WO2013115064A1 - Magnetic body material and wound coil component provided with core formed using same - Google Patents

Magnetic body material and wound coil component provided with core formed using same Download PDF

Info

Publication number
WO2013115064A1
WO2013115064A1 PCT/JP2013/051473 JP2013051473W WO2013115064A1 WO 2013115064 A1 WO2013115064 A1 WO 2013115064A1 JP 2013051473 W JP2013051473 W JP 2013051473W WO 2013115064 A1 WO2013115064 A1 WO 2013115064A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
sample
magnetic material
nicuzn
Prior art date
Application number
PCT/JP2013/051473
Other languages
French (fr)
Japanese (ja)
Inventor
石川輝伸
前田幸男
前田英一
中村彰宏
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2013556355A priority Critical patent/JP5871017B2/en
Publication of WO2013115064A1 publication Critical patent/WO2013115064A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type
    • H01F17/04Fixed inductances of the signal type with magnetic core
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • C04B2235/3277Co3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics

Definitions

  • Such a magnetic material includes NiCuZn-based ferrite containing Fe 2 O 3 , NiO, CuO and ZnO as main components and Bi 2 O 3 as subcomponents, and SiO 2 —EO—A 2.
  • O-based glass (E is at least one selected from Ba, Sr, Ca and Mg.
  • A is at least one selected from Li, Na and K) is added in an amount of 1.5 to
  • a magnetic material containing 3.0 parts by weight and containing 0.1 to 0.7 parts by weight of cobalt oxide in terms of Co 3 O 4 with respect to 100 parts by weight of ferrite has been proposed (Patent Document 1). ).
  • the present invention solves the above problems, and has a high specific resistance and a high Q in a high frequency band exceeding 100 MHz.
  • the present invention is suitable as a constituent material of an inductor core used in a VHF-H band or the like.
  • An object of the present invention is to provide a ferrite-type magnetic material that can be used and a wire-wound coil component including a core formed using the same.
  • the temperature change rate of the magnetic permeability ⁇ ′ is set to 1000 ppm / ° C. or less because the temperature compensation coefficient of the capacitor of the LC resonance circuit is 750 ppm / ° C. at the maximum, and the temperature change rate of the magnetic permeability is 1000 ppm. This is because the temperature cannot be compensated when the temperature exceeds / ° C.
  • the magnetic material of the present invention further contains Sn as an additive component at a ratio of 0.1 to 2.5 parts by weight in terms of SnO 2 with respect to 100 parts by weight of the NiCuZn-based ferrite material. It is possible. By including Sn, when used as a core of a wire-wound coil component, the rate of change of inductance (L) due to stress applied to the core can be reduced.
  • the Q of the material is improved.
  • the specific resistance decreases until the amount of the glass component added reaches 4 parts by weight, but the specific resistance increases when the amount exceeds 6 parts by weight.
  • the specific resistance increases because the glass crystal phase is precipitated when the glass component is contained in a proportion of 6 to 20 parts by weight with respect to 100 parts by weight of the NiCuZn ferrite material.
  • Co in the range of 0.3 to 0.7 parts by weight in terms of Co 3 O 4 , the snake limit line is slightly shifted to the high frequency side and the high frequency Q is increased.
  • the iron oxide (Fe 2 O 3 ) raw material usually contains about 0.1 to 1.0% by weight of Mn impurities, and the oxidized oxide was refined so that this Mn was 0.05% by weight or less. Iron raw materials are expensive. Therefore, in this example, an iron oxide (Fe 2 O 3 ) raw material containing 0.05 to 0.5% by weight of Mn was used so that economic efficiency was not impaired.
  • the core 1 (FIG. 1) for the wound-type coil component thus produced was coated with Ag paste on the bottoms of the flanges 2a and 2b and baked to form a base layer, and then Ni electrolytic plating and Sn
  • the external electrodes 6a and 6b were produced by performing an electrolytic plating process and sequentially forming a Ni plating film and a Sn plating film on the underlying layer.
  • a coil winding (an annealed copper wire) 4 was wound around the core 1a of the core 1 for 15 turns. Then, both ends of the coil winding 4 were connected to the external electrodes 6a and 6b by thermocompression bonding, respectively, so that a winding type coil component as shown in FIG. 1 was produced.
  • FIG. 2 shows the results of X-ray diffraction for the sample No. 1 (sample that does not satisfy the requirements of the present invention)
  • FIG. 3 shows the X-ray diffraction of the sample No. 5 (sample that satisfies the requirements of the present invention). The result of a line diffraction is shown.
  • FIG. 4 shows the relationship between the glass component content, specific resistance, and Q (Q of the magnetic material) of samples Nos. 2 to 9.
  • Example number 2 When the content of the glass component is increased from 2 parts by weight (sample number 2) to 4 parts by weight (sample number 3) with respect to 100 parts by weight of the NiCuZn-based ferrite as the main component, a conventional magnetic material (Patent Document 1) It was found that the specific resistance decreased as in the case of, and the Q of the magnetic material also decreased. However, when the amount of glass was further increased to 6 to 25 parts by weight (sample numbers 4 to 9), it was confirmed that the specific resistance and Q increased. As a result, it was found that the Q peak frequency of the coil also increased. 2 shows the result of X-ray diffraction for the sample of sample number 1 not satisfying the requirements of the present invention, and FIG.
  • FIG. 5 shows the frequency characteristics of ⁇ ′ and ⁇ ′′ of the samples (magnetic material) of sample numbers 1 and 5 (magnetic material).
  • Sample No. 1 is a magnetic material that does not satisfy the requirements of the present invention, and ⁇ ′′ increased rapidly at a frequency of 100 MHz or higher.
  • ⁇ ′ decreased, but the increase in ⁇ ′′ was suppressed.
  • the Q at 200 MHz could be increased to 120.
  • FIG. 6 shows the measurement results of Q (coil Q) obtained for the wound-type coil parts produced using the magnetic material of sample number 1 and sample number 5.
  • the sample No. 1 has a Co 3 O 4 content of 0.2 parts by weight and a glass component content of 2.0 parts by weight, which is outside the scope of the present invention. is there. Since the content of Co 3 O 4 and the content of the glass component are below the range of the present invention, the high frequency, for example, the Q at 200 MHz is as low as 4, resulting in a frequency at which the Q of the coil peaks (coil (Q peak frequency) is as low as 110 MHz, which is not sufficient for use in the VHF-H band.
  • the sample No. 2 has the Co 3 O 4 content increased to 0.5 parts by weight as compared with the sample No. 1 sample, but the requirement of the present invention (glass component content: 6 .0 to 20.0 parts by weight).
  • the Q at 200 MHz increases with the increase in the content of Co 3 O 4 , but the glass addition amount is as small as 2.0 parts by weight, so that the temperature change rate of ⁇ ′ ( ⁇ It was confirmed that ⁇ ) increased and exceeded 1000 ppm / ° C.
  • sample of sample number 3 has a glass component content of 4.0 parts by weight and a glass component content of sample numbers 1 and 2 of more than 2 parts by weight, but the requirements of the present invention (glass component content: 6.0 to 20.0 parts by weight), the specific resistance log ⁇ v was as low as 6 ⁇ ⁇ cm, and as a result, the Q of the magnetic material was confirmed to be as low as 20.
  • the temperature change rate ( ⁇ ⁇ ) of the magnetic permeability ⁇ ′ is improved as compared with the sample of sample number 2, but this is because the content of the glass component is increased. It is an effect.
  • the sample No. 9 was a sample in which the glass addition amount was 25.0 parts by weight and exceeded the range of the present invention, and the magnetic permeability ⁇ ′ was as low as 2.9.
  • Sample No. 10 is a sample in which the content (addition amount) of Co 3 O 4 is 0.2 parts by weight and does not satisfy the requirements of the present invention (0.3 to 0.7 parts by weight).
  • the Q of the magnetic material was as low as 20, and as a result, the Q peak frequency of the coil was as low as 120 MHz, and it was confirmed that sufficient characteristics could not be obtained for use in the VHF-H band.
  • Sample No. 13 is a sample in which the content (addition amount) of Co 3 O 4 does not satisfy the requirements of the present invention (0.3 to 0.7 parts by weight) of 0.8 parts by weight, and the permeability ⁇ 'Is low, and the temperature change rate ( ⁇ ⁇ ) of the magnetic permeability ⁇ is more than 1000 ppm / ° C., which is not preferable.
  • SnO 2 is 0.0 parts by weight, 0.1 parts by weight, 0.5 parts by weight, and 2.5 parts by weight with respect to 100 parts by weight, and wet with a bead mill. After mixing and pulverizing, the mixture was dried and granulated with a spray dryer. Then, the granulated body was calcined at 600 to 900 ° C. in the air to obtain a calcined powder.
  • Example 2 a glass powder having a composition of 20 wt% BaO, 20 wt% Li 2 O, and 60 wt% SiO 2 was prepared.
  • Co 3 O 4 powder was prepared as a Co raw material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

Provided are: a ferritic magnetic body material that has a high Q in a high-frequency band, and can be favorably used for example as an inductor-core-configuring material used in a VHF-H band or the like; and a wound coil component provided with a core formed using the magnetic body material. The primary component is an NiCuZn ferritic material containing Ni, Cu, Zn, and Fe, 6.0-20.0 parts by weight of a glass containing Si, Li, and E (E being at least one element selected from the group consisting of Ba, Sr, and Ca) are included for every 100 parts by weight of the NiCuZn ferritic material, and 0.3-0.7 parts by weight of Co in terms of Co3O4 are included for every 100 parts by weight of the NiCuZn ferritic material. Furthermore, 0.1-2.5 parts by weight of Sn in terms of SnO2 are included for every 100 parts by weight of the NiCuZn ferritic material.

