WO2013115125A1 - Method for manufacturing substrate having transparent electrode - Google Patents

Method for manufacturing substrate having transparent electrode Download PDF

Info

Publication number
WO2013115125A1
WO2013115125A1 PCT/JP2013/051730 JP2013051730W WO2013115125A1 WO 2013115125 A1 WO2013115125 A1 WO 2013115125A1 JP 2013051730 W JP2013051730 W JP 2013051730W WO 2013115125 A1 WO2013115125 A1 WO 2013115125A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
transparent
transparent electrode
electrode layer
heating
Prior art date
Application number
PCT/JP2013/051730
Other languages
French (fr)
Japanese (ja)
Inventor
貴久 藤本
拓明 上田
祐司 ▲高▼橋
崇 口山
山本 憲治
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2013115125A1 publication Critical patent/WO2013115125A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/584Non-reactive treatment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present invention relates to a method for producing a substrate with a transparent electrode comprising a transparent electrode layer on a transparent film.
  • a substrate with a transparent electrode in which a transparent electrode layer is formed on a transparent substrate such as a film or glass is used as a transparent electrode for a display such as a touch panel.
  • a method for producing such a substrate with a transparent electrode a method of crystallizing a metal oxide by heating after forming an amorphous metal oxide thin film on a transparent substrate by sputtering or the like is known. (For example, Patent Document 1).
  • the transparent electrode layer is finely patterned.
  • the patterning method for example, a method in which a transparent electrode layer is formed on substantially the entire surface of a transparent substrate and then the transparent electrode layer is removed by etching or the like in a part of the surface is used.
  • a substrate with a transparent electrode having a transparent electrode layer patterned on an electrode forming portion (also referred to as “non-etching portion”) and an electrode non-forming portion (also referred to as “etching portion”) is obtained.
  • a transparent electrode used for position detection of a capacitive touch panel is required to have low resistance, high transparency, and good film quality.
  • Patent Document 2 discloses that a substrate film is heated in advance and thermally contracted, and a transparent electrode layer is formed on the film having a thermal contraction rate of 0.5% or less, thereby causing a change in resistance value or a film. It is disclosed that a substrate with a transparent electrode in which the occurrence of peeling is suppressed can be obtained. Further, Patent Document 3 discloses that the base film is wound in a winding type sputtering film forming apparatus, and the base film is heated with a film forming roll. By removing moisture in the film before forming the transparent electrode layer, the partial pressure of water in the film forming environment is reduced, and a low-resistance transparent electrode layer is obtained.
  • the transparent electrode layer is formed on the dielectric layer using a transparent film having a plurality of dielectric layers having different refractive indexes. A method for reducing the color difference between reflected light and transmitted light between the electrode forming portion and the electrode non-forming portion has been proposed.
  • the above-mentioned optical design sufficiently suppresses the visual recognition of the pattern only by reducing the color difference between reflected light and transmitted light between the electrode forming portion and the electrode non-forming portion. I could't. This was thought to be due to the generation of wrinkles along the pattern boundary of the transparent conductive layer, and the reflection of light according to the shape of the wrinkles.
  • the present inventors first focused on a dimensional change due to heating of the base film. That is, as disclosed in Patent Document 2 above, when the metal oxide of the transparent electrode layer was crystallized by heating, it was estimated that the base film caused thermal contraction as a cause of wrinkles. However, even when the transparent electrode layer was formed using a base film (low thermal shrinkage film) whose thermal shrinkage rate was reduced in advance, wrinkles along the pattern boundary of the transparent electrode layer were not improved.
  • the present inventors heated the film by rewinding in a winding-type sputtering film forming apparatus as disclosed in Patent Document 3, and simultaneously performed low thermal shrinkage and low moisture content. Thereafter, an attempt was made to form a transparent electrode layer.
  • the heating temperature at the time of rewinding is increased to about 80 ° C. in order to reduce the thermal shrinkage rate of the base film, the film transport state becomes unstable and winding deviation occurs, and the transparent electrode layer cannot be formed. The problem with.
  • an object of the present invention is to provide a substrate with a transparent electrode in which a pattern is difficult to be visually recognized by suppressing generation of wrinkles along a pattern boundary of a patterned transparent conductive layer.
  • the film is heated in the film forming apparatus before the formation of the amorphous metal oxide thin film, whereby the pattern when crystallized and patterned after the transparent electrode layer is formed.
  • the present inventors have found that generation of wrinkles along the boundary is suppressed, and have reached the present invention. That is, the present invention relates to a substrate with a transparent electrode provided with a transparent electrode layer made of an amorphous metal oxide thin film on a transparent film, and a method for producing the same.
  • a transparent electrode layer made of a metal oxide thin film is formed on a transparent film using a winding type sputtering film forming apparatus.
  • a transparent electrode layer for example, a metal oxide thin film mainly composed of indium oxide such as ITO is formed.
  • the winding-type sputtering apparatus preferably includes a base material preparation chamber and a film forming chamber, and a heating unit is preferably provided in the base material preparation chamber.
  • the production method of the present invention is a process in which a roll of a transparent film is introduced into a base material preparation chamber of a take-up type sputtering film forming apparatus (base material preparation step); A process of heating to a predetermined surface temperature by the heat from the heating unit while being fed out and conveyed from the roll-shaped winding body (heating process); and an inert gas in the film-forming chamber of the winding-type sputtering film-forming apparatus Is introduced, a transparent electrode layer made of an amorphous metal oxide thin film is formed on the transparent film after the heat treatment (transparent electrode layer forming step).
  • the transparent film introduced into the sputtering film forming apparatus preferably has a thermal shrinkage of 0.4% or less in at least one of the MD direction and the TD direction when heated at 150 ° C. for 30 minutes.
  • the transparent film introduced into the sputtering film forming apparatus preferably has a thermal shrinkage start temperature measured by thermomechanical analysis (TMA) of 85 ° C. or higher.
  • the heating step and the transparent electrode layer film forming step are continuously performed without taking out the transparent film from the winding type sputtering film forming apparatus.
  • the heat treatment is performed without contact between the transparent film and the heating portion.
  • the pressure in the base material preparation chamber in the heating step is preferably 1.0 Pa or less.
  • the transparent electrode layer forming step is continuously performed in the film forming chamber before the transparent film after the heat treatment is wound into a roll.
  • the heating time of the transparent film is preferably 0.1 second to 600 seconds.
  • the temperature of the heating part is preferably 150 ° C. to 500 ° C.
  • a plurality of heating units are provided in the substrate preparation chamber of the wind-up type sputtering film forming apparatus along the film conveyance direction, and heat treatment is performed by heat from the plurality of heating units. Is called.
  • the conveyance roll is arrange
  • a transparent dielectric layer forming step is further provided between the heating step and the transparent electrode layer forming step.
  • the transparent dielectric layer forming step at least one transparent dielectric layer is formed on the transparent film by a sputtering method.
  • a dielectric layer composed of at least one silicon oxide layer is formed.
  • the transparent dielectric layer formed immediately below the transparent electrode layer is preferably formed at a film forming pressure of 0.4 Pa or less.
  • the ratio P 28 / P I of the partial pressure P 28 of the gas having a mass number 28 to the partial pressure P I of the inert gas in the film forming chamber in the transparent electrode layer film forming step is 5 ⁇ 10 ⁇ 4 or less is preferable.
  • the substrate with a transparent electrode obtained by the above production method preferably has a thermal shrinkage rate in the MD direction of 0.4% or less.
  • the transparent electrode layer is preferably made of a metal oxide thin film mainly composed of amorphous indium oxide.
  • the substrate with a transparent electrode was heated by 150 ° C. for 30 minutes and obtained by out-plane X-ray diffraction measurement of the indium oxide crystal, by (222) plane spacing d out and in-plane X-ray diffraction measurement. It is preferable that the ratio d out / d in of the surface interval d in between the (222) planes to be obtained is 0.998 to 1.003.
  • the substrate with a transparent electrode obtained by the present invention suppresses generation of wrinkles along the pattern boundary of the transparent conductive layer when the transparent electrode layer is crystallized and patterned. Therefore, it is difficult to visually recognize the pattern boundary, and the visibility of the screen is improved when it is used for a capacitive touch panel.
  • FIG. 1 It is a typical sectional view of a substrate with a transparent electrode concerning one embodiment. It is typical sectional drawing which shows the structural example of a winding-type sputtering film forming apparatus. It is typical sectional drawing which shows the structural example of the board
  • FIG. 1 shows a substrate 50 with a transparent electrode comprising a transparent electrode layer 30 made of a metal oxide thin film on a transparent film 10. Between the transparent film 10 and the transparent electrode layer 30, it is preferable that a transparent dielectric layer 20 mainly composed of an oxide is formed. When the transparent electrode layer 30 is directly formed on the transparent dielectric layer 20, the resistance of the transparent electrode layer is easily reduced.
  • the base film 11 constituting the transparent film 10 is preferably colorless and transparent at least in the visible light region.
  • the transparent film 10 has hard coat layers 12 and 13 on at least one surface of the base film 11.
  • the transparent dielectric layer 20 may be composed of only one layer or may be composed of two or more layers.
  • FIG. 1 illustrates an example in which a first transparent dielectric layer 21, a second transparent dielectric layer 22, and a third transparent dielectric layer 23 are formed in this order from the transparent film 10 side.
  • the oxide constituting the transparent dielectric layer 20 an oxide that is colorless and transparent at least in the visible light region and has a resistivity of 10 ⁇ ⁇ cm or more is preferable.
  • “having a main component” a substance means that the content of the substance is 51% by weight or more, preferably 70% by weight or more, and more preferably 90% by weight.
  • each layer may contain components other than the main component.
  • the transparent electrode layer 30 is an amorphous metal oxide thin film.
  • amorphous may include a part (80% or less) of a crystalline part in a film.
  • the content of the crystalline portion in the film can be determined from the ratio of the area occupied by the crystal grains in the observation field at the time of microscopic observation.
  • the transparent electrode layer 30 As the material constituting the transparent electrode layer 30, an oxide of at least one metal selected from the group consisting of indium, tin, zinc, gallium, aluminum, antimony, and titanium is preferably used. From the viewpoint of achieving both transparency and low resistance, the transparent electrode layer 30 is preferably composed mainly of indium oxide.
  • the transparent electrode layer 30 preferably contains 88% to 98% by weight of indium oxide, more preferably 90% to 97% by weight, and even more preferably 94% to 96% by weight. .
  • the transparent electrode layer preferably contains a doped impurity for imparting conductivity by providing a carrier density in the film.
  • the transparent electrode layer 30 is mainly composed of indium oxide, tin oxide or zinc oxide is preferable as the doping impurity, and tin oxide is particularly preferable.
  • the transparent electrode layer 30 is preferably one that is converted into a crystalline film when heated at 150 ° C. for 30 minutes.
  • the crystalline film after heating preferably has a resistivity of 4.5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less. Further, the crystalline film after heating preferably has a surface resistance of 150 ⁇ / ⁇ or less, and more preferably 140 ⁇ / ⁇ or less. If the transparent electrode layer has a low resistance, it can contribute to improvement of the response speed of the capacitive touch panel, power saving of various optical devices, and the like.
  • the thickness of the transparent electrode layer 30 is preferably 15 to 40 nm, more preferably 21 nm to 38 nm, and further preferably 23 nm to 35 nm.
  • the transparent electrode layer which consists of a metal oxide thin film is formed on a transparent film using a winding type sputtering film forming apparatus.
  • Winding-type sputtering can form a transparent electrode layer on a transparent film with high productivity by a roll-to-roll method.
  • the wound body of the transparent film 10 is introduced into the winding-type sputtering film-forming apparatus (base material preparation process) and heated in the winding-type sputtering film-forming apparatus (heating process).
  • the transparent electrode layer 30 made of an amorphous metal oxide thin film is formed on the transparent film 10 (film forming step).
  • a heating process and a transparent electrode layer film forming process are performed continuously, without taking out a transparent film out of a sputtering film forming apparatus.
  • FIG. 2 is a schematic cross-sectional view showing an example of a winding type sputtering film forming apparatus used in the present invention.
  • the sputtering film forming apparatus 200 is partitioned into a base material preparation chamber 201 and film forming chambers 202 and 203, and a film forming roll 260 is provided adjacent to the partitions of these chambers.
  • a feeding roll 261 and a take-up roll 262 are provided in the base material preparation chamber 201.
  • conveyance rolls 263 to 268 are arranged between the feeding roll 261 and the film forming roll 260 and between the film forming roll 260 and the take-up roll 262 in the base material preparation chamber 201.
  • heaters 271 and 272 are provided as heating units in the vicinity of the film conveyance path between the feeding roll 261 and the film forming roll 260 in the base material preparation chamber 201.
  • the wound body of the transparent film 10 is set on the feeding roll 261.
  • the transparent electrode layer 30 is formed on the film forming roll 260 while the transparent film 10 is continuously conveyed from the base material preparation chamber 201 to the film forming chambers 202 and 203.
  • the substrate 50 with a transparent electrode after film formation is transported again to the base material preparation chamber 201 and wound up by a winding roll 262 to obtain a roll-shaped wound body 250 of the substrate with a transparent electrode.
  • Cathodes 282 and 283 are disposed near the film forming rolls 260 in the film forming chambers 202 and 203, and targets 222 and 223 are disposed between the cathodes and the film forming rolls.
  • the base film 11 constituting the transparent film 10 is not particularly limited as long as it is colorless and transparent at least in the visible light region and has heat resistance at the heating temperature in the heating step described later.
  • the transparent film material include polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN), cycloolefin resins, polycarbonate resins, polyimide resins, and cellulose resins. Can be mentioned. Of these, polyester resins are preferable, and polyethylene terephthalate is particularly preferably used.
  • the thickness of the base film 11 is not particularly limited, but is preferably 10 ⁇ m to 400 ⁇ m, more preferably 50 ⁇ m to 300 ⁇ m. If the thickness is within the above range, the base film 11 can have durability and moderate flexibility, so that the transparent dielectric layer and the transparent electrode layer are formed thereon with high productivity by a roll-to-roll method. It is possible to form a film.
  • the base film 11 a film in which mechanical properties such as Young's modulus and heat resistance are improved by orienting molecules by biaxial stretching is preferably used.
  • the base film 11 can also be used for film formation as the transparent film 10 as it is. From the viewpoint of imparting appropriate durability to the transparent film 10, the transparent film 10 in which the hard coat layers 12 and 13 are formed on one side or both sides of the base film 11 is preferably used.
  • the thickness of the hard coat layer is preferably 3 to 10 ⁇ m, more preferably 3 to 8 ⁇ m, and even more preferably 5 to 8 ⁇ m.
  • the material of the hard coat layer is not particularly limited, and a material obtained by applying and curing a urethane resin, an acrylic resin, a silicone resin, or the like can be appropriately used.
  • the transparent dielectric layer 20 may be formed as a functional layer directly on the base film 11 or on the hard coat layer 12.
  • the oxide constituting the transparent dielectric layer an oxide of one or more elements selected from the group consisting of Si, Nb, Ta, Ti, Zn, Zr and Hf is preferably used.
  • the method for forming the transparent dielectric layer is not particularly limited as long as a uniform thin film is formed. Examples of the film forming method include PVD methods such as sputtering and vapor deposition, dry coating methods such as various CVD methods, and wet coating methods such as spin coating, roll coating, spray coating, and dipping coating. Among the above film forming methods, the dry coating method is preferable from the viewpoint of easily forming a nanometer-level thin film.
  • the transparent dielectric layer is formed by sputtering
  • the transparent dielectric is formed after the base material preparation step in which the transparent film 10 is introduced into the winding type sputtering film forming apparatus 200 and before the transparent electrode layer 30 is formed.
  • Layer 20 may be formed.
  • one or more transparent dielectric layers are formed before the transparent film is introduced into the sputtering film forming apparatus, and the transparent film is formed in the sputtering film forming apparatus.
  • one or more transparent dielectric layers may be formed before the transparent electrode layer is formed.
  • the transparent film 10 after the formation of the first transparent dielectric layer 21 is introduced into the sputtering apparatus, and the second transparent dielectric layer 21 is formed by the sputtering method.
  • the transparent dielectric layer 22, the third transparent dielectric layer 23, and the transparent electrode layer 30 may be formed continuously. From the viewpoint of controlling the film thickness of the transparent dielectric layer and enhancing the productivity of the film with a transparent electrode, it is preferable that all the transparent dielectric layers are formed by sputtering.
  • transparent electrode layer film forming process in which a transparent dielectric material layer is formed in the same winding type sputtering film forming apparatus after forming the transparent electrode layer after the base material preparing process.
  • the transparent film 10 introduced into the sputtering film forming apparatus preferably has a thermal shrinkage rate of 0.4% or less, more preferably 0.35% or less when heated at 150 ° C. for 30 minutes. More preferably, it is 3% or less.
  • the heat shrinkage rate in the MD direction may be in the above range.
  • the thermal shrinkage rate in both the MD direction and the TD direction is in the above range.
  • the “heat shrinkage rate” in this specification represents the shrinkage rate when heated at 150 ° C. for 30 minutes.
  • the transparent film 10 introduced into the sputtering film forming apparatus preferably has a thermal shrinkage start temperature measured by thermomechanical analysis of 85 ° C. or higher, more preferably 90 ° C. or higher, and further 100 ° C. or higher. preferable. Ideally, the transparent film 10 does not exhibit a heat shrinkage starting temperature in the range up to 200 ° C.
  • the thermal shrinkage start temperature is obtained from the maximum value of the displacement amount when the temperature is increased at a predetermined load and the rate of temperature increase by thermal instrument analysis (TMA).
  • the transparent film 10 introduced into the sputtering film forming apparatus 200 is heat-treated in the base material preparation chamber 201 before the transparent electrode layer 30 is formed.
  • the pressure in the base material preparation chamber 201 is preferably once reduced to 0.01 Pa or less.
  • the pressure in the base material preparation chamber 201 during the heat treatment is preferably 1.5 Pa or less, more preferably 1.0 Pa or less, and further preferably 0.5 Pa or less.
  • the transparent film 10 is heated by heat from the heating units 271 and 272 in the base material preparation chamber.
  • the heating temperature is preferably set so that the surface temperature of the transparent film is 70 ° C. to 160 ° C.
  • the surface temperature of the film in the heating step is more preferably 80 ° C. to 160 ° C., further preferably 85 ° C. to 120 ° C.
  • the surface temperature of the film can be measured by attaching a thermolabel or a thermocouple to the film surface.
  • the heating unit is preferably a device that does not come into contact with the film, such as a temperature control mechanism such as a heater or a heat pipe using a microwave or far infrared rays, a hot air blowing nozzle, or the like.
  • a temperature control mechanism such as a heater or a heat pipe using a microwave or far infrared rays, a hot air blowing nozzle, or the like.
  • the heating unit is arranged so as not to contact the film, the distance between the heating unit and the film transport path is preferably about 5 mm to 100 mm, and more preferably about 10 mm to 70 mm.
  • the heating of the transparent film may be performed from one side of the transparent film or from both sides. From the viewpoint of effective heating, it is preferable that heaters 271 and 272 are provided in the vicinity of both surfaces of the transparent film conveyance path, and heating is performed from both surfaces, as shown in FIG.
  • the heating time can be adjusted by the shape of the heater (length in the film transport direction) and the film transport speed. .
  • heating units may be provided at two or more locations in the film conveyance direction.
  • a heater is provided between the conveyance roll 264 and the conveyance roll 265 in the base material preparation chamber 201.
  • An example in which 273 and 274 are arranged is given.
  • a predetermined heating time is ensured without lowering the film transport speed, and heat treatment is performed so that the surface temperature of the film falls within the above range. Can do. Therefore, the heat treatment process is made efficient and the productivity of the substrate with a transparent electrode can be increased.
  • a transport roll between the plurality of heating units it is possible to effectively use the space in the film forming preparation chamber 201 to secure the heating time, stabilize the transport of the film, And the occurrence of slack can be suppressed.
  • the heating time in the heat treatment is preferably from 0.1 seconds to 600 seconds, more preferably from 0.5 seconds to 300 seconds, and further preferably from 1 second to 180 seconds.
  • the temperature of the heating unit (heaters 271 and 272) can be appropriately determined according to the heating time, the interval between the heating unit and the film conveyance path, and the like so that the surface temperature of the film falls within the above range.
  • the heating temperature is, for example, preferably 150 ° C. to 500 ° C., more preferably 180 ° C. to 400 ° C., and further preferably 200 ° C. to 350 ° C.
  • the transparent film When the transparent film is heat-treated before the transparent electrode layer is formed, generation of wrinkles along the pattern boundary is suppressed when crystallization and patterning are performed after the transparent electrode layer is formed.
  • the film with a transparent electrode having a large amount of curling when the transparent electrode layer is crystallized by heating is: After that, when the transparent electrode layer was patterned, there was a tendency that wrinkles at the pattern boundary were easily visible. The occurrence of curling at the time of heat crystallization is presumed to be due to stress generated at the interface between the transparent electrode layer and the transparent film when the substrate with the transparent electrode is heated.
  • the transparent film when the transparent film is heated before forming the transparent electrode layer, a change occurs in the state of the film forming interface of the transparent electrode layer, which is considered to contribute to suppression of wrinkles.
  • the change in the state of the film forming interface for example, it is presumed that the volatilization of organic components adsorbed on the transparent film or on the film surface contributes to the heat treatment.
  • the heated transparent film 10 is conveyed to the film forming chambers 202 and 203, and the transparent electrode layer 30 is formed in the film forming chambers.
  • the formation of the transparent electrode layer is preferably performed continuously without removing the heated transparent film 10 from the sputtering film forming apparatus 200.
  • By forming the transparent electrode layer without removing the heated transparent film from the film forming apparatus adsorption of moisture, organic components, etc. in the atmosphere to the film surface is suppressed.
  • substrate with a transparent electrode is improved by heating and film forming of a film continuously.
  • the transparent film is once wound around the roll-shaped winding body by the winding roll 262, and then again from the winding body to the transparent film. May be fed and film formation may be performed while the film is conveyed.
  • a transparent electrode layer film forming process is continued before the transparent film after a heating is wound by roll shape. That is, in the present invention, the transparent film 10 drawn out from the roll-shaped wound body 210 is heated to a predetermined temperature by the heat from the heating units 271 and 272 in the base material preparation chamber 201, and then the film forming chamber 202.
  • the transparent electrode layer 30 is preferably formed on the film forming roll 260.
  • the time interval from the heating step to the film forming step is preferably within 10 minutes, more preferably within 8 minutes, and even more preferably within 5 minutes.
  • the time interval from the heating step to the film forming step can be set to the above range by continuously performing the film forming step after the heating step without rewinding the transparent film in the sputtering film forming apparatus.
  • the transparent electrode layer 30 is formed while a carrier gas containing an inert gas such as argon and an oxygen gas is introduced into the film forming chambers 202 and 203.
  • the introduced gas is preferably a mixed gas of argon and oxygen.
  • the mixed gas preferably contains 0.4% to 2.0% by volume of oxygen, more preferably 0.7% to 1.5% by volume. By supplying the volume of oxygen, the transparency and conductivity of the transparent electrode layer can be improved.
  • the mixed gas may contain other gases as long as the function of the present invention is not impaired.
  • the pressure (total pressure) in the film forming chamber is preferably 1.5 Pa or less, more preferably 0.05 Pa to 1.2 Pa, and further preferably 0.1 Pa to 0.9 Pa.
  • the ratio P 28 / P I of the partial pressure P 28 of the gas having a mass number 28 to the partial pressure P I of the inert gas in the deposition chamber is less than 5 ⁇ 10 ⁇ 4. Is preferred. P 28 / P I is more preferably 1.0 ⁇ 10 ⁇ 5 to 5 ⁇ 10 ⁇ 4 , and further preferably 5.0 ⁇ 10 ⁇ 5 to 5 ⁇ 10 ⁇ 4 .
  • the gas partial pressure of mass number 28 can be monitored by an on-line quadrupole mass spectrometer (Q-mass).
  • the gas having a mass number of 28 in the film forming chamber is considered to be mainly carbon monoxide and nitrogen.
  • the carbon monoxide gas is considered to be released into the film forming atmosphere due to plasma damage or the like when the transparent electrode layer is formed on the transparent film by sputtering.
  • the nitrogen gas is considered to have been released into the film forming atmosphere from the hard coat layers 12 and 13 formed on the surface of the base film 11.
  • the partial pressure of the gas having a mass number of 28 in the film forming chambers 202 and 203 can be within the above range. it can. That is, when the transparent film is heated at a relatively high temperature for a short time, organic substances that cause carbon monoxide and nitrogen to be generated from the inside of the transparent film or the surface of the transparent film are volatilized before forming the transparent electrode layer. It is considered that generation of a gas having a mass number of 28 due to plasma damage or the like during film formation is suppressed.
  • the transparent film has been heated under vacuum before forming the transparent electrode layer in order to reduce the water content in the transparent film and promote the crystallization of the metal oxide.
  • heating at a low temperature for a long time is necessary.
  • the transparent film 10 is unwound from the roll-shaped wound body 210, until the transparent electrode layer 30 is formed on the film-forming roll 260, the moisture content is reduced in the conveyance path in the base material preparation chamber 201. It is difficult to perform sufficient heat treatment.
  • the heating process in the present invention is a treatment at a high temperature for a short time.
