WO2013115035A1 - Power source device and vehicle and power storage device provided with this power source device - Google Patents

Power source device and vehicle and power storage device provided with this power source device Download PDF

Info

Publication number
WO2013115035A1
WO2013115035A1 PCT/JP2013/051311 JP2013051311W WO2013115035A1 WO 2013115035 A1 WO2013115035 A1 WO 2013115035A1 JP 2013051311 W JP2013051311 W JP 2013051311W WO 2013115035 A1 WO2013115035 A1 WO 2013115035A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
power supply
power
switch
supply device
Prior art date
Application number
PCT/JP2013/051311
Other languages
French (fr)
Japanese (ja)
Inventor
正幸 吉長
公彦 古川
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013115035A1 publication Critical patent/WO2013115035A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to, for example, a power supply device including a battery made of a nonaqueous electrolyte battery such as a lithium ion battery that is mounted on a vehicle or the like and supplies operating power to a load, a vehicle including the power supply device, and a power storage device.
  • a power supply device including a battery made of a nonaqueous electrolyte battery such as a lithium ion battery that is mounted on a vehicle or the like and supplies operating power to a load, a vehicle including the power supply device, and a power storage device.
  • a conventional power supply device that supplies power to a vehicle-side load includes a lead battery having a voltage of 12V.
  • Lead batteries are heavy and have large drawbacks with respect to their chargeable / dischargeable capacity. This drawback can be eliminated by using a battery made of a non-aqueous electrolyte battery such as a lithium ion battery or a lithium polymer battery (see Patent Documents 1 and 2). This is because the non-aqueous electrolyte battery can increase the charge / discharge capacity with respect to the weight and volume as compared with the lead battery.
  • the lead battery mounted on the conventional vehicle controls the output voltage of the generator to prevent overcharge and overdischarge of the battery. That is, the output voltage of the generator is controlled so that the voltage of the lead battery falls within a certain range to prevent overcharge and overdischarge of the lead battery.
  • the non-aqueous electrolyte battery maintains the output voltage of the generator at a constant voltage in the same way as a lead battery. Thus, overcharge and overdischarge can be prevented.
  • a battery composed of a non-aqueous electrolyte battery may be overdischarged due to a longer period of non-charging. Since nonaqueous electrolyte batteries have less self-discharge than lead batteries, overdischarge due to self-discharge can be reduced. However, since the vehicle consumes a small amount of power even when the ignition switch is turned off and the vehicle is not running, the nonaqueous electrolyte battery may be discharged and overdischarged if the vehicle is not used for a long period of time.
  • the vehicle ignition switch when the vehicle ignition switch is turned off, that is, when the vehicle is not running, when a battery made of a non-aqueous electrolyte battery is connected to a battery charger or a solar cell, the non-aqueous electrolyte solution is charged.
  • a battery consisting of batteries may be overcharged.
  • a switch is provided on the output side of a battery composed of a non-aqueous electrolyte battery and this switch is turned off, no power can be supplied to the vehicle-side load on the vehicle side.
  • the vehicle includes a vehicle-side load that consumes a small amount of power.
  • a circuit or a clock that detects a signal from a wireless or infrared remote control key to unlock or lock the door needs to be kept in an operating state even when the ignition switch is off.
  • a vehicle computer mounted on a vehicle consumes a small amount of power in order to perform various processes while the vehicle is stopped.
  • An important object of the present invention is to normally supply power to a necessary load even when the main switch is turned off while preventing overcharge and overdischarge of a battery made of a nonaqueous electrolyte battery or the like. It is an object of the present invention to provide a power supply device that can be maintained in a state where the power supply is operated, a vehicle including the power supply device, and a power storage device.
  • the power supply device of the present invention supplies power to a power supply terminal of a load to which power is supplied when the main switch is in an on state, and a constant current supply terminal to which power is supplied in an on state and an off state of the main switch, And the battery which consists of a battery charged with a charging mechanism is provided.
  • the power supply device is connected to the output side of the battery with a current limiting circuit that limits the discharge current and cuts off the charging current, and a control switch that controls the charging and discharging of the battery, and the battery passes through the current limiting circuit.
  • the power supply device described above is characterized by being able to maintain a normal operating state by always supplying power to a necessary load even when the main switch of the load is turned off while preventing overcharge and overdischarge of the battery. There is. This is because the above power supply device connects, via the current limiting circuit, a current limiting circuit that limits the discharging current and cuts off the charging current and a control switch that controls the charging and discharging of the battery to the output side of the battery. This is because power is always supplied to the energization terminal and power is supplied to the power supply terminal of the load via the control switch.
  • the power supply device includes a second output terminal connected to the output side of the current limiting circuit, and a first output terminal connected to the output side of the control switch. Electric power may be supplied to the constant energization terminal of the load, and electric power may be supplied from the first output terminal to the power supply terminal of the load. Since the power supply apparatus described above is provided with the second output terminal as a dedicated terminal connected to the constantly energized terminal and supplies power from this terminal to the always energized terminal, power can be stably supplied from the battery to the always energized terminal. There are features.
  • the power supply device includes an output terminal formed by connecting the output side of the current limiting circuit and the output side of the control switch, and supplies power from the output terminal to the power supply terminal of the load and the normally energized terminal. Also good.
  • the power supply device described above is characterized in that it can prevent overcharge and overdischarge of the battery while simplifying the circuit configuration, and can always supply power from the battery to the always-on terminal.
  • the power supply device includes a control circuit that detects the voltage, remaining capacity, or temperature of the battery and controls the control switch to be turned on / off, and the control circuit is configured so that the voltage, remaining capacity, or temperature of the battery is predetermined.
  • the control switch When the battery is within the range, the control switch is turned on to allow charging / discharging of the battery, and when the battery voltage, remaining capacity, or temperature is outside the predetermined range, the control switch is turned off to overcharge and overcharge the battery. Discharge may be prevented.
  • the control circuit detects the voltage, remaining capacity, or temperature of the battery, and the control switch is turned off when the detected voltage, remaining capacity, or temperature is outside the predetermined range. It is possible to charge and discharge safely while securely protecting the battery with the circuit.
  • the current limiting circuit may include an overdischarge prevention switch that prevents overdischarge of the battery.
  • the battery is prevented from being overdischarged by the current limiting circuit, so that the battery can be more reliably prevented from being overdischarged while the main switch is turned off.
  • the current limiting circuit may be either a constant current circuit that limits current or a series circuit of a resistor and a diode.
  • a power supply device that uses a current limiting circuit as a constant current circuit can stably supply power to a constant energization terminal of a load, and a power supply device that uses a current limiting circuit as a resistor can have a simple circuit configuration.
  • the power supply device may include an activation circuit that is supplied with power from the battery via a current limiting circuit, and activate the control circuit with an activation signal from the activation circuit. Even in the state where the main switch is turned off, the power supply device described above can reliably prevent overdischarge of the battery by starting the control circuit with the start circuit.
  • the battery may be a lithium ion battery or a lithium polymer battery.
  • the power supply device may connect a lead battery in parallel with the battery.
  • the above power supply device can supply electric power from both batteries to the load while preventing overcharge and overdischarge of both the battery and the lead battery.
  • the power supply device may connect a lead battery to the output side of the control switch.
  • the power supply device described above is characterized in that it can prevent overcharging and overdischarging of the battery and can supply power from the lead battery to the energization terminal at all times when the control switch is turned off.
  • the vehicle of the present invention uses any one of the above-described power supply devices as a power source for supplying power to a load equipped on the vehicle.
  • the power storage device of the present invention includes any one of the power supply devices described above.
  • the current limiting circuit can be a circuit that can charge the battery with electric power input from the outside without limiting the charging / discharging current and interrupting the charging current.
  • This power supply device can charge a battery with electric power input from the outside when the control switch is in an OFF state.
  • the power supply device of the present invention is not limited to a power supply device mounted on a vehicle, and can also be used for a stationary power storage device.
  • the power supply apparatus shown in FIGS. 1 and 2 includes a battery 1 including a rechargeable battery 2 as a battery 1 that supplies power to a load 20 (hereinafter referred to as a vehicle-side load) installed in the vehicle 200.
  • the vehicle-side load 20 includes a power supply terminal 22 that supplies power from the battery 1 only when an ignition switch (hereinafter referred to as an ignition switch) that is a main switch 21 of the vehicle 200 is on, and an ignition switch that is on and off.
  • a constant current supply terminal 23 for supplying power from the battery 1.
  • the vehicle 200 shown in the figure also includes a starter motor 29 connected via a starter relay 28 as a load. Since the hybrid car starts the engine with a high-voltage battery for running the vehicle, it does not include a starter motor and starter relay.
  • the vehicle-side load 20 includes a main relay 24 on the input side of the power supply terminal 22.
  • the main relay 24 is controlled to be turned on / off by an ignition switch that is turned on when the vehicle 200 is running.
  • the power supply terminal 22 is supplied with power from the battery 1 via the main relay 24.
  • the constantly energized terminal 23 is supplied with power from the battery 1 via the fuse 26 without passing through the main relay 24. That is, the always-on terminal 23 is always supplied with power from the battery 1 regardless of whether the main relay 24 is on or off.
  • the vehicle 200 includes a charging mechanism 25 for charging the battery 1.
  • the vehicle 200 in FIGS. 1 and 2 is connected to the output side of the control switch 4 with the charging mechanism 25 as a generator 25A.
  • the generator 25A is driven by an engine (not shown) and charges the battery 1 with generated power, or charges the battery 1 with regenerative power generation of the vehicle. In regenerative power generation, the generator 25A is driven when the vehicle is decelerated, and the generator 25A is driven by the energy of movement of the vehicle to generate power.
  • the charging mechanism 25 is a generator 25A, but the charging mechanism is not necessarily a generator. For example, in a hybrid car or an electric vehicle, the voltage of a traveling battery for running the vehicle is reduced. Thus, a DC / DC converter for charging the battery can be obtained.
  • the charging mechanism controls the output voltage to charge the battery so as not to overcharge.
  • the battery 1 has a non-aqueous electrolyte battery such as a lithium ion battery or a lithium polymer battery connected in series as the rechargeable battery 2. However, a battery such as a nickel metal hydride battery or a nickel cadmium battery can be connected in series for use.
  • the battery 1 composed of a non-aqueous electrolyte battery can adjust the output voltage by the number of batteries 2 connected in series.
  • the battery 1 composed of a lithium ion battery or a lithium polymer battery can have an output voltage of about 12 V by connecting three or four batteries 2 in series. However, the output voltage can be set to 12V to 48V by adjusting the number of batteries connected in series.
  • the battery 1 with an output voltage of 12 V supplies power directly to the vehicle-side load 20.
  • a battery having an output voltage of 24V to 48V is connected to a DC / DC converter (not shown) on the output side, and is stepped down to 12V by the DC / DC converter to supply power to the vehicle side load.
  • the battery 1 and 2 are connected to the output side of the battery 1 with a current limiting circuit 3 that limits the maximum discharging current and cuts off the charging current, and a control switch 4 that controls charging and discharging.
  • the battery 1 supplies power to the constant energization terminal 23 of the vehicle side load 20 via the current limiting circuit 3 and supplies power to the power supply terminal 22 of the vehicle side load 20 via the control switch 4.
  • the main relay 24 is turned on when the ignition switch is on, and is turned off when the ignition switch is off.
  • the output side of the control switch 4 is connected to the power supply terminal 22 via the main relay 24.
  • This power supply device supplies power from the battery 1 to the power supply terminal 22 of the vehicle-side load 20 via the control switch 4 and the main relay 24.
  • the always-on terminal 23 of the vehicle-side load 20 is connected to the output side of the current limiting circuit 3 without going through the main relay 24. Therefore, the battery 1 always supplies power to the energization terminal 23 via the current limiting circuit 3.
  • the power supply device shown in FIG. 1 includes a first output terminal 11 and a second output terminal 12.
  • the first output terminal 11 is connected to the output side of the control switch 4, and the second output terminal 12 is connected to the output side of the current limiting circuit 3.
  • the first output terminal 11 supplies power to the power supply terminal 22 of the vehicle-side load 20, and the second output terminal 12 supplies power to the always-on terminal 23 of the vehicle-side load 20.
  • This power supply device is provided with a first output terminal 11 that outputs the power of the battery 1 from the control switch 4 and a second output terminal 12 that outputs the power of the battery 1 via the current limiting circuit 3 separately.
  • the power is supplied from the first output terminal 11 to the power supply terminal 22 and from the second output terminal 12 to the constant energization terminal 23.
  • the output side of the current limiting circuit 3 and the output side of the control switch 4 are connected to form one output terminal 10.
  • the power supply device supplies power from the output terminal 10 to both the power supply terminal 22 and the constant energization terminal 23 of the vehicle-side load 20.
  • the power supply terminal 22 supplies power of the battery 1 via the main relay 24.
  • the constant energization terminal 23 supplies power from the battery 1 in both the on state and the off state of the control switch 4. When the control switch 4 is in the on state, power is always supplied to the energization terminal 23 from both the control switch 4 and the current limiting circuit 3, and when the control switch 4 is in the off state, the constant energization terminal 23 is passed through the current limiting circuit 3. Electric power is supplied from the battery 1.
  • the current limiting circuit 3 limits the maximum discharge current to, for example, 100 mA, preferably 50 mA or less.
  • the current limiting circuit 3 is a constant current circuit 3A that limits the output current to a certain current or less. However, the current limiting circuit can limit the maximum discharge current as a resistor by the electric resistance of the resistor.
  • the current limiting circuit 3 shown in FIG. 2 is a resistor 3B.
  • the current limiting circuit 3 of the resistor 3B limits the current of the vehicle-side load 20 by increasing the voltage drop as the discharge current increases. Since the current limiting circuit 3 cuts off the charging current of the battery 1, a diode 7 is connected in series. A constant current circuit capable of interrupting the charging current does not necessarily require a diode connected in series.
  • the resistor 3B connects the diode 7 in series to cut off the charging current of the battery 1.
  • the control switch 4 is a relay. In the off state, the control switch 4 prohibits the charging of the battery 1 and the discharge to the power supply terminal 22. In the on state, the control switch 4 charges the battery 1 by the charging mechanism 25 and Allow discharge.
  • the control switch 4 can also use a semiconductor switching element instead of the relay. 1 and 2 controls the control switch 4 to be turned on and off by the control circuit 5.
  • the control circuit 5 detects the voltage or remaining capacity of the battery 2 constituting the battery 1 or both the voltage and remaining capacity and controls the control switch 4 to be turned on / off.
  • the control switch 4 may be turned on / off by detecting the temperature.
  • the control circuit 5 switches the control switch 4 to OFF and supplies the charging current. Cut off.
  • the control circuit 5 switches the control switch 4 to OFF when the voltage of the discharged battery 2 is lowered to the set voltage, or when the remaining capacity is lowered to the set remaining capacity and is overdischarged. To prevent.
  • the control circuit 5 switches on the control switch 4 with a voltage and a remaining capacity at which the battery 2 is not overcharged and is not overdischarged, and supplies power to the vehicle side.
  • control circuit 5 prevents the battery 2 discharged through the current limiting circuit 3 from entering an overdischarged state in which the battery 2 is discharged deeper in the state where the control switch 4 is turned off.
  • the current limiting circuit 3 shown in FIG. 1 includes an overdischarge prevention switch 13 that cuts off a current discharged from the battery 2.
  • the control circuit 5 switches the overdischarge prevention switch 13 to turn off the battery 2 further.
  • the battery 2 is protected by preventing deep discharge (for example, complete discharge).
  • This control circuit sets the minimum voltage and the minimum remaining capacity for switching off the overdischarge prevention switch 13 to values equal to or smaller than the set voltage and the set remaining capacity for switching off the control switch 4. ing.
  • the control circuit 5 includes a voltage detection circuit (not shown) for detecting the voltage of each battery 2 and a remaining capacity detection circuit (not shown), and is a voltage detected by the voltage detection circuit.
  • the memory stores the threshold value of the voltage for storing the control switch 4 and the overdischarge prevention switch 13 on and off and the threshold value of the remaining capacity for controlling the control switch 4 and the overdischarge prevention switch 13 on and off with the remaining capacity detected by the remaining capacity detection circuit. 15 is stored.
  • the control circuit 5 compares the detected voltage or remaining capacity of the battery 2 with a threshold value stored in the memory 15 and controls the control switch 4 and the overdischarge prevention switch 13 to be turned on / off.
  • the control circuit 5 allows the battery 1 to be charged / discharged by turning on the control switch 4 in a state where the detected voltage and remaining capacity are within a predetermined range, and the detected voltage and remaining capacity are predetermined. When out of range, the control switch 4 is turned off to prevent overcharging and overdischarging of the battery 1.
  • the remaining capacity detection circuit calculates the remaining capacity by integrating the charging / discharging current of the battery 1 including the battery 2 and detects the remaining capacity by correcting with the voltage for detecting the calculated remaining capacity.
  • the remaining capacity detection circuit that detects the remaining capacity from the charging / discharging current adds the integrated value of the charging current and subtracts the integrated value of the discharging current to calculate the remaining capacity.
  • control circuit 5 includes a temperature sensor 16 for detecting the temperature of the battery 2 and controls the control switch 4 to be turned on / off by comparing the detected temperature detected by the temperature sensor 16 with a temperature range stored in advance. You can also The control circuit 5 compares the temperatures detected by the temperature sensor 16 and stores a temperature range in which the control switch 4 is turned on in the memory 15. The temperature range stored in the memory 15 is, for example, ⁇ 30 ° C. to 70 ° C. The control circuit 5 turns on the control switch 4 when the temperature of the battery 2 is ⁇ 30 ° C. to 70 ° C., and is lower or higher than this temperature range, that is, when the battery temperature is outside the predetermined range. The control switch 4 is turned off, and the power supply to the vehicle side is stopped when the battery 2 is extremely low in temperature.
  • control circuit 5 switches the control switch 4 to OFF in a state where the charging current of the battery 2 is larger than a preset current threshold, thereby preventing the battery 2 from being charged with an excessive current. You can also.
  • the control circuit 5 includes a current detection circuit (not shown) that detects the current of the battery 2, and stores a current threshold value for switching the control switch 4 off in the memory 15. The control circuit 5 switches the control switch 4 off in a state where the charging current is larger than the current threshold value, as compared with the current threshold value storing the charging current of the battery 2 detected by the current detection circuit.
  • FIG. 2 includes a starting circuit 6 that starts the control circuit 5.
  • the starting circuit 6 always supplies power from the battery 1 via the current limiting circuit 3.
  • the startup circuit 6 is always in an operating state even when the ignition switch is off, and outputs a startup signal to the control circuit 5 at a predetermined cycle.
  • the control circuit 5 is activated by the activation signal input from the activation circuit 6, detects the battery state such as the voltage, remaining capacity, and temperature of the battery 2 and controls the control switch 4.
  • the activation circuit 6 outputs an activation signal to the control circuit 5 at a constant cycle, for example, at a cycle of 0.1 to 100 seconds.