Description

磁性体材料およびそれを用いて形成したコアを備える巻線型コイル部品Wire-wound coil component having a magnetic material and a core formed using the same
 本発明は、磁性体材料および巻線型コイル部品に関し、詳しくは、インダクタのコアなどの用途に用いられるフェライト系の磁性体材料およびそれを用いて形成したコアを備える巻線型コイル部品に関する。 The present invention relates to a magnetic material and a wire-wound coil component, and more particularly to a ferrite-based magnetic material used for applications such as an inductor core and a wire-wound coil component including a core formed using the same.
 近年、電子機器の高周波化にともない、その構成部品についても高周波化への対応が求められている。 In recent years, with the increase in the frequency of electronic equipment, it is required that the component parts also support the higher frequency.
 このような構成部品の中で、インダクタなどのコイル部品においても高周波化への対応の必要性が強まっている。そして、高周波化への対応性に優れたインダクタのコア用材料として、高周波数領域で透磁率μ’(実部)が低下しない磁性体材料が望まれている。 Among these components, coil components such as inductors are increasingly required to cope with higher frequencies. As a core material for an inductor having excellent compatibility with high frequencies, a magnetic material that does not lower the permeability μ ′ (real part) in a high frequency region is desired.
 そのような磁性体材料として、主成分としてFe23,NiO,CuOおよびZnOを含み、かつ副成分としてBi23を含む、NiCuZn系フェライトを含み、かつ、SiO2-EO-A2O系ガラス(Eは、Ba,Sr,CaおよびMgから選ばれる少なくとも1種。Aは、Li、NaおよびKから選ばれる少なくとも1種)を、フェライト100重量部に対して、1.5~3.0重量部含むとともに、コバルト酸化物を、フェライト100重量部に対して、Co34に換算して0.1~0.7重量部含む磁性体が提案されている(特許文献1)。 Such a magnetic material includes NiCuZn-based ferrite containing Fe 2 O 3 , NiO, CuO and ZnO as main components and Bi 2 O 3 as subcomponents, and SiO 2 —EO—A 2. O-based glass (E is at least one selected from Ba, Sr, Ca and Mg. A is at least one selected from Li, Na and K) is added in an amount of 1.5 to A magnetic material containing 3.0 parts by weight and containing 0.1 to 0.7 parts by weight of cobalt oxide in terms of Co 3 O 4 with respect to 100 parts by weight of ferrite has been proposed (Patent Document 1). ).
 そして、この特許文献1によれば、巻線型コイル部品を構成するフェライトコアに用いるのに適した高周波特性の優れた磁性体が得られるとされている。 And according to this patent document 1, it is said that the magnetic body excellent in the high frequency characteristic suitable for using for the ferrite core which comprises a winding type | mold coil component is obtained.
 しかしながら、特許文献1の磁性体の場合、巻線型コイル部品のコアとして用いると、得られる巻線型コイル部品のQのピーク周波数が100~150MHzであり、VHF-H帯(170~250MHz)で使用する際にコイルのQが低下して損失が増大するという問題点がある。 However, in the case of the magnetic body of Patent Document 1, when used as a core of a wound coil component, the peak frequency of Q of the obtained wound coil component is 100 to 150 MHz, and is used in the VHF-H band (170 to 250 MHz). In doing so, there is a problem that the Q of the coil is lowered and the loss is increased.
 また、特許文献1の組成では、ガラスの添加量を、主成分であるNiCuZn系フェライト100重量部に対して4重量部にまで増加すると、比抵抗が低下して、Qが低下するという問題点がある。 Further, in the composition of Patent Document 1, when the amount of glass added is increased to 4 parts by weight with respect to 100 parts by weight of the NiCuZn-based ferrite as the main component, the specific resistance is lowered and the Q is lowered. There is.
特開2007-273725号公報JP 2007-273725 A
 本発明は、上記課題を解決するものであり、比抵抗が高く、100MHzを超えるような高周波帯域におけるQが高く、例えば、VHF-H帯などで用いられるインダクタのコアの構成材料などとして好適に使用することが可能なフェライト系の磁性体材料およびそれを用いて形成したコアを備える巻線型コイル部品を提供することを目的とする。 The present invention solves the above problems, and has a high specific resistance and a high Q in a high frequency band exceeding 100 MHz. For example, the present invention is suitable as a constituent material of an inductor core used in a VHF-H band or the like. An object of the present invention is to provide a ferrite-type magnetic material that can be used and a wire-wound coil component including a core formed using the same.
 上記課題を解決するため、本発明の磁性体材料は、
 Ni,Cu,ZnおよびFeを含むNiCuZn系フェライト材料を主成分とし、
 Si、Li、E(Eは、Ba,SrおよびCaからなる群より選ばれる少なくとも1種)を含むガラスを、前記NiCuZn系フェライト材料100重量部に対して、6.0~20.0重量部の割合で含有するとともに、
 Coを、前記NiCuZn系フェライト材料100重量部に対して、Co34に換算して0.3~0.7重量部の割合で含有すること
 を特徴としている。
In order to solve the above problems, the magnetic material of the present invention is:
NiCuZn based ferrite material containing Ni, Cu, Zn and Fe as a main component,
The glass containing Si, Li, E (E is at least one selected from the group consisting of Ba, Sr, and Ca) is 6.0 to 20.0 parts by weight with respect to 100 parts by weight of the NiCuZn-based ferrite material. In addition,
Co is contained at a ratio of 0.3 to 0.7 parts by weight in terms of Co 3 O 4 with respect to 100 parts by weight of the NiCuZn-based ferrite material.
 本発明の磁性体材料においては、さらに、Snを、前記NiCuZn系フェライト材料100重量部に対して、SnO2に換算して0.1~2.5重量部の割合で含有していることが望ましい。
 Snを、NiCuZn系フェライト材料100重量部に対して、SnO2に換算して0.1~2.5重量部の割合で含有させることにより、本発明の磁性体材料を巻線型コイル部品のコアとして用いた場合に、コアに加わる応力によるインダクタンス(L)の変化率を低下させることができる。したがって、本発明の磁性体材料をコア部材として用いることにより、携帯電話のように外的衝撃を受けやすい部品においても安定して使用することが可能な巻線型コイル部品を実現することが可能になる。
In the magnetic material of the present invention, Sn is further contained in a proportion of 0.1 to 2.5 parts by weight in terms of SnO 2 with respect to 100 parts by weight of the NiCuZn ferrite material. desirable.
Sn is contained at a ratio of 0.1 to 2.5 parts by weight in terms of SnO 2 with respect to 100 parts by weight of the NiCuZn-based ferrite material, so that the magnetic material of the present invention is the core of the wound coil component. As a result, the rate of change in inductance (L) due to stress applied to the core can be reduced. Therefore, by using the magnetic material of the present invention as a core member, it is possible to realize a wound-type coil component that can be used stably even in a component that is susceptible to external impact such as a mobile phone. Become.
 また、本発明の巻線型コイル部品は、上記本発明の磁性体材料を用いて形成したコアと、前記コアに巻回されたコイル用巻線とを具備することを特徴としている。 Also, the wire-wound coil component of the present invention is characterized by comprising a core formed using the magnetic material of the present invention and a coil winding wound around the core.
 本発明の磁性体材料は、Ni,Cu,ZnおよびFeを含むNiCuZn系フェライト材料を主成分とし、Si、Li、E(Eは、Ba,SrおよびCaからなる群より選ばれる少なくとも1種)を含むガラスを、前記NiCuZn系フェライト材料100重量部に対して、6.0~20.0重量部の割合で含有するとともに、Coを、前記NiCuZn系フェライト材料100重量部に対して、Co34に換算して0.3~0.7重量部の割合で含有しているので、比抵抗が高く、高周波帯域で高いQを有し、かつ、透磁率の温度変化率の低い磁性体材料を提供することが可能になる。 The magnetic material of the present invention is mainly composed of a NiCuZn-based ferrite material containing Ni, Cu, Zn and Fe, and Si, Li and E (E is at least one selected from the group consisting of Ba, Sr and Ca). Is contained in a ratio of 6.0 to 20.0 parts by weight with respect to 100 parts by weight of the NiCuZn-based ferrite material, and Co is added to Co 3 with respect to 100 parts by weight of the NiCuZn-based ferrite material. Since it is contained in a proportion of 0.3 to 0.7 parts by weight in terms of O 4 , it has a high specific resistance, a high Q in the high frequency band, and a low magnetic permeability temperature change rate. It becomes possible to provide the material.
 また、本発明の巻線型コイル部品は、上記本発明の磁性体材料を用いて形成したコアと、前記コアに巻回されたコイル用巻線とを具備しているので、高周波帯域で高いQを有する、特性の良好な巻線型コイル部品を提供することが可能になる。 In addition, the wire-wound coil component of the present invention includes a core formed using the magnetic material of the present invention and a coil winding wound around the core, so that a high Q in a high frequency band. It is possible to provide a wire-wound coil component having good characteristics.
本発明の実施例にかかる巻線型コイル部品の構成を示す図であり、(a)は正面図、(b)は側面図である。It is a figure which shows the structure of the winding type | mold coil component concerning the Example of this invention, (a) is a front view, (b) is a side view. 本発明の実施例において作製した、本発明の要件を満たさない比較用の磁性体材料についてのX線回折結果を示す図である。It is a figure which shows the X-ray-diffraction result about the magnetic material for the comparison produced in the Example of this invention which does not satisfy | fill the requirements of this invention. 本発明の実施例において作製した、本発明の要件を満たす磁性体材料についてのX線回折結果を示す図である。It is a figure which shows the X-ray-diffraction result about the magnetic body material which satisfy | fills the requirements of this invention produced in the Example of this invention. 磁性体材料へのガラス添加量とQの関係を示すグラフである。It is a graph which shows the relationship between the glass addition amount to a magnetic body material, and Q. 磁性体材料のμ’(実部)とμ”(虚部)の周波数特性を示すグラフである。5 is a graph showing frequency characteristics of μ ′ (real part) and μ ″ (imaginary part) of a magnetic material. 巻線型コイル部品のQの周波数特性を示すグラフである。It is a graph which shows the frequency characteristic of Q of a winding type coil component.