  • the transparent film 10 is drawn out from the roll-shaped wound body 210 and before the transparent electrode layer 30 is formed on the film-forming roll 260, heat treatment is performed in the base material preparation chamber 201. Can do. That is, since the heat treatment is a short time step, the transparent electrode layer can be formed following the heating step without the transparent film being once wound into a roll after the heating step. In addition, since the transparent film 10 is heated in a non-contact manner with the heating units 271 and 272, even if the heating is performed at a high temperature, the film conveyance state becomes unstable as in the case where the heating is performed on the film forming roll. Problems such as winding misalignment of the wound body are unlikely to occur.
  • a DC, RF, MF power source or the like can be used as a sputtering power source when forming the transparent electrode layer.
  • metals such as indium, tin, zinc, gallium, aluminum, antimony, and titanium, or oxides of these metals are used.
  • the target is 88% by weight of indium oxide. It is preferably contained in an amount of ⁇ 98% by weight, more preferably 90% by weight to 97% by weight, and even more preferably 94% by weight to 96% by weight.
  • the substrate temperature at the time of forming the transparent electrode layer may be in the range where the transparent film has heat resistance.
  • the substrate temperature is preferably ⁇ 40 ° C. to 40 ° C., more preferably ⁇ 30 ° C. to 30 ° C., further preferably ⁇ 20 ° C. to 20 ° C., and ⁇ 10 ° C. to 10 ° C. It is particularly preferred.
  • the substrate temperature is preferably ⁇ 40 ° C. to 40 ° C., more preferably ⁇ 30 ° C. to 30 ° C., further preferably ⁇ 20 ° C. to 20 ° C., and ⁇ 10 ° C. to 10 ° C. It is particularly preferred.
  • the substrate temperature By setting the substrate temperature to 40 ° C. or lower, generation of a gas having a mass number of 28 due to plasma damage or the like is suppressed. Further, by setting the substrate temperature to ⁇ 40 ° C. or higher, it is possible to suppress a decrease in the transmittance of the transparent electrode
  • the transparent electrode layer 30 is manufactured on the film forming roll 260 in the film forming chamber. It is preferable that the transparent dielectric layer 20 be formed before being formed.
  • the transparent dielectric layer 20 is formed on the film forming roll 260, and after the transparent film 10 after forming the transparent dielectric layer 20 is once wound on the wound body 250, again.
  • a film is drawn out from the wound body 250 and the transparent electrode layer 30 is formed.
  • the heat treatment may be performed once again after the film is unwound from the wound body 250 and the transparent electrode layer 30 is formed.
  • the transparent dielectric layer 20 and the transparent electrode layer 30 are continuously formed on the film forming roll 260 after heating the transparent film.
  • an oxide target made of a material constituting a dielectric layer is used as the target 222 in the film forming chamber 202, and a target constituting the transparent electrode layer is made as the target 223 in the film forming chamber 203.
  • the transparent dielectric layer 20 and the transparent electrode layer 30 are continuously formed.
  • FIG. 2 a configuration having the cathodes 282 and 283 in the two film forming chambers 202 and 203 is shown, but the sputtering film forming apparatus may include three or more film forming chambers. . By providing a cathode and a target in each of the three or more film forming chambers, two or more dielectric layers and transparent electrode layers (three or more layers in total) can be continuously formed.
  • the transparent dielectric layer 20 includes a gas barrier layer that suppresses the evaporation of moisture and organic substances from the transparent film 10 when the transparent electrode layer 30 is formed thereon, and a protective layer that reduces plasma damage to the transparent film. As well as an underlayer for film growth.
  • the dielectric layer can act as a gas barrier layer, it is expected that generation of a gas having a mass number of 28 during the formation of the transparent electrode layer is suppressed.
  • the thickness of the transparent dielectric layer 20 is preferably 10 nm to 100 nm, more preferably 15 nm to 85 nm, and 20 nm to 80 nm. Is more preferable.
  • the oxide constituting the transparent dielectric layer 20 an oxide of one or more elements selected from the group consisting of Si, Nb, Ta, Ti, Zn, Zr and Hf is preferably used. Among these, silicon oxide (SiO 2 ) is preferable.
  • the transparent electrode layer 30 is formed on the transparent dielectric layer mainly composed of silicon oxide, so that wrinkles along the pattern boundary occur when the transparent electrode layer is patterned. Tend to be difficult.
  • the transmittance and reflectance of the substrate with a transparent electrode can be adjusted, and the visibility of the display device can be improved.
  • the electrode forming portion 30a and the electrode are adjusted by adjusting the thickness and refractive index of the transparent dielectric layer.
  • the transmittance difference, reflectance difference, and color difference from the non-forming portion 30b can be reduced to prevent the electrode pattern from being visually recognized.
  • the arithmetic average roughness Ra of the surface of the transparent dielectric layer 20 is preferably 1 nm or less, more preferably 0.8 nm or less, and further preferably 0.6 nm or less.
  • the arithmetic average roughness Ra is calculated in accordance with JIS B0601: 2001 (ISO1302: 2002) based on the surface shape (roughness curve) measured by a non-contact method using a scanning probe microscope.
  • the arithmetic average roughness Ra of the surface tends to be reduced by reducing the film forming pressure (total pressure in the film forming chamber).
  • the film forming pressure of the dielectric layer is preferably 0.4 Pa or less, more preferably 0.35 Pa or less, and further preferably 0.25 Pa or less.
  • the dielectric layer 23 in contact with the transparent electrode layer 30 is formed at the film forming pressure. It is preferable.
  • the crystallinity and surface shape of the dielectric layer as the underlayer One possible reason is that the surface properties affect the film growth of the transparent electrode layer.
  • the dielectric layer is also preferably formed under a pressure of 0.4 Pa or less.
  • the film forming pressure of the dielectric layer is more preferably 0.35 Pa or less, and further preferably 0.25 Pa or less.
  • the refractive index n 1 is 1.45 to 1.95 and the film thickness is 1 nm to 25 nm from the transparent film 10 side.
  • the third transparent dielectric layer 23 having a film thickness of 35 nm to 80 nm.
  • the refractive index n 1 of the first dielectric layer, the refractive index n 3 of the second refractive index n 2 of the dielectric layer, and a third dielectric layer satisfy the relationship of n 3 ⁇ n 1 ⁇ n 2 Is preferred. Since the refractive index of each dielectric layer has such a magnitude relationship, the reflectance at the interface of the dielectric layer is appropriately controlled, and a substrate with a transparent electrode having excellent visibility can be obtained.
  • the refractive index of each dielectric material layer and transparent electrode layer is a refractive index with respect to the light of wavelength 550nm measured by spectroscopic ellipsometry. The film thickness of each layer is determined by a transmission electron microscope (TEM).
  • transparent dielectric layer 20 is composed of three layers, the material of the first transparent dielectric layer 21, a silicon oxide layer mainly composed of SiO x (1.5 ⁇ x ⁇ 2 ) is preferable .
  • the film thickness d 1 of the first transparent dielectric layer 21 is preferably 1 nm to 25 nm, more preferably 2 nm to 22 nm, still more preferably 3 to 20 nm, and particularly preferably 4 nm to 15 nm.
  • the refractive index of the first dielectric layer is preferably 1.45 to 1.95, more preferably 1.47 to 1.85, and still more preferably 1.49 to 1.75.
  • the material of the second transparent dielectric layer 22 is mainly composed of an oxide of a metal selected from the group consisting of Nb, Ta, Ti, Zr, Zn, and Hf, or a composite oxide of these metals. Is preferred.
  • the film thickness of the second transparent dielectric layer 22 is preferably 4 nm to 12 nm, and more preferably 6 nm to 10 nm.
  • the refractive index of the second dielectric layer is preferably 2.00 to 2.35, more preferably 2.05 to 2.30, and even more preferably 2.10 to 2.25.
  • the second transparent dielectric layer 22 preferably has a small absorption in the short wavelength region of visible light.
  • the material of the second transparent dielectric layer 22 is preferably niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), titanium oxide (TiO 2 ), or zirconium oxide (ZrO 2 ). Of these, niobium oxide is preferably used.
  • the film thickness of the third transparent dielectric layer 23 is preferably 30 nm to 80 nm, more preferably 35 nm to 70 nm, and even more preferably 40 to 70 nm. From the viewpoint of optimizing the optical design, the thickness of the third dielectric layer is preferably in the range of 30 nm to 55 nm. On the other hand, when the film thickness of the third dielectric layer is 55 nm or more, wrinkles tend to be further reduced.
  • the refractive index n 3 of the third transparent dielectric layer 23 is preferably 1.43 to 1.58, more preferably 1.45 to 1.55, and even more preferably 1.47 to 1.53.
  • the third dielectric layer 23 which is a dielectric layer in contact with the transparent electrode layer 30 preferably has an arithmetic average roughness Ra of the transparent electrode layer forming side interface of 1 nm or less, and 0.8 nm or less. It is more preferable that the thickness is 0.6 nm or less.
  • the film forming pressure of the third dielectric layer is preferably 0.4 Pa or less, more preferably 0.35 Pa or less, and further preferably 0.25 Pa or less.
  • the electrode pattern of the transparent electrode layer 30 formed thereon tends to be difficult to be visually recognized.
  • the optical film thickness of the first transparent dielectric layer 21 is preferably 2 nm to 40 nm, more preferably 4 nm to 36 nm, More preferably, it is 6 nm to 32 nm.
  • the optical film thickness of the second transparent dielectric layer is preferably 4 nm to 20 nm, more preferably 5 nm to 15 nm, and further preferably 6 nm to 12 nm.
  • the optical film thickness of the third transparent dielectric layer is preferably 30 nm to 110 nm, more preferably 40 nm to 90 nm, and further preferably 45 nm to 80 nm. From the viewpoint of optimizing the optical design, the optical film thickness of the third dielectric layer is more preferably 80 nm or less, and further preferably 70 nm or less. On the other hand, from the viewpoint of further suppressing the generation of wrinkles, the optical film thickness of the third dielectric layer is more preferably 55 nm or more, and further preferably 60 nm or more. The optical film thickness is represented by the product of the film thickness and refractive index of each layer.
  • the transparent dielectric layer 20 has the above-described three-layer configuration, as shown in FIG. 3, the light reflectance difference and color difference between the electrode forming portion 30 a and the electrode non-forming portion 30 b when the transparent electrode layer 30 is patterned. Can be reduced, and visual recognition of the pattern can be suppressed by the optical design. Furthermore, in the present invention, by forming the transparent electrode layer 30 on the transparent dielectric layer 23 made of silicon oxide, the generation of pattern defects when the transparent electrode layer is patterned is also suppressed. There is a tendency that the visual recognition of the pattern is suppressed.
  • a metal, metal oxide, metal carbide, or the like can be used as a target.
  • the power source a DC, RF, MF power source or the like can be used, but an MF power source is preferable from the viewpoint of productivity.
  • the applied power at the time of film formation is not particularly limited, but is preferably adjusted within a range that does not give excessive heat to the transparent film substrate and does not impair productivity.
  • the power density at the time of forming the first dielectric layer is preferably 0.5 to 10 W / cm 2
  • the power density at the time of forming the second dielectric layer is The density is preferably 0.5 to 8 W / cm 2
  • the power density during the formation of the third dielectric layer is preferably 0.2 to 10 W / cm 2 .
  • a process other than the formation of the transparent dielectric layer 20 may be included until the transparent electrode layer 30 is formed.
  • a process of exposing the film surface to plasma may be performed. Sputtering is performed using a target such as SUS in the presence of an inert gas such as argon to generate plasma, thereby cleaning the film surface and suppressing the generation of a gas having a mass number of 28 when forming a transparent electrode layer. It is thought that it is done.
  • the bombarding process may be performed either before or after the transparent dielectric layer 20 is formed.
  • the substrate 50 with a transparent electrode of the present invention obtained as described above preferably has a heat shrinkage ratio of 0.4% or less, more preferably 0.35% or less, and 0.3% or less. Is more preferable.
  • the heat shrinkage rate in the MD direction may be in the above range.
  • the thermal shrinkage rate in both the MD direction and the TD direction is in the above range.
  • the thermal shrinkage starting temperature of the substrate 50 with a transparent electrode of the present invention is preferably 85 ° C. or higher, more preferably 90 ° C. or higher, and further preferably 100 ° C. or higher.
  • the substrate with a transparent electrode does not exhibit a thermal shrinkage start temperature in the range up to 200 ° C.
  • the heat shrinkage rate and the heat shrinkage start temperature can be set within the above ranges by shrinking the film in the heating step.
  • the heat shrinkage rate of the substrate with the transparent electrode is further reduced, and the heat shrinkage start temperature is set to It can be further increased. If the heat shrinkage rate and the heat shrinkage start temperature are within the above ranges, the dimensional change when the substrate with the transparent electrode is heated is suppressed in the crystallization of the transparent electrode layer and the subsequent touch panel formation process. The design can be expected to be easy.
  • the present invention generation of wrinkles along the pattern boundary of the transparent electrode layer is suppressed by non-contact heating of the transparent film in the sputtering film forming apparatus before forming the transparent electrode layer.
  • the One of the reasons that the generation of wrinkles is suppressed is that the state of the film forming interface changes due to the heat treatment before forming the transparent electrode layer, and the stress applied to the transparent electrode layer is reduced during heating for crystallization. It is estimated to be.
  • the transparent electrode layer 30 of the substrate 50 with a transparent electrode of the present invention is a metal oxide thin film mainly composed of amorphous indium oxide
  • the substrate with a transparent electrode is heated at 150 ° C. for 30 minutes
  • the ratio d out / d in the lattice spacing d in the are (222) surfaces obtained by surface separation d out and in-plane X ray diffraction measurement is (222) plane obtained by out-plane X ray diffraction measurement of the indium oxide crystal Is preferably close to 1.
  • d out / d in is preferably 0.998 to 1.003, and more preferably 0.999 to 1.002.
  • d out / d in is an index representing the three-dimensional strain of the crystal, and the more d out / d in is from 1, the more the crystal structure is distorted.
  • the transparent electrode layer of the substrate with a transparent electrode of the present invention is amorphous (may contain a part of crystalline component), but is heated at 150 ° C. for 30 minutes, so that the metal in the transparent electrode layer The oxide is crystallized.
  • the fact that d out / d in after being heated at 150 ° C. for 30 minutes is close to 1, the stress applied to the film is small when the transparent electrode layer is crystallized. This is considered to indicate that the residual stress is small.
  • the residual stress of the transparent electrode layer after crystallization is small, the stress at the interface between the transparent electrode layer and the transparent film is small, so it is estimated that the generation of wrinkles when the transparent electrode layer is patterned is suppressed Is done.
  • the crystal spacing is determined by X-ray diffraction.
  • the diffraction angle 2 ⁇ of the (222) plane after the substrate with a transparent electrode is heated at 150 ° C. for 30 minutes is preferably 32 ° or less, more preferably 31 ° or less, and further preferably 30.8 ° or less.
  • Cu ⁇ K ⁇ rays (wavelength: 0.15418 nm) are used as an X-ray source, and X-ray diffraction is performed under conditions of an incident angle of 0.1 ° to 2.0 °.
  • Diffraction angle 2 ⁇ of (440) plane measured by X-ray diffraction using Cu ⁇ K ⁇ ray X-ray source after substrate with transparent electrode is heated at 150 ° C. for 30 minutes, and (440) plane before heating the difference 2 [Theta]-2 [Theta] 0 and the diffraction angle 2 [Theta] 0 in is preferably 0.50 or less, more preferably 0.45 or less, still more preferably 0.32 or less, 0.28 or less It is particularly preferred that When the change in diffraction angle is small before and after heating for crystallization, it is considered that the stress applied to the transparent electrode layer during crystallization is small and no residual stress is generated in the transparent electrode layer. Therefore, when 2 ⁇ 2 ⁇ 0 is small, it is considered that generation of wrinkles when the transparent electrode layer is patterned is suppressed.
  • substrate with a transparent electrode of this invention can be used as transparent electrodes, such as a display, a light emitting element, a photoelectric conversion element, and is used suitably as a transparent electrode for touchscreens. Among these, it is preferably used for a capacitive touch panel.
  • the substrate 50 with a transparent electrode is preferably subjected to a heat treatment so that the transparent electrode layer is crystallized.
  • the heat treatment for crystallization is performed, for example, in an oven at 120 ° C. to 150 ° C. for 30 to 60 minutes. Alternatively, it may be heated at a relatively low temperature for a long time, such as at 85 to 120 ° C. for 1 to 3 days.
  • the heat treatment of the transparent electrode layer may be performed either before or after patterning of the transparent electrode layer. Further, the heat treatment of the transparent electrode layer may also serve as a heat annealing treatment for touch panel formation such as heat treatment at the time of forming the lead wiring.
  • the substrate 50 with a transparent electrode is used by patterning the transparent electrode layer 30 into an electrode forming part 30a and an electrode non-forming part 30b. For example, after the transparent electrode layer is formed, the patterning is performed by removing the transparent electrode layer in a part of the surface by etching or the like.
  • the etching method of the transparent electrode layer may be either a wet process or a dry process, but a wet process is suitable from the viewpoint that only the transparent electrode layer 30 is easily removed selectively.
  • a wet process is suitable from the viewpoint that only the transparent electrode layer 30 is easily removed selectively.
  • a conductive ink or paste is applied on a substrate with a transparent electrode, and heat treatment is performed, whereby a collecting electrode as a wiring for a routing circuit is formed.
  • the method for the heat treatment is not particularly limited, and examples thereof include a heating method using an oven or an IR heater.
  • the temperature and time of the heat treatment are appropriately set in consideration of the temperature and time at which the conductive paste adheres to the transparent electrode. For example, examples include heating at 120 to 150 ° C. for 30 to 60 minutes for heating by an oven and heating at 150 ° C. for 5 minutes for heating by an IR heater.
  • the formation method of the circuit wiring is not limited to the above, and may be formed by a dry coating method.
  • the wiring for the routing circuit is formed by photolithography, the wiring can be thinned.
  • each dielectric layer and transparent electrode layer was determined by observation with a transmission electron microscope (TEM) of a cross section of the substrate with a transparent electrode.
  • TEM transmission electron microscope
  • the heat shrinkage rate was determined by measuring the distance L 0 between the two points before the 30 minute heating at 150 ° C. and the distance L between the two points after heating by three-dimensional measurement. It was determined by measuring with a vessel.
  • Example 1 As the transparent film, a PET film having a thickness of 125 ⁇ m in which hard coat layers (refractive index of 1.53) made of urethane resin were formed on both surfaces was used. The heat shrinkage rate of the PET film when heated at 150 ° C. for 30 minutes was 0.73% in the MD direction and 0.56% in the TD direction. This transparent film was introduced into a winding type sputtering film forming apparatus schematically shown in FIG.
  • the pressure in the base material preparation chamber was once reduced to 5 ⁇ 10 ⁇ 4 Pa, and then the film was heated while the film was transported at a pressure of 0.5 Pa in the base material preparation chamber.
  • the temperature of the heater in the base material preparation chamber 201 was 240 ° C., and the temperature of the film surface measured by a thermolabel attached to the film surface was 82 ° C.
  • the heating time time during which the film was conveyed between the heaters was 20 seconds.
  • the transparent film after the heat treatment is continuously conveyed to the film forming chamber, and on the film forming roll 260, SiO x as the first transparent dielectric layer, Nb 2 O 5 as the second transparent dielectric layer, and the third dielectric SiO 2 as a layer and ITO as a transparent electrode layer were sequentially formed.
  • the substrate temperature during film formation was ⁇ 20 ° C.
  • the first dielectric layer uses B—Si as a target and introduces an oxygen / argon (20 sccm / 400 sccm) mixed gas into the film forming chamber, while the apparatus pressure is 0.2 Pa and the power density is 1.4 W / cm 2 .
  • the film was formed under conditions.
  • the second dielectric layer uses niobium (Nb) as a target and introduces an oxygen / argon (160 sccm / 1600 sccm) mixed gas into the film forming chamber, while the apparatus pressure is 0.87 Pa, the substrate temperature is ⁇ 20 ° C., and the power density is The film was formed under conditions of 8.1 W / cm 2 .
  • the third dielectric layer uses B—Si as a target, and introduces a mixed gas of oxygen / argon (190 sccm / 400 sccm) into the apparatus, while the apparatus pressure is 0.2 Pa and the power density is 10.2 W / cm 2 . Was formed into a film.
  • the transparent electrode layer uses a sintered target of indium oxide and tin oxide, and an oxygen / argon (2 sccm / 1000 sccm) mixed gas is introduced into the apparatus while the apparatus pressure is 0.4 Pa and the power density is 5.2 W / cm 2.
  • the ratio P 28 / P I of the partial pressure P 28 of the gas having a mass number of 28 to the partial pressure P I of the inert gas (argon gas) in the film forming chamber was 4.7 ⁇ 10 ⁇ 4 .
  • the scanning speed is changed to 0.400 ° / min and the sampling interval is changed to 0.0400 °, and the angle of ⁇ is the same as that in the out-plane measurement.
  • the measurement was carried out at the same angle as.
  • Example 2 Since the temperature of the heater was changed to 400 ° C. and the heating time by the heater was changed to 25 seconds, the film surface temperature in the heat treatment was 90 ° C. Further, the internal pressure of the first dielectric layer and the third dielectric layer was changed to 0.1 Pa. Except these changes, it carried out similarly to the said Example 1, and obtained the board
  • Example 3 By reducing the film conveyance speed, the heating time by the heater was quadrupled, and accordingly, the film surface temperature in the heat treatment was 99 ° C. Others were the same as in Example 1 to obtain a substrate with a transparent electrode.
  • the film thickness of each layer was adjusted to be the same as that in Example 1 by changing the film formation (deposition) speeds of the transparent dielectric layer and the transparent electrode layer.
  • This substrate with a transparent electrode was crystallized in the same manner as in Example 1, and the (222) plane spacing ratio d out / d in was measured to be 0.998.
  • Example 4 As a transparent film, a PET film having a thickness of 125 ⁇ m in which a hard coat layer (refractive index of 1.53) made of urethane resin is formed on both surfaces is heat-treated before being introduced into a film forming apparatus, Low heat shrinkage rate.
  • Example 5 a PET film having a lower thermal shrinkage rate was obtained by heating the PET film at a higher temperature than in Example 4.
  • Example 6 The thickness of the transparent film on which the hard coat layer was formed was changed to 100 ⁇ m, and the heater temperature was changed to 230 ° C., so that the film surface temperature in the heat treatment was 85 ° C. Others were carried out similarly to the said Example 1, and obtained the board
  • a photoresist product name: TSMR-8900 (manufactured by Tokyo Ohka Kogyo Co., Ltd.)
  • TSMR-8900 manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • a developer product name: NMD-W (manufactured by Tokyo Ohka Kogyo Co., Ltd.)
  • the transparent electrode layer was etched using an etching solution (product name: ITO02 (manufactured by Kanto Chemical)). Finally, the remaining photoresist was removed using a rinse solution (product name 104 (manufactured by Tokyo Ohka Kogyo Co., Ltd.)).
  • the presence / absence of pattern defects in the transparent electrode layer was evaluated by visual inspection.
  • the reflected light from the fluorescent lamp is observed in a state where the pattern formation direction of the transparent electrode layer and the reflected light of the straight tube fluorescent lamp are substantially orthogonal, and the reflected image of the fluorescent lamp looks linear A is E (no wrinkles), and E is a reflection image that appears to be significantly distorted.
  • the thermal shrinkage rate of the transparent film used in the production of the transparent electrode-coated substrates of the examples and comparative examples, the heating temperature in the heating step, the heating time and the film surface temperature, the production of the silicon oxide film in the transparent dielectric layer Table 1 shows the film pressure, the thermal contraction rate of the substrate with a transparent electrode, and the evaluation results of wrinkles by visual observation.
  • Example 1 From the results in Table 1, it is possible to suppress the generation of wrinkles when the transparent electrode layer is patterned by heating with a non-contact heater before forming the transparent dielectric layer and the transparent electrode layer. Recognize. From the comparison between Example 1 and Example 3 and Comparative Example 3, it is understood that wrinkles of the substrate with a transparent electrode are further suppressed by increasing the heating temperature. In addition, in comparison with Example 2 and Example 3, in addition to the high surface temperature of the film, when the film-forming pressure of the silicon oxide layer as the dielectric layer is low, the wrinkles of the substrate with transparent electrodes It turns out that it is suppressed further. The same tendency is observed from the comparison between Example 1 and Example 6.
  • Example 1 and Example 4 and Example 5 as a transparent film before being introduced into the sputtering film forming apparatus, a film having a small amount of heat shrinkage is used. It can be seen that wrinkles are further suppressed.
  • Comparative Example 2 a transparent film having a low heat shrinkage similar to that in Example 4 is used. However, since heat treatment was not performed before film formation, generation of wrinkles was observed on the substrate with a transparent electrode. It was. From these results, it can be seen that the use of a low heat shrinkage substrate alone does not sufficiently suppress wrinkles, and it is important that a heating step is performed before film formation.
  • the transparent electrode layer of each example has a ratio d out / d in of the in-plane measurement and the out-plane measurement of the (222) plane spacing after crystallization close to 1, the crystallized by heating. It can be seen that the distortion of the crystal of indium oxide after being converted is small. From these results, in the substrate with a transparent electrode according to the present invention, a predetermined heat treatment is performed before forming the transparent electrode layer, so that distortion due to stress applied to the transparent electrode layer during crystallization of the transparent electrode layer is achieved. It is considered that the generation of wrinkles when the transparent electrode layer is patterned is suppressed because the occurrence of the above is suppressed and the stress at the interface between the transparent electrode layer and the film is small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The present invention pertains to a method for manufacturing a substrate having a transparent electrode layer comprising a metal oxide thin film provided on a transparent film. This manufacturing method has: a base material preparation step for introducing a roll-shaped wound body made from a transparent film into the base material preparation chamber of a winding-type sputtering film-forming device; a heating step in which the transparent film is subjected to a heating treatment in the base material preparation chamber, by heat from a heating unit, while being unrolled and transported from the roll-shaped wound body; and a transparent electrode layer film-forming step in which a transparent electrode layer made from an amorphous metal oxide thin film is formed on the heat-treated transparent film while an inert gas is introduced into the film-forming chamber of the winding-type sputtering film-forming device. The heating step and the transparent electrode layer film-forming step are performed continuously without the transparent film being removed from the sputtering film-forming device. In the heating step, heating is preferably performed without the transparent film and the heating unit coming into contact with each other. The pressure in the base material preparation chamber during the heating step is preferably no greater than 1.0 Pa.