  • the control circuit 5 is activated by the activation signal, detects the battery state of the battery 2, switches the control switch 4 on or off in the battery state, and then enters a dormant state.
  • the inactive control circuit 5 is activated each time an activation signal is input, detects a battery condition, and controls the control switch 4 to be turned on / off.
  • the ON state of the main switch 21 it is possible to control the control switch 4 to be turned on and off by shortening the time interval for detecting the battery state as an always operating state without pausing the control circuit 5.
  • the ON state of the main switch 21 can be determined by the starter circuit 6 detecting the battery voltage.
  • the main switch 21 is in the on state, the battery 1 is charged by the charging mechanism 25 and the battery voltage becomes high. Therefore, the activation circuit 6 can detect the battery voltage and detect the on state of the main switch 21.
  • the start-up circuit can also detect the ignition switch signal to detect the ON state of the main switch.
  • the activation circuit inputs an ON signal indicating the ON state of the main switch to the control circuit.
  • the control circuit is an ON signal input from the start-up circuit and is maintained in an operating state without a pause, and the battery state is more precisely measured, for example, with a sampling period of 1 msec to 100 msec, the battery voltage, remaining capacity, temperature The current is detected to control the control switch 4 on and off.
  • the power supply device can also connect a lead battery 9 in parallel to a battery 1 made of a non-aqueous electrolyte battery.
  • the power supply device of FIG. 3 has a lead battery 9 connected in parallel with a battery 1 made of a non-aqueous electrolyte battery.
  • a lead battery 9 is connected to the output side of the control switch 4, and the battery 1 made of a nonaqueous electrolyte battery and the lead battery 9 are connected in parallel via the control switch 4.
  • the above power supply device supplies electric power to the vehicle-side load 20 from both the battery 1 and the lead battery 9 made of a non-aqueous electrolyte battery.
  • the power supply device of FIG. 4 connects the lead battery 9 in parallel to the battery 1 made of a non-aqueous electrolyte battery via the control switch 4, the non-aqueous electrolyte battery is in the on state of the control switch 4. Electric power is supplied from both the battery 1 and the lead battery 9 to the power supply terminal 22 and the constant energization terminal 23 of the vehicle-side load 20. Further, when the control switch 4 is in the OFF state, the battery 1 made of a non-aqueous electrolyte battery always supplies power only to the energization terminal 23.
  • the power supply device is charged with both the battery 1 and the lead battery 9 made of a non-aqueous electrolyte battery, and in the off state of the control switch 4 with the non-aqueous electrolysis.
  • the battery 1 made of a liquid battery is not charged and only the lead battery 9 is charged.
  • the activation circuit 6 inputs an activation signal to the control circuit 5 at a predetermined cycle.
  • the control circuit 5 is activated by the activation signal that is input, and changes from the sleep state to the operating state.
  • the activated control circuit 5 detects the state of the battery 1 composed of a non-aqueous electrolyte battery at a predetermined cycle, and the battery state permits charging / discharging of the non-aqueous electrolyte battery, that is, overcharge or overdischarge. If not, the control switch 4 is kept on.
  • the control circuit 5 detects this and switches the control switch 4 off.
  • the control switch 4 when the control switch 4 is turned off, power is not supplied to the power supply terminal 22 of the vehicle-side load 20, but the power is always supplied to the energization terminal 23.
  • the power supply device shown in FIG. 2 even when the control switch 4 is turned off, power is supplied to the power supply terminal 22 and the constant energization terminal 23 of the vehicle-side load 20, but the ignition switch is turned off. As a result, the main relay 24 is held off.
  • the above state is, for example, when the ignition switch is off and the external charger 40 is connected and the external charger 40 charges the battery 1 made of a nonaqueous electrolyte battery as shown by the chain line in the figure. May occur. That is, when the battery 1 made of a non-aqueous electrolyte battery is fully charged and further charged, the control switch 4 is switched off and charging is stopped. Therefore, even when the ignition switch is in the OFF state, overcharging of the battery 1 composed of the non-aqueous electrolyte battery is prevented. Even when the control switch 4 is in the OFF state, power is supplied from the battery 1 made of a non-aqueous electrolyte battery to the always-on terminal 23, so that the door lock can be released, for example.
  • a power supply device in which a lead battery 9 is connected in parallel with a battery 1 made of a non-aqueous electrolyte battery via a control switch 4, an external charger 40 is connected and charged.
  • the control switch 4 when the control switch 4 is turned off, the charging current to the battery 1 composed of a non-aqueous electrolyte battery is cut off.
  • the external charger 40 stops charging of the battery 1 made of a non-aqueous electrolyte battery and charges only the lead battery 9 while preventing overcharging of the battery 1 made of a non-aqueous electrolyte battery.
  • this power supply device supplies power to the power supply terminal 22 and the constant energization terminal 23 from both the battery 1 and the lead battery 9 made of a non-aqueous electrolyte battery.
  • the control circuit 5 detects the state of the battery 1 made of a non-aqueous electrolyte battery at a predetermined cycle. If the battery state is a state in which charging / discharging of the battery 1 made of a non-aqueous electrolyte battery is allowed, the control circuit 5 detects this and turns on the control switch 4. When the battery state such as the battery voltage, the remaining capacity, and the temperature is not allowed to be charged / discharged, the control circuit 5 detects this and switches the control switch 4 to OFF.
  • the charging mechanism 25 such as the generator 25 ⁇ / b> A outputs a rated DC voltage of 12 V and supplies power to the power supply terminal 22 and the constant energization terminal 23.
  • the power supply device of FIG. 2 cannot supply power to the power supply terminal 22 from the battery 1 made of a non-aqueous electrolyte battery, and displays “battery abnormality” to the driver.
  • the battery 1 is always connected to the energization terminal 23 and the power supply terminal 22 via the current limit circuit 3, but the current limit circuit 3 limits the output current.
  • a normal current cannot always be supplied.
  • the driver outputs the DC rated voltage 12V by the charging mechanism 25 such as the generator 25A without stopping the traveling of the vehicle or stopping the traveling of the vehicle, so that the power supply terminal 22 is always energized. Power is supplied to the terminal 23.
  • the lead battery 9 Since the lead battery 9 is connected to the charging mechanism 25 such as the charger 25A, the lead battery 9 is charged by the charger 25A, and the power supply terminal 22 and the always-on terminal 23 are not stopped without stopping the running of the vehicle.
  • the vehicle can be run while supplying electric power.
  • the above power supply device is mounted on the vehicle 200 and is generally used as a power source for supplying power to an electrical load installed in the vehicle having a rated voltage of 12 V, and therefore travels only with the engine. It is mounted as a power source for electrical equipment in automobiles, hybrid cars that run on both the engine and motor, and electric cars that run only on the motor.
  • a vehicle that runs only with an engine charges a battery using a generator as a charging mechanism.
  • the power supply apparatus 100 mounted on a hybrid car or an electric vehicle can be configured such that the charging mechanism 25 is a generator 25A or a DC / DC converter 25B used in place of the generator.
  • the DC / DC converter 25 ⁇ / b> B charges the battery 1 by reducing the voltage of the high-voltage traveling battery 30 that travels the vehicle to a voltage that charges the battery 1.
  • the power supply device can be used not only as a power supply mounted on a vehicle but also as a power supply used for a stationary power storage device.
  • a power supply system that is charged with sunlight or late-night power and discharged when necessary, or a power source for street lights that is charged with sunlight during the day and discharged at night, or a power failure It can also be used as a backup power source for traffic lights that are sometimes driven.
  • Even in such a power supply device as a load connected to the power supply device, there is a device that includes a circuit that controls power supply to the load in a state where the main switch is off, and this circuit requires standby power.
  • an uninterruptible power supply that is driven in the event of a power failure
  • the main switch on the load side is turned on and power is supplied from the power supply to the load. It is necessary to always supply power to the circuit that detects whether the commercial power supply is in a power failure state.
  • a circuit that controls the power supply from the battery to the light source that is a load has a timer or light. Electric power for driving sensors or the like may be required at all times. Even in a power supply device used in such a device, it is possible to always supply power to a necessary load and keep it in a normal operating state in a state where the main switch of the load is turned off.
  • the power supply device shown in this figure charges the battery 1 by adjusting the power supplied from a charging power supply 51 which is a charging mechanism 25 such as a midnight power of a commercial power supply or a solar battery to a predetermined voltage by a DC / DC converter 56. Then, electric power is supplied from the battery 1 to a DC / AC inverter 50 (hereinafter referred to as a DC / AC inverter) that is the load 20. For this reason, the power supply device has a charge mode and a discharge mode.
  • the DC / AC inverter 50 and the charging power source 51 are connected to a power supply device via a discharging switch 52 and a charging switch 53, respectively.
  • the control circuit 5 switches the charging switch 53 to ON and the discharging switch 52 to OFF to permit charging from the charging power supply 51 serving as the charging mechanism 25 to the power supply device. Further, when the charging is completed and the battery is fully charged, or in response to a request from the load side in a state where a capacity of a predetermined value or more is charged, the control circuit 5 turns the charging switch 53 OFF and the discharging switch 52 ON.
  • the discharge mode is switched to permit the discharge from the power supply device to the DC / AC inverter 50. If necessary, the charging switch 53 can be turned on and the discharging switch 52 can be turned on to supply power to the DC / AC inverter 50 and charge the power supply device at the same time.
  • the load 20 shown in the figure is connected to the power supply device with the discharge switch 52 as the main switch 21. That is, in the discharge mode of the power supply device, the control circuit 5 switches on the discharge switch 52 that is the main switch 21 to connect to the DC / AC inverter 50 of the load 20, and the power supply device is connected via the DC / AC inverter 50. Is supplied to the electric device 54.
  • the apparatus shown in the figure includes a DC / AC inverter 50 and a control circuit 55 that controls the DC / AC inverter 50 as a load 20.
  • the DC / AC inverter 50 converts the supplied direct current into a predetermined alternating current and outputs it to the electrical device 54.
  • the control circuit 55 controls the DC / AC inverter 50 to control power supply from the DC / AC inverter 50 to the electric device 54.
  • the load 20 shown in the figure includes a power supply terminal 22 to which power is supplied in the on state of a discharge switch 52 (hereinafter referred to as a discharge switch) that is a main switch 21, and an on state and an off state of the discharge switch 52. And a constantly energizing terminal 23 to which power is supplied.
  • the output side of the control switch 4 is connected to the power supply terminal 22 via the discharge switch 52, and the output side of the current limiting circuit 3 is always energized without passing through the discharge switch 52.
  • the terminal 23 is connected. Therefore, the battery 1 always supplies power to the energization terminal 23 through the current limiting circuit 3 and supplies power to the power supply terminal 22 of the load 20 through the control switch 4 and the main switch 21. .
  • the current limiting circuit 3 is a circuit that limits the charge / discharge current, and is a circuit that can charge the battery 1 with the electric power input from the charger 41 connected to the outside.
  • the current limiting circuit 3 in this figure is connected to a charging terminal 17 connected to an external charger 41, and the charger 41 is connected to this charging terminal 17.
  • the charger 41 is a solar cell charger or a charger that converts a commercial power source into a charging voltage and current of the battery 1 and outputs the converted voltage. Since the power supply device described above can charge the battery 1 with the charger 41 connected to the outside when the control switch 4 is in the off state, overdischarge of the battery 1 can be prevented even when the control switch 4 is in the off state.
  • the 7 includes a current limiting unit 18 that limits a discharge current and a charging current to a predetermined current value or less, and an output switch 19 connected to the output side.
  • the current limiting unit 18 that limits the charging current and charges the battery 1 charges the battery 1 by limiting the input power to a predetermined current value or less.
  • the current limiting unit 18 can safely charge the battery 1 without charging it with an excessive current.
  • the output switch 19 includes an overdischarge prevention switch 19A and an overcharge prevention switch 19B.
  • the overdischarge prevention switch 19A and the overcharge prevention switch 19B are controlled to be turned on / off by the control circuit 5.
  • the control circuit 5 switches the overdischarge prevention switch 19A to turn off the battery 2 further deeper.
  • the battery 2 is protected by preventing discharge (for example, complete discharge).
  • the control circuit 5 sets the minimum voltage and the minimum remaining capacity for switching off the overdischarge prevention switch 19A to values equal to or smaller than the set voltage and the set remaining capacity for switching off the control switch 4. is doing.
  • the control circuit 5 switches the overcharge prevention switch 19B to OFF so that the battery 2 Further, the battery 2 is protected by preventing deep charging (for example, overcharging).
  • the control circuit 5 sets the maximum voltage and the maximum remaining capacity for switching off the overcharge prevention switch 19B to values equal to or larger than the set voltage and the set remaining capacity for switching off the control switch 4. is doing. In the power supply device of FIG.
  • the overdischarge prevention switch 19A and the overcharge prevention switch 19B are FETs having a parasitic diode 19x, and the first FET 19a of the overdischarge prevention switch 19A and the second FET 19b of the overcharge prevention switch 19B are connected in series. is doing.
  • the first FET 19a discharges the battery 1 in the on state, and interrupts the discharge current of the battery 1 in the off state.
  • the second FET 19b charges the battery 1 in the on state, and interrupts the charging current of the battery 1 in the off state.
  • the overdischarge prevention switch 19A and the overcharge prevention switch 19B are connected in series, but these switches can also be connected as shown in FIG.
  • the power supply device of FIG. 8 has an overdischarge prevention switch 19A connected between the output side of the current limiting unit 18 and the output terminal 10 to prevent overcharging between the output side of the current limiting unit 18 and the charging terminal 17.
  • the switch 19B is connected.
  • the power supply device in this figure discharges from the output terminal 10 while limiting the discharge current by the current limiting unit 18, and charges the battery 1 by the charger 41 while limiting the charging current by the current limiting unit 18.
  • the overdischarge prevention switch 19A and the overcharge prevention switch 19B are controlled by the control circuit 5 in the same manner as the power supply device shown in FIG. 7, and the battery 1 is discharged and charged.
  • the current limiting circuit 3 shown in FIG. 8 uses the overdischarge prevention switch 19A and the overcharge prevention switch 19B as contactors, but the overdischarge prevention switch and the overcharge prevention switch can be semiconductor switching elements such as FETs.
  • a power supply device using an overdischarge prevention switch as an FET is not shown in the figure, but a diode that allows a discharge current but cuts off a reverse current is connected to the output terminal side of the overdischarge prevention switch to cut off the charging current. .
  • the power supply device of FIG. 9 includes a first output terminal 11 connected to the power supply terminal 22 of the load 20 and a second output terminal 12 connected to the constant energization terminal 23, and the output switch 19 is current-limited.
  • the charging terminal 17 is connected to the second output terminal 12 by connecting between the unit 18 and the second output terminal 12.
  • the power supply device of FIG. 9 has an overdischarge prevention switch 19A and an overcharge prevention switch 19B as FETs having a parasitic diode 19x, and a first FET 19a of the overdischarge prevention switch 19A and a second FET 19b of the overcharge prevention switch 19B are connected in series. is doing.
  • the first FET 19a discharges the battery 1 in the on state, and interrupts the discharge current of the battery 1 in the off state.
  • the second FET 19b charges the battery 1 in the on state, and interrupts the charging current of the battery 1 in the off state.
  • the output switch 19 of this power supply device is also turned on and off by the control circuit 5 in the
  • an overdischarge prevention switch 19A is connected between the current limiting unit 18 and the second output terminal 12, and an overcharge prevention switch 19B is connected between the current limiting unit 18 and the charging terminal 17. is doing.
  • the overdischarge prevention switch 19A and the overcharge prevention switch 19B are FETs. However, switches such as semiconductor switching elements and contactors other than FETs can be used as the overdischarge prevention switch and the overcharge prevention switch.
  • the overdischarge prevention switch 19A discharges the battery 1 in the on state and cuts off the discharge current of the battery 1 in the off state.
  • the overcharge prevention switch 19B charges the battery 1 in the on state, and blocks the charging current of the battery 1 in the off state.
  • This power supply device controls the overdischarge prevention switch 19A and the overcharge prevention switch 19B in the same manner as the power supply device shown in FIG. 8, and discharges and charges the battery 1.
  • FIG. 11 shows a power supply device in which the battery 1 is a non-aqueous electrolyte battery such as a lithium ion battery or a lithium polymer battery.
  • the current limiting circuit 3 includes a current limiting unit 18 and an output switch 19.
  • the current limiting unit 18 includes a discharge current limiting circuit 18A that limits the discharge current of the battery 1, and a constant voltage / constant current circuit 18B that controls the voltage and current for charging the battery 1.
  • the output switch 19 includes an overdischarge prevention switch 19A and an overcharge prevention switch 19B.
  • the overdischarge prevention switch 19A is connected to the output side of the discharge current limiting circuit 18A, and the overcharge prevention switch 19B is connected between the constant voltage / constant current circuit 18B and the charging terminal 17.
  • the overdischarge prevention switch 19A and the overcharge prevention switch 19B are controlled to be turned on and off by the control circuit 5 in the same manner as the power supply device shown in FIGS.
  • the overdischarge prevention switch 19A is connected to the output terminal 10 as indicated by a solid line, or in the power supply apparatus in which the first output terminal 11 and the second output terminal 12 are separately provided, Without being connected to the output terminal 11, it is connected to the second output terminal 12 as indicated by a chain line.
  • the overdischarge prevention switch 19A and the overcharge prevention switch 19B are contactors.
  • the overdischarge prevention switch and the overcharge prevention switch can be semiconductor switching elements such as FETs.
  • the overdischarge prevention switch is an FET and the overdischarge prevention switch is connected to the output terminal 10 as shown by the solid line in FIG. 11, a discharge current is connected to the output terminal side of the overdischarge prevention switch. Connect a diode that cuts off the reverse current, but cuts off the charging current.
  • the discharge current limiting circuit 18A discharges the battery 1 by limiting the discharge current of the battery 1 to be smaller than a predetermined value.
  • the constant voltage / constant current circuit 18B charges the lithium ion battery or the lithium polymer battery of the battery 1 by limiting the power input from the charger 41 to a predetermined voltage and current or less. This power supply device can safely fully charge a non-aqueous electrolyte battery such as a lithium ion battery or a lithium polymer battery with the charger 41.
  • the power supply device can be suitably used as a power supply device for a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle or the like that can switch between the EV traveling mode and the HEV traveling mode.
  • backup power supply devices that can be mounted on computer server racks, backup power supply devices for wireless base stations such as mobile phones, power storage devices for home use and factories, power storage devices such as street lamp power supplies, traffic lights, etc. It can also be used as appropriate for applications such as backup power supply.
  • SYMBOLS 100 Power supply device 200 ... Vehicle 1 ... Battery 2 ... Battery 3 ... Current limiting circuit 3A ... Constant current circuit 3B ... Resistor 4 ... Control switch 5 ... Control circuit 6 ... Starting circuit 7 ... Diode 9 ... Lead battery 10 ... Output terminal DESCRIPTION OF SYMBOLS 11 ... 1st output terminal 12 ... 2nd output terminal 13 ... Overdischarge prevention switch 15 ... Memory 16 ... Temperature sensor 17 ... Charging terminal 18 ... Current limiting part 18A ... Discharge current limiting circuit 18B ... Constant voltage / constant current circuit DESCRIPTION OF SYMBOLS 19 ... Output switch 19A ... Overdischarge prevention switch 19B ...
  • Overcharge prevention switch 19a ... 1st FET 19b ... 2nd FET 19x ... Parasitic diode 20 ... Load 21 ... Main switch 22 ... Power supply terminal 23 ... Always energizing terminal 24 ... Main relay 25 ... Charging mechanism 25A ... Generator 25B ... DC / DC converter 26 ... Fuse 28 ... Starter relay 29 ... Starter motor DESCRIPTION OF SYMBOLS 30 ... Battery for driving 40 ... External charger 41 ... Charger 50 ... DC / AC inverter 51 ... Power source for charging 52 ... Discharge switch 53 ... Charge switch 54 ... Electrical equipment 55 ... Control circuit 56 ... DC / DC converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