 以下に本発明の実施の形態を示して、本発明の特徴とするところをさらに詳しく説明する。 Embodiments of the present invention will be described below, and the features of the present invention will be described in more detail.
 本発明の磁性体材料は、上述の課題を解決することができるように、種々の実験、検討を行い、以下の実施例の結果なども勘案してなされたものであり、
 (1)透磁率μ’が200MHzで3以上、
 (2)磁性体材料のQが200MHzで40以上、
 (3)透磁率μ’の温度変化率が1000ppm/℃以下、
 (4)比抵抗logρvが7Ω・cm以上
の特性を実現することができるように、その要件を定めたものである。
The magnetic material of the present invention was subjected to various experiments and studies so as to solve the above-mentioned problems, and was made in consideration of the results of the following examples,
(1) Magnetic permeability μ ′ is 3 or more at 200 MHz,
(2) Q of magnetic material is 40 or more at 200 MHz,
(3) The temperature change rate of the magnetic permeability μ ′ is 1000 ppm / ° C. or less,
(4) The requirement is defined so that the specific resistance log ρv can achieve the characteristic of 7 Ω · cm or more.
 まず、200MHzで3以上の透磁率μ’が確保できるようにしたのは、透磁率μ’が3未満になると、本発明の磁性体材料を使用することによるインダクタンスLの増加割合が2倍未満となり、磁性体のQ値が無限大であるアルミナコアとの差別化が図れなくなることによる。 First, the magnetic permeability μ ′ of 3 or more at 200 MHz can be secured when the magnetic permeability μ ′ is less than 3, and the increase rate of the inductance L by using the magnetic material of the present invention is less than twice. This is because the magnetic material cannot be differentiated from an alumina core having an infinite Q value.
 また、磁性体材料のQとして、200MHzで40以上のQが確保できるようにしたのは、磁性体材料のQが200MHzで40未満になると、コイルの損失が増加して、コイルのQピーク周波数が200MHz以下となり、VHF-H帯で使用することができなくなることによる。 Also, the Q of the magnetic material can be ensured to be 40 or more at 200 MHz. When the Q of the magnetic material is less than 40 at 200 MHz, the loss of the coil increases and the Q peak frequency of the coil increases. Is less than 200 MHz and cannot be used in the VHF-H band.
 また、透磁率μ’の温度変化率が、1000ppm/℃以下になるようにしたのは、LC共振回路のコンデンサの温度補償係数が最大でも750ppm/℃であり、透磁率の温度変化率が1000ppm/℃以上になると温度補償できなくなることによる。 The temperature change rate of the magnetic permeability μ ′ is set to 1000 ppm / ° C. or less because the temperature compensation coefficient of the capacitor of the LC resonance circuit is 750 ppm / ° C. at the maximum, and the temperature change rate of the magnetic permeability is 1000 ppm. This is because the temperature cannot be compensated when the temperature exceeds / ° C.
 また、比抵抗logρvが7Ω・cm以上になるようにしたのは、比抵抗logρvが7Ω・cmを下回ると、巻線型コイル部品や磁性体材料のQが低下し、望ましくないことによる。 Also, the reason why the specific resistance log ρv is set to 7 Ω · cm or more is that when the specific resistance log ρv is less than 7 Ω · cm, the Q of the wire-wound coil component or the magnetic material is undesirably lowered.
 本発明の磁性体材料は、Ni,Cu,ZnおよびFeを含むNiCuZn系フェライト材料を主成分とし、Si、Li、E(Eは、Ba,SrおよびCaからなる群より選ばれる少なくとも1種)を含むガラスを、前記NiCuZn系フェライト材料100重量部に対して、6.0~20.0重量部の割合で含有するとともに、Coを、前記NiCuZn系フェライト材料100重量部に対して、Co34に換算して0.3~0.7重量部の割合で含有する磁性体材料である。 The magnetic material of the present invention is mainly composed of a NiCuZn-based ferrite material containing Ni, Cu, Zn and Fe, and Si, Li and E (E is at least one selected from the group consisting of Ba, Sr and Ca). Is contained in a ratio of 6.0 to 20.0 parts by weight with respect to 100 parts by weight of the NiCuZn-based ferrite material, and Co is added to Co 3 with respect to 100 parts by weight of the NiCuZn-based ferrite material. It is a magnetic material that contains 0.3 to 0.7 parts by weight in terms of O 4 .
 すなわち、本発明の磁性体材料は、
 NiCuZn系フェライト材料:100重量部
 ガラス成分         :6~20重量部
 Co            :0.3~0.7重量部(Co34換算)
 を含むものであり、ガラス成分は、上述のアルカリ土類金属酸化物-アルカリ金属酸化物系ガラスである。
 ただし、ガラス成分はBi,Bを含まないものであることが望ましい。これは、Biを含有すると透磁率μ’の温度変化率が大きくなってしまうこと、またBを含有するとバインダーと反応を起こし、ゲル化してしまうことによる。
That is, the magnetic material of the present invention is
NiCuZn ferrite material: 100 parts by weight Glass component: 6 to 20 parts by weight Co: 0.3 to 0.7 parts by weight (in terms of Co 3 O 4 )
The glass component is the above-mentioned alkaline earth metal oxide-alkali metal oxide glass.
However, it is desirable that the glass component does not contain Bi and B. This is because when Bi is contained, the rate of temperature change of the magnetic permeability μ ′ increases, and when B is contained, it reacts with the binder and gels.
 本発明の磁性体材料は、Qピーク周波数が200MHz以上の巻線型コイル部品のコア(巻線コア)に好適に用いることができるものである。 The magnetic material of the present invention can be suitably used for a core (winding core) of a wound coil component having a Q peak frequency of 200 MHz or more.
 また、本発明の磁性体材料は、添加成分として、さらに、Snを、NiCuZn系フェライト材料100重量部に対して、SnO2に換算して0.1~2.5重量部の割合で含有させることが可能である。Snを含有させることにより、巻線型コイル部品のコアとして用いた場合に、コアに加わる応力によるインダクタンス(L)の変化率を低下させることができる。 Further, the magnetic material of the present invention further contains Sn as an additive component at a ratio of 0.1 to 2.5 parts by weight in terms of SnO 2 with respect to 100 parts by weight of the NiCuZn-based ferrite material. It is possible. By including Sn, when used as a core of a wire-wound coil component, the rate of change of inductance (L) due to stress applied to the core can be reduced.
 また、本発明の磁性体材料においては、さらにMnを、NiCuZn系フェライト材料100重量部に対してMn34に換算して0.05~1.0重量部の割合で含有させることができる。
 Mnを含有させることにより、比抵抗が向上し、さらにQを高めることが可能になる。
In the magnetic material of the present invention, Mn can be further contained in a ratio of 0.05 to 1.0 part by weight in terms of Mn 3 O 4 with respect to 100 parts by weight of the NiCuZn-based ferrite material. .
By containing Mn, the specific resistance is improved and Q can be further increased.
 本発明の磁性体材料は、上述のような組成を有していることから、材料のQが向上する。ただし、Qは、透磁率μ’(実部)、μ”(虚部)の比(Q=μ’/μ”)である。
 本発明の磁性体材料においては、上記ガラス成分の添加量が4重量部に達するまでは比抵抗が減少するが、6重量部以上になると比抵抗が増加する。そして、この比抵抗の増加により、高周波における渦電流損失が減少してμ”が低下することにより、Qが増加する。
 なお、比抵抗が増加するのは、ガラス成分をNiCuZn系フェライト材料100重量部に対して、6~20重量部の割合で含有させることにより、ガラス結晶相が析出するためであると考えられる。
 また、CoをCo34に換算して0.3~0.7重量部の範囲で含有させることにより、スネークの限界線が少し高周波側にシフトし、高周波のQが増加することが確認されている。
Since the magnetic material of the present invention has the composition as described above, the Q of the material is improved. However, Q is a ratio of magnetic permeability μ ′ (real part) and μ ″ (imaginary part) (Q = μ ′ / μ ″).
In the magnetic material of the present invention, the specific resistance decreases until the amount of the glass component added reaches 4 parts by weight, but the specific resistance increases when the amount exceeds 6 parts by weight. As the specific resistance increases, eddy current loss at high frequencies decreases and μ ″ decreases, thereby increasing Q.
It is considered that the specific resistance increases because the glass crystal phase is precipitated when the glass component is contained in a proportion of 6 to 20 parts by weight with respect to 100 parts by weight of the NiCuZn ferrite material.
In addition, it is confirmed that by adding Co in the range of 0.3 to 0.7 parts by weight in terms of Co 3 O 4 , the snake limit line is slightly shifted to the high frequency side and the high frequency Q is increased. Has been.
 また、本発明の磁性体材料を巻線型コイル部品のコアに用いることにより、コイルのQピーク周波数が100~140MHzから200~300MHzに増加し、200MHzのコイルのQが増加することが確認されている。 In addition, it was confirmed that by using the magnetic material of the present invention for the core of the wire-wound coil component, the Q peak frequency of the coil increases from 100 to 140 MHz to 200 to 300 MHz, and the Q of the 200 MHz coil increases. Yes.
 また、本発明の磁性体材料は、上述のような組成を有していることから、透磁率μ’の温度変化率を-40~85℃で1000ppm/℃以下に安定させることができる。
 その結果、外気温の変化の影響を抑制することが可能になり、温度補償用コンデンサやサーミスタと組み合わせることで、携帯電話などの電気製品に対して好適に使用することができる。
Further, since the magnetic material of the present invention has the composition as described above, the temperature change rate of the magnetic permeability μ ′ can be stabilized at −40 to 85 ° C. to 1000 ppm / ° C. or less.
As a result, it becomes possible to suppress the influence of changes in the outside air temperature, and it can be suitably used for an electric product such as a mobile phone by combining with a temperature compensating capacitor or thermistor.
 これは、配合したガラスの熱膨張係数が13ppm/℃と、フェライト材の熱膨張係数10ppm/℃より大きいため、低温ではフェライト粒子に引張応力が加わって透磁率μ’が増加し、高温ではフェライト粒子に圧縮応力が加わって透磁率μ’が減少することによるものと考えられる。これにより、Co添加量の増加による透磁率μ’の温度変化率の増加を抑制することが可能になる。
 ただし、Biを、主成分であるNiCuZn系フェライト材料100重量部に対して、Bi23に換算して0.2重量部以上含有している場合、この作用が弱まり、透磁率μ’の温度変化率が大きくなる傾向があるため、好ましくない。
This is because the thermal expansion coefficient of the blended glass is 13 ppm / ° C. and the thermal expansion coefficient of the ferrite material is larger than 10 ppm / ° C., so that tensile stress is applied to the ferrite particles at low temperatures and the permeability μ ′ increases, and at high temperatures the ferrite μ ′ increases. This is considered to be due to a decrease in the permeability μ ′ due to the compressive stress applied to the particles. As a result, it is possible to suppress an increase in the temperature change rate of the magnetic permeability μ ′ due to an increase in the Co addition amount.
However, when Bi is contained in an amount of 0.2 parts by weight or more in terms of Bi 2 O 3 with respect to 100 parts by weight of the NiCuZn ferrite material as the main component, this action is weakened, and the permeability μ ′ This is not preferable because the temperature change rate tends to increase.
 なお、本発明の磁性体材料においては、主成分であるNiCuZnフェライトの組成は、Fe、Ni、Zn、およびCuを、それぞれFe23、NiO、ZnO、CuOに換算して
 Fe23 : 44~47mol%
 NiO  : 30~50mol%
 ZnO  : 0~3mol%
 CuO  : 残部
 とすることが好ましい。
 主成分であるNiCuZnフェライトの組成を、上記の範囲とすることにより、VHF-H帯でのQを高めることができる。
In the magnetic material of the present invention, the composition of NiCuZn ferrite which is the main component, Fe, Ni, Zn, and Cu, respectively Fe 2 O 3, NiO, ZnO , Fe 2 O 3 in terms of CuO : 44-47 mol%
NiO: 30 to 50 mol%
ZnO: 0 to 3 mol%
CuO: The balance is preferable.
By setting the composition of the NiCuZn ferrite as the main component within the above range, the Q in the VHF-H band can be increased.
 また、ガラス成分については、Si、Li、E(Eは、Ba,SrおよびCaからなる群より選ばれる少なくとも1種)を含むガラスを用い、それぞれSiO2、EO、Li2Oに換算して、SiO2を40~80重量%、EOを10~40重量%、Li2Oを10~30重量%の範囲とすることが好ましい。
 主成分であるNiCuZnフェライトに配合するガラス成分の組成をこのような範囲とすることで、NiCuZnフェライトの焼成工程において焼結性を高めることが可能になるとともに、高周波でのQを高めることができる。
 また、ガラス成分は、Al、TiなどをAl23,TiO2に換算して10重量%未満の範囲で含んでいてもよい。
As for the glass component, glass containing Si, Li, and E (E is at least one selected from the group consisting of Ba, Sr, and Ca) is used, and converted into SiO 2 , EO, and Li 2 O, respectively. SiO 2 is preferably 40 to 80% by weight, EO is preferably 10 to 40% by weight, and Li 2 O is preferably 10 to 30% by weight.
By setting the composition of the glass component to be blended in the NiCuZn ferrite as the main component in such a range, it becomes possible to enhance the sinterability in the firing process of the NiCuZn ferrite and to increase the Q at high frequency. .
The glass component may contain Al, Ti, etc. in a range of less than 10% by weight in terms of Al 2 O 3 , TiO 2 .
 まず、Fe23,NiO,CuO,およびZnOの酸化物原料粉末を準備した。そして、これらの酸化物原料粉末を、
 Fe23=46mol%、
 NiO =44mol%、
 CuO =8mol%、
 ZnO =2mol%
となるように秤量し、ビーズミルにて、湿式で混合・粉砕を行った後、スプレー乾燥機で乾燥・造粒した。それから、造粒体を大気中にて、600~900℃で仮焼することにより仮焼粉を得た。
First, oxide raw material powders of Fe 2 O 3 , NiO, CuO, and ZnO were prepared. And these oxide raw material powders,
Fe 2 O 3 = 46 mol%,
NiO = 44 mol%,
CuO = 8 mol%,
ZnO = 2 mol%
The mixture was weighed in a bead mill, wet-mixed and pulverized in a bead mill, and then dried and granulated in a spray dryer. Then, the granulated body was calcined at 600 to 900 ° C. in the air to obtain a calcined powder.
 また、ガラス成分として、BaOが20重量%、Li2Oが20重量%、SiO2が60重量%の組成のガラス粉末を準備した。
 また、Co原料として、Co34を準備した。
As a glass component, a glass powder having a composition of 20% by weight of BaO, 20% by weight of Li 2 O, and 60% by weight of SiO 2 was prepared.
Further, Co 3 O 4 was prepared as a Co raw material.
 それから、上述のようにして作製した仮焼粉に、表1に示すような配合比となるように、上記ガラス粉末およびCo34を添加し、さらにバインダーとして所定量のPVA(ポリビニルアルコール)を添加した。それから、アトライターで湿式混合・粉砕を行った後、スプレー乾燥機で乾燥・造粒して、造粒粉末を作製した。
 次に、得られた造粒粉末に、湿潤剤として所定量のステアリン酸マグネシウムを添加した後、プレス成型機で所定の形状に成型し、800~1000℃の温度で、大気中2~5時間焼成することにより、試料(磁性体材料)を得た。
Then, the glass powder and Co 3 O 4 are added to the calcined powder produced as described above so as to have a blending ratio as shown in Table 1, and a predetermined amount of PVA (polyvinyl alcohol) is further used as a binder. Was added. Then, after wet mixing and pulverization with an attritor, drying and granulation were performed with a spray dryer to produce a granulated powder.
Next, after adding a predetermined amount of magnesium stearate as a wetting agent to the obtained granulated powder, it is molded into a predetermined shape with a press molding machine, and at a temperature of 800 to 1000 ° C. for 2 to 5 hours in the atmosphere. A sample (magnetic material) was obtained by firing.
 なお、この実施例では、試料として、
 (a)焼成後のサイズが、外径:10mm、内径:6mm、厚み:2mmのリング形状の試料、
 (b)焼成後のサイズが、外径:10mm、厚み:1mmの円板形状の試料、および、
 (c)図1に示すような長さL=1.0mm、幅W=0.5mm、高さT=0.5mmの巻線型コイル部品用のコア(フェライトコア)
 の3種類の試料を作製した。
In this example, as a sample,
(a) a ring-shaped sample having an outer diameter of 10 mm, an inner diameter of 6 mm, and a thickness of 2 mm after firing;
(b) the size after firing is a disk-shaped sample having an outer diameter of 10 mm and a thickness of 1 mm; and
(c) A core for a coiled coil component having a length L = 1.0 mm, a width W = 0.5 mm, and a height T = 0.5 mm as shown in FIG. 1 (ferrite core)
Three types of samples were prepared.
 なお、酸化鉄(Fe23)原料中には、Mn不純物が通常0.1~1.0重量%程度含まれており、このMnが0.05重量%以下になるように精製した酸化鉄原料は高価である。そのため、本実施例では経済性が損なわれないように、Mnが0.05~0.5重量%含まれる酸化鉄(Fe23)原料を用いた。 The iron oxide (Fe 2 O 3 ) raw material usually contains about 0.1 to 1.0% by weight of Mn impurities, and the oxidized oxide was refined so that this Mn was 0.05% by weight or less. Iron raw materials are expensive. Therefore, in this example, an iron oxide (Fe 2 O 3 ) raw material containing 0.05 to 0.5% by weight of Mn was used so that economic efficiency was not impaired.
 [リング状の試料を用いた特性測定]
 作製したリング状の試料について、軟銅線を3ターン巻回し、アジレント・テクノロジー社製のインピーダンスアナライザ(型番E4991A)を用いて透磁率μ’(実部)、μ”(虚部)の測定を行った。また、各試料の透磁率μ’(実部)、μ”(虚部)の値からQの値(Q=μ’/μ”)を求めた。
[Characteristic measurement using a ring-shaped sample]
The produced ring-shaped sample was wound with an annealed copper wire for 3 turns and measured for permeability μ ′ (real part) and μ ″ (imaginary part) using an impedance analyzer (model number E4991A) manufactured by Agilent Technologies. Further, the value of Q (Q = μ ′ / μ ″) was determined from the values of the magnetic permeability μ ′ (real part) and μ ″ (imaginary part) of each sample.
 また、試料を恒温槽に設置し、恒温槽内の温度を変化させて、-40℃~85℃でのμ’を測定し、下記の式(1)から20℃基準のμ’の変化率(αμ)求めた。
αμ=(μ’t-μ’20)/μ’20/(t-20)×106(ppm/℃)……(1)
 ただし、μ’tはt℃におけるμ’の値であり、μ’20は20℃におけるμ’の値である。
Also, the sample is placed in a thermostat, the temperature in the thermostat is changed, μ ′ is measured at −40 ° C. to 85 ° C., and the rate of change of μ ′ based on 20 ° C. is calculated from the following equation (1). (Α μ ) was obtained.
α μ = (μ ′ t −μ ′ 20 ) / μ ′ 20 / (t−20) × 10 6 (ppm / ° C.) (1)
However, μ ′ t is the value of μ ′ at t ° C., and μ ′ 20 is the value of μ ′ at 20 ° C.
 [円板状の試料を用いた比抵抗logρv(Ω・cm)の測定]
 次に、円板状の試料に対向電極を形成し、これら電極間に直流電圧50Vを印加して絶縁抵抗(IR)を測定し、この測定値と試料寸法から比抵抗logρv(Ω・cm)を求めた。
[Measurement of specific resistance log ρv (Ω · cm) using a disk-shaped sample]
Next, a counter electrode is formed on a disk-shaped sample, a DC voltage of 50 V is applied between these electrodes, and an insulation resistance (IR) is measured. From this measured value and the sample size, a specific resistance log ρv (Ω · cm) Asked.
 [フェライトコアの特性測定]
 また、作製した巻線型コイル部品用のコア1(図1)について、鍔部2a,2bの底部にAgペーストを塗付して焼付け処理を行って下地層を形成した後、Ni電解めっきおよびSn電解めっき処理を行い、下地層の上にNiめっき膜、Snめっき膜を順次形成することにより、外部電極6a,6bを作製した。
[Characteristic measurement of ferrite core]
Further, the core 1 (FIG. 1) for the wound-type coil component thus produced was coated with Ag paste on the bottoms of the flanges 2a and 2b and baked to form a base layer, and then Ni electrolytic plating and Sn The external electrodes 6a and 6b were produced by performing an electrolytic plating process and sequentially forming a Ni plating film and a Sn plating film on the underlying layer.
 次に、コア1の巻芯部1aに、コイル用巻線(軟銅線)4を15ターン巻回した。そして、コイル用巻線4の両端を外部電極6a,6bにそれぞれ熱圧着によって接続し、図1に示すような巻線型コイル部品を作製した。 Next, a coil winding (an annealed copper wire) 4 was wound around the core 1a of the core 1 for 15 turns. Then, both ends of the coil winding 4 were connected to the external electrodes 6a and 6b by thermocompression bonding, respectively, so that a winding type coil component as shown in FIG. 1 was produced.
 得られた巻線型コイル部品について、前述のインピーダンスアナライザ(型番E4991A)を用いて、インピーダンスZを測定し、インピーダンスの虚数成分と実数成分の比からコイルのQの値(Q=インピーダンスの虚数成分/インピーダンスの実数成分)を求めた。
 そして、10MHz~500MHzの周波数領域でのQを求め、Qが最も高くなったときの周波数をQピーク周波数とした。
 また、フェライトコア(焼結体)を乳鉢で粉砕し、X線回折を行った。
With respect to the obtained wound-type coil component, the impedance Z was measured using the impedance analyzer (model number E4991A) described above, and the value of the coil Q (Q = imaginary component of impedance / Real component of impedance) was obtained.
Then, Q in the frequency range of 10 MHz to 500 MHz was obtained, and the frequency when Q was the highest was defined as the Q peak frequency.
Further, the ferrite core (sintered body) was pulverized with a mortar and subjected to X-ray diffraction.
 表1に、各試料の組成、200MHzでのμ’、Q値(=μ’/μ”)、およびμ’の温度変化率(αμ)、比抵抗logρv、巻線型コイル部品のQが最大となる周波数(コイルのQピーク周波数)を示す。
 なお、表1において試料番号に*を付した試料は、本発明の要件を備えていない比較用の試料である。
Table 1 shows the composition of each sample, the μ ′ at 200 MHz, the Q value (= μ ′ / μ ″), the temperature change rate of μ ′ (α μ ), the specific resistance log ρv, and the Q of the wound coil component. (The Q peak frequency of the coil).
In Table 1, a sample number marked with * is a comparative sample that does not have the requirements of the present invention.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、図2に試料番号1の試料(本発明の要件を満たさない試料)についてのX線回折を結果を示し、図3に試料番号5の試料((本発明の要件を満たす試料)のX線回折の結果を示す。 FIG. 2 shows the results of X-ray diffraction for the sample No. 1 (sample that does not satisfy the requirements of the present invention), and FIG. 3 shows the X-ray diffraction of the sample No. 5 (sample that satisfies the requirements of the present invention). The result of a line diffraction is shown.
 [特性の評価]
 (1)試料番号2~9の試料の、ガラス成分の含有量と、比抵抗およびQ(磁性体材料のQ)の関係を図4に示す。
[Characteristic evaluation]
(1) FIG. 4 shows the relationship between the glass component content, specific resistance, and Q (Q of the magnetic material) of samples Nos. 2 to 9.
 ガラス成分の含有量が主成分であるNiCuZn系フェライト100重量部に対して2重量部(試料番号2)から4重量部(試料番号3)に増加すると、従来の磁性体材料(特許文献1)の場合と同様に比抵抗が低下して、磁性体材料のQも低下することがわかった。
 しかし、ガラス量をさらに増やして、6~25重量部(試料番号4~9)とすると、比抵抗とQが増加することが確認された。この結果、コイルのQピーク周波数も増加することが分かった。
 本発明の要件を満たさない試料番号1の試料についてのX線回折の結果を示す図2、本発明の要件を満たす試料番号5の試料についてのX線回折結果を示す図3より、いずれもNiFe24のスピネル相が主相であるが、試料番号1(図2)ではスピネル相以外にCuO相が認められたのに対し、試料番号5(図3)では、NiFe24相と、ガラス成分に起因するLi2SiO4結晶相が認められ、CuO相は認められなかった。この結果から、ガラス成分の含有量を6重量部以上とし、ガラス成分に由来するLi2SiO4結晶相を析出させることで、比抵抗logρvが増加し、磁気特性のQ(磁性体材料のQ)も増加したものと考えられる。
When the content of the glass component is increased from 2 parts by weight (sample number 2) to 4 parts by weight (sample number 3) with respect to 100 parts by weight of the NiCuZn-based ferrite as the main component, a conventional magnetic material (Patent Document 1) It was found that the specific resistance decreased as in the case of, and the Q of the magnetic material also decreased.
However, when the amount of glass was further increased to 6 to 25 parts by weight (sample numbers 4 to 9), it was confirmed that the specific resistance and Q increased. As a result, it was found that the Q peak frequency of the coil also increased.
2 shows the result of X-ray diffraction for the sample of sample number 1 not satisfying the requirements of the present invention, and FIG. 3 shows the result of X-ray diffraction for the sample of sample number 5 satisfying the requirements of the present invention. The spinel phase of 2 O 4 is the main phase. In sample number 1 (FIG. 2), a CuO phase was recognized in addition to the spinel phase, whereas in sample number 5 (FIG. 3), the NiFe 2 O 4 phase and A Li 2 SiO 4 crystal phase attributable to the glass component was observed, and a CuO phase was not observed. From this result, by setting the content of the glass component to 6 parts by weight or more and precipitating the Li 2 SiO 4 crystal phase derived from the glass component, the specific resistance log ρv increases, and the magnetic property Q (Q of the magnetic material) ) Is also considered to have increased.
 (2)また、試料番号1と試料番号5の試料(磁性体材料)のμ’およびμ”の周波数特性を図5に示す。 (2) In addition, FIG. 5 shows the frequency characteristics of μ ′ and μ ″ of the samples (magnetic material) of sample numbers 1 and 5 (magnetic material).
 試料番号1の試料は本発明の要件を満たさない磁性体材料であり、周波数100MHz以上でμ”が急激に増加した。
 一方、ガラス成分の含有量を8重量部に増加した、本発明の要件を満たす試料番号5の試料(磁性体材料)の場合、μ’は減少したが、μ”の増加を抑制することができた。その結果、例えば、200MHzでのQを120と高くすることができた。
Sample No. 1 is a magnetic material that does not satisfy the requirements of the present invention, and μ ″ increased rapidly at a frequency of 100 MHz or higher.
On the other hand, in the case of sample No. 5 (magnetic material) satisfying the requirements of the present invention in which the content of the glass component was increased to 8 parts by weight, μ ′ decreased, but the increase in μ ″ was suppressed. As a result, for example, the Q at 200 MHz could be increased to 120.
 (3)また、試料番号1と試料番号5の磁性体材料を用いて作製した巻線型コイル部品について求めたQ(コイルのQ)の測定結果を図6に示す。 (3) In addition, FIG. 6 shows the measurement results of Q (coil Q) obtained for the wound-type coil parts produced using the magnetic material of sample number 1 and sample number 5.
 図6から、試料番号1の磁性体材料を用いた巻線型コイル部品の場合、100MHz付近のQは高いが、100MHzを超えると、コイルのQが急激に低下してしまうことが確認された。
 これに対し、試料番号5の磁性体材料を用いて作製した巻線型コイル部品の場合、VHF-H帯でのコイルのQを高めることができた。
From FIG. 6, in the case of the wire-wound coil component using the magnetic material of sample number 1, it was confirmed that the Q in the vicinity of 100 MHz is high, but when the frequency exceeds 100 MHz, the Q of the coil rapidly decreases.
On the other hand, in the case of the wire-wound coil component manufactured using the magnetic material of sample number 5, the Q of the coil in the VHF-H band could be increased.
 なお、表1に示すように、試料番号1の試料はCo34の含有量が0.2重量部、ガラス成分の含有量が2.0重量部と、本発明の範囲外の組成である。Co34の含有量、およびガラス成分の含有量が本発明の範囲を下回っているので、高周波、例えば200MHzでのQが4と低く、その結果、コイルのQがピークとなる周波数(コイルのQピーク周波数)も110MHzと低く、VHF-H帯で使用するには十分ではないことが確認された。 As shown in Table 1, the sample No. 1 has a Co 3 O 4 content of 0.2 parts by weight and a glass component content of 2.0 parts by weight, which is outside the scope of the present invention. is there. Since the content of Co 3 O 4 and the content of the glass component are below the range of the present invention, the high frequency, for example, the Q at 200 MHz is as low as 4, resulting in a frequency at which the Q of the coil peaks (coil (Q peak frequency) is as low as 110 MHz, which is not sufficient for use in the VHF-H band.
 また、試料番号2の試料は、試料番号1の試料に比べて、Co34の含有量を0.5 重量部に増加させているが、本発明の要件(ガラス成分の含有量:6.0~20.0重量部)を満たさない試料である。この試料番号2の試料の場合、Co34の含有量の増加により、200MHzでのQは増加するが、ガラス添加量が2.0重量部と少ないため、μ’の温度変化率(αμ)が大きくなり1000ppm/℃を超えることが確認された。 In addition, the sample No. 2 has the Co 3 O 4 content increased to 0.5 parts by weight as compared with the sample No. 1 sample, but the requirement of the present invention (glass component content: 6 .0 to 20.0 parts by weight). In the case of the sample of Sample No. 2, the Q at 200 MHz increases with the increase in the content of Co 3 O 4 , but the glass addition amount is as small as 2.0 parts by weight, so that the temperature change rate of μ ′ (α It was confirmed that μ ) increased and exceeded 1000 ppm / ° C.
 また、試料番号3の試料は、ガラス成分の含有量が4.0重量部と試料番号1および2のガラス成分の含有量2重量部より多いものの、本発明の要件(ガラス成分の含有量:6.0~20.0重量部)を満たさない試料であり、比抵抗logρvが6Ω・cmと低く、その結果、磁性体材料のQも20と低いことが確認された。 Further, the sample of sample number 3 has a glass component content of 4.0 parts by weight and a glass component content of sample numbers 1 and 2 of more than 2 parts by weight, but the requirements of the present invention (glass component content: 6.0 to 20.0 parts by weight), the specific resistance logρv was as low as 6 Ω · cm, and as a result, the Q of the magnetic material was confirmed to be as low as 20.
 一方、試料番号3の試料の場合、透磁率μ’の温度変化率(αμ)は、試料番号2の試料に比べて改善されているが、これはガラス成分の含有量が増加したことによる効果である。 On the other hand, in the case of the sample of sample number 3, the temperature change rate (α μ ) of the magnetic permeability μ ′ is improved as compared with the sample of sample number 2, but this is because the content of the glass component is increased. It is an effect.
 また、試料番号9の試料は、ガラス添加量が25.0重量部と本発明の範囲を超えた試料で、透磁率μ’が2.9と低く、好ましくないことが確認された。 The sample No. 9 was a sample in which the glass addition amount was 25.0 parts by weight and exceeded the range of the present invention, and the magnetic permeability μ ′ was as low as 2.9.
 また、試料番号10は、Co34の含有量(添加量)が0.2重量部と本発明の要件(0.3~0.7重量部)を満たさない試料であり、200MHzでの磁性体材料のQが20と低く、その結果、コイルのQピーク周波数も120MHzと低く、VHF-H帯で使用するには十分な特性が得られないことが確認された。 Sample No. 10 is a sample in which the content (addition amount) of Co 3 O 4 is 0.2 parts by weight and does not satisfy the requirements of the present invention (0.3 to 0.7 parts by weight). The Q of the magnetic material was as low as 20, and as a result, the Q peak frequency of the coil was as low as 120 MHz, and it was confirmed that sufficient characteristics could not be obtained for use in the VHF-H band.
 また、試料番号13は、Co34の含有量(添加量)が0.8重量部と本発明の要件(0.3~0.7重量部)を満たさない試料であり、透磁率μ’が低く、また、透磁率μ’の温度変化率(αμ)も1000ppm/℃を超えており、好ましくないことが確認された。 Sample No. 13 is a sample in which the content (addition amount) of Co 3 O 4 does not satisfy the requirements of the present invention (0.3 to 0.7 parts by weight) of 0.8 parts by weight, and the permeability μ 'Is low, and the temperature change rate (α μ ) of the magnetic permeability μ is more than 1000 ppm / ° C., which is not preferable.
 これに対し、ガラス成分の含有量が6.0~20.0重量部、Co含有量がCo34に換算して0.3~0.7重量部の範囲とした、試料番号4,5,6,7,8,11および12の試料(本発明の要件を満たす試料)の場合、200MHzでの透磁率μ’が3.8以上、Qが60以上、透磁率μ’の温度変化率(αμ)が800ppm/℃以下、比抵抗logρvが8Ω・cm以上、コイルのQピーク周波数が200MHz以上と、望ましい特性を備えた磁性体材料(フェライト材料)が得られることが確認された。 In contrast, content 6.0 to 20.0 wt parts of the glass component, Co content was in the range of 0.3-0.7 parts by weight in terms of Co 3 O 4, Sample No. 4, In the case of the samples 5, 6, 7, 8, 11 and 12 (samples satisfying the requirements of the present invention), the magnetic permeability μ ′ at 200 MHz is 3.8 or more, Q is 60 or more, and the temperature change of the permeability μ ′. It was confirmed that a magnetic material (ferrite material) having desirable characteristics such as a rate (α μ ) of 800 ppm / ° C. or lower, a specific resistance log ρv of 8 Ω · cm or higher, and a coil Q peak frequency of 200 MHz or higher is obtained. .
 Fe23,NiO,CuO,ZnO,およびSnO2の酸化物原料粉末を準備し、
 Fe23=46mol%、
 NiO =44mol%、
 CuO =8mol%、
 ZnO =2mol%、
となるように秤量した。
Preparing oxide raw material powders of Fe 2 O 3 , NiO, CuO, ZnO, and SnO 2 ;
Fe 2 O 3 = 46 mol%,
NiO = 44 mol%,
CuO = 8 mol%,
ZnO = 2 mol%,
Weighed so that
 これに、さらに、SnO2が表2に示すような割合、すなわち、上記のFe23=46mol%、NiO=44mol%、CuO=8mol%、ZnO=2mol%を含むNiCuZn系フェライト原料(主成分原料)100重量部に対して、SnO2が0.0重量部、0.1重量部、0.5重量部、2.5重量部となるような割合で秤量し、ビーズミルにて、湿式で混合・粉砕を行った後、スプレー乾燥機で乾燥・造粒した。
 それから、造粒体を大気中にて、600~900℃で仮焼することにより仮焼粉を得た。
Furthermore, a NiCuZn-based ferrite raw material containing a proportion of SnO 2 as shown in Table 2, that is, the above-mentioned Fe 2 O 3 = 46 mol%, NiO = 44 mol%, CuO = 8 mol%, ZnO = 2 mol% (mainly Component raw material) Weighed at a ratio such that SnO 2 is 0.0 parts by weight, 0.1 parts by weight, 0.5 parts by weight, and 2.5 parts by weight with respect to 100 parts by weight, and wet with a bead mill. After mixing and pulverizing, the mixture was dried and granulated with a spray dryer.
Then, the granulated body was calcined at 600 to 900 ° C. in the air to obtain a calcined powder.
 また、上記実施例1の場合と同様に、BaOが20重量%、Li2Oが20重量%、SiO2が60重量%の組成のガラス粉末を準備した。
 また、Co原料として、実施例1と同じく、Co34粉末を準備した。
Similarly to the case of Example 1, a glass powder having a composition of 20 wt% BaO, 20 wt% Li 2 O, and 60 wt% SiO 2 was prepared.
In addition, as in the case of Example 1, Co 3 O 4 powder was prepared as a Co raw material.
 それから、上述のようにして作製した仮焼粉に、表2に示すような配合比となるように、ガラス粉末およびCo34を添加し、さらにバインダーとして所定量のPVA(ポリビニルアルコール)を添加して、アトライターで湿式混合粉砕を行った後、スプレー乾燥機で乾燥・造粒し、造粒粉末を作製した。 Then, glass powder and Co 3 O 4 are added to the calcined powder produced as described above so as to have a compounding ratio as shown in Table 2, and a predetermined amount of PVA (polyvinyl alcohol) is added as a binder. The mixture was added, wet mixed and pulverized with an attritor, and then dried and granulated with a spray dryer to prepare a granulated powder.
 次に、得られた造粒粉末に、実施例1の場合と同様に、湿潤剤として所定量のステアリン酸マグネシウムを添加した後、プレス成型機で所定の形状に成型し、800~1000℃の温度で、大気中2~5時間焼成することにより、試料(磁性体材料)を得た。 Next, after adding a predetermined amount of magnesium stearate as a wetting agent to the obtained granulated powder as in Example 1, it was molded into a predetermined shape with a press molding machine, and was heated to 800 to 1000 ° C. A sample (magnetic material) was obtained by baking at ambient temperature for 2 to 5 hours.
 なお、試料としては、実施例1の場合と同じサイズの、
 (a)リング形状の試料、
 (b)円板形状の試料、および、
 (c)巻線型コイル部品用のコア(フェライトコア)
 の3種類の試料を作製した。
 また、巻線型コイル部品用のコアを用いて、実施例1と同じ構成の巻線型コイル部品を作製した。
In addition, as a sample, the same size as the case of Example 1,
(a) a ring-shaped sample,
(b) a disk-shaped sample, and
(c) Core for wire wound coil parts (ferrite core)
Three types of samples were prepared.
Moreover, the winding type coil component of the same structure as Example 1 was produced using the core for winding type coil components.
 そして、作製した各試料を用いて、透磁率μ’(実部)、μ”(虚部)、20℃基準のμ’の変化率(αμ)、比抵抗logρv、巻線型コイル部品のQピーク周波数を測定した。特性の測定方法は、実施例1の場合と同様である。 Then, using each of the prepared samples, the magnetic permeability μ ′ (real part), μ ″ (imaginary part), the rate of change of μ ′ based on 20 ° C. (α μ ), the specific resistance log ρv, the Q of the coiled coil component The peak frequency was measured in the same manner as in Example 1.
 また、巻線型コイル部品については、基板にはんだ付けにより実装し、高さ2mの距離から落下させ、インダクタンスLの変化率を測定した。なお、インダクタンスLの測定は、インピーダンスアナライザ(アジレント・テクノロジー社製E4991A)により行った。
 特性の測定結果を表2に併せて示す。
In addition, the wire-wound coil component was mounted on a substrate by soldering, dropped from a distance of 2 m in height, and the rate of change in inductance L was measured. The inductance L was measured with an impedance analyzer (E4991A manufactured by Agilent Technologies).
The measurement results of characteristics are also shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 SnO2を添加していない、表2の試料番号21の試料の場合、高さ2mの距離から落下させた場合の、落下の前後のインダクタンスLの変化率は2.0%であった。 In the case of sample No. 21 in Table 2 to which SnO 2 was not added, the rate of change of inductance L before and after dropping was 2.0% when dropped from a distance of 2 m in height.
 これに対し、SnO2をNiCuZn系フェライト材料100重量部に対して、0.1重量部(試料番号22)、0.5重量部(試料番号23)、および2.5重量部(試料番号24)添加した試料の場合、高さ2mの距離から落下させた場合の、落下の前後のインダクタンスLの変化率は、0.5%(試料番号22)、0.4%(試料番号23)、および0.3%(試料番号24)に低下することが確認された。 On the other hand, SnO 2 is 0.1 part by weight (sample number 22), 0.5 part by weight (sample number 23), and 2.5 parts by weight (sample number 24) with respect to 100 parts by weight of the NiCuZn-based ferrite material. ) In the case of the added sample, the rate of change of the inductance L before and after dropping when dropped from a distance of 2 m is 0.5% (sample number 22), 0.4% (sample number 23), And 0.3% (Sample No. 24).
 したがって、使用の態様から、落下衝撃を避けることが事実上困難である携帯電話器などの電子機器に搭載する巻線型コイル部品のコアに用いられる磁性体材料としては、例えば、試料番号22~24の試料のように、SnをSnO2に換算して0.1~2.5重量部の範囲で添加した磁性体材料を用いることにより、落下試験によるインダクタンスLの変化率が0.5%以下の巻線型コイル部品を提供することが可能になり、好ましい。 Therefore, as the magnetic material used for the core of the wound coil component to be mounted on an electronic device such as a cellular phone which is practically difficult to avoid from the aspect of use, for example, sample numbers 22 to 24 are used. By using a magnetic material in which Sn is converted to SnO 2 and added in the range of 0.1 to 2.5 parts by weight as in the sample of 1, the change rate of the inductance L by the drop test is 0.5% or less It is possible and preferable to provide a wire-wound coil component.
 なお、本発明は、上記実施例に限定されるものではなく、磁性体材料の製造に用いられる原料粉末の種類、製造工程における仮焼工程やその後の焼成工程における具体的な条件、本発明の磁性体材料を巻線型コイル部品のコアとして用いる場合における巻線型コイル部品の具体的な構造などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。 In addition, this invention is not limited to the said Example, The kind of raw material powder used for manufacture of a magnetic body material, the specific conditions in the calcination process in a manufacturing process, and a subsequent baking process, Various applications and modifications can be made within the scope of the invention with respect to the specific structure of the wire-wound coil component when the magnetic material is used as the core of the wire-wound coil component.
 1      コア
 1a     コアの巻芯部
 2a、2b  鍔部
 4      コイル用巻線(軟銅線)
 6a,6b  外部電極
DESCRIPTION OF SYMBOLS 1 Core 1a Core winding part 2a, 2b ridge part 4 Coil winding (soft copper wire)
6a, 6b External electrode

Claims (3)

  1.  Ni,Cu,ZnおよびFeを含むNiCuZn系フェライト材料を主成分とし、
     Si、Li、E(Eは、Ba,SrおよびCaからなる群より選ばれる少なくとも1種)を含むガラスを、前記NiCuZn系フェライト材料100重量部に対して、6.0~20.0重量部の割合で含有するとともに、
     Coを、前記NiCuZn系フェライト材料100重量部に対して、Co34に換算して0.3~0.7重量部の割合で含有すること
     を特徴とする磁性体材料。
    NiCuZn based ferrite material containing Ni, Cu, Zn and Fe as a main component,
    The glass containing Si, Li, E (E is at least one selected from the group consisting of Ba, Sr, and Ca) is 6.0 to 20.0 parts by weight with respect to 100 parts by weight of the NiCuZn-based ferrite material. In addition,
    A magnetic material comprising Co in a proportion of 0.3 to 0.7 parts by weight in terms of Co 3 O 4 with respect to 100 parts by weight of the NiCuZn-based ferrite material.
  2.  さらに、Snを、前記NiCuZn系フェライト材料100重量部に対して、SnO2に換算して0.1~2.5重量部の割合で含有することを特徴とする請求項1記載の磁性体材料。 2. The magnetic material according to claim 1, further comprising Sn in a proportion of 0.1 to 2.5 parts by weight in terms of SnO 2 with respect to 100 parts by weight of the NiCuZn ferrite material. .
  3.  請求項1または2記載の磁性体材料を用いた形成したコアと、
     前記コアに巻回されたコイル用巻線と
     を具備することを特徴とする巻線型コイル部品。
    A core formed using the magnetic material according to claim 1;
    A coiled coil component comprising: a coil winding wound around the core.
PCT/JP2013/051473 2012-01-31 2013-01-24 Magnetic body material and wound coil component provided with core formed using same WO2013115064A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013556355A JP5871017B2 (en) 2012-01-31 2013-01-24 Wire-wound coil component having a magnetic material and a core formed using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012017854 2012-01-31
JP2012-017854 2012-07-27

Publications (1)

Publication Number Publication Date
WO2013115064A1 true WO2013115064A1 (en) 2013-08-08

Family

ID=48905105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051473 WO2013115064A1 (en) 2012-01-31 2013-01-24 Magnetic body material and wound coil component provided with core formed using same

Country Status (2)

Country Link
JP (1) JP5871017B2 (en)
WO (1) WO2013115064A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021104914A (en) * 2019-12-26 2021-07-26 太陽誘電株式会社 Method for producing magnetic material and coil component containing magnetic material
JP2021104913A (en) * 2019-12-26 2021-07-26 太陽誘電株式会社 Method for producing magnetic material and coil component containing magnetic material
JP2022061823A (en) * 2020-10-07 2022-04-19 株式会社村田製作所 Ferrite sintered body and wire-wound coil component
US11848151B2 (en) 2019-12-26 2023-12-19 Taiyo Yuden Co., Ltd. Method for manufacturing magnetic body and coil component containing magnetic body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164417A (en) * 1997-12-26 2000-06-16 Murata Mfg Co Ltd Magnetic material porcelain composition and inductor part using the same
JP2007273725A (en) * 2006-03-31 2007-10-18 Murata Mfg Co Ltd Magnetic substance, method of manufacturing magnetic substance, winding coil, and method of manufacturing winding coil
JP2007269503A (en) * 2006-03-30 2007-10-18 Tdk Corp Ni-Cu-Zn BASED FERRITE MATERIAL AND METHOD OF MANUFACTURING THE SAME
JP2011213578A (en) * 2010-03-16 2011-10-27 Tdk Corp Ferrite composition and electronic component

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216578A (en) * 2010-03-31 2011-10-27 Advanced Power Device Research Association Nitride semiconductor and nitride semiconductor element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164417A (en) * 1997-12-26 2000-06-16 Murata Mfg Co Ltd Magnetic material porcelain composition and inductor part using the same
JP2007269503A (en) * 2006-03-30 2007-10-18 Tdk Corp Ni-Cu-Zn BASED FERRITE MATERIAL AND METHOD OF MANUFACTURING THE SAME
JP2007273725A (en) * 2006-03-31 2007-10-18 Murata Mfg Co Ltd Magnetic substance, method of manufacturing magnetic substance, winding coil, and method of manufacturing winding coil
JP2011213578A (en) * 2010-03-16 2011-10-27 Tdk Corp Ferrite composition and electronic component

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021104914A (en) * 2019-12-26 2021-07-26 太陽誘電株式会社 Method for producing magnetic material and coil component containing magnetic material
JP2021104913A (en) * 2019-12-26 2021-07-26 太陽誘電株式会社 Method for producing magnetic material and coil component containing magnetic material
US11848151B2 (en) 2019-12-26 2023-12-19 Taiyo Yuden Co., Ltd. Method for manufacturing magnetic body and coil component containing magnetic body
JP7426819B2 (en) 2019-12-26 2024-02-02 太陽誘電株式会社 Manufacturing method of magnetic material and coil parts including magnetic material
JP7426818B2 (en) 2019-12-26 2024-02-02 太陽誘電株式会社 Manufacturing method of magnetic material and coil parts including magnetic material
JP2022061823A (en) * 2020-10-07 2022-04-19 株式会社村田製作所 Ferrite sintered body and wire-wound coil component
JP7331817B2 (en) 2020-10-07 2023-08-23 株式会社村田製作所 Ferrite sintered body and wire-wound coil parts

Also Published As

Publication number Publication date
JPWO2013115064A1 (en) 2015-05-11
JP5871017B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP6024843B1 (en) Ferrite composition and electronic component
CN102219491B (en) Ferrite composition and electronic parts
JP6740817B2 (en) Ferrite composition, ferrite sintered body, electronic component and chip coil
US10839995B2 (en) Ferrite composition and multilayer electronic component
JP4873064B2 (en) Ferrite composition, ferrite core and electronic component
JP5423962B2 (en) Ferrite composition, ferrite core and electronic component
JP5699542B2 (en) Ferrite composition, ferrite core and electronic component
JP6032379B2 (en) Ferrite composition and electronic component
JP5871017B2 (en) Wire-wound coil component having a magnetic material and a core formed using the same
KR101886489B1 (en) Ferrite composition and electronic component
JP5699540B2 (en) Ferrite composition, ferrite core and electronic component
JP6142950B1 (en) Ferrite composition and electronic component
US9434622B2 (en) Sintered ferrite material, wire wound component, and producing method of sintered ferrite material
JP5510296B2 (en) Ferrite composition, ferrite core and electronic component
JP5510273B2 (en) Ferrite composition, ferrite core and electronic component
JP5882811B2 (en) Ferrite sintered body and pulse transformer core comprising the same
JP6079951B2 (en) Ferrite-based magnetic body, method for producing the same, and electronic component using the ferrite-based magnetic body
JP4799808B2 (en) Ferrite composition, magnetic core and electronic component
JP5831255B2 (en) Ferrite composition, ferrite core and electronic component
JP2008184364A (en) Magnetic oxide material
JP5055688B2 (en) Ferrite material and inductor element
JP5812069B2 (en) Ferrite composition, ferrite core and electronic component
JP6442251B2 (en) Magnetic material and magnetic porcelain composition
JP2011100802A (en) Magnetic material and coil component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743637

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556355

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13743637

Country of ref document: EP

Kind code of ref document: A1