Description

透明電極付き基板の製造方法Manufacturing method of substrate with transparent electrode
 本発明は、透明フィルム上に透明電極層を備える透明電極付き基板の製造方法に関する。 The present invention relates to a method for producing a substrate with a transparent electrode comprising a transparent electrode layer on a transparent film.
 フィルムやガラス等の透明基板上に透明電極層が形成された透明電極付き基板は、タッチパネル等のディスプレイの透明電極として使用される。このような透明電極付き基板の製造方法としては、透明基材上に、スパッタリング法等により非晶質の金属酸化物薄膜を形成した後、加熱により金属酸化物を結晶化する方法が知られている(例えば特許文献1)。 A substrate with a transparent electrode in which a transparent electrode layer is formed on a transparent substrate such as a film or glass is used as a transparent electrode for a display such as a touch panel. As a method for producing such a substrate with a transparent electrode, a method of crystallizing a metal oxide by heating after forming an amorphous metal oxide thin film on a transparent substrate by sputtering or the like is known. (For example, Patent Document 1).
 透明電極付き基板が静電容量方式タッチパネルの位置検出に使用される場合、透明電極層には微細なパターニングが施される。パターニング方法としては、例えば、透明基材上の略全面に透明電極層が形成された後、面内の一部において透明電極層がエッチング等によって除去される方法が用いられる。これによって、基材上に、電極形成部(「非エッチング部」ともいう)と電極非形成部(「エッチング部」ともいう)とにパターニングされた透明電極層を有する透明電極付き基板が得られる。静電容量方式タッチパネルの位置検出に用いられる透明電極には、低抵抗でかつ透明性が高く、膜質が良好であることが求められる。 When a substrate with a transparent electrode is used for position detection of a capacitive touch panel, the transparent electrode layer is finely patterned. As the patterning method, for example, a method in which a transparent electrode layer is formed on substantially the entire surface of a transparent substrate and then the transparent electrode layer is removed by etching or the like in a part of the surface is used. As a result, a substrate with a transparent electrode having a transparent electrode layer patterned on an electrode forming portion (also referred to as “non-etching portion”) and an electrode non-forming portion (also referred to as “etching portion”) is obtained. . A transparent electrode used for position detection of a capacitive touch panel is required to have low resistance, high transparency, and good film quality.
 フィルム上に良質な透明電極層を形成する方法として、スパッタリング法による透明電極層の製膜前に、基材フィルムを事前に加熱する方法が知られている。例えば、特許文献2では、事前に基材フィルムを加熱して熱収縮させ、熱収縮率を0.5%以下としたフィルム上に透明電極層を製膜することによって、抵抗値の変動や膜剥がれの発生が抑制された透明電極付き基板が得られることが開示されている。また、特許文献3では、巻取式スパッタ製膜装置内で基材フィルムの巻き返しを行い、製膜ロールで基材フィルムを加熱することが開示されている。透明電極層の製膜前に、フィルム中の水分が除去されることによって、製膜環境における水の分圧が低減され、低抵抗の透明電極層が得られる。 As a method of forming a high-quality transparent electrode layer on a film, a method of heating a substrate film in advance before forming a transparent electrode layer by sputtering is known. For example, in Patent Document 2, a substrate film is heated in advance and thermally contracted, and a transparent electrode layer is formed on the film having a thermal contraction rate of 0.5% or less, thereby causing a change in resistance value or a film. It is disclosed that a substrate with a transparent electrode in which the occurrence of peeling is suppressed can be obtained. Further, Patent Document 3 discloses that the base film is wound in a winding type sputtering film forming apparatus, and the base film is heated with a film forming roll. By removing moisture in the film before forming the transparent electrode layer, the partial pressure of water in the film forming environment is reduced, and a low-resistance transparent electrode layer is obtained.
 透明電極層がパターニングされた透明電極付き基板においては、上記のような透明電極層の膜質の改善に加えて、透明電極層のパターンが視認され難いことが求められる。特許文献3および特許文献4では、透明電極層のパターンの視認を抑止するために、屈折率の異なる複数の誘電体層を有する透明フィルムを用い、誘電体層上に透明電極層を形成して、電極形成部と電極非形成部との反射光および透過光の色差を低減させる方法が提案されている。 In the substrate with a transparent electrode on which the transparent electrode layer is patterned, in addition to the improvement of the film quality of the transparent electrode layer as described above, it is required that the pattern of the transparent electrode layer is difficult to be visually recognized. In patent document 3 and patent document 4, in order to suppress the visual recognition of the pattern of a transparent electrode layer, the transparent electrode layer is formed on the dielectric layer using a transparent film having a plurality of dielectric layers having different refractive indexes. A method for reducing the color difference between reflected light and transmitted light between the electrode forming portion and the electrode non-forming portion has been proposed.
WO2010/035598号国際公開パンフレットInternational publication pamphlet of WO2010 / 035598 特開2007-133839号公報JP 2007-133839 A WO2010/140275号国際公開パンフレットWO2010 / 140275 International Publication Pamphlet 特開2010-15861号公報JP 2010-155861 A
 本発明者らの検討によれば、上記のような光学的な設計により、電極形成部と電極非形成部との反射光および透過光の色差を低減させるのみでは、パターンの視認を十分に抑止することができなかった。これは、透明導電層のパターン境界に沿って皺が発生しており、皺の形状に応じて光が反射されることに起因するものと考えられた。 According to the study by the present inventors, the above-mentioned optical design sufficiently suppresses the visual recognition of the pattern only by reducing the color difference between reflected light and transmitted light between the electrode forming portion and the electrode non-forming portion. I couldn't. This was thought to be due to the generation of wrinkles along the pattern boundary of the transparent conductive layer, and the reflection of light according to the shape of the wrinkles.
 透明電極層のパターン境界に沿った皺の発生原因として、本発明者らは先ず、基材フィルムの加熱による寸法変化に着目した。すなわち、上記特許文献2に開示されているように、透明電極層の金属酸化物を加熱により結晶化する際に、基材フィルムが熱収縮を生じることが、皺の原因であると推定した。しかしながら、事前に熱収縮率を低下させた基材フィルム(低熱収縮化フィルム)を用いて透明電極層の製膜を行っても、透明電極層のパターン境界に沿った皺は改善されなかった。 As a cause of generation of wrinkles along the pattern boundary of the transparent electrode layer, the present inventors first focused on a dimensional change due to heating of the base film. That is, as disclosed in Patent Document 2 above, when the metal oxide of the transparent electrode layer was crystallized by heating, it was estimated that the base film caused thermal contraction as a cause of wrinkles. However, even when the transparent electrode layer was formed using a base film (low thermal shrinkage film) whose thermal shrinkage rate was reduced in advance, wrinkles along the pattern boundary of the transparent electrode layer were not improved.
 次に、本発明者らは、特許文献3に開示されているような、巻取式スパッタ製膜装置内での巻き返しによってフィルムを加熱して、低熱収縮化と低水分率化を同時に行った後、透明電極層を製膜することを試みた。しかしながら、基材フィルムの熱収縮率を小さくするために、巻き返し時の加熱温度を80℃程度まで高めると、フィルムの搬送状態が不安定となって巻ズレを生じ、透明電極層を製膜できないとの問題が生じた。 Next, the present inventors heated the film by rewinding in a winding-type sputtering film forming apparatus as disclosed in Patent Document 3, and simultaneously performed low thermal shrinkage and low moisture content. Thereafter, an attempt was made to form a transparent electrode layer. However, if the heating temperature at the time of rewinding is increased to about 80 ° C. in order to reduce the thermal shrinkage rate of the base film, the film transport state becomes unstable and winding deviation occurs, and the transparent electrode layer cannot be formed. The problem with.
 以上のように、透明電極層がパターニングされた透明電極付き基板において、透明導電層のパターン境界に沿って皺の発生を抑制することが、パターン視認の抑止に効果的であると推定される。しかしながら、これまで、透明電極層のパターン境界に沿った皺の発生原因や、その抑制方法に関する詳細な検討は行われておらず、パターン視認を抑制する有効な手段は見出されていない。上記に鑑み、本発明は、パターニングされた透明導電層のパターン境界に沿った皺の発生を抑制することにより、パターンが視認され難い透明電極付き基板を提供することを目的とする。 As described above, in the substrate with a transparent electrode in which the transparent electrode layer is patterned, it is presumed that suppressing the generation of wrinkles along the pattern boundary of the transparent conductive layer is effective for suppressing pattern visual recognition. However, until now, no detailed examination has been made on the cause of wrinkles along the pattern boundary of the transparent electrode layer and a method for suppressing the same, and no effective means for suppressing pattern visual recognition has been found. In view of the above, an object of the present invention is to provide a substrate with a transparent electrode in which a pattern is difficult to be visually recognized by suppressing generation of wrinkles along a pattern boundary of a patterned transparent conductive layer.
 本発明者らが鋭意検討の結果、非晶質金属酸化物薄膜の製膜前に製膜装置内でフィルムが加熱されることにより、透明電極層製膜後に結晶化およびパターニングされた際のパターン境界に沿った皺の発生が抑制されることを見出し、本発明に至った。すなわち、本発明は、透明フィルム上に、非晶質の金属酸化物薄膜からなる透明電極層を備える透明電極付き基板およびその製造方法に関する。 As a result of intensive studies by the inventors, the film is heated in the film forming apparatus before the formation of the amorphous metal oxide thin film, whereby the pattern when crystallized and patterned after the transparent electrode layer is formed. The present inventors have found that generation of wrinkles along the boundary is suppressed, and have reached the present invention. That is, the present invention relates to a substrate with a transparent electrode provided with a transparent electrode layer made of an amorphous metal oxide thin film on a transparent film, and a method for producing the same.
 本発明においては、巻取式スパッタ製膜装置を用いて、透明フィルム上に金属酸化物薄膜からなる透明電極層が製膜されることが好ましい。透明電極層としては、例えば、ITO等の酸化インジウムを主成分とする金属酸化物薄膜が製膜される。 In the present invention, it is preferable that a transparent electrode layer made of a metal oxide thin film is formed on a transparent film using a winding type sputtering film forming apparatus. As the transparent electrode layer, for example, a metal oxide thin film mainly composed of indium oxide such as ITO is formed.
 巻取式スパッタ装置は、基材準備室および製膜室を備え、基材準備室内には加熱部が設けられていることが好ましい。本発明の製造方法は、透明フィルムのロール状巻回体が、巻取式スパッタ製膜装置の基材準備室内に導入される工程(基材準備工程);基材準備室内で、透明フィルムが、ロール状巻回体から繰出され搬送されながら、加熱部からの熱によって所定の表面温度に加熱処理される工程(加熱工程);および巻取式スパッタ製膜装置の製膜室内に不活性ガスが導入されながら、加熱処理後の透明フィルム上に、非晶質金属酸化物薄膜からなる透明電極層が形成される工程(透明電極層製膜工程)、を有する。 The winding-type sputtering apparatus preferably includes a base material preparation chamber and a film forming chamber, and a heating unit is preferably provided in the base material preparation chamber. The production method of the present invention is a process in which a roll of a transparent film is introduced into a base material preparation chamber of a take-up type sputtering film forming apparatus (base material preparation step); A process of heating to a predetermined surface temperature by the heat from the heating unit while being fed out and conveyed from the roll-shaped winding body (heating process); and an inert gas in the film-forming chamber of the winding-type sputtering film-forming apparatus Is introduced, a transparent electrode layer made of an amorphous metal oxide thin film is formed on the transparent film after the heat treatment (transparent electrode layer forming step).
 スパッタ製膜装置内に導入される透明フィルムは、150℃30分加熱時のMD方向およびTD方向の少なくとも一方の熱収縮率が0.4%以下であることが好ましい。また、スパッタ製膜装置内に導入される透明フィルムは、熱機械分析(TMA)により測定される熱収縮開始温度が85℃以上であることが好ましい。 The transparent film introduced into the sputtering film forming apparatus preferably has a thermal shrinkage of 0.4% or less in at least one of the MD direction and the TD direction when heated at 150 ° C. for 30 minutes. In addition, the transparent film introduced into the sputtering film forming apparatus preferably has a thermal shrinkage start temperature measured by thermomechanical analysis (TMA) of 85 ° C. or higher.
 加熱工程および透明電極層製膜工程は、巻取式スパッタ製膜装置から透明フィルムが取り出されることなく連続して行われることが好ましい。加熱工程において、透明フィルムと加熱部とが接触することなく、加熱処理が行われることが好ましい。また、加熱工程における基材準備室内の圧力は、1.0Pa以下が好ましい。 It is preferable that the heating step and the transparent electrode layer film forming step are continuously performed without taking out the transparent film from the winding type sputtering film forming apparatus. In the heating step, it is preferable that the heat treatment is performed without contact between the transparent film and the heating portion. The pressure in the base material preparation chamber in the heating step is preferably 1.0 Pa or less.
 加熱工程後、加熱処理後の透明フィルムがロール状に巻回される前に、製膜室内で透明電極層製膜工程が引き続き行われることが好ましい。加熱工程における、透明フィルムの加熱時間は0.1秒~600秒が好ましい。加熱工程における、加熱部の温度は150℃~500℃が好ましい。 After the heating step, it is preferable that the transparent electrode layer forming step is continuously performed in the film forming chamber before the transparent film after the heat treatment is wound into a roll. In the heating step, the heating time of the transparent film is preferably 0.1 second to 600 seconds. In the heating step, the temperature of the heating part is preferably 150 ° C. to 500 ° C.
 一実施形態において、巻取式スパッタ製膜装置の基材準備室内には、フィルム搬送方向に沿って複数の加熱部が設けられており、これらの複数の加熱部からの熱によって加熱処理が行われる。当該形態では、複数の加熱部の間に搬送ロールが配置されていることが好ましい。 In one embodiment, a plurality of heating units are provided in the substrate preparation chamber of the wind-up type sputtering film forming apparatus along the film conveyance direction, and heat treatment is performed by heat from the plurality of heating units. Is called. In the said form, it is preferable that the conveyance roll is arrange | positioned between several heating parts.
 本発明の製造方法では、加熱工程と透明電極層製膜工程との間に、さらに透明誘電体層形成工程が設けられることが好ましい。透明誘電体層形成工程では、透明フィルム上に、スパッタリング法により少なくとも1層の透明誘電体層が形成される。誘電体層形成工程において、少なくとも1層のシリコン酸化物層からなる誘電体層が形成されることが好ましい。また、透明電極層の直下に形成される透明誘電体層は、0.4Pa以下の製膜圧力で製膜されることが好ましい。 In the production method of the present invention, it is preferable that a transparent dielectric layer forming step is further provided between the heating step and the transparent electrode layer forming step. In the transparent dielectric layer forming step, at least one transparent dielectric layer is formed on the transparent film by a sputtering method. In the dielectric layer forming step, it is preferable that a dielectric layer composed of at least one silicon oxide layer is formed. The transparent dielectric layer formed immediately below the transparent electrode layer is preferably formed at a film forming pressure of 0.4 Pa or less.
 一実施形態において、透明誘電体層形成工程では、屈折率が1.45~1.95の第一率透明誘電体層、屈折率が2.00~2.35の第二透明誘電体層、およびシリコン酸化物からなる第三透明誘電体層が、透明フィルム上にこの順に形成される。 In one embodiment, in the transparent dielectric layer forming step, a first transparent dielectric layer having a refractive index of 1.45 to 1.95, a second transparent dielectric layer having a refractive index of 2.00 to 2.35, And a third transparent dielectric layer made of silicon oxide is formed in this order on the transparent film.
 本発明の製造方法において、透明電極層製膜工程における製膜室内の不活性ガスの分圧Pに対する質量数28のガスの分圧P28の比P28/Pは、5×10-4以下が好ましい。 In the production method of the present invention, the ratio P 28 / P I of the partial pressure P 28 of the gas having a mass number 28 to the partial pressure P I of the inert gas in the film forming chamber in the transparent electrode layer film forming step is 5 × 10 − 4 or less is preferable.
 上記製造方法により得られる透明電極付き基板は、MD方向の熱収縮率が0.4%以下であることが好ましい。透明電極層は、非晶質の酸化インジウムを主成分とする金属酸化物薄膜からなることが好ましい。 The substrate with a transparent electrode obtained by the above production method preferably has a thermal shrinkage rate in the MD direction of 0.4% or less. The transparent electrode layer is preferably made of a metal oxide thin film mainly composed of amorphous indium oxide.
 透明電極付き基板は、150℃で30分加熱を行った後の、酸化インジウム結晶のout‐plane X線回折測定により得られる(222)面の面間隔doutとin‐plane X線回折測定により得られる(222)面の面間隔dinの比dout/dinが、0.998~1.003であることが好ましい。 The substrate with a transparent electrode was heated by 150 ° C. for 30 minutes and obtained by out-plane X-ray diffraction measurement of the indium oxide crystal, by (222) plane spacing d out and in-plane X-ray diffraction measurement. It is preferable that the ratio d out / d in of the surface interval d in between the (222) planes to be obtained is 0.998 to 1.003.
 本発明により得られる透明電極付き基板は、透明電極層が結晶化され、パターニングされた際に、透明導電層のパターン境界に沿った皺の発生が抑制される。そのため、パターン境界が視認され難く、静電容量方式のタッチパネルに用いられた際には、画面の視認性が向上する。 The substrate with a transparent electrode obtained by the present invention suppresses generation of wrinkles along the pattern boundary of the transparent conductive layer when the transparent electrode layer is crystallized and patterned. Therefore, it is difficult to visually recognize the pattern boundary, and the visibility of the screen is improved when it is used for a capacitive touch panel.
一実施形態にかかる透明電極付き基板の模式的断面図である。It is a typical sectional view of a substrate with a transparent electrode concerning one embodiment. 巻取式スパッタ製膜装置の構成例を示す模式的断面図である。It is typical sectional drawing which shows the structural example of a winding-type sputtering film forming apparatus. 透明電極層がパターニングされた透明電極付き基板の構成例を示す模式的断面図である。It is typical sectional drawing which shows the structural example of the board | substrate with a transparent electrode by which the transparent electrode layer was patterned.
[透明電極付き基板の構成]
 以下、本発明の好ましい実施の形態について図面を参照しつつ説明する。図1は、透明フィルム10上に金属酸化物薄膜からなる透明電極層30を備える透明電極付き基板50を示している。透明フィルム10と透明電極層30との間には、酸化物を主成分とする透明誘電体層20が形成されていることが好ましい。透明電極層30が透明誘電体層20上に直接形成されると、透明電極層が低抵抗化されやすい。
[Configuration of substrate with transparent electrode]
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a substrate 50 with a transparent electrode comprising a transparent electrode layer 30 made of a metal oxide thin film on a transparent film 10. Between the transparent film 10 and the transparent electrode layer 30, it is preferable that a transparent dielectric layer 20 mainly composed of an oxide is formed. When the transparent electrode layer 30 is directly formed on the transparent dielectric layer 20, the resistance of the transparent electrode layer is easily reduced.
 透明フィルム10を構成するベースフィルム11は、少なくとも可視光領域で無色透明であるものが好ましい。一実施形態において、透明フィルム10は、ベースフィルム11の少なくとも一方の面に、ハードコート層12,13を有する。 The base film 11 constituting the transparent film 10 is preferably colorless and transparent at least in the visible light region. In one embodiment, the transparent film 10 has hard coat layers 12 and 13 on at least one surface of the base film 11.
 透明誘電体層20は1層のみからなるものでもよく、2層以上からなるものでもよい。図1では、透明フィルム10側から第一透明誘電体層21、第二透明誘電体層22および第三透明誘電体層23がこの順に形成された例が図示されている。透明誘電体層20を構成する酸化物としては、少なくとも可視光領域で無色透明であり、抵抗率が10Ω・cm以上であるものが好ましい。なお、本明細書において、ある物質を「主成分とする」とは、当該物質の含有量が51重量%以上、好ましくは70重量%以上、より好ましくは90重量%であることを指す。本発明の機能を損なわない限りにおいて、各層には、主成分以外の成分が含まれていてもよい。 The transparent dielectric layer 20 may be composed of only one layer or may be composed of two or more layers. FIG. 1 illustrates an example in which a first transparent dielectric layer 21, a second transparent dielectric layer 22, and a third transparent dielectric layer 23 are formed in this order from the transparent film 10 side. As the oxide constituting the transparent dielectric layer 20, an oxide that is colorless and transparent at least in the visible light region and has a resistivity of 10 Ω · cm or more is preferable. Note that in this specification, “having a main component” a substance means that the content of the substance is 51% by weight or more, preferably 70% by weight or more, and more preferably 90% by weight. As long as the function of the present invention is not impaired, each layer may contain components other than the main component.
 透明電極層30は、非晶質の金属酸化物薄膜である。本明細書において、「非晶質」とは、膜中に一部(80%以下)の結晶質部分を含んでいてもよい。膜中の結晶質部分の含有量は、顕微鏡観察時において観察視野内で結晶粒が占める面積の割合から求められる。 The transparent electrode layer 30 is an amorphous metal oxide thin film. In this specification, “amorphous” may include a part (80% or less) of a crystalline part in a film. The content of the crystalline portion in the film can be determined from the ratio of the area occupied by the crystal grains in the observation field at the time of microscopic observation.
 透明電極層30を構成する材料としては、インジウム、スズ、亜鉛、ガリウム、アルミニウム、アンチモン、チタンからなる群より選択される少なくとも1種の金属の酸化物が好適に用いられる。透明性と低抵抗とを両立する観点から、透明電極層30は、酸化インジウムを主成分とするものが好ましい。透明電極層30は、酸化インジウムを、88重量%~98重量%含有することが好ましく、90重量%~97重量%含有することがより好ましく、94重量%~96重量%含有することがさらに好ましい。透明電極層は、膜中にキャリア密度を持たせて導電性を付与するためのドープ不純物を含有することが好ましい。透明電極層30が酸化インジウムを主成分とするものである場合、ドープ不純物としては、酸化スズまたは酸化亜鉛が好ましく、酸化スズが特に好ましい。 As the material constituting the transparent electrode layer 30, an oxide of at least one metal selected from the group consisting of indium, tin, zinc, gallium, aluminum, antimony, and titanium is preferably used. From the viewpoint of achieving both transparency and low resistance, the transparent electrode layer 30 is preferably composed mainly of indium oxide. The transparent electrode layer 30 preferably contains 88% to 98% by weight of indium oxide, more preferably 90% to 97% by weight, and even more preferably 94% to 96% by weight. . The transparent electrode layer preferably contains a doped impurity for imparting conductivity by providing a carrier density in the film. When the transparent electrode layer 30 is mainly composed of indium oxide, tin oxide or zinc oxide is preferable as the doping impurity, and tin oxide is particularly preferable.
 透明電極層30は、150℃で30分加熱された際に、結晶質膜に転化されるものが好ましい。加熱後の結晶質膜は、抵抗率が4.5×10-4Ω・cm以下であることが好ましい。また、加熱後の結晶質膜は、表面抵抗が150Ω/□以下であることが好ましく、140Ω/□以下であることがより好ましい。透明電極層が低抵抗であれば、静電容量方式タッチパネルの応答速度向上や、各種光学デバイスの省消費電力化等に寄与し得る。 The transparent electrode layer 30 is preferably one that is converted into a crystalline film when heated at 150 ° C. for 30 minutes. The crystalline film after heating preferably has a resistivity of 4.5 × 10 −4 Ω · cm or less. Further, the crystalline film after heating preferably has a surface resistance of 150Ω / □ or less, and more preferably 140Ω / □ or less. If the transparent electrode layer has a low resistance, it can contribute to improvement of the response speed of the capacitive touch panel, power saving of various optical devices, and the like.
 透明電極層を低抵抗かつ高透過率とする観点から、透明電極層30の膜厚は、15~40nmが好ましく、21nm~38nmがより好ましく、23nm~35nmがさらに好ましい。 From the viewpoint of making the transparent electrode layer have low resistance and high transmittance, the thickness of the transparent electrode layer 30 is preferably 15 to 40 nm, more preferably 21 nm to 38 nm, and further preferably 23 nm to 35 nm.
 このような透明電極付き基板が、静電容量方式タッチパネルの位置検出のために用いられる場合、図3に示すように、透明電極層30の面内の一部がエッチング等により電極形成部30aと電極非形成部30bとにパターニングされる。この場合、透明誘電体層20の厚みや屈折率を調整することにより、透明電極層がエッチングされずに残存している電極形成部30aと、電極層がエッチングにより除去された電極非形成部30bとの透過率差、反射率差、色差を低減して、電極パターンの視認を抑止することができる。 When such a substrate with a transparent electrode is used for position detection of a capacitive touch panel, as shown in FIG. 3, a part of the surface of the transparent electrode layer 30 is etched with the electrode forming portion 30a. Patterning is performed on the electrode non-forming portion 30b. In this case, by adjusting the thickness and refractive index of the transparent dielectric layer 20, the electrode forming portion 30a where the transparent electrode layer remains without being etched, and the electrode non-forming portion 30b where the electrode layer is removed by etching. The transmittance difference, the reflectance difference, and the color difference can be reduced, and the visual recognition of the electrode pattern can be suppressed.
[透明電極付き基板の製造方法]
 以下、本発明の好ましい実施の形態について、透明電極付き基板の製造方法に沿って説明する。本発明の製造方法では、巻取式スパッタ製膜装置を用いて、透明フィルム上に金属酸化物薄膜からなる透明電極層が形成される。巻取式スパッタは、透明フィルム上に透明電極層をロール・トゥー・ロール方式により生産性高く製膜することが可能である。巻取式スパッタによる製膜では、透明フィルム10の巻回体が巻取式スパッタ製膜装置内に導入され(基材準備工程)、巻取式スパッタ製膜装置内で加熱され(加熱工程)、その後、透明フィルム10上に非晶質の金属酸化物薄膜からなる透明電極層30が形成される(製膜工程)。本発明では、スパッタ製膜装置から透明フィルムが装置外へ取り出されることなく、加熱工程および透明電極層製膜工程が連続して行われることが好ましい。
[Method for producing substrate with transparent electrode]
Hereinafter, a preferred embodiment of the present invention will be described along a manufacturing method of a substrate with a transparent electrode. In the manufacturing method of this invention, the transparent electrode layer which consists of a metal oxide thin film is formed on a transparent film using a winding type sputtering film forming apparatus. Winding-type sputtering can form a transparent electrode layer on a transparent film with high productivity by a roll-to-roll method. In film formation by winding-type sputtering, the wound body of the transparent film 10 is introduced into the winding-type sputtering film-forming apparatus (base material preparation process) and heated in the winding-type sputtering film-forming apparatus (heating process). Thereafter, the transparent electrode layer 30 made of an amorphous metal oxide thin film is formed on the transparent film 10 (film forming step). In this invention, it is preferable that a heating process and a transparent electrode layer film forming process are performed continuously, without taking out a transparent film out of a sputtering film forming apparatus.
(製膜装置の構成例)
 図2は、本発明に用いられる巻取式スパッタ製膜装置の一例を示す模式的断面図である。スパッタ製膜装置200の中は、基材準備室201および製膜室202,203に仕切られており、これら各室の仕切りと隣接して製膜ロール260が設けられている。基材準備室201内には、繰出ロール261および巻取ロール262が設けられている。さらに、基材準備室201内の、繰出ロール261と製膜ロール260との間、および製膜ロール260と巻取ロール262との間には、搬送ロール263~268が配置されている。さらに、基材準備室201内の、繰出ロール261と製膜ロール260との間のフィルム搬送経路近傍には、加熱部としてヒータ271,272が設けられている。
(Configuration example of film forming device)
FIG. 2 is a schematic cross-sectional view showing an example of a winding type sputtering film forming apparatus used in the present invention. The sputtering film forming apparatus 200 is partitioned into a base material preparation chamber 201 and film forming chambers 202 and 203, and a film forming roll 260 is provided adjacent to the partitions of these chambers. A feeding roll 261 and a take-up roll 262 are provided in the base material preparation chamber 201. Further, conveyance rolls 263 to 268 are arranged between the feeding roll 261 and the film forming roll 260 and between the film forming roll 260 and the take-up roll 262 in the base material preparation chamber 201. Furthermore, heaters 271 and 272 are provided as heating units in the vicinity of the film conveyance path between the feeding roll 261 and the film forming roll 260 in the base material preparation chamber 201.
 巻取式スパッタ装置200内で、透明フィルム10の巻回体が繰出ロール261にセットされる。透明フィルム10は、基材準備室201から製膜室202,203に連続的に搬送されながら、製膜ロール260上で透明電極層30が製膜される。製膜後の透明電極付き基板50は、再び基材準備室201に搬送され、巻取ロール262によって巻取られ、透明電極付き基板のロール状巻回体250が得られる。製膜室202,203内の製膜ロール260の近傍には、カソード282,283が配置され、カソードと製膜ロールとの間に、ターゲット222,223が配置される。 In the winding type sputtering apparatus 200, the wound body of the transparent film 10 is set on the feeding roll 261. The transparent electrode layer 30 is formed on the film forming roll 260 while the transparent film 10 is continuously conveyed from the base material preparation chamber 201 to the film forming chambers 202 and 203. The substrate 50 with a transparent electrode after film formation is transported again to the base material preparation chamber 201 and wound up by a winding roll 262 to obtain a roll-shaped wound body 250 of the substrate with a transparent electrode. Cathodes 282 and 283 are disposed near the film forming rolls 260 in the film forming chambers 202 and 203, and targets 222 and 223 are disposed between the cathodes and the film forming rolls.
(基材準備工程)
 透明フィルム10を構成するベースフィルム11は、少なくとも可視光領域で無色透明であり、後述する加熱工程における加熱温度における耐熱性を有していれば、その材料は特に限定されない。透明フィルムの材料としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフテレート(PBT)、ポリエチレンナフタレート(PEN)等のポリエステル系樹脂、シクロオレフィン系樹脂、ポリカーボネート樹脂、ポリイミド樹脂、セルロース系樹脂等が挙げられる。中でも、ポリエステル系樹脂が好ましく、ポリエチレンテレフタレートが特に好ましく用いられる。
(Base material preparation process)
The base film 11 constituting the transparent film 10 is not particularly limited as long as it is colorless and transparent at least in the visible light region and has heat resistance at the heating temperature in the heating step described later. Examples of the transparent film material include polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN), cycloolefin resins, polycarbonate resins, polyimide resins, and cellulose resins. Can be mentioned. Of these, polyester resins are preferable, and polyethylene terephthalate is particularly preferably used.
 ベースフィルム11の厚みは特に限定されないが、10μm~400μmが好ましく、50μm~300μmがより好ましい。厚みが上記範囲内であれば、ベースフィルム11が耐久性と適度な柔軟性とを有し得るため、その上に各透明誘電体層および透明電極層をロール・トゥー・ロール方式により生産性高く製膜することが可能である。 The thickness of the base film 11 is not particularly limited, but is preferably 10 μm to 400 μm, more preferably 50 μm to 300 μm. If the thickness is within the above range, the base film 11 can have durability and moderate flexibility, so that the transparent dielectric layer and the transparent electrode layer are formed thereon with high productivity by a roll-to-roll method. It is possible to form a film.
 ベースフィルム11としては、二軸延伸により分子を配向させることで、ヤング率などの機械的特性や耐熱性を向上させたものが好ましく用いられる。ベースフィルム11は、そのまま透明フィルム10として製膜に供することもできる。透明フィルム10に適度な耐久性を持たせる観点から、透明フィルム10は、ベースフィルム11の片面または両面にハードコート層12,13が形成されたものが好適に用いられる。 As the base film 11, a film in which mechanical properties such as Young's modulus and heat resistance are improved by orienting molecules by biaxial stretching is preferably used. The base film 11 can also be used for film formation as the transparent film 10 as it is. From the viewpoint of imparting appropriate durability to the transparent film 10, the transparent film 10 in which the hard coat layers 12 and 13 are formed on one side or both sides of the base film 11 is preferably used.
 透明フィルム10に適度な耐久性と柔軟性を持たせるためには、ハードコート層の厚みは3~10μmが好ましく、3~8μmがより好ましく、5~8μmがさらに好ましい。ハードコート層の材料は特に制限されず、ウレタン系樹脂、アクリル系樹脂、シリコーン系樹脂等を、塗布・硬化させたもの等を適宜に用いることができる。 In order to give the transparent film 10 appropriate durability and flexibility, the thickness of the hard coat layer is preferably 3 to 10 μm, more preferably 3 to 8 μm, and even more preferably 5 to 8 μm. The material of the hard coat layer is not particularly limited, and a material obtained by applying and curing a urethane resin, an acrylic resin, a silicone resin, or the like can be appropriately used.
 ベースフィルム11上には、ハードコート層以外の各種の機能性層が形成されてもよい。例えば、ベースフィルム11上に直接、あるいはハードコート層12上に、機能性層として透明誘電体層20が形成されてもよい。透明誘電体層を構成する酸化物としては、Si,Nb,Ta,Ti,Zn,ZrおよびHfからなる群から選択される1以上の元素の酸化物が好適に用いられる。透明誘電体層の製膜方法は、均一な薄膜が形成される方法であれば特に限定されない。製膜方法としては、スパッタリング法、蒸着法等のPVD法、各種CVD法等のドライコーティング法や、スピンコート法、ロールコート法、スプレー塗布やディッピング塗布等のウェットコーティング法が挙げられる。上記製膜方法の中でも、ナノメートルレベルの薄膜を形成しやすいという観点からドライコーティング法が好ましい。 Various functional layers other than the hard coat layer may be formed on the base film 11. For example, the transparent dielectric layer 20 may be formed as a functional layer directly on the base film 11 or on the hard coat layer 12. As the oxide constituting the transparent dielectric layer, an oxide of one or more elements selected from the group consisting of Si, Nb, Ta, Ti, Zn, Zr and Hf is preferably used. The method for forming the transparent dielectric layer is not particularly limited as long as a uniform thin film is formed. Examples of the film forming method include PVD methods such as sputtering and vapor deposition, dry coating methods such as various CVD methods, and wet coating methods such as spin coating, roll coating, spray coating, and dipping coating. Among the above film forming methods, the dry coating method is preferable from the viewpoint of easily forming a nanometer-level thin film.
 透明誘電体層がスパッタリング法により形成される場合、巻取式スパッタ製膜装置200内に透明フィルム10が導入される基材準備工程の後、透明電極層30が形成される前に透明誘電体層20が形成されてもよい。また、2層以上の透明誘電体層が形成される場合、スパッタ製膜装置内に透明フィルムが導入される前に1層以上の透明誘電体層が形成され、スパッタ製膜装置内に透明フィルムが導入された後、透明電極層が形成される前に1層以上の透明誘電体層が形成されてもよい。例えば、透明フィルム10上にウェットコーティング法により第一透明誘電体層21が形成された後、第一透明誘電体層21形成後の透明フィルム10がスパッタ装置内に導入され、スパッタリング法により第二透明誘電体層22、第三透明誘電体層23および透明電極層30が連続して形成されてもよい。透明誘電体層の膜厚制御や、透明電極付きフィルムの生産性を高める観点からは、全ての透明誘電体層がスパッタリング法により形成されることが好ましい。なお、基材準備工程の後、透明電極層の形成前に、同一の巻取式スパッタ製膜装置内で透明誘電体層が形成される実施形態(透明電極層製膜工程)については、後に詳述する。 When the transparent dielectric layer is formed by sputtering, the transparent dielectric is formed after the base material preparation step in which the transparent film 10 is introduced into the winding type sputtering film forming apparatus 200 and before the transparent electrode layer 30 is formed. Layer 20 may be formed. Further, when two or more transparent dielectric layers are formed, one or more transparent dielectric layers are formed before the transparent film is introduced into the sputtering film forming apparatus, and the transparent film is formed in the sputtering film forming apparatus. After the introduction of, one or more transparent dielectric layers may be formed before the transparent electrode layer is formed. For example, after the first transparent dielectric layer 21 is formed on the transparent film 10 by the wet coating method, the transparent film 10 after the formation of the first transparent dielectric layer 21 is introduced into the sputtering apparatus, and the second transparent dielectric layer 21 is formed by the sputtering method. The transparent dielectric layer 22, the third transparent dielectric layer 23, and the transparent electrode layer 30 may be formed continuously. From the viewpoint of controlling the film thickness of the transparent dielectric layer and enhancing the productivity of the film with a transparent electrode, it is preferable that all the transparent dielectric layers are formed by sputtering. In addition, about embodiment (transparent electrode layer film forming process) in which a transparent dielectric material layer is formed in the same winding type sputtering film forming apparatus after forming the transparent electrode layer after the base material preparing process, Detailed description.
 スパッタ製膜装置内に導入される透明フィルム10は、150℃30分間加熱時の熱収縮率が、0.4%以下であることが好ましく、0.35%以下であることがより好ましく、0.3%以下であることがさらに好ましい。熱収縮率が方向により異なる場合(MD方向とTD方向で異なる場合)、MD方向の熱収縮率が前記範囲であればよい。特に、MD方向およびTD方向の両方の熱収縮率が前記範囲であることが好ましい。以下、特に断りが無い場合、本明細書における「熱収縮率」は、150℃で30分加熱時の収縮率を表す。熱収縮率は、加熱前の2点間距離(L)と加熱後の2点間距離(L)から、下記の式により算出される。
   式: 熱収縮率(%)=100×(L-L)/L
The transparent film 10 introduced into the sputtering film forming apparatus preferably has a thermal shrinkage rate of 0.4% or less, more preferably 0.35% or less when heated at 150 ° C. for 30 minutes. More preferably, it is 3% or less. When the heat shrinkage rate varies depending on the direction (when it differs between the MD direction and the TD direction), the heat shrinkage rate in the MD direction may be in the above range. In particular, it is preferable that the thermal shrinkage rate in both the MD direction and the TD direction is in the above range. Hereinafter, unless otherwise specified, the “heat shrinkage rate” in this specification represents the shrinkage rate when heated at 150 ° C. for 30 minutes. The thermal contraction rate is calculated by the following formula from the distance between two points before heating (L 0 ) and the distance between two points after heating (L).
Formula: Thermal contraction rate (%) = 100 × (L 0 −L) / L 0
 スパッタ製膜装置内に導入される透明フィルム10は、熱機械分析により測定される熱収縮開始温度が85℃以上であることが好ましく、90℃以上であることがより好ましく、100℃以上がさらに好ましい。透明フィルム10は、200℃までの範囲に熱収縮開始温度を示さないことが理想的である。熱収縮開始温度は、熱機器分析(TMA)により、所定の荷重および昇温速度で昇温を行った際の変位量の極大値から求められる。 The transparent film 10 introduced into the sputtering film forming apparatus preferably has a thermal shrinkage start temperature measured by thermomechanical analysis of 85 ° C. or higher, more preferably 90 ° C. or higher, and further 100 ° C. or higher. preferable. Ideally, the transparent film 10 does not exhibit a heat shrinkage starting temperature in the range up to 200 ° C. The thermal shrinkage start temperature is obtained from the maximum value of the displacement amount when the temperature is increased at a predetermined load and the rate of temperature increase by thermal instrument analysis (TMA).
(加熱工程)
 スパッタ製膜装置200内に導入された透明フィルム10は、透明電極層30が形成される前に基材準備室201内で加熱処理される。加熱処理が行われる前に、基材準備室201内の圧力が一旦0.01Pa以下に減圧されることが好ましい。加熱処理中の基材準備室201内の圧力は、1.5Pa以下が好ましく、1.0Pa以下がより好ましく、0.5Pa以下がさらに好ましい。
(Heating process)
The transparent film 10 introduced into the sputtering film forming apparatus 200 is heat-treated in the base material preparation chamber 201 before the transparent electrode layer 30 is formed. Before the heat treatment is performed, the pressure in the base material preparation chamber 201 is preferably once reduced to 0.01 Pa or less. The pressure in the base material preparation chamber 201 during the heat treatment is preferably 1.5 Pa or less, more preferably 1.0 Pa or less, and further preferably 0.5 Pa or less.
 基材準備室内の加熱部271,272からの熱によって、透明フィルム10が加熱される。加熱温度は、透明フィルムの表面温度が70℃~160℃となるように設定されることが好ましい。加熱工程におけるフィルムの表面温度は、80℃~160℃がより好ましく、85℃~120℃がさらに好ましい。フィルムの表面温度は、フィルム表面にサーモラベルや熱電対を貼り付けて測定することができる。 The transparent film 10 is heated by heat from the heating units 271 and 272 in the base material preparation chamber. The heating temperature is preferably set so that the surface temperature of the transparent film is 70 ° C. to 160 ° C. The surface temperature of the film in the heating step is more preferably 80 ° C. to 160 ° C., further preferably 85 ° C. to 120 ° C. The surface temperature of the film can be measured by attaching a thermolabel or a thermocouple to the film surface.
 加熱部は、マイクロ波、遠赤外線等を利用したヒータやヒートパイプ等の温度調節機構、熱風吹き出しノズル等、フィルムと接触しないものが好ましい。加熱工程において、加熱部とフィルムとが接触しない場合は、フィルムの急激な熱変形等に起因する皺の発生や、フィルムの搬送が不安定となることが抑止できる。加熱部がフィルムと接触しないように配置される場合、加熱部とフィルム搬送経路との間隔は、5mm~100mm程度が好ましく、10mm~70mm程度がより好ましい。 The heating unit is preferably a device that does not come into contact with the film, such as a temperature control mechanism such as a heater or a heat pipe using a microwave or far infrared rays, a hot air blowing nozzle, or the like. In a heating process, when a heating part and a film do not contact, it can suppress that the generation | occurrence | production of the wrinkles resulting from the rapid thermal deformation of a film, etc. and the conveyance of a film become unstable. When the heating unit is arranged so as not to contact the film, the distance between the heating unit and the film transport path is preferably about 5 mm to 100 mm, and more preferably about 10 mm to 70 mm.
 透明フィルムの加熱は、透明フィルムの一方の面から行われてもよく、両面から行われても良い。効果的に加熱を行う観点からは、図2に示すように、透明フィルム搬送経路の両面の近傍にヒータ271,272が設けられ、両面から加熱が行われることが好ましい。巻取式のスパッタ製膜装置200内で透明フィルム10が搬送されながら加熱が行われる場合、加熱時間は、ヒータの形状(フィルム搬送方向の長さ)やフィルムの搬送速度により調整することができる。 The heating of the transparent film may be performed from one side of the transparent film or from both sides. From the viewpoint of effective heating, it is preferable that heaters 271 and 272 are provided in the vicinity of both surfaces of the transparent film conveyance path, and heating is performed from both surfaces, as shown in FIG. When heating is performed while the transparent film 10 is transported in the winding-type sputter film forming apparatus 200, the heating time can be adjusted by the shape of the heater (length in the film transport direction) and the film transport speed. .
 加熱時間を確保するために、フィルム搬送方向の2か所以上に加熱部が設けられていてもよい。フィルム搬送方向に沿って複数の加熱部が設けられる形態としては、例えば、図2において、ヒータ271,272に加えて、基材準備室201内の搬送ロール264と搬送ロール265との間にヒータ273,274が配置された形態が挙げられる。 In order to secure the heating time, heating units may be provided at two or more locations in the film conveyance direction. As a form in which a plurality of heating units are provided along the film conveyance direction, for example, in FIG. 2, in addition to the heaters 271 and 272, a heater is provided between the conveyance roll 264 and the conveyance roll 265 in the base material preparation chamber 201. An example in which 273 and 274 are arranged is given.
 フィルム搬送方向に沿って複数の加熱部が設けられることで、フィルムの搬送速度を低下させることなく、所定の加熱時間を確保し、フィルムの表面温度が上記範囲となるように加熱処理を行うことができる。そのため、加熱処理工程が効率化され、透明電極付き基板の生産性を高めることができる。また、複数の加熱部の間に搬送ロールが設けられることで、製膜準備室201内の空間を有効に利用して、加熱時間を確保できるとともに、フィルムの搬送を安定させ、加熱処理による皺や弛みの発生を抑制できる。 By providing a plurality of heating units along the film transport direction, a predetermined heating time is ensured without lowering the film transport speed, and heat treatment is performed so that the surface temperature of the film falls within the above range. Can do. Therefore, the heat treatment process is made efficient and the productivity of the substrate with a transparent electrode can be increased. In addition, by providing a transport roll between the plurality of heating units, it is possible to effectively use the space in the film forming preparation chamber 201 to secure the heating time, stabilize the transport of the film, And the occurrence of slack can be suppressed.
 加熱処理における加熱時間は0.1秒~600秒であることが好ましく、0.5秒~300秒であることがより好ましく、1秒~180秒であることがさらに好ましい。加熱部(ヒータ271,272)の温度は、フィルムの表面温度が前記範囲となるように、加熱時間や、加熱部とフィルム搬送経路との間隔等に応じて適宜に決定できる。加熱温度は、例えば、150℃~500℃が好ましく、180℃~400℃がより好ましく、200℃~350℃がさらに好ましい。 The heating time in the heat treatment is preferably from 0.1 seconds to 600 seconds, more preferably from 0.5 seconds to 300 seconds, and further preferably from 1 second to 180 seconds. The temperature of the heating unit (heaters 271 and 272) can be appropriately determined according to the heating time, the interval between the heating unit and the film conveyance path, and the like so that the surface temperature of the film falls within the above range. The heating temperature is, for example, preferably 150 ° C. to 500 ° C., more preferably 180 ° C. to 400 ° C., and further preferably 200 ° C. to 350 ° C.
 透明電極層が製膜される前に透明フィルムが加熱処理されることで、透明電極層製膜後に結晶化およびパターニングされた際に、パターン境界に沿った皺の発生が抑制される。本発明者らの検討によれば、スパッタにより非晶質の透明電極層が製膜された後、加熱により透明電極層が結晶化された際にカールの発生量が大きい透明電極付きフィルムは、その後に透明電極層がパターニングされた際にパターン境界での皺が視認されやすい傾向があった。加熱結晶化時のカールの発生は、透明電極付き基板が加熱された際に、透明電極層と透明フィルムとの界面に応力が生じるためと推定される。本発明においては、透明電極層の製膜前に透明フィルムが加熱されることにより、透明電極層の製膜界面の状態に変化が生じ、これが皺の抑制に寄与していると考えられる。製膜界面の状態の変化としては、例えば、加熱処理によって、透明フィルム中やフィルム表面に吸着した有機成分の揮発等が寄与していると推定される。 When the transparent film is heat-treated before the transparent electrode layer is formed, generation of wrinkles along the pattern boundary is suppressed when crystallization and patterning are performed after the transparent electrode layer is formed. According to the study by the present inventors, after the amorphous transparent electrode layer is formed by sputtering, the film with a transparent electrode having a large amount of curling when the transparent electrode layer is crystallized by heating is: After that, when the transparent electrode layer was patterned, there was a tendency that wrinkles at the pattern boundary were easily visible. The occurrence of curling at the time of heat crystallization is presumed to be due to stress generated at the interface between the transparent electrode layer and the transparent film when the substrate with the transparent electrode is heated. In the present invention, when the transparent film is heated before forming the transparent electrode layer, a change occurs in the state of the film forming interface of the transparent electrode layer, which is considered to contribute to suppression of wrinkles. As the change in the state of the film forming interface, for example, it is presumed that the volatilization of organic components adsorbed on the transparent film or on the film surface contributes to the heat treatment.
(製膜工程)
 加熱後の透明フィルム10は、製膜室202,203に搬送され、製膜室内で透明電極層30が形成される。透明電極層の形成は、スパッタ製膜装置200から加熱後の透明フィルム10が取り出されることなく連続して行われることが好ましい。加熱後の透明フィルムが製膜装置から取り出されることなく、透明電極層が製膜されることにより、フィルム表面に、大気中の水分や有機成分等が吸着することが抑止される。また、フィルムの加熱と製膜とが連続して行われることにより、透明電極付き基板の生産性が高められる。
(Film forming process)
The heated transparent film 10 is conveyed to the film forming chambers 202 and 203, and the transparent electrode layer 30 is formed in the film forming chambers. The formation of the transparent electrode layer is preferably performed continuously without removing the heated transparent film 10 from the sputtering film forming apparatus 200. By forming the transparent electrode layer without removing the heated transparent film from the film forming apparatus, adsorption of moisture, organic components, etc. in the atmosphere to the film surface is suppressed. Moreover, productivity of a board | substrate with a transparent electrode is improved by heating and film forming of a film continuously.
 巻取式スパッタ製膜装置を用いて製膜が行われる場合、加熱工程後に、透明フィルムが一旦巻取ロール262でロール状の巻回体に巻取られた後、再び巻回体から透明フィルムが繰出されて、フィルムが搬送されながら製膜が行われてもよい。本発明においては、加熱後の透明フィルムがロール状に巻回される前に、透明電極層製膜工程が引き続き行われることが好ましい。すなわち、本発明においては、ロール状巻回体210から繰出された透明フィルム10が、基材準備室201内で加熱部271,272からの熱によって所定温度に加熱された後、製膜室202,203内の製膜ロール260上で透明電極層30が製膜されることが好ましい。生産効率向上等の観点から、加熱工程から製膜工程までの時間間隔は、10分以内が好ましく、8分以内がより好ましく、5分以内がさらに好ましい。スパッタ製膜装置内で透明フィルムの巻き返しが行われることなく、加熱工程後に、製膜工程が引き続き行われることによって、加熱工程から製膜工程までの時間間隔を上記範囲とすることができる。 When film formation is performed using a winding-type sputtering film forming apparatus, after the heating step, the transparent film is once wound around the roll-shaped winding body by the winding roll 262, and then again from the winding body to the transparent film. May be fed and film formation may be performed while the film is conveyed. In this invention, it is preferable that a transparent electrode layer film forming process is continued before the transparent film after a heating is wound by roll shape. That is, in the present invention, the transparent film 10 drawn out from the roll-shaped wound body 210 is heated to a predetermined temperature by the heat from the heating units 271 and 272 in the base material preparation chamber 201, and then the film forming chamber 202. , 203, the transparent electrode layer 30 is preferably formed on the film forming roll 260. From the viewpoint of improving production efficiency, the time interval from the heating step to the film forming step is preferably within 10 minutes, more preferably within 8 minutes, and even more preferably within 5 minutes. The time interval from the heating step to the film forming step can be set to the above range by continuously performing the film forming step after the heating step without rewinding the transparent film in the sputtering film forming apparatus.
 透明電極層30の製膜は、製膜室202,203内に、アルゴン等の不活性ガスおよび酸素ガスを含むキャリアガスが導入されながら行われる。導入ガスは、アルゴンと酸素の混合ガスが好ましい。混合ガスは、酸素を0.4体積%~2.0体積%含むことが好ましく、0.7体積%~1.5体積%含むことがより好ましい。前記体積の酸素を供給することで、透明電極層の透明性および導電性を向上させることができる。なお、混合ガスには、本発明の機能を損なわない限りにおいて、その他のガスが含まれていてもよい。製膜室内の圧力(全圧)は、1.5Pa以下が好ましく、0.05Pa~1.2Paがより好ましく、0.1Pa~0.9Paがさらに好ましい。 The transparent electrode layer 30 is formed while a carrier gas containing an inert gas such as argon and an oxygen gas is introduced into the film forming chambers 202 and 203. The introduced gas is preferably a mixed gas of argon and oxygen. The mixed gas preferably contains 0.4% to 2.0% by volume of oxygen, more preferably 0.7% to 1.5% by volume. By supplying the volume of oxygen, the transparency and conductivity of the transparent electrode layer can be improved. The mixed gas may contain other gases as long as the function of the present invention is not impaired. The pressure (total pressure) in the film forming chamber is preferably 1.5 Pa or less, more preferably 0.05 Pa to 1.2 Pa, and further preferably 0.1 Pa to 0.9 Pa.
 前記透明電極層製膜工程において、製膜室内の不活性ガスの分圧Pに対する質量数28のガスの分圧P28の比P28/Pは、5×10-4未満であることが好ましい。P28/Pは、1.0×10-5~5×10-4がより好ましく、5.0×10-5~5×10-4がさらに好ましい。製膜雰囲気中の質量数28のガス分圧を低くすることで、透明電極層の形成界面の状態が変化するために、透明電極層とフィルムとの界面の応力が減少し、カールの発生や、透明電極層がパターニングされた際の皺の発生が抑制される。質量数28のガス分圧は、オンライン四重極質量分析計(Q-mass)によりモニターできる。 In the transparent electrode layer deposition step, the ratio P 28 / P I of the partial pressure P 28 of the gas having a mass number 28 to the partial pressure P I of the inert gas in the deposition chamber is less than 5 × 10 −4. Is preferred. P 28 / P I is more preferably 1.0 × 10 −5 to 5 × 10 −4 , and further preferably 5.0 × 10 −5 to 5 × 10 −4 . By reducing the gas partial pressure of mass number 28 in the film-forming atmosphere, the state of the transparent electrode layer formation interface changes, so the stress at the interface between the transparent electrode layer and the film decreases, The generation of wrinkles when the transparent electrode layer is patterned is suppressed. The gas partial pressure of mass number 28 can be monitored by an on-line quadrupole mass spectrometer (Q-mass).
 製膜室内の質量数28のガスは、主に一酸化炭素および窒素であると考えられる。一酸化炭素ガスは、透明フィルムに透明電極層がスパッタ製膜される際のプラズマダメージ等により、製膜雰囲気中に放出されたものと考えられる。また、窒素ガスは、ベースフィルム11の表面に形成されたハードコート層12,13等から製膜雰囲気中に放出されたものと考えられる。 The gas having a mass number of 28 in the film forming chamber is considered to be mainly carbon monoxide and nitrogen. The carbon monoxide gas is considered to be released into the film forming atmosphere due to plasma damage or the like when the transparent electrode layer is formed on the transparent film by sputtering. Further, the nitrogen gas is considered to have been released into the film forming atmosphere from the hard coat layers 12 and 13 formed on the surface of the base film 11.
 本発明では、透明電極層の製膜前に基材準備室201内での加熱工程を設けることで、製膜室202,203内の質量数28のガスの分圧を前記範囲とすることができる。すなわち、透明フィルムが比較的高温で短時間加熱されることにより、透明電極層の製膜前に、透明フィルム内部あるいは透明フィルム表面から一酸化炭素や窒素を発生させる原因となる有機物質が揮発し、製膜時のプラズマダメージ等による質量数28のガスの発生が抑制されると考えられる。 In the present invention, by providing a heating step in the base material preparation chamber 201 before forming the transparent electrode layer, the partial pressure of the gas having a mass number of 28 in the film forming chambers 202 and 203 can be within the above range. it can. That is, when the transparent film is heated at a relatively high temperature for a short time, organic substances that cause carbon monoxide and nitrogen to be generated from the inside of the transparent film or the surface of the transparent film are volatilized before forming the transparent electrode layer. It is considered that generation of a gas having a mass number of 28 due to plasma damage or the like during film formation is suppressed.
 従来より、透明フィルム中の水分量を低くして、金属酸化物の結晶化を促進させる目的で、透明電極層の製膜前に透明フィルムを真空下で加熱することが行われていた。このように水分量を小さくするためには、低温で長時間の加熱が必要である。透明フィルム10がロール状巻回体210から繰出された後、製膜ロール260上で透明電極層30が製膜されるまでに、基材準備室201内の搬送経路中で低水分量化のための十分な加熱処理を行うことは困難である。一方、本発明における加熱工程は、高温で短時間の処理である。そのため、透明フィルム10がロール状巻回体210から繰出された後、製膜ロール260上で透明電極層30が製膜されるまでの間に、基材準備室201内で加熱処理を行うことができる。すなわち、加熱処理が短時間の工程であるため、加熱工程後に、透明フィルムが一旦ロール状に巻回されることなく、加熱工程に引き続いて透明電極層の製膜を行うことができる。また、透明フィルム10が加熱部271,272と非接触で加熱されるため、高温での加熱であっても、製膜ロール上で加熱が行われる場合のようなフィルム搬送状態の不安定化や巻回体の巻ズレ等の不具合が生じ難い。 Conventionally, the transparent film has been heated under vacuum before forming the transparent electrode layer in order to reduce the water content in the transparent film and promote the crystallization of the metal oxide. In order to reduce the amount of water in this way, heating at a low temperature for a long time is necessary. After the transparent film 10 is unwound from the roll-shaped wound body 210, until the transparent electrode layer 30 is formed on the film-forming roll 260, the moisture content is reduced in the conveyance path in the base material preparation chamber 201. It is difficult to perform sufficient heat treatment. On the other hand, the heating process in the present invention is a treatment at a high temperature for a short time. Therefore, after the transparent film 10 is drawn out from the roll-shaped wound body 210 and before the transparent electrode layer 30 is formed on the film-forming roll 260, heat treatment is performed in the base material preparation chamber 201. Can do. That is, since the heat treatment is a short time step, the transparent electrode layer can be formed following the heating step without the transparent film being once wound into a roll after the heating step. In addition, since the transparent film 10 is heated in a non-contact manner with the heating units 271 and 272, even if the heating is performed at a high temperature, the film conveyance state becomes unstable as in the case where the heating is performed on the film forming roll. Problems such as winding misalignment of the wound body are unlikely to occur.
 透明電極層製膜時のスパッタ電源としては、DC,RF,MF電源等が使用できる。スパッタ製膜に用いられるターゲット222,223の材料としては、インジウム、スズ、亜鉛、ガリウム、アルミニウム、アンチモン、チタン等の金属、あるいはこれらの金属の酸化物が用いられる。透明電極層30として、酸化インジウム・スズ(ITO)や、酸化インジウム・亜鉛(IZO)等のインジウムを主成分とする金属酸化物膜が製膜される場合、ターゲットは、酸化インジウムを88重量%~98重量%含有することが好ましく、90重量%~97重量%含有することがより好ましく、94重量%~96重量%含有することがさらに好ましい。 A DC, RF, MF power source or the like can be used as a sputtering power source when forming the transparent electrode layer. As a material of the targets 222 and 223 used for sputtering film formation, metals such as indium, tin, zinc, gallium, aluminum, antimony, and titanium, or oxides of these metals are used. In the case where a metal oxide film mainly composed of indium such as indium tin oxide (ITO) or indium oxide zinc (IZO) is formed as the transparent electrode layer 30, the target is 88% by weight of indium oxide. It is preferably contained in an amount of ˜98% by weight, more preferably 90% by weight to 97% by weight, and even more preferably 94% by weight to 96% by weight.
 透明電極層製膜時の基板温度は、透明フィルムが耐熱性を有する範囲であればよい。基板温度は、-40℃~40℃であることが好ましく、-30℃~30℃であることがより好ましく、-20℃~20℃であることがさらに好ましく、-10℃~10℃であることが特に好ましい。基板温度を40℃以下とすることで、プラズマダメージ等による質量数28のガスの発生が抑制される。また、基板温度を-40℃以上とすることで、透明電極層の透過率の低下や、透明フィルムの脆化を抑制することができる。 The substrate temperature at the time of forming the transparent electrode layer may be in the range where the transparent film has heat resistance. The substrate temperature is preferably −40 ° C. to 40 ° C., more preferably −30 ° C. to 30 ° C., further preferably −20 ° C. to 20 ° C., and −10 ° C. to 10 ° C. It is particularly preferred. By setting the substrate temperature to 40 ° C. or lower, generation of a gas having a mass number of 28 due to plasma damage or the like is suppressed. Further, by setting the substrate temperature to −40 ° C. or higher, it is possible to suppress a decrease in the transmittance of the transparent electrode layer and embrittlement of the transparent film.
(誘電体層製膜工程)
 本発明の一実施形態において、透明フィルム10が基材準備室201内で加熱部271,272からの熱により加熱処理された後、製膜室内の製膜ロール260上で透明電極層30が製膜されるまでの間に透明誘電体層20が製膜されることが好ましい。
(Dielectric layer deposition process)
In one embodiment of the present invention, after the transparent film 10 is heated by the heat from the heating units 271 and 272 in the base material preparation chamber 201, the transparent electrode layer 30 is manufactured on the film forming roll 260 in the film forming chamber. It is preferable that the transparent dielectric layer 20 be formed before being formed.
 例えば、透明フィルムを加熱後、製膜ロール260上で透明誘電体層20が製膜され、透明誘電体層20製膜後の透明フィルム10が一旦巻回体250に巻取られた後、再び巻回体250からフィルムが繰出されて透明電極層30の製膜が行われる。この場合、再び巻回体250からフィルムが繰出されて透明電極層30の製膜が行われるまでの間に、もう一度加熱処理が行われてもよい。 For example, after the transparent film is heated, the transparent dielectric layer 20 is formed on the film forming roll 260, and after the transparent film 10 after forming the transparent dielectric layer 20 is once wound on the wound body 250, again. A film is drawn out from the wound body 250 and the transparent electrode layer 30 is formed. In this case, the heat treatment may be performed once again after the film is unwound from the wound body 250 and the transparent electrode layer 30 is formed.
 本発明においては、透明フィルムを加熱後、製膜ロール260上で透明誘電体層20と透明電極層30とが連続して製膜されることが好ましい。例えば、図2において、製膜室202内のターゲット222として誘電体層を構成する材料からなる酸化物のターゲットが用いられ、製膜室203内のターゲット223として透明電極層を構成する材料からなる金属酸化物のターゲットが用いられることで、透明誘電体層20と透明電極層30とが連続製膜される。図2では、2つの製膜室202,203内のそれぞれにカソード282,283を有する構成が図示されているが、スパッタ製膜装置は、3以上の製膜室を備えるものであってもよい。3以上の製膜室内のそれぞれにカソードおよびターゲットが備えられることにより、2層以上の誘電体層と透明電極層(計3層以上)を連続製膜することができる。 In the present invention, it is preferable that the transparent dielectric layer 20 and the transparent electrode layer 30 are continuously formed on the film forming roll 260 after heating the transparent film. For example, in FIG. 2, an oxide target made of a material constituting a dielectric layer is used as the target 222 in the film forming chamber 202, and a target constituting the transparent electrode layer is made as the target 223 in the film forming chamber 203. By using a metal oxide target, the transparent dielectric layer 20 and the transparent electrode layer 30 are continuously formed. In FIG. 2, a configuration having the cathodes 282 and 283 in the two film forming chambers 202 and 203 is shown, but the sputtering film forming apparatus may include three or more film forming chambers. . By providing a cathode and a target in each of the three or more film forming chambers, two or more dielectric layers and transparent electrode layers (three or more layers in total) can be continuously formed.
 透明誘電体層20は、その上に透明電極層30が形成される際に、透明フィルム10から水分や有機物質が揮発することを抑制するガスバリア層や、透明フィルムに対するプラズマダメージを低減する保護層として作用し得るとともに、膜成長の下地層としても作用し得る。特に、本発明においては、誘電体層がガスバリア層として作用し得るため、透明電極層製膜時の質量数28のガスの発生が抑制されることが期待される。透明誘電体層20にこれらの機能を持たせる観点から、透明誘電体層20の膜厚は、10nm~100nmであることが好ましく、15nm~85nmであることがより好ましく、20nm~80nmであることがさらに好ましい。 The transparent dielectric layer 20 includes a gas barrier layer that suppresses the evaporation of moisture and organic substances from the transparent film 10 when the transparent electrode layer 30 is formed thereon, and a protective layer that reduces plasma damage to the transparent film. As well as an underlayer for film growth. In particular, in the present invention, since the dielectric layer can act as a gas barrier layer, it is expected that generation of a gas having a mass number of 28 during the formation of the transparent electrode layer is suppressed. From the viewpoint of imparting these functions to the transparent dielectric layer 20, the thickness of the transparent dielectric layer 20 is preferably 10 nm to 100 nm, more preferably 15 nm to 85 nm, and 20 nm to 80 nm. Is more preferable.
 透明誘電体層20を構成する酸化物としては、Si,Nb,Ta,Ti,Zn,ZrおよびHfからなる群から選択される1以上の元素の酸化物が好適に用いられる。中でも、酸化シリコン(SiO)が好ましいい。本発明の製造方法においては、酸化シリコンを主成分とする透明誘電体層上に透明電極層30が形成されることで、透明電極層がパターニングされた際に、パターン境界に沿った皺が発生し難くなる傾向がある。 As the oxide constituting the transparent dielectric layer 20, an oxide of one or more elements selected from the group consisting of Si, Nb, Ta, Ti, Zn, Zr and Hf is preferably used. Among these, silicon oxide (SiO 2 ) is preferable. In the manufacturing method of the present invention, the transparent electrode layer 30 is formed on the transparent dielectric layer mainly composed of silicon oxide, so that wrinkles along the pattern boundary occur when the transparent electrode layer is patterned. Tend to be difficult.
 透明誘電体層20が2層以上からなる場合、各層の厚みや屈折率を調整することにより、透明電極付き基板の透過率や反射率を調整して、表示装置の視認性を高めることができる。また、図3に示すように、透明電極層30の面内の一部がエッチング等によりパターニングされる場合、透明誘電体層の厚みや屈折率を調整することにより、電極形成部30aと、電極非形成部30bとの透過率差、反射率差、色差を低減して、電極パターンの視認を抑止することができる。 When the transparent dielectric layer 20 consists of two or more layers, by adjusting the thickness and refractive index of each layer, the transmittance and reflectance of the substrate with a transparent electrode can be adjusted, and the visibility of the display device can be improved. . As shown in FIG. 3, when a part of the surface of the transparent electrode layer 30 is patterned by etching or the like, the electrode forming portion 30a and the electrode are adjusted by adjusting the thickness and refractive index of the transparent dielectric layer. The transmittance difference, reflectance difference, and color difference from the non-forming portion 30b can be reduced to prevent the electrode pattern from being visually recognized.
 透明誘電体層20表面の算術平均粗さRaは、1nm以下が好ましく、0.8nm以下がより好ましく、0.6nm以下がさらに好ましい。算術平均粗さRaは、走査プローブ顕微鏡を用いた非接触法により測定された表面形状(粗さ曲線)に基づいて、JIS B0601:2001(ISO1302:2002)に準拠して算出される。透明電極層30が形成される界面を平滑とすることで、その上に形成される透明電極層30が低抵抗化されるとともに、透明電極層がパターニングされた際に、パターン境界に沿った皺の発生が抑制される傾向がある。 The arithmetic average roughness Ra of the surface of the transparent dielectric layer 20 is preferably 1 nm or less, more preferably 0.8 nm or less, and further preferably 0.6 nm or less. The arithmetic average roughness Ra is calculated in accordance with JIS B0601: 2001 (ISO1302: 2002) based on the surface shape (roughness curve) measured by a non-contact method using a scanning probe microscope. By smoothing the interface on which the transparent electrode layer 30 is formed, the resistance of the transparent electrode layer 30 formed thereon is reduced, and when the transparent electrode layer is patterned, the wrinkles along the pattern boundary are reduced. It tends to be suppressed.
 透明誘電体層としてシリコン酸化物層が製膜される場合、製膜圧力(製膜室内の全圧)を小さくすることにより、表面の算術平均粗さRaが小さくなる傾向がある。誘電体層の製膜圧力は、0.4Pa以下が好ましく、0.35Pa以下がより好ましく、0.25Pa以下がさらに好ましい。複数の透明誘電体層が形成される場合、透明誘電体層20表面の算術平均粗さを小さくするためには、透明電極層30と接する誘電体層23が、上記製膜圧力で製膜されることが好ましい。透明電極層30と接する誘電体層23の製膜条件を調整することによって透明電極層のパターン皺が抑制される理由は定かではないが、下地層である誘電体層の結晶性や表面形状、表面性等が、透明電極層の膜成長に影響を及ぼすことが一因として考えられる。 When a silicon oxide layer is formed as the transparent dielectric layer, the arithmetic average roughness Ra of the surface tends to be reduced by reducing the film forming pressure (total pressure in the film forming chamber). The film forming pressure of the dielectric layer is preferably 0.4 Pa or less, more preferably 0.35 Pa or less, and further preferably 0.25 Pa or less. When a plurality of transparent dielectric layers are formed, in order to reduce the arithmetic average roughness of the surface of the transparent dielectric layer 20, the dielectric layer 23 in contact with the transparent electrode layer 30 is formed at the film forming pressure. It is preferable. Although the reason why the pattern wrinkles of the transparent electrode layer is suppressed by adjusting the film forming conditions of the dielectric layer 23 in contact with the transparent electrode layer 30 is not clear, the crystallinity and surface shape of the dielectric layer as the underlayer, One possible reason is that the surface properties affect the film growth of the transparent electrode layer.
 また、透明誘電体層として、2層以上のシリコン酸化物層が製膜される場合、透明電極層がパターニングされた際の皺の発生を抑制する観点からは、透明電極層30と接していない誘電体層も、0.4Pa以下の圧力下で製膜されることが好ましい。当該誘電体層の製膜圧力は、0.35Pa以下がより好ましく、0.25Pa以下がさらに好ましい。透明電極層30と接していない誘電体層の製膜条件を調整することによって透明電極層のパターン皺が抑制される理由は定かではないが、当該誘電体層の結晶性や表面形状、表面性等が、透明電極層30と接する誘電体層23や透明電極層の膜成長に影響を及ぼすことが一因として考えられる。 Further, when two or more silicon oxide layers are formed as the transparent dielectric layer, they are not in contact with the transparent electrode layer 30 from the viewpoint of suppressing the generation of wrinkles when the transparent electrode layer is patterned. The dielectric layer is also preferably formed under a pressure of 0.4 Pa or less. The film forming pressure of the dielectric layer is more preferably 0.35 Pa or less, and further preferably 0.25 Pa or less. The reason why the pattern wrinkles of the transparent electrode layer is suppressed by adjusting the film forming conditions of the dielectric layer not in contact with the transparent electrode layer 30 is not clear, but the crystallinity, surface shape, and surface properties of the dielectric layer And the like influence the film growth of the dielectric layer 23 in contact with the transparent electrode layer 30 and the transparent electrode layer.
 光学設計によって、電極パターンの視認を抑止するための透明誘電体層20の構成の一例としては、透明フィルム10側から、屈折率nが1.45~1.95で膜厚が1nm~25nmの第一透明誘電体層21、屈折率nが2.00~2.35で膜厚が5nm~10nmの第二透明誘電体層22、および屈折率nが1.43~1.55で膜厚が35nm~80nmの第三透明誘電体層23の3層からなるものが挙げられる。また、第一誘電体層の屈折率n、第二誘電体層の屈折率n、および第三誘電体層の屈折率nは、n<n<nの関係を満たすことが好ましい。各誘電体層の屈折率が、このような大小関係を有することで、誘電体層界面での反射率が適宜に制御され、視認性に優れる透明電極付き基板が得られる。なお、各誘電体層および透明電極層の屈折率は、分光エリプソメトリーにより測定される波長550nmの光に対する屈折率である。各層の膜厚は、断面を透過型電子顕微鏡(TEM)により求められる。 As an example of the configuration of the transparent dielectric layer 20 for suppressing the visual recognition of the electrode pattern by the optical design, the refractive index n 1 is 1.45 to 1.95 and the film thickness is 1 nm to 25 nm from the transparent film 10 side. The first transparent dielectric layer 21, the second transparent dielectric layer 22 having a refractive index n 2 of 2.00 to 2.35 and a film thickness of 5 nm to 10 nm, and the refractive index n 3 of 1.43 to 1.55. And the third transparent dielectric layer 23 having a film thickness of 35 nm to 80 nm. The refractive index n 1 of the first dielectric layer, the refractive index n 3 of the second refractive index n 2 of the dielectric layer, and a third dielectric layer satisfy the relationship of n 3 <n 1 <n 2 Is preferred. Since the refractive index of each dielectric layer has such a magnitude relationship, the reflectance at the interface of the dielectric layer is appropriately controlled, and a substrate with a transparent electrode having excellent visibility can be obtained. In addition, the refractive index of each dielectric material layer and transparent electrode layer is a refractive index with respect to the light of wavelength 550nm measured by spectroscopic ellipsometry. The film thickness of each layer is determined by a transmission electron microscope (TEM).
 このように透明誘電体層20が3層からなる構成において、第一透明誘電体層21の材料としては、SiO(1.5≦x<2)を主成分とするシリコン酸化物層が好ましい。第一透明誘電体層21の膜厚dは、1nm~25nmが好ましく、2nm~22nmがより好ましく、3~20nmがさらに好ましく、4nm~15nmが特に好ましい。第一誘電体層の屈折率は、1.45~1.95が好ましく、1.47~1.85がより好ましく、1.49~1.75がさらに好ましい。 In the configuration thus transparent dielectric layer 20 is composed of three layers, the material of the first transparent dielectric layer 21, a silicon oxide layer mainly composed of SiO x (1.5 ≦ x <2 ) is preferable . The film thickness d 1 of the first transparent dielectric layer 21 is preferably 1 nm to 25 nm, more preferably 2 nm to 22 nm, still more preferably 3 to 20 nm, and particularly preferably 4 nm to 15 nm. The refractive index of the first dielectric layer is preferably 1.45 to 1.95, more preferably 1.47 to 1.85, and still more preferably 1.49 to 1.75.
 第二透明誘電体層22の材料としては、Nb,Ta,Ti,Zr,Zn,およびHfからなる群より選択される金属の酸化物、あるいはこれらの金属の複合酸化物を主成分とするものが好ましい。第二透明誘電体層22の膜厚は、4nm~12nmが好ましく、6nm~10nmがより好ましい。第二誘電体層の屈折率は2.00~2.35が好ましく、2.05~2.30がより好ましく、2.10~2.25がさらに好ましい。 The material of the second transparent dielectric layer 22 is mainly composed of an oxide of a metal selected from the group consisting of Nb, Ta, Ti, Zr, Zn, and Hf, or a composite oxide of these metals. Is preferred. The film thickness of the second transparent dielectric layer 22 is preferably 4 nm to 12 nm, and more preferably 6 nm to 10 nm. The refractive index of the second dielectric layer is preferably 2.00 to 2.35, more preferably 2.05 to 2.30, and even more preferably 2.10 to 2.25.
 第二透明誘電体層22は、可視光の短波長域の吸収が小さいことが好ましい。かかる観点から、第二透明誘電体層22の材料としては、酸化ニオブ(Nb)、酸化タンタル(Ta)、酸化チタン(TiO)あるいは酸化ジルコニウム(ZrO)が好ましく、中でも、酸化ニオブが好適に用いられる。 The second transparent dielectric layer 22 preferably has a small absorption in the short wavelength region of visible light. From such a viewpoint, the material of the second transparent dielectric layer 22 is preferably niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), titanium oxide (TiO 2 ), or zirconium oxide (ZrO 2 ). Of these, niobium oxide is preferably used.
 第三透明誘電体層23の材料としては、SiOを主成分とするシリコン酸化物層が好ましい。第三透明誘電体層23の膜厚は、30nm~80nmが好ましく、35nm~70nmがより好ましく、40~70nmがさらに好ましい。また、光学設計を最適化する観点からは、第三誘電体層の膜厚は30nm~55nmの範囲が好ましい。一方、第三誘電体層の膜厚が55nm以上の場合は、皺がより低減される傾向がある。第三透明誘電体層23の屈折率nは、1.43~1.58が好ましく、1.45~1.55がより好ましく、1.47~1.53がさらに好ましい。 The material of the third transparent dielectric layer 23, a silicon oxide layer mainly composed of SiO 2 is preferred. The film thickness of the third transparent dielectric layer 23 is preferably 30 nm to 80 nm, more preferably 35 nm to 70 nm, and even more preferably 40 to 70 nm. From the viewpoint of optimizing the optical design, the thickness of the third dielectric layer is preferably in the range of 30 nm to 55 nm. On the other hand, when the film thickness of the third dielectric layer is 55 nm or more, wrinkles tend to be further reduced. The refractive index n 3 of the third transparent dielectric layer 23 is preferably 1.43 to 1.58, more preferably 1.45 to 1.55, and even more preferably 1.47 to 1.53.
 前述のように、透明電極層30と接する誘電体層である第三誘電体層23は、透明電極層形成側界面の算術平均粗さRaが、1nm以下であることが好ましく、0.8nm以下であることがより好ましく、0.6nm以下であることがさらに好ましい。また、第三誘電体層の製膜圧力は、0.4Pa以下が好ましく、0.35Pa以下がより好ましく、0.25Pa以下がさらに好ましい。 As described above, the third dielectric layer 23 which is a dielectric layer in contact with the transparent electrode layer 30 preferably has an arithmetic average roughness Ra of the transparent electrode layer forming side interface of 1 nm or less, and 0.8 nm or less. It is more preferable that the thickness is 0.6 nm or less. The film forming pressure of the third dielectric layer is preferably 0.4 Pa or less, more preferably 0.35 Pa or less, and further preferably 0.25 Pa or less.
 各誘電体層が上記の厚みおよび屈折率を有することで、その上に形成される透明電極層30の電極パターンが視認され難くなる傾向がある。透明電極層のパターンの視認をより効果的に抑止するためには、第一透明誘電体層21の光学膜厚が、2nm~40nmであることが好ましく、4nm~36nmであることがより好ましく、6nm~32nmであることがさらに好ましい。第二透明誘電体層の光学膜厚は、4nm~20nmが好ましく、5nm~15nmがより好ましく、6nm~12nmがさらに好ましい。第三透明誘電体層の光学膜厚は、30nm~110nmが好ましく、40nm~90nmがより好ましく、45nm~80nmがさらに好ましい。光学設計最適化の観点からは、第三誘電体層の光学膜厚は、80nm以下がより好ましく、70nm以下がさらに好ましい。一方、皺の発生をさらに抑制する観点からは、第三誘電体層の光学膜厚は、55nm以上がより好ましく、60nm以上がさらに好ましい。なお、光学膜厚は、各層の膜厚と屈折率の積で表される。 When each dielectric layer has the above thickness and refractive index, the electrode pattern of the transparent electrode layer 30 formed thereon tends to be difficult to be visually recognized. In order to more effectively suppress the visibility of the pattern of the transparent electrode layer, the optical film thickness of the first transparent dielectric layer 21 is preferably 2 nm to 40 nm, more preferably 4 nm to 36 nm, More preferably, it is 6 nm to 32 nm. The optical film thickness of the second transparent dielectric layer is preferably 4 nm to 20 nm, more preferably 5 nm to 15 nm, and further preferably 6 nm to 12 nm. The optical film thickness of the third transparent dielectric layer is preferably 30 nm to 110 nm, more preferably 40 nm to 90 nm, and further preferably 45 nm to 80 nm. From the viewpoint of optimizing the optical design, the optical film thickness of the third dielectric layer is more preferably 80 nm or less, and further preferably 70 nm or less. On the other hand, from the viewpoint of further suppressing the generation of wrinkles, the optical film thickness of the third dielectric layer is more preferably 55 nm or more, and further preferably 60 nm or more. The optical film thickness is represented by the product of the film thickness and refractive index of each layer.
 透明誘電体層20が上記の3層構成である場合、図3に示すように透明電極層30がパターニングされた際の電極形成部30aと電極非形成部30bとの光の反射率差や色差が低減され、光学設計によってパターンの視認を抑止することができる。さらに、本発明においては、シリコン酸化物からなる透明誘電体層23上に透明電極層30が形成されることで、透明電極層がパターニングされた際のパターン皺の発生が抑制されることによっても、パターンの視認が抑制される傾向がある。 When the transparent dielectric layer 20 has the above-described three-layer configuration, as shown in FIG. 3, the light reflectance difference and color difference between the electrode forming portion 30 a and the electrode non-forming portion 30 b when the transparent electrode layer 30 is patterned. Can be reduced, and visual recognition of the pattern can be suppressed by the optical design. Furthermore, in the present invention, by forming the transparent electrode layer 30 on the transparent dielectric layer 23 made of silicon oxide, the generation of pattern defects when the transparent electrode layer is patterned is also suppressed. There is a tendency that the visual recognition of the pattern is suppressed.
 上記各誘電体層がスパッタリング法により製膜される場合、ターゲットとしては金属、金属酸化物、金属炭化物等を用いることができる。電源としては、DC,RF,MF電源等が使用できるが、生産性の観点からはMF電源が好ましい。製膜時の印加電力は特に限定されないが、透明フィルム基板に過剰な熱を与えず、かつ生産性を損なわない範囲で調整されることが好ましい。例えば、透明誘電体層20が上記の3層構成である場合、第一誘電体層製膜時のパワー密度は0.5~10W/cmが好ましく、第二誘電体層製膜時のパワー密度は0.5~8W/cmが好ましく、第三誘電体層製膜時のパワー密度は0.2~10W/cmが好ましい。 When each dielectric layer is formed by sputtering, a metal, metal oxide, metal carbide, or the like can be used as a target. As the power source, a DC, RF, MF power source or the like can be used, but an MF power source is preferable from the viewpoint of productivity. The applied power at the time of film formation is not particularly limited, but is preferably adjusted within a range that does not give excessive heat to the transparent film substrate and does not impair productivity. For example, when the transparent dielectric layer 20 has the above-described three-layer structure, the power density at the time of forming the first dielectric layer is preferably 0.5 to 10 W / cm 2, and the power density at the time of forming the second dielectric layer is The density is preferably 0.5 to 8 W / cm 2 , and the power density during the formation of the third dielectric layer is preferably 0.2 to 10 W / cm 2 .
(その他の工程)
 透明フィルム10が加熱された後、透明電極層30が製膜されるまでの間には、透明誘電体層20の形成以外の工程が含まれていてもよい。例えば、透明フィルム10が加熱された後、フィルム表面をプラズマに晒す処理(ボンバード処理)が行われてもよい。アルゴン等の不活性ガス存在下でSUS等のターゲットを用いてスパッタリングを行い、プラズマを発生させることで、フィルム表面が清浄化され、透明電極層製膜時の質量数28のガスの発生が抑制されると考えられる。透明電極層30製膜前に透明誘電体層20が形成される場合、ボンバード処理は、透明誘電体層20の形成前、形成後のいずれに行われてもよい。
(Other processes)
After the transparent film 10 is heated, a process other than the formation of the transparent dielectric layer 20 may be included until the transparent electrode layer 30 is formed. For example, after the transparent film 10 is heated, a process of exposing the film surface to plasma (bombarding process) may be performed. Sputtering is performed using a target such as SUS in the presence of an inert gas such as argon to generate plasma, thereby cleaning the film surface and suppressing the generation of a gas having a mass number of 28 when forming a transparent electrode layer. It is thought that it is done. When the transparent dielectric layer 20 is formed before the transparent electrode layer 30 is formed, the bombarding process may be performed either before or after the transparent dielectric layer 20 is formed.
[透明電極付き基板の物性]
 上記により得られる本発明の透明電極付き基板50は、熱収縮率が、0.4%以下であることが好ましく、0.35%以下であることがより好ましく、0.3%以下であることがさらに好ましい。熱収縮率が方向により異なる場合(MD方向とTD方向で異なる場合)、MD方向の熱収縮率が前記範囲であればよい。特に、MD方向およびTD方向の両方の熱収縮率が前記範囲であることが好ましい。
[Physical properties of substrates with transparent electrodes]
The substrate 50 with a transparent electrode of the present invention obtained as described above preferably has a heat shrinkage ratio of 0.4% or less, more preferably 0.35% or less, and 0.3% or less. Is more preferable. When the heat shrinkage rate varies depending on the direction (when it differs between the MD direction and the TD direction), the heat shrinkage rate in the MD direction may be in the above range. In particular, it is preferable that the thermal shrinkage rate in both the MD direction and the TD direction is in the above range.
 また、本発明の透明電極付き基板50の熱収縮開始温度は、85℃以上が好ましく、90℃以上がより好ましく、100℃以上がさらに好ましい。透明電極付き基板は、200℃までの範囲に熱収縮開始温度を示さないことが理想的である。 Moreover, the thermal shrinkage starting temperature of the substrate 50 with a transparent electrode of the present invention is preferably 85 ° C. or higher, more preferably 90 ° C. or higher, and further preferably 100 ° C. or higher. Ideally, the substrate with a transparent electrode does not exhibit a thermal shrinkage start temperature in the range up to 200 ° C.
 本発明においては、前記の加熱工程においてフィルムを収縮させることによって、熱収縮率および熱収縮開始温度を上記範囲とすることができる。また、透明電極付き基板の製造に供される透明フィルム10として、低熱収縮率、高熱収縮開始温度のフィルムを用いることによって、透明電極付き基板の熱収縮率をさらに低下させ、熱収縮開始温度をさらに高めることもできる。熱収縮率および熱収縮開始温度が上記範囲であれば、透明電極層の結晶化やその後のタッチパネル形成工程等において、透明電極付き基板が加熱された場合の寸法変化が抑制されるため、デバイスの設計が容易となることが期待できる。 In the present invention, the heat shrinkage rate and the heat shrinkage start temperature can be set within the above ranges by shrinking the film in the heating step. In addition, by using a film having a low heat shrinkage rate and a high heat shrinkage start temperature as the transparent film 10 used for the production of the substrate with a transparent electrode, the heat shrinkage rate of the substrate with the transparent electrode is further reduced, and the heat shrinkage start temperature is set to It can be further increased. If the heat shrinkage rate and the heat shrinkage start temperature are within the above ranges, the dimensional change when the substrate with the transparent electrode is heated is suppressed in the crystallization of the transparent electrode layer and the subsequent touch panel formation process. The design can be expected to be easy.
 加熱による寸法変化が抑制されることで、透明電極層がパターニングされた際に、パターン境界に沿った皺の発生が抑制される傾向がある。なお、本発明者らの検討によれば、透明電極層30製膜前の透明フィルム10として、加熱寸法変化率の小さいフィルムが用いられた場合でも、透明電極層のパターン境界に皺が発生する場合があった。そのため、透明電極層がパターニングされた際の皺の発生は、透明フィルム10の寸法変化のみに起因するものではないと考えられる。 寸 法 By suppressing the dimensional change due to heating, when the transparent electrode layer is patterned, the generation of wrinkles along the pattern boundary tends to be suppressed. According to the study by the present inventors, wrinkles occur at the pattern boundary of the transparent electrode layer even when a film having a small heating dimensional change rate is used as the transparent film 10 before forming the transparent electrode layer 30. There was a case. Therefore, it is considered that the generation of wrinkles when the transparent electrode layer is patterned is not caused only by the dimensional change of the transparent film 10.
 前述のように、本発明においては、透明電極層の製膜前にスパッタ製膜装置内で透明フィルムが非接触加熱されることにより、透明電極層のパターン境界に沿った皺の発生が抑制される。透明電極層製膜前の加熱処理により製膜界面の状態が変化し、結晶化のための加熱時に透明電極層に付与される応力が小さくなったことが、皺の発生が抑制される一因と推定される。 As described above, in the present invention, generation of wrinkles along the pattern boundary of the transparent electrode layer is suppressed by non-contact heating of the transparent film in the sputtering film forming apparatus before forming the transparent electrode layer. The One of the reasons that the generation of wrinkles is suppressed is that the state of the film forming interface changes due to the heat treatment before forming the transparent electrode layer, and the stress applied to the transparent electrode layer is reduced during heating for crystallization. It is estimated to be.
 本発明の透明電極付き基板50の透明電極層30が、非晶質の酸化インジウムを主成分とする金属酸化物薄膜である場合、透明電極付き基板が150℃で30分加熱された後の、酸化インジウム結晶のout‐plane X線回折測定により得られる(222)面の面間隔doutとin‐plane X線回折測定により得られる(222)面の面間隔dinの比dout/dinは、1に近いことが好ましい。具体的には、dout/dinは、0.998~1.003が好ましく、0.999~1.002がより好ましい。dout/dinは、結晶の三次元的な歪を表す指標であり、dout/dinが1から離れるほど、結晶構造が歪んでいることを示す。 When the transparent electrode layer 30 of the substrate 50 with a transparent electrode of the present invention is a metal oxide thin film mainly composed of amorphous indium oxide, the substrate with a transparent electrode is heated at 150 ° C. for 30 minutes, the ratio d out / d in the lattice spacing d in the are (222) surfaces obtained by surface separation d out and in-plane X ray diffraction measurement is (222) plane obtained by out-plane X ray diffraction measurement of the indium oxide crystal Is preferably close to 1. Specifically, d out / d in is preferably 0.998 to 1.003, and more preferably 0.999 to 1.002. d out / d in is an index representing the three-dimensional strain of the crystal, and the more d out / d in is from 1, the more the crystal structure is distorted.
 本発明の透明電極付き基板の透明電極層は、非晶質(一部結晶質成分を含んでいてもよい)であるが、150℃で30分加熱されることで、透明電極層中の金属酸化物が結晶化される。150℃で30分加熱された後のdout/dinが1に近いことは、透明電極層が結晶化される際に膜に付与される応力が小さく、結晶化後の透明電極層内の残留応力が小さいことを表していると考えられる。結晶化後の透明電極層の残留応力が小さい場合は、透明電極層と透明フィルムとの界面での応力が小さいために、透明電極層がパターニングされた場合の皺の発生が抑制されると推定される。 The transparent electrode layer of the substrate with a transparent electrode of the present invention is amorphous (may contain a part of crystalline component), but is heated at 150 ° C. for 30 minutes, so that the metal in the transparent electrode layer The oxide is crystallized. The fact that d out / d in after being heated at 150 ° C. for 30 minutes is close to 1, the stress applied to the film is small when the transparent electrode layer is crystallized. This is considered to indicate that the residual stress is small. When the residual stress of the transparent electrode layer after crystallization is small, the stress at the interface between the transparent electrode layer and the transparent film is small, so it is estimated that the generation of wrinkles when the transparent electrode layer is patterned is suppressed Is done.
 結晶の面間隔は、X線回折法により求められる。透明電極付き基板が150℃で30分加熱された後の(222)面の回折角2θは、32°以下が好ましく、31°以下がより好ましく、30.8°以下がさらに好ましい。結晶の面間隔を求めるためには、X線源としてCu・Kα線(波長:0.15418nm)を使用し、入射角0.1°~2.0°の条件でX線回折が行われる。 The crystal spacing is determined by X-ray diffraction. The diffraction angle 2θ of the (222) plane after the substrate with a transparent electrode is heated at 150 ° C. for 30 minutes is preferably 32 ° or less, more preferably 31 ° or less, and further preferably 30.8 ° or less. In order to determine the interplanar spacing of crystals, Cu · Kα rays (wavelength: 0.15418 nm) are used as an X-ray source, and X-ray diffraction is performed under conditions of an incident angle of 0.1 ° to 2.0 °.
 透明電極付き基板が150℃で30分加熱された後の、Cu・Kα線X線源とするX線回折により測定された(440)面の回折角2θと、前記加熱前の(440)面の回折角2θとの差2θ-2θは、0.50以下であることが好ましく、0.45以下であることがより好ましく、0.32以下であることがさらに好ましく、0.28以下であることが特に好ましい。結晶化のための加熱の前後で、回折角の変化が小さい場合、結晶化の際に透明電極層が受ける応力が小さく、透明電極層内に残留応力が生じていないと考えられる。そのため、2θ-2θが小さい場合は、透明電極層がパターニングされた際の皺の発生が抑制されると考えられる。 Diffraction angle 2θ of (440) plane measured by X-ray diffraction using Cu · Kα ray X-ray source after substrate with transparent electrode is heated at 150 ° C. for 30 minutes, and (440) plane before heating the difference 2 [Theta]-2 [Theta] 0 and the diffraction angle 2 [Theta] 0 in is preferably 0.50 or less, more preferably 0.45 or less, still more preferably 0.32 or less, 0.28 or less It is particularly preferred that When the change in diffraction angle is small before and after heating for crystallization, it is considered that the stress applied to the transparent electrode layer during crystallization is small and no residual stress is generated in the transparent electrode layer. Therefore, when 2θ−2θ 0 is small, it is considered that generation of wrinkles when the transparent electrode layer is patterned is suppressed.
[透明電極付き基板の用途]
 本発明の透明電極付き基板は、ディスプレイや発光素子、光電変換素子等の透明電極として用いることができ、タッチパネル用の透明電極として好適に用いられる。中でも、静電容量方式タッチパネルに好ましく用いられる。
[Use of substrates with transparent electrodes]
The board | substrate with a transparent electrode of this invention can be used as transparent electrodes, such as a display, a light emitting element, a photoelectric conversion element, and is used suitably as a transparent electrode for touchscreens. Among these, it is preferably used for a capacitive touch panel.
 タッチパネルへの応用に際して、透明電極付き基板50は加熱処理されて、透明電極層が結晶化されることが好ましい。結晶化のための加熱処理は、例えば、120℃~150℃のオーブン中で、30~60分間行われる。或いは85℃~120℃で1日~3日間など、比較的低温で長時間加熱されてもよい。透明電極層の加熱処理は、透明電極層のパターニング前、パターニング後のいずれに行ってもよい。また、透明電極層の加熱処理は、引き廻し配線形成時の加熱処理等のタッチパネル形成のための加熱アニール処理を兼ねるものであってもよい。 In application to a touch panel, the substrate 50 with a transparent electrode is preferably subjected to a heat treatment so that the transparent electrode layer is crystallized. The heat treatment for crystallization is performed, for example, in an oven at 120 ° C. to 150 ° C. for 30 to 60 minutes. Alternatively, it may be heated at a relatively low temperature for a long time, such as at 85 to 120 ° C. for 1 to 3 days. The heat treatment of the transparent electrode layer may be performed either before or after patterning of the transparent electrode layer. Further, the heat treatment of the transparent electrode layer may also serve as a heat annealing treatment for touch panel formation such as heat treatment at the time of forming the lead wiring.
 透明電極付き基板50は、透明電極層30が、電極形成部30aと電極非形成部30bとにパターニングされて用いられる。パターニングは、例えば透明電極層が形成された後、面内の一部において透明電極層がエッチング等によって除去されることにより行われる。 The substrate 50 with a transparent electrode is used by patterning the transparent electrode layer 30 into an electrode forming part 30a and an electrode non-forming part 30b. For example, after the transparent electrode layer is formed, the patterning is performed by removing the transparent electrode layer in a part of the surface by etching or the like.
 透明電極層のエッチング方法としては、ウェットプロセスおよびドライプロセスのいずれでもよいが、透明電極層30のみが選択的に除去されやすいという観点から、ウェットプロセスが適している。本発明の透明電極付き基板は、透明電極層がパターニングされた後に、パターンに沿った皺が発生し難い。そのため、パターンが視認され難く、画面の視認性を向上することができる。 The etching method of the transparent electrode layer may be either a wet process or a dry process, but a wet process is suitable from the viewpoint that only the transparent electrode layer 30 is easily removed selectively. In the substrate with a transparent electrode of the present invention, wrinkles along the pattern hardly occur after the transparent electrode layer is patterned. Therefore, it is difficult to visually recognize the pattern, and the visibility of the screen can be improved.
 タッチパネルの形成においては、透明電極付き基板上に、導電性インクやペーストが塗布されて、熱処理されることで、引き廻し回路用配線としての集電極が形成される。加熱処理の方法は特に限定されず、オーブンやIRヒータ等による加熱方法が挙げられる。加熱処理の温度・時間は、導電性ペーストが透明電極に付着する温度・時間を考慮して適宜に設定される。例えば、オーブンによる加熱であれば120~150℃で30~60分、IRヒータによる加熱であれば150℃で5分等の例が挙げられる。なお、引き廻し回路用配線の形成方法は、上記に限定されず、ドライコーティング法によって形成されてもよい。また、フォトリソグラフィによって引き廻し回路用配線が形成されることで、配線の細線化が可能である。 In the formation of the touch panel, a conductive ink or paste is applied on a substrate with a transparent electrode, and heat treatment is performed, whereby a collecting electrode as a wiring for a routing circuit is formed. The method for the heat treatment is not particularly limited, and examples thereof include a heating method using an oven or an IR heater. The temperature and time of the heat treatment are appropriately set in consideration of the temperature and time at which the conductive paste adheres to the transparent electrode. For example, examples include heating at 120 to 150 ° C. for 30 to 60 minutes for heating by an oven and heating at 150 ° C. for 5 minutes for heating by an IR heater. In addition, the formation method of the circuit wiring is not limited to the above, and may be formed by a dry coating method. In addition, since the wiring for the routing circuit is formed by photolithography, the wiring can be thinned.
 以下に、実施例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
 各誘電体層および透明電極層の膜厚は、透明電極付き基板の断面の透過型電子顕微鏡(TEM)観察により求めた。 The film thickness of each dielectric layer and transparent electrode layer was determined by observation with a transmission electron microscope (TEM) of a cross section of the substrate with a transparent electrode.
 熱収縮率は、試料に10mm間隔で2点の穴を開け、150℃で30分間の加熱を行う前の2点間の距離Lおよび加熱後の2点間の距離Lを三次元測長器により測定することで求めた。 The heat shrinkage rate was determined by measuring the distance L 0 between the two points before the 30 minute heating at 150 ° C. and the distance L between the two points after heating by three-dimensional measurement. It was determined by measuring with a vessel.
[実施例1]
 透明フィルムとして、ウレタン系樹脂からなるハードコート層(屈折率1.53)が両面に形成された厚み125μmのPETフィルムが用いられた。このPETフィルムの150℃30分加熱時の熱収縮率は、MD方向が0.73%、TD方向が0.56%であった。この透明フィルムが、図2に模式的に示す巻取式スパッタ製膜装置内に導入された。
[Example 1]
As the transparent film, a PET film having a thickness of 125 μm in which hard coat layers (refractive index of 1.53) made of urethane resin were formed on both surfaces was used. The heat shrinkage rate of the PET film when heated at 150 ° C. for 30 minutes was 0.73% in the MD direction and 0.56% in the TD direction. This transparent film was introduced into a winding type sputtering film forming apparatus schematically shown in FIG.
 その後、一旦、基材準備室内が5×10-4Paまで減圧された後、基材準備室内の圧力0.5Paでフィルムを搬送させながら、フィルムの加熱が行われた。基材準備室201内のヒータの温度は240℃であり、フィルム表面に添付されたサーモラベルにより測定したフィルム表面の温度は82℃であった。加熱時間(ヒータ間をフィルムが搬送される時間)は、20秒であった。 Thereafter, the pressure in the base material preparation chamber was once reduced to 5 × 10 −4 Pa, and then the film was heated while the film was transported at a pressure of 0.5 Pa in the base material preparation chamber. The temperature of the heater in the base material preparation chamber 201 was 240 ° C., and the temperature of the film surface measured by a thermolabel attached to the film surface was 82 ° C. The heating time (time during which the film was conveyed between the heaters) was 20 seconds.
 加熱処理後の透明フィルムは連続的に製膜室に搬送され、製膜ロール260上で、第一透明誘電体層としてSiO、第二透明誘電体層としてNb、第三誘電体層としてSiO、透明電極層としてITOが順次製膜された。製膜時の基板温度は-20℃であった。 The transparent film after the heat treatment is continuously conveyed to the film forming chamber, and on the film forming roll 260, SiO x as the first transparent dielectric layer, Nb 2 O 5 as the second transparent dielectric layer, and the third dielectric SiO 2 as a layer and ITO as a transparent electrode layer were sequentially formed. The substrate temperature during film formation was −20 ° C.
 第一誘電体層は、B-Siをターゲットとして用い、酸素/アルゴン(20sccm/400sccm)混合ガスを製膜室内に導入しながら、装置内圧力0.2Pa、パワー密度1.4W/cmの条件で製膜された。第二誘電体層は、ニオブ(Nb)をターゲットとして用い、酸素/アルゴン(160sccm/1600sccm)混合ガスを製膜室内に導入しながら、装置内圧力0.87Pa、基板温度-20℃、パワー密度8.1W/cmの条件で製膜された。第三誘電体層は、B-Siをターゲットとして用い、酸素/アルゴン(190sccm/400sccm)混合ガスを装置内に導入しながら、装置内圧力0.2Pa、パワー密度10.2W/cmの条件で製膜された。 The first dielectric layer uses B—Si as a target and introduces an oxygen / argon (20 sccm / 400 sccm) mixed gas into the film forming chamber, while the apparatus pressure is 0.2 Pa and the power density is 1.4 W / cm 2 . The film was formed under conditions. The second dielectric layer uses niobium (Nb) as a target and introduces an oxygen / argon (160 sccm / 1600 sccm) mixed gas into the film forming chamber, while the apparatus pressure is 0.87 Pa, the substrate temperature is −20 ° C., and the power density is The film was formed under conditions of 8.1 W / cm 2 . The third dielectric layer uses B—Si as a target, and introduces a mixed gas of oxygen / argon (190 sccm / 400 sccm) into the apparatus, while the apparatus pressure is 0.2 Pa and the power density is 10.2 W / cm 2 . Was formed into a film.
 透明電極層は、酸化インジウムと酸化スズの焼結ターゲットを用い、酸素/アルゴン(2sccm/1000sccm)混合ガスを装置内に導入しながら、装置内圧力0.4Pa、パワー密度5.2W/cmの条件で行われた。製膜室内の不活性ガス(アルゴンガス)の分圧Pに対する質量数28のガスの分圧P28の比P28/Pは、4.7×10-4であった。 このようにして、透明フィルム上に誘電体層および透明電極層を備える透明電極付き基板を得た。 The transparent electrode layer uses a sintered target of indium oxide and tin oxide, and an oxygen / argon (2 sccm / 1000 sccm) mixed gas is introduced into the apparatus while the apparatus pressure is 0.4 Pa and the power density is 5.2 W / cm 2. Made under the conditions of The ratio P 28 / P I of the partial pressure P 28 of the gas having a mass number of 28 to the partial pressure P I of the inert gas (argon gas) in the film forming chamber was 4.7 × 10 −4 . Thus, the board | substrate with a transparent electrode provided with a dielectric material layer and a transparent electrode layer on the transparent film was obtained.
(X線回折による結晶特性の評価)
 この透明電極付き基板が、150℃のオーブン内で30分加熱され、透明電極層の結晶化が行われた。結晶化後の透明電極付きフィルムのin‐plane測定での面間隔dinとout-plane測定での(222)面の面間隔doutの比dout/dinを測定したところ、1.001であった。また、(440)面の回折角の差2θ-2θは、0.30°であった。
(Evaluation of crystal characteristics by X-ray diffraction)
This substrate with a transparent electrode was heated in an oven at 150 ° C. for 30 minutes to crystallize the transparent electrode layer. The ratio d out / d in of the interplanar spacing d in in -plane measurement and the (222) plane spacing d out in out-plane measurement of the film with a transparent electrode after crystallization was measured. Met. The difference 2θ-2θ 0 in the diffraction angle of the (440) plane was 0.30 °.
 なお、X線回折は、X線源としてCu・Kα線を備えるX線回折測定装置(リガク製「SmartLab」)を用いて測定した。膜面に平行な方向の面間隔の測定(out-plane測定)は、対称軸ωを0.4°(原点中心)とし薄膜測定法(2θ測定)により、X線強度45kV・200mA、角度域2θ=25°~62°、走査速度1.000°/分、サンプリング間隔0.0400°の条件で測定した。膜面に直交する方向の面間隔の測定(in-plane測定)は、走査速度を0.400°/分、サンプリング間隔を0.0400°に変更し、ωの角度はout-plane測定の際と同じ角度に設定して測定を行った。 X-ray diffraction was measured using an X-ray diffraction measurement apparatus (“SmartLab” manufactured by Rigaku) equipped with Cu · Kα rays as an X-ray source. Measurement of the distance between planes in the direction parallel to the film surface (out-plane measurement) is performed using a thin film measurement method (2θ measurement) with an axis of symmetry ω of 0.4 ° (center of origin), an X-ray intensity of 45 kV · 200 mA, angle range. The measurement was performed under the conditions of 2θ = 25 ° to 62 °, a scanning speed of 1.000 ° / min, and a sampling interval of 0.0400 °. In the measurement of the surface interval in the direction perpendicular to the film surface (in-plane measurement), the scanning speed is changed to 0.400 ° / min and the sampling interval is changed to 0.0400 °, and the angle of ω is the same as that in the out-plane measurement. The measurement was carried out at the same angle as.
[実施例2]
 加熱ヒータの温度が400℃に変更され、ヒータによる加熱時間が25秒に変更されたことにより、加熱処理におけるフィルム表面温度が90℃であった。また、第一誘電体層および第三誘電体層の装置内圧力が0.1Paに変更された。これらの変更以外は、上記実施例1と同様にして、透明電極付き基板を得た。なお、実施例2においては、透明誘電体層および透明電極層の製膜(堆積)速度を変えることで、各層の膜厚が実施例1と同様となるように調整された。この透明電極付き基板を、実施例1と同様の方法で結晶化した後、(222)面の面間隔比dout/dinを測定したところ、0.999であった。
[Example 2]
Since the temperature of the heater was changed to 400 ° C. and the heating time by the heater was changed to 25 seconds, the film surface temperature in the heat treatment was 90 ° C. Further, the internal pressure of the first dielectric layer and the third dielectric layer was changed to 0.1 Pa. Except these changes, it carried out similarly to the said Example 1, and obtained the board | substrate with a transparent electrode. In Example 2, the film thickness (deposition) of the transparent dielectric layer and the transparent electrode layer was changed to adjust the film thickness of each layer to be the same as in Example 1. This substrate with a transparent electrode was crystallized in the same manner as in Example 1, and the (222) plane spacing ratio d out / d in was measured to be 0.999.
[実施例3]
 フィルムの搬送速度小さくされることでヒータによる加熱時間が4倍となり、これに伴って加熱処理におけるフィルム表面温度が99℃であった。その他は、上記実施例1と同様にして透明電極付き基板を得た。なお、実施例3においては、透明誘電体層および透明電極層の製膜(堆積)速度を変えることで、各層の膜厚が実施例1と同様となるように調整された。この透明電極付き基板を、実施例1と同様の方法で結晶化した後、(222)面の面間隔比dout/dinを測定したところ、0.998であった。
[Example 3]
By reducing the film conveyance speed, the heating time by the heater was quadrupled, and accordingly, the film surface temperature in the heat treatment was 99 ° C. Others were the same as in Example 1 to obtain a substrate with a transparent electrode. In Example 3, the film thickness of each layer was adjusted to be the same as that in Example 1 by changing the film formation (deposition) speeds of the transparent dielectric layer and the transparent electrode layer. This substrate with a transparent electrode was crystallized in the same manner as in Example 1, and the (222) plane spacing ratio d out / d in was measured to be 0.998.
[実施例4,5]
 実施例4では、透明フィルムとして、ウレタン系樹脂からなるハードコート層(屈折率1.53)が両面に形成された厚み125μmのPETフィルムが、製膜装置に導入される前に加熱処理され、低熱収縮率化された。実施例5では、実施例4よりも高温でPETフィルムが加熱されることにより、より熱収縮率が低いPETフィルムが得られた。
[Examples 4 and 5]
In Example 4, as a transparent film, a PET film having a thickness of 125 μm in which a hard coat layer (refractive index of 1.53) made of urethane resin is formed on both surfaces is heat-treated before being introduced into a film forming apparatus, Low heat shrinkage rate. In Example 5, a PET film having a lower thermal shrinkage rate was obtained by heating the PET film at a higher temperature than in Example 4.
 これらの低熱収縮率化されたPETフィルムが透明フィルムとして用いられた。その他は実施例1と同様にして、誘電体層および透明電極層が製膜された。実施例5で得られた透明電極付き基板を、実施例1と同様の方法で結晶化した後、(222)面の面間隔比dout/dinを測定したところ、0.999であった。 These low thermal shrinkage PET films were used as transparent films. Otherwise, in the same manner as in Example 1, a dielectric layer and a transparent electrode layer were formed. The substrate with a transparent electrode obtained in Example 5 was crystallized in the same manner as in Example 1, and then the (222) plane spacing ratio d out / d in was measured to be 0.999. .
[実施例6]
 ハードコート層が形成された透明フィルムの厚みが100μmに変更され、ヒータ温度が230℃に変更されたことにより、加熱処理におけるフィルム表面温度が85℃であった。その他は上記実施例1と同様にして、透明電極付き基板を得た。この透明電極付き基板を、実施例1と同様の方法で結晶化した後、(222)面の面間隔doutの比dout/dinを測定したところ、1.000であった。
[Example 6]
The thickness of the transparent film on which the hard coat layer was formed was changed to 100 μm, and the heater temperature was changed to 230 ° C., so that the film surface temperature in the heat treatment was 85 ° C. Others were carried out similarly to the said Example 1, and obtained the board | substrate with a transparent electrode. This substrate with a transparent electrode was crystallized in the same manner as in Example 1, and the ratio d out / d in of the (222) plane spacing d out was measured and found to be 1.000.
[比較例1]
 加熱ヒータがオフの状態で、製膜前の加熱が行われなかった。その他は上記実施例1と同様にして、透明電極付き基板を得た。透明電極層の製膜室内の不活性ガス(アルゴンガス)の分圧Pに対する質量数28のガスの分圧P28の比P28/Pは、5.7×10-3であった。
[Comparative Example 1]
Heating before film formation was not performed with the heater turned off. Others were carried out similarly to the said Example 1, and obtained the board | substrate with a transparent electrode. The ratio P 28 / P I of the partial pressure P 28 of the mass number 28 gas to the partial pressure P I of the inert gas (argon gas) in the film forming chamber of the transparent electrode layer was 5.7 × 10 −3 . .
[比較例2]
 加熱ヒータがオフの状態で、製膜前の加熱が行われなかった。その他は上記実施例4と同様にして、透明電極付き基板を得た。
[Comparative Example 2]
Heating before film formation was not performed with the heater turned off. Others were carried out similarly to the said Example 4, and obtained the board | substrate with a transparent electrode.
[比較例3]
 加熱ヒータの温度が120℃に変更されたことにより、加熱処理におけるフィルム表面温度が60℃であった。その他は上記実施例4と同様にして、透明電極付き基板を得た。
[Comparative Example 3]
Since the temperature of the heater was changed to 120 ° C., the film surface temperature in the heat treatment was 60 ° C. Others were carried out similarly to the said Example 4, and obtained the board | substrate with a transparent electrode.
[比較例4]
 透明フィルムが巻取式スパッタ製膜装置内に導入され、基材準備室内が5×10-4Paまで減圧された後、製膜ロールを温度70℃に温調した状態で、基材準備室内の圧力0.5Paでフィルムを搬送させて、製膜ロールからの熱により、透明フィルムの加熱が行われた。この際、透明フィルム上への製膜は行われず、加熱後のフィルムが基材準備室内の巻取ロールにより一旦巻き取られた。製膜ロールによる加熱処理時のフィルム表面温度は40℃であった。
[Comparative Example 4]
After the transparent film is introduced into the wind-up type sputtering film forming apparatus and the pressure in the substrate preparation chamber is reduced to 5 × 10 −4 Pa, the film forming roll is adjusted to a temperature of 70 ° C. The film was conveyed at a pressure of 0.5 Pa, and the transparent film was heated by the heat from the film forming roll. At this time, no film was formed on the transparent film, and the heated film was once wound up by a winding roll in the base material preparation chamber. The film surface temperature during the heat treatment with the film forming roll was 40 ° C.
[比較例5]
 製膜ロールを80℃に温調した状態で、上記比較例4と同様に製膜ロール上での透明フィルムの加熱を試みたが、搬送張力が不安定となり、巻回体に著しい巻ズレが生じたため、その後の製膜を行うことができなかった。
[Comparative Example 5]
In the state where the film forming roll was adjusted to 80 ° C., heating of the transparent film on the film forming roll was attempted in the same manner as in Comparative Example 4, but the transport tension became unstable, and the winding body was significantly wound. As a result, subsequent film formation could not be performed.
[評価]
(パターン皺の評価)
 各実施例および比較例(比較例5を除く)で得られた透明電極付きフィルムから10cm角のシート状のフィルムが切り出された。切り出されたフィルムが、150℃のオーブン内で30分加熱され、透明電極層が結晶化された。
[Evaluation]
(Evaluation of pattern 皺)
A 10 cm square sheet-like film was cut out from the film with a transparent electrode obtained in each Example and Comparative Example (excluding Comparative Example 5). The cut film was heated in an oven at 150 ° C. for 30 minutes, and the transparent electrode layer was crystallized.
 その後、フォトリソグラフィによる透明電極層のパターニングが行われた。まず透明電極層上に、フォトレジスト(製品名TSMR-8900(東京応化工業製))がスピンコートにより約2μm程度の膜厚で塗布された後、90℃のオーブンでプリベークされた。フォトマスクを介して、40mJの紫外光が照射された。その後110℃でフォトレジスト層がポストベークされた後、現像液(製品名NMD-W(東京応化工業製))を用いてパターニングされた。さらに、エッチング液(製品名:ITO02(関東化学製))を用いて透明電極層がエッチングされた。最後にリンス液(製品名104(東京応化工業製))を用いて残ったフォトレジストが除去された。 After that, patterning of the transparent electrode layer was performed by photolithography. First, a photoresist (product name: TSMR-8900 (manufactured by Tokyo Ohka Kogyo Co., Ltd.)) was applied on the transparent electrode layer to a thickness of about 2 μm by spin coating, and then prebaked in an oven at 90 ° C. 40 mJ ultraviolet light was irradiated through the photomask. Thereafter, the photoresist layer was post-baked at 110 ° C. and then patterned using a developer (product name: NMD-W (manufactured by Tokyo Ohka Kogyo Co., Ltd.)). Further, the transparent electrode layer was etched using an etching solution (product name: ITO02 (manufactured by Kanto Chemical)). Finally, the remaining photoresist was removed using a rinse solution (product name 104 (manufactured by Tokyo Ohka Kogyo Co., Ltd.)).
 目視により、透明電極層のパターン皺の有無が評価された。透明電極層のパターン形成方向と直管式蛍光灯の反射光とが略直交するように配置された状態で、蛍光灯からの反射光を観察し、蛍光灯の反射像が直線状に見えるものをA(皺なし)、反射像が著しく歪んで見えるものをEとし、A~Eの5段階で評価を行った。実施例及び比較例の透明電極付き基板の製造に用いられた透明フィルムの熱収縮率、加熱工程における加熱温度、加熱時間およびフィルム表面温度、透明誘電体層中のシリコン酸化物製膜時の製膜圧力、ならびに透明電極付き基板の熱収縮率および目視による皺の評価結果を表1に示す。 The presence / absence of pattern defects in the transparent electrode layer was evaluated by visual inspection. The reflected light from the fluorescent lamp is observed in a state where the pattern formation direction of the transparent electrode layer and the reflected light of the straight tube fluorescent lamp are substantially orthogonal, and the reflected image of the fluorescent lamp looks linear A is E (no wrinkles), and E is a reflection image that appears to be significantly distorted. The thermal shrinkage rate of the transparent film used in the production of the transparent electrode-coated substrates of the examples and comparative examples, the heating temperature in the heating step, the heating time and the film surface temperature, the production of the silicon oxide film in the transparent dielectric layer Table 1 shows the film pressure, the thermal contraction rate of the substrate with a transparent electrode, and the evaluation results of wrinkles by visual observation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、透明誘電体層および透明電極層の製膜前に、非接触のヒータによって加熱が行われることにより、透明電極層がパターニングされた際の皺の発生が抑制されることがわかる。実施例1および実施例3と比較例3との対比から、加熱温度を高くすることにより、透明電極付き基板の皺がさらに抑制されることがわかる。また、実施例2と実施例3との対比から、フィルムの表面温度が高いことに加えて、誘電体層であるシリコン酸化物層の製膜圧力が小さい場合に、透明電極付き基板の皺がさらに抑制されることがわかる。実施例1と実施例6との対比からも同様の傾向が窺われる。 From the results in Table 1, it is possible to suppress the generation of wrinkles when the transparent electrode layer is patterned by heating with a non-contact heater before forming the transparent dielectric layer and the transparent electrode layer. Recognize. From the comparison between Example 1 and Example 3 and Comparative Example 3, it is understood that wrinkles of the substrate with a transparent electrode are further suppressed by increasing the heating temperature. In addition, in comparison with Example 2 and Example 3, in addition to the high surface temperature of the film, when the film-forming pressure of the silicon oxide layer as the dielectric layer is low, the wrinkles of the substrate with transparent electrodes It turns out that it is suppressed further. The same tendency is observed from the comparison between Example 1 and Example 6.
 また、実施例1と実施例4および実施例5との対比から、スパッタ製膜装置に導入される前の透明フィルムとして、熱収縮量の小さいものが用いられることによっても、透明電極付き基板の皺がさらに抑制されることがわかる。 Further, from the comparison between Example 1 and Example 4 and Example 5, as a transparent film before being introduced into the sputtering film forming apparatus, a film having a small amount of heat shrinkage is used. It can be seen that wrinkles are further suppressed.
 一方、比較例2では、実施例4と同様の低熱収縮化された透明フィルムが用いられているが、製膜前に加熱処理が行われなかったため、透明電極付き基板に皺の発生がみられた。これらの結果から、低熱収縮量の基材を用いるのみでは、皺の抑制は十分ではなく、製膜前に加熱工程が行われることが、重要であることがわかる。 On the other hand, in Comparative Example 2, a transparent film having a low heat shrinkage similar to that in Example 4 is used. However, since heat treatment was not performed before film formation, generation of wrinkles was observed on the substrate with a transparent electrode. It was. From these results, it can be seen that the use of a low heat shrinkage substrate alone does not sufficiently suppress wrinkles, and it is important that a heating step is performed before film formation.
 巻取式スパッタ製膜装置内で透明フィルムを巻き返すことによって、製膜ロール上で加熱が行われた比較例4では、透明電極付き基板の皺の発生を抑制することができなかった。以上の結果から、本発明においては、高温で短時間の非接触加熱が行われることにより、皺の発生が抑制されていることがわかる。 In Comparative Example 4 in which heating was performed on the film-forming roll by rewinding the transparent film in the wind-up type sputtering film-forming apparatus, generation of wrinkles on the substrate with the transparent electrode could not be suppressed. From the above results, it can be seen that in the present invention, generation of soot is suppressed by non-contact heating at a high temperature for a short time.
 また、各実施例の透明電極層は、結晶化後の(222)面の面間隔のin‐plane測定とout-plane測定との比dout/dinが1に近いことから、加熱により結晶化された後の酸化インジウムの結晶の歪みが小さいことが分かる。これらの結果から、本発明の透明電極付き基板では、透明電極層製膜前に所定の加熱処理が行われることによって、透明電極層の結晶化の際に透明電極層に付与される応力による歪みの発生が抑制され、透明電極層とフィルムとの界面での応力が小さいために、透明電極層がパターニングされた際の皺の発生が抑制されていると考えられる。 In addition, since the transparent electrode layer of each example has a ratio d out / d in of the in-plane measurement and the out-plane measurement of the (222) plane spacing after crystallization close to 1, the crystallized by heating. It can be seen that the distortion of the crystal of indium oxide after being converted is small. From these results, in the substrate with a transparent electrode according to the present invention, a predetermined heat treatment is performed before forming the transparent electrode layer, so that distortion due to stress applied to the transparent electrode layer during crystallization of the transparent electrode layer is achieved. It is considered that the generation of wrinkles when the transparent electrode layer is patterned is suppressed because the occurrence of the above is suppressed and the stress at the interface between the transparent electrode layer and the film is small.
  10     透明フィルム
  11     ベースフィルム
  12,13  ハードコート層
  20     透明誘電体層
  21~23  透明誘電体層
  30     透明電極層
  30a    電極形成部
  30b    電極非形成部
  50     透明電極付き基板
 200     スパッタ製膜装置
 201     基材準備室
 202,203 製膜室
 260     製膜ロール
 261     繰出ロール
 262     巻取ロール
 271~274 加熱部
DESCRIPTION OF SYMBOLS 10 Transparent film 11 Base film 12, 13 Hard-coat layer 20 Transparent dielectric layer 21-23 Transparent dielectric layer 30 Transparent electrode layer 30a Electrode formation part 30b Electrode non-formation part 50 Substrate with a transparent electrode 200 Sputter film forming apparatus 201 Base material Preparation chamber 202, 203 Film forming chamber 260 Film forming roll 261 Feeding roll 262 Winding roll 271 to 274 Heating section

Claims (12)

  1.  巻取式スパッタ製膜装置を用いて、透明フィルム上に金属酸化物薄膜からなる透明電極層を備える透明電極付き基板を製造する方法であって、
     前記巻取式スパッタ装置は、基材準備室および製膜室を備え、前記基材準備室内には加熱部が設けられており、
     透明フィルムのロール状巻回体が、巻取式スパッタ製膜装置の基材準備室内に導入される基材準備工程;
     前記基材準備室内で、前記透明フィルムが、前記ロール状巻回体から繰出され搬送されながら、前記加熱部からの熱によって表面温度80℃~160℃に加熱処理される加熱工程;および
     前記巻取式スパッタ製膜装置の製膜室内に不活性ガスが導入されながら、加熱処理後の前記透明フィルム上に、非晶質金属酸化物薄膜からなる透明電極層が形成される透明電極層製膜工程、を有し、
     前記加熱工程および前記透明電極層製膜工程は、前記巻取式スパッタ製膜装置から透明フィルムが取り出されることなく連続して行われ、
     前記加熱工程において、前記透明フィルムと前記加熱部とが接触することなく前記加熱処理が行われ、前記加熱工程における基材準備室内の圧力が1.0Pa以下である、透明電極付き基板の製造方法。
    A method for producing a substrate with a transparent electrode comprising a transparent electrode layer made of a metal oxide thin film on a transparent film using a winding-type sputtering film-forming apparatus,
    The winding type sputtering apparatus includes a base material preparation chamber and a film forming chamber, and a heating unit is provided in the base material preparation chamber,
    A base material preparation step in which the roll-shaped wound body of the transparent film is introduced into the base material preparation chamber of the wind-up type sputtering film forming apparatus;
    A heating step in which the transparent film is heat-treated at a surface temperature of 80 ° C. to 160 ° C. by heat from the heating unit while being fed and conveyed from the roll-shaped wound body in the base material preparation chamber; Transparent electrode layer film formation in which a transparent electrode layer made of an amorphous metal oxide thin film is formed on the transparent film after heat treatment while an inert gas is introduced into a film forming chamber of a pre-sputter film forming apparatus Having a process,
    The heating step and the transparent electrode layer film forming step are continuously performed without taking out the transparent film from the winding type sputtering film forming apparatus,
    In the heating step, the heat treatment is performed without contact between the transparent film and the heating unit, and the pressure in the base material preparation chamber in the heating step is 1.0 Pa or less. .
  2.  前記加熱工程後に、加熱処理後の前記透明フィルムがロール状に巻回される前に、前記製膜室内で前記透明電極層製膜工程が引き続き行われる、請求項1に記載の透明電極付き基板の製造方法。 The substrate with a transparent electrode according to claim 1, wherein the transparent electrode layer forming step is continuously performed in the film forming chamber after the heating step and before the transparent film after the heat treatment is wound in a roll shape. Manufacturing method.
  3.  前記加熱工程において、前記透明フィルムの加熱時間が0.1秒~600秒である、請求項1または2に記載の透明電極付き基板の製造方法。 The method for producing a substrate with a transparent electrode according to claim 1 or 2, wherein in the heating step, the heating time of the transparent film is 0.1 second to 600 seconds.
  4.  前記加熱工程において、前記加熱部の温度が150℃~500℃である、請求項1~3のいずれか1項に記載の透明電極付き基板の製造方法。 The method for producing a substrate with a transparent electrode according to any one of claims 1 to 3, wherein, in the heating step, the temperature of the heating section is 150 ° C to 500 ° C.
  5.  前記透明電極層製膜工程において、前記製膜室内の不活性ガスの分圧Pに対する質量数28のガスの分圧P28の比P28/Pが5×10-4以下である、請求項1~4のいずれか1項に記載の透明電極付き基板の製造方法。 In the transparent electrode layer deposition step, the ratio P 28 / P I of the partial pressure P 28 of the gas having a mass number of 28 to the partial pressure P I of the inert gas in the deposition chamber is 5 × 10 −4 or less. The method for producing a substrate with a transparent electrode according to any one of claims 1 to 4.
  6.  前記巻取式スパッタ製膜装置の前記基材準備室内には、フィルム搬送方向に沿って複数の加熱部が設けられており、前記加熱部の間に搬送ロールが設けられており、
     前記複数の加熱部からの熱によって前記加熱処理が行われる、請求項1~5のいずれか1項に記載の透明電極付き基板の製造方法。
    In the base material preparation chamber of the winding type sputtering film forming apparatus, a plurality of heating units are provided along the film conveying direction, and a conveying roll is provided between the heating units,
    The method for producing a substrate with a transparent electrode according to any one of claims 1 to 5, wherein the heat treatment is performed by heat from the plurality of heating units.
  7.  前記加熱工程と前記透明電極層製膜工程との間に、さらに透明誘電体層形成工程を有し、
     前記透明誘電体層形成工程において、前記透明フィルム上に、スパッタリング法により少なくとも1層の透明誘電体層が形成される、請求項1~6のいずれか1項に記載の透明電極付き基板の製造方法。
    Between the heating step and the transparent electrode layer forming step, further comprising a transparent dielectric layer forming step,
    The production of a substrate with a transparent electrode according to any one of claims 1 to 6, wherein in the transparent dielectric layer forming step, at least one transparent dielectric layer is formed on the transparent film by a sputtering method. Method.
  8.  前記透明誘電体層形成工程において、少なくとも1層のシリコン酸化物層からなる誘電体層が形成される、請求項7に記載の透明電極付き基板の製造方法。 The method for producing a substrate with a transparent electrode according to claim 7, wherein a dielectric layer comprising at least one silicon oxide layer is formed in the transparent dielectric layer forming step.
  9.  前記透明誘電体層形成工程において、屈折率が1.45~1.95の第一率透明誘電体層、屈折率が2.00~2.35の第二透明誘電体層、およびシリコン酸化物からなる第三透明誘電体層が、前記透明フィルム上にこの順に形成される、請求項7に記載の透明電極付き基板の製造方法。 In the transparent dielectric layer forming step, the first transparent dielectric layer having a refractive index of 1.45 to 1.95, the second transparent dielectric layer having a refractive index of 2.00 to 2.35, and silicon oxide The manufacturing method of the board | substrate with a transparent electrode of Claim 7 in which the 3rd transparent dielectric material layer which consists of is formed in this order on the said transparent film.
  10.  前記透明誘電体層形成工程において、透明電極層の直下に形成される透明誘電体層が、0.4Pa以下の製膜圧力で製膜される、請求項7~9のいずれか1項に記載の透明電極付き基板の製造方法。 The transparent dielectric layer formed immediately below the transparent electrode layer in the transparent dielectric layer forming step is formed at a film forming pressure of 0.4 Pa or less, according to any one of claims 7 to 9. Manufacturing method of substrate with transparent electrode.
  11.  前記基材準備工程において、スパッタ製膜装置内に導入される透明フィルムは、150℃30分加熱時のMD方向の熱収縮率が0.4%以下である、請求項1~10のいずれか1項に記載の透明電極付き基板の製造方法。 11. The transparent film introduced into the sputtering film forming apparatus in the base material preparation step has a thermal shrinkage rate in the MD direction of 0.4% or less when heated at 150 ° C. for 30 minutes. The manufacturing method of the board | substrate with a transparent electrode of Claim 1.
  12.  前記基材準備工程において、スパッタ製膜装置内に導入される透明フィルムは、熱機械分析により測定される熱収縮開始温度が85℃以上である、請求項1~11のいずれか1項に記載の透明電極付き基板の製造方法。 The transparent film introduced into the sputtering film forming apparatus in the base material preparation step has a heat shrinkage starting temperature measured by thermomechanical analysis of 85 ° C or higher, according to any one of claims 1 to 11. Manufacturing method of substrate with transparent electrode.
PCT/JP2013/051730 2012-02-02 2013-01-28 Method for manufacturing substrate having transparent electrode WO2013115125A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012021366 2012-02-02
JP2012-021366 2012-09-05