[Problem] To constantly supply power to a necessary load even in a state in which a main switch is OFF, while over-charging and over-discharging of a battery are prevented. [Solution] A power source device is provided with a battery (1) comprising cells (2) that are charged by a charging mechanism (25) and supply power to a power supply terminal (22) of a load (20) to which power is supplied in a state in which a main switch (21) is ON, and supply power to a constant-conduction terminal (23) to which power is supplied in a state in which the main switch (21) is ON or OFF. In the power source device, a current-limiting circuit (3) that limits discharge current and a control switch (4) that controls the charging/discharging of the battery (1) are connected at the output side of the battery (1), and the battery (1) supplies power to the constant-conduction terminal (23) of the load (20) via the current-limiting circuit (3), and supplies power to the power supply terminal (22) of the load (20) via the control switch (4).

Description

電源装置及びこの電源装置を備える車両並びに蓄電装置Power supply device, vehicle including this power supply device, and power storage device
 本発明は、例えば、車両等に搭載されて負荷に動作電力を供給するリチウムイオン電池などの非水系電解液電池等からなるバッテリを備える電源装置及びこの電源装置を備える車両並びに蓄電装置に関する。 The present invention relates to, for example, a power supply device including a battery made of a nonaqueous electrolyte battery such as a lithium ion battery that is mounted on a vehicle or the like and supplies operating power to a load, a vehicle including the power supply device, and a power storage device.
 車両側負荷に電力を供給する従来の電源装置は、電圧を12Vとする鉛バッテリを備えている。鉛バッテリは、充放電できる容量に対して重くて大きい欠点がある。この欠点は、リチウムイオン電池やリチウムポリマー電池などの非水系電解液電池からなるバッテリを使用して解消できる(特許文献1及び2参照)。非水系電解液電池が鉛バッテリに比較して、重量と容積に対する充放電容量を大きくできるからである。 A conventional power supply device that supplies power to a vehicle-side load includes a lead battery having a voltage of 12V. Lead batteries are heavy and have large drawbacks with respect to their chargeable / dischargeable capacity. This drawback can be eliminated by using a battery made of a non-aqueous electrolyte battery such as a lithium ion battery or a lithium polymer battery (see Patent Documents 1 and 2). This is because the non-aqueous electrolyte battery can increase the charge / discharge capacity with respect to the weight and volume as compared with the lead battery.
特開2001-286004号公報JP 2001-286004 A 特開2011-178384号公報JP 2011-178384 A
 ところで、従来の車両に搭載している鉛バッテリは、発電機の出力電圧をコントロールして、バッテリの過充電や過放電を防止している。すなわち、鉛バッテリの電圧が一定の範囲となるように、発電機の出力電圧をコントロールして、鉛バッテリの過充電と過放電を防止している。車両に搭載している鉛バッテリをリチウムイオン電池等の非水系電解液電池で置き換えた場合、非水系電解液電池も、鉛バッテリと同じように、発電機の出力電圧を一定の電圧に保持して、過充電や過放電を防止できる。しかしながら、車両が長い期間使用されないと、非水系電解液電池からなるバッテリは、充電されない期間が長くなって過放電されることがある。非水系電解液電池は、鉛バッテリに比較して自己放電が少ないので、自己放電による過放電を少なくできる。しかしながら、車両は、イグニッションスイッチをオフとして、走行させない状態においても、わずかに電力を消費するので、車両が長期間使用されないと、非水系電解液電池が放電されて過放電になることがある。 By the way, the lead battery mounted on the conventional vehicle controls the output voltage of the generator to prevent overcharge and overdischarge of the battery. That is, the output voltage of the generator is controlled so that the voltage of the lead battery falls within a certain range to prevent overcharge and overdischarge of the lead battery. When a lead battery installed in a vehicle is replaced with a non-aqueous electrolyte battery such as a lithium ion battery, the non-aqueous electrolyte battery maintains the output voltage of the generator at a constant voltage in the same way as a lead battery. Thus, overcharge and overdischarge can be prevented. However, if the vehicle is not used for a long period of time, a battery composed of a non-aqueous electrolyte battery may be overdischarged due to a longer period of non-charging. Since nonaqueous electrolyte batteries have less self-discharge than lead batteries, overdischarge due to self-discharge can be reduced. However, since the vehicle consumes a small amount of power even when the ignition switch is turned off and the vehicle is not running, the nonaqueous electrolyte battery may be discharged and overdischarged if the vehicle is not used for a long period of time.
 また、車両のイグニッションスイッチがオフに切り換えられる状態、すなわち、車両を走行させない状態で、非水系電解液電池からなるバッテリに充電器や太陽電池などが接続されて充電されると、非水系電解液電池からなるバッテリが過充電されることがある。この弊害は、非水系電解液電池からなるバッテリの出力側に過充電や過放電を防止するスイッチを設け、このスイッチを非水系電解液電池からなるバッテリの電圧や残容量で制御して解消できる。しかしながら、非水系電解液電池からなるバッテリの出力側にスイッチを設けて、このスイッチをオフに切り換えると、車両側の車両側負荷に全く電力を供給できなくなる。車両は、イグニッションスイッチのオフ状態においても、わずかであるが電力を消費する車両側負荷を備えている。たとえば、無線や赤外線のリモコンキーからの信号を検出して、ドアロックを解除したり、ロックしたりする回路や時計などは、イグニッションスイッチのオフ状態でも動作状態に保持する必要がある。また、車両に搭載している車両用コンピューターなども、停車中に種々の処理をするためには、わずかに電力を消費する。このため、非水系電解液電池からなるバッテリの出力側にスイッチを設けて、過充電や過放電を防止する回路構成は、スイッチのオフ状態で全ての車両側負荷に全く電力が供給できず、正常に使用できなくなる欠点がある。 In addition, when the vehicle ignition switch is turned off, that is, when the vehicle is not running, when a battery made of a non-aqueous electrolyte battery is connected to a battery charger or a solar cell, the non-aqueous electrolyte solution is charged. A battery consisting of batteries may be overcharged. This problem can be solved by providing a switch to prevent overcharge and overdischarge on the output side of the battery consisting of a non-aqueous electrolyte battery, and controlling this switch with the voltage and remaining capacity of the battery consisting of the non-aqueous electrolyte battery. . However, if a switch is provided on the output side of a battery composed of a non-aqueous electrolyte battery and this switch is turned off, no power can be supplied to the vehicle-side load on the vehicle side. Even when the ignition switch is in an OFF state, the vehicle includes a vehicle-side load that consumes a small amount of power. For example, a circuit or a clock that detects a signal from a wireless or infrared remote control key to unlock or lock the door needs to be kept in an operating state even when the ignition switch is off. In addition, a vehicle computer mounted on a vehicle consumes a small amount of power in order to perform various processes while the vehicle is stopped. For this reason, a circuit configuration for preventing overcharging and overdischarging by providing a switch on the output side of a battery made of a non-aqueous electrolyte battery cannot supply power to all vehicle-side loads at all when the switch is off. There is a drawback that it cannot be used normally.
 本発明は、さらに以上の欠点を解決することを目的に開発されたものである。本発明の重要な目的は、非水系電解液電池等からなるバッテリの過充電や過放電を防止しながら、メインスイッチをオフに切り換える状態においても、必要な負荷には常に電力を供給して正常に動作する状態に保持できる電源装置及びこの電源装置を備える車両並びに蓄電装置を提供することにある。 The present invention was developed for the purpose of solving the above disadvantages. An important object of the present invention is to normally supply power to a necessary load even when the main switch is turned off while preventing overcharge and overdischarge of a battery made of a nonaqueous electrolyte battery or the like. It is an object of the present invention to provide a power supply device that can be maintained in a state where the power supply is operated, a vehicle including the power supply device, and a power storage device.
課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention
 本発明の電源装置は、メインスイッチのオン状態で電力が供給される負荷の電力供給端子と、メインスイッチのオン状態とオフ状態とで電力が供給される常時通電端子とに電力を供給し、かつ充電機構で充電される電池からなるバッテリを備えている。電源装置は、バッテリの出力側に、放電電流を制限して充電電流を遮断する電流制限回路と、バッテリの充放電を制御する制御スイッチとを接続しており、バッテリが、電流制限回路を介して負荷の常時通電端子に電力を供給し、制御スイッチを介して負荷の電力供給端子に電力を供給している。 The power supply device of the present invention supplies power to a power supply terminal of a load to which power is supplied when the main switch is in an on state, and a constant current supply terminal to which power is supplied in an on state and an off state of the main switch, And the battery which consists of a battery charged with a charging mechanism is provided. The power supply device is connected to the output side of the battery with a current limiting circuit that limits the discharge current and cuts off the charging current, and a control switch that controls the charging and discharging of the battery, and the battery passes through the current limiting circuit. Thus, power is supplied to the constant energization terminal of the load, and power is supplied to the power supply terminal of the load via the control switch.
 以上の電源装置は、バッテリの過充電や過放電を防止しながら、負荷のメインスイッチをオフに切り換える状態においても、必要な負荷には常に電力を供給して正常に動作する状態に保持できる特徴がある。それは、以上の電源装置が、バッテリの出力側に、放電電流を制限して充電電流を遮断する電流制限回路と、バッテリの充放電を制御する制御スイッチとを接続して、電流制限回路を介して常時通電端子に電力を供給して、制御スイッチを介して負荷の電力供給端子に電力を供給しているからである。 The power supply device described above is characterized by being able to maintain a normal operating state by always supplying power to a necessary load even when the main switch of the load is turned off while preventing overcharge and overdischarge of the battery. There is. This is because the above power supply device connects, via the current limiting circuit, a current limiting circuit that limits the discharging current and cuts off the charging current and a control switch that controls the charging and discharging of the battery to the output side of the battery. This is because power is always supplied to the energization terminal and power is supplied to the power supply terminal of the load via the control switch.
 さらに、電源装置は、電流制限回路の出力側に接続してなる第2の出力端子と、制御スイッチの出力側に接続してなる第1の出力端子とを備えて、第2の出力端子から負荷の常時通電端子に電力を供給して、第1の出力端子から負荷の電力供給端子に電力を供給してもよい。
 以上の電源装置は、常時通電端子に接続する専用の端子として第2の出力端子を設け、この端子から常時通電端子に電力を供給するので、バッテリから常時通電端子に安定して電力を供給できる特徴がある。
Furthermore, the power supply device includes a second output terminal connected to the output side of the current limiting circuit, and a first output terminal connected to the output side of the control switch. Electric power may be supplied to the constant energization terminal of the load, and electric power may be supplied from the first output terminal to the power supply terminal of the load.
Since the power supply apparatus described above is provided with the second output terminal as a dedicated terminal connected to the constantly energized terminal and supplies power from this terminal to the always energized terminal, power can be stably supplied from the battery to the always energized terminal. There are features.
 また、電源装置は、電流制限回路の出力側と制御スイッチの出力側とを接続してなる出力端子を備えて、この出力端子から負荷の電力供給端子と常時通電端子とに電力を供給してもよい。
 以上の電源装置は、回路構成を簡単にしながら、バッテリの過充電や過放電を防止でき、しかも常時通電端子には常にバッテリから電力を供給できる特徴がある。
In addition, the power supply device includes an output terminal formed by connecting the output side of the current limiting circuit and the output side of the control switch, and supplies power from the output terminal to the power supply terminal of the load and the normally energized terminal. Also good.
The power supply device described above is characterized in that it can prevent overcharge and overdischarge of the battery while simplifying the circuit configuration, and can always supply power from the battery to the always-on terminal.
 さらにまた、電源装置は、バッテリの電圧、残容量、または温度を検出して制御スイッチをオンオフに制御する制御回路を備えて、この制御回路が、バッテリの電圧、残容量、または温度が所定の範囲内にある状態で制御スイッチをオン状態としてバッテリの充放電を許容し、バッテリの電圧、残容量、または温度が所定の範囲外にある状態で制御スイッチをオフ状態としてバッテリの過充電と過放電を防止してもよい。
 以上の電源装置は、制御回路でバッテリの電圧、残容量、または温度を検出し、検出される電圧、残容量、または温度が所定の範囲外にある状態で制御スイッチをオフに切り換えるので、制御回路でもってバッテリを確実に保護しながら、安全に充放電できる。
Furthermore, the power supply device includes a control circuit that detects the voltage, remaining capacity, or temperature of the battery and controls the control switch to be turned on / off, and the control circuit is configured so that the voltage, remaining capacity, or temperature of the battery is predetermined. When the battery is within the range, the control switch is turned on to allow charging / discharging of the battery, and when the battery voltage, remaining capacity, or temperature is outside the predetermined range, the control switch is turned off to overcharge and overcharge the battery. Discharge may be prevented.
In the above power supply device, the control circuit detects the voltage, remaining capacity, or temperature of the battery, and the control switch is turned off when the detected voltage, remaining capacity, or temperature is outside the predetermined range. It is possible to charge and discharge safely while securely protecting the battery with the circuit.
 さらにまた、電源装置は、電流制限回路が、バッテリの過放電を防止する過放電防止スイッチを備えてもよい。
 以上の電源装置は、電流制限回路によって、バッテリの過放電を防止するので、メインスイッチをオフに切り換える状態でバッテリの過放電をより確実に防止できる。
Furthermore, in the power supply device, the current limiting circuit may include an overdischarge prevention switch that prevents overdischarge of the battery.
In the above power supply device, the battery is prevented from being overdischarged by the current limiting circuit, so that the battery can be more reliably prevented from being overdischarged while the main switch is turned off.
 さらにまた、電源装置は、電流制限回路を、電流を制限する定電流回路又は抵抗器とダイオードの直列回路のいずれかとしてもよい。
 電流制限回路を定電流回路とする電源装置は、負荷の常時通電端子に安定して電力を供給でき、電流制限回路を抵抗器とする電源装置は、電流制限回路を簡単な回路構成にできる。
Furthermore, in the power supply device, the current limiting circuit may be either a constant current circuit that limits current or a series circuit of a resistor and a diode.
A power supply device that uses a current limiting circuit as a constant current circuit can stably supply power to a constant energization terminal of a load, and a power supply device that uses a current limiting circuit as a resistor can have a simple circuit configuration.
 さらにまた、電源装置は、電流制限回路を介してバッテリから電力が供給される起動回路を備えて、この起動回路からの起動信号で制御回路を起動してもよい。
 以上の電源装置は、メインスイッチをオフにする状態においても、起動回路で制御回路を起動することで、バッテリの過放電を確実に防止できる。
Furthermore, the power supply device may include an activation circuit that is supplied with power from the battery via a current limiting circuit, and activate the control circuit with an activation signal from the activation circuit.
Even in the state where the main switch is turned off, the power supply device described above can reliably prevent overdischarge of the battery by starting the control circuit with the start circuit.
 さらにまた、電源装置は、バッテリの電池を、リチウムイオン電池又はリチウムポリマー電池の何れかとしてもよい。 Furthermore, in the power supply apparatus, the battery may be a lithium ion battery or a lithium polymer battery.
 さらにまた、電源装置は、バッテリと並列に鉛バッテリを接続してもよい。
 以上の電源装置は、バッテリと鉛バッテリの両方の過充電と過放電を防止しながら、両方のバッテリから負荷に電力を供給できる。
Furthermore, the power supply device may connect a lead battery in parallel with the battery.
The above power supply device can supply electric power from both batteries to the load while preventing overcharge and overdischarge of both the battery and the lead battery.
 さらにまた、電源装置は、制御スイッチの出力側に鉛バッテリを接続してもよい。
 以上の電源装置は、バッテリの過充電と過放電を防止でき、しかも、制御スイッチをオフに切り換えた状態においては、鉛バッテリから常時通電端子に電力を供給できる特徴がある。
Furthermore, the power supply device may connect a lead battery to the output side of the control switch.
The power supply device described above is characterized in that it can prevent overcharging and overdischarging of the battery and can supply power from the lead battery to the energization terminal at all times when the control switch is turned off.
 本発明の車両は、車両に装備される負荷に電力を供給する電源として、上記のいずれかの電源装置を使用している。 The vehicle of the present invention uses any one of the above-described power supply devices as a power source for supplying power to a load equipped on the vehicle.
 本発明の蓄電装置は、上記のいずれかの電源装置を備えている。 The power storage device of the present invention includes any one of the power supply devices described above.
 さらに、本発明の電源装置は、電流制限回路を、充放電電流を制限して、充電電流を遮断することなく、外部から入力される電力でバッテリを充電できる回路とすることもできる。この電源装置は、制御スイッチのオフ状態において、外部から入力される電力でバッテリを充電することができる。 Furthermore, in the power supply device of the present invention, the current limiting circuit can be a circuit that can charge the battery with electric power input from the outside without limiting the charging / discharging current and interrupting the charging current. This power supply device can charge a battery with electric power input from the outside when the control switch is in an OFF state.
本発明の一実施形態にかかる電源装置のブロック図である。It is a block diagram of the power supply device concerning one Embodiment of this invention. 本発明の他の実施形態にかかる電源装置のブロック図である。It is a block diagram of the power supply device concerning other embodiment of this invention. 本発明の他の実施形態にかかる電源装置のブロック図である。It is a block diagram of the power supply device concerning other embodiment of this invention. 本発明の他の実施形態にかかる電源装置のブロック図である。It is a block diagram of the power supply device concerning other embodiment of this invention. 本発明の一実施形態にかかる電源装置を車両に搭載する一例を示すブロック図である。It is a block diagram which shows an example which mounts the power supply device concerning one Embodiment of this invention in a vehicle. 本発明の一実施形態にかかる電源装置を蓄電装置に適用する例を示すブロック図である。It is a block diagram which shows the example which applies the power supply device concerning one Embodiment of this invention to an electrical storage apparatus. 本発明の他の実施形態にかかる電源装置のブロック図である。It is a block diagram of the power supply device concerning other embodiment of this invention. 本発明の他の実施形態にかかる電源装置のブロック図である。It is a block diagram of the power supply device concerning other embodiment of this invention. 本発明の他の実施形態にかかる電源装置のブロック図である。It is a block diagram of the power supply device concerning other embodiment of this invention. 本発明の他の実施形態にかかる電源装置のブロック図である。It is a block diagram of the power supply device concerning other embodiment of this invention. 本発明の他の実施形態にかかる電源装置のブロック図である。It is a block diagram of the power supply device concerning other embodiment of this invention.
 以下、本発明の実施形態を図面に基づいて説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための電源装置及びこの電源装置を備える車両並びに蓄電装置を例示するものであって、本発明は電源装置及び車両並びに蓄電装置を以下のものに特定しない。さらに、この明細書は、特許請求の範囲を理解しやすいように、実施形態に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施形態の部材に特定するものでは決してない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a power supply device for embodying the technical idea of the present invention, a vehicle including the power supply device, and a power storage device, and the present invention includes the power supply device, the vehicle, and the power storage device. Is not specified as below. Further, in this specification, in order to facilitate understanding of the scope of claims, numbers corresponding to the members shown in the embodiments are indicated in the “Claims” and “Means for Solving the Problems” section. It is added to the members. However, the members shown in the claims are not limited to the members of the embodiments.
 以下、本発明の一実施形態として、車両に搭載されて、車両に装備される負荷に電力を供給する電源として使用する電源装置について詳述する。ただ、本発明の電源装置は、車両に搭載される電源装置に限定せず、載置型の蓄電装置に使用することもできる。 Hereinafter, as one embodiment of the present invention, a power supply device mounted on a vehicle and used as a power source for supplying power to a load mounted on the vehicle will be described in detail. However, the power supply device of the present invention is not limited to a power supply device mounted on a vehicle, and can also be used for a stationary power storage device.
 図1と図2に示す電源装置は、車両200に装備される負荷20(以下、車両側負荷と呼ぶ)に電力を供給するバッテリ1として、充電可能な電池2からなるバッテリ1を備えている。車両側負荷20は、車両200のメインスイッチ21であるイグニッションスイッチ(以下、イグニッションスイッチと呼ぶ)のオン状態でのみバッテリ1から電力を供給する電力供給端子22と、イグニッションスイッチのオン状態とオフ状態の両方でバッテリ1から電力を供給する常時通電端子23とを有する。 The power supply apparatus shown in FIGS. 1 and 2 includes a battery 1 including a rechargeable battery 2 as a battery 1 that supplies power to a load 20 (hereinafter referred to as a vehicle-side load) installed in the vehicle 200. . The vehicle-side load 20 includes a power supply terminal 22 that supplies power from the battery 1 only when an ignition switch (hereinafter referred to as an ignition switch) that is a main switch 21 of the vehicle 200 is on, and an ignition switch that is on and off. And a constant current supply terminal 23 for supplying power from the battery 1.
 図の車両200は、負荷として、スターターリレー28を介して接続しているスターターモータ29も備える。ハイブリッドカーは、車両を走行させる高電圧の走行用バッテリでエンジンを始動するので、スターターモータとスターターリレーは装備しない。 The vehicle 200 shown in the figure also includes a starter motor 29 connected via a starter relay 28 as a load. Since the hybrid car starts the engine with a high-voltage battery for running the vehicle, it does not include a starter motor and starter relay.
 さらに、車両側負荷20は、電力供給端子22の入力側にメインリレー24を備えている。メインリレー24は、車両200を走行させる状態でオン状態に切り換えられるイグニッションスイッチでオンオフに制御される。電力供給端子22は、メインリレー24を介してバッテリ1から電力が供給される。常時通電端子23はメインリレー24を介することなく、ヒューズ26を介してバッテリ1から電力が供給される。すなわち、常時通電端子23は、メインリレー24のオンオフに関係なく、バッテリ1から常時電力が供給される。 Furthermore, the vehicle-side load 20 includes a main relay 24 on the input side of the power supply terminal 22. The main relay 24 is controlled to be turned on / off by an ignition switch that is turned on when the vehicle 200 is running. The power supply terminal 22 is supplied with power from the battery 1 via the main relay 24. The constantly energized terminal 23 is supplied with power from the battery 1 via the fuse 26 without passing through the main relay 24. That is, the always-on terminal 23 is always supplied with power from the battery 1 regardless of whether the main relay 24 is on or off.
 車両200は、バッテリ1を充電するために充電機構25を備えている。図1と図2の車両200は、充電機構25を発電機25Aとして、制御スイッチ4の出力側に接続している。発電機25Aはエンジン(図示せず)に駆動されて発電電力でバッテリ1を充電し、あるいは、車両の回生発電でバッテリ1を充電する。回生発電は、車両を減速するときに発電機25Aを駆動して、車両の運動のエネルギーで発電機25Aを駆動して発電する。図1と図2は充電機構25を発電機25Aとするが、充電機構は必ずしも発電機とする必要なく、たとえば、ハイブリッドカーや電気自動車においては、車両を走行させる走行用バッテリの電圧を降圧してバッテリを充電するDC/DCコンバータとすることができる。充電機構は、出力電圧を制御して、バッテリを過充電させないように充電する。 The vehicle 200 includes a charging mechanism 25 for charging the battery 1. The vehicle 200 in FIGS. 1 and 2 is connected to the output side of the control switch 4 with the charging mechanism 25 as a generator 25A. The generator 25A is driven by an engine (not shown) and charges the battery 1 with generated power, or charges the battery 1 with regenerative power generation of the vehicle. In regenerative power generation, the generator 25A is driven when the vehicle is decelerated, and the generator 25A is driven by the energy of movement of the vehicle to generate power. 1 and 2, the charging mechanism 25 is a generator 25A, but the charging mechanism is not necessarily a generator. For example, in a hybrid car or an electric vehicle, the voltage of a traveling battery for running the vehicle is reduced. Thus, a DC / DC converter for charging the battery can be obtained. The charging mechanism controls the output voltage to charge the battery so as not to overcharge.
 バッテリ1は、充電できる電池2として、リチウムイオン電池、又はリチウムポリマー電池などの非水系電解液電池を直列に接続している。ただ、バッテリは、ニッケル水素電池やニッケルカドミウム電池等の電池を直列に接続して使用することもできる。非水系電解液電池からなるバッテリ1は、電池2を直列に接続する個数で出力電圧を調整できる。リチウムイオン電池やリチウムポリマー電池からなるバッテリ1は、電池2を3個又は4個を直列に接続して出力電圧を約12Vとすることができる。ただ、バッテリは、直列に接続する電池の個数を調整して、出力電圧を12V~48Vとすることもできる。出力電圧を12Vとするバッテリ1は、車両側負荷20に直接に電力を供給する。出力電圧を24V~48Vとするバッテリは、出力側にDC/DCコンバータ(図示せず)を接続して、このDC/DCコンバータで12Vに降圧して、車両側負荷に電力を供給する。 The battery 1 has a non-aqueous electrolyte battery such as a lithium ion battery or a lithium polymer battery connected in series as the rechargeable battery 2. However, a battery such as a nickel metal hydride battery or a nickel cadmium battery can be connected in series for use. The battery 1 composed of a non-aqueous electrolyte battery can adjust the output voltage by the number of batteries 2 connected in series. The battery 1 composed of a lithium ion battery or a lithium polymer battery can have an output voltage of about 12 V by connecting three or four batteries 2 in series. However, the output voltage can be set to 12V to 48V by adjusting the number of batteries connected in series. The battery 1 with an output voltage of 12 V supplies power directly to the vehicle-side load 20. A battery having an output voltage of 24V to 48V is connected to a DC / DC converter (not shown) on the output side, and is stepped down to 12V by the DC / DC converter to supply power to the vehicle side load.
 図1と図2の電源装置は、バッテリ1の出力側に、最大放電電流を制限して充電電流を遮断する電流制限回路3と、充放電を制御する制御スイッチ4とを接続している。バッテリ1は、電流制限回路3を介して車両側負荷20の常時通電端子23に電力を供給し、制御スイッチ4を介して車両側負荷20の電力供給端子22に電力を供給する。 1 and 2 are connected to the output side of the battery 1 with a current limiting circuit 3 that limits the maximum discharging current and cuts off the charging current, and a control switch 4 that controls charging and discharging. The battery 1 supplies power to the constant energization terminal 23 of the vehicle side load 20 via the current limiting circuit 3 and supplies power to the power supply terminal 22 of the vehicle side load 20 via the control switch 4.
 図1と図2の車両200は、電力供給端子22にメインリレー24を接続している。メインリレー24は、イグニッションスイッチのオン状態でオンに切り換えられて、イグニッションスイッチのオフ状態でオフに切り換えられる。この電源装置は、制御スイッチ4の出力側を、メインリレー24を介して電力供給端子22に接続している。この電源装置は、制御スイッチ4とメインリレー24とを介して、バッテリ1から車両側負荷20の電力供給端子22に電力を供給する。 1 and 2 have a main relay 24 connected to a power supply terminal 22. The main relay 24 is turned on when the ignition switch is on, and is turned off when the ignition switch is off. In this power supply device, the output side of the control switch 4 is connected to the power supply terminal 22 via the main relay 24. This power supply device supplies power from the battery 1 to the power supply terminal 22 of the vehicle-side load 20 via the control switch 4 and the main relay 24.
 車両側負荷20の常時通電端子23は、メインリレー24を介することなく、電流制限回路3の出力側に接続される。したがって、バッテリ1は、電流制限回路3を介して常時通電端子23に電力を供給する。 The always-on terminal 23 of the vehicle-side load 20 is connected to the output side of the current limiting circuit 3 without going through the main relay 24. Therefore, the battery 1 always supplies power to the energization terminal 23 via the current limiting circuit 3.
 図1に示す電源装置は、第1の出力端子11と第2の出力端子12とを備えている。第1の出力端子11は、制御スイッチ4の出力側に接続されており、第2の出力端子12は、電流制限回路3の出力側に接続されている。第1の出力端子11は、車両側負荷20の電力供給端子22に電力を供給し、第2の出力端子12は、車両側負荷20の常時通電端子23に電力を供給する。この電源装置は、制御スイッチ4からバッテリ1の電力を出力する第1の出力端子11と、電流制限回路3を介してバッテリ1の電力を出力する第2の出力端子12とを別々に設けて、第1の出力端子11から電力供給端子22に、第2の出力端子12から常時通電端子23に電力を供給する。 The power supply device shown in FIG. 1 includes a first output terminal 11 and a second output terminal 12. The first output terminal 11 is connected to the output side of the control switch 4, and the second output terminal 12 is connected to the output side of the current limiting circuit 3. The first output terminal 11 supplies power to the power supply terminal 22 of the vehicle-side load 20, and the second output terminal 12 supplies power to the always-on terminal 23 of the vehicle-side load 20. This power supply device is provided with a first output terminal 11 that outputs the power of the battery 1 from the control switch 4 and a second output terminal 12 that outputs the power of the battery 1 via the current limiting circuit 3 separately. The power is supplied from the first output terminal 11 to the power supply terminal 22 and from the second output terminal 12 to the constant energization terminal 23.
 図2の電源装置は、電流制限回路3の出力側と制御スイッチ4の出力側とを接続してひとつの出力端子10としている。この電源装置は、出力端子10から、車両側負荷20の電力供給端子22と常時通電端子23の両方に電力を供給する。電力供給端子22は、メインリレー24を介してバッテリ1の電力を供給している。常時通電端子23は、制御スイッチ4のオン状態とオフ状態の両方においてバッテリ1から電力を供給している。制御スイッチ4のオン状態においては、制御スイッチ4と電流制限回路3の両方から常時通電端子23に電力が供給され、制御スイッチ4のオフ状態においては、電流制限回路3を介して常時通電端子23にバッテリ1から電力が供給される。 In the power supply device of FIG. 2, the output side of the current limiting circuit 3 and the output side of the control switch 4 are connected to form one output terminal 10. The power supply device supplies power from the output terminal 10 to both the power supply terminal 22 and the constant energization terminal 23 of the vehicle-side load 20. The power supply terminal 22 supplies power of the battery 1 via the main relay 24. The constant energization terminal 23 supplies power from the battery 1 in both the on state and the off state of the control switch 4. When the control switch 4 is in the on state, power is always supplied to the energization terminal 23 from both the control switch 4 and the current limiting circuit 3, and when the control switch 4 is in the off state, the constant energization terminal 23 is passed through the current limiting circuit 3. Electric power is supplied from the battery 1.
 電流制限回路3は、最大放電電流を、例えば100mA、好ましくは50mA以下に制限する。この電流制限回路3は、出力電流を一定の電流以下に制限する定電流回路3Aである。ただし、電流制限回路は、抵抗器として、抵抗器の電気抵抗で最大放電電流を制限することもできる。図2に示す電流制限回路3は、抵抗器3Bとしている。抵抗器3Bの電流制限回路3は、放電電流が大きくなるにしたがって、電圧降下が大きくなって、車両側負荷20の電流を制限する。電流制限回路3は、バッテリ1の充電電流を遮断するのでダイオード7を直列に接続している。充電電流を遮断できる定電流回路は、必ずしもダイオードを直列に接続する必要はない。抵抗器3Bはダイオード7を直列に接続して、バッテリ1の充電電流を遮断する。 The current limiting circuit 3 limits the maximum discharge current to, for example, 100 mA, preferably 50 mA or less. The current limiting circuit 3 is a constant current circuit 3A that limits the output current to a certain current or less. However, the current limiting circuit can limit the maximum discharge current as a resistor by the electric resistance of the resistor. The current limiting circuit 3 shown in FIG. 2 is a resistor 3B. The current limiting circuit 3 of the resistor 3B limits the current of the vehicle-side load 20 by increasing the voltage drop as the discharge current increases. Since the current limiting circuit 3 cuts off the charging current of the battery 1, a diode 7 is connected in series. A constant current circuit capable of interrupting the charging current does not necessarily require a diode connected in series. The resistor 3B connects the diode 7 in series to cut off the charging current of the battery 1.
 制御スイッチ4はリレーで、オフ状態においては、バッテリ1の充電と、電力供給端子22への放電を禁止し、オン状態においては、充電機構25によるバッテリ1の充電と、電力供給端子22への放電を許容する。制御スイッチ4は、リレーに代わって半導体スイッチング素子も使用できる。図1と図2の電源装置は、制御回路5で制御スイッチ4をオンオフに制御する。 The control switch 4 is a relay. In the off state, the control switch 4 prohibits the charging of the battery 1 and the discharge to the power supply terminal 22. In the on state, the control switch 4 charges the battery 1 by the charging mechanism 25 and Allow discharge. The control switch 4 can also use a semiconductor switching element instead of the relay. 1 and 2 controls the control switch 4 to be turned on and off by the control circuit 5.
 制御回路5は、バッテリ1を構成している電池2の電圧又は残容量、あるいは電圧と残容量の両方を検出して、制御スイッチ4をオンオフに制御する。なお、温度検出により、制御スイッチ4をオンオフしてもよい。この制御回路5は、電池2を充電している状態で、電圧が最高電圧まで上昇し、あるいは残容量が増加して過充電される状態になると、制御スイッチ4をオフに切り換えて充電電流を遮断する。また、制御回路5は、放電される電池2の電圧が設定電圧まで低下し、あるいは残容量が設定残容量まで低下して過放電される状態になると制御スイッチ4をオフに切り換えて過放電を防止する。この制御回路5は、電池2が過充電されず、また過放電されない電圧と残容量とで制御スイッチ4をオンに切り換えて、車両側に電力を供給する。 The control circuit 5 detects the voltage or remaining capacity of the battery 2 constituting the battery 1 or both the voltage and remaining capacity and controls the control switch 4 to be turned on / off. The control switch 4 may be turned on / off by detecting the temperature. When the battery 2 is charged and the voltage rises to the maximum voltage, or the remaining capacity increases and the battery is overcharged, the control circuit 5 switches the control switch 4 to OFF and supplies the charging current. Cut off. Further, the control circuit 5 switches the control switch 4 to OFF when the voltage of the discharged battery 2 is lowered to the set voltage, or when the remaining capacity is lowered to the set remaining capacity and is overdischarged. To prevent. The control circuit 5 switches on the control switch 4 with a voltage and a remaining capacity at which the battery 2 is not overcharged and is not overdischarged, and supplies power to the vehicle side.
 さらに、制御回路5は、制御スイッチ4をオフに切り換えた状態で、電流制限回路3を介して放電される電池2がさらに深く放電された過放電状態となるのを防止するために、電池2の電圧が最低電圧よりも低下し、あるいは電池2の残容量が最低容量よりも低下する状態になると、電流制限回路3の電流を遮断することができる。図1に示す電流制限回路3は、電池2から放電される電流を遮断する過放電防止スイッチ13を備えている。この制御回路5は、電池2の電圧が最低電圧よりも低下し、あるいは電池2の残容量が最低容量よりも低下する状態になると、過放電防止スイッチ13をオフに切り換えて、電池2がさらに深く放電(例えば完全放電)されるのを防止して電池2を保護する。この制御回路は、過放電防止スイッチ13をオフに切り換える最低電圧、及び最低残容量を、制御スイッチ4をオフに切り換える設定電圧、及び設定残容量と同等か、あるいはこれよりも小さな値に設定している。 Further, the control circuit 5 prevents the battery 2 discharged through the current limiting circuit 3 from entering an overdischarged state in which the battery 2 is discharged deeper in the state where the control switch 4 is turned off. When the voltage of the current limit circuit 3 falls below the minimum voltage or the remaining capacity of the battery 2 falls below the minimum capacity, the current of the current limiting circuit 3 can be cut off. The current limiting circuit 3 shown in FIG. 1 includes an overdischarge prevention switch 13 that cuts off a current discharged from the battery 2. When the voltage of the battery 2 falls below the minimum voltage or the remaining capacity of the battery 2 falls below the minimum capacity, the control circuit 5 switches the overdischarge prevention switch 13 to turn off the battery 2 further. The battery 2 is protected by preventing deep discharge (for example, complete discharge). This control circuit sets the minimum voltage and the minimum remaining capacity for switching off the overdischarge prevention switch 13 to values equal to or smaller than the set voltage and the set remaining capacity for switching off the control switch 4. ing.
 以上の制御回路5は、各々の電池2の電圧を検出する電圧検出回路(図示せず)と残容量検出回路(図示せず)とを備えており、また電圧検出回路で検出する電圧で、制御スイッチ4や過放電防止スイッチ13をオンオフに記憶する電圧の閾値と、残容量検出回路で検出する残容量で制御スイッチ4や過放電防止スイッチ13をオンオフに制御する残容量の閾値とをメモリ15に記憶している。制御回路5は、検出する電池2の電圧や残容量をメモリ15に記憶する閾値に比較して、制御スイッチ4や過放電防止スイッチ13をオンオフに制御する。すなわち、制御回路5は、検出される電圧や残容量が所定の範囲内にある状態では、制御スイッチ4をオン状態としてバッテリ1の充放電を許容し、検出される電圧や残容量が所定の範囲外になると、制御スイッチ4をオフに切り換えてバッテリ1の過充電と過放電を防止する。残容量検出回路は、電池2からなるバッテリ1の充放電電流を積算して残容量を演算し、また、演算される残容量を検出する電圧で補正して残容量を検出する。充放電電流から残容量を検出する残容量検出回路は、充電電流の積算値を加算し、放電電流の積算値を減算して残容量を演算する。 The control circuit 5 includes a voltage detection circuit (not shown) for detecting the voltage of each battery 2 and a remaining capacity detection circuit (not shown), and is a voltage detected by the voltage detection circuit. The memory stores the threshold value of the voltage for storing the control switch 4 and the overdischarge prevention switch 13 on and off and the threshold value of the remaining capacity for controlling the control switch 4 and the overdischarge prevention switch 13 on and off with the remaining capacity detected by the remaining capacity detection circuit. 15 is stored. The control circuit 5 compares the detected voltage or remaining capacity of the battery 2 with a threshold value stored in the memory 15 and controls the control switch 4 and the overdischarge prevention switch 13 to be turned on / off. In other words, the control circuit 5 allows the battery 1 to be charged / discharged by turning on the control switch 4 in a state where the detected voltage and remaining capacity are within a predetermined range, and the detected voltage and remaining capacity are predetermined. When out of range, the control switch 4 is turned off to prevent overcharging and overdischarging of the battery 1. The remaining capacity detection circuit calculates the remaining capacity by integrating the charging / discharging current of the battery 1 including the battery 2 and detects the remaining capacity by correcting with the voltage for detecting the calculated remaining capacity. The remaining capacity detection circuit that detects the remaining capacity from the charging / discharging current adds the integrated value of the charging current and subtracts the integrated value of the discharging current to calculate the remaining capacity.
 さらに、制御回路5は、電池2の温度を検出する温度センサ16を備えると共に、この温度センサ16で検出する検出温度をあらかじめ記憶している温度範囲に比較して、制御スイッチ4をオンオフに制御することもできる。この制御回路5は、温度センサ16で検出する温度を比較して、制御スイッチ4をオン状態とする温度範囲をメモリ15に記憶している。メモリ15に記憶される温度範囲は、たとえば、-30℃~70℃とする。この制御回路5は、電池2の温度が-30℃~70℃で制御スイッチ4をオン状態とし、この温度範囲よりも低く、あるいは高い状態、すなわち電池温度が所定の範囲外となる状態で、制御スイッチ4をオフに切り換えて、電池2が極低温と極めて高い温度においては、車両側への電力供給を停止する。 Further, the control circuit 5 includes a temperature sensor 16 for detecting the temperature of the battery 2 and controls the control switch 4 to be turned on / off by comparing the detected temperature detected by the temperature sensor 16 with a temperature range stored in advance. You can also The control circuit 5 compares the temperatures detected by the temperature sensor 16 and stores a temperature range in which the control switch 4 is turned on in the memory 15. The temperature range stored in the memory 15 is, for example, −30 ° C. to 70 ° C. The control circuit 5 turns on the control switch 4 when the temperature of the battery 2 is −30 ° C. to 70 ° C., and is lower or higher than this temperature range, that is, when the battery temperature is outside the predetermined range. The control switch 4 is turned off, and the power supply to the vehicle side is stopped when the battery 2 is extremely low in temperature.
 さらに、制御回路5は、電池2の充電電流が、あらかじめ設定している電流閾値よりも大きい状態で、制御スイッチ4をオフに切り換えて、電池2が過大な電流で充電されるのを防止することもできる。この制御回路5は、電池2の電流を検出する電流検出回路(図示せず)を備えており、かつ、制御スイッチ4をオフに切り換える電流閾値をメモリ15に記憶している。この制御回路5は、電流検出回路で検出する電池2の充電電流を記憶している電流閾値に比較し、充電電流が電流閾値よりも大きくなる状態で制御スイッチ4をオフに切り換える。 Further, the control circuit 5 switches the control switch 4 to OFF in a state where the charging current of the battery 2 is larger than a preset current threshold, thereby preventing the battery 2 from being charged with an excessive current. You can also. The control circuit 5 includes a current detection circuit (not shown) that detects the current of the battery 2, and stores a current threshold value for switching the control switch 4 off in the memory 15. The control circuit 5 switches the control switch 4 off in a state where the charging current is larger than the current threshold value, as compared with the current threshold value storing the charging current of the battery 2 detected by the current detection circuit.
 図1と図2の電源装置は、制御回路5を起動する起動回路6を備えている。起動回路6は、電流制限回路3を介してバッテリ1から常に電力を供給している。起動回路6は、イグニッションスイッチのオフ状態においても、常に動作状態にあって、所定の周期で起動信号を制御回路5に出力する。制御回路5は、起動回路6から入力される起動信号で起動して、電池2の電圧、残容量、温度等のバッテリ状態を検出して制御スイッチ4を制御する。起動回路6は、一定の周期で、たとえば、0.1秒~100秒の周期で起動信号を制御回路5に出力する。制御回路5は、起動信号で起動して、電池2のバッテリ状態を検出し、バッテリ状態で制御スイッチ4をオン又はオフに切り換えた後、休止状態となる。休止状態の制御回路5は、起動信号が入力される毎に起動して、バッテリ状態を検出して制御スイッチ4をオンオフに制御する。 1 and FIG. 2 includes a starting circuit 6 that starts the control circuit 5. The starting circuit 6 always supplies power from the battery 1 via the current limiting circuit 3. The startup circuit 6 is always in an operating state even when the ignition switch is off, and outputs a startup signal to the control circuit 5 at a predetermined cycle. The control circuit 5 is activated by the activation signal input from the activation circuit 6, detects the battery state such as the voltage, remaining capacity, and temperature of the battery 2 and controls the control switch 4. The activation circuit 6 outputs an activation signal to the control circuit 5 at a constant cycle, for example, at a cycle of 0.1 to 100 seconds. The control circuit 5 is activated by the activation signal, detects the battery state of the battery 2, switches the control switch 4 on or off in the battery state, and then enters a dormant state. The inactive control circuit 5 is activated each time an activation signal is input, detects a battery condition, and controls the control switch 4 to be turned on / off.
 メインスイッチ21のオン状態においては制御回路5を休止させることなく、常に動作状態として、バッテリ状態を検出する時間間隔を短くして、制御スイッチ4をオンオフに制御することができる。メインスイッチ21のオン状態は、起動回路6がバッテリ電圧を検出して判定できる。メインスイッチ21のオン状態において、バッテリ1が充電機構25で充電される状態となってバッテリ電圧が高くなるので、起動回路6はバッテリ電圧を検出して、メインスイッチ21のオン状態を検出できる。ただし、起動回路は、イグニッションスイッチの信号を検出して、メインスイッチのオン状態を検出することもできる。この起動回路は、メインスイッチのオン状態を示すオン信号を制御回路に入力する。制御回路は、起動回路から入力されるオン信号で、休止することなく動作状態に保持されて、バッテリ状態をより精密に、たとえば、1msec~100msecのサンプリング周期で、電池の電圧、残容量、温度、電流などを検出して、制御スイッチ4をオンオフに制御する。 In the ON state of the main switch 21, it is possible to control the control switch 4 to be turned on and off by shortening the time interval for detecting the battery state as an always operating state without pausing the control circuit 5. The ON state of the main switch 21 can be determined by the starter circuit 6 detecting the battery voltage. When the main switch 21 is in the on state, the battery 1 is charged by the charging mechanism 25 and the battery voltage becomes high. Therefore, the activation circuit 6 can detect the battery voltage and detect the on state of the main switch 21. However, the start-up circuit can also detect the ignition switch signal to detect the ON state of the main switch. The activation circuit inputs an ON signal indicating the ON state of the main switch to the control circuit. The control circuit is an ON signal input from the start-up circuit and is maintained in an operating state without a pause, and the battery state is more precisely measured, for example, with a sampling period of 1 msec to 100 msec, the battery voltage, remaining capacity, temperature The current is detected to control the control switch 4 on and off.
 さらに、電源装置は、図3と図4に示すように、非水系電解液電池からなるバッテリ1に、鉛バッテリ9を並列に接続することもできる。図3の電源装置は、非水系電解液電池からなるバッテリ1と並列に鉛バッテリ9を接続している。図4の電源装置は、制御スイッチ4の出力側に鉛バッテリ9を接続して、制御スイッチ4を介して非水系電解液電池からなるバッテリ1と鉛バッテリ9とを並列に接続している。以上の電源装置は、非水系電解液電池からなるバッテリ1と鉛バッテリ9の両方から、車両側負荷20に電力を供給する。 Furthermore, as shown in FIGS. 3 and 4, the power supply device can also connect a lead battery 9 in parallel to a battery 1 made of a non-aqueous electrolyte battery. The power supply device of FIG. 3 has a lead battery 9 connected in parallel with a battery 1 made of a non-aqueous electrolyte battery. In the power supply device of FIG. 4, a lead battery 9 is connected to the output side of the control switch 4, and the battery 1 made of a nonaqueous electrolyte battery and the lead battery 9 are connected in parallel via the control switch 4. The above power supply device supplies electric power to the vehicle-side load 20 from both the battery 1 and the lead battery 9 made of a non-aqueous electrolyte battery.
 図3の電源装置は、非水系電解液電池からなるバッテリ1と鉛バッテリ9とを並列に接続するので、制御スイッチ4のオフ状態において、非水系電解液電池からなるバッテリ1と鉛バッテリ9から電力供給端子22への電力供給を停止して、非水系電解液電池からなるバッテリ1と鉛バッテリ9の両方から常時通電端子23に電力を供給する。また、この電源装置は、充電状態においては、制御スイッチ4のオン状態では、非水系電解液電池からなるバッテリ1と鉛バッテリ9の両方が充電され、制御スイッチ4のオフ状態では、非水系電解液電池からなるバッテリ1と鉛バッテリ9の両方の充電が停止される。 3 connects the battery 1 made of a non-aqueous electrolyte battery and the lead battery 9 in parallel, so that the battery 1 and the lead battery 9 made of a non-aqueous electrolyte battery are in the OFF state of the control switch 4. Power supply to the power supply terminal 22 is stopped, and power is supplied to the energization terminal 23 from both the battery 1 and the lead battery 9 made of a non-aqueous electrolyte battery. In the charged state, when the control switch 4 is in the on state, the battery 1 and the lead battery 9 are both charged, and in the off state of the control switch 4, the power switch is in the nonaqueous electrolytic state. Charging of both the battery 1 made of a liquid battery and the lead battery 9 is stopped.
 さらに、図4の電源装置は、制御スイッチ4を介して鉛バッテリ9を非水系電解液電池からなるバッテリ1に並列に接続しているので、制御スイッチ4のオン状態では、非水系電解液電池からなるバッテリ1と鉛バッテリ9の両方から車両側負荷20の電力供給端子22と常時通電端子23に電力を供給する。また、制御スイッチ4のオフ状態では、非水系電解液電池からなるバッテリ1は常時通電端子23にのみ電力を供給する。さらに、この電源装置は、充電状態においては、制御スイッチ4のオン状態では、非水系電解液電池からなるバッテリ1と鉛バッテリ9の両方が充電され、制御スイッチ4のオフ状態では、非水系電解液電池からなるバッテリ1は充電されることなく、鉛バッテリ9のみが充電される。 Furthermore, since the power supply device of FIG. 4 connects the lead battery 9 in parallel to the battery 1 made of a non-aqueous electrolyte battery via the control switch 4, the non-aqueous electrolyte battery is in the on state of the control switch 4. Electric power is supplied from both the battery 1 and the lead battery 9 to the power supply terminal 22 and the constant energization terminal 23 of the vehicle-side load 20. Further, when the control switch 4 is in the OFF state, the battery 1 made of a non-aqueous electrolyte battery always supplies power only to the energization terminal 23. Further, when the control switch 4 is in the on state, the power supply device is charged with both the battery 1 and the lead battery 9 made of a non-aqueous electrolyte battery, and in the off state of the control switch 4 with the non-aqueous electrolysis. The battery 1 made of a liquid battery is not charged and only the lead battery 9 is charged.
 図1と図2の電源装置は、以下の動作をして、バッテリ1から車両側負荷20に電力を供給する。 1 and 2 supplies the electric power from the battery 1 to the vehicle-side load 20 by performing the following operations.
[イグニッションスイッチがオフの状態]
 この状態で、起動回路6が所定の周期で起動信号を制御回路5に入力する。制御回路5は、入力される起動信号で起動して、休止状態から動作状態となる。起動した制御回路5は、非水系電解液電池からなるバッテリ1の状態を所定の周期で検出して、バッテリ状態が非水系電解液電池の充放電を許容する状態、すなわち、過充電や過放電されない状態にあると、制御スイッチ4をオン状態に保持する。
[Ignition switch is off]
In this state, the activation circuit 6 inputs an activation signal to the control circuit 5 at a predetermined cycle. The control circuit 5 is activated by the activation signal that is input, and changes from the sleep state to the operating state. The activated control circuit 5 detects the state of the battery 1 composed of a non-aqueous electrolyte battery at a predetermined cycle, and the battery state permits charging / discharging of the non-aqueous electrolyte battery, that is, overcharge or overdischarge. If not, the control switch 4 is kept on.
 バッテリ電圧や残容量、温度などを検出して、バッテリ1が過充電状態、あるいは過放電状態にあり、あるいは、電池温度が設定範囲を越えて、バッテリ1が充放電を許容しない状態になると、制御回路5がこのことを検出して、制御スイッチ4をオフに切り換える。図1に示す電源装置では、制御スイッチ4がオフに切り換えられると、車両側負荷20の電力供給端子22には電力が供給されなくなるが、常時通電端子23には電力を供給する状態に保持される。また、図2に示す電源装置では、制御スイッチ4がオフに切り換えられても、車両側負荷20の電力供給端子22と常時通電端子23には電力が供給されるが、イグニッションスイッチがオフ状態にあるので、メインリレー24がオフに保持されている。
 以上の状態は、たとえば、イグニッションスイッチのオフ状態で、図の鎖線で示すように、外部充電器40が接続されて、外部充電器40で非水系電解液電池からなるバッテリ1を充電する状態で発生することがある。すなわち、非水系電解液電池からなるバッテリ1が満充電されて、さらに充電が継続されると、制御スイッチ4がオフに切り換えられて充電は停止される。したがって、イグニッションスイッチのオフ状態においても、非水系電解液電池からなるバッテリ1の過充電は防止される。制御スイッチ4のオフ状態においても、常時通電端子23には非水系電解液電池からなるバッテリ1から電力を供給しているので、たとえばドアロックの解除等はできる。
When the battery voltage, remaining capacity, temperature, etc. are detected and the battery 1 is overcharged or overdischarged, or the battery temperature exceeds the set range and the battery 1 is not allowed to be charged / discharged, The control circuit 5 detects this and switches the control switch 4 off. In the power supply device shown in FIG. 1, when the control switch 4 is turned off, power is not supplied to the power supply terminal 22 of the vehicle-side load 20, but the power is always supplied to the energization terminal 23. The In the power supply device shown in FIG. 2, even when the control switch 4 is turned off, power is supplied to the power supply terminal 22 and the constant energization terminal 23 of the vehicle-side load 20, but the ignition switch is turned off. As a result, the main relay 24 is held off.
The above state is, for example, when the ignition switch is off and the external charger 40 is connected and the external charger 40 charges the battery 1 made of a nonaqueous electrolyte battery as shown by the chain line in the figure. May occur. That is, when the battery 1 made of a non-aqueous electrolyte battery is fully charged and further charged, the control switch 4 is switched off and charging is stopped. Therefore, even when the ignition switch is in the OFF state, overcharging of the battery 1 composed of the non-aqueous electrolyte battery is prevented. Even when the control switch 4 is in the OFF state, power is supplied from the battery 1 made of a non-aqueous electrolyte battery to the always-on terminal 23, so that the door lock can be released, for example.
 また、図4に示すように、制御スイッチ4を介して非水系電解液電池からなるバッテリ1と並列に鉛バッテリ9を接続している電源装置においては、外部充電器40が接続されて充電される状態では、制御スイッチ4がオフに切り換えられると、非水系電解液電池からなるバッテリ1への充電電流が遮断される。このため、外部充電器40は、非水系電解液電池からなるバッテリ1の充電を停止して、非水系電解液電池からなるバッテリ1の過充電を防止しながら、鉛バッテリ9のみを充電する。また、この電源装置は、非水系電解液電池からなるバッテリ1と鉛バッテリ9の両方から電力供給端子22と常時通電端子23とに電力を供給する。 As shown in FIG. 4, in a power supply device in which a lead battery 9 is connected in parallel with a battery 1 made of a non-aqueous electrolyte battery via a control switch 4, an external charger 40 is connected and charged. In this state, when the control switch 4 is turned off, the charging current to the battery 1 composed of a non-aqueous electrolyte battery is cut off. For this reason, the external charger 40 stops charging of the battery 1 made of a non-aqueous electrolyte battery and charges only the lead battery 9 while preventing overcharging of the battery 1 made of a non-aqueous electrolyte battery. Further, this power supply device supplies power to the power supply terminal 22 and the constant energization terminal 23 from both the battery 1 and the lead battery 9 made of a non-aqueous electrolyte battery.
[イグニッションスイッチがオンの状態]
 この状態で、制御回路5は、非水系電解液電池からなるバッテリ1の状態を所定の周期で検出している。バッテリ状態が非水系電解液電池からなるバッテリ1の充放電を許容する状態であると、制御回路5がこのことを検出して、制御スイッチ4をオン状態とする。バッテリ電圧や残容量、温度などのバッテリ状態が充放電を許容しない状態になると、制御回路5がこのことを検出して、制御スイッチ4をオフに切り換える。
[Ignition switch is on]
In this state, the control circuit 5 detects the state of the battery 1 made of a non-aqueous electrolyte battery at a predetermined cycle. If the battery state is a state in which charging / discharging of the battery 1 made of a non-aqueous electrolyte battery is allowed, the control circuit 5 detects this and turns on the control switch 4. When the battery state such as the battery voltage, the remaining capacity, and the temperature is not allowed to be charged / discharged, the control circuit 5 detects this and switches the control switch 4 to OFF.
 図1の電源装置は、制御スイッチ4がオフ状態になると、バッテリ1が接続されなくなるので、ドライバーに「バッテリ異常」と表示して、車両の走行を停止し、あるいは車両の走行を停止することなく、発電機25A等の充電機構25で、直流の定格電圧12Vを出力して、電力供給端子22と常時通電端子23に電力を供給する。 In the power supply device of FIG. 1, when the control switch 4 is turned off, the battery 1 is not connected, so that the driver displays “battery abnormality” and stops traveling of the vehicle or stops traveling of the vehicle. Instead, the charging mechanism 25 such as the generator 25 </ b> A outputs a rated DC voltage of 12 V and supplies power to the power supply terminal 22 and the constant energization terminal 23.
 また、図2の電源装置は、制御スイッチ4がオフ状態になると、非水系電解液電池からなるバッテリ1から電力供給端子22に電力供給できなくなるので、ドライバーに「バッテリ異常」と表示する。この状態で、電流制限回路3を介してバッテリ1は常時通電端子23と電力供給端子22に接続されるが、電流制限回路3は、出力電流を制限しているので、電力供給端子22には常に正常な電流を供給できない。このため、ドライバーは、車両の走行を停止し、あるいは車両の走行を停止することなく、発電機25A等の充電機構25で、直流の定格電圧12Vを出力して、電力供給端子22と常時通電端子23に電力を供給する。 Further, when the control switch 4 is turned off, the power supply device of FIG. 2 cannot supply power to the power supply terminal 22 from the battery 1 made of a non-aqueous electrolyte battery, and displays “battery abnormality” to the driver. In this state, the battery 1 is always connected to the energization terminal 23 and the power supply terminal 22 via the current limit circuit 3, but the current limit circuit 3 limits the output current. A normal current cannot always be supplied. For this reason, the driver outputs the DC rated voltage 12V by the charging mechanism 25 such as the generator 25A without stopping the traveling of the vehicle or stopping the traveling of the vehicle, so that the power supply terminal 22 is always energized. Power is supplied to the terminal 23.
 さらにまた、図4に示すように、制御スイッチ4を介して非水系電解液電池からなるバッテリ1と並列に鉛バッテリ9を接続している電源装置においては、制御スイッチ4がオフ状態になると、非水系電解液電池からなるバッテリ1から電力供給端子22に電力供給できなくなるので、ドライバーに「バッテリ異常」と表示する。この状態で、電流制限回路3を介してバッテリ1は常時通電端子23と電力供給端子22に接続されるが、電流制限回路3は、出力電流を制限しているので、電力供給端子22には常に正常な電流を供給できない。ただ、この状態では、鉛バッテリ9が電力供給端子22と常時通電端子23とに電力を供給することができる。鉛バッテリ9は、充電機25Aなどの充電機構25を接続しているので、充電機25Aで鉛バッテリ9を充電しながら、車両の走行を停止することなく、電力供給端子22と常時通電端子23とに電力を供給しながら、車両を走行できる。 Furthermore, as shown in FIG. 4, in the power supply device in which the lead battery 9 is connected in parallel with the battery 1 made of the nonaqueous electrolyte battery via the control switch 4, when the control switch 4 is turned off, Since power cannot be supplied from the battery 1 made of a non-aqueous electrolyte battery to the power supply terminal 22, “battery abnormality” is displayed to the driver. In this state, the battery 1 is always connected to the energization terminal 23 and the power supply terminal 22 via the current limit circuit 3, but the current limit circuit 3 limits the output current. A normal current cannot always be supplied. However, in this state, the lead battery 9 can supply power to the power supply terminal 22 and the constant power supply terminal 23. Since the lead battery 9 is connected to the charging mechanism 25 such as the charger 25A, the lead battery 9 is charged by the charger 25A, and the power supply terminal 22 and the always-on terminal 23 are not stopped without stopping the running of the vehicle. The vehicle can be run while supplying electric power.
 以上の電源装置は、車両200に搭載される状態で、一般的には定格電圧を12Vとする、車両に装備される電装負荷に電力を供給する電源として使用されるので、エンジンのみで走行する自動車、エンジンとモータの両方で走行するハイブリッドカー、モータのみで走行する電気自動車などに電装用の電源として搭載される。エンジンのみで走行する車両は、図示しないが、発電機を充電機構としてバッテリを充電する。図5に示すように、ハイブリッドカーや電気自動車に搭載される電源装置100は、充電機構25を発電機25Aとし、あるいは発電機に代わって使用されるDC/DCコンバータ25Bとすることができる。このDC/DCコンバータ25Bは、車両を走行させる高電圧の走行用バッテリ30の電圧をバッテリ1を充電する電圧に降圧してバッテリ1を充電する。 The above power supply device is mounted on the vehicle 200 and is generally used as a power source for supplying power to an electrical load installed in the vehicle having a rated voltage of 12 V, and therefore travels only with the engine. It is mounted as a power source for electrical equipment in automobiles, hybrid cars that run on both the engine and motor, and electric cars that run only on the motor. Although not shown in the figure, a vehicle that runs only with an engine charges a battery using a generator as a charging mechanism. As shown in FIG. 5, the power supply apparatus 100 mounted on a hybrid car or an electric vehicle can be configured such that the charging mechanism 25 is a generator 25A or a DC / DC converter 25B used in place of the generator. The DC / DC converter 25 </ b> B charges the battery 1 by reducing the voltage of the high-voltage traveling battery 30 that travels the vehicle to a voltage that charges the battery 1.
 さらに、電源装置は、車両に搭載する電源としてのみならず、載置型の蓄電装置に使用する電源としても利用できる。例えば、家庭用、工場用の電源として、太陽光や深夜電力などで充電し、必要時に放電する電源システム、あるいは日中の太陽光を充電して夜間に放電する街路灯用の電源や、停電時に駆動する信号機用のバックアップ電源などにも利用できる。このような電源装置においても、これに接続される負荷として、メインスイッチがオフの状態で負荷への電力供給を制御する回路を備えて、この回路に待機電力を必要とするものがある。例えば、停電時に駆動する無停電電源装置等においては、商用電源が停電すると、負荷側のメインスイッチがオンに切り換えられて、電源装置から負荷に電力が供給されるが、このような装置においては、商用電源が停電状態にあるかどうかを検出する回路には常に電力を供給する必要がある。また、昼間に太陽光発電によりバッテリを充電し、夜間にバッテリから放電して照明器具を点灯する照明装置等においては、バッテリから負荷である光源への電力供給を制御する回路が、タイマーや光センサー等を駆動するための電力を常時必要とすることがある。このような装置に使用される電源装置においても、負荷のメインスイッチをオフに切り換える状態で、必要な負荷には常に電力を供給して正常に動作する状態に保持できる。 Furthermore, the power supply device can be used not only as a power supply mounted on a vehicle but also as a power supply used for a stationary power storage device. For example, as a power source for homes and factories, a power supply system that is charged with sunlight or late-night power and discharged when necessary, or a power source for street lights that is charged with sunlight during the day and discharged at night, or a power failure It can also be used as a backup power source for traffic lights that are sometimes driven. Even in such a power supply device, as a load connected to the power supply device, there is a device that includes a circuit that controls power supply to the load in a state where the main switch is off, and this circuit requires standby power. For example, in an uninterruptible power supply that is driven in the event of a power failure, when the commercial power supply fails, the main switch on the load side is turned on and power is supplied from the power supply to the load. It is necessary to always supply power to the circuit that detects whether the commercial power supply is in a power failure state. In addition, in a lighting device or the like that charges a battery by solar power generation in the daytime and discharges the battery at night to light a lighting fixture, a circuit that controls the power supply from the battery to the light source that is a load has a timer or light. Electric power for driving sensors or the like may be required at all times. Even in a power supply device used in such a device, it is possible to always supply power to a necessary load and keep it in a normal operating state in a state where the main switch of the load is turned off.
 このような例を図6に示す。この図に示す電源装置は、商用電源の深夜電力や太陽電池等の充電機構25である充電用電源51から供給される電力をDC/DCコンバータ56で所定の電圧に調整してバッテリ1を充電し、バッテリ1から負荷20であるDC/ACインバータ50(以下、DC/ACインバータと呼ぶ)に電力を供給する。このため電源装置は、充電モードと放電モードを備える。DC/ACインバータ50と充電用電源51は、それぞれ、放電スイッチ52及び充電スイッチ53を介して電源装置と接続されている。放電スイッチ52及び充電スイッチ53のON/OFFは、電源装置の制御回路5によって切り替えられる。充電モードにおいては、制御回路5は充電スイッチ53をONに、放電スイッチ52をOFFに切り替えて、充電機構25である充電用電源51から電源装置への充電を許可する。また、充電が完了して満充電になると、あるいは所定値以上の容量が充電された状態で負荷側からの要求に応じて、制御回路5は充電スイッチ53をOFFに、放電スイッチ52をONにして放電モードに切り替え、電源装置からDC/ACインバータ50への放電を許可する。また、必要に応じて、充電スイッチ53をONに、放電スイッチ52をONにして、DC/ACインバータ50への電力供給と、電源装置への充電を同時に行うこともできる。 Such an example is shown in FIG. The power supply device shown in this figure charges the battery 1 by adjusting the power supplied from a charging power supply 51 which is a charging mechanism 25 such as a midnight power of a commercial power supply or a solar battery to a predetermined voltage by a DC / DC converter 56. Then, electric power is supplied from the battery 1 to a DC / AC inverter 50 (hereinafter referred to as a DC / AC inverter) that is the load 20. For this reason, the power supply device has a charge mode and a discharge mode. The DC / AC inverter 50 and the charging power source 51 are connected to a power supply device via a discharging switch 52 and a charging switch 53, respectively. ON / OFF of the discharge switch 52 and the charge switch 53 is switched by the control circuit 5 of the power supply device. In the charging mode, the control circuit 5 switches the charging switch 53 to ON and the discharging switch 52 to OFF to permit charging from the charging power supply 51 serving as the charging mechanism 25 to the power supply device. Further, when the charging is completed and the battery is fully charged, or in response to a request from the load side in a state where a capacity of a predetermined value or more is charged, the control circuit 5 turns the charging switch 53 OFF and the discharging switch 52 ON. The discharge mode is switched to permit the discharge from the power supply device to the DC / AC inverter 50. If necessary, the charging switch 53 can be turned on and the discharging switch 52 can be turned on to supply power to the DC / AC inverter 50 and charge the power supply device at the same time.
 図に示す負荷20は、放電スイッチ52をメインスイッチ21として、電源装置と接続している。すなわち、電源装置の放電モードにおいては、制御回路5がメインスイッチ21である放電スイッチ52をONに切り替えて、負荷20のDC/ACインバータ50に接続し、DC/ACインバータ50を介して電源装置からの電力を電気機器54に供給する。図の装置は、負荷20として、DC/ACインバータ50と、このDC/ACインバータ50を制御する制御回路55とを備えている。DC/ACインバータ50は、供給される直流を所定の交流に変換して電気機器54に出力する。制御回路55は、DC/ACインバータ50を制御して、DC/ACインバータ50から電気機器54への電力供給をコントロールする。さらに、図に示す負荷20は、メインスイッチ21である放電スイッチ52(以下、放電スイッチと呼ぶ)のオン状態で電力が供給される電力供給端子22と、放電スイッチ52のオン状態とオフ状態とで電力が供給される常時通電端子23とを備えている。この電源装置は、制御スイッチ4の出力側を、放電スイッチ52を介して電力供給端子22に接続すると共に、電流制限回路3の出力側を、放電スイッチ52を介することなく、負荷20の常時通電端子23に接続している。したがって、バッテリ1は、電流制限回路3を介して常に常時通電端子23に電力を供給し、制御スイッチ4とメインスイッチ21とを介して、負荷20の電力供給端子22に電力を供給している。 The load 20 shown in the figure is connected to the power supply device with the discharge switch 52 as the main switch 21. That is, in the discharge mode of the power supply device, the control circuit 5 switches on the discharge switch 52 that is the main switch 21 to connect to the DC / AC inverter 50 of the load 20, and the power supply device is connected via the DC / AC inverter 50. Is supplied to the electric device 54. The apparatus shown in the figure includes a DC / AC inverter 50 and a control circuit 55 that controls the DC / AC inverter 50 as a load 20. The DC / AC inverter 50 converts the supplied direct current into a predetermined alternating current and outputs it to the electrical device 54. The control circuit 55 controls the DC / AC inverter 50 to control power supply from the DC / AC inverter 50 to the electric device 54. Furthermore, the load 20 shown in the figure includes a power supply terminal 22 to which power is supplied in the on state of a discharge switch 52 (hereinafter referred to as a discharge switch) that is a main switch 21, and an on state and an off state of the discharge switch 52. And a constantly energizing terminal 23 to which power is supplied. In this power supply device, the output side of the control switch 4 is connected to the power supply terminal 22 via the discharge switch 52, and the output side of the current limiting circuit 3 is always energized without passing through the discharge switch 52. The terminal 23 is connected. Therefore, the battery 1 always supplies power to the energization terminal 23 through the current limiting circuit 3 and supplies power to the power supply terminal 22 of the load 20 through the control switch 4 and the main switch 21. .
 さらに、図7の電源装置は、電流制限回路3を、充放電電流を制限する回路として、外部に接続される充電器41から入力される電力でバッテリ1を充電できる回路としている。この図の電流制限回路3は、外部の充電器41に接続される充電端子17を接続しており、この充電端子17に充電器41を接続している。充電器41は、太陽電池の充電器、又は商用電源をバッテリ1の充電電圧と電流に変換して出力する充電器等である。以上の電源装置は、制御スイッチ4のオフ状態において、外部に接続される充電器41でもってバッテリ1を充電できるので、制御スイッチ4のオフ状態においても、バッテリ1の過放電を防止できる。 Further, in the power supply device of FIG. 7, the current limiting circuit 3 is a circuit that limits the charge / discharge current, and is a circuit that can charge the battery 1 with the electric power input from the charger 41 connected to the outside. The current limiting circuit 3 in this figure is connected to a charging terminal 17 connected to an external charger 41, and the charger 41 is connected to this charging terminal 17. The charger 41 is a solar cell charger or a charger that converts a commercial power source into a charging voltage and current of the battery 1 and outputs the converted voltage. Since the power supply device described above can charge the battery 1 with the charger 41 connected to the outside when the control switch 4 is in the off state, overdischarge of the battery 1 can be prevented even when the control switch 4 is in the off state.
 図7の電源装置の電流制限回路3は、放電電流と充電電流を所定の電流値以下に制限する電流制限部18と、その出力側に接続している出力スイッチ19とを備える。充電電流を制限してバッテリ1を充電する電流制限部18は、入力される電力を所定の電流値以下に制限してバッテリ1を充電する。この電流制限部18は、バッテリ1を過大な電流で充電することなく安全に充電できる。 7 includes a current limiting unit 18 that limits a discharge current and a charging current to a predetermined current value or less, and an output switch 19 connected to the output side. The current limiting unit 18 that limits the charging current and charges the battery 1 charges the battery 1 by limiting the input power to a predetermined current value or less. The current limiting unit 18 can safely charge the battery 1 without charging it with an excessive current.
 出力スイッチ19は、過放電防止スイッチ19Aと過充電防止スイッチ19Bとからなる。過放電防止スイッチ19Aと過充電防止スイッチ19Bは、制御回路5でオンオフに制御される。制御回路5は、電池2の電圧が最低電圧よりも低下し、あるいは電池2の残容量が最低容量よりも低下する状態になると、過放電防止スイッチ19Aをオフに切り換えて、電池2がさらに深く放電(例えば完全放電)されるのを防止して電池2を保護する。この制御回路5は、過放電防止スイッチ19Aをオフに切り換える最低電圧、及び最低残容量を、制御スイッチ4をオフに切り換える設定電圧、及び設定残容量と同等か、あるいはこれよりも小さな値に設定している。さらに、制御回路5は、電池2の電圧が最高電圧よりも上昇し、あるいは電池2の残容量が最高容量よりも上昇する状態になると、過充電防止スイッチ19Bをオフに切り換えて、電池2がさらに深く充電(例えば過充電)されるのを防止して電池2を保護する。この制御回路5は、過充電防止スイッチ19Bをオフに切り換える最高電圧、及び最高残容量を、制御スイッチ4をオフに切り換える設定電圧、及び設定残容量と同等か、あるいはこれよりも大きな値に設定している。図7の電源装置は、過放電防止スイッチ19Aと過充電防止スイッチ19Bを、寄生ダイオード19xを有するFETとして、過放電防止スイッチ19Aの第1FET19aと、過充電防止スイッチ19Bの第2FET19bを直列に接続している。第1FET19aはオン状態でバッテリ1を放電し、オフ状態でバッテリ1の放電電流を遮断する。第2FET19bはオン状態でバッテリ1を充電し、オフ状態でバッテリ1の充電電流を遮断する。 The output switch 19 includes an overdischarge prevention switch 19A and an overcharge prevention switch 19B. The overdischarge prevention switch 19A and the overcharge prevention switch 19B are controlled to be turned on / off by the control circuit 5. When the voltage of the battery 2 drops below the minimum voltage or the remaining capacity of the battery 2 falls below the minimum capacity, the control circuit 5 switches the overdischarge prevention switch 19A to turn off the battery 2 further deeper. The battery 2 is protected by preventing discharge (for example, complete discharge). The control circuit 5 sets the minimum voltage and the minimum remaining capacity for switching off the overdischarge prevention switch 19A to values equal to or smaller than the set voltage and the set remaining capacity for switching off the control switch 4. is doing. Further, when the voltage of the battery 2 rises above the maximum voltage or the remaining capacity of the battery 2 rises above the maximum capacity, the control circuit 5 switches the overcharge prevention switch 19B to OFF so that the battery 2 Further, the battery 2 is protected by preventing deep charging (for example, overcharging). The control circuit 5 sets the maximum voltage and the maximum remaining capacity for switching off the overcharge prevention switch 19B to values equal to or larger than the set voltage and the set remaining capacity for switching off the control switch 4. is doing. In the power supply device of FIG. 7, the overdischarge prevention switch 19A and the overcharge prevention switch 19B are FETs having a parasitic diode 19x, and the first FET 19a of the overdischarge prevention switch 19A and the second FET 19b of the overcharge prevention switch 19B are connected in series. is doing. The first FET 19a discharges the battery 1 in the on state, and interrupts the discharge current of the battery 1 in the off state. The second FET 19b charges the battery 1 in the on state, and interrupts the charging current of the battery 1 in the off state.
 以上の電源装置は、過放電防止スイッチ19Aと過充電防止スイッチ19Bを直列に接続するが、これ等のスイッチは、図8に示すように接続することもできる。図8の電源装置は、電流制限部18の出力側と出力端子10との間に過放電防止スイッチ19Aを接続して、電流制限部18の出力側と充電端子17との間に過充電防止スイッチ19Bを接続している。この図の電源装置は、電流制限部18で放電電流を制限しながら出力端子10から放電すると共に、電流制限部18で充電電流を制限しながら充電器41でバッテリ1を充電する。この電源装置は、過放電防止スイッチ19Aと過充電防止スイッチ19Bとを、図7に示す電源装置と同じように制御回路5で制御して、バッテリ1を放電し、また充電する。図8に示す電流制限回路3は、過放電防止スイッチ19Aと過充電防止スイッチ19Bをコンタクタとしているが、過放電防止スイッチと過充電防止スイッチは、FET等の半導体スイッチング素子とすることもできる。ただし、過放電防止スイッチをFETとする電源装置は、図示しないが、過放電防止スイッチの出力端子側に、放電電流を許容するが逆電流を遮断するダイオードを接続して、充電電流を遮断する。 In the above power supply device, the overdischarge prevention switch 19A and the overcharge prevention switch 19B are connected in series, but these switches can also be connected as shown in FIG. The power supply device of FIG. 8 has an overdischarge prevention switch 19A connected between the output side of the current limiting unit 18 and the output terminal 10 to prevent overcharging between the output side of the current limiting unit 18 and the charging terminal 17. The switch 19B is connected. The power supply device in this figure discharges from the output terminal 10 while limiting the discharge current by the current limiting unit 18, and charges the battery 1 by the charger 41 while limiting the charging current by the current limiting unit 18. In this power supply device, the overdischarge prevention switch 19A and the overcharge prevention switch 19B are controlled by the control circuit 5 in the same manner as the power supply device shown in FIG. 7, and the battery 1 is discharged and charged. The current limiting circuit 3 shown in FIG. 8 uses the overdischarge prevention switch 19A and the overcharge prevention switch 19B as contactors, but the overdischarge prevention switch and the overcharge prevention switch can be semiconductor switching elements such as FETs. However, a power supply device using an overdischarge prevention switch as an FET is not shown in the figure, but a diode that allows a discharge current but cuts off a reverse current is connected to the output terminal side of the overdischarge prevention switch to cut off the charging current. .
 図9の電源装置は、負荷20の電力供給端子22に接続される第1の出力端子11と、常時通電端子23に接続される第2の出力端子12とを備え、出力スイッチ19を電流制限部18と第2の出力端子12との間に接続して、充電端子17を第2の出力端子12に接続している。図9の電源装置は、過放電防止スイッチ19Aと過充電防止スイッチ19Bを、寄生ダイオード19xを有するFETとして、過放電防止スイッチ19Aの第1FET19aと、過充電防止スイッチ19Bの第2FET19bを直列に接続している。第1FET19aはオン状態でバッテリ1を放電し、オフ状態でバッテリ1の放電電流を遮断する。第2FET19bはオン状態でバッテリ1を充電し、オフ状態でバッテリ1の充電電流を遮断する。この電源装置の出力スイッチ19も、図7の電源装置と同じように制御回路5でオンオフに制御される。 The power supply device of FIG. 9 includes a first output terminal 11 connected to the power supply terminal 22 of the load 20 and a second output terminal 12 connected to the constant energization terminal 23, and the output switch 19 is current-limited. The charging terminal 17 is connected to the second output terminal 12 by connecting between the unit 18 and the second output terminal 12. The power supply device of FIG. 9 has an overdischarge prevention switch 19A and an overcharge prevention switch 19B as FETs having a parasitic diode 19x, and a first FET 19a of the overdischarge prevention switch 19A and a second FET 19b of the overcharge prevention switch 19B are connected in series. is doing. The first FET 19a discharges the battery 1 in the on state, and interrupts the discharge current of the battery 1 in the off state. The second FET 19b charges the battery 1 in the on state, and interrupts the charging current of the battery 1 in the off state. The output switch 19 of this power supply device is also turned on and off by the control circuit 5 in the same manner as the power supply device of FIG.
 さらに、図10の電源装置は、電流制限部18と第2の出力端子12との間に過放電防止スイッチ19Aを、電流制限部18と充電端子17との間に過充電防止スイッチ19Bを接続している。図10の電源装置は、過放電防止スイッチ19Aと過充電防止スイッチ19BをFETとしている。ただ、過放電防止スイッチと過充電防止スイッチには、FET以外の半導体スイッチング素子やコンタクタ等のスイッチを使用することもできる。過放電防止スイッチ19Aは、オン状態でバッテリ1を放電し、オフ状態でバッテリ1の放電電流を遮断する。過充電防止スイッチ19Bは、オン状態でバッテリ1を充電し、オフ状態でバッテリ1の充電電流を遮断する。この電源装置は、過放電防止スイッチ19Aと過充電防止スイッチ19Bとを、図8に示す電源装置と同じように制御して、バッテリ1を放電し、また充電する。 Further, in the power supply device of FIG. 10, an overdischarge prevention switch 19A is connected between the current limiting unit 18 and the second output terminal 12, and an overcharge prevention switch 19B is connected between the current limiting unit 18 and the charging terminal 17. is doing. In the power supply device of FIG. 10, the overdischarge prevention switch 19A and the overcharge prevention switch 19B are FETs. However, switches such as semiconductor switching elements and contactors other than FETs can be used as the overdischarge prevention switch and the overcharge prevention switch. The overdischarge prevention switch 19A discharges the battery 1 in the on state and cuts off the discharge current of the battery 1 in the off state. The overcharge prevention switch 19B charges the battery 1 in the on state, and blocks the charging current of the battery 1 in the off state. This power supply device controls the overdischarge prevention switch 19A and the overcharge prevention switch 19B in the same manner as the power supply device shown in FIG. 8, and discharges and charges the battery 1.
 図11は、バッテリ1をリチウムイオン電池又はリチウムポリマー電池等の非水系電解液電池とする電源装置を示している。この電源装置は、電流制限回路3を、電流制限部18と出力スイッチ19とで構成する。電流制限部18は、バッテリ1の放電電流を制限する放電電流制限回路18Aと、バッテリ1を充電する電圧と電流を制御する定電圧・定電流回路18Bとを備える。出力スイッチ19は過放電防止スイッチ19Aと、過充電防止スイッチ19Bとを備える。過放電防止スイッチ19Aは放電電流制限回路18Aの出力側に、過充電防止スイッチ19Bは定電圧・定電流回路18Bと充電端子17との間に接続している。過放電防止スイッチ19Aと過充電防止スイッチ19Bは、図7ないし図10で示す電源装置と同じように、制御回路5でオンオフに制御される。過放電防止スイッチ19Aは、実線で示すように出力端子10に接続され、あるいは第1の出力端子11と第2の出力端子12とを別々に設けている電源装置にあっては、第1の出力端子11に接続することなく、鎖線で示すように第2の出力端子12に接続される。図11に示す電流制限回路3は、過放電防止スイッチ19Aと過充電防止スイッチ19Bをコンタクタとしている。ただ、過放電防止スイッチと過充電防止スイッチは、FET等の半導体スイッチング素子とすることもできる。ただし、過放電防止スイッチをFETとして、過放電防止スイッチを図11の実線で示すように出力端子10に接続する電源装置においては、図示しないが、過放電防止スイッチの出力端子側に、放電電流を許容するが逆電流を遮断するダイオードを接続して、充電電流を遮断する。 FIG. 11 shows a power supply device in which the battery 1 is a non-aqueous electrolyte battery such as a lithium ion battery or a lithium polymer battery. In this power supply device, the current limiting circuit 3 includes a current limiting unit 18 and an output switch 19. The current limiting unit 18 includes a discharge current limiting circuit 18A that limits the discharge current of the battery 1, and a constant voltage / constant current circuit 18B that controls the voltage and current for charging the battery 1. The output switch 19 includes an overdischarge prevention switch 19A and an overcharge prevention switch 19B. The overdischarge prevention switch 19A is connected to the output side of the discharge current limiting circuit 18A, and the overcharge prevention switch 19B is connected between the constant voltage / constant current circuit 18B and the charging terminal 17. The overdischarge prevention switch 19A and the overcharge prevention switch 19B are controlled to be turned on and off by the control circuit 5 in the same manner as the power supply device shown in FIGS. The overdischarge prevention switch 19A is connected to the output terminal 10 as indicated by a solid line, or in the power supply apparatus in which the first output terminal 11 and the second output terminal 12 are separately provided, Without being connected to the output terminal 11, it is connected to the second output terminal 12 as indicated by a chain line. In the current limiting circuit 3 shown in FIG. 11, the overdischarge prevention switch 19A and the overcharge prevention switch 19B are contactors. However, the overdischarge prevention switch and the overcharge prevention switch can be semiconductor switching elements such as FETs. However, in the power supply device in which the overdischarge prevention switch is an FET and the overdischarge prevention switch is connected to the output terminal 10 as shown by the solid line in FIG. 11, a discharge current is connected to the output terminal side of the overdischarge prevention switch. Connect a diode that cuts off the reverse current, but cuts off the charging current.
 放電電流制限回路18Aは、バッテリ1の放電電流を所定の値よりも小さく制限して放電する。定電圧・定電流回路18Bは、充電器41からの入力される電力を所定の電圧と電流以下に制限してバッテリ1のリチウムイオン電池又はリチウムポリマー電池を充電する。この電源装置は、リチウムイオン電池やリチウムポリマー電池等の非水系電解液電池を充電器41で安全に満充電できる。 The discharge current limiting circuit 18A discharges the battery 1 by limiting the discharge current of the battery 1 to be smaller than a predetermined value. The constant voltage / constant current circuit 18B charges the lithium ion battery or the lithium polymer battery of the battery 1 by limiting the power input from the charger 41 to a predetermined voltage and current or less. This power supply device can safely fully charge a non-aqueous electrolyte battery such as a lithium ion battery or a lithium polymer battery with the charger 41.
 本発明に係る電源装置は、EV走行モードとHEV走行モードとを切り替え可能なプラグイン式ハイブリッド電気自動車やハイブリッド式電気自動車、電気自動車などの電源装置として好適に利用できる。また、コンピュータサーバのラックに搭載可能なバックアップ電源装置、携帯電話等の無線基地局用のバックアップ電源装置、家庭内用、工場用の蓄電用電源、街路灯の電源等の蓄電装置、信号機などのバックアップ電源用などの用途にも適宜利用できる。 The power supply device according to the present invention can be suitably used as a power supply device for a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle or the like that can switch between the EV traveling mode and the HEV traveling mode. In addition, backup power supply devices that can be mounted on computer server racks, backup power supply devices for wireless base stations such as mobile phones, power storage devices for home use and factories, power storage devices such as street lamp power supplies, traffic lights, etc. It can also be used as appropriate for applications such as backup power supply.
100…電源装置
200…車両
  1…バッテリ
  2…電池
  3…電流制限回路        3A…定電流回路
                  3B…抵抗器
  4…制御スイッチ
  5…制御回路
  6…起動回路
  7…ダイオード
  9…鉛バッテリ
 10…出力端子
 11…第1の出力端子
 12…第2の出力端子
 13…過放電防止スイッチ
 15…メモリ
 16…温度センサ
 17…充電端子
 18…電流制限部        18A…放電電流制限回路
                 18B…定電圧・定電流回路
 19…出力スイッチ       19A…過放電防止スイッチ
                 19B…過充電防止スイッチ
                 19a…第1FET
                 19b…第2FET
                 19x…寄生ダイオード
 20…負荷
 21…メインスイッチ
 22…電力供給端子
 23…常時通電端子
 24…メインリレー
 25…充電機構         25A…発電機
                 25B…DC/DCコンバータ
 26…ヒューズ
 28…スターターリレー
 29…スターターモータ
 30…走行用バッテリ
 40…外部充電器
 41…充電器
 50…DC/ACインバータ
 51…充電用電源
 52…放電スイッチ
 53…充電スイッチ
 54…電気機器
 55…制御回路
 56…DC/DCコンバータ
DESCRIPTION OF SYMBOLS 100 ... Power supply device 200 ... Vehicle 1 ... Battery 2 ... Battery 3 ... Current limiting circuit 3A ... Constant current circuit 3B ... Resistor 4 ... Control switch 5 ... Control circuit 6 ... Starting circuit 7 ... Diode 9 ... Lead battery 10 ... Output terminal DESCRIPTION OF SYMBOLS 11 ... 1st output terminal 12 ... 2nd output terminal 13 ... Overdischarge prevention switch 15 ... Memory 16 ... Temperature sensor 17 ... Charging terminal 18 ... Current limiting part 18A ... Discharge current limiting circuit 18B ... Constant voltage / constant current circuit DESCRIPTION OF SYMBOLS 19 ... Output switch 19A ... Overdischarge prevention switch 19B ... Overcharge prevention switch 19a ... 1st FET
19b ... 2nd FET
19x ... Parasitic diode 20 ... Load 21 ... Main switch 22 ... Power supply terminal 23 ... Always energizing terminal 24 ... Main relay 25 ... Charging mechanism 25A ... Generator 25B ... DC / DC converter 26 ... Fuse 28 ... Starter relay 29 ... Starter motor DESCRIPTION OF SYMBOLS 30 ... Battery for driving 40 ... External charger 41 ... Charger 50 ... DC / AC inverter 51 ... Power source for charging 52 ... Discharge switch 53 ... Charge switch 54 ... Electrical equipment 55 ... Control circuit 56 ... DC / DC converter

Claims (13)

  1.  メインスイッチのオン状態で電力が供給される負荷の電力供給端子と、メインスイッチのオン状態とオフ状態とで電力が供給される常時通電端子とに電力を供給し、かつ充電機構で充電される電池からなるバッテリを備える電源装置であって、
     前記バッテリの出力側に、放電電流を制限して充電電流を遮断する電流制限回路と、前記バッテリの充放電を制御する制御スイッチとを接続しており、
     前記バッテリが、電流制限回路を介して負荷の常時通電端子に電力を供給し、制御スイッチを介して負荷の電力供給端子に電力を供給するようにしてなる電源装置。
    Power is supplied to the power supply terminal of the load to which power is supplied when the main switch is on, and the constant current supply terminal to which power is supplied when the main switch is on and off, and is charged by the charging mechanism. A power supply device comprising a battery comprising a battery,
    On the output side of the battery, a current limiting circuit that limits the discharge current and cuts off the charging current, and a control switch that controls charging and discharging of the battery are connected,
    A power supply apparatus in which the battery supplies power to a constantly energizing terminal of a load via a current limiting circuit and supplies power to a power supply terminal of the load via a control switch.
  2.  前記電流制限回路の出力側に接続してなる第2の出力端子と、前記制御スイッチの出力側に接続してなる第1の出力端子とを備え、
     前記第2の出力端子から負荷の常時通電端子に電力を供給して、第1の出力端子から負荷の電力供給端子に電力を供給するようにしてなる請求項1に記載される電源装置。
    A second output terminal connected to the output side of the current limiting circuit; and a first output terminal connected to the output side of the control switch;
    2. The power supply device according to claim 1, wherein power is supplied from the second output terminal to a constantly energizing terminal of the load, and power is supplied from the first output terminal to the power supply terminal of the load.
  3.  前記電流制限回路の出力側と前記制御スイッチの出力側とを接続してなる出力端子を備えており、
     この出力端子が負荷の電力供給端子と常時通電端子とに電力を供給するようにしてなる請求項1に記載される電源装置。
    An output terminal formed by connecting the output side of the current limiting circuit and the output side of the control switch;
    The power supply apparatus according to claim 1, wherein the output terminal supplies power to a power supply terminal and a constant current supply terminal of the load.
  4.  前記バッテリの電圧、残容量、または温度を検出して前記制御スイッチをオンオフに制御する制御回路を備えており、
     前記制御回路が、前記バッテリの電圧、残容量、または温度が所定の範囲内にある状態で前記制御スイッチをオン状態として前記バッテリの充放電を許容し、前記バッテリの電圧、残容量、または温度が所定の範囲外にある状態で前記制御スイッチをオフ状態として前記バッテリの過充電と過放電を防止する請求項1ないし3のいずれかに記載される電源装置。
    A control circuit for detecting the voltage, remaining capacity, or temperature of the battery and controlling the control switch on and off;
    The control circuit allows the battery to be charged / discharged by turning on the control switch while the battery voltage, remaining capacity, or temperature is within a predetermined range, and the battery voltage, remaining capacity, or temperature 4. The power supply device according to claim 1, wherein the control switch is turned off in a state where the battery is outside a predetermined range to prevent overcharging and overdischarging of the battery. 5.
  5.  前記電流制限回路が、前記バッテリの過放電を防止する過放電防止スイッチを備えている請求項1ないし4のいずれかに記載される電源装置。 The power supply device according to any one of claims 1 to 4, wherein the current limiting circuit includes an overdischarge prevention switch for preventing overdischarge of the battery.
  6.  前記電流制限回路が、電流を制限する定電流回路又は抵抗器とダイオードの直列回路のいずれかである請求項1ないし4のいずれかに記載される電源装置。 The power supply device according to any one of claims 1 to 4, wherein the current limiting circuit is either a constant current circuit that limits a current or a series circuit of a resistor and a diode.
  7.  前記電流制限回路を介して前記バッテリから電力が供給される起動回路を備えており、
     この起動回路からの起動信号で前記制御回路を起動する請求項4に記載される電源装置。
    Comprising a startup circuit to which power is supplied from the battery via the current limiting circuit;
    The power supply device according to claim 4, wherein the control circuit is activated by an activation signal from the activation circuit.
  8.  前記バッテリの電池がリチウムイオン電池又はリチウムポリマー電池の何れかである請求項8に記載される電源装置。 The power supply apparatus according to claim 8, wherein the battery is a lithium ion battery or a lithium polymer battery.
  9.  前記バッテリと並列に鉛バッテリを接続してなる請求項1ないし8のいずれかに記載される電源装置。 The power supply device according to any one of claims 1 to 8, wherein a lead battery is connected in parallel with the battery.
  10.  前記制御スイッチの出力側に鉛バッテリを接続してなる請求項1ないし8のいずれかに記載される電源装置。 The power supply device according to any one of claims 1 to 8, wherein a lead battery is connected to an output side of the control switch.
  11.  請求項1ないし10のいずれかに記載される電源装置を、車両に装備される負荷に電力を供給する電源として備える車両。 A vehicle comprising the power supply device according to any one of claims 1 to 10 as a power source for supplying electric power to a load installed in the vehicle.
  12.  請求項1ないし10のいずれかに記載される電源装置を備える蓄電装置。 A power storage device comprising the power supply device according to any one of claims 1 to 10.
  13.  メインスイッチのオン状態で電力が供給される負荷の電力供給端子と、メインスイッチのオン状態とオフ状態とで電力が供給される常時通電端子とに電力を供給し、かつ充電機構で充電される電池からなるバッテリを備える電源装置であって、
     前記バッテリの出力側に、充放電電流を制限して充電電流でバッテリを充電する電流制限回路と、前記バッテリの充放電を制御する制御スイッチとを接続しており、
     前記バッテリが、電流制限回路を介して負荷の常時通電端子に電力を供給し、制御スイッチを介して負荷の電力供給端子に電力を供給し、さらに制御スイッチのオフ状態において、外部から入力される電力でバッテリを充電するようにしてなる電源装置。
    Power is supplied to the power supply terminal of the load to which power is supplied when the main switch is on, and the constant current supply terminal to which power is supplied when the main switch is on and off, and is charged by the charging mechanism. A power supply device comprising a battery comprising a battery,
    On the output side of the battery, a current limiting circuit that limits the charging / discharging current and charges the battery with a charging current, and a control switch that controls charging / discharging of the battery are connected,
    The battery supplies power to the constant energization terminal of the load via the current limiting circuit, supplies power to the power supply terminal of the load via the control switch, and is input from the outside when the control switch is off. A power supply device that charges a battery with electric power.
PCT/JP2013/051311 2012-01-31 2013-01-23 Power source device and vehicle and power storage device provided with this power source device WO2013115035A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-018926 2012-01-31
JP2012018926 2012-01-31
JP2012072607 2012-03-27
JP2012-072607 2012-03-27

Publications (1)

Publication Number Publication Date
WO2013115035A1 true WO2013115035A1 (en) 2013-08-08

Family

ID=48905077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051311 WO2013115035A1 (en) 2012-01-31 2013-01-23 Power source device and vehicle and power storage device provided with this power source device

Country Status (1)

Country Link
WO (1) WO2013115035A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152516A1 (en) * 2015-03-25 2016-09-29 株式会社Gsユアサ Electricity storage element monitoring device, electricity storage device, and electricity storage element monitoring method
WO2019181635A1 (en) * 2018-03-22 2019-09-26 住友電装株式会社 Power supply control device
JP2022044441A (en) * 2020-09-07 2022-03-17 株式会社ダイフク Article conveyance facility

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286004A (en) * 2000-03-30 2001-10-12 Shin Kobe Electric Mach Co Ltd Power supply system for running vehicle
JP2006160176A (en) * 2004-12-10 2006-06-22 Yazaki Corp Power supply system for vehicle
JP2007223386A (en) * 2006-02-21 2007-09-06 Fujitsu Ten Ltd Monitoring device for vehicle battery and method therefor
JP2007336657A (en) * 2006-06-14 2007-12-27 Nissan Motor Co Ltd Power supply control device
JP2010036646A (en) * 2008-08-01 2010-02-18 Furukawa Electric Co Ltd:The Power supplying device for vehicle and power supplying method for vehicle
JP2011234479A (en) * 2010-04-27 2011-11-17 Denso Corp Power supply device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286004A (en) * 2000-03-30 2001-10-12 Shin Kobe Electric Mach Co Ltd Power supply system for running vehicle
JP2006160176A (en) * 2004-12-10 2006-06-22 Yazaki Corp Power supply system for vehicle
JP2007223386A (en) * 2006-02-21 2007-09-06 Fujitsu Ten Ltd Monitoring device for vehicle battery and method therefor
JP2007336657A (en) * 2006-06-14 2007-12-27 Nissan Motor Co Ltd Power supply control device
JP2010036646A (en) * 2008-08-01 2010-02-18 Furukawa Electric Co Ltd:The Power supplying device for vehicle and power supplying method for vehicle
JP2011234479A (en) * 2010-04-27 2011-11-17 Denso Corp Power supply device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7070635B2 (en) 2015-03-25 2022-05-18 株式会社Gsユアサ Monitoring device for power storage element, power storage device and monitoring method for power storage element
CN107431252A (en) * 2015-03-25 2017-12-01 株式会社杰士汤浅国际 The monitoring method of the monitoring arrangement of charge storage element, electrical storage device and charge storage element
JPWO2016152516A1 (en) * 2015-03-25 2018-01-11 株式会社Gsユアサ Storage device monitoring device, power storage device, and storage device monitoring method
US10388995B2 (en) 2015-03-25 2019-08-20 Gs Yuasa International Ltd. Monitoring apparatus for energy storage device, energy storage apparatus, and a method of monitoring energy storage device
WO2016152516A1 (en) * 2015-03-25 2016-09-29 株式会社Gsユアサ Electricity storage element monitoring device, electricity storage device, and electricity storage element monitoring method
JP7294493B2 (en) 2015-03-25 2023-06-20 株式会社Gsユアサ Storage device monitoring device, storage device, and storage device monitoring method
CN107431252B (en) * 2015-03-25 2020-06-23 株式会社杰士汤浅国际 Monitoring device for power storage element, power storage device, and monitoring method for power storage element
JP2021036763A (en) * 2015-03-25 2021-03-04 株式会社Gsユアサ Monitoring device of power storage element, power storage device, and monitoring method of power storage element
JP2022105530A (en) * 2015-03-25 2022-07-14 株式会社Gsユアサ Monitoring device of power storage element, power storage device, and monitoring method of power storage element
US11114707B2 (en) 2015-03-25 2021-09-07 Gs Yuasa International Ltd. Monitoring apparatus for energy storage device, energy storage apparatus, and a method of monitoring energy storage device
WO2019181635A1 (en) * 2018-03-22 2019-09-26 住友電装株式会社 Power supply control device
US11101733B2 (en) 2018-03-22 2021-08-24 Sumitomo Wiring Systems, Ltd. Power supply control device
JP2019170002A (en) * 2018-03-22 2019-10-03 住友電装株式会社 Power supply control device
JP2022044441A (en) * 2020-09-07 2022-03-17 株式会社ダイフク Article conveyance facility
JP7400668B2 (en) 2020-09-07 2023-12-19 株式会社ダイフク Goods conveyance equipment
US11897698B2 (en) 2020-09-07 2024-02-13 Daifuku Co., Ltd. Article transport facility

Similar Documents

Publication Publication Date Title
EP2641783B1 (en) Battery pack and method of controlling the same
JP6128491B2 (en) Power supply device for vehicle and vehicle provided with this power supply device
US8575940B2 (en) Power supply device and method for detecting non-contact state of load connected to power supply device
US9174547B2 (en) Electric vehicle and charging control method for auxiliary battery thereof
US20120025768A1 (en) Power supply device having precharging circuit for charging capacitor
KR101696160B1 (en) Apparatus, system and method for preventing damage of battery rack using voltage measurement
US20120262106A1 (en) Power supply control device
JP2011130551A (en) Power supply device and vehicle with the same
CN103192729A (en) Electric vehicle
KR101927124B1 (en) Apparatus for preventing trouble of battery
CN103855748A (en) Vehicle charging system and method
CN103001268B (en) Charging system for electric automobile, method and comprise the automobile of charging system for electric automobile
WO2013061358A1 (en) Electricity-storage system
WO2013008814A1 (en) Power supply device and vehicle equipped with power supply device
US9789771B2 (en) Single battery architecture for electrification vehicle
US20130249493A1 (en) Vehicle and method of controlling the same
JP2015009654A (en) Power storage system
JP2015180140A (en) Power supply system for vehicle
JP6305930B2 (en) Vehicle power supply for regenerative braking
WO2013115035A1 (en) Power source device and vehicle and power storage device provided with this power source device
EP3059831A1 (en) Secondary lithium battery for vehicle use
US20210006084A1 (en) Battery device and vehicle
WO2017191818A1 (en) Power supply device
JP2013038983A (en) Charger, on-vehicle charger, charging method for on-vehicle charger
JP2003291754A (en) Electric power source for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13743641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP