WO2013114936A1 - Distillation device and distillation method - Google Patents

Distillation device and distillation method Download PDF

Info

Publication number
WO2013114936A1
WO2013114936A1 PCT/JP2013/050496 JP2013050496W WO2013114936A1 WO 2013114936 A1 WO2013114936 A1 WO 2013114936A1 JP 2013050496 W JP2013050496 W JP 2013050496W WO 2013114936 A1 WO2013114936 A1 WO 2013114936A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
heat exchanger
output fluid
output
distillation
Prior art date
Application number
PCT/JP2013/050496
Other languages
French (fr)
Japanese (ja)
Inventor
堤 敦司
堤 香津雄
Original Assignee
国立大学法人 東京大学
エクセルギー工学研究所株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学, エクセルギー工学研究所株式会社 filed Critical 国立大学法人 東京大学
Priority to JP2013527419A priority Critical patent/JP5756900B2/en
Publication of WO2013114936A1 publication Critical patent/WO2013114936A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/007Energy recuperation; Heat pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to a distillation apparatus and a distillation method using a self-regenerative technology of a working medium, and more particularly, to a distillation apparatus and a distillation method in which the waste heat is suppressed and the exergy rate of the entire system is improved.
  • the gas turbine compresses natural gas to a high pressure and burns it with a combustor to generate a high-temperature and high-pressure combustion gas. And combustion gas is guide
  • the diesel engine burns liquid fuel inside the engine and the generator is driven by the generated power to generate electricity. Exhaust gas emitted from the diesel engine may be led to a steam generator to recover its energy, but is finally released to the atmosphere (see, for example, Patent Document 3).
  • a prime mover represented by a steam turbine, a gas turbine, and a diesel engine obtains drive power by burning a working fluid.
  • the heat energy of the working fluid is finally discarded. That is, in the steam turbine, the latent heat of the exhaust steam is discarded by the condenser.
  • exhaust gas is finally discharged into the atmosphere and cannot be said to be used sufficiently effectively.
  • the conventional multi-effect evaporator 110 shown in FIG. 1B employs a cascade utilization method in which each evaporator is operated at a different pressure and the latent heat of vaporization is used as the latent heat of vaporization of the next can.
  • the input fluid sequentially flows into the evaporators 111, 112, and 113, and the output fluid that is a gas is sequentially output from the top of the evaporators 111, 112, and 113.
  • the evaporator 111 is a heating source and functions as a boiler.
  • the conventional flash distillation apparatus 120 shown in FIG. 2B uses a mixed liquid of 50% benzene and 50% toluene as an input fluid a.
  • This input fluid a is heated in the heating furnace 126 and introduced into the flash column 127.
  • a vapor b1 containing a large amount of benzene, which is a low-boiling component, and a liquid b2 containing a large amount of toluene are obtained from the top of the flash column 127.
  • the steam b1 emitted from the top of the flash column 127 is heat-exchanged with the input fluid a by the first heat exchanger 124 and then cooled by the cooler 128 to be liquefied.
  • the liquid b2 exiting from the bottom of the flash column 127 is recovered after heat exchange with the input fluid a in the second heat exchanger 125.
  • a conventional seawater desalination plant 130 shown in FIG. 3B is an example of a seawater desalination plant using a multistage flash method.
  • the input fluid a which is seawater, passes through the plurality of heat exchangers 131, is heated by the heater 133, and flows into the endmost flash drum 132.
  • the input fluid a flowing into the flash drum 132 is separated into a steam b1 output from the top of the flash drum 132 and a liquid c1 output from the bottom of the flash drum 132.
  • This conventional seawater desalination plant 130 needs to be reheated by the heater 133.
  • the applied heat is finally thrown out of the system as low-temperature waste heat.
  • the conventional bioethanol azeotropic distillation apparatus (hereinafter abbreviated as azeotropic distillation apparatus) shown in FIG. 4B uses azeotropic distillation using benzene as an azeotropic agent.
  • azeotropic distillation apparatus 140 a benzene-water mixture is taken out from the top of the first rectifying column 141, and high-purity ethanol is taken out from the bottom of the first rectifying column 141.
  • the benzene-water mixture taken out from the top of the first rectifying column 141 is separated into benzene and water by the first decanter 143 and the second rectifying column 142.
  • Benzene is recycled to the first rectification column 141 for reuse.
  • the azeotropic distillation apparatus 140 consumes a large amount of energy.
  • the heaters 145 and 146 of the two rectification towers 141 and 142 require a large amount of energy of 395 kW in total.
  • ⁇ G energy that can be taken out as work, and is called exergy as effective energy.
  • T ⁇ S heat generated with the reaction.
  • ⁇ G / ⁇ H is called the exergy rate as the ability to extract effective energy.
  • the exergy rate is the rate converted to reversible energy. However, the rate of conversion to reversible energy when heat is generated decreases, and the exergy rate decreases.
  • An object of the present invention is to solve the above-described problems, and is to improve the exergy rate ⁇ G / ⁇ H. In other words, it is an object of the present invention to provide an apparatus and method for minimizing wasteful thermal energy.
  • a distillation apparatus includes a distillation column that receives and distills an input fluid containing a plurality of substances, and a compressor that compresses a first output fluid discharged from the top of the distillation column.
  • a first heat exchanger that heats the input fluid by the first output fluid that has exited from the compressor, and a second heat fluid that heats the input fluid by a second output fluid that has exited from the bottom of the distillation column. Two heat exchangers.
  • the input fluid is preferably a liquid.
  • the distillation apparatus further includes a heater disposed inside the distillation column, and the heater heats the distillation column with the first output fluid output from the compressor,
  • the first heat exchanger is preferably provided downstream of the heater.
  • the heat of the output fluid raised in temperature by adiabatic compression can be effectively used for heating the distillation tower.
  • the second heat exchanger heats the input fluid with the second output fluid and the first output fluid output from the first heat exchanger.
  • the distillation apparatus includes a first branch channel that leads a part of the input fluid to the first heat exchanger, a second branch channel that guides the other part of the input fluid to the second heat exchanger, It is preferable to further include a merging unit that merges the input fluid that has passed through the first and second exchangers.
  • the distillation apparatus further includes a third heat exchanger disposed between the compressor and the junction, and the third heat exchanger receives the input fluid after passing through the junction.
  • the first output fluid is preferably heated.
  • the distillation apparatus further includes a fourth heat exchanger disposed between the compressor and the second heat exchanger, and the fourth heat exchanger includes the second heat exchanger. It is preferable that the second output fluid before flowing into the tank is heated by the first output fluid.
  • the distillation apparatus is disposed downstream of the first heat exchanger and is disposed downstream of the first cooler into which the first output fluid flows and the second heat exchanger, and into which the second output fluid flows. And a second cooler.
  • the input fluid is a mixed substance containing a low-boiling substance and a high-boiling substance
  • the first output fluid contains a low-boiling substance
  • the second output fluid Preferably contains a substance having a high boiling point.
  • the input fluid contains salt, and the salt concentration of the first output fluid is lower than that of the input fluid.
  • the input fluid is preferably seawater and the first output fluid is fresh water.
  • a distillation apparatus includes a first distillation column to which a first input fluid containing a first substance, a second input fluid containing a second substance and a third substance are supplied, and a tower of the first distillation tower A first compressor that compresses the first output fluid that has exited from the top, and a first output fluid that heats the second output fluid that has exited from the bottom of the first distillation column by the first output fluid that has exited from the compressor.
  • the third output fluid from the second compressor heats the fourth output fluid from the bottom of the second distillation column and directs the third output fluid to the second distillation column.
  • a decanter for returning one substance to the first distillation column a first outlet for recovering the second substance contained in the second input fluid coming out from the bottom of the first distillation column, It is preferable to have a second outlet for recovering the third substance contained in the second input fluid that has come out of the tower bottom.
  • the distillation apparatus includes a third compressor that compresses a part of the third output fluid that has come out from the top of the second distillation column, and a first substance in which the first substance is separated by the decanter.
  • a third heat exchanger that heats the input fluid with the third output fluid exiting from the third compressor and discharges the third output fluid toward the first distillation column; Preferably it is.
  • the distillation apparatus preferably further includes a first cooler disposed between the first heat exchanger and the decanter for cooling the first output fluid.
  • the first substance is benzene
  • the second substance is ethanol
  • the third substance is water
  • the distillation method includes a separation step of separating an input fluid into vapor and liquid, a compression step of compressing the vapor, and a first heating step of heating the input fluid with the compressed vapor. And a second heating step for heating the input fluid with the liquid and a liquefaction step for liquefying the steam used in the first heating step.
  • a part or all of the heating step or the combustion step is a step of adiabatically compressing the output fluid from the separation unit and using this as a heating source to exchange heat with the input fluid before flowing into the separation unit
  • T ⁇ S can be decreased, ⁇ G can be increased, and the exergy rate ⁇ G / ⁇ H can be improved.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a conventional technique of Embodiment 1.
  • FIG. 2 is a schematic diagram which shows schematic structure of the distillation apparatus of Embodiment 2 of this invention.
  • FIG. 6 is a schematic diagram showing a schematic configuration of a conventional technique of Embodiment 2.
  • FIG. 6 is a schematic diagram showing a schematic configuration of a conventional technique of Embodiment 3.
  • FIG. 10 is a schematic diagram illustrating a schematic configuration of a conventional technique of a fourth embodiment.
  • the self-heating regenerative distillation apparatus 10 of Embodiment 1 shown in FIG. 1A includes an inlet 11 serving as an inlet for raw materials (input fluid), a first outlet 16 serving as an outlet for products (output fluid), and a second outlet 17. have.
  • Various devices are connected between the introduction port 11 and the first and second discharge ports 16 and 17 by piping.
  • the output fluid as a product is collected from the first discharge port 16, and the waste liquid is collected from the second discharge port 17.
  • the input fluid includes a plurality of substances, and among these substances, a substance having a low boiling point is recovered from the first outlet 16 and the remaining substance is recovered from the second outlet 17.
  • the self-heat regeneration distillation apparatus 10 has two heat exchangers, one compressor, and one evaporator. That is, the second heat exchanger 12 exchanges heat between the input fluid A and the second output fluid B2 that has exited the first heat exchanger 13.
  • the first heat exchanger 13 exchanges heat between the input fluid A exiting the second heat exchanger 12 and the first output fluid B1 exiting from the evaporator heating tube 14A.
  • the compressor 15 adiabatically compresses the first output fluid B1 that has come out from the top of the evaporator 14.
  • the first output fluid B1 is heated by being adiabatically compressed.
  • the evaporator 14 receives the input fluid A that has exited the first heat exchanger 13 and discharges the second output fluid B2 from the bottom of the tower. Note that a heating tube 14 ⁇ / b> A is disposed inside the evaporator 14.
  • the input fluid A passes through the second heat exchanger 12 and the first heat exchanger 13 from the inlet 11 and flows into the evaporator 14.
  • the input fluid A exiting the first heat exchanger 13 is separated into a gaseous first output fluid B1 and a liquid second output fluid B2 by the evaporator 14.
  • the first output fluid B1 coming out from the top of the evaporator 14 is adiabatically compressed by the compressor 15 and flows into the heating tube 14A passing through the inside of the evaporator 14.
  • the first output fluid B1 exchanges heat with the input fluid in the evaporator 14 while passing through the heating tube.
  • the temperature of the input fluid in the evaporator 14 rises.
  • the first output fluid B1 exiting the heating tube 14A flows to the first heat exchanger 13, and the sensible heat is exchanged with the input fluid A exiting the second heat exchanger 12. Thereby, the temperature of the input fluid A rises.
  • the first output fluid B1 that has exited the first heat exchanger 13 flows to the second heat exchanger 12, and the input fluid A and sensible heat are heat-exchanged.
  • the first output fluid B1 that has exited the second heat exchanger 12 is recovered from the first outlet 16.
  • the second output fluid B2 that has come out from the bottom of the evaporator 14 flows into the second heat exchanger 12. While the second output fluid B2 passes through the second heat exchanger 12, the input fluid A and sensible heat are heat-exchanged. The second output fluid B2 is recovered from the second outlet 17 after leaving the second heat exchanger 12.
  • the input fluid A is heated by the first output fluid B1 and the second output fluid B2 and the sensible heat by the first heat exchanger 13 and the second heat exchanger 12 and heated to the evaporator 14.
  • the reason why the first output fluid B1 exchanges sensible heat in two stages in the first heat exchanger 13 and the second heat exchanger 12 is that the temperature in the first heat exchanger 13 is compressed. This is because the temperature compressed by the machine 15 is higher than the temperature when it flows out of the evaporator 14. That is, more heat energy can be recovered by exchanging the heat energy of the first output fluid B1 in two stages.
  • the heat held by the first output fluid B1 and the second output fluid B2 is used for heating the input fluid, so that it is not necessary to separately heat with a boiler or the like. That is, the latent heat of these fluids and the self heat of sensible heat are circulated and utilized, and the self heat regeneration distillation apparatus 10 can realize energy saving.
  • the flash distillation apparatus 20 of Embodiment 2 shown in FIG. 2A has an inlet 21 that serves as an inlet for raw materials (input fluid), and a first outlet 35 and a second outlet 36 that serve as outlets for products (output fluid). is doing.
  • Various devices are connected by piping between the introduction port 21, the first discharge port 35, and the second discharge port 36.
  • the output fluid as a product for example, a component having a low boiling point in the input fluid is recovered from the first discharge port 35, and a component having a high boiling point is recovered from the second discharge port 36.
  • the flash distillation apparatus 20 has four heat exchangers, one compressor, and one flash column. That is, the first heat exchanger 27 performs heat exchange between the first branch channel 23 and the first recovery channel 37.
  • the second heat exchanger 28 exchanges heat between the second branch channel 24 and the second recovery channel 38.
  • the third heat exchanger 29 exchanges heat between the combined flow path 26 and the first recovery path 37.
  • the fourth heat exchanger 30 exchanges heat between the first recovery path 37 and the second recovery path 38.
  • the compressor 31 is a first recovery path 37 and is disposed between the top of the flash column 32 and the fourth heat exchanger 30.
  • the input fluid A flows in from the introduction port 21, and is divided into the first input fluid A ⁇ b> 1 that flows through the first branch channel 23 and the second input fluid A ⁇ b> 2 that flows through the second branch channel 24 at the branching unit 22.
  • the first input fluid A ⁇ b> 1 is heated by the first heat exchanger 27 and flows into the joining portion 25.
  • the second input fluid A ⁇ b> 2 is heated by the second heat exchanger 28 and flows into the junction 25.
  • the first input fluid A1 and the second input fluid A2 merge (hereinafter, the merged input fluid is referred to as the input fluid A3).
  • the input fluid A3 is heated by the third heat exchanger 29 arranged in the combined flow path 26 and flows into the flash column 32.
  • the input fluid A3 is separated into a gas first output fluid B1 and a liquid second output fluid B2.
  • the first output fluid B1 flowing out from the top of the flash column 32 flows out from the first outlet 35 via the first recovery path 37.
  • the second output fluid B2 flowing out from the bottom of the flash column 32 flows out from the second discharge port 36 via the second recovery path 38.
  • the first output fluid B1 is adiabatically compressed by the compressor 31 and rises in temperature.
  • the first output fluid B1 sequentially passes through the fourth heat exchanger 30, the third heat exchanger 29, and the first heat exchanger 27.
  • the first output fluid B1 flowing through the first recovery path 37 heats the second output fluid B2 flowing through the second recovery path 38 while passing through the fourth heat exchanger 30. Heat exchange by latent heat is performed.
  • the first output fluid B1 passes through the third heat exchanger 29, the first output fluid B1 heats the input fluid A3 flowing through the combined flow path 26, and passes through the first heat exchanger 27 while passing through the first split flow path 23.
  • the flowing first input fluid A1 is heated.
  • the first output fluid B1 is cooled by the first cooler 52, liquefied, and then recovered from the first discharge port 54.
  • the recovered first output fluid B1 is fresh water.
  • the second output fluid B2 sequentially passes through the fourth heat exchanger 30 and the second heat exchanger 28.
  • the second output fluid B ⁇ b> 2 flowing through the second recovery path 38 heats the first output fluid B ⁇ b> 1 while passing through the fourth heat exchanger 30, and the second input while passing through the second heat exchanger 28.
  • the second output fluid B2 is recovered from the second discharge port 36 after being cooled by the second cooler 34.
  • the temperature and pressure of each fluid in the inlet 21, the first outlet 35, and the second outlet 36 are the same, the flash distillation apparatus 20 can be easily modularized.
  • the flash distillation apparatus 20 can be used for fractional distillation of benzene and toluene. Moreover, it can be used for distillation of shochu. A plurality of flash distillation apparatuses 20 can be combined to obtain a desired degree of shochu.
  • the input fluid A is heated by the first output fluid B1 and the second output fluid B2 in the first heat exchanger 27, the second heat exchanger 28, and the third heat exchanger 29, and is supplied to the flash column 32. Will flow in.
  • the reason why the first output fluid B1 is heat-exchanged in three stages by the first heat exchanger 27, the third heat exchanger 29, and the fourth heat exchanger 30 is that the first heat exchanger 27 is the fourth heat exchanger. This is because the latent heat is exchanged at 30 and the sensible heat is exchanged at the third heat exchanger 29 and the first heat exchanger 27. That is, more energy can be recovered by exchanging the heat energy of the first output fluid B1 in three stages.
  • a flash distillation apparatus that does not need to be heated in a heating furnace is realized by using the self-heat of the input fluid A, the first output fluid B1, and the second output fluid B2.
  • the 488 kW heating furnace 126 is not necessary.
  • power is required to drive the compressor 31, but this power is 45.1 kW for an input fluid A of 100 kgmol / h. That is, since the latent heat and sensible heat of the working fluid are circulated and used, the flash distillation apparatus 20 by self-heat regeneration is about 1/11 in terms of enthalpy compared to the conventional flash distillation apparatus 120, and is less than 1/10. It is possible to drive with the energy.
  • the desalination plant 40 of Embodiment 3 shown in FIG. 3A has an inlet 41 serving as an inlet for raw materials (input fluid), a first outlet 54 and a second outlet 55 serving as outlets for a product (output fluid). is doing.
  • Various devices are connected by piping between the inlet 41 and the first outlet 54 and the second outlet 55.
  • the desalination plant 40 separates certain components from the input fluid and discharges them from the first discharge port 54, and discharges the separated input fluid from the second discharge port 55.
  • the desalination plant 40 has three heat exchangers, one compressor, and one flash column. That is, the first heat exchanger 47 exchanges heat between the first branch channel 43 and the first recovery channel 57. The second heat exchanger 48 exchanges heat between the second branch channel 44 and the second recovery channel 58. The third heat exchanger 49 exchanges heat between the combined flow path 46 and the first recovery path 57.
  • the compressor 50 is a first recovery path 57 and is disposed between the top of the flash column 51 and the third heat exchanger 49.
  • the input fluid A flows in from the introduction port 41, and is divided into the first input fluid A ⁇ b> 1 that flows through the first branch channel 43 and the second input fluid A ⁇ b> 2 that flows through the second branch channel 44 at the branching unit 42.
  • the first input fluid A1 is heated by the first heat exchanger 47 and flows into the junction 45.
  • the second input fluid A2 is heated by the second heat exchanger 48 and flows into the junction 45.
  • the first input fluid A1 and the second input fluid A2 merge (hereinafter, the merged input fluid is referred to as an input fluid A3).
  • the input fluid A3 is heated by the third heat exchanger 49 arranged in the combined flow path 46 and flows into the flash column 51.
  • the input fluid A3 is separated into a gas first output fluid B1 and a liquid second output fluid B2.
  • the first output fluid B1 that has exited from the top of the flash column 51 flows out from the first outlet 54 via the first recovery path 57.
  • the second output fluid B2 that has exited from the bottom of the flash column 51 flows out from the second outlet 55 via the second recovery path 58.
  • the first output fluid B1 is water vapor
  • the second output fluid B2 is seawater with a high salinity concentration.
  • the first output fluid B1 is adiabatically compressed by the compressor 50 to save temperature.
  • the first output fluid B1 sequentially passes through the third heat exchanger 49 and the first heat exchanger 47.
  • the first output fluid B1 flowing through the first recovery path 57 heats the input fluid A3 flowing through the combined flow path 46 when passing through the third heat exchanger 49. Heat exchange by latent heat is performed. And when passing the 1st heat exchanger 47, the 1st input fluid A1 which flows through the 1st distribution path 43 is heated. Heat exchange by sensible heat is performed.
  • the first output fluid B1 is cooled and liquefied by the first cooler 52, and then collected from the first outlet 54.
  • the collected first output fluid B1 is fresh water as a product.
  • the second output fluid B2 passes through the second heat exchanger 48.
  • the second output fluid B2 heats the second input fluid A2 while passing through the second heat exchanger 48.
  • heat exchange by sensible heat is performed.
  • the second output fluid B ⁇ b> 2 is cooled by the second cooler 53 and discharged from the second discharge port 55.
  • the input fluid A is heated by the first heat exchanger 47, the second heat exchanger 48, and the third heat exchanger 49 by exchanging heat with the first output fluid B1 and the second output fluid B2.
  • the reason why the first output fluid B1 is heat-exchanged in two stages in the first heat exchanger 47 and the third heat exchanger 49 is that the latent heat is first exchanged in the third heat exchanger 49, Next, it is for recovering more energy by exchanging sensible heat with the first heat exchanger 47.
  • the seawater desalination plant 40 uses the self-heat of the input fluid A, the first output fluid B1, and the second output fluid B2, it is not necessary to heat with a heater. That is, the latent heat and sensible heat of these fluids are recycled.
  • the seawater desalination plant 40 can realize energy saving.
  • power is required to drive the compressor 50, the power becomes energy of 67.70 kJ per unit mass of fresh water as a product.
  • the seawater desalination plant 130 requires 765.3 kJ of energy per unit mass of fresh water as a product. Therefore, the seawater desalination plant 40 by self-heat regeneration can be operated at about 1/10 of the energy required for the conventional seawater desalination plant 130 by the multistage flash method. A large energy saving effect can be expected.
  • An autothermal regeneration bioethanol azeotropic distillation apparatus (hereinafter abbreviated as an azeotropic distillation apparatus) 60 of Embodiment 4 shown in FIG. 4A is composed of benzene, an ethanol-water mixture, high-concentration ethanol and high-purity water. It is a device to take out. There are two inlets 61 and 62 that serve as inlets for the raw material (input fluid), and two outlets 78 and 79 that serve as outlets for the product (output fluid). Various devices are connected between the introduction ports 61 and 62 and the discharge ports 78 and 79 by piping.
  • the azeotropic distillation apparatus 60 has three heat exchangers, three compressors, and two rectification columns. That is, all the three compressors 68, 69, and 70 adiabatically compress the fluid that has exited from the tops of the rectifying columns 63 and 64.
  • the first heat exchanger 65 and the second heat exchanger 67 exchange heat between the fluid exiting from the bottoms of the rectifying columns 63 and 64 and the fluid exiting the compressors 68 and 69, respectively.
  • the third heat exchanger 66 exchanges heat between the fluid that has exited the decanter 77 and the fluid that has exited the second compressor 70.
  • a first input fluid A1 containing benzene as a main component and a second input fluid A2 that is an ethanol-water mixture flow into the first fractionator 63 from the first inlet 61 and the second inlet 62, respectively. These two fluids are mixed in the first rectification column 63. Then, the first output fluid B1 is output from the top of the first rectifying column 63, and the second output fluid B2 is output from the bottom of the first rectifying column 63.
  • the first output fluid B1 is a benzene-water mixture
  • the second output fluid B2 is high purity ethanol.
  • a part of the second output fluid B2 exiting from the bottom of the first rectifying column 63 is recovered from the first discharge port 78, and the rest is heated by the first heat exchanger 65 to be first rectifying column. Return to 63.
  • the first output fluid B1 coming out from the top of the first rectifying column 63 is adiabatically compressed by the first compressor 68 and then passes through the first heat exchanger 65.
  • the output fluid is heated by adiabatic compression.
  • the first output fluid B1 serves as a heating source, and the second output fluid B2 is heated.
  • the first output fluid B1 that has exited the first heat exchanger 65 is decompressed by the first valve 71, cooled by the first cooler 74, and then flows into the decanter 77.
  • the decanter 77 separates the first output fluid B1 into a fifth output fluid B5 mainly composed of water and a sixth output fluid B6 mainly composed of benzene.
  • the sixth output fluid B6 that has exited the decanter 77 is returned to the first rectifying column 63.
  • the fifth output fluid B5 is heated in the third heat exchanger 66 and flows into the second rectification column 64.
  • the third output fluid B3 which is a benzene-water mixture containing water as a main component, is output from the top of the second rectifying column 64, and is high-purity water from the bottom of the second rectifying column 64.
  • the fourth output fluid B4 is output.
  • a part of the fourth output fluid B4 exiting from the bottom of the second rectifying column 64 is recovered from the second outlet 79, and the rest passes through the second heat exchanger 67 to pass through the second rectifying column. Return to 64.
  • the third output fluid B3 coming out from the top of the second rectification column 64 is divided and flows into the compressors 69 and 70, respectively. That is, one of the divided third output fluids B3 is adiabatically compressed by the second compressor 69, passes through the second heat exchanger 67, is decompressed by the second valve 72, and is cooled by the second cooler 75. Return to the second rectification tower 64. The other divided third output fluid B3 is adiabatically compressed by the third compressor 70, passes through the third heat exchanger 66, is decompressed by the third valve 73, is cooled by the third cooler 76, and is cooled. Return to Ichidometo 63.
  • the azeotropic distillation apparatus 60 does not need to be heated by the heater by using the self-heat of the input fluid and the output fluid. That is, the latent heat and sensible heat of these fluids are circulated and used, and the azeotropic distillation apparatus 60 can realize energy saving.
  • power is required to drive the compressors 68, 69, and 70. Under the conditions of FIG. 4A, the power is 48.7 kW in total.
  • a total of 395 kW of energy is required by the heaters 145 and 146 of the two rectifying columns 141 and 142. Therefore, the azeotropic distillation apparatus 60 of FIG. 4A can be operated with about 1/8 of the energy required for the conventional azeotropic distillation apparatus 140.
  • the distillation apparatus according to the present invention is an energy-saving method for suppressing exergy loss due to heating or combustion, and makes effective the self-heating of the input fluid in part or all of the heating step or the combustion step of applying heat from the outside. Instead of the reversible energy conversion process used, the ratio of energy that can be used effectively is increased to increase the exergy rate.
  • the heating process or the combustion process can be replaced with a reversible energy conversion process, so that the loss of heat energy having a low exergy rate associated with the heating or combustion can be suppressed.
  • T ⁇ S is decreased, ⁇ G is increased, and the exergy rate ⁇ G / ⁇ H is improved as compared with the conventional case.
  • the reversible energy conversion step refers to, for example, a step of changing to energy that can be taken out as work such as gas compression / expansion.
  • the distillation apparatus using the self-heat regeneration technology according to the present invention can be suitably used not only as a distillation apparatus but also as a desalination plant and an azeotropic distillation apparatus.

Abstract

The present invention addresses the problem of improving the exergy rate (∆G/∆H) and minimizing thermal energy that is wastefully disposed of. To this end, developed is a distillation device provided with: a distillation column which receives and distills an input fluid containing a plurality of substances; a compressor which compresses a first output fluid that has come out of the top of the distillation column; a first heat exchanger which heats the input fluid by the first output fluid that has come out of the compressor; and a second heat exchanger which heats the input fluid by a second output fluid that has come out of the bottom of the distillation column.

Description

蒸留装置および蒸留方法Distillation apparatus and distillation method
 本発明は、作動媒体の自己熱再生技術を利用した蒸留装置および蒸留方法に関し、詳しくは、廃棄される熱を抑えて、系全体のエクセルギー率を向上した蒸留装置および蒸留方法に関する。 The present invention relates to a distillation apparatus and a distillation method using a self-regenerative technology of a working medium, and more particularly, to a distillation apparatus and a distillation method in which the waste heat is suppressed and the exergy rate of the entire system is improved.
 従来、発電装置や加熱装置において、種々のプラントが提案されている。蒸気プラントは、ボイラーで燃料を燃焼させて蒸気を発生させ、この蒸気が蒸気タービンに導かれ、発電機を駆動して発電する(例えば、特許文献1参照)。蒸気タービンを出た蒸気は、復水器に導かれ、凝縮されて水に戻る。蒸気を凝縮する冷媒には、海水が使われることが多い。 Conventionally, various plants have been proposed for power generation devices and heating devices. In a steam plant, fuel is burned in a boiler to generate steam, and this steam is guided to a steam turbine, and a generator is driven to generate electric power (see, for example, Patent Document 1). The steam exiting the steam turbine is led to a condenser where it is condensed and returned to water. Seawater is often used as the refrigerant that condenses steam.
 ガスタービンは、天然ガスを高圧に圧縮した後、燃焼器で燃焼させて、高温高圧の燃焼ガスを生成する。そして、燃焼ガスはガスタービンに導かれ、発電機が駆動され、発電される。ガスタービンを出た排気ガスは、蒸気発生器に導かれた後、大気に放出される(例えば、特許文献2参照)。 The gas turbine compresses natural gas to a high pressure and burns it with a combustor to generate a high-temperature and high-pressure combustion gas. And combustion gas is guide | induced to a gas turbine, a generator is driven, and electric power is generated. The exhaust gas exiting the gas turbine is guided to a steam generator and then released to the atmosphere (see, for example, Patent Document 2).
 ディーゼルエンジンは、液体燃料をエンジン内部で燃焼させて、発生した動力により発電機が駆動され、発電される。ディーゼルエンジンから出た排気ガスは、蒸気発生器に導かれてそのエネルギーが回収されることもあるが、最終的には大気に放出される(例えば、特許文献3参照)。 The diesel engine burns liquid fuel inside the engine and the generator is driven by the generated power to generate electricity. Exhaust gas emitted from the diesel engine may be led to a steam generator to recover its energy, but is finally released to the atmosphere (see, for example, Patent Document 3).
特開2003-269113号公報JP 2003-269113 A 特開2004-022230号公報JP 2004-022230 A 特開2008-115723号公報JP 2008-115723 A
 蒸気タービン、ガスタービンおよびディーゼルエンジンに代表される原動機は、作動流体を燃焼させることにより駆動動力を得ている。原動機において、その作動流体の有する熱エネルギーは、最終的には廃棄されている。すなわち、蒸気タービンにおいては、排気蒸気の有する潜熱は、復水器で廃棄される。ガスタービン、ディーゼルエンジンにおいては、排気ガスは、最終的に大気に放出されて、十分有効に利用されているとはいえない。 A prime mover represented by a steam turbine, a gas turbine, and a diesel engine obtains drive power by burning a working fluid. In the prime mover, the heat energy of the working fluid is finally discarded. That is, in the steam turbine, the latent heat of the exhaust steam is discarded by the condenser. In gas turbines and diesel engines, exhaust gas is finally discharged into the atmosphere and cannot be said to be used sufficiently effectively.
(1.従来の多重効用蒸発缶)
 図1Bに示す従来の多重効用蒸発缶110は、各蒸発缶を異なる圧力で運転して、蒸発潜熱を次の缶の蒸発潜熱として利用するカスケード利用方法をとる。
(1. Conventional multi-effect evaporator)
The conventional multi-effect evaporator 110 shown in FIG. 1B employs a cascade utilization method in which each evaporator is operated at a different pressure and the latent heat of vaporization is used as the latent heat of vaporization of the next can.
 入力流体が、順次、蒸発缶111、112、113に流入して、気体である出力流体が、順次、蒸発缶111、112、113の塔頂から出力される。このとき、蒸発缶111は、加熱源であってボイラーとして機能する。 The input fluid sequentially flows into the evaporators 111, 112, and 113, and the output fluid that is a gas is sequentially output from the top of the evaporators 111, 112, and 113. At this time, the evaporator 111 is a heating source and functions as a boiler.
 蒸発缶111、112の塔頂から出た出力流体は、次段の蒸発缶112、113に流入して、蒸発缶112、113を加熱し、その後廃棄される。最終的には、蒸発缶113の塔底から出力される液体である出力流体は、配管115から回収される。一方、第三蒸発缶113の塔頂から出た出力流体は、冷却器114で冷却された後、回収される。 The output fluid that has come out from the top of the evaporators 111 and 112 flows into the evaporators 112 and 113 in the next stage, heats the evaporators 112 and 113, and is then discarded. Finally, the output fluid, which is a liquid output from the bottom of the evaporator 113, is collected from the pipe 115. On the other hand, the output fluid from the top of the third evaporator 113 is recovered by being cooled by the cooler 114.
 このように、多重効用蒸発缶110は、加熱した熱量(エネルギー)の多くが、蒸発缶を加熱後に、低温の廃熱として系外に捨てられる。 Thus, in the multi-effect evaporator 110, most of the heat (energy) heated is thrown out of the system as low-temperature waste heat after heating the evaporator.
(2.従来のフラッシュ蒸留装置)
 図2Bに示す従来のフラッシュ蒸留装置120は、ベンゼン50%とトルエン50%の混合液を入力流体aとする。この入力流体aが、加熱炉126で加熱され、フラッシュカラム127に導入される。フラッシュカラム127の塔頂から低沸点成分であるベンゼンを多く含んだ蒸気b1と、塔底からトルエンを多く含んだ液b2とが得られる。
(2. Conventional flash distillation equipment)
The conventional flash distillation apparatus 120 shown in FIG. 2B uses a mixed liquid of 50% benzene and 50% toluene as an input fluid a. This input fluid a is heated in the heating furnace 126 and introduced into the flash column 127. A vapor b1 containing a large amount of benzene, which is a low-boiling component, and a liquid b2 containing a large amount of toluene are obtained from the top of the flash column 127.
 フラッシュカラム127の塔頂から出た蒸気b1は、第一熱交換器124で入力流体aと熱交換された後、冷却器128で冷却されて、液化される。フラッシュカラム127の塔底から出た液b2は、第二熱交換器125で入力流体aと熱交換された後、回収される。 The steam b1 emitted from the top of the flash column 127 is heat-exchanged with the input fluid a by the first heat exchanger 124 and then cooled by the cooler 128 to be liquefied. The liquid b2 exiting from the bottom of the flash column 127 is recovered after heat exchange with the input fluid a in the second heat exchanger 125.
 図2Bの例では、それぞれ、第一熱交換器124で120kW,第二熱交換器125で131kWの顕熱が回収される。しかし、加熱炉126で潜熱分の488kWの加熱を必要とする。 In the example of FIG. 2B, sensible heat of 120 kW is recovered by the first heat exchanger 124 and 131 kW is recovered by the second heat exchanger 125, respectively. However, the heating furnace 126 requires 488 kW of latent heat.
(3.従来の海水淡水化プラント)
 図3Bに示す従来の海水淡水化プラント130は、多段フラッシュ法による海水淡水化プラントの一例である。
(3. Conventional seawater desalination plant)
A conventional seawater desalination plant 130 shown in FIG. 3B is an example of a seawater desalination plant using a multistage flash method.
 海水である入力流体aは、複数の熱交換器131を通過した後、加熱器133で加熱されて、最も端のフラッシュドラム132に流入する。そして、フラッシュドラム132に流入した入力流体aは、フラッシュドラム132の塔頂から出力される蒸気b1と、フラッシュドラム132の塔底から出力される液c1とに分離される。 The input fluid a, which is seawater, passes through the plurality of heat exchangers 131, is heated by the heater 133, and flows into the endmost flash drum 132. The input fluid a flowing into the flash drum 132 is separated into a steam b1 output from the top of the flash drum 132 and a liquid c1 output from the bottom of the flash drum 132.
 これらの操作が複数段おこなわれて、各フラッシュドラム132の塔頂から出た蒸気bnは、最終的に冷却器134で冷却されて、生産物たる淡水として回収される。一方、フラッシュドラム132の塔底から出た液cnは、最終的に冷却器135で冷却され、副生産物として回収される。 These operations are performed in a plurality of stages, and the steam bn emitted from the top of each flash drum 132 is finally cooled by the cooler 134 and recovered as fresh water as a product. On the other hand, the liquid cn discharged from the bottom of the flash drum 132 is finally cooled by the cooler 135 and recovered as a by-product.
 この従来の海水淡水化プラント130は、加熱器133により追い焚きする必要がある。そして、加えられた熱は、最終的に低温の廃熱として系外に捨てられる。 This conventional seawater desalination plant 130 needs to be reheated by the heater 133. The applied heat is finally thrown out of the system as low-temperature waste heat.
(4.従来のバイオエタノール共沸蒸留装置)
 図4Bに示す従来のバイオエタノール共沸蒸留装置(以下、共沸蒸留装置と略す)は、共沸剤としてベンゼンを用いた共沸蒸留が用いられている。共沸蒸留装置140において、第一精留塔141の塔頂からベンゼン-水混合物が取り出され、第一精留塔141の塔底から純度の高いエタノールが取り出される。第一精留塔141の塔頂から取り出されたベンゼン-水混合物は、第一デカンタ143および第二精留塔142で、ベンゼンと水とに分離される。なお、ベンゼンは、第一精留塔141に循環して再利用される。しかしながら、共沸蒸留装置140は、消費されるエネルギー量が大きく、図4Bに示す条件では、2つの精留塔141、142の加熱器145、146で合計395kWの大きなエネルギーを必要とする。
(4. Conventional bioethanol azeotropic distillation equipment)
The conventional bioethanol azeotropic distillation apparatus (hereinafter abbreviated as azeotropic distillation apparatus) shown in FIG. 4B uses azeotropic distillation using benzene as an azeotropic agent. In the azeotropic distillation apparatus 140, a benzene-water mixture is taken out from the top of the first rectifying column 141, and high-purity ethanol is taken out from the bottom of the first rectifying column 141. The benzene-water mixture taken out from the top of the first rectifying column 141 is separated into benzene and water by the first decanter 143 and the second rectifying column 142. Benzene is recycled to the first rectification column 141 for reuse. However, the azeotropic distillation apparatus 140 consumes a large amount of energy. Under the conditions shown in FIG. 4B, the heaters 145 and 146 of the two rectification towers 141 and 142 require a large amount of energy of 395 kW in total.
 化学反応を利用して電力を取り出す場合、燃料が本来有するエネルギーをΔHとすれば、ΔGを電気として取り出すことができ、TΔSを熱として取り出すことができる。ΔGは、仕事として取り出すことができるエネルギーであり、有効なエネルギーとしてエクセルギーと呼ばれている。TΔSは、反応に伴って発生する熱である。そして、有効なエネルギーを取り出す能力として、ΔG/ΔHは、エクセルギー率と呼ばれている。エクセルギー率は、可逆的なエネルギーに変換される割合である。しかし、熱が発生した時点で可逆的なエネルギーに変換される割合が下がることとなり、エクセルギー率が低下する。 When taking out electric power using a chemical reaction, if the original energy of the fuel is ΔH, ΔG can be taken out as electricity and TΔS can be taken out as heat. ΔG is energy that can be taken out as work, and is called exergy as effective energy. TΔS is heat generated with the reaction. And ΔG / ΔH is called the exergy rate as the ability to extract effective energy. The exergy rate is the rate converted to reversible energy. However, the rate of conversion to reversible energy when heat is generated decreases, and the exergy rate decreases.
 本発明の目的は、上記課題を解決するためになされたものであり、エクセルギー率ΔG/ΔHを向上させることにある。別な表現をすれば、無駄に廃棄される熱エネルギーを極力少なくする装置および方法を提供することを解決課題とする。 An object of the present invention is to solve the above-described problems, and is to improve the exergy rate ΔG / ΔH. In other words, it is an object of the present invention to provide an apparatus and method for minimizing wasteful thermal energy.
 上記の課題を解決するため、本発明に係る蒸留装置は、複数の物質を含む入力流体を受け入れて蒸留する蒸留塔と、前記蒸留塔の塔頂から出た第一出力流体を圧縮する圧縮機と、前記圧縮機から出た前記第一出力流体により、前記入力流体を加熱する第一熱交換器と、前記蒸留塔の塔底から出た第二出力流体により、前記入力流体を加熱する第二熱交換器と、を備えている。 In order to solve the above-described problems, a distillation apparatus according to the present invention includes a distillation column that receives and distills an input fluid containing a plurality of substances, and a compressor that compresses a first output fluid discharged from the top of the distillation column. A first heat exchanger that heats the input fluid by the first output fluid that has exited from the compressor, and a second heat fluid that heats the input fluid by a second output fluid that has exited from the bottom of the distillation column. Two heat exchangers.
 この構成によれば、断熱圧縮により昇温した出力流体と入力流体とが熱交換することにより、入力流体を加熱するので、エネルギーの無駄が発生しない。エクセルギー率の高いプラントもしくは装置を実現することができる。なお、入力流体は液体であることが好ましい。 This configuration heats the input fluid by exchanging heat between the output fluid heated by adiabatic compression and the input fluid, so that energy is not wasted. A plant or apparatus with a high exergy rate can be realized. The input fluid is preferably a liquid.
 本発明に係る蒸留装置は、前記蒸留塔の内部に配置された加熱器を更に備えており、当該加熱器が、前記圧縮機から出た前記第一出力流体によって前記蒸留塔を加熱するとともに、当該加熱器の下流に前記第一熱交換器が設けられていることが好ましい。 The distillation apparatus according to the present invention further includes a heater disposed inside the distillation column, and the heater heats the distillation column with the first output fluid output from the compressor, The first heat exchanger is preferably provided downstream of the heater.
 この構成によれば、断熱圧縮により昇温した出力流体の熱を、蒸留塔の加熱に有効に利用することができる。 According to this configuration, the heat of the output fluid raised in temperature by adiabatic compression can be effectively used for heating the distillation tower.
 本発明に係る蒸留装置は、前記第二熱交換器が、前記第二出力流体と、前記第一熱交換器から出た前記第一出力流体とにより、前記入力流体を加熱することが好ましい。 In the distillation apparatus according to the present invention, it is preferable that the second heat exchanger heats the input fluid with the second output fluid and the first output fluid output from the first heat exchanger.
 本発明に係る蒸留装置は、前記入力流体の一部を前記第一熱交換器に導く第一分流路と、前記入力流体の他部を前記第二熱交換器に導く第二分流路と、前記第一および第二交換器を通過した入力流体を合流する合流部と、を更に備えていることが好ましい。 The distillation apparatus according to the present invention includes a first branch channel that leads a part of the input fluid to the first heat exchanger, a second branch channel that guides the other part of the input fluid to the second heat exchanger, It is preferable to further include a merging unit that merges the input fluid that has passed through the first and second exchangers.
 本発明に係る蒸留装置は、前記圧縮機と前記合流部との間に配置された第三熱交換器を更に備えており、当該第三熱交換器が、前記合流部通過後の入力流体を、前記第一出力流体により加熱することが好ましい。 The distillation apparatus according to the present invention further includes a third heat exchanger disposed between the compressor and the junction, and the third heat exchanger receives the input fluid after passing through the junction. The first output fluid is preferably heated.
 本発明に係る蒸留装置は、前記圧縮機と前記第二熱交換器との間に配置された第四熱交換器を更に備えており、当該第四熱交換器が、前記第二熱交換器に流入する前の前記第二出力流体を、前記第一出力流体により加熱することが好ましい。 The distillation apparatus according to the present invention further includes a fourth heat exchanger disposed between the compressor and the second heat exchanger, and the fourth heat exchanger includes the second heat exchanger. It is preferable that the second output fluid before flowing into the tank is heated by the first output fluid.
 本発明に係る蒸留装置は、第一熱交換器の下流に配置され、第一出力流体が流入する第一冷却器と、第二熱交換器の下流に配置され、第二出力流体が流入する第二冷却器と、を更に備えていることが好ましい。 The distillation apparatus according to the present invention is disposed downstream of the first heat exchanger and is disposed downstream of the first cooler into which the first output fluid flows and the second heat exchanger, and into which the second output fluid flows. And a second cooler.
 本発明に係る蒸留装置は、前記入力流体は、低沸点の物質と高沸点の物質とを含む混合物質であり、前記第一出力流体が低沸点の物質を含んでおり、前記第二出力流体が高沸点の物質を含んでいることが好ましい。 In the distillation apparatus according to the present invention, the input fluid is a mixed substance containing a low-boiling substance and a high-boiling substance, the first output fluid contains a low-boiling substance, and the second output fluid Preferably contains a substance having a high boiling point.
 本発明に係る蒸留装置は、前記入力流体が塩分を含んでおり、前記第一出力流体の塩分濃度が、前記入力流体より低いことが好ましい。この構成において、好ましくは、入力流体が海水であり、第一出力流体が淡水である。 In the distillation apparatus according to the present invention, it is preferable that the input fluid contains salt, and the salt concentration of the first output fluid is lower than that of the input fluid. In this configuration, the input fluid is preferably seawater and the first output fluid is fresh water.
 本発明に係る蒸留装置は、第一物質を含む第一入力流体と、第二物質および第三物質を含む第二入力流体とが供給される第一蒸留塔と、前記第一蒸留塔の塔頂から出た第一出力流体を圧縮する第一圧縮機と、前記圧縮機から出た前記第一出力流体により、前記第一蒸留塔の塔底から出た第二出力流体を加熱する第一熱交換器と、前記第一熱交換器から出た前記第一出力流体が流入する第二蒸留塔と、前記第二蒸留塔の塔頂から出た第三出力流体を圧縮する第二圧縮機と、前記第二圧縮機から出た前記第三出力流体により、前記第二蒸留塔の塔底から出た第四出力流体を加熱するとともに、前記第三出力流体を前記第二蒸留塔に向けて排出する、第二熱交換器と、前記第一熱交換器から出た前記第一出力流体から前記第一物質を分離し、この第一物質を第一蒸留塔に戻すデカンタと、前記第一蒸留塔の塔底から出た第二入力流体に含まれる第二物質を回収するための第一排出口と、前記第二蒸留塔の塔底から出た第二入力流体に含まれる第三物質を回収するための第二排出口と、を有していることが好ましい。また、本発明に係る蒸留装置は、前記第二蒸留塔の塔頂から出た前記第三出力流体の一部を圧縮する第三圧縮機と、前記デカンタによって第一物質が分離された第一入力流体を、前記第三圧縮機から出た前記第三出力流体により加熱するとともに、前記第三出力流体を前記第一蒸留塔に向けて排出する、第三熱交換器と、を更に備えていることが好ましい。 A distillation apparatus according to the present invention includes a first distillation column to which a first input fluid containing a first substance, a second input fluid containing a second substance and a third substance are supplied, and a tower of the first distillation tower A first compressor that compresses the first output fluid that has exited from the top, and a first output fluid that heats the second output fluid that has exited from the bottom of the first distillation column by the first output fluid that has exited from the compressor. A heat exchanger, a second distillation column into which the first output fluid from the first heat exchanger flows, and a second compressor for compressing the third output fluid from the top of the second distillation column. And the third output fluid from the second compressor heats the fourth output fluid from the bottom of the second distillation column and directs the third output fluid to the second distillation column. Separating the first substance from the second heat exchanger to be discharged and the first output fluid exiting from the first heat exchanger, A decanter for returning one substance to the first distillation column, a first outlet for recovering the second substance contained in the second input fluid coming out from the bottom of the first distillation column, It is preferable to have a second outlet for recovering the third substance contained in the second input fluid that has come out of the tower bottom. Further, the distillation apparatus according to the present invention includes a third compressor that compresses a part of the third output fluid that has come out from the top of the second distillation column, and a first substance in which the first substance is separated by the decanter. A third heat exchanger that heats the input fluid with the third output fluid exiting from the third compressor and discharges the third output fluid toward the first distillation column; Preferably it is.
 この構成によれば、断熱圧縮により昇温した出力流体と入力流体とを熱交換することにより、入力流体を加熱するので、エネルギーの無駄が発生しない。エクセルギー率の高いプラントもしくは装置を実現することができる。 According to this configuration, since the input fluid is heated by exchanging heat between the output fluid heated by adiabatic compression and the input fluid, energy is not wasted. A plant or apparatus with a high exergy rate can be realized.
 本発明に係る蒸留装置は、前記第一熱交換器と前記デカンタとの間に配置された、前記第一出力流体を冷却する第一冷却器を、更に備えていることが好ましい。 The distillation apparatus according to the present invention preferably further includes a first cooler disposed between the first heat exchanger and the decanter for cooling the first output fluid.
 本発明に係る蒸留装置は、前記第一物質がベンゼンであり、前記第二物質がエタノールであり、前記第三物質が水であることが好ましい。 In the distillation apparatus according to the present invention, it is preferable that the first substance is benzene, the second substance is ethanol, and the third substance is water.
 本発明に係る蒸留方法は、入力流体を蒸気と液に分離する、分離工程と、前記蒸気を圧縮する圧縮工程と、前記入力流体を、前記圧縮された蒸気によって加熱する、第一加熱工程と、前記入力流体を、前記液によって加熱する、第二加熱工程と、前記第一加熱工程に用いられた蒸気を液化する液化工程と、を有する。 The distillation method according to the present invention includes a separation step of separating an input fluid into vapor and liquid, a compression step of compressing the vapor, and a first heating step of heating the input fluid with the compressed vapor. And a second heating step for heating the input fluid with the liquid and a liquefaction step for liquefying the steam used in the first heating step.
 この方法によれば、加熱工程または燃焼工程の一部または全部を、分離部から出た出力流体を断熱圧縮し、これを加熱源として、分離部に流入前の入力流体と熱交換する工程に代えることで、加熱または燃焼に伴うエクセルギー率の低い熱エネルギーの損失を抑えることができる。これにより、TΔSを減少し、ΔGを増加して、エクセルギー率ΔG/ΔHを向上させることができる。 According to this method, a part or all of the heating step or the combustion step is a step of adiabatically compressing the output fluid from the separation unit and using this as a heating source to exchange heat with the input fluid before flowing into the separation unit By substituting, loss of heat energy with a low exergy rate accompanying heating or combustion can be suppressed. Thereby, TΔS can be decreased, ΔG can be increased, and the exergy rate ΔG / ΔH can be improved.
 以上のように、本発明によれば、エネルギー損失を抑えて、エクセルギー率ΔG/ΔHを向上した蒸留装置および蒸留装置方法を提供することができる。 As described above, according to the present invention, it is possible to provide a distillation apparatus and a distillation apparatus method in which the energy loss is suppressed and the exergy rate ΔG / ΔH is improved.
本発明の実施形態1の蒸留装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the distillation apparatus of Embodiment 1 of this invention. 実施形態1の従来技術の概略構成を示す模式図である。1 is a schematic diagram showing a schematic configuration of a conventional technique of Embodiment 1. FIG. 本発明の実施形態2の蒸留装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the distillation apparatus of Embodiment 2 of this invention. 実施形態2の従来技術の概略構成を示す模式図である。FIG. 6 is a schematic diagram showing a schematic configuration of a conventional technique of Embodiment 2. 本発明の実施形態3の蒸留装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the distillation apparatus of Embodiment 3 of this invention. 実施形態3の従来技術の概略構成を示す模式図である。FIG. 6 is a schematic diagram showing a schematic configuration of a conventional technique of Embodiment 3. 本発明の実施形態4の蒸留装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the distillation apparatus of Embodiment 4 of this invention. 実施形態4の従来技術の概略構成を示す模式図である。FIG. 10 is a schematic diagram illustrating a schematic configuration of a conventional technique of a fourth embodiment.
 以下、本発明に係る実施形態を図面に基づき説明するが、本発明は下記実施形態に限定されるものではない。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.
<実施形態1>
 図1Aに示す実施形態1の自己熱再生蒸留装置10は、原料(入力流体)の入口となる導入口11と、製品(出力流体)の出口となる第一排出口16、第二排出口17を有している。導入口11と、第一排出口16および第二排出口17との間には、種々の装置が配管により接続されている。製品である出力流体は、例えば、第一排出口16から回収され、廃液が第二排出口17から回収される。つまり、入力流体は複数の物質を含んでおり、このうちの沸点が低い物質が第一排出口16から回収され、残りの物質が第二排出口17から回収される。
<Embodiment 1>
The self-heating regenerative distillation apparatus 10 of Embodiment 1 shown in FIG. 1A includes an inlet 11 serving as an inlet for raw materials (input fluid), a first outlet 16 serving as an outlet for products (output fluid), and a second outlet 17. have. Various devices are connected between the introduction port 11 and the first and second discharge ports 16 and 17 by piping. For example, the output fluid as a product is collected from the first discharge port 16, and the waste liquid is collected from the second discharge port 17. That is, the input fluid includes a plurality of substances, and among these substances, a substance having a low boiling point is recovered from the first outlet 16 and the remaining substance is recovered from the second outlet 17.
 自己熱再生蒸留装置10は、2つの熱交換器と、1つの圧縮機と、1つの蒸発缶を有している。すなわち、第二熱交換器12は、入力流体Aと第一熱交換器13を出た第二出力流体B2との間で熱交換する。第一熱交換器13は、第二熱交換器12を出た入力流体Aと、蒸発缶の加熱チューブ14Aから出た第一出力流体B1との間で熱交換する。
 圧縮機15は、蒸発缶14の塔頂から出た第一出力流体B1を断熱圧縮する。第一出力流体B1は、断熱圧縮されることにより、昇温する。蒸発缶14は、第一熱交換器13を出た入力流体Aを受け入れて、塔底から第二出力流体B2を排出する。なお、蒸発缶14の内部には加熱チューブ14Aが配置されている。
The self-heat regeneration distillation apparatus 10 has two heat exchangers, one compressor, and one evaporator. That is, the second heat exchanger 12 exchanges heat between the input fluid A and the second output fluid B2 that has exited the first heat exchanger 13. The first heat exchanger 13 exchanges heat between the input fluid A exiting the second heat exchanger 12 and the first output fluid B1 exiting from the evaporator heating tube 14A.
The compressor 15 adiabatically compresses the first output fluid B1 that has come out from the top of the evaporator 14. The first output fluid B1 is heated by being adiabatically compressed. The evaporator 14 receives the input fluid A that has exited the first heat exchanger 13 and discharges the second output fluid B2 from the bottom of the tower. Note that a heating tube 14 </ b> A is disposed inside the evaporator 14.
 以下、自己熱再生蒸留装置10の構成を、入力流体の流れに沿って説明する。入力流体Aは、導入口11から、第二熱交換器12、第一熱交換器13を通過して、蒸発缶14に流入する。第一熱交換器13を出た入力流体Aは、蒸発缶14で、気体の第一出力流体B1と、液体の第二出力流体B2とに分離される。 Hereinafter, the configuration of the self-heat regeneration distillation apparatus 10 will be described along the flow of the input fluid. The input fluid A passes through the second heat exchanger 12 and the first heat exchanger 13 from the inlet 11 and flows into the evaporator 14. The input fluid A exiting the first heat exchanger 13 is separated into a gaseous first output fluid B1 and a liquid second output fluid B2 by the evaporator 14.
 蒸発缶14の塔頂から出た第一出力流体B1は、圧縮機15で断熱圧縮されて、蒸発缶14の缶内を通る加熱チューブ14Aに流入する。そして、第一出力流体B1は、加熱チューブを通過する間に、蒸発缶14内の入力流体と、潜熱が熱交換される。蒸発缶14内の入力流体の温度は上昇する。加熱チューブ14Aを出た第一出力流体B1は、第一熱交換器13に流れ、第二熱交換器12を出た入力流体Aと顕熱が熱交換される。これにより、入力流体Aの温度は上昇する。第一熱交換器13を出た第一出力流体B1は、第二熱交換器12に流れ、入力流体Aと顕熱が熱交換される。第二熱交換器12を出た第一出力流体B1は、第一排出口16から回収される。 The first output fluid B1 coming out from the top of the evaporator 14 is adiabatically compressed by the compressor 15 and flows into the heating tube 14A passing through the inside of the evaporator 14. The first output fluid B1 exchanges heat with the input fluid in the evaporator 14 while passing through the heating tube. The temperature of the input fluid in the evaporator 14 rises. The first output fluid B1 exiting the heating tube 14A flows to the first heat exchanger 13, and the sensible heat is exchanged with the input fluid A exiting the second heat exchanger 12. Thereby, the temperature of the input fluid A rises. The first output fluid B1 that has exited the first heat exchanger 13 flows to the second heat exchanger 12, and the input fluid A and sensible heat are heat-exchanged. The first output fluid B1 that has exited the second heat exchanger 12 is recovered from the first outlet 16.
 一方、蒸発缶14の塔底から出た第二出力流体B2は、第二熱交換器12に流入する。第二出力流体B2は、第二熱交換器12を通過する間に、入力流体Aと顕熱が熱交換される。そして、第二出力流体B2は、第二熱交換器12を出た後、第二排出口17から回収される。 On the other hand, the second output fluid B2 that has come out from the bottom of the evaporator 14 flows into the second heat exchanger 12. While the second output fluid B2 passes through the second heat exchanger 12, the input fluid A and sensible heat are heat-exchanged. The second output fluid B2 is recovered from the second outlet 17 after leaving the second heat exchanger 12.
 このように、入力流体Aは、第一熱交換器13と第二熱交換器12で、第一出力流体B1および第二出力流体B2と顕熱が熱交換されて加熱され、蒸発缶14に流入する。なお、第一出力流体B1が、第一熱交換器13と第二熱交換器12とで、2段階に分けて顕熱を熱交換する理由は、第一熱交換器13での温度が圧縮機15で圧縮された分だけ、蒸発缶14から流出した時の温度よりも高い温度になっているためである。すなわち、第一出力流体B1の持つ熱エネルギーを、2段階で熱交換することにより、より多くの熱エネルギーを回収することが可能である。 Thus, the input fluid A is heated by the first output fluid B1 and the second output fluid B2 and the sensible heat by the first heat exchanger 13 and the second heat exchanger 12 and heated to the evaporator 14. Inflow. The reason why the first output fluid B1 exchanges sensible heat in two stages in the first heat exchanger 13 and the second heat exchanger 12 is that the temperature in the first heat exchanger 13 is compressed. This is because the temperature compressed by the machine 15 is higher than the temperature when it flows out of the evaporator 14. That is, more heat energy can be recovered by exchanging the heat energy of the first output fluid B1 in two stages.
 以上により、第一出力流体B1および第二出力流体B2の保有する熱を入力流体の加熱に利用することで、ボイラー等で別途加熱する必要がない。すなわち、これら流体の潜熱および顕熱の自己熱が循環利用され、自己熱再生蒸留装置10は、省エネルギーを実現できる。 As described above, the heat held by the first output fluid B1 and the second output fluid B2 is used for heating the input fluid, so that it is not necessary to separately heat with a boiler or the like. That is, the latent heat of these fluids and the self heat of sensible heat are circulated and utilized, and the self heat regeneration distillation apparatus 10 can realize energy saving.
<実施形態2>
 図2Aに示す実施形態2のフラッシュ蒸留装置20は、原料(入力流体)の入口となる導入口21と、製品(出力流体)の出口となる第一排出口35と第二排出口36を有している。そして、導入口21と、第一排出口35および第二排出口36との間には、種々の装置が配管で接続されている。製品である出力流体は、例えば、入力流体の中の沸点の低い成分が、第一排出口35から回収され、沸点の高い成分が、第二排出口36から回収される。
<Embodiment 2>
The flash distillation apparatus 20 of Embodiment 2 shown in FIG. 2A has an inlet 21 that serves as an inlet for raw materials (input fluid), and a first outlet 35 and a second outlet 36 that serve as outlets for products (output fluid). is doing. Various devices are connected by piping between the introduction port 21, the first discharge port 35, and the second discharge port 36. In the output fluid as a product, for example, a component having a low boiling point in the input fluid is recovered from the first discharge port 35, and a component having a high boiling point is recovered from the second discharge port 36.
 フラッシュ蒸留装置20は、4つの熱交換器と、1つの圧縮機と、1つのフラッシュカラムとを有している。すなわち、第一熱交換器27は、第一分流路23と第一回収路37との間で熱交換をする。第二熱交換器28は、第二分流路24と第二回収路38との間で熱交換をする。第三熱交換器29は、合流路26と第一回収路37との間で熱交換をする。第四熱交換器30は、第一回収路37と第二回収路38との間で熱交換をする。
 圧縮機31は、第一回収路37であって、フラッシュカラム32の塔頂と第四熱交換器30の間に配置されている。
The flash distillation apparatus 20 has four heat exchangers, one compressor, and one flash column. That is, the first heat exchanger 27 performs heat exchange between the first branch channel 23 and the first recovery channel 37. The second heat exchanger 28 exchanges heat between the second branch channel 24 and the second recovery channel 38. The third heat exchanger 29 exchanges heat between the combined flow path 26 and the first recovery path 37. The fourth heat exchanger 30 exchanges heat between the first recovery path 37 and the second recovery path 38.
The compressor 31 is a first recovery path 37 and is disposed between the top of the flash column 32 and the fourth heat exchanger 30.
 以下、フラッシュ蒸留装置20の構成を、作動流体の流れに沿って説明する。入力流体Aは、導入口21から流入して、分流部22で、第一分流路23を流れる第一入力流体A1と、第二分流路24を流れる第二入力流体A2と、に分流する。第一入力流体A1は、第一熱交換器27にて加熱されて、合流部25に流入する。第二入力流体A2は、第二熱交換器28にて加熱されて、合流部25に流入する。合流部25において、第一入力流体A1と第二入力流体A2とが合流する(以下、合流した入力流体を入力流体A3と呼ぶこととする)。 Hereinafter, the configuration of the flash distillation apparatus 20 will be described along the flow of the working fluid. The input fluid A flows in from the introduction port 21, and is divided into the first input fluid A <b> 1 that flows through the first branch channel 23 and the second input fluid A <b> 2 that flows through the second branch channel 24 at the branching unit 22. The first input fluid A <b> 1 is heated by the first heat exchanger 27 and flows into the joining portion 25. The second input fluid A <b> 2 is heated by the second heat exchanger 28 and flows into the junction 25. In the merging portion 25, the first input fluid A1 and the second input fluid A2 merge (hereinafter, the merged input fluid is referred to as the input fluid A3).
 そして、入力流体A3は、合流路26に配された第三熱交換器29にて加熱されて、フラッシュカラム32に流入する。フラッシュカラム32において、入力流体A3は、気体の第一出力流体B1と、液体の第二出力流体B2とに分離される。フラッシュカラム32の塔頂から流出した第一出力流体B1は、第一回収路37を経由して、第一排出口35から流出する。フラッシュカラム32の塔底から流出した第二出力流体B2は、第二回収路38を経由して第二排出口36から流出する。 The input fluid A3 is heated by the third heat exchanger 29 arranged in the combined flow path 26 and flows into the flash column 32. In the flash column 32, the input fluid A3 is separated into a gas first output fluid B1 and a liquid second output fluid B2. The first output fluid B1 flowing out from the top of the flash column 32 flows out from the first outlet 35 via the first recovery path 37. The second output fluid B2 flowing out from the bottom of the flash column 32 flows out from the second discharge port 36 via the second recovery path 38.
 第一出力流体B1は、圧縮機31で断熱圧縮されて、昇温する。第一出力流体B1は第四熱交換器30、第三熱交換器29、第一熱交換器27、を順次通過する。第一回収路37を流れる第一出力流体B1は、第四熱交換器30を通過する間に、第二回収路38を流れる第二出力流体B2を加熱する。潜熱による熱交換が行なわれる。また、第一出力流体B1は、第三熱交換器29を通過する時に、合流路26を流れる入力流体A3を加熱し、第一熱交換器27を通過する間に、第一分流路23を流れる第一入力流体A1を加熱する。そして、第一出力流体B1は、第一冷却器52で冷却され、液化された後、第一排出口54から回収される。回収された第一出力流体B1は淡水である。 The first output fluid B1 is adiabatically compressed by the compressor 31 and rises in temperature. The first output fluid B1 sequentially passes through the fourth heat exchanger 30, the third heat exchanger 29, and the first heat exchanger 27. The first output fluid B1 flowing through the first recovery path 37 heats the second output fluid B2 flowing through the second recovery path 38 while passing through the fourth heat exchanger 30. Heat exchange by latent heat is performed. Further, when the first output fluid B1 passes through the third heat exchanger 29, the first output fluid B1 heats the input fluid A3 flowing through the combined flow path 26, and passes through the first heat exchanger 27 while passing through the first split flow path 23. The flowing first input fluid A1 is heated. The first output fluid B1 is cooled by the first cooler 52, liquefied, and then recovered from the first discharge port 54. The recovered first output fluid B1 is fresh water.
 一方、第二出力流体B2は、第四熱交換器30、第二熱交換器28、を順次通過する。第二回収路38を流れる第二出力流体B2は、第四熱交換器30を通過する間に、第一出力流体B1を加熱し、第二熱交換器28を通過する間に、第二入力流体A2を加熱する。熱交換器28、30で顕熱による熱交換が行なわれる。そして、第二出力流体B2は、第二冷却器34で冷却された後、第二排出口36から回収される。なお、導入口21と、第一排出口35と、第二排出口36とにおける各流体の温度および圧力を同一にすれば、フラッシュ蒸留装置20をモジュール化しやすい。また、このフラッシュ蒸留装置20は、ベンゼンとトルエンの分留に利用できる。また、焼酎の蒸留に用いることができる。複数のフラッシュ蒸留装置20を組み合わせて、望みの度数の焼酎を得ることができる。 On the other hand, the second output fluid B2 sequentially passes through the fourth heat exchanger 30 and the second heat exchanger 28. The second output fluid B <b> 2 flowing through the second recovery path 38 heats the first output fluid B <b> 1 while passing through the fourth heat exchanger 30, and the second input while passing through the second heat exchanger 28. Heat fluid A2. Heat exchange by sensible heat is performed in the heat exchangers 28 and 30. The second output fluid B2 is recovered from the second discharge port 36 after being cooled by the second cooler 34. In addition, if the temperature and pressure of each fluid in the inlet 21, the first outlet 35, and the second outlet 36 are the same, the flash distillation apparatus 20 can be easily modularized. The flash distillation apparatus 20 can be used for fractional distillation of benzene and toluene. Moreover, it can be used for distillation of shochu. A plurality of flash distillation apparatuses 20 can be combined to obtain a desired degree of shochu.
 このように、入力流体Aは、第一熱交換器27と第二熱交換器28と第三熱交換器29で、第一出力流体B1および第二出力流体B2により加熱され、フラッシュカラム32に流入することになる。なお、第一出力流体B1が、第一熱交換器27と第三熱交換器29と第四熱交換器30とで、3段階に分けて熱交換される理由は、まず第四熱交換器30で潜熱を交換し、第三熱交換器29および第一熱交換器27で顕熱を交換するためである。すなわち、第一出力流体B1の持つ熱エネルギーを、3段階で熱交換することにより、より多くのエネルギーを回収することができる。 Thus, the input fluid A is heated by the first output fluid B1 and the second output fluid B2 in the first heat exchanger 27, the second heat exchanger 28, and the third heat exchanger 29, and is supplied to the flash column 32. Will flow in. The reason why the first output fluid B1 is heat-exchanged in three stages by the first heat exchanger 27, the third heat exchanger 29, and the fourth heat exchanger 30 is that the first heat exchanger 27 is the fourth heat exchanger. This is because the latent heat is exchanged at 30 and the sensible heat is exchanged at the third heat exchanger 29 and the first heat exchanger 27. That is, more energy can be recovered by exchanging the heat energy of the first output fluid B1 in three stages.
 以上により、入力流体A、第一出力流体B1、第二出力流体B2の自己熱を利用することで、加熱炉で加熱する必要がないフラッシュ蒸留装置を実現する。図2Bを例に取って説明すれば、488kWの加熱炉126は必要でない。もっとも、圧縮機31を駆動するために動力が必要となるが、この動力は、100kgmol/hの入力流体Aに対して45.1kWとなる。すなわち、作動流体の潜熱・顕熱が循環利用されるので、自己熱再生によるフラッシュ蒸留装置20は、従来のフラッシュ蒸留装置120と比べて、エンタルピー基準で約1/11となり、10分の1以下のエネルギーで運転が可能である。 As described above, a flash distillation apparatus that does not need to be heated in a heating furnace is realized by using the self-heat of the input fluid A, the first output fluid B1, and the second output fluid B2. Taking FIG. 2B as an example, the 488 kW heating furnace 126 is not necessary. Of course, power is required to drive the compressor 31, but this power is 45.1 kW for an input fluid A of 100 kgmol / h. That is, since the latent heat and sensible heat of the working fluid are circulated and used, the flash distillation apparatus 20 by self-heat regeneration is about 1/11 in terms of enthalpy compared to the conventional flash distillation apparatus 120, and is less than 1/10. It is possible to drive with the energy.
<実施形態3>
 図3Aに示す実施形態3の淡水化プラント40は、原料(入力流体)の入口となる導入口41と、製品(出力流体)の出口となる第一排出口54、第二排出口55を有している。そして、導入口41と、第一排出口54および第二排出口55との間には、種々の装置が配管で接続されている。淡水化プラント40は、例えば、入力流体の中からある成分を分離して第一排出口54から排出し、分離後の入力流体を第二排出口55から排出する。
<Embodiment 3>
The desalination plant 40 of Embodiment 3 shown in FIG. 3A has an inlet 41 serving as an inlet for raw materials (input fluid), a first outlet 54 and a second outlet 55 serving as outlets for a product (output fluid). is doing. Various devices are connected by piping between the inlet 41 and the first outlet 54 and the second outlet 55. For example, the desalination plant 40 separates certain components from the input fluid and discharges them from the first discharge port 54, and discharges the separated input fluid from the second discharge port 55.
 淡水化プラント40は、3つの熱交換器と、1つの圧縮機と、1つのフラッシュカラムとを有している。すなわち、第一熱交換器47は、第一分流路43と第一回収路57との間で熱交換をする。第二熱交換器48は、第二分流路44と第二回収路58との間で熱交換をする。第三熱交換器49は、合流路46と第一回収路57との間で熱交換をする。
 圧縮機50は、第一回収路57であって、フラッシュカラム51の塔頂と第三熱交換器49の間に配置されている。
The desalination plant 40 has three heat exchangers, one compressor, and one flash column. That is, the first heat exchanger 47 exchanges heat between the first branch channel 43 and the first recovery channel 57. The second heat exchanger 48 exchanges heat between the second branch channel 44 and the second recovery channel 58. The third heat exchanger 49 exchanges heat between the combined flow path 46 and the first recovery path 57.
The compressor 50 is a first recovery path 57 and is disposed between the top of the flash column 51 and the third heat exchanger 49.
 以下、淡水化プラント40の構成を、作動流体の流れに沿って説明する。
 入力流体Aは、導入口41から流入して、分流部42で、第一分流路43を流れる第一入力流体A1と、第二分流路44を流れる第二入力流体A2と、に分流する。第一入力流体A1は、第一熱交換器47にて加熱されて、合流部45に流入する。第二入力流体A2は、第二熱交換器48にて加熱されて、合流部45に流入する。合流部45において、第一入力流体A1と第二入力流体A2とが合流する(以下、合流した入力流体を入力流体A3と呼ぶこととする)。
Hereinafter, the structure of the desalination plant 40 is demonstrated along the flow of a working fluid.
The input fluid A flows in from the introduction port 41, and is divided into the first input fluid A <b> 1 that flows through the first branch channel 43 and the second input fluid A <b> 2 that flows through the second branch channel 44 at the branching unit 42. The first input fluid A1 is heated by the first heat exchanger 47 and flows into the junction 45. The second input fluid A2 is heated by the second heat exchanger 48 and flows into the junction 45. In the merging portion 45, the first input fluid A1 and the second input fluid A2 merge (hereinafter, the merged input fluid is referred to as an input fluid A3).
 そして、入力流体A3は、合流路46に配された第三熱交換器49にて加熱されて、フラッシュカラム51に流入する。フラッシュカラム51において、入力流体A3は、気体の第一出力流体B1と、液体の第二出力流体B2とに分離される。フラッシュカラム51の塔頂から出た第一出力流体B1は、第一回収路57を経由して、第一排出口54から流出する。フラッシュカラム51の塔底から出た第二出力流体B2は、第二回収路58を経由して第二排出口55から流出する。具体的には、第一出力流体B1は水蒸気であり、第二出力流体B2は塩分濃度の高い海水である。 The input fluid A3 is heated by the third heat exchanger 49 arranged in the combined flow path 46 and flows into the flash column 51. In the flash column 51, the input fluid A3 is separated into a gas first output fluid B1 and a liquid second output fluid B2. The first output fluid B1 that has exited from the top of the flash column 51 flows out from the first outlet 54 via the first recovery path 57. The second output fluid B2 that has exited from the bottom of the flash column 51 flows out from the second outlet 55 via the second recovery path 58. Specifically, the first output fluid B1 is water vapor, and the second output fluid B2 is seawater with a high salinity concentration.
 第一出力流体B1は、圧縮機50で断熱圧縮されて、省温する。第一出力流体B1は、第三熱交換器49、第一熱交換器47を、順次通過する。第一回収路57を流れる第一出力流体B1は、第三熱交換器49を通過する時に、合流路46を流れる入力流体A3を加熱する。潜熱による熱交換が行なわれる。そして、第一熱交換器47を通過する時に、第一分流路43を流れる第一入力流体A1を加熱する。顕熱による熱交換が行なわれる。そして、第一出力流体B1は、第一冷却器52で冷却され液化された後、第一排出口54から回収される。回収された第一出力流体B1は、生産物たる淡水である。 The first output fluid B1 is adiabatically compressed by the compressor 50 to save temperature. The first output fluid B1 sequentially passes through the third heat exchanger 49 and the first heat exchanger 47. The first output fluid B1 flowing through the first recovery path 57 heats the input fluid A3 flowing through the combined flow path 46 when passing through the third heat exchanger 49. Heat exchange by latent heat is performed. And when passing the 1st heat exchanger 47, the 1st input fluid A1 which flows through the 1st distribution path 43 is heated. Heat exchange by sensible heat is performed. The first output fluid B1 is cooled and liquefied by the first cooler 52, and then collected from the first outlet 54. The collected first output fluid B1 is fresh water as a product.
 一方、第二出力流体B2は、第二熱交換器48を通過する。第二出力流体B2は、第二熱交換器48を通過する間に第二入力流体A2を加熱する。第二熱交換器48にて、顕熱による熱交換が行なわれる。そして、第二出力流体B2は、第二冷却器53で冷却され、第二排出口55から排出される。 On the other hand, the second output fluid B2 passes through the second heat exchanger 48. The second output fluid B2 heats the second input fluid A2 while passing through the second heat exchanger 48. In the second heat exchanger 48, heat exchange by sensible heat is performed. Then, the second output fluid B <b> 2 is cooled by the second cooler 53 and discharged from the second discharge port 55.
 このように、入力流体Aは、第一熱交換器47と第二熱交換器48と第三熱交換器49で、第一出力流体B1および第二出力流体B2と熱交換されて加温され、フラッシュカラム51に流入する。なお、第一出力流体B1が、第一熱交換器47と第三熱交換器49とで、2段階に分けて熱交換される理由は、まず第三熱交換器49で潜熱を交換し、次に第一熱交換器47で顕熱を交換することにより、より多くエネルギーを回収するためである。 As described above, the input fluid A is heated by the first heat exchanger 47, the second heat exchanger 48, and the third heat exchanger 49 by exchanging heat with the first output fluid B1 and the second output fluid B2. , Flows into the flash column 51. The reason why the first output fluid B1 is heat-exchanged in two stages in the first heat exchanger 47 and the third heat exchanger 49 is that the latent heat is first exchanged in the third heat exchanger 49, Next, it is for recovering more energy by exchanging sensible heat with the first heat exchanger 47.
 以上により、海水淡水化プラント40は、入力流体A、第一出力流体B1、第二出力流体B2の自己熱を利用するので、加熱器で加熱する必要がない。すなわち、これら流体の潜熱・顕熱が循環利用される。海水淡水化プラント40は、省エネルギーを実現できる。なお、圧縮機50を駆動するために動力が必要であるが、その動力は、生産物である淡水の単位質量あたり67.70kJのエネルギーとなる。ところが、海水淡水化プラント130では、生産物である淡水の単位質量あたり765.3kJのエネルギーが必要である。したがって、自己熱再生による海水淡水化プラント40は、従来の多段フラッシュ法による海水淡水化プラント130で必要なエネルギーの約1/10で運転が可能である。大きな省エネルギー効果が期待できる。 As described above, since the seawater desalination plant 40 uses the self-heat of the input fluid A, the first output fluid B1, and the second output fluid B2, it is not necessary to heat with a heater. That is, the latent heat and sensible heat of these fluids are recycled. The seawater desalination plant 40 can realize energy saving. In addition, although power is required to drive the compressor 50, the power becomes energy of 67.70 kJ per unit mass of fresh water as a product. However, the seawater desalination plant 130 requires 765.3 kJ of energy per unit mass of fresh water as a product. Therefore, the seawater desalination plant 40 by self-heat regeneration can be operated at about 1/10 of the energy required for the conventional seawater desalination plant 130 by the multistage flash method. A large energy saving effect can be expected.
<実施形態4>
 図4Aに示す実施形態4の自己熱再生型バイオエタノール共沸蒸留装置(以下、共沸蒸留装置と略す)60は、ベンゼンと、エタノール-水混合物から、高濃度のエタノールと高純度の水とを取り出す装置である。原料(入力流体)の入口となる2つの導入口61、62と、製品(出力流体)の出口となる2つの排出口78、79を有している。そして、導入口61、62と、排出口78、79との間には、種々の装置が配管で接続されている。
<Embodiment 4>
An autothermal regeneration bioethanol azeotropic distillation apparatus (hereinafter abbreviated as an azeotropic distillation apparatus) 60 of Embodiment 4 shown in FIG. 4A is composed of benzene, an ethanol-water mixture, high-concentration ethanol and high-purity water. It is a device to take out. There are two inlets 61 and 62 that serve as inlets for the raw material (input fluid), and two outlets 78 and 79 that serve as outlets for the product (output fluid). Various devices are connected between the introduction ports 61 and 62 and the discharge ports 78 and 79 by piping.
 共沸蒸留装置60は、3つの熱交換器と、3つの圧縮機と、2つの精留塔を有している。すなわち、3つの圧縮機68、69、70はいずれも精留塔63、64の塔頂から出た流体を断熱圧縮する。第一熱交換器65と第二熱交換器67は、それぞれ、精留塔63、64の塔底から出た流体と、圧縮機68、69を出た流体との間で熱交換をする。第三熱交換器66は、デカンタ77を出た流体と、第二圧縮機70を出た流体との間で熱交換をする。 The azeotropic distillation apparatus 60 has three heat exchangers, three compressors, and two rectification columns. That is, all the three compressors 68, 69, and 70 adiabatically compress the fluid that has exited from the tops of the rectifying columns 63 and 64. The first heat exchanger 65 and the second heat exchanger 67 exchange heat between the fluid exiting from the bottoms of the rectifying columns 63 and 64 and the fluid exiting the compressors 68 and 69, respectively. The third heat exchanger 66 exchanges heat between the fluid that has exited the decanter 77 and the fluid that has exited the second compressor 70.
 共沸蒸留装置60の構成を、入力流体の流れに沿って説明する。
 ベンゼンを主成分とする第一入力流体A1と、エタノール-水混合物である第二入力流体A2が、それぞれ、第一導入口61と第二導入口62から第一精留塔63に流入する。そして、これら2つの流体が第一精留塔63で混合される。そして、第一精留塔63の塔頂から第一出力流体B1が出力され、第一精留塔63の塔底から第二出力流体B2が出力される。ここで、第一出力流体B1はベンゼン-水混合物であり、第二出力流体B2は純度の高いエタノールである。
The configuration of the azeotropic distillation apparatus 60 will be described along the flow of the input fluid.
A first input fluid A1 containing benzene as a main component and a second input fluid A2 that is an ethanol-water mixture flow into the first fractionator 63 from the first inlet 61 and the second inlet 62, respectively. These two fluids are mixed in the first rectification column 63. Then, the first output fluid B1 is output from the top of the first rectifying column 63, and the second output fluid B2 is output from the bottom of the first rectifying column 63. Here, the first output fluid B1 is a benzene-water mixture, and the second output fluid B2 is high purity ethanol.
 第一精留塔63の塔底から出た第二出力流体B2は、その一部が第一排出口78から回収され、その残りが第一熱交換器65で加熱されて第一精留塔63に戻る。 A part of the second output fluid B2 exiting from the bottom of the first rectifying column 63 is recovered from the first discharge port 78, and the rest is heated by the first heat exchanger 65 to be first rectifying column. Return to 63.
 一方、第一精留塔63の塔頂から出た第一出力流体B1は、第一圧縮機68で断熱圧縮された後、第一熱交換器65を通過する。出力流体は断熱圧縮されることにより昇温する。第一熱交換器65において、第一出力流体B1が加熱源となり、第二出力流体B2は加熱される。第一熱交換器65を出た第一出力流体B1は、第一バルブ71で減圧され、第一冷却器74で冷却された後、デカンタ77に流入する。 On the other hand, the first output fluid B1 coming out from the top of the first rectifying column 63 is adiabatically compressed by the first compressor 68 and then passes through the first heat exchanger 65. The output fluid is heated by adiabatic compression. In the first heat exchanger 65, the first output fluid B1 serves as a heating source, and the second output fluid B2 is heated. The first output fluid B1 that has exited the first heat exchanger 65 is decompressed by the first valve 71, cooled by the first cooler 74, and then flows into the decanter 77.
 このデカンタ77で、第一出力流体B1は、水を主成分とする第五出力流体B5と、ベンゼンを主成分とする第六出力流体B6とに分離される。デカンタ77を出た第六出力流体B6は、第一精留塔63に戻される。 The decanter 77 separates the first output fluid B1 into a fifth output fluid B5 mainly composed of water and a sixth output fluid B6 mainly composed of benzene. The sixth output fluid B6 that has exited the decanter 77 is returned to the first rectifying column 63.
 第五出力流体B5は、第三熱交換器66において加熱され、第二精留塔64に流入する。一方、第二精留塔64の塔頂から、水を主成分とするベンゼン-水混合物である第三出力流体B3が出力され、第二精留塔64の塔底から純度の高い水である第四出力流体B4が出力される。 The fifth output fluid B5 is heated in the third heat exchanger 66 and flows into the second rectification column 64. On the other hand, the third output fluid B3, which is a benzene-water mixture containing water as a main component, is output from the top of the second rectifying column 64, and is high-purity water from the bottom of the second rectifying column 64. The fourth output fluid B4 is output.
 第二精留塔64の塔底から出た第四出力流体B4は、その一部が第二排出口79から回収され、その残りが第二熱交換器67を通過して第二精留塔64に戻される。 A part of the fourth output fluid B4 exiting from the bottom of the second rectifying column 64 is recovered from the second outlet 79, and the rest passes through the second heat exchanger 67 to pass through the second rectifying column. Return to 64.
 また、第二精留塔64の塔頂から出た第三出力流体B3は、分流して、それぞれ、圧縮機69、70に流入する。すなわち、分流した一方の第三出力流体B3は、第二圧縮機69で断熱圧縮され、第二熱交換器67を通過した後、第二バルブ72で減圧され、第二冷却器75で冷却されて第二精留塔64に戻る。分流した他方の第三出力流体B3は、第三圧縮機70で断熱圧縮され、第三熱交換器66を通過した後、第三バルブ73で減圧され、第三冷却器76で冷却されて第一精留塔63に戻る。 Also, the third output fluid B3 coming out from the top of the second rectification column 64 is divided and flows into the compressors 69 and 70, respectively. That is, one of the divided third output fluids B3 is adiabatically compressed by the second compressor 69, passes through the second heat exchanger 67, is decompressed by the second valve 72, and is cooled by the second cooler 75. Return to the second rectification tower 64. The other divided third output fluid B3 is adiabatically compressed by the third compressor 70, passes through the third heat exchanger 66, is decompressed by the third valve 73, is cooled by the third cooler 76, and is cooled. Return to Ichidometo 63.
 このようにして、第一排出口78から高濃度のエタノールが回収され、第二排出口79から純度の高い水が回収される。 In this way, high-concentration ethanol is recovered from the first outlet 78, and high-purity water is recovered from the second outlet 79.
 以上により、共沸蒸留装置60は、入力流体および出力流体の自己熱を利用することで、加熱器で加熱する必要がない。すなわち、これら流体の潜熱・顕熱が循環利用され、共沸蒸留装置60は、省エネルギーを実現できる。なお、共沸蒸留装置60において、圧縮機68、69、70を駆動するために動力が必要である。図4Aの条件では、その動力は、合計で48.7kWとなる。一方、図4Bに示す条件では、2つの精留塔141、142の加熱器145、146で合計395kWのエネルギーを必要とする。したがって、図4Aの共沸蒸留装置60は、従来の共沸蒸留装置140で必要なエネルギーの約1/8のエネルギーで運転が可能である。 As described above, the azeotropic distillation apparatus 60 does not need to be heated by the heater by using the self-heat of the input fluid and the output fluid. That is, the latent heat and sensible heat of these fluids are circulated and used, and the azeotropic distillation apparatus 60 can realize energy saving. In the azeotropic distillation apparatus 60, power is required to drive the compressors 68, 69, and 70. Under the conditions of FIG. 4A, the power is 48.7 kW in total. On the other hand, under the conditions shown in FIG. 4B, a total of 395 kW of energy is required by the heaters 145 and 146 of the two rectifying columns 141 and 142. Therefore, the azeotropic distillation apparatus 60 of FIG. 4A can be operated with about 1/8 of the energy required for the conventional azeotropic distillation apparatus 140.
<その他の実施形態>
 本発明に係る蒸留装置は、加熱または燃焼に伴うエクセルギー損失を抑える省エネルギー方法であって、外部から熱を加える加熱工程または燃焼工程の一部または全部を、前記入力流体の自己熱を有効に利用した可逆的なエネルギー変換工程に代えて、有効に利用可能なエネルギーの割合を増加させ、エクセルギー率を上昇させることを特徴としている。
<Other embodiments>
The distillation apparatus according to the present invention is an energy-saving method for suppressing exergy loss due to heating or combustion, and makes effective the self-heating of the input fluid in part or all of the heating step or the combustion step of applying heat from the outside. Instead of the reversible energy conversion process used, the ratio of energy that can be used effectively is increased to increase the exergy rate.
 この構成によれば、加熱工程または燃焼工程の一部または全部を、可逆的なエネルギー変換工程に代えることで、加熱または燃焼に伴うエクセルギー率の低い熱エネルギーの損失を抑えることができる。これにより、TΔSを減少し、ΔGを増加して、エクセルギー率ΔG/ΔHを従来よりも向上させる。ここで、可逆的なエネルギー変換工程とは、例えば、気体の圧縮・膨張などの仕事として取り出し可能なエネルギーに変更する工程をいう。 According to this configuration, part or all of the heating process or the combustion process can be replaced with a reversible energy conversion process, so that the loss of heat energy having a low exergy rate associated with the heating or combustion can be suppressed. Thereby, TΔS is decreased, ΔG is increased, and the exergy rate ΔG / ΔH is improved as compared with the conventional case. Here, the reversible energy conversion step refers to, for example, a step of changing to energy that can be taken out as work such as gas compression / expansion.
 以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。 As described above, the preferred embodiments of the present invention have been described with reference to the drawings, but various additions, modifications, or deletions can be made without departing from the spirit of the present invention.
 本発明に係る自己熱再生技術を用いた蒸留装置は、蒸留装置だけでなく、淡水化プラントおよび共沸蒸留装置としてとしても好適に用いることができる。 The distillation apparatus using the self-heat regeneration technology according to the present invention can be suitably used not only as a distillation apparatus but also as a desalination plant and an azeotropic distillation apparatus.
10 自己熱再生蒸留装置
11 導入口
12 第二熱交換器
13 第一熱交換器
14 蒸発缶
14A 加熱チューブ
15 圧縮機
20 フラッシュ蒸留装置
21 導入口
22 分流部
23 第一分流路
24 第二分流路
25 合流部
26 合流路
27 第一熱交換器
28 第二熱交換器
29 第三熱交換器
30 第四熱交換器
31 圧縮機
32 フラッシュカラム
33 第一冷却器
34 第二冷却器
37 第一回収路
38 第二回収路
40 海水淡水化プラント
41 導入口
42 分流部
43 第一分流路
44 第二分流路
45 合流部
46 合流路
47 第一熱交換器
48 第二熱交換器
49 第三熱交換器
50 圧縮機
51 フラッシュカラム
52 第一冷却器
53 第二冷却器
57 第一回収路
58 第二回収路
60 バイオエタノール共沸蒸留装置
61 第一導入口
62 第二導入口
63 第一精留塔
64 第二精留塔
65 第一熱交換器
66 第三熱交換器
67 第二熱交換器
68 第一圧縮機
69 第二圧縮機
70 第三圧縮機
74 第一冷却器
75 第二冷却器
76 第三冷却器
77 デカンタ
DESCRIPTION OF SYMBOLS 10 Self-heat regeneration distillation apparatus 11 Inlet 12 Second heat exchanger 13 First heat exchanger 14 Evaporator 14A Heating tube 15 Compressor 20 Flash distillation apparatus 21 Inlet 22 Divider 23 First shunt 24 Second shunt 25 merging section 26 merging channel 27 first heat exchanger 28 second heat exchanger 29 third heat exchanger 30 fourth heat exchanger 31 compressor 32 flash column 33 first cooler 34 second cooler 37 first recovery Path 38 Second recovery path 40 Seawater desalination plant 41 Inlet 42 Diverging section 43 First shunt path 44 Second shunt path 45 Merging section 46 Merging path 47 First heat exchanger 48 Second heat exchanger 49 Third heat exchange 50 Compressor 51 Flash column 52 First cooler 53 Second cooler 57 First recovery path 58 Second recovery path 60 Bioethanol azeotropic distillation device 61 First inlet 62 Second inlet 63 First precision Column 64 Second rectification column 65 First heat exchanger 66 Third heat exchanger 67 Second heat exchanger 68 First compressor 69 Second compressor 70 Third compressor 74 First cooler 75 Second cooler 76 Third cooler 77 Decanter

Claims (14)

  1.  複数の物質を含む入力流体を受け入れて蒸留する蒸留塔と、
     前記蒸留塔の塔頂から出た第一出力流体を圧縮する圧縮機と、
     前記圧縮機から出た前記第一出力流体により、前記入力流体を加熱する第一熱交換器と、
     前記蒸留塔の塔底から出た第二出力流体により、前記入力流体を加熱する第二熱交換器と、を備えている、
    蒸留装置。
    A distillation column for receiving and distilling an input fluid containing a plurality of substances;
    A compressor for compressing a first output fluid that has exited from the top of the distillation column;
    A first heat exchanger that heats the input fluid with the first output fluid exiting the compressor;
    A second heat exchanger that heats the input fluid with a second output fluid exiting from the bottom of the distillation column,
    Distillation equipment.
  2.  前記蒸留塔の内部に配置された加熱器を更に備えており、
     当該加熱器が、前記圧縮機から出た前記第一出力流体によって前記蒸留塔を加熱するとともに、当該加熱器の下流に前記第一熱交換器が設けられている、請求項1に記載の蒸留装置。
    Further comprising a heater disposed inside the distillation column;
    The distillation according to claim 1, wherein the heater heats the distillation column with the first output fluid output from the compressor, and the first heat exchanger is provided downstream of the heater. apparatus.
  3.  前記第二熱交換器が、前記第二出力流体と、前記第一熱交換器から出た前記第一出力流体とにより、前記入力流体を加熱する、請求項2に記載の蒸留装置。 The distillation apparatus according to claim 2, wherein the second heat exchanger heats the input fluid by the second output fluid and the first output fluid that has exited from the first heat exchanger.
  4.  前記入力流体の一部を前記第一熱交換器に導く第一分流路と、
     前記入力流体の他部を前記第二熱交換器に導く第二分流路と、
     前記第一および第二交換器を通過した入力流体を合流する合流部と、を更に備えている、請求項1に記載の蒸留装置。
    A first branch channel for leading a part of the input fluid to the first heat exchanger;
    A second branch channel for guiding the other part of the input fluid to the second heat exchanger;
    The distillation apparatus according to claim 1, further comprising a merging unit that merges the input fluid that has passed through the first and second exchangers.
  5.  前記圧縮機と前記合流部との間に配置された第三熱交換器を更に備えており、
     当該第三熱交換器が、前記合流部通過後の入力流体を、前記第一出力流体により加熱する、請求項4に記載の蒸留装置。
    Further comprising a third heat exchanger disposed between the compressor and the junction.
    The distillation apparatus according to claim 4, wherein the third heat exchanger heats the input fluid after passing through the merging portion with the first output fluid.
  6.  前記圧縮機と前記第二熱交換器との間に配置された第四熱交換器を更に備えており、
     当該第四熱交換器が、前記第二熱交換器に流入する前の前記第二出力流体を、前記第一出力流体により加熱する、請求項5に記載の蒸留装置。
    Further comprising a fourth heat exchanger disposed between the compressor and the second heat exchanger;
    The distillation apparatus according to claim 5, wherein the fourth heat exchanger heats the second output fluid before flowing into the second heat exchanger with the first output fluid.
  7.  第一熱交換器の下流に配置され、第一出力流体が流入する第一冷却器と、
     第二熱交換器の下流に配置され、第二出力流体が流入する第二冷却器と、を更に備えた、請求項4に記載の蒸留装置。
    A first cooler disposed downstream of the first heat exchanger and into which the first output fluid flows;
    The distillation apparatus according to claim 4, further comprising a second cooler disposed downstream of the second heat exchanger and into which the second output fluid flows.
  8.  前記入力流体は、低沸点の物質と高沸点の物質とを含む混合物質であり、前記第一出力流体が低沸点の物質を含んでおり、前記第二出力流体が高沸点の物質を含んでいる、請求項7に記載の蒸留装置。 The input fluid is a mixed substance containing a low-boiling substance and a high-boiling substance, the first output fluid contains a low-boiling substance, and the second output fluid contains a high-boiling substance. The distillation apparatus according to claim 7.
  9.  前記入力流体が塩分を含んでおり、前記第一出力流体の塩分濃度が、前記入力流体より低い、請求項7に記載の蒸留装置。 The distillation apparatus according to claim 7, wherein the input fluid contains salt, and the salt concentration of the first output fluid is lower than that of the input fluid.
  10.  第一物質を含む第一入力流体と、第二物質および第三物質を含む第二入力流体とが供給される第一蒸留塔と、
     前記第一蒸留塔の塔頂から出た第一出力流体を圧縮する第一圧縮機と、
     前記圧縮機から出た前記第一出力流体により、前記第一蒸留塔の塔底から出た第二出力流体を加熱する第一熱交換器と、
     前記第一熱交換器から出た前記第一出力流体が流入する第二蒸留塔と、
     前記第二蒸留塔の塔頂から出た第三出力流体を圧縮する第二圧縮機と、
     前記第二圧縮機から出た前記第三出力流体により、前記第二蒸留塔の塔底から出た第四出力流体を加熱するとともに、前記第三出力流体を前記第二蒸留塔に向けて排出する、第二熱交換器と、
     前記第一熱交換器から出た前記第一出力流体から前記第一物質を分離し、この第一物質を第一蒸留塔に戻すデカンタと、
     前記第一蒸留塔の塔底から出た第二入力流体に含まれる第二物質を回収するための第一排出口と、
     前記第二蒸留塔の塔底から出た第二入力流体に含まれる第三物質を回収するための第二排出口と、を有している、
    蒸留装置。
    A first distillation column supplied with a first input fluid containing a first substance and a second input fluid containing a second substance and a third substance;
    A first compressor for compressing a first output fluid that has exited from the top of the first distillation column;
    A first heat exchanger that heats the second output fluid exiting from the bottom of the first distillation column with the first output fluid exiting from the compressor;
    A second distillation column into which the first output fluid from the first heat exchanger flows;
    A second compressor for compressing a third output fluid that has exited from the top of the second distillation column;
    The third output fluid exiting from the second compressor heats the fourth output fluid exiting from the bottom of the second distillation tower and discharges the third output fluid toward the second distillation tower. A second heat exchanger;
    A decanter that separates the first material from the first output fluid exiting the first heat exchanger and returns the first material to the first distillation column;
    A first outlet for recovering a second substance contained in a second input fluid that has exited from the bottom of the first distillation column;
    A second outlet for recovering a third substance contained in the second input fluid that has exited from the bottom of the second distillation column,
    Distillation equipment.
  11.  前記第二蒸留塔の塔頂から出た前記第三出力流体の一部を圧縮する第三圧縮機と、
     前記デカンタによって第一物質が分離された第一入力流体を、前記第三圧縮機から出た前記第三出力流体により加熱するとともに、前記第三出力流体を前記第一蒸留塔に向けて排出する、第三熱交換器と、を更に備えている、
    請求項10に記載の蒸留装置。
    A third compressor that compresses a portion of the third output fluid that has exited from the top of the second distillation column;
    The first input fluid from which the first substance is separated by the decanter is heated by the third output fluid that has exited from the third compressor, and the third output fluid is discharged toward the first distillation column. A third heat exchanger,
    The distillation apparatus according to claim 10.
  12.  前記第一熱交換器と前記デカンタとの間に配置された、前記第一出力流体を冷却する第一冷却器を、更に備えている、請求項11に記載の蒸留装置。 The distillation apparatus according to claim 11, further comprising a first cooler disposed between the first heat exchanger and the decanter for cooling the first output fluid.
  13.  前記第一物質がベンゼンであり、前記第二物質がエタノールであり、前記第三物質が水である、請求項11に記載の蒸留装置。 The distillation apparatus according to claim 11, wherein the first substance is benzene, the second substance is ethanol, and the third substance is water.
  14.  入力流体を蒸気と液に分離する、分離工程と、
     前記蒸気を圧縮する圧縮工程と、
     前記入力流体を、前記圧縮された蒸気によって加熱する、第一加熱工程と、
     前記入力流体を、前記液によって加熱する、第二加熱工程と、
     前記第一加熱工程に用いられた蒸気を液化する液化工程と、を有する、
    蒸留方法。
     
     
    Separating the input fluid into vapor and liquid;
    A compression step of compressing the vapor;
    A first heating step of heating the input fluid with the compressed steam;
    A second heating step of heating the input fluid with the liquid;
    Liquefying the vapor used in the first heating step,
    Distillation method.

PCT/JP2013/050496 2012-02-01 2013-01-12 Distillation device and distillation method WO2013114936A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013527419A JP5756900B2 (en) 2012-02-01 2013-01-12 Distillation equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-020210 2012-02-01
JP2012020210 2012-02-01

Publications (1)

Publication Number Publication Date
WO2013114936A1 true WO2013114936A1 (en) 2013-08-08

Family

ID=48904980

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2013/050496 WO2013114936A1 (en) 2012-02-01 2013-01-12 Distillation device and distillation method
PCT/JP2013/050498 WO2013114937A1 (en) 2012-02-01 2013-01-13 Carbon dioxide recovery system
PCT/JP2013/051516 WO2013115073A1 (en) 2012-02-01 2013-01-25 Energy-saving device and energy-saving method which utilize self-heat recuperation

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/050498 WO2013114937A1 (en) 2012-02-01 2013-01-13 Carbon dioxide recovery system
PCT/JP2013/051516 WO2013115073A1 (en) 2012-02-01 2013-01-25 Energy-saving device and energy-saving method which utilize self-heat recuperation

Country Status (2)

Country Link
JP (2) JP5756900B2 (en)
WO (3) WO2013114936A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019147141A (en) * 2018-02-28 2019-09-05 三菱ケミカルエンジニアリング株式会社 Separation method and apparatus of mixture
WO2022074976A1 (en) * 2020-10-05 2022-04-14 株式会社神戸製鋼所 Gas-treating device
US11331625B2 (en) 2017-11-30 2022-05-17 Kobe Steel, Ltd. Gas treatment method and gas treatment apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180221815A1 (en) * 2015-07-30 2018-08-09 Chiyoda Corporation Method and system for carbon dioxide gas dehydration
WO2018226056A1 (en) 2017-06-08 2018-12-13 주식회사 엘지화학 Distillation device and distillation method
JP7123749B2 (en) * 2018-10-30 2022-08-23 川崎重工業株式会社 Carbon dioxide capture system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155901U (en) * 1984-09-13 1986-04-15
JP2002515336A (en) * 1998-05-14 2002-05-28 アクア・ピュア・ベンチャーズ・インコーポレイテッド Mechanical vapor recompression process
JP2010036057A (en) * 2008-07-31 2010-02-18 Chiyoda Kako Kensetsu Kk Separation process module, integration separation process module, large scale integration separation process module

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2760377B2 (en) * 1984-03-02 1998-05-28 三菱電機株式会社 Sterilizer
JP2594489B2 (en) * 1992-05-06 1997-03-26 株式会社ガスター Liquid heat sterilizer
JPH10197083A (en) * 1997-01-10 1998-07-31 Calsonic Corp Gas compression type cooler for automobile
JP2003302116A (en) * 2002-04-05 2003-10-24 Mitsubishi Heavy Ind Ltd Cold and heat insulation apparatus
JP3778900B2 (en) * 2002-11-21 2006-05-24 三洋電機株式会社 Sterilizer and hydroponics system using the same
EP1843108B1 (en) * 2004-11-29 2010-01-13 Mitsubishi Heavy Industries, Ltd. Air refrigerant type refrigerating/heating apparatus
JP2006189190A (en) * 2005-01-05 2006-07-20 Sanden Corp Article heating/cooling device
JP2008020125A (en) * 2006-07-13 2008-01-31 Matsushita Electric Ind Co Ltd Refrigerating cycle device and heat storage device using the same
KR101516772B1 (en) * 2008-04-10 2015-05-04 오리온 기까이 가부시끼가이샤 Temperature and humidity regulating apparatus and temperature and humidity regulating system
JP2011027358A (en) * 2009-07-28 2011-02-10 Panasonic Corp Heater
JP5641194B2 (en) * 2010-03-31 2014-12-17 新日鉄住金エンジニアリング株式会社 Carbon dioxide gas recovery device
JP2012000539A (en) * 2010-06-14 2012-01-05 Ihi Corp Method and apparatus for recovering carbon dioxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155901U (en) * 1984-09-13 1986-04-15
JP2002515336A (en) * 1998-05-14 2002-05-28 アクア・ピュア・ベンチャーズ・インコーポレイテッド Mechanical vapor recompression process
JP2010036057A (en) * 2008-07-31 2010-02-18 Chiyoda Kako Kensetsu Kk Separation process module, integration separation process module, large scale integration separation process module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11331625B2 (en) 2017-11-30 2022-05-17 Kobe Steel, Ltd. Gas treatment method and gas treatment apparatus
JP2019147141A (en) * 2018-02-28 2019-09-05 三菱ケミカルエンジニアリング株式会社 Separation method and apparatus of mixture
JP7205065B2 (en) 2018-02-28 2023-01-17 三菱ケミカルエンジニアリング株式会社 Method and apparatus for separating mixture
JP7468587B2 (en) 2018-02-28 2024-04-16 三菱ケミカルエンジニアリング株式会社 Method and apparatus for separating mixtures
WO2022074976A1 (en) * 2020-10-05 2022-04-14 株式会社神戸製鋼所 Gas-treating device
JP7407685B2 (en) 2020-10-05 2024-01-04 株式会社神戸製鋼所 gas treatment equipment

Also Published As

Publication number Publication date
JP5756900B2 (en) 2015-07-29
JPWO2013115073A1 (en) 2015-05-11
JPWO2013114936A1 (en) 2015-05-11
WO2013115073A1 (en) 2013-08-08
WO2013114937A1 (en) 2013-08-08

Similar Documents

Publication Publication Date Title
Mehrpooya et al. Advanced exergoeconomic assessment of a solar-driven Kalina cycle
JP5756900B2 (en) Distillation equipment
Xia et al. Thermo-economic analysis and comparative study of transcritical power cycles using CO2-based mixtures as working fluids
RU2480591C2 (en) Operation method of thermodynamic circuit, and thermodynamic circuit itself
JP5800295B2 (en) Steam power cycle system
AU2005233321B2 (en) Method and device for carrying out a thermodynamic cyclic process
US20100287934A1 (en) Heat Engine System
RU2611499C2 (en) Process and plant for distillation of methanol with heat recuperation
KR101602754B1 (en) Steam power cycle device
CN105003351A (en) Multi-energy-form output energy tower for stepwise recycling gas engine waste heat energy
JPH0427367B2 (en)
US7980079B2 (en) Power systems and methods for high or medium initial temperature heat sources in medium and small scale power plants
Botero et al. Redesign, optimization, and economic evaluation of a natural gas combined cycle with the best integrated technology CO2 capture
CN103161528B (en) Work and coldness co-production system and method of recovering working medium effective ingredient refrigeration
WO2011074048A1 (en) Gas turbine combined cycle power plant and method
Wang et al. Application of heat pump technology to recover 1, 4-dioxane and acetonitrile from wastewater via triple-column distillation
US20130019596A1 (en) Process and power system utilizing potential of ocean thermal energy conversion
KR101917430B1 (en) Power generating apparatus
Li et al. Thermo-economic analysis and optimization of a cascade transcritical carbon dioxide cycle driven by the waste heat of gas turbine and cold energy of liquefied natural gas
RU2640969C1 (en) Method for extraction of liquefied hydrocarbon gases from natural gas of main gas pipelines and plant for its implementation
KR101294948B1 (en) Power system for improved thermal and condensing efficiency
US20030150403A1 (en) Stratified vapor generator
JPS5867975A (en) Energy recovery method of low temperature and low temperature difference
US20160010511A1 (en) Power generation system and method to operate
RU2202078C2 (en) Method of liquefaction of natural gas

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013527419

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13742840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13742840

Country of ref document: EP

Kind code of ref document: A1