Publications (1)

Publication Number Publication Date
WO2013115125A1 true WO2013115125A1 (en) 2013-08-08

Family

ID=48905164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051730 WO2013115125A1 (en) 2012-02-02 2013-01-28 Method for manufacturing substrate having transparent electrode

Country Status (2)

Country Link
TW (1) TW201346937A (en)
WO (1) WO2013115125A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193536A (en) * 2013-03-28 2014-10-09 Kaneka Corp Laminate and film
EP2883980A1 (en) * 2013-12-10 2015-06-17 Applied Materials, Inc. Substrate spreading device for vacuum processing apparatus, vacuum processing apparatus with substrate spreading device and method for operating same
JP2015150884A (en) * 2014-02-19 2015-08-24 富士フイルム株式会社 Laminate structure and touch panel module
JP2015191634A (en) * 2014-03-28 2015-11-02 大日本印刷株式会社 Laminate, touch panel using laminate, and manufacturing method of laminate
JPWO2014034575A1 (en) * 2012-08-31 2016-08-08 株式会社カネカ Manufacturing method of substrate with transparent electrode, and substrate with transparent electrode
CN105874545A (en) * 2014-03-31 2016-08-17 株式会社钟化 Method for producing transparent conductive film
CN106140510A (en) * 2016-09-12 2016-11-23 清华大学深圳研究生院 A kind of electrostatic spraying apparatus and prepare the device of nesa coating
WO2020255947A1 (en) * 2019-06-21 2020-12-24 日東電工株式会社 Transparent electroconductive film
US11811003B2 (en) 2018-08-01 2023-11-07 Kaneka Corporation Transparent electrode-equipped substrate and production method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173773A (en) * 2000-12-04 2002-06-21 Toyobo Co Ltd Roll coater type continuous sputtering apparatus
JP2004052078A (en) * 2002-07-23 2004-02-19 Toyobo Co Ltd Roll coater type continuous sputtering equipment for producing transparent electrically conductive film
JP2008171642A (en) * 2007-01-10 2008-07-24 Nitto Denko Corp Transparent conductive film and its manufacturing method
JP2010007142A (en) * 2008-06-27 2010-01-14 Sumitomo Metal Mining Co Ltd Cooling roll and vacuum treatment system
JP2010027567A (en) * 2008-07-24 2010-02-04 Nitto Denko Corp Transparent conductive film and touch panel
JP2010238634A (en) * 2009-03-31 2010-10-21 International Superconductivity Technology Center Oxide superconducting wire, method of manufacturing the same, and manufacturing device of substrate used for the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173773A (en) * 2000-12-04 2002-06-21 Toyobo Co Ltd Roll coater type continuous sputtering apparatus
JP2004052078A (en) * 2002-07-23 2004-02-19 Toyobo Co Ltd Roll coater type continuous sputtering equipment for producing transparent electrically conductive film
JP2008171642A (en) * 2007-01-10 2008-07-24 Nitto Denko Corp Transparent conductive film and its manufacturing method
JP2010007142A (en) * 2008-06-27 2010-01-14 Sumitomo Metal Mining Co Ltd Cooling roll and vacuum treatment system
JP2010027567A (en) * 2008-07-24 2010-02-04 Nitto Denko Corp Transparent conductive film and touch panel
JP2010238634A (en) * 2009-03-31 2010-10-21 International Superconductivity Technology Center Oxide superconducting wire, method of manufacturing the same, and manufacturing device of substrate used for the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014034575A1 (en) * 2012-08-31 2016-08-08 株式会社カネカ Manufacturing method of substrate with transparent electrode, and substrate with transparent electrode
JP2014193536A (en) * 2013-03-28 2014-10-09 Kaneka Corp Laminate and film
EP2883980A1 (en) * 2013-12-10 2015-06-17 Applied Materials, Inc. Substrate spreading device for vacuum processing apparatus, vacuum processing apparatus with substrate spreading device and method for operating same
WO2015086602A1 (en) * 2013-12-10 2015-06-18 Applied Materials, Inc. Substrate spreading device for vacuum processing apparatus, vacuum processing apparatus with substrate spreading device and method for operating same
US9333525B2 (en) 2013-12-10 2016-05-10 Applied Materials, Inc. Substrate spreading device for vacuum processing apparatus, vacuum processing apparatus with substrate spreading device and method for operating same
JP2017502172A (en) * 2013-12-10 2017-01-19 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Substrate spreading device for vacuum processing apparatus, vacuum processing apparatus having substrate spreading device, and method of operating the same
JP2015150884A (en) * 2014-02-19 2015-08-24 富士フイルム株式会社 Laminate structure and touch panel module
JP2015191634A (en) * 2014-03-28 2015-11-02 大日本印刷株式会社 Laminate, touch panel using laminate, and manufacturing method of laminate
US10151024B2 (en) 2014-03-31 2018-12-11 Kaneka Corporation Method for producing transparent conductive film
CN105874545A (en) * 2014-03-31 2016-08-17 株式会社钟化 Method for producing transparent conductive film
CN105874545B (en) * 2014-03-31 2017-07-21 株式会社钟化 The manufacture method of nesa coating
CN106140510A (en) * 2016-09-12 2016-11-23 清华大学深圳研究生院 A kind of electrostatic spraying apparatus and prepare the device of nesa coating
CN106140510B (en) * 2016-09-12 2018-12-28 清华大学深圳研究生院 A kind of electrostatic spraying apparatus and the device for preparing transparent conductive film
US11811003B2 (en) 2018-08-01 2023-11-07 Kaneka Corporation Transparent electrode-equipped substrate and production method therefor
WO2020255947A1 (en) * 2019-06-21 2020-12-24 日東電工株式会社 Transparent electroconductive film
JP2021002473A (en) * 2019-06-21 2021-01-07 日東電工株式会社 Transparent electroconductive film

Also Published As

Publication number Publication date
TW201346937A (en) 2013-11-16

Similar Documents

Publication Publication Date Title
WO2013115125A1 (en) Method for manufacturing substrate having transparent electrode
JP6873297B2 (en) Transparent conductive film with protective film
TWI569312B (en) A substrate having a transparent electrode and a method for manufacturing the same
JP5281216B1 (en) Substrate with transparent electrode, method for manufacturing the same, and touch panel
KR101269316B1 (en) Method for fabricating transparent conductive film
JP6014128B2 (en) Substrate with transparent electrode, method for manufacturing the same, and touch panel
JP6261987B2 (en) Transparent conductive film and method for producing the same
JP6261988B2 (en) Transparent conductive film and method for producing the same
JP5976846B2 (en) Transparent conductive film and method for producing the same
JP6215062B2 (en) Method for producing transparent conductive film
JP2016225269A (en) Transparent conductive film
WO2013172354A1 (en) Element for conductive film, conductive film laminated body, electronic equipment, and method of manufacturing element for conductive film and conductive film laminated body
JP5515554B2 (en) Method for producing transparent conductive thin film
JP6454690B2 (en) Method for producing transparent conductive film
JP2014168938A (en) Transparent laminate
JP5951372B2 (en) Touch panel and manufacturing method thereof
JP5992801B2 (en) Substrate with transparent electrode and method for manufacturing the same
WO2014157312A1 (en) Transparent conductive multilayer film and method for producing same
JP6097117B2 (en) Laminates and films
JP2014218726A (en) Substrate equipped with transparent electrode, method of manufacturing the same, and touch panel
WO2016080246A1 (en) Transparent electroconductive film with protective film
JP6126395B2 (en) Manufacturing method of substrate with transparent electrode
JP2014175142A (en) Electrode-provided substrate and electrostatic capacitance type touch panel
WO2016189761A1 (en) Transparent conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13743084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP