示す。   An embodiment of a method for correcting curvature of an NdFeB-based plate magnet according to the present invention will be described with reference to FIGS. In this embodiment, an example of correcting the curvature of the NdFeB-based plate-like sintered magnet is shown.

まず、湾曲を矯正する対象となるNdFeB系板状焼結磁石を製造する方法を説明する。
最初に、原料となるNdFeB系合金の薄片をストリップキャスト法により作製した。この薄片を水素吸蔵法を用いて粗粉砕した後、ジェットミルを用いて微粉砕することにより、平均粒径が数μmであるNdFeB系合金の合金粉末を得た。この合金粉末を、内部が直方体である容器に充填したうえで、成形(賦形)するための圧力を加えることなく、4.5T(テスラ)の磁界を印加することにより磁気配向させた。この磁気配向処理の後、合金粉末を容器に充填したまま990℃に加熱し、その後室温まで急冷することにより、焼結体を得た。そして、この焼結体を、長さLが55.7mm、幅Wが14.0mm、厚みtが2.9mmになるように加工することにより、矯正対象のNdFeB系板状焼結磁石を多数個得た。
First, a method for producing an NdFeB-based plate-like sintered magnet that is a target for correcting curvature will be described.
First, a thin piece of NdFeB alloy as a raw material was produced by strip casting. The flakes were coarsely pulverized using a hydrogen storage method and then finely pulverized using a jet mill to obtain an alloy powder of an NdFeB alloy having an average particle size of several μm. The alloy powder was filled in a rectangular parallelepiped container, and magnetically oriented by applying a magnetic field of 4.5 T (Tesla) without applying pressure for forming (shaping). After this magnetic orientation treatment, the alloy powder was heated to 990 ° C. while being filled in a container, and then rapidly cooled to room temperature to obtain a sintered body. Then, by processing this sintered body so that the length L was 55.7 mm, the width W was 14.0 mm, and the thickness t was 2.9 mm, a large number of NdFeB-based plate-like sintered magnets to be corrected were obtained. .

矯正対象のNdFeB系板状焼結磁石10にはいずれも、長手方向の両端よりも中央の方が厚み方向に変位するように、弧状の湾曲が生じていた(図1参照)。以下、この変位の大きさδを「湾曲量」と呼ぶ。湾曲量δは、凸に湾曲した面を上面101、凹に湾曲した面を下面102とした場合において、上面101の最も高い位置と下面102の最も低い位置の差Hmaxから、NdFeB系板状焼結磁石10の厚みの平均値tavgを減じた値(δ=Hmax-tavg)で定義する。δの値はNdFeB系板状焼結磁石10毎に異なり、δ=0.43〜0.55mmであった。 In each of the NdFeB-based plate-like sintered magnets 10 to be corrected, an arc-shaped curve was generated such that the center was displaced in the thickness direction rather than both ends in the longitudinal direction (see FIG. 1). Hereinafter, the magnitude δ of the displacement is referred to as “bending amount”. The amount of curvature δ is determined from the difference H max between the highest position of the upper surface 101 and the lowest position of the lower surface 102 when the convexly curved surface is the upper surface 101 and the concavely curved surface is the lower surface 102. It is defined by a value (δ = H max −t avg ) obtained by subtracting the average thickness t avg of the sintered magnet 10. The value of δ was different for each NdFeB-based plate-like sintered magnet 10 and was δ = 0.43 to 0.55 mm.

実施例1では、NdFeB系板状焼結磁石10の湾曲矯正の実験を複数、矯正時の温度を共通(800℃)として、最大表面応力σを変えて行った。具体的な方法は以下の通りである。
図2に示すように、NdFeB系板状焼結磁石10は、加熱炉11内の台12上に、凸に湾曲した面を上側に向けて載置した。NdFeB系板状焼結磁石10の上面には、長手方向の中央に重錘13を載置することにより、NdFeB系板状焼結磁石10に荷重Fを印加した。これにより、図3に示すように、NdFeB系板状焼結磁石10には、両端を支点151とし、長手方向中央を力点152として、3点曲げ負荷が印加される。ここで荷重Fの大きさは試料毎に異なる値とした。この状態で、真空中において、NdFeB系板状焼結磁石10が800℃になるように加熱し、1時間維持した。その後、NdFeB系板状焼結磁石10の温度を室温まで徐冷した。なお、NdFeB系板状焼結磁石10の温度は、該NdFeB系板状焼結磁石10の近傍に配置した熱電対(図示せず)を用いて測定した。
In Example 1, a plurality of experiments for straightening the NdFeB-based plate-like sintered magnet 10 were performed, and the temperature during correction was common (800 ° C.), and the maximum surface stress σ was changed. A specific method is as follows.
As shown in FIG. 2, the NdFeB-based plate-like sintered magnet 10 was placed on the table 12 in the heating furnace 11 with the convexly curved surface facing upward. A load F was applied to the NdFeB-based plate-like sintered magnet 10 by placing a weight 13 on the upper surface of the NdFeB-type plate-like sintered magnet 10 in the center in the longitudinal direction. As a result, as shown in FIG. 3, a three-point bending load is applied to the NdFeB-based plate-like sintered magnet 10 with both ends as fulcrums 151 and the center in the longitudinal direction as a force point 152. Here, the magnitude of the load F was different for each sample. In this state, the NdFeB-based plate-like sintered magnet 10 was heated to 800 ° C. in vacuum and maintained for 1 hour. Thereafter, the temperature of the NdFeB-based plate-like sintered magnet 10 was gradually cooled to room temperature. The temperature of the NdFeB-based plate-like sintered magnet 10 was measured using a thermocouple (not shown) disposed in the vicinity of the NdFeB-based plate-like sintered magnet 10.

実施例1の実験結果を表1に示す。なお、表1では荷重Fの代わりに重錘13の重量W(単位:kgW)で示したが、このWに重力加速度g(9.8m/s2)を乗じることにより荷重F(単位:N)が求められる。また、表1には併せて、式(1)により求められる最大表面応力σの値を示した。実施例1では、σが1.4(試料3)〜11.1(試料7)MPaである範囲内で実験を行った。また、比較のために、荷重Fを印加しない(σ=0の)場合(試料1)、σが1MPa未満の場合(試料2)及びσが12MPaを超える場合(試料8)についても実験を行った。

Figure 2014049599
The experimental results of Example 1 are shown in Table 1. In Table 1, instead of the load F, the weight W of the weight 13 (unit: kgW) is shown, but by multiplying this W by the gravitational acceleration g (9.8 m / s 2 ), the load F (unit: N) Is required. Table 1 also shows the value of the maximum surface stress σ obtained by the equation (1). In Example 1, the experiment was performed within a range where σ was 1.4 (sample 3) to 11.1 (sample 7) MPa. For comparison, experiments were also performed when no load F was applied (σ = 0) (Sample 1), when σ was less than 1 MPa (Sample 2), and when σ exceeded 12 MPa (Sample 8). It was.
Figure 2014049599

この実験の結果、荷重Fを印加しない比較例である試料1では全く矯正されず、σが1MPa未満である試料2においても矯正の効果は本実施例よりも小さかった。また、σが12MPaを超える比較例である試料8では、矯正のための操作により試料が破断してしまった。それに対して、本実施例の試料3〜7では、矯正後の湾曲量δAは矯正前の湾曲量δBの19〜65%という小さい値になり、湾曲を矯正する効果が確認できた。また、本実施例では試料の破断は生じなかった。 As a result of this experiment, the sample 1 which is a comparative example in which the load F is not applied is not corrected at all, and the correction effect is smaller in the sample 2 in which σ is less than 1 MPa than in this example. Moreover, in the sample 8 which is a comparative example in which σ exceeds 12 MPa, the sample was broken by an operation for correction. On the other hand, in the samples 3 to 7 of the present example, the curvature amount δ A after the correction was as small as 19 to 65% of the curvature amount δ B before the correction, and the effect of correcting the curvature could be confirmed. In this example, the sample did not break.

実施例2では、NdFeB系板状焼結磁石10の湾曲矯正の実験を複数、最大表面応力σの値を共通(8.3MPa。荷重Fは1.2kgW)とし、矯正温度を変えて行った。具体的な実験方法は、矯正温度及び最大表面応力σの値を除いて、実施例1の場合と同じである。従って、この実験では、所定の矯正温度を1時間維持した後に、温度を室温まで徐冷している。実験結果を表2に示す。

Figure 2014049599
In Example 2, a plurality of experiments for correcting the curvature of the NdFeB-based plate-like sintered magnet 10 were performed, the value of the maximum surface stress σ was common (8.3 MPa, load F was 1.2 kgW), and the correction temperature was changed. The specific experimental method is the same as that in Example 1 except for the correction temperature and the value of the maximum surface stress σ. Therefore, in this experiment, after maintaining a predetermined correction temperature for 1 hour, the temperature is gradually cooled to room temperature. The experimental results are shown in Table 2.
Figure 2014049599

この実験の結果、矯正温度が450℃(試料9、比較例)の場合には湾曲を矯正することがほとんどできなかった。これは、温度が450℃の場合にはNdFeB系板状焼結磁石10が十分な塑性を有しないことによると考えられる。それに対して矯正温度が500〜950℃の範囲内(試料10〜15、本実施例)の場合には、矯正処理後の湾曲量δAが矯正前の湾曲量δBの12〜63%という小さい値になり、湾曲を矯正する効果が確認できた。また、本実施例では試料の破断は生じなかった。 As a result of this experiment, when the correction temperature was 450 ° C. (sample 9, comparative example), the curvature could hardly be corrected. This is considered to be due to the fact that the NdFeB-based plate-like sintered magnet 10 does not have sufficient plasticity when the temperature is 450 ° C. On the other hand, when the correction temperature is in the range of 500 to 950 ° C. (samples 10 to 15, this example), the bending amount δ A after the correction processing is 12 to 63% of the bending amount δ B before correction. The value was small, and the effect of correcting curvature was confirmed. In this example, the sample did not break.

上記のように、実施例2では、矯正時に所定の矯正温度を1時間維持した後に、加熱炉11内を徐冷している。この徐冷の際に、NdFeB系板状焼結磁石10の温度が600〜750℃の範囲内をゆっくりと通過することにより、NdFeB系板状焼結磁石10には磁気特性、特に保磁力が低下するという問題が発生する。そこで、実施例3では、図4に概略図で示すように、実施例2の操作を行った試料9〜15に対して、時効予備熱処理及び時効処理の2段階の熱処理を行った。   As described above, in Example 2, the inside of the heating furnace 11 is gradually cooled after maintaining a predetermined correction temperature for 1 hour during correction. During this slow cooling, the temperature of the NdFeB-based plate-like sintered magnet 10 slowly passes through the range of 600 to 750 ° C., so that the NdFeB-based plate-like sintered magnet 10 has magnetic properties, particularly coercive force. The problem of degradation occurs. Therefore, in Example 3, as shown schematically in FIG. 4, samples 9 to 15 subjected to the operation of Example 2 were subjected to two stages of heat treatment: pre-aging heat treatment and aging treatment.

時効予備熱処理では、内部を真空にした加熱炉11でNdFeB系板状焼結磁石10を800℃に加熱して1時間維持した後に、常温の不活性ガスを加熱炉11内に導入することにより急冷を行った。時効処理では、時効予備熱処理後の各試料を一旦常温にした後に、内部を真空にした加熱炉11でNdFeB系板状焼結磁石10を520℃に加熱して1時間維持した後に、常温の不活性ガスを加熱炉11内に導入することにより急冷を行った。比較のために、湾曲の矯正操作を行っていないNdFeB系板状焼結磁石10に対して、同様の2段階の熱処理を行った(試料0)。   In the aging preliminary heat treatment, the NdFeB-based plate-like sintered magnet 10 is heated to 800 ° C. and maintained for 1 hour in a heating furnace 11 whose inside is evacuated, and then a normal temperature inert gas is introduced into the heating furnace 11. Rapid cooling was performed. In the aging treatment, each sample after the aging preliminary heat treatment is once brought to room temperature, and then the NdFeB-based plate-like sintered magnet 10 is heated to 520 ° C. in the heating furnace 11 whose inside is evacuated and maintained for 1 hour, Rapid cooling was performed by introducing an inert gas into the heating furnace 11. For comparison, the same two-stage heat treatment was performed on the NdFeB-based plate-like sintered magnet 10 that was not subjected to the curvature correction operation (Sample 0).

上記2段階の熱処理を行う前(試料9〜15では実施例2の操作を行った後)、及び上記2段階の熱処理の後にそれぞれ、試料9〜15及び試料0の保磁力を測定した。以下、時効予備熱処理前の保磁力を「HcJ-B」、時効処理後の保磁力を「HcJ-A」とする。これら保磁力HcJ-B及びHcJ-Aの測定結果を表3に示す。

Figure 2014049599
The coercive force of Samples 9 to 15 and Sample 0 was measured before the two-stage heat treatment (after the operation of Example 2 in Samples 9 to 15) and after the two-stage heat treatment, respectively. Hereinafter, the coercive force before the aging preliminary heat treatment is “H cJ-B ”, and the coercive force after the aging treatment is “H cJ-A ”. The measurement results of these coercive forces H cJ-B and H cJ-A are shown in Table 3.
Figure 2014049599

まず、矯正温度が500℃であった試料10(及び矯正温度が450℃であった比較例の試料9)では、矯正時の加熱後の徐冷において600〜750℃の温度帯を通過していないため、時効予備熱処理前においても18kOe前後という、矯正処理を行っていない試料0と同様の高い保磁力HcJ-Bが得られている。試料11に関しても、矯正時の加熱後の徐冷において上記温度帯をほとんど通過していないため、時効予備熱処理前の保磁力HcJ-Bは17.9kOeという高い値が得られている。 First, sample 10 (and comparative sample 9 having a correction temperature of 450 ° C.) having a correction temperature of 500 ° C. passed through a temperature range of 600 ° C. to 750 ° C. during slow cooling after heating during correction. Therefore, a high coercive force H cJ-B of about 18 kOe is obtained even before the aging preliminary heat treatment, which is the same as that of the sample 0 not subjected to the correction treatment. For sample 11 as well, the coercive force H cJ-B before aging pre-heat treatment was as high as 17.9 kOe because it hardly passed the temperature range in the slow cooling after heating during correction.

それに対して、矯正温度が700〜950℃である試料12〜15においては、時効予備熱処理前の保磁力HcJ-Bは、矯正処理を行っていない試料0よりも低い14.2〜16.3kOeとなっている。これは、矯正時の加熱後の徐冷において600〜750℃の温度帯を通過していることによると考えられる。これら試料12〜15において、800℃からの急冷を伴う時効予備熱処理、及び時効処理を行うことにより、時効処理後の保磁力HcJ-Aを、矯正処理を行っていない試料0と同様の18.0〜18.6kOeに高めることができる。 On the other hand, in samples 12 to 15 having a correction temperature of 700 to 950 ° C., the coercive force H cJ-B before the aging preliminary heat treatment is 14.2 to 16.3 kOe, which is lower than that of the sample 0 that has not been subjected to the correction treatment. ing. This is considered to be due to passing through a temperature range of 600 to 750 ° C. during slow cooling after heating during correction. In these samples 12 to 15, the aging preheat treatment with rapid cooling from 800 ° C. and the aging treatment were performed, so that the coercive force H cJ-A after the aging treatment was the same as that of the sample 0 not subjected to the straightening treatment 18.0. Can be increased to ~ 18.6kOe.

本発明は上記実施例には限定されない。
例えば、上記実施例ではNdFeB系板状焼結磁石の湾曲を矯正する方法を述べたが、本発明に係る方法はNdFeB系板状熱間塑性加工磁石の湾曲の矯正にも用いることができる。NdFeB系板状熱間塑性加工磁石は、例えば特許文献2に記載の方法により作製することができる。
The present invention is not limited to the above embodiments.
For example, in the above embodiment, the method of correcting the curvature of the NdFeB-based plate-like sintered magnet has been described. However, the method according to the present invention can also be used to correct the curvature of the NdFeB-based plate-like hot plastic working magnet. The NdFeB-based plate-like hot plastic working magnet can be produced by the method described in Patent Document 2, for example.

また、上記実施例では重錘13を用いてNdFeB系板状焼結磁石10に3点曲げ負荷を印加したが、操作時の(温度500〜950℃の範囲内での)耐熱性を確保することができるのであれば、プレス機等、重錘13以外のものを用いて3点曲げ負荷を印加してもよい。   In the above embodiment, a three-point bending load is applied to the NdFeB-based plate-like sintered magnet 10 using the weight 13, but heat resistance during operation (within a temperature range of 500 to 950 ° C.) is ensured. If possible, a three-point bending load may be applied using a press machine or the like other than the weight 13.

上記実施例ではいずれも、矯正温度に維持する時間を1時間としたが、この維持時間は特に限定されない。維持時間は、わずか(ほぼゼロ)であっても、ある程度の矯正効果を奏することができ、1分間以上あれば十分に矯正することができる。また、維持時間には湾曲の矯正という観点では特に上限はないが、長すぎると保磁力が低下したり生産性が低下するという問題が生じる。そのため、維持時間は500分以下とすることが望ましい。   In any of the above-described embodiments, the time for maintaining the correction temperature is 1 hour, but this maintenance time is not particularly limited. Even if the maintenance time is slight (nearly zero), a certain degree of correction effect can be obtained, and if it is 1 minute or longer, it can be corrected sufficiently. In addition, the maintenance time has no particular upper limit in terms of correction of curvature, but if it is too long, there arises a problem that the coercive force is lowered or the productivity is lowered. Therefore, the maintenance time is desirably 500 minutes or less.

また、上記実施例3では時効予備熱処理時及び時効処理時の温度の維持時間をそれぞれ1時間としたが、これらの時間も特に限定されない。これらの維持時間はわずかであっても保磁力をある程度向上させる効果があるが、十分な保磁力向上効果を奏することと生産効率を勘案して、時効予備熱処理時の維持時間は30〜120分、時効処理時の維持時間は60〜500分とすることが望ましい。   Further, in Example 3 described above, the temperature maintenance time during the aging preliminary heat treatment and the aging treatment is 1 hour, but these times are not particularly limited. Even if these maintenance times are small, there is an effect to improve the coercive force to some extent, but taking into account the sufficient coercive force improvement effect and production efficiency, the maintenance time at the aging preliminary heat treatment is 30 to 120 minutes The maintenance time during the aging treatment is preferably 60 to 500 minutes.

10…NdFeB系板状(焼結)磁石
101…NdFeB系板状(焼結)磁石の上面
102…NdFeB系板状(焼結)磁石の下面
11…加熱炉
12…台
13…重錘
151…支点
152…力点
DESCRIPTION OF SYMBOLS 10 ... NdFeB type plate (sintered) magnet 101 ... Upper surface 102 of NdFeB type plate (sintered) magnet ... Lower surface 11 of NdFeB type plate (sintered) magnet 11 ... Heating furnace 12 ... Stand 13 ... Weight 151 ... Support point 152 ... Strength

Claims (5)

NdFeB系板状磁石の面外湾曲を、該NdFeB系板状磁石が500〜950℃の範囲内となる温度下で、最大表面応力が1〜12MPaの範囲内となるような3点曲げ負荷を与えることにより、矯正することを特徴とするNdFeB系板状磁石の湾曲矯正方法。   The out-of-plane curvature of the NdFeB-based plate magnet is subjected to a three-point bending load such that the maximum surface stress is within the range of 1-12 MPa at a temperature where the NdFeB-based plate magnet is in the range of 500-950 ° C. A method for correcting the curvature of a NdFeB-based plate magnet, characterized by correcting by giving. 前記NdFeB系板状磁石が焼結磁石であることを特徴とする請求項1に記載のNdFeB系板状磁石の湾曲矯正方法。   The method of correcting curvature of an NdFeB-based plate magnet according to claim 1, wherein the NdFeB-based plate magnet is a sintered magnet. 前記矯正後、該NdFeB系板状磁石が450〜550℃の範囲内となる温度下で時効処理を行うことを特徴とする請求項1又は2に記載のNdFeB系板状磁石の湾曲矯正方法。   3. The method of correcting curvature of an NdFeB-based plate magnet according to claim 1 or 2, wherein after the correction, the aging treatment is performed at a temperature at which the NdFeB-based plate magnet is in a range of 450 to 550 ° C. 前記矯正後、前記時効処理の前に、該NdFeB系板状磁石が750〜850℃の範囲内となる温度下で保持し、その後急冷する時効予備熱処理を行うことを特徴とする請求項3に記載のNdFeB系板状磁石の湾曲矯正方法。   The aging pre-heat treatment is performed after the correction and before the aging treatment, wherein the NdFeB-based plate magnet is held at a temperature within a range of 750 to 850 ° C and then rapidly cooled. The method for correcting curvature of the described NdFeB-based plate magnet. 請求項1〜4に記載のNdFeB系板状磁石の湾曲矯正方法による湾曲矯正工程を有することを特徴とするNdFeB系板状磁石の製造方法。   A method for producing a NdFeB-based plate magnet, comprising the step of correcting the curvature of the NdFeB-based plate magnet according to claim 1.
JP2012191124A 2012-08-31 2012-08-31 Method for correcting curvature of NdFeB system plate magnet and method for manufacturing NdFeB system plate magnet Expired - Fee Related JP6136146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012191124A JP6136146B2 (en) 2012-08-31 2012-08-31 Method for correcting curvature of NdFeB system plate magnet and method for manufacturing NdFeB system plate magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012191124A JP6136146B2 (en) 2012-08-31 2012-08-31 Method for correcting curvature of NdFeB system plate magnet and method for manufacturing NdFeB system plate magnet

Publications (2)

Publication Number Publication Date
JP2014049599A true JP2014049599A (en) 2014-03-17
JP6136146B2 JP6136146B2 (en) 2017-05-31

Family

ID=50608969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012191124A Expired - Fee Related JP6136146B2 (en) 2012-08-31 2012-08-31 Method for correcting curvature of NdFeB system plate magnet and method for manufacturing NdFeB system plate magnet

Country Status (1)

Country Link
JP (1) JP6136146B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032669A (en) * 2013-08-01 2015-02-16 日産自動車株式会社 Method for producing sintered magnet
JP2015207673A (en) * 2014-04-21 2015-11-19 日産自動車株式会社 Method for manufacturing divided magnet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161002A (en) * 1981-03-31 1982-10-04 Tokyo Shiyouketsu Kinzoku Kk Correcting method for distortion
JPS59136402A (en) * 1983-01-26 1984-08-06 Sumitomo Electric Ind Ltd Sintering method of hard alloy to be sintered
JPH01270210A (en) * 1988-04-21 1989-10-27 Hitachi Metals Ltd Arclike permanent magnet and manufacture thereof
JP2002356375A (en) * 2001-05-31 2002-12-13 Ngk Insulators Ltd Method of manufacturing slender compact of silicon nitride
JP2007258377A (en) * 2006-03-22 2007-10-04 Tdk Corp Method of manufacturing rare earth sintered magnet
WO2013115325A1 (en) * 2012-02-03 2013-08-08 日産自動車株式会社 Process and equipment for producing sintered magnet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161002A (en) * 1981-03-31 1982-10-04 Tokyo Shiyouketsu Kinzoku Kk Correcting method for distortion
JPS59136402A (en) * 1983-01-26 1984-08-06 Sumitomo Electric Ind Ltd Sintering method of hard alloy to be sintered
JPH01270210A (en) * 1988-04-21 1989-10-27 Hitachi Metals Ltd Arclike permanent magnet and manufacture thereof
JP2002356375A (en) * 2001-05-31 2002-12-13 Ngk Insulators Ltd Method of manufacturing slender compact of silicon nitride
JP2007258377A (en) * 2006-03-22 2007-10-04 Tdk Corp Method of manufacturing rare earth sintered magnet
WO2013115325A1 (en) * 2012-02-03 2013-08-08 日産自動車株式会社 Process and equipment for producing sintered magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032669A (en) * 2013-08-01 2015-02-16 日産自動車株式会社 Method for producing sintered magnet
JP2015207673A (en) * 2014-04-21 2015-11-19 日産自動車株式会社 Method for manufacturing divided magnet

Also Published As

Publication number Publication date
JP6136146B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
JP5413383B2 (en) Rare earth magnet manufacturing method
JP2014145129A (en) Method of manufacturing r-t-b-m-c-based sintered magnet, magnet manufactured by the method, and manufacturing device
CN105869876B (en) A kind of rare-earth permanent magnet and its manufacture method
US20150279559A1 (en) Manufacturing method for rare-earth magnet
JP5708242B2 (en) Rare earth magnet manufacturing method
JP2014103386A (en) Manufacturing method of rare-earth magnet
JP2014177660A (en) R-t-b type rare earth magnet powder, method of producing r-t-b type rare earth magnet powder and bond magnet
JP2015201568A (en) Method of manufacturing rare-earth sintered magnet
JP2006228937A (en) Manufacturing method of rare earth sintered magnet and device for molding in magnetic field
JP2015032669A (en) Method for producing sintered magnet
JP2011210879A (en) Method for manufacturing rare-earth magnet
KR101813427B1 (en) Method of manufacturing rare earth magnet
JP6136146B2 (en) Method for correcting curvature of NdFeB system plate magnet and method for manufacturing NdFeB system plate magnet
WO1992020081A1 (en) Method of producing a rare earth permanent magnet
CN107464684B (en) Method for treating sintered magnet
CN108695031B (en) Alloy for R-T-B-based rare earth sintered magnet and method for producing R-T-B-based rare earth sintered magnet
CN105957675A (en) Preparation method of rare-earth permanent magnet material
JP6079643B2 (en) Method and apparatus for manufacturing sintered magnet
US20190311851A1 (en) Method of producing nd-fe-b magnet
EP2099039A1 (en) Material for magnetic anisotropic magnet
KR20160041790A (en) Method for manufacturing rare-earth magnets
JPH04134804A (en) Manufacture of rare earth permanent magnet
CN110111990A (en) A kind of thermal deformation permanent magnet and preparation method thereof
WO2024004332A1 (en) Rare earth magnet
CN115985672A (en) Magnet with low magnetic declination and its production method and use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170417

R150 Certificate of patent or registration of utility model

Ref document number: 6136146